Lecture spring 2023:

Quantum field theory II

Problem sheet 3

Problem 9

This problem serves to build some intuition about vector boson polarizations, and how their outer product is related to the denominator appearing in propagators. We use a convention with four linearly independent 'polarization vectors' $\epsilon^{(\lambda)}$ that satisfy the orthonormality relation $\epsilon^{(\lambda)^{*}} \cdot \epsilon^{\left(\lambda^{\prime}\right)}=g^{\mu \nu} \epsilon_{\mu}^{(\lambda)^{*}} \epsilon_{\nu}^{\left(\lambda^{\prime}\right)}=g^{\lambda \lambda^{\prime}}$.
a) The simplest choice of polarization vectors is $\epsilon_{\mu}^{(\lambda)}=\delta_{\mu}^{\lambda}$. Show that this satisfies the above relation, and also that this results in the completeness relation

$$
\begin{equation*}
|\epsilon\rangle\left\langle\left.\epsilon\right|_{\mu \nu} \equiv g_{\lambda \lambda^{\prime}} \epsilon_{\mu}^{(\lambda)^{*}} \epsilon_{\nu}^{\left(\lambda^{\prime}\right)}=g_{\mu \nu}\right. \tag{1}
\end{equation*}
$$

Demonstrate that these relations are frame-independent, i.e. invariant under $\epsilon_{\mu}^{(\lambda)} \rightarrow \Lambda_{\mu}^{\nu} \epsilon_{\nu}^{(\lambda)}$, and that $|\epsilon\rangle\langle\epsilon|$ mathematically speaking is indeed a projector (as indicated by the notation).
b) Now consider a time-like 4-momentum that takes the form $p^{\mu}=(m, \mathbf{0})$ in the frame where $\epsilon_{\mu}^{(\lambda)}=\delta_{\mu}^{\lambda}$. In a general frame, where $p^{\mu}=(E, \mathbf{p})$, what is the form of the time-like polarization vector, $\epsilon_{\mu}^{0} \equiv \epsilon_{\mu}^{(0)}$? Show that

$$
\begin{equation*}
|\epsilon\rangle\left\langle\left.\epsilon\right|_{\mu \nu} ^{L, T} \equiv g_{i i^{\prime}} \epsilon_{\mu}^{(i)^{*}} \epsilon_{\nu}^{\left(i^{\prime}\right)}=-\sum_{p \cdot \epsilon=0} \epsilon_{\mu}^{*} \epsilon_{\nu}=g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{m^{2}}\right. \tag{2}
\end{equation*}
$$

and that this is again a projector, this time on all polarization states but the time-like one. Why do you expect the propagator for a massive vector boson which we will derive later in the lecture - to be proportional to this?
c) For a massless particle, on the other hand, the momentum is light-like: $k^{\mu}=$ (ω, \mathbf{k}) with $|\mathbf{k}|=\omega$. We can then still consider a complete set of polarization vectors, just not in the rest frame. For example a time-like $\epsilon^{0} \propto(1, \mathbf{0})$, a longitudinal $\epsilon^{L} \propto(0, \mathbf{k})$, and two transverse vectors $\epsilon_{1,2}^{T}=\left(0, \mathbf{e}_{1,2}^{T}\right)$ with $\epsilon_{1,2}^{T} \cdot k=\mathbf{e}_{1,2}^{T} \cdot \mathbf{k}=0$. Show that the projector on only the transverse states is given by

$$
|\epsilon\rangle\left\langle\left.\epsilon\right|_{\mu \nu} ^{T}=-\sum_{\substack{k \cdot \in=0 \tag{3}\\
\mathbf{k} \cdot \epsilon=0}} \epsilon_{\mu}^{*} \epsilon_{\nu}=g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{\omega^{2}}\left\{\begin{array}{ll}
-1 & \text { for }(\mu, \nu)=(0,0) \\
1 & \text { for }(\mu, \nu)=(i, j) \\
0 & (\text { otherwise })
\end{array} .\right.\right.
$$

Which gauge implements these conditions for massless gauge bosons? Why can we instead, in QED, use Feynman gauge - which instead formally appears to implement Eq. (1) in the propagator - or Landau gauge, which appears to implement Eq. (2) for off-shell photons? How does this argument work in the case of non-Abelian gauge bosons?
d) The fact that the answer in c) is not Lorentz covariant is clearly a disadvantage. This can be fixed by introducing a time-like reference vector n^{μ} and defining the transverse states as $p \cdot \epsilon=n \cdot \epsilon=0$. Show that in this way the projection onto transverse polarizations can alternatively be written as

$$
\begin{equation*}
|\epsilon\rangle\left\langle\left.\epsilon\right|_{\mu \nu} ^{T}=-\sum_{\substack{k \cdot \epsilon=0 \\ n \cdot \epsilon=0}} \epsilon_{\mu}^{*} \epsilon_{\nu}=g_{\mu \nu}+\frac{n^{2} k_{\mu} k_{\nu}}{(k \cdot n)^{2}}-\frac{k_{\mu} n_{\nu}+k_{\nu} n_{\mu}}{k \cdot n}\right. \tag{4}
\end{equation*}
$$

(Note that this expression is only formally covariant, broken by the fixed vector n^{μ}.)

Problem 10

Consider the Yang-Mills Lagrangian for a fermion field ('multiplet') ψ charged under some gauge group G :

$$
\mathcal{L}=-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}+\bar{\psi}(i \not D-m) \psi
$$

Now let $G=S U(2)$ and, for concreteness, $\psi=(\nu, e)^{T}$. Then introduce $W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(A_{\mu}^{1} \mp i A_{\mu}^{2}\right)$.
a) What is the explicit form of D, written out as a 2×2 matrix, as a function of the gauge fields $W^{ \pm}$and A^{3} ? [Hint: which $S U(2)$ represenation should you use? Write down the corresponding $S U(2)$ generators explicitly!]
b) Write down all interaction terms between $W^{ \pm}$and A^{3} that are contained in $-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}$.
c) Use the above results to write down the Feynman rules for all vertices involving ν, e, A^{3} and/or $W^{ \pm}$.
[While the vector-fermion couplings should be rather straightforward, the vectorvector couplings are more cumbersome to 'read off'. Identify at least which vector couplings exist at all; in a 2nd step, focus on getting the correct vertex rule for at least one of those...]

Problem 11

In this problem we consider the annihilation of fermions into gauge bosons.
a) Let us start with ordinary QED and consider the annihilation of a quarkantiquark pair into two photons. Write down the amplitude. Now consider the high-energy limit of this expression, and compute the (unpolarized) differential cross section $d \sigma / d t$ for $t \rightarrow 0$ (i.e. $\theta_{\mathrm{CMS}} \rightarrow 0$), expressing the result in Mandelstam variables.
[Hint: Eq. (A.29) in PE3S will help a lot!]
b) Now assume that the quarks live in the fundamental representation of $S U(N)$, and consider their annihilation into a pair of gauge bosons associated with that group. Which additional diagram appears, compared to the Abelian case? Compute again $d \sigma / d t$, in the same limit as in a)! Use this general result to show that for annihilation into a gluon pair (which would be visible as two jets in a collider), you get the QED cross section multiplied by a factor of $\frac{16}{27} Q^{-4}\left(\alpha_{\mathrm{s}} / \alpha_{\mathrm{em}}\right)^{2}$.
c) In a non-Abelian theory, unlike the case of QED, one cannot simply replace the gauge boson polarization sum as $\sum \epsilon_{\mu}^{*} \epsilon_{\nu} \rightarrow-g_{\mu \nu}$, cf. problem 9c). However, for the specific process studied in b), this would only lead to a mistake for one of the diagrams - which one, and why? Compute the corresponding unphysical contribution to $d \sigma / d t$ in the high-energy limit (but for arbitrary t).

