Torsten Bringmann (torsten.bringmann@fys.uio.no) http://www.uio.no/studier/emner/matnat/fys/FYS5120/v24/

Lecture spring 2024: Quantum field theory II

Problem sheet 1

Problem 1

As a warm-up, to re-fresh our knowledge of canonical quantization, let us consider the Lagrangian for a free complex scalar field ϕ ,

$$\mathcal{L} = |\partial_{\mu}\phi|^2 - m^2 |\phi|^2 \,.$$

Compared to the real case, this Lagrangian exhibits an additional symmetry, $\phi \rightarrow \exp[i\alpha]\phi$, where α is an arbitrary phase.

- a) Show that this is indeed a symmetry, and user Noether's theorem to demonstrate that the corresponding conserved charge is given by $Q \propto \int d^3x \,\Im(\dot{\phi}^*\phi)$.
- b) Derive the Hamiltonian, and diagonalize it by introducing creation and annihilation operators.
- c) Rewrite the conserved charge in terms of these annihilation and creation operators. How does the charge between the two types of particles differ?

Problem 2

Consider a hermitian $N \times N$ matrix B and calculate the N-dimensional Gaussian integral

$$\int d^N p \, e^{-\frac{1}{2}p_m^* B_{mn} p_n + \frac{1}{2}J_n^* p_n + \frac{1}{2}J_n p_n^*} \,,$$

where m, n run from 1 to N. How does the result generalize to the infinite-dimensional case? Finally, calculate these integrals also over Grassmann variables (i.e. use $p_i \to \theta_i$ with $\theta^i \theta^j = -\theta^j \theta^i$; and the same for J_i).

[Hint: Consider first the 1D integral, which you can solve by completing the square, and then using $\left[\int dp \exp(-\frac{1}{2}p^2)\right]^2 = 2\pi$.]

Problem 3

The generating functional for a free, real scalar field is proportional to

$$Z_0[J] \exp\left[-\int d^4x \int d^4y \frac{1}{2} J(x) D_F(x-y) J(y)\right],$$

where D_F is the Fermi propagator.

a) Show this claim explicitly, starting from the definition

$$Z_0[J] \equiv \int \mathcal{D}\phi \exp\left[i\int d^4x \left(-\frac{1}{2}\phi(\Box + m^2 - i\epsilon)\phi + J\phi\right)\right],$$

and using the defining properties of Green's functions.

- b) Using the functional formalism, confirm explicitly that the two-point correlation function $\langle 0|T\{\hat{\phi}(x)\hat{\phi}(y)\}|0\rangle$ equals $D_F(x-y)$.
- c) Repeat the same exercise as in b), but this time in Fourier space.

Problem 4

Using the newly introduced path integral formalism, start from the QED Lagrangian and derive all Feynman rules from the corresponding generating functional!