Problem sheet 4
FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth € Jonas Eidesen

~~ These problems are scheduled for discussion on Wednesday, 16 February 2022. If you spot
any typos and/or mistakes please send an email to lasselb@fys.uio.no or jonaeid@math.uio.no.

Problem 9: Equations of motion

In the path integral formalism we only work with classical fields, so why do we get a "quantum”
result? In this problem we will explore this using a general scalar field theory:
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a) Show that the equations of motion for this theory becomes

(O + m)p(o) = 2 ()

by varying the action.

Now consider the generating functional
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where Ok = (02 +m? is the Klein Gordon differential operator. Since we are integrating over
all field configurations Z[J] is invariant under a change
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for any field e. By making this variation we get
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By expanding the relevant terms to first order in € we get:
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b) Fill in the gaps in the above calculation and show that
0Z[J] OLint )
_ = — Z[J].
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This is known as the Schwinger-Dyson differential equation, and it uniquely determines
the generating functional.




Consider now the expression
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By making the variation ¢ — ¢ + € and expanding to first order in € show that:

(Oka)e(p(x)e(y)) = —id(z —y)
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for a general L # 0.

Note: Here (...) is a shortening of (Q|T{...} |Q2), also the notation (Okq)r means that this
s a differentiation with respect to the variable x.

These are all variations of the Schwinger-Dyson differential equation, and one can show using
these equations that the canonical way of quantizing a field is equivalent to the path integral
formalism! These are also what we think of as the equations of motion for the theory.

Problem 10: Non-Abelian Yang-Mills theories

Consider the general Yang-Mills Lagrangian for a fermion field charged under some gauge sym-
metry g:
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Let g = sus3, and i, j range over r, g, b.

a) Write out I) explicitly as a 3 x 3 matrix.
Recall: The generators of sug is given by T = %)\“, where A% are the Gell-Mann matrices.

b) Write out the interaction terms contained in —iF .

¢) When deriving the gauge boson propagator of a non-Abelian gauge theory we introduce
Faddeev-Popov ghosts and anti-ghosts. If we include these ghosts fields in the Lagrangian
the full Lagrangian becomes:
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With this derive the four vertex rules of this theory and draw the accompanying Feynman
diagrams.



