Lecture spring 2023: Quantum field theory II Compulsory problem set

 \rightsquigarrow Deadline for handing in answers is **Monday**, **15 Mai 2023**. You must pass this assignment in order to proceed to the final (oral) exam.

For ease of correcting, please try to follow Schwarz' conventions for counter terms, self-energies etc. You don't have to re-derive (intermediate) results quoted in the lecture or previous exercises – so, in order to safe time, make sure to not re-invent the wheel!

Problem I

Consider a theory with two Dirac fermions, ψ_a and ψ_b , that have identical charge under a U(1) interaction with strength g:

$$\mathcal{L}_{\psi} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\psi}_a \left(i \not\!\!D - m_a \right) \psi_a + \overline{\psi}_b \left(i \not\!\!D - m_b \right) \psi_b$$

- a) Which are the 7 (5) counter terms of this theory? State them in the $\overline{\text{MS}}$ scheme, to leading order in $\alpha \equiv g^2/(4\pi)$!
- b) Express the pole mass of ψ_a and ψ_b in terms of their $\overline{\text{MS}}$ masses, again at $\mathcal{O}(\alpha)$. Does the theory generate a mass mixing, at higher order in α , i.e. a non-vanishing two-point correlation function $\langle \Omega | \psi_b \overline{\psi}_a | \Omega \rangle$?
- c) Why is the theory described by \mathcal{L}_{ψ} renormalizable to all orders in α ? Use this fact to argue that the correlation function for three gauge bosons, $\langle \Omega | A^{\mu} A^{\nu} A^{\rho} | \Omega \rangle$, must vanish identically to all orders in perturbation theory! Does a similar argument also work for the case of five gauge bosons, $\langle \Omega | A^{\mu_1} ... A^{\mu_5} | \Omega \rangle$?

Problem II

Now add a real massless scalar field ϕ to the theory in problem I, with an off-diagonal Yukawa coupling y to the fermions:

$$\mathcal{L} = \mathcal{L}_{\psi} + \frac{1}{2} (\partial_{\mu} \phi)^2 + y \phi \left(\overline{\psi}_a \psi_b + \overline{\psi}_b \psi_a \right) \,,$$

a) Which *additional* dim ≤ 4 operators does the theory generate at loop level (beyond those stated in \mathcal{L})? Are the coefficients of these operators calculable? If yes: explain how; if not: explain how to treat these operators instead.

- b) Based on your insight from a), list all counter terms in this theory and calculate them in the $\overline{\text{MS}}$ scheme (again at leading order)! In the interest of time, you *do* not have to calculate δ_y and the counterterm for the interaction that we study in more detail in problem III.
- c) Which dim ≤ 4 operators involving any of the four fields in our theory are in principle possible – by Lorentz invariance – but *not* generated radiatively? For each of them, state the symmetry that forbids them. What about dim > 4 operators in this theory – are they always calculable (and why)?

Problem III

One of the additional operators that you should have identified in IIa) is a quartic scalar self-interaction, $\frac{\lambda}{4!}\phi^4$. In other words, λ must be *measured* at a given energy scale μ_0 . From that, however, we can *predict* the effective value of λ at any other energy scale μ .

- a) For the rest of this problem, we will assume $m_a = m_b = 0$ for simplicity. Why is this a technically natural choice?
- b) How many diagrams contribute to λ that contain a fermion loop? Calculate the divergent part of *one* of them explicitly. From the result, compute the sum over *all* diagrams by using symmetry arguments. Do the same for scalar loops.
- c) Compute the counterterm δ_{λ} in the $\overline{\text{MS}}$ scheme. Calculate the μ -dependence of the $\phi\phi \rightarrow \phi\phi$ amplitude, where μ is the renormalization scale in dimensional regularization. Denote this amplitude by Λ , and express it in terms of the same amplitude Λ' that would follow from a different renormalization condition $\mu \rightarrow \mu'$. Interpret the result in terms of the introductory claim (about being able to predict the strength of the 4-point coupling).
- d) Another possible renormalization condition is to assign to Λ the value of the 4-point coupling one would measure in the extreme low-energy limit where $p_i^{\mu} = (m_{\phi}, \mathbf{0})$ for all four external momenta p_i . Compute the effective coupling Λ in this scheme! Can you map this to the $\overline{\text{MS}}$ scheme, i.e. can you identify a value of μ_0 that implements this renormalization condition? How do you interpret the result?