Torsten Bringmann (torsten.bringmann@fys.uio.no) http://www.uio.no/studier/emner/matnat/fys/FYS5120/v24/

Lecture spring 2024: Quantum field theory II

Problem sheet 4

Problem 12

Consider a massless scalar field ϕ without self-interactions that is charged under a local U(1) symmetry.

- a) Calculate the unpolarized differential cross section $d\sigma/dt$ for the process $\phi\phi^* \rightarrow \phi\phi^*$, to lowest order in perturbation theory.
- b) How does the result change if ϕ is an *N*-plet rather than a field with a single complex degree of freedom? (Here, by 'unpolarized' we also mean that we don't know *which* of the multiplet component is in the initial state)
- c) Now repeat the same calculation for the case that ϕ is charged under a local SU(N) symmetry, rather than U(1), and that it transforms in the adjoint representation of this group.

Problem 13

Consider a theory containing N real scalar fields:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi^{i} \right)^{2} + \frac{1}{2} \mu^{2} \left(\phi^{i} \right)^{2} - \frac{\lambda}{4} \left[\left(\phi^{i} \right)^{2} \right]^{2} ,$$

where a summation over i = 1, ..., N is understood. Demonstrate explicitly that this theory is symmetric under SO(N), while the vacuum states are only symmetric under SO(N-1). Demonstrate also explicitly that the theory contains N-1 massless scalar field, as required by Goldstone's theorem.

Problem 14

Goldstone's theorem can directly be related to Noether's theorem. For any continuous symmetry described by a real parameter α , in particular, the conserved Noether charge is given by

$$Q = \int d^3x \, j_0^N = \int d^3x \, \pi_m \frac{\delta \phi_m}{\delta \alpha} \,,$$

where π_m is the conjugate momentum density to the field ϕ_m and a sum over all fields (m) is understood.

- a) Show that $[Q, \phi_m] = -i\delta\phi_m/\delta\alpha$ and [H, Q] = 0. What is the interpretation of these equalities? In this language, why is spontaneous symmetry breaking characterized by a situation where $Q|\Omega\rangle_{\text{false}} = 0$ and $Q|\Omega\rangle_{\text{true}} \neq 0$, where $|\Omega\rangle_{\text{false}}$ and $|\Omega\rangle_{\text{true}}$ are the vacuum states before and after symmetry breaking, respectively?
- b) Show that $|\pi(\mathbf{p})\rangle \equiv \int d^3x \, e^{-i\mathbf{p}\mathbf{x}} j_0^N |\Omega\rangle$ are states with momentum \mathbf{p} and energy $E(\mathbf{p}) + E_0$, where E_0 is the energy of the vacuum state.
- c) Show that in the broken phase π describes a massless particle, i.e. $E(\mathbf{p}) = 0$ for $\mathbf{p} \to 0$. Why does this conclusion not hold in the symmetric (false) vacuum state?

Problem 15

Consider again a Yang-Mills theory, now with the gauge group $SU(2)_R$ – i.e. the righthanded part of the fermion field Ψ transforms in the fundamental representation of SU(2) while the left-handed part is not charged. Furthermore, we add a scalar field Φ in the same representation as $\Psi_R = P_R \Psi$:

$$\mathcal{L} = -\frac{1}{4} \left(F_{\mu\nu}^{a} \right)^{2} + \bar{\Psi}_{L} \left(i \not\!\!D \right) \Psi_{L} + \bar{\Psi}_{R} \left(i \not\!\!D \right) \Psi_{R} + |D_{\mu}\Phi|^{2} - V(|\Phi|)$$

+ scalar-fermion interaction terms ,

where the field strength can be written as $F^a_{\mu\nu} = (D_\mu A_\nu)^a - \partial_\nu A^a_\mu$.

- a) How many components does the fermion multiplet Ψ have (and hence Φ), and how many gauge fields are there? Are the 4 covariant derivates appearing in the above expressions identical (state all of them explicitly!)?
- b) Write down the missing scalar-fermion interaction terms allowed by gaugeinvariance that lead to fermion mass terms if Φ has a non-vanishing vacuum expectation value! (*Hint: Note that the conjugate field* $\tilde{\Phi}$, with $\tilde{\Phi}_a \equiv \epsilon_{ab} \Phi_b^*$, transforms in the same way as Φ if the latter is in the fundamental representation – this is a special property of SU(2)). Using the unitary gauge – for which Φ is zero except for one real component – calculate the resulting fermion and gauge boson masses! Discuss differences and similarities of these gauge bosons to those in the standard model!
- c) Find all interaction terms between the remaining physical scalar field (after spontaneous symmetry breaking) and the gauge fields, and write down the corresponding vertex rules!