
Solutions [and grading guidelines]

for the midterm exam in FYS5120

[General grading guidelines: Stated points are given for arriving at the re-

spective expression in a fully satisfactory way. Whole point subtractions for

bad logic, physically wrong statements or expressions that are physically wrong

(e.g. wrong dimensions, energy not conserved etc.)! ‘Obvious’ small math errors

(e.g. wrong prefactors) only 0.5 pt. When possible, no subtraction for follow-up

mistakes. Up to 1 extra point for outstanding explanations or demonstrating

special insight (but this cannot result in more points than available for a given

problem).]

Problem 1
a) Since the mass dimension of L must be 4, we have [λ] = −2 in both cases [1 pt].
Assuming all particles to be ingoing, the vertex rules are given by: [1 pt per correct

diagram, including arrow directions, 1 pt per correct rule]

Important things to note here are: i) a symmetry factor of 2! for each field appearing
twice, ii) the replacement of ∂µ → −ipµ for ingoing momenta, iii) getting the spinor
structure in 1. correct requires adding spinor indices explicitly in the interaction
Lagrangian before reading off the vertex and iv) the result in 2. requires to re-shuffle
the derivatives first, discarding as usual total divergences, in order to have them act
on only one field, respectively.

b) Classical fields evolve according to the classical equations of motion, while quantum
fields only do so ‘on average’ – where the probability to deviate from the classical path
is exponentially suppressed by how much the corresponding action deviates from the
classical (extremal) action [1 pt]. When calculating correlation functions in the path
integral formalism, we should thus only perform the integration over the quantum
fields, while leaving any given classical field configurations fixed. Vertex rules are
based on correlation functions of quantum fields – and our formalism to extract them
(as used in problem 1a) remains completely unchanged when treating the classical
fields as ‘coefficients’ of the corresponding field operators; for the case of the Yukawa
interaction, this results in the vertex stated in the problem (note the missing minus
sign in the exam, this is a typo) [1 pt]. In the standard model, the Higgs field acquires
a non-zero vev, ϕcl = v, at small temperatures. Thereby the two-point correlation
function for fermions gets an additional constant contribution – i.e. a mass term
(which would otherwise be forbidden by gauge symmetry) [1 pt].

Problem 2
a) This Lagrangian is invariant under [1 pt each for the first three; only 0.5 if
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charge is missing]

ϕ → eiQϕαϕ , (1)

Bµ → Bµ + g−1∂µα (2)

ΨL → eiQψαΨL , (3)

(ΨR → ΨR) , (4)

for arbitrary space-time functions α(x). A gauge boson mass termm2
BBµB

µ would not
be invariant under (2) [0.5 pt], while a fermion mass term mψ̄ψ = mψ̄LψR +mψ̄RψL
is forbidden by (3,4) [0.5 pt].

b) The field ϕ has to be expanded around the classical minimum energy solution
⟨ϕ⟩, which has the consequence that the U(1) symmetry is spontaneously broken,
resulting in a massive real scalar and a massless real scalar (the Goldstone boson) [1

pt]. Because this symmetry is a gauge symmetry, the Goldstone boson is ‘eaten’ by
the gauge field Aµ, which thereby acquires a mass [1pt]. This is known as the Higgs
mechanism [0.5pt].

The photon mass term results from the term L ⊃ |Dϕ|2. It is most easily derived
by assuming that ϕ is real-valued – which can always be achieved via a suitable gauge
transformation α(x) such that exp[iQϕα(x)]ϕ is real. Then:

|Dϕ|2 = (∂µϕ+ igQϕBµϕ)(∂
µϕ− igQϕB

µϕ)

= (∂µϕ)
2 + g2Q2

ϕϕ
2BµB

µ .

For ϕ→ ⟨ϕ⟩ ≡ v, the second term thus looks like a photon mass term, L ⊃ 1
2
m2
BBµB

µ,

with mB =
√
2gQϕv [1.5 pts for correct expression and derivation].

c) The two diagrams that contribute to this process are [1 pt]:

The amplitude is hence given by [1 pt]

iM = v̄(p1)

{
(−igQψγ

µPL)
i(/k1 − /p1)

(p1 − k1)2
(−igQψγ

νPL) + (5)

(−igQψγ
νPL)

i(/k2 − /p1)

(p1 − k2)2
(−igQψγ

µPL)

}
u(p2)ϵ

∗
µ(k1)ϵ

∗
ν(k2)

= ig2Q2
ψv̄(p1)

{
γµ(/k1 − /p1)γ

νPL

t
+
γν(/k2 − /p1)γ

µPL

u

}
u(p2)ϵ

∗
µ(k1)ϵ

∗
ν(k2) ,(6)
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where in the second step we used PR,Lγ
µ = γµPL,R [0.5 pt for full simplification as

stated here]. According to the Goldstone boson equivalence theorem, the production
of gauge bosons with longitudinal polarizations is identical, in the high-energy limit, to
a situation where real Goldstones would be emitted [0.5 pt]. However, these Goldstone
modes must be part of the scalar field in the unbroken theory; and since there does
not exist any vertex that couples ψ and ϕ, such a process is not possible [1 pt]. (Note
that this argument does not involve a fundamental symmetry and hence should not
be expected to hold beyond tree-level. In fact, a ψψ̄ pair can for example annihilate
into a ϕϕ∗ pair via a gauge boson loop.)

d) The formulation in the problem implies that we need to replace−igQϕγ
µPLϵ

∗
µ(k) →

gQϕ/kPL/mB in the amplitude from c), for outgoing gauge boson or scalar π momen-
tum k [1 pt]. The amplitude thus becomes [1 pt]

iM = i
g2Q2

ϕ

m2
B

v̄(p1)

{
/k1PL(/k1 − /p1)/k2PL

(p1 − k1)2
+
/k2PL(/k2 − /p1)/k1PL

(p1 − k2)2

}
u(p2) (7)

= −i 1

2v2
v̄(p1)

{
/k1/p1/k2PL

t
+
/k2/p1/k1PL

u

}
u(p2) , (8)

where in the second step we used /k
2 ∝ k2 = 0. In fact, since all momenta are for

massless particles, we have t = −2p1 · k1 and u = −2p1 · k2; using the hint, this will
simplify expressions like /p1/k1/p1 = −/p1/p1/k1 + 2/p1(p1 · k1) = −t/p1 and /p1/k2/p1 = −u/p1
[1 pt]. Squaring the matrix element, and averaging over the initial fermion spins, then
suddenly becomes doable [1 pt for any significant simplification of the trace]:

|M|
2

=
1

4 · 4v4
Tr

[
/p1

{
/k1/p1/k2PL

t
+
/k2/p1/k1PL

u

}
/p2

{
PR/k2/p1/k1

t
+
PR/k1/p1/k2

u

}]
(9)

=
1

16v4
Tr

[
−/p1 {/k2 + /k1} /p2PR

{
/k2/p1/k1

t
+
/k1/p1/k2

u

}]
(10)

=
1

16v4
Tr

[
{/k2 + /k1} /p2PR {/k2 + /k1} /p1

]
, (11)

where we used the cyclic property of traces in the last step. With momentum conser-
vation, k1+k2 = p1+p2, and using again (/pi)

2 = 0, the trace becomes proportional to
Tr[/p1/p2PR/p2/p1] = Tr[/p1/p2/p2PL/p1] = 0. In other words, the unpolarized cross section
vanishes identically (at tree-level) [1 pt].

e) For a broken theory, the would-be Goldstone bosons can always be extracted by the
prescription from problem d), as a consequence of the characteristic shift symmetry
π(x) → π(x)+const. of Goldstone bosons [1 pt]. Therefore, the explicit calculation in
d) only confirms the general conclusion obtained in c) [0.5 pt]. The additional insight

from c) is that mψ ̸= 0 would generally result in a non-vanishing |M|
2
(adding,

e.g. additional terms proportional to mψ from the fermion spin sums; the Goldstone
modes, on the other hand, must by construction remain massless – so the calculation
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still remains doable by hand, though it’s more tedious) [0.5 pt]. In general, it is not
possible to generate a mass term; this would have to come from a term proportional
to ψ̄ψ = ψ̄RψL + ψ̄LψR in the Lagrangian – which picks up a factor of exp[±iQψα]
that cannot be compensated for by either i) further terms involving fermion bilinears
(which would result in something different from a mass term) ii) any integer power of
scalar fields (only adding multiple factors of of exp[±iQϕα]) [1 pt]. If, however, one
picks the specific charge Qϕ = Qψ for the scalar field, the situation changes and the
dim-4 Yukawa coupling L ⊃ −λϕψ̄ψ becomes possible – very similar, in fact, to the
SM case. When ϕ acquires a vev, this will generate a fermion mass term mψ = λv
[1 pt] – and at the same time add a Goldstone-fermion coupling that allows the tree-
level production of longitudinal gauge bosons, cf. problems c), d) [0.5 pt]. The rate
for this production will be directly proportional to (mψ/mB)

4 ∝ (λ/g)4, and hence
independent of v [0.5 pt].

Problem 3
a) The gauge group of the standard model is given by G = U(1)Y × SU(2)L ×
SU(3)c [0.5 pt]. As gauge bosons transform in the adjoint representation, which has
N2 − 1 generators for SU(N) [1 pt], this implies that there are 8 gauge bosons for
SU(3) (the gluons), 3 electroweak gauge bosons for SU(2) and the weak hypercharge
boson [0.5 pt]. Gauge symmetry forbids mass terms, so each of these contributes
with 2 physical d.o.f., i.e. 24 in total [0.5 pt]. The Higgs field is by construction only
charged under U(1)Y ×SU(2), and must transform in the same representation as the
fermions. This constrains it to be a complex doublet, thus adding further 4 (real)
degrees of freedom. [0.5 pt]

When the Higgs field acquires a vacuum expectation value, it breaks the original
symmetry as U(1)Y × SU(2)L → U(1)em [0.5pt]. Three of the original gauge bosons
thus acquire a mass by ‘eating’ the corresponding components of the Higgs doublet
(those are the observed W± and Z bosons, with 3 real degrees of freedom each) [0.5

pt]. The remaining massless vector boson is the photon, and the remaining d.o.f. of
the Higgs doublet is the physical Higgs field; the gluons are unaffected and remain
massless [0.5 pt]. Both before and after SSB, the total number of bosonic, real d.o.f. in
the SM is thus 1× 2 + 3× 2 + 8× 2 + 4 = 1× 2 + 3× 3 + 8× 2 + 1 = 28. [0.5 pt]

b) The fermion fields transform in the fundamental representation of the respective
gauge group [0.5 pt], i.e. doublets under SU(2) and triplets under SU(3). Both
left-handed quarks and left-handed leptons belong to SU(2) doublets [1 pt]. The
left-handed quarks additionally belong to an SU(3) triplet, just as the right-handed
quark fields do [1 pt]. A right-handed neutrino is strictly speaking not part of the
SM – but would be uncharged under all of the SM gauge interactions [0.5 pt].

c) In the QCD case, there is only one contributing
diagram, with an s-channel gluon (see the figure to
the right) [1 pt]. The QCD amplitude (in Feynman
gauge) reads [1 pt]
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iMQCD = v̄(p1)(−igs)γµtau(p2)
−igµνδab

(p1 + p2)2
ū(k2)(−igs)γνtbv(k1) (12)

= i
g2s
s
[v(p1)iγ

µu(p2)j][ū(k2)kγµv(k1)l](t
a)ij(t

a)kl , (13)

where the ta are SU(N) generators (i.e. the Gell-Mann matrices for the N = 3 case
of QCD) and subscripts on the spinors indicate color (not spinor) indices. Averaging
over the 2 spin and N = 3 color states of each of the incoming quarks, and summing
over the final state spin and color states gives [1 pt]

|MQCD|
2

=
1

22N2

g4s
s2
Tr[( /p1−mu)γ

µ( /p2+mu)γ
ν ]× Tr[( /k2+md)γµ( /k1−mu)γν ]

×(ta)ij(t
b)∗ij(t

a)kl(t
b)∗kl . (14)

For the unpolarized QED amplitude squared, we only need to replace the virtual
gluon with a photon propagator [1 pt], resulting in [1 pt]

|MQED|
2
=
N2

N2

1

22
Q2
uQ

2
de

4

s2
Tr[( /p1−mu)γ

µ( /p2+mu)γ
ν ]×Tr[( /k2+md)γµ( /k1−mu)γν ] , (15)

where Qu = 2/3 is the electric charge of the up quark and Qd = −1/3 that of the down
quark. Note the additional color factor of N2, coming from the fact that there are
three color options for q̄q in both initial and final states (which then is averaged away
if we assume that nothing is known about the initial state colors).1 All kinematic
factors are thus identical, and the ratio of the cross sections is hence given by [2 pt

for correct final result]

σQCD
σQED

=
1

Q2
uQ

2
d

α2
s

α2
em

1

N2
× (ta)ij(t

b)∗ij (t
a)kl(t

b)∗kl︸ ︷︷ ︸
=(ta)ij(tb)ji=Tr[tatb]=C(r)δab

(16)

=
81

4

α2
s

α2
em

C(r)2

N2
d(G) (17)

=
81

4

α2
s

α2
em

32 − 1

4× 32
=

9

2

α2
s

α2
em

. (18)

1An alternative definition of unknown initial color states would be that the antiquark always has
the anti-color of the quark color. In this case the averaging would be implemented as N−2 → N−1

for both cross sections, leaving the ratio unchanged.
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