
Solutions [and grading guidelines]

for the midterm exam in FYS5120

[General grading guidelines: Stated points are given for arriving at the re-

spective expression in a fully satisfactory way. Whole point subtractions for

bad logic, physically wrong statements or expressions that are physically wrong

(e.g. wrong dimensions, energy not conserved etc.)! ‘Obvious’ small math errors

(e.g. wrong prefactors) only 0.5 pt. When possible, no subtraction for follow-up

mistakes. Up to 1 extra point for explanations demonstrating special insight

(but this cannot result in more points than available for a given problem).]

Problem 1
a) The generating functional is defined as [0.5 pts]

Z[J ] ≡
∫

Dϕ exp

[
i

∫
d4xL+ Jϕ

]
. (1)

By the basic properties of functional derivatives, the correlation function can thus
alternatively be written as [0.5 pts]

⟨Ω|ϕ(x1)...ϕ(xn)|Ω⟩ =
1

Z[0]

(
−i

δ

δJ(x1)

)
...

(
−i

δ

δJ(xn)

)
Z

∣∣∣∣
J=0

(2)

With L ≡ Lfree + Lint, the generating functional can be expanded as

Z[J ] ≡
∫

Dϕ exp

[
i

∫
d4xLfree + Lint + Jϕ

]
(3)

=

∫
Dϕ

(
1 + i

∫
d4x′ Lint[ϕ(x

′)] + ...

)
exp

[
i

∫
d4xLfree + Jϕ

]
[1 pt] (4)

=

(
1 + i

∫
d4x′ Lint[−i

δ

δJ(x′)
] + ...

)∫
Dϕ exp

[
i

∫
d4xLfree + Jϕ

]
[1 pt]

(5)

When plugging this expression into Eq. (2), that equation doesn’t change its form.
The only thing that remains is thus to evaluate the path integral in the last term,
which describes the generating functional for the free theory.

b) Since the mass dimension of L must be 4, we have [λ] = −1 in the first and
[λ] = −2 in the second case [1 pt]. Assuming all particles to be ingoing, the vertex
rules are given by: [1 pt per correct diagram, including arrow directions, 1 pt per

correct rule; -0.5 when not using momentum conservation to simplify the last

one]
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Important things to note here are: i) a symmetry factor of 2! for each field appearing
twice, ii) the replacement of ∂µ → −ipµ for ingoing momenta and iii) assigning
particles and antiparticles correctly.

Problem 2
a) From left to right, the following are the contributing t-, u- [1 pt] and s-channel
[1 pt] diagrams, respectively: [0.5 pt subtractions for wrong/missing arrows or

momentum assignments not as specified]

 

The corresponding contributions to the matrix element are given by [1 pt for each

of the two amplitude – if fully correct, simplified and including color indices.]

iMµν
t+u = (ig)2v̄ã(p1)

{
γµtaãc̃

iδc̃d̃
/k1 − /p1 −m

γνtb
d̃b̃
+ γνtbãc̃

iδc̃d̃
/p2 − /k1 −m

γµta
d̃b̃

}
ub̃(p2) ,

(6)

iMµν
s = igv̄ã(p1)γ

ρtd
ãb̃
ub̃(p2)

−iδdcgρσ
k2
3

×

×gfabc
{
gµν(k2 − k1)

σ + gνσ(k3 − k2)
µ + gσµ(k1 − k3)

ν
}
. (7)

b) We first note that ϵ+µ
∗
(k1) = kµ

1 /(
√
2 |k1|) [1 pt]. From now on suppressing fermion

color indices, we thus get:

iMµν
t+uϵ

+
µ
∗
(k1) = −i

g2√
2 |k1|

v̄(p1)

{
tatb

γµ

/k1 − /p1 −m
γν + tbtaγν γµ

/p2 − /k1 −m

}
u(p2)k

µ
1

= −i
g2√
2 |k1|

v̄(p1)

{
tatb

(−/p1 −m) + /k1

/k1 − /p1 −m
γν + tbtaγν

(−/p2 +m) + /k1

/p2 − /k1 −m

}
u(p2)

= −i
g2√
2 |k1|

v̄(p1)
[
ta, tb

]︸ ︷︷ ︸
ifabctc

γνu(p2) ≡ Cabc v̄tcγνu , (8)

i.e. Cabc = g2fabc/(
√
2 |k1|) [1.5 pts]. In the second step, the inserted terms in paren-

theses vanish because of the Dirac equation; in order to cancel the denominator, as in
the next step, you may have to use momentum conservation (depending on whether
you had expressed it in terms of /k1 or /k2).
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For the s-channel, we find instead

Mµν
s ϵ+µ

∗
(k1) = Cabcv̄(p1)γσt

cu(p2)
1

k2
3

k1µ

{
gµν(k2 − k1)

σ + gνρ(k3 − k2)
µ + gσµ(k1 − k3)

ν
}

=
Cabc

k2
3

v̄(p1)γσt
cu(p2)

{
kν
1(k2 − k1)

σ + gνρ(k3 − k2) · k1 + kσ
1 (k1 − k3)

ν
}

=
Cabc

k2
3

v̄(p1)γσt
cu(p2)

{
kν
1k

σ
2 + gνσ(k3 − k2) · k1 − kσ

1k
ν
3

}
(9)

Using momentum conservation, we can simplify as follows:

• (k3 − k2) · k1 = −(k3 − k2) · (k3 + k2) = k2
2 − k2

3

• kν
1k

σ
2 − kσ

1k
ν
3 = −(k2 + k3)

νkσ
2 + (k2 + k3)

σkν
3 = −kν

2k
σ
2 (+kσ

3k
ν
3)

Following the hint, furthermore, we can omit the last term in parenthesis because k3
dotted into the fermion current vanishes. Overall, this gives the claimed structure:
[1.5 pts for any correct derivation of this form]

Mµν
s ϵ+µ

∗
(k1) =

Cabc

k2
3

v̄(p1)γσt
cu(p2)

{
gνσ(k2

2 − k2
3)− kν

2k
σ
2

}
. (10)

c) On-shell gauge bosons with momentum k satisfy k2 = 0 and k · ϵT = 0 [0.5 pt

each]. When multiplying Eq. (10) with any of the two ϵTν (k2), this therefore gives

Mµν
s ϵ+µ

∗
(k1)ϵ

T
ν (k2) = −Cabc v̄tc /ϵTu , (11)

i.e. exactly the same, up to a minus sign, as the result from the t+ u channel [1 pt].
One would generically expect a vanishing amplitude because one of the final states
(the one with the ’+’ polarization) is unphysical [1 pt]. Note that Cabc = 0 in the
Abelian case, where only the t + u channels contribute; in this case, the amplitude
already vanishes in the previous step, problem b), as a direct consequence of the Ward
identity [1 bonus point for noting this].

d) Starting from the result as stated in b), we get

Mµνϵ+µ
∗
(k1)ϵ

−
ν
∗
(k2) =

Cabc

k2
3

(v̄tcγσu)
{
gνσk2

3 + gνσ( k2
2︸︷︷︸
0

−k2
3)− kν

2k
σ
2

}
ϵ−ν

∗
(k2)

= −Cabc

k2
3

(v̄tc/k2u) k2 · ϵ−ν
∗
(k2) .[1 pt] (12)

Using again the on-shell condition, k2
2 = (k0

2)
2 − (k2)

2 = 0, we can evaluate

k2 · ϵ−ν
∗
(k2) =

1√
2 |k2|

(k0
2,k2) · (k0

2,−k2) =
(k0

2)
2 + (k2)

2

√
2 |k2|

=
√
2 |k2| , (13)

which does not vanish [1 pt; only 0.5 pt without final simplification]. Linear com-
binations of time-like and longitudinal polarizations are unphysical. The amplitude
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for such on-shell states hence does that not correspond to any real, physical process;
therefore, the fact that it formally does not vanish is in principle of no concern [1 pt].
Finally, using the explicit form for Cabcd derived earlier, we can further simplify this
amplitude as

iM+− ≡ iMµνϵ+µ
∗
ϵ−ν

∗
= −g2fabck−2

3

|k2|
|k1|

(v̄tc/k2u) . (14)

e) As indicated in the figure, only the s-channel di-
agram contributes [1 pt]. With the hint, combined
with Eq.(4) in the exam, the Feynman rule for the
ghost vertex follows from L ⊂ −gfabcc̄a∂µAb

µc
c as

−gfabckµ
2 [1 pt].

 

The amplitude thus reads [1 pt for the final form]

iM = igv̄(p1)γµt
cu(p2)

−i

k2
3

(−g)fabckµ
2 = −g2

k2
3

fabcv̄/k2t
cu . (15)

From the previous results we note that this can be written asM = (|k1| / |k2|)M+− =
(|k2| / |k1|)M−+.

f) Neither ghosts nor gauge bosons with unphysical polarizations can appear in exter-
nal states, so the results are physically only relevant for off-shell momenta; for ghosts,
these appear necessarily in loops, adding a factor of (−1) due to their anti-commuting
nature. At a technical level, the role of ghost loops is thus to cancel the unphysical
degrees of freedom contributing to gauge boson loops, e.g. in the sum of diagrams
like [Up to 2 points for any reasonable explanation]

 

.

Problem 3
a) The Higgs field would still break the (now global) symmetry as SU(2)L×U(1)Y →
U(1), and not affect SU(3) [1 pt]. The number of global symmetries that are broken
is therefore 4− 1 = 3, so there would be 3 massless Gauge bosons [1 pt].

b) Light-by-light scattering is mediated by electron
loops, as shown in the figure [1 pt for any valid dia-

gram]. The presence of four photon vertices implies
that the amplitude scales as e4, and hence n = 4
for the cross section [1 pt].

 

Exchanging the electron in the loop with a fermion f of charge Qf introduces an
additional factor of Qf per vertex (since Q = −1 for electrons). Since there are no
diagrams (at lowest order) with different fermions, the enhancement factor is given
by

∑
f Q

4
f for the amplitude, and (

∑
f Q

4
f )

2 for the cross section [1 pt]. Taking into
account that there are three generations of fermions, and that quarks come in three
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colors, this evaluates in the SM to [1 pt; 0.5 pt if correct up to either of the factors

of three]. ∑
f

Q4
f = 3

[
14 + 3

(
−1

3

)4

+ 3

(
2

3

)4
]
=

44

9
. (16)

c) The Higgs is electrically neutral, so there is no tree-
level coupling to photons [1 pt]. Since it couples to
fermions via the Yukawa coupling yf ∝ mf , the by
far largest contribution will come from a top quark
loop [1 pt]. One of the two diagrams is depicted in
the figure, the other is obtained by crossing the final
photon legs (or reversing the fermion arrows).

 

[1 pt for a fully correct diagram, another 1 pt if the other is correctly described

or drawn]

Including relevant couplings, the fermion loop has the structure

Aphoton ≡ 3yte
2Tr[SF (l)γ

µSF (l + k2)γ
νSF (l − p)] (17)

in the case of photons, with SF the top propagator and l the loop momentum (see
also figure). The factor 3 accounts for the fact that there are three top colors to be
taken into account. This is replaced by

Agluon ≡ ytg
2Tr[SF (l)γ

µtbSF (l + k2)γ
νtaSF (l − p)] (18)

in the case of gluon emission (red labels in the figure), where the ta are the SU(3)
generators in the fundamental representation [0.5 pt each for correct placement of

ta, for e → g and the factor of 3]. Note that the matrix elements are identical,
otherwise (apart from the fact that the gluon polarization vectors also carry a color
index). Using that the quark propagators are diagonal in color space, we can simplify
as follows:

3αem

αs

Agluon = tr[tbta]Aphoton = δab × C(r)Aphoton =
1

2
δabAphoton [1 pt]. (19)

Here, the lower case ‘tr’ indicates a trace only in color space (which gave a factor of
3 in the photon case). Squaring, and summing over all final states thus gives∑

|Mgluon|2 =
α2
s

9α2
em

Agluon

∑
|Mphoton|2 ×

1

4
δabδab︸ ︷︷ ︸

=δaa=d(G)=8

. (20)

In total, we thus find Γh→gg/Γh→γγ = 2
9
α2
s/α

2
em ∼ 2

9
×0.122/137−2 ∼ 2×10−7 . [0.5 pt

for final result, bonus 0.5 for correct order-of-magnitude estimate]
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