
Problem sheet 9
FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth, Jonas Eidesen

 These problems are scheduled for discussion on Wednesday, 06 April 2022. If you spot any
typos and/or mistakes please send an email to lasselb@fys.uio.no or jonaeid@math.uio.no.

Problem 17: Wilsonian Renormalization
In this exercise, we will carry out the procedure of Wilson renormalization for a four-dimensional
scalar theory. Wilson’s treatment develops an important statement: field theories describe
physics only in a limited range of energies. This is the starting point for the modern way of
understanding renormalization, where we can consider a QFT as an effective field theory1.

To implement the idea, let us consider a QFT with a physical UV cutoff Λ0. For energies
above Λ0 physics is described by another theory (string theory, another QFT, . . . ), which is
assumed to be fundamental, while below Λ0 it is represented by a general (bare) action which
contains in principle all possible interaction terms compatible with the symmetries of the theory.
Suppose our QFT is governed by the action

SΛ0 [φ] =
∫
d4x

[
1
2(∂φ)2 +

∑
i

giOi(x)
]

(1)

where we have allowed for arbitrary local operators Oi(x) subject to two symmetries, the
Euclidean group2 ISO(4) and the discrete symmetry Z2. Given this action, we have a regularized
generating functional

ZΛ0(gi) =
∫
C∞(M)≤Λ0

Dφ e−SΛ0 [φ] , (2)

where the integral is taken over the space C∞(M)≤Λ0 of smooth functions on M whose energy is
at most Λ0.

a) Now let us think what happens as we try to perform the path integral by first integrating
those modes with energy between (Λ,Λ0]: split φ into high-energy φH and low-energy φL
modes and show that we can formally write

Seff
Λ [φL] = − ln

[ ∫
C∞(M)(Λ,Λ0]

DφH e−SΛ0 [φL+φH ]
]

(3)

Recalling from Problem set 8 we see that this is exactly the Wilsonian effective action
where the low energy fields serve as sources for the high energy fields, which are the only

1Here I should mention that the axiomatic QFT community disagrees with this statement, but this is far beyond
what we will cover in this course.

2In Lorentzian signature this would obviously be the Poincare group.
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ones that can propagate. Therefore, we can calculate this object perturbatively by summing
over all connected Feynman diagrams with a set number of external fields φL, and the only
trace of the integrated fields φH is that they appear in loops.

b) To make the procedure clear let us consider only the first few terms in SΛ0 , i.e. we consider

SΛ0 [φ] =
∫
d4x

[
1
2(∂φ)2 + 1

2m
2φ2 + λ

4!φ
4 + · · ·

]
(4)

Integrate out the high energy modes, i.e. perform the loop diagrams for φH , and show that
we obtain the effective action

Seff
Λ [φ] =

∫
d4x

[
1
2(∂φ)2 + 1

2m̃
2φ2 + λ̃

4!φ
4 + Bµ

4! φ
3∂µφ+ Cµν

4! φ
2∂µ + · · ·

]
(5)

Recall that the bare action we started with involved all possible terms satisfying the
imposed symmetries. Thus, the effective action we have obtained has the same form as the
one we started with but with different coefficients, i.e.

Seff
Λ [φ] =

∫
d4x

[
1
2(∂φ)2 +

∑
i

g̃i(Λ)Oi(x)
]
. (6)

[
Hint: To find the correction to m and λ, the loop integrals to calculate are

−λ4

∫
d4xφ2

L(x) 〈φH(x)φH(x)〉0 (7)

and

−λ
2

16

∫
d4xd4y φ2

L(x)φ2
L(y) 〈φH(x)φH(y)〉 2

0 (8)

where the last one is non-local, i.e. φL is evaluated at different points, which cannot appear
as corrections of a local bare action. To overcome this problem expand the non-local terms
in a series of infinite local contributions with growing number of derivatives of the field. In
such a way the corrections arising from them can be included in the action as an infinite
number of derivative interactions.

]
c) Argue that the generating functional

ZΛ(g̃i(Λ)) =
∫
C∞(M)≤Λ

Dφ e−Seff
Λ [φ] (9)

obtained from the effective action scale Λ is exactly the same as we started with, i.e.

ZΛ(g̃i(Λ)) = ZΛ0(gi,Λ0) (10)

Hence, show that we obtain the following differential equation(
Λ ∂

∂Λ+Λ∂gi(Λ)
∂Λ

∂

∂gi

)
ZΛ(g̃) = 0 (11)

which is commonly called the renormalization group equation.

Comment: Integrating out high energy modes is cumbersome and can be quite tricky
to do for more advanced theories. However, Joe Polchinski and Christof Wetterich have
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developed methods building on Wilson’s ideas. These methods are easier to work with and
are known as the exact renormalization group (Polchinski) and functional renormalization
group (Wetterich)3. Polchinski used his method to show that the Wilsonian renormalization
approach was equivalent to the traditional approach laid out by Freeman Dyson et al. in
QED (called continuum renormalization). Thus, while the continuum approach is easier to
work with in practice, it is the Wilsonian idea we have in mind.

d) Let us introduce dimensionless couplings4 in the following way

λ̃i = Λ−[g̃i]g̃i (12)

where [g̃i] denotes the mass dimension of the couplings and Λ is the current scale of the
theory. Use the renormalization group equation to calculate the beta functions

β2 := Λ∂λ̃2
∂Λ (13)

β4 := Λ∂λ̃4
∂Λ (14)

and decide sgn(βi), i.e. the sign of the beta functions. Discuss the connection between
sgn(βi) and the notion of renormalization group flow, thus deciding the relevance of the
possible terms in the Lagrangian.

[
Hint: The conclusion of your analysis should be that the only relevant terms are

S[φ] =
∫
d4x

[
1
2(∂φ)2 + 1

2m
2φ2 + λ

4!φ
4
]

(15)

i.e. all other terms are irrelevant. In the terminology of renormalization theory, it is called
renormalizable, and in the RG terminology, marginal.

]
Problem 18: The Continuum Limit and Perturbative Renormalization
So far, we have considered a fixed initial theory SΛ0 [φ] with initial couplings gi and examined
how these couplings change as we probe the theory at long distances. Our definition of the
effective action ensured that the generating function and hence the correlation functions are
independent of the low-scale Λ. What about the cutoff scale Λ0? Suppose we fix a particular
low–energy theory (perhaps motivated by the results of some finite–scale experiments). How can
we remove the high–energy cut–off, sending Λ0 →∞, without affecting what the theory predicts
for low–energy phenomena. We call this taking the continuum limit of our theory since sending
Λ0 →∞ is allowing the field to fluctuate on arbitrarily small scales.

The key to achieving this is due to the universality of the renormalization group flow. It
assures us that the properties of the theory in the IR are determined not by the infinite set of
couplings {gi}, but only by the couplings to a few relevant operators. Hence, it is possible to
tune the initial couplings so that the theory remains finite as Λ0 → ∞. We can achieve this
tuning by rewriting the bare action as

SΛ0 [φ]→ SΛ0 [φ] + SCT
Λ0 [φ] (16)

3The latter is just a Legendre transform of the former
4This might seem as a strange thing to do, but the real motivation will reveal itself in a couple of weeks. That is,

there is a certain way of classifying renormalizable theories and the dimension of the coupling is important in
that regard.
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where the counterterms (CT) are tuned so that the limit

e−S
eff
Λ [φL] = lim

Λ0→∞

[ ∫
C∞(M)(Λ,Λ0]

DφH e
−SΛ0 [φL+φH ]−SCT

Λ0
[φL+φH ]

]
(17)

exists, provided we take this limit after computing the path integral. Notice that nothing new
has been added to the theory, i.e. the original action we started with contained all possible
monomials in fields and their derivatives. The reason for making SCT explicit, rather than just
treating the counterterms as a modification of {gi}, is that in practice we work perturbatively.
To evaluate the path integral in Eq. (17), we first compute quantum corrections to, e.g. 1-loop
order, using the original action SΛ0 . These 1-loop corrections will depend on the cut–off Λ0.
In general, they will diverge as Λ0 →∞ reflecting the fact that we lose control of the original
theory if the cut–off is removed naively. However, vertices in SCT

Λ0
provide further contributions

to these quantum corrections. By tuning the values of the couplings in SCT
Λ0

by hand, we can
obtain a finite limit.

Let us investigate one way of how this can be done in practice: Split the action in the following
way

SΛ0 [φ] =
∫
d4x

[
1
2(∂φ)2 + 1

2m
2φ2 + λ

4!φ
4
]

(18)

SCT
Λ0 =

∫
d4x

[
1
2δZφ(∂φ)2 + 1

2δm
2φ2 + δλ

4! φ
4
]

(19)

with (δZφ, δm2, δλ) representing our freedom to adjust the couplings in the original theory
(including the coupling to the kinetic term).

a) Define what is meant by a 1PI (one-particle irreducible) graph, and show that the full
2-point function takes the form

∆(p2) = 1
p2 +m2 −Π(p2) (20)

where Π(p2) are the 1PI.

b) Calculate the two-point function to one-loop order and show that5

Π1-loop(p2) = − λ

32π2

(
Λ0 −m2 ln

(
1 + Λ2

0
m2

))
− p2δZφ − δm2 (21)

c) It is finally time to go to experiments to fix δZφ and δm2. Experimentally, we can measure
the true mass of a particle by looking for peaks (resonances) in scattering cross-sections
where this particle is exchanged. These peaks correspond to poles of the S-matrix in the
complex momentum plane. Let us then motivate the requirement of fixing δZφ and δm2 by
the fact that the classical (non-loop) propagator (p2 +m2)−1 has a pole when −p2 = m2.
Hence, a reasonable condition for the exact φ propagator ∆(p2), is that is has a simple
pole at some experimentally measured value −p2 = m2

phys, and that the residue of this pole
is unity. Thus, we demand that

Π(−m2
phys) = m2 −m2

phys (22)

∂Π
∂p2

∣∣∣∣∣
p2=−m2

phys

= 0 (23)

5Note that we use Euclidean signature.
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Show that this procedure gives a perfectly well-behaved Π(p2) (up to 1-loop) in the
continuum limit. Further, calculate the beta-function β2 and relate it to the one you found
in the previous exercise.

d) For those who want more practice, do a similar analysis of the correction to the coupling
and show that we obtain a well-defined vertex function Γ (up to 1-loop) in the continuum
limit. Further, find the beta function β4 and discuss the scale behaviour of the coupling in
the massless limit.
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