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Lecture spring 2024:

Quantum field theory II

Compulsory problem set – solutions

Problem I

a) Without taking into account the necessity to add additional terms, the theory
exhibits 3 counter terms, corresponding to two field re-normalizations and one
coupling re-normalization, respectively. They can most conveniently be intro-
duced by writing the bare field and couplings as

ψ(0) ≡
√
1 + δψ ψ, ϕ(0) ≡

√
1 + δϕ ϕ, y(0) ≡ (1 + δy)

(1 + δψ)
√

1 + δϕ
y,

(1)
which results in the renormalized Lagrangian being

Lψ = iψ/∂ψ − 1

2
ϕ□ϕ+ yϕψψ + iδψψ/∂ψ − 1

2
δϕϕ□ϕ+ δyϕψψ . (2)

The infinite parts of these counterterms are uniquely determined by requiring
the self-energies and 3-point coupling to be finite.

Starting with the fermion self-energy, we have at leading order1

iM ≡ −iΣ(/p) = iδψ/p− iΣ2(/p) +O(α2) , (3)

where the first term is the counter term contribution and the second the loop
contribution. Adapting (18.6) to the case of a Yukawa coupling (and scalar
rather than vector propagator), we can write (with d = 4− ϵ)

−iΣ2(/p) = y2µ−ϵ
∫

ddk

(2π)d
/k

k2 + iε

1

(p− k)2 + iε
(4)

= y2
∫ 1

0

dxµ−ϵ
∫

ddk

(2π)d
/k

[k2(1− x) + (p− k)2x+ iε]2
(5)

= y2
∫ 1

0

dxµ−ϵ
∫

ddk

(2π)d
x/p

[k2 −∆+ iε]2
, (6)

where ∆ = −(1 − x)p2x and we completed the square by shifting k → k + px
in order to arrive at this expression. Hence,

1Note that the sign of Σ is simply a definition – different in P&S and Schwartz – but it is useful
to write the total amplitude (at least once) in order to check relative signs for the counter terms.
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−iΣ2(/p) = /p y
2

∫ 1

0

dx x µ−ϵ
∫

ddk

(2π)d
1

[k2 −∆+ iε]2︸ ︷︷ ︸
(B.45)
= i 1

16π2 [ 2ϵ−γE+ln(4π)+ln(µ2/∆)+O(ϵ)]

(7)

= i/p
α

4π

1

2

[
2

ϵ
− γE + ln(4π) + ln

µ2

p2
−
∫ 1

0

dx x ln
(
x(x− 1)

)
︸ ︷︷ ︸

−1−iπ

]
(8)

Note that in the last step we had to be careful with the expression ln(∆) since
∆ < 0. Remembering that ∆ really enters as ∆ − iε in (B.45), we have used
ln(∆) = ln(∆− iε) = ln |∆| − iπ. We can now read off the MS counter term as

δψ = − α

8π

[
2

ϵ
− γE + ln(4π)

]
. (9)

For the scalar self-energy, correspondingly, we have

−iΠ(p2) = iδϕp
2 − iΠ2(p

2) +O(α2) , (10)

with

−iΠ2(p
2) = y2µ−ϵ

∫
ddk

(2π)d
Tr

[
/k

k2 + iε

/p− /k

(p− k)2 + iε

]
(11)

= y2
∫ 1

0

dxµ−ϵ
∫

ddk

(2π)d
Tr

[
x(1− x)/p/p− /k/k

[k2 −∆+ iε]2

]
(12)

(B.45)
= −i α

4π

∫ 1

0

dx∆(4− ϵ)

[
2

ϵ
− γE + ln(4π) + ln(µ2/∆)

]
−y2

∫ 1

0

dxµ−ϵ(4− ϵ)

∫
ddk

(2π)d
k2

[k2 −∆+ iε]2︸ ︷︷ ︸
(B.37)
= i ∆

2π2 [ 2ϵ−γE+ln(4π)+ln(µ2/∆)]

(13)

= −i α
4π

12

∫ 1

0

dx∆

[
2

ϵ
− γE + ln(4π)− 1

3
+ ln(µ2/∆)

]
(14)

= ip2
α

2π

[
2

ϵ
− γE + ln

4πµ2

p2
+

4

3
− 6iπ

]
(15)

where in the last step we used
∫
dx(1− x)x ln(x−1(x− 1)−1) = 5

18
− iπ, similar

to above. In the MS scheme, we thus get

δϕ = − α

2π

[
2

ϵ
− γE + ln(4π)

]
. (16)

Finally, let’s look at the 3-point coupling. In analogy to the vertex correction
in QED, cf. Eq. (17.15), counter term and loop sum to the 3-point amplitude
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as iM ≡ iu(y + Γy)u, with

iΓy = iyδy + (iy)3µ−ϵ
∫

ddk

(2π)d
i

(k − q1)3 + iε

i(/p+ /k)

(k + p)2 + iε

i/k

k2 + iε
(17)

= iyδy − 2y3
∫ 1

0

dxdydz δ(−1 + x+ y + z)µ−ϵ
∫

ddk

(2π)d
/k
2
+ /p(z /q1 − y/p)

(k2 −∆+ iε)3
,(18)

where now ∆ = −xyp2 as in Eq. (17.21). Being only interested in the infinite
parts, things simplify considerably:

δy = finite − 2iy2
∫ 1

0

dxdydz δ(−1 + x+ y + z)︸ ︷︷ ︸
1/2

µ−ϵ
∫

ddk

(2π)d
d k2

(k2 + iε)3︸ ︷︷ ︸
(B.38)→ i

4π2 [ 2ϵ−γE+ln(4π)−1]

(19)

MS→ 4
α

4π

[
2

ϵ
− γE + ln(4π)

]
. (20)

b) The kinetic term for the fermions exhibits a chiral symmetry

PLψ → eiβLPLψ , (21)

PRψ → eiβRPRψ , (22)

which would be broken in the presence of a (Dirac) mass termmψ(ψRψL+ψLψR).
The full theory still has a discrete remnant of this symmetry:

PLψ → eiβLPLψ ,

PRψ → ei(π+βL)PRψ , (23)

ϕ → −ϕ ,

which would also be broken by a mass term. Even in the presence of an explicit
mass term, however, this custodial symmetry protects against parametrically
large radiative corrections. In practice, this implies that radiative corrections
to the mass will be proportional to mψ – which is the formal requirement to
make it ‘technically natural’ to have a small parameter mψ (small w.r.t. other
dimensionfull quantities, in particular – see below – the scalar mass).

c) For the scalar mass, there is no corresponding argument, i.e. no symmetry argu-
ment that one could use to argue for a very small or vanishing mass. Indeed, as
we will see in problem II, the presence of a vanishing scalar mass is an artefact
of mistakenly not stating the full theory: even if the MS mass would vanish at
some energy scale, it will not do so at other energies.

Problem II

a) At 1-loop level a ϕ4 operator is generated (via fermion loops). These diagrams
have superficial degrees of divergence of D = 0, and there is no symmetry that
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would force a scalar 4-point amplitude to be zero. Those loops thus diverge, and
are hence not calculable – the scalar 4-point coupling is genuine free parameter
of the theory and must be determined by measurement. This means that we
have to add a quartic self-interaction term to the Lagrangian,

L → L− λ

4!
ϕ4 , (24)

with a corresponding counterterm to cancel those divergences (note that we
here absorb the field strength renormalizations of ϕ into the definition of δλ):

Lc.t. → Lc.t. − 1

4!
δλϕ

4 . (25)

A cubic scalar self-interaction, ϕ3, would be the only other Lorentz-invariant
option (apart from mass-terms, see the next problem) – but is not consistent
with the symmetry stated in Eq. (23). (At the technical level, the corresponding
loop of three massless fermions would involve a trace of three gamma matrices,
which vanishes identically.)

b) For the fermion self-energies, the newly introduced interactions do not contri-
bute at leading order. The discussion of fermion masses is thus not affected.

For the scalar self-energies, on the other hand, there are now two types of 1-loop
contributions:

iΠ2(p
2) = iΠ2,ψ(p

2) + iΠ2,λ(p
2) , (26)

where the first term is the fermion loop contribution that we calculated in the
previous problem. The other diagram will introduce a divergence that is not
proportional to p2 (or any other power of p2); to cancel it, we thus have to
follow the same reasoning as above and accept that the scalar mass is indeed
a free parameter of the theory – that needs to be measured and properly be
accounted for. In other words, we have to further enlarge the Lagrangian by

L → L− 1

2
m2
ϕϕ

2 and Lc.t. → Lc.t. − 1

2
(δm + δϕ)m

2
ϕϕ

2 . (27)

Concretely, we have a scalar loop attached to a 4-point vertex (with only one
propagator):

−iΠ2,λ =
1

2
λµ−ϵ

∫
ddk

(2π)d
1

k2 −m2
ϕ + iε

(28)

(B.35)
= −i λ

32π2
m2
ϕ

[
2

ϵ
− γE + 1 + ln

4πµ2

m2
ϕ

]
. (29)

As mentioned in the problem, only Π2,ψ has a non-vanishing imaginary part
– which, according to the optical theorem indicates that the loop particles can
go on-shell. Indeed, the decay ϕ → ψψ̄ is always kinematically possible for
massless fermions. The tadpole diagram Π2,λ, on the other hand, cannot be
‘cut’, explaining the absence of imaginary contributions.
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c) The actual Lagrangian of the theory introduced above, containing all parameters
that must be determined by measurements, is given by

Lϕ,ψ = iψ/∂ψ − 1

2
ϕ(□+m2

ϕ)ϕ+ yϕψψ − λ

4!
ϕ4 . (30)

The MS counterterms of the dim-2 operators are

δψ
(9)
=

α

4π

2

ϵ
×
(
−1

2

)
(31)

δϕ
(16)
=

α

4π

2

ϵ
× (−2) (32)

δm + δϕ
(29)
=

1

16π2

2

ϵ
×
(
−1

2
λ

)
⇝ δm =

1

16π2

2

ϵ
×
(
2α− 1

2
λ

)
(33)

The divergence structure of the 3-point amplitude is unaffected by the presence
of a scalar mass, hence

δy
(20)
= 4

α

4π

2

ϵ
. (34)

We thus only need to calculate corrections to the scalar 4-point function, recei-
ving contributions from fermion and scalar loops, respectively:

iM4 = −iλ− iδλ + iM4,ψ + iM4,λ . (35)

For a single fermion loop diagram, we have (where p1 & p2 are ingoing, p3 & p4
outgoing momenta)

iMsingle
4,ψ = −(iy)4Tr

[∫
d4k

(2π)4
i/k

k2 + iϵ

i(/k + /p1)

(k + p1)2 + iϵ

i(/k + /p1 − /p3)

(k + p1 − p3)2 + iϵ

i(/k − /p2)

(k − p2)2 + iϵ

]
k→∞∼ −y4µϵ

∫
ddk

(2π)d
Tr [/k/k/k/k]

k8 + iϵ
(36)

= −y4d µϵ
∫

ddk

(2π)4
1

k4 + iϵ
= −i y

4

4π2

2

ϵ
(37)

For the entire amplitude, we have to multiply by a factor 2 from reversing the
fermion arrow direction. Further independent(!) diagrams arise from exchanging
p1 ↔ p2 as well as p1 ↔ p3. In total there are thus 6 different diagrams – which
however all contribute the same amount to the divergent part of the amplitude.

For a single scalar loop diagram, we have (note the symmetry factor!)

iMsingle =
1

2
(−iλ)2

∫
d4k

(2π)4
i

k2 −m2
ϕ + iϵ

i

(k + p1 + p2)2 −m2
ϕ + iϵ

(38)

k→∞∼ λ2

2
µϵ
∫

ddk

(2π)d
1

k4 + iϵ
= i

1

8

λ2

4π2

2

ϵ
(39)
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This result has to be multiplied by 3, since there are three different diagrams
that we can get by exchanging p2 → p3 and p2 → p4, respectively. In total, we
thus find

δλ =
1

16π2

2

ϵ
×
(
3

2
λ2 − 24y4

)
(40)

in the MS scheme.

The theory only has dim ≤ 4 operators and is hence renormalizable. If a dim > 4
operator existed explicitly in the Lagrangian, the theory would not be renorma-
lizable. Hence, all dim > 4 operators must be finite and calculable (as functions
of the parameters in the stated Lagrangian).

d) In this sub-problem, we denote with m̃ϕ the pole mass and with mϕ the MS
mass of the scalar, respectively. The former is defined by the on-shell conditions

1. 0 =
d

dp2
Π(p2 = m̃2

ϕ) (41)

= −δϕ +
d

dp2
Π2,ψ(p

2 = m̃2
ϕ) (42)

(15)
= −δϕ +

Π2,ψ(p
2 = m̃2

ϕ)

m̃2
ϕ

− p2
α

2π
∂p2 ln p

−2︸ ︷︷ ︸
−α/(2π)

(43)

⇝ δϕ
(15)
= − α

2π

[
2

ϵ
− γE + ln

4πµ2

m̃2
ϕ

+
1

3
− 6iπ

]
(44)

2. 0 = Π(p2 = m̃2
ϕ) (45)

= δmm̃
2
ϕ +Π2,ψ(p

2 = m̃2
ϕ) + Π2,λ +Π2,µ(p

2 = m̃2
ϕ) , (46)

resulting in

δm
(15,29)
=

α

2π

[
2

ϵ
− γE + ln

4πµ2

m̃2
ϕ

+
1

3
− 6iπ

]
− λ

32π2

[
2

ϵ
− γE + 1 + ln

4πµ2

m̃2
ϕ

]
(47)

The pole mass satisfies by definition

m̃2
ϕ = m2

ϕ +Π(p2 = m̃2
ϕ) = m2

ϕ +Π2(p
2 = m̃2

ϕ)− m̃2
ϕδϕ +m2

ϕ(δϕ + δm) (48)

in any scheme. In the on-shell scheme, we have

0 = Πo.s.(p2 = m̃2
ϕ) = Πo.s.

2 (p2 = m̃2) + m̃2
ϕδ

o.s.
m . (49)

Hence, we can ‘insert a zero’ and write, to leading order,

m̃2
ϕ −m2

ϕ = (Π2 − Πo.s.
2 )p2=m̃2︸ ︷︷ ︸
≈0

−m̃2
ϕδ

o.s.
m − m̃2

ϕδϕ +m2
ϕ(δϕ + δm) ≈ m2

ϕ(δm − δo.s.m ) ,

(50)
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where the difference between the Π2 terms is only a higher-order correction (Π2,
δi and ∆m between different schemes are all quantities at the same leading order
in perturbation theory). Applied to the MS scheme, and using Eqs. (33,47), this
gives directly

m2
ϕ − m̃2

ϕ

m̃2
ϕ

=
α

2π

[
ln
µ2

m̃2
ϕ

+
1

3
− 6iπ

]
− λ

32π2

[
ln
µ2

m̃2
ϕ

+ 1

]
, (51)

where we have again used m̃2
ϕ ≃ m2

ϕ to leading order on the r.h.s. .

We thus find, again to leading order

m2
ϕ(µ)−m2

ϕ(µ0)

m2
ϕ(µ0)

=

(
α

2π
− λ

32π2

)
ln
µ2

µ2
0

(52)

Notably, this is a finite expression that predicts the relevant mass parameter at
energy scale µ as a function of an input (‘measured’) value m2

ϕ(µ).

Problem III

a) The Lagrangian from problem I was symmetric under the parity transformation
P , with

ϕ(t,x) → Pϕ(t,x)P = ϕ(t,−x) . (53)

In particular – see p. 71 in P&S – we have Pψ̄ψP = ψ̄ψ and Pψ̄/∂ψP = ψ̄ /∂ψ.

The operator iψ̄γψ, on the other hand, has negative parity (and wouldn’t be
Hermitian without the i): Piψ̄γψP = −iψ̄γψ. This means that our new Lag-
rangian is still symmetric under P , iff ϕ is a pseudoscalar rather than a scalar:

Pϕ(t,x)P = −ϕ(t,−x) . (54)

All other symmetries from the previous problem(s) remain unaffected. In parti-
cular, the symmetry stated in Eq. (23) still holds because ψγ5ψ = ψLψR−ψRψL.
This also implies that there are no qualitative changes, i.e. the interaction will
generate the same new terms as before. Quantitatively, there will be an ad-
ditional factor of iγ5 for any vertex involving y. However, all results invol-
ve this coupling twice, entering in the Feynman rules in the form of yγµy →
(iyγ5)γµ(iyγ5) = y2γµ. Hence, none of the results changes, not even by a sign.

b) Adding fermion masses affects all loops containing fermion propagators, by ad-
ding an explicit mψ-dependence in the respective ∆ term in the Feynman para-
meterization. This is the only change to the loop calculations presented above.

The most important qualitative change is that a fermion mass term breaks
the (residual) chiral symmetry stated in Eq. (23). For the theory studied in
problems I&II, this means that a scalar 3-point coupling is no longer protected
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by any symmetry. At the technical level, the corresponding fermion loop will be
proportional to Tr[(/k −mψ)(/k − /p1 −mψ)(/k + /p2 −mψ)] ∝ mψTr[γ

µγν ] and no

longer vanish. In particular, the −3mψTr[/k
2
] = −12mψk

2 part of that trace will
results in a log-divergent contribution to the loop-integral – making it necessary
to add a term 1

3!
µϕϕ

3 to the Lagrangian, including a counterterm, in full analogy
to the case of the 4-point interaction that was discussed in detail above.

A scalar three-point coupling would however not be symmetric under the new
symmetry P as stated in Eq. (54), and hence cannot be generated in this theory.
At the technical level, this becomes manifest by noting that we would now have
Tr[γ5(/k −mψ)γ

5(/k − /p1 −mψ)γ
5(/k + /p2 −mψ)] ∝ mψTr[γ

5γµγν ] = 0.

c) A fermion mass term would be generated as a contribution Σ(/p) ∝ mψ to the
fermion self-energy. We have calculated Σ(/p) at one-loop level and explicitly
seen that no such contribution is generated. In fact, we also understood that
the reason is the symmetry of Eq. (23). At any higher-loop level, there can thus
also not be any contributions that only involve the couplings studied so far. The
lowest-order contribution involving the new coupling is a tadpole diagram:

−iΣ ⊃ −iΣtad =
1

2
iµϕ(iy)

i

02 −m2
ϕ

µ−ϵ
∫

ddk

(2π)d
i

k2 −m2
ϕ︸ ︷︷ ︸

m2
ϕ

16π2

(
2
ϵ
−γE+1+ln 4πµ2

m2
ϕ

)
(55)

= i
yµϕ
32π2

(
2

ϵ
− γE + 1 + ln

4πµ2

m2
ϕ

)
. (56)

Note that there is no corresponding tadpole diagrams for massless fermions,
since the fermion loop provides an additional factor of Tr[/k +mψ] = 4mψ.

We do however create a one-point function ⟨ϕ⟩, with

⟨ϕ(p)⟩ = i

p2 −m2
ϕ

(iM1) =
iM1

im2
ϕ

, (57)

where p = 0 because of momentum conservation. In analogy to the expression
above, the amplitude is calculated as

iM1 =
µϕm

2
ϕ

32π2

(
2

ϵ
− γE + 1 + ln

4πµ2

m2
ϕ

)
. (58)

The fact that v ≡ ⟨ϕ⟩ ≠ 0 indicates spontaneous symmetry breaking – implying
that we should shift the scalar field as ϕ ≡ Φ− v in order to describe a physical
scalar field Φ. Notably, this generates a fermion mass term mψ = yv directly
from the Yukawa coupling (as discussed in the context of the Higgs mechanism).
The fact that this fermion mass is identical to the one that follows from Eq. (56)
is both re-assuring and required by consistency: the fermion mass in any scheme
should be independent of whether we choose to describe our theory in terms of
ϕ or Φ.
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