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Lecture spring 2024:

Quantum field theory II

Here I provide final (and in some rare cases intermediate) results for the
problem sets. The sole purpose is to give you the opportunity of cross-
checking your own calculations – not to guide you through the details of
these calculations. Apart from time constraints, the main reason is that
you really have to perform these kinds of calculations on your own in order
to learn QFT (and to be prepared for the exam). Also, please remember
that we have ample of opportunities to discuss technical aspects about the
derivations in the exercise / Q&A sessions as well as on AstroForum – so
do make use of this!

Problem 1

a) With the notation in P&S, you need to use ∆ϕ = iϕ. This gives jµ ∝ ϕ∂µϕ∗ −
ϕ∗∂ϕ, from which you get Q ∝

∫
d3xℑ(ϕ̇∗ϕ) by integrating over j0.

b) The Hamiltonian is given by∫
d3x (π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ) =

∫
d3p

(2π)3
Ep(a

†
pap + b†pbp) + c ,

where c is an infinite constant that does not affect the equations of motion.

c) For the charge, you should find Q ∝
∫ d3p

(2π)3
(a†pap − b†pbp). Particles and anti-

particles thus have opposite charge.

Problem 2∫
dNp e−

1
2
pmBmnpn+Jnpn =

√
(2π)N

detB
exp

[
1

2
Jm

(
B−1

)
mn
Jn

]
(1)

→
∫

Dϕ exp

[
−i
∫
d4x

(
1

2
ϕDxϕ− Jϕ

)]
∝ exp

[
−1

2

∫
d4x

∫
d4y J(x)G(x−y)J(y)

]
,

(2)

where Dx is some differential operator and G its Green function. Grassmann version:∫
d(θ∗θ)N e−θ

∗
mBmnθn+η∗nθn+ηnθ

∗
n = (detB) exp

[
θ∗m

(
B−1

)
mn
θn
]

(3)

→
∫

Dψ̄Dψ exp

[
−i
∫
d4x(ψ̄Dxψ − η̄ψ − ψ̄η)

]
∝ exp

[
−
∫
d4x

∫
d4y η̄(x)G(x−y)η(y)

]
,

(4)
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Problem 3

a, b) These are of ‘show that’ type to fill in small gaps in the lecture...

c) Z0[J ] =

∫
Dϕ exp

[
i

∫
d4k

{
−1

2
ϕ(k)(−k2 +m2 − iϵ)ϕ(−k) + J(k)ϕ(−k)

}]
(5)

∝ exp

[
−1

2

∫
d4k

(2π)4
J(−k)G(k)J(k)

]
(6)

Therefore,

⟨0|T{ϕ̂(−k)ϕ̂(p)}|0⟩ = (−i)2

Z0[0]

δ

δJ(k)

δ

δJ(−p)
Z0[J ]J=0 = G(k) δ(4)(p− k) .

Problem 4
(This is also of ‘show that’ type. We went through this in quite some detail in the
first exercise / Q&A session)

Problem 5
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Problem 6

a) The Lagrangian L = −1
4
FµνF

µν + (Dµϕ)(D
µϕ)∗ − V (|ϕ|), with Dµ = ∂µ −

iQϕgAµ, is invariant under

ϕ→ (1 + iQϕα)ϕ (7)

Aµ → Aµ +
1

Qϕg
∂µα , (8)

for arbitrary scalar chargeQϕ, coupling strength g and real functions α(x), V (|ϕ|).

b) We need to add the term L ⊃ ψ̄(i /D)PRψ, indicating the possibility of a different
charge by using Dµ = ∂µ− iQψgAµ. This Lagrangian is also invariant under the
transformations in a), with

PRψ → (1 + iQψα)PRψ (9)

PLψ → PLψ . (10)

A mass term mψψ̄ψ = mψ

[
(PRψ)PLψ + (PLψ)PRψ

]
would not be invariant

under this transformation. Same for mAAµA
µ.

c) Tuning the charges to Qϕ = Qψ additionally allows the Yukawa-like interaction
L ⊂ −y

(
ϕψ̄PLψ + ϕ∗ψ̄PRψ

)
. The interaction terms in the full theory, on top

of those deriving from V (|ϕ|), are then given by
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Problem 7

Problem 8
Finite gauge transformations:

ψ → V (x)ψ ≡ exp (iαata)ψ

Aaµt
a → V

(
Aaµt

a +
i

g
∂µ

)
V †

(The one for the gauge field cannot be brought into a more compact/explicit form).

Problem 9

a) This is all ‘show that’. (A projector is anything that satisfies P 2 = P , so here
PµνP

ν
ρ = Pµρ).

b) With ϵ0µ = pµ/m the spin sum follows almost trivially from a). The physical
d.o.f. of a massive vector boson correspond to the three possible spin-directions
in its rest frame (i.e. 2S + 1 = 3), while the time-like component is not a
dynamical d.o.f. This must be reflected both in possible external states ( ⇝
spin/polarization sums) and internal/ propagating states (virtual states are
typically off-shell; but they do not add additional d.o.f. – i.e. real space-time
functions – to the theory).

c) The gauge that implements both k ·ϵ and k ·ϵ is the combined Lorentz and Cou-
lomb gauge. In QED the Ward identity guarantees that any amplitude Mµϵ

µ(k)
vanishes when replacing ϵµ(k) → kµ; in particular, the time-like and longitu-
dinal polarizations add exactly equal and opposite to the amplitude. In other
words, while it may look like we are summing over all polarizations in Feyn-
man gauge, we actually still, effectively, only sum over the transverse d.o.f. –
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the physical number of d.o.f. is invariant and does not depend on the gauge (or
whether a particle is off-shell). For the same reason, interpreting the propagator
in Landau gauge in terms of the 3 d.o.f. of a massive vector boson is even more
misleading.
In the non-Abelian case, the situation is more complicated as the Ward identity
no longer holds. In the Feynman gauge, e.g., this implies that it is no longer
only the transverse d.o.f. that contribute to the amplitude – and we need ghosts
to subtract the contributions from the unphysical (longitudinal and time-like)
states.

a) This result is most easily derived by an analysis of the Lorentz structure.
I.e. write it as a sum of all terms that could potentially contribute – name-
ly gµν , k

µkν , nµnν , n(µpν) – and determine the coefficients by contracting this
expression with kµ or pµ. It’s also worth convincing yourself that the result
indeed reproduces that from c) for nµ = (1,0)...

Problem 10

a)

/D = /∂ − ig
σi

2
/A
i
=

/∂ − ig

2
/A
3 − ig√

2
/W

+

− ig√
2
/W

− /∂ +
ig

2
/A
3

 (11)

b) −1

4
(F a

µν)
2 = (quadratic terms) +

+ ig
{
Aµ3

(
W ν

+∂µW−ν −W ν
−∂µW+ν

)
+W µ

−
(
Aν3∂µW+ν −W ν

+∂µA3ν

)
+W µ

+

(
W ν

−∂µA3ν − Aν3∂µW−ν
)}

(12)

+ g2
{1

2
W 2

+W
2
− − 1

2
(W+ ·W−)

2

− A2
3(W

+ ·W−) + (A3 ·W+)(A3 ·W−)
}

(13)

c) Using the covariant derivative from a) the interaction terms from the fermionic
part of the Lagrangian read

iψ /Dψ ⊃ g

2
ν /A

3
ν +

g√
2
ν /W

+
e+

g√
2
e /W

−
ν − g

2
e /A

3
e (14)

This leads to the following four Feynman rules (where the arrow of the W lines
is chosen such that the charge flow corresponds to that of the electron – i.e. the
arrow is defined to point along the momentum direction for a W−, not a W+):
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The interaction terms from b), on the other hand, correspond to these three
vertex rules:

Problem 11

a) You should find |M|
2
= 2Q4e4u/t, where Q is the electric charge of the quark,

and hence dσ/dt = 2πα2
emu/(ts

2).

b) The additional diagram is an s-channel gauge boson, with a three-boson vertex.
Still, for t→ 0 only the t-channel diagram diagrams contributes. Averaging over
the N possible internal states of the incoming fermions (squared) and summing
over the color indices – which gives a result proportional to the quadratic Casi-
mir C2 = (N2−1)/(2N) of SU(N) – you should recover the result from a) with
an additional factor of (N2 − 1)2/(4N3), and Q4α2

em replaced by α = g2/(4π).
For QCD (N = 3), this gives the result stated in the problem.

c) The mistake due to wrongly assuming that the Ward identity holds can be com-
pensated for by subtracting the cross section that one would get for real ghost
final states (if ghosts where physical particles). Since ghosts only couple to gauge
bosons, the only contribution can come from the s-channel diagram. The general
expression for the amplitude of such a diagram is straightforward to derive (see
also the lecture); squaring this in the high-energy limit (i.e. neglecting quark
masses) and averaging/summing over color d.o.f. leads to an expression that is
proportional to the index of SU(N) in the fundamental representation (from
the quarks) times the index in the adjoint representation (from the ghosts). In
total, you should find dσ/dt = π

4
α2N2−1

N
ut
s4
.
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Problem 12

a) The Lagrangian of this theory is described by L = |Dµϕ|2 − 1
4
(Fµν)

2. The
contributions from t- and s-channel diagrams then add up to |M|2 = 4g4(1 +
t/s+ s/t)2, i.e. dσ/dt = 4πα2(1 + t/s+ s/t)2/s2.

b) Summing/averaging over the N components turns out to not affect the indivi-
dual diagrams (squared), only the interference term. The result can be written
as

dσ

dt
=
πα2

s2

[
4

(
1 +

t

s
+
s

t

)2

− 2
N − 1

N

(
1 +

2t

s

)(
1 +

2s

t

)]
. (15)

c) Also in this case, there is a common factor in front of the individual diagrams
squared, and another (though very similar) for the interference terms. In sim-
plified form:

dσ

dt
=
πα2

s2
N2

N2 − 1

[
4

(
1 +

t

s
+
s

t

)2

−
(
1 +

2t

s

)(
1 +

2s

t

)]
. (16)

Problem 13 This is ‘show that’... but the idea is to choose a specific vacuum state
such as ϕ = (0, ..., 0, v) and check which sub(!)-transformation of the original transfor-
mation leaves this state invariant. Then introduce ϕN(x) ≡ v+σ(x) and ϕi(x) ≡ πi(x)
for 1 ≤ i ≤ n− 1, and check the terms quadratic in πi.

Problem 14 See 28.2 in the book by Schwartz... some additional comments:

a) The statement that Q ‘generates’ the symmetry derives from how a general
continuous transformation V = exp[iαX], with generatorX, acts on an operator
O, namely by

O → VOV −1 = O + iα[X,O] + ... (17)

This is to be compared with how the field operator transforms, in the form used
in the derivation of the Noether current:

ϕm → ϕm + α(δϕm/δα) . (18)

Given the expression for the commutator [Q, ϕm], these two equations become
identical for X = Q (and O = ϕm). Thus, a symmetric state is unaffected by
Q, i.e. Q|ψ⟩ = 0 or, equivalently, exp[iαQ]|ψ⟩ = |ψ⟩ – while a state without
symmetry isn’t, Q|ψ⟩ ≠ 0.

c) |π(0)⟩ ∝ Q annihilates the false (but not true) vacuum. Hence, the result is
not a state in the Hilbert space and hence we cannot learn anything about its
energy.
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Problem 15

a) ψ and ϕ are doublets, and there are three gauge fields. The covariant derivatives
are not the same:

DµΨL = ∂µΨL (19)

Dµ{ΨR,Φ} =

(
∂µ − igAaµ

σa

2

)
{ΨR,Φ} (20)

(DµAν)
a = ∂µA

a
ν + gϵabcAbµA

c
ν (21)

b) Denoting the multiplet components as Ψ = (ψ1, ψ2), the missing terms are

LΦ,Ψ ⊃ −λ1Ψ̄RΦ̃ψ1L − λ2Ψ̄RΦψ2L + h.c (22)

In unitary gauge, we have Φ(x) = 1√
2
(0, v + ϕ(x)), giving rise to mass terms

−λ1v√
2

(
ψ̄1Lψ1R + ψ̄1Rψ1L

)︸ ︷︷ ︸
ψ̄1ψ1

−λ2v√
2

(
ψ̄2Lψ2R + ψ̄2Rψ2L

)︸ ︷︷ ︸
ψ̄2ψ2

= −m1ψ̄1ψ1 −m2ψ̄2ψ2 .

From the |Dµϕ|2 term, all gauge boson masses aremA = gv/2 – which is different
from the SM (apart from the fact that the gauge bosons couple to right-, rather
than left-handed fields). The reason is that here the symmetry is fully broken,
while in the SM there is a residual U(1)em symmetry after breaking the original
U(1)Y × SU(2)L symmetry.

c) These interactions are again most easily obtained in unitary gauge, and con-

tained in the term |Dµϕ|2 ⊃ g2

8
(v + ϕ)2AaµA

aµ. Thus, the 3-point (AAϕ) vertex

rule is i
2
g2vgµνδ

ab, and the 4-point (AAϕϕ ) vertex rule is i
2
g2gµνδ

ab. Note how
this could have been directly obtained from the result for the gauge boson mass
term, with v → v + ϕ. Also note the necessary appearance of ‘δab’: the vacuum
after SSB is neutral in this model, i.e. not charged under (a subgroup of) SU(2);
ϕ must have the same charge as v, so the color index of the two gauge bosons
cannot change in these interactions.
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