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Preface

The goal of these lecture notes is to introduce the basics of low-energy models of supersym-
metry (SUSY) using the Minimal Supersymmetric Standard Model (MSSM) as our main
example. The notes are based on lectures given at the University of Oslo in 2011, 2013, 2015,
2017, and 2019, and lectures at the NORDITA Winter School on Theoretical Particle Physics
in 2012. This document owes a particular gratitude to Paul Batzing, who took notes during
the 2011 lectures, forming the start of this document.

Note that sections marked with an asterisk are somewhat tangential to the main argument
of the text and can be read for light entertainment only.

Oslo, May 2021
Are Raklev
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2.7 Representations of the superalgebra . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Examples of irreducible representations . . . . . . . . . . . . . . . . . 30
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Superspace 33
3.1 Superspace calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Superspace definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

3.3 Covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Scalar superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Vector superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Supergauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Construction of a low-energy SUSY Lagrangian 43
4.1 Supersymmetry invariant Lagrangians . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Albanian gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Non-Abelian gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Supersymmetric field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 The (almost) complete supersymmetric Lagrangian . . . . . . . . . . . . . . . 48
4.6 Spontaneous supersymmetry breaking . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Supertrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 Soft breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 The hierarchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 The non-renormalization theorem . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 Renormalisation group equations . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12 Vacuum energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.13 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 The Minimal Supersymmetric Standard Model (MSSM) 59
5.1 MSSM field content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The kinetic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Gauge terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 The MSSM superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 R-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 SUSY breaking terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Radiative EWSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8 Higgs boson properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 The gluino g̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.10 Neutralinos & Charginos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.11 Sleptons & Squarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.12 Gauge coupling unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Sparticle phenomenology 79
6.1 Models for supersymmetry breaking . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Planck-scale Mediated Supersymmetry Breaking (PMSB) . . . . . . . 80
6.1.2 Gauge Mediated Supersymmetry Breaking (GMSB) . . . . . . . . . . 81

6.2 Supersymmetry at hadron colliders . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Current bounds on sparticle masses . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Squarks and gluinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Sbottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.3 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.4 Sleptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS vii

6.3.5 Charginos and neutralinos . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Supersymmetry at lepton colliders . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Current bounds at lepton colliders . . . . . . . . . . . . . . . . . . . . 96
6.5 Precision observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.1 Electroweak precision observables . . . . . . . . . . . . . . . . . . . . . 97
6.5.2 (g � 2)µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5.3 b ! s� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.4 Bs ! µ+µ� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Supersymmetric dark matter 107
7.1 Evidence for dark matter (DM) . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 WIMP magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Dark matter candidates in supersymmetry . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Neutralino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.2 Sneutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.3 Gravitino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5 Indirect detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6 Excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



viii CONTENTS



Introduction

Rather than the traditional approach of starting with the current problems of the Standard
Model of particle physics, and how supersymmetry can solve these, in these notes we will
focus on the algebraic origin of supersymmetry in the sense of an extension of the symmetries
of Einstein’s special relativity (SR). This was the original motivation for work on what we
today call supersymmetry.

We first need to introduce some basic mathematical concepts used in physics for exploring
symmetries, mainly groups and Lie algebras, which we will take care of in Chapter 1. In
Chapter 2 we will then study the symmetries of special relativity, through the Poincaré
group, and look at how these symmetries can be extended.
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Chapter 1

Groups and algebras

The study of symmetries plays a central part in theoretical physics, and the mathematical
language we use is that of groups. The action of the group elements on our (quantum me-
chanical) states describes the transformation of the symmetry operation, while the invariance
of the physical properties of the system under that transformation is the symmetry itself. For
example, rotations in three-dimensions can be carried out by the application of a 3⇥ 3 rota-
tion matrix on the coordinates. These matrices form the group called SO(3). For a sphere,
which is invariant under these rotations, SO(3) is then the symmetry group.

Of special interest to us are the Lie groups, which are the groups that represent continuous
transformations, such as the rotations. The properties of Lie groups can be further studied
by finding their generators which form a (Lie) algebra. The generators almost – in a very
specific sense of the word almost – describes the whole group, and allows us to reconstruct
the group elements by what is called the exponential map.

Here, we will begin by defining groups and looking at some of their most important
properties. What is crucial in physics are the representations of groups, meaning what the
operators of the transformations on the states actually look like. Returning to the rotation
example these are 3⇥3 matrices, but with some restrictions on their elements. After discussing
representations we will move on to defining Lie groups, before we end on a discussion of their
generators and corresponding algebras.

1.1 Group definition

A group is an abstract mathematical structure that consists of a set of objects (elements),
and a multiplication rule acting between pairs of these objects. We define a group as follows.

3



4 CHAPTER 1. GROUPS AND ALGEBRAS

Definition: The set of elements G = {gi} and operation � (sometimes called mul-
tiplication) form a group if and only if for 8 gi 2 G :

i) gi � gj 2 G, (closure)

ii) (gi � gj) � gk = gi � (gj � gk), (associativity)

iii) 9e 2 G such that gi � e = e � gi = gi, (identity element)

iv) 9g�1

i
2 G such that gi � g

�1

i
= g�1

i
� gi = e. (inverse)

Below, where no confusion can occur, we will often drop the multiplication symbol for the
group multiplication (and other abstract multiplications), writing gi � gj = gigj .

A straight forward example of a group is G = Z (the integers), with standard addition
as the operation �. Then e = 0 and g�1 = �g. Alternatively we can restrict the group to
Zn, where the operation is addition modulo n. In this group, g�1

i
= n � gi and the unit

element is again e = 0.1 Here, Z is an example of an infinite group, the set has an infinite
number of members, while Zn is finite, with order n, meaning n members. Both are abelian
groups, meaning that the elements commute: gi � gj = gj � gi, because the standard addition
commutes.

The simplest, non-trivial, of these Zn-groups is Z2 which only has the members e = 0 and
1. The “multiplication” operation is completely defined by the three possibilities 0 + 0 = 0,
0 + 1 = 1 and 1 + 1 = 0. Now, compare this to the set G = {�1, 1} with the ordinary
multiplication operation. Here, all the possible operations are 1 · 1 = 1, 1 · (�1) = �1 and
(�1) · (�1) = 1. This has exactly the same structure as Z2, only that the identity element is
now 1. We say that these two groups are isomorphic, because there is a mapping between
all the (two) elements 0 ! 1 and 1 ! �1, and the results of the multiplication operation is
the same, and in fact we consider them as the same group despite the considerable apparent
visual di↵erences.2 This notion of isomorphic (identical) groups is very important, and we
will return to it in more detail in Sec. 1.3.

A somewhat more sophisticated example of a group can be found in the Taylor expansion
of a function f , where

f(x+ a) = f(x) + af 0(x) +
1

2
a2f 00(x) + . . .

=
1X

n=0

an

n!

dn

dxn
f(x)

= ea
d

dx f(x).

The last equality uses the formal definition of the exponential series, but may drive some

mathematicians crazy.3 The resulting operator Ta = ea
d

dx is called the translation operator,

1Note that we here use e for the identity in an abstract group, while we will later use I or 1 as the identity
matrix in matrix representations of groups.

2This observation generalises to the set G = {e2⇡ik/n|k = 1, . . . , n � 1}, the n-th roots of unity, which,
together with the standard multiplication operation, is isomorphic to Zn.

3We will not discuss this further, but there is a deep question here whether the operator formed by this
exponentiation is well defined.
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in this case in one dimension, since it shifts the coordinate x of the function f it is operating
on by an amount a. Defining the (natural) multiplication operation Ta�Tb = Ta+b it forms the
translational group T (1), where we can show that T�1

a = T�a.4 In n dimensions the group
T (n) has the elements Ta = ea·r. Whereas we say that the groups Z and Zn are discrete
groups, since we can count the number of elements, Ta is a continuous group since the
parameter a can be any real number.

1.2 Matrix groups

We next define some groups that are very important in physics and to the discussion in these
notes. They have in common that they are defined in terms of square matrices.

1.2.1 General and special linear groups

The largest matrix group for a given matrix dimension is the general linear group.

Definition: The general linear group GL(n) is defined by the set of invertible n⇥
nmatrices A under matrix multiplication. If we additionally require that det(A) = 1,
the matrices form the special linear group SL(n).

The existence of the group identity is guaranteed by the identity matrix I being an invertible
matrix (with I as the inverse). Since the existence of an inverse is also necessary in the group
definition, we can not construct larger matrix groups. The general linear group also give us
our first example of a non-abelian group, since matrix multiplication does not in general
commute. For two matrices A and B, we may have AB 6= BA.

We usually take the matrices in matrix groups to be defined over the field of complex
numbers C. If we want to specify the field we may use the notation GL(n,R), signifying that
the group is defined over the real numbers. Defined over the complex numbers the GL(n)
groups have 2n2 free parameters since each of the n2 elements of the matrices can be a complex
number, needing two parameters. The SL(n) group has 2n2

� 2 free parameters since the
requirement on the determinant fixes both the real and imaginary part of the determinant.

1.2.2 Unitary and special unitary groups

We first remind you that the Hermitian conjugate or conjugate transpose of a matrix is
given by transposing the matrix and taking the complex conjugate of its elements. Here, we
will use the symbol † for this operation, so that for a matrix A, A† = (AT )⇤.

We now define the unitary groups.

Definition: The unitary group U(n) is defined by the set of complex unitary
n⇥ n matrices U , i.e. matrices such that U †U = I or U�1 = U †. If we additionally
require that det(U) = 1 the matrices form the special unitary group SU(n).

4We could instead have defined the operation between two group elements to be ordinary multiplication
and used that to show the relationship Ta � Tb = Ta+b. However, it is important to notice that showing this is
not entirely trivial because ordinary arithmetic rules for exponentials fail for operators. In this particular case
the proof is fairly simple, but this is in general not so.
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Since for U 2 U(n),

det(UU †) = det(U) det(U †) = det(U) det(UT )⇤ = det(U) det(U)⇤ = det(I) = 1,

we have that the determinant of these matrices must be complex numbers on the unit circle,
i.e. det(U) = ei✓. It can be shown (see exercises) that the U(n) groups have n2 independent
parameters, while the SU(n) groups have n2

� 1.
It is these groups that form the gauge symmetry groups of the Standard Model: SU(3),

SU(2) and U(1). The group U(1) makes perfect sense despite the odd matrix dimensions.
This is simply the set of all complex numbers of unit length with ordinary multiplication, i.e.
U(1) = {ei↵|↵ 2 R}, but notice that SU(1) would be trivial since it contains only 1.

The unitary group has has the important property that for 8x,y 2 Cn multiplication by
a unitary matrix leaves scalar products unchanged. If x0 = Ux and y0 = Uy, then

x0
· y0

⌘ x0†y0 = (Ux)†Uy

= x†U †Uy = x†y = x · y.

Thus, its members do not change the length of the vectors they act on.
Since we would like to let our group representations act on vectors that describe quantum

mechanical states, the unitary groups then conserve probability for these states. For example,
when acting on a complex number (a complex scalar), such as a wavefunction  (x), the
elements of U(1) rotate the phase of  , however, the magnitude is conserved since  0 = ei↵ 
gives | 0

|
2 =  ⇤e�i↵ei↵ = | |2.

1.2.3 Orthogonal and special orthogonal groups

If we restrict the unitary matrices to be real, we get the orthogonal groups.

Definition: The orthogonal group O(n) is the group of real n ⇥ n orthogonal
matrices O, i.e. matrices where OTO = I. If we additionally require that det(O) = 1
the matrices form the special orthogonal group SO(n).

It follows from the definition of the orthogonal group that the determinant of the members
is either 1 or �1, thus the special orthogonal group is simply one half of the members. For
x 2 Rn the orthogonal group has the same property as the unitary group of leaving the length
of vectors invariant.

Matrices in the O(n) and SO(n) groups have n(n � 1)/2 independent parameters since
an n⇥ n matrix with real entries has n2 elements, and there are n(n+ 1)/2 equations to be
satisfied by the orthogonality condition.5

The special orthogonal groups SO(2) and SO(3) are much used because their elements
represent rotations in two and three dimensions, respectively, while SO(n) extends this to
higher dimensions and represents the symmetries of a sphere in n dimensions. To see this
we can start from the fact that rotations, by definition, conserve angles and distances (and
orientation). This means that the original set of orthogonal axis – or orthogonal basis vectors
if you wish – must transform into another orthogonal set of axis under the rotation. The
matrix performing the rotation must then be orthogonal, and thus the collection of rotations
must be O(n). If we additionally require that orientation is preserved, this removes the
matrices with negative determinant, leaving the SO(n) group.

5Only the upper triangular part of OTO has independent equations since OTO is a symmetric matrix,
(OTO)T = OT (OT )T = OTO.
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SO(2)

Given that SO(2) has only one parameter, we can write a general group member R as pa-
rameterised by ✓

R(✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�
.

As expected, we can recognise this as the matrix of rotations of an angle ✓ around a point in
the plane, and it represents the (orientation preserving) symmetries of a circle. Some tinkering
with this representation will show that SO(2) is in fact an abelian group, despite the matrix
definition. From a physical viewpoint this should be expected: the order of rotations in the
plane should not matter.

It is interesting to observe that the elements of SO(2) rotate points in the plane, while the
elements of U(1) rotate complex numbers, which can be represented by points in the plane.
Indeed, a one-to-one correspondence can be found between the members of the two groups so
that the groups are indeed the same, or, as we say, isomorphic, SO(2) ⇠= U(1).

SO(3)

This group has three free parameters. Already at this point writing down the explicit form
of a general group member is not very enlightening. There are also a number of di↵erent
conventions in use, so proper care is advised when using results from the literature. In terms
of a general rotation in three dimensions this can either be viewed as rotation angles around
three fixed axis, or as the fixing of a rotation axis by two angles, with a third rotation angle
around that axis.

One particular explicit form, where the angles correspond to the three Euler angles of
rotation in three dimensions, ↵, � and �, is

R(↵,�, �) =

2

4
cos↵ cos� cos � � sin↵ sin � � cos↵ cos� sin � � sin↵ cos � cos↵ sin�
sin↵ cos� cos � + cos↵ sin � � sin↵ cos� sin � + cos↵ cos � sin↵ sin�

� sin� cos � sin� sin � cos�

3

5 ,

where 0  ↵, � < 2⇡ and 0  �  ⇡. These rotations do not commute, so the group is
non-abelian.

We have seen above that SU(2) has three free parameters, just the same as SO(3). You
may at this point guess that SO(3) is isomorphic to SU(2). That would be a very good guess,
however, it would also be wrong. We will return to this later, but this is one of those things
in mathematics that turn out to be disappointingly only almost true.

1.3 Group properties

1.3.1 Subgroups

We now extend our vocabulary for groups by defining the subgroup of a group G.
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Definition: A subset H ⇢ G is a subgroup if and only if:a

i) hi � hj 2 H for 8hi, hj 2 H, (closure)

ii) h�1

i
2 H for 8hi 2 H. (inverse)

H is a proper subgroup if and only if H 6= G and H 6= {e}.

aAn alternative, equivalent, and more compact way of writing these two requirements is the
single requirement hi � h�1

j
2 H for 8hi, hj 2 H. This is often utilised in proofs.

We have already seen some examples of subgroups: the SU(n) groups are subgroups of U(n),
and the SO(n) groups are subgroups of the O(n) groups. This can easily be shown using the
properties of determinants.

There is a very important class of subgroup called the normal subgroup. The importance
will become clear in a moment.

Definition: A subgroup H is a normal (invariant) subgroup, if and only if the
conjugation of any element by any g 2 G is in H,a meaning

ghg�1
2 H for 8h 2 H.

A simple group G has no proper normal subgroup. A semi-simple group G has
no proper abelian normal subgroup.

aAnother, pretty, but slightly abusive, way of writing the definition of a normal group is to say
that gHg�1 = H. This implies (correctly), that the image if H under the conjugation operation is
guaranteed to be the whole of H.

We can for example show that for n > 1, SU(n) is a normal subgroup of U(n) (see exercises).

1.3.2 Quotient groups

The normal subgroup can be seen as a factor in the original group that can be divided out to
form a simpler group that only retains the structure that was not in the normal group. To
be more precise we need the concept of cosets.

Definition: A left coset of a subgroup H ⇢ G with respect to g 2 G is the set
of members {gh|h 2 H}, and a right coset of the subgroup is the set {hg|h 2 H}.
These are sometimes written gH and Hg, respectively.

For normal subgroups H it can be shown that the sets of left and right cosets coincide and
form a group. This is called the quotient or coset group and denoted G/H.6 This has as
its members all the distinct sets {gh|h 2 H}, that can be generated by a g 2 G, and has the
binary operation ⇤ with {gh|h 2 H} ⇤ {g0h|h 2 H} = {(g � g0)h|h 2 H}. To simplify notation
this can be written gH ⇤ g0H = (g � g0)H.

Let us briefly discuss an example of a quotient group. We already know that SU(n) is
a normal subgroup to U(n). This means that U(n)/SU(n) is a group. What sort of group
is this? Notice that two matrices Ui and Uj live in the same coset of SU(n) if and only if

6Sometimes also called the factor group. The notation is pronounced “G mod N”, where “mod” is short
for modulo.
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det(UiU
�1

j
) = 1, which is true if and only if det(Ui) = det(Uj). In other words, each coset

constructed from SU(n) is simply the set of all matrices with a given determinant, which we
saw for the U(n) group can be any unit complex number. Observe that this means that many
of the cosets are the same set. Here, all cosets generated by members in U(n) with the same
determinant is the same coset. When these cosets act on each other with the group operation
of U(n)/SU(n) they form new cosets of matrices with a determinant that is the product of
their individual determinants, i.e. with U,U 0

2 U(n) we have the product of quotient group
member {US|S 2 SU(n)} ⇤ {U 0S|S 2 SU(n)} = {UU 0S|S 2 SU(n)}. Thus, the group
behaves exactly as U(1), and is in fact isomorphic to it.

1.3.3 Product groups

Now that we have introduced group division, we also need to introduce products of groups.

Definition: The direct product of groups G and H, G ⇥ H, is defined as the
ordered pairs (g, h) where g 2 G and h 2 H, with component-wise operation (gi, hi)�
(gj , hj) = (gi � gj , hi � hj). G⇥H is then a group and G and H can be shown to be
normal subgroups of G⇥H.

We should note there that the subgroups are strictly G⇥ {eH} and {eG}⇥H, but these are
isomorphic to G and H.

Because it has at least one important guest star appearance in this text we also need the
definition of the semi-direct product.

Definition: The semi-direct product of groups G and H, G o H, where G is
also a mapping G : H ! H, is defined by the ordered pairs (g, h) where g 2 G and
h 2 H, with component-wise operation (gi, hi) � (gj , hj) = (gi � gj , hi � gi(hj)). Here
H is not a normal subgroup of GoH, but G is.

Note how the semi-direct product is not symmetric between the factors.
The famous Standard Model gauge group SU(3)⇥SU(2)⇥U(1) is an example of a direct

product. Direct products are “trivial” structures because there is no “interaction” between
the subgroups, the elements of each group act only on elements of the same group. This is
not true for semi-direct products.

1.3.4 Isomorphic groups

We have already talked about how two groups are the same if they have a correspondence
between their members and the same results for the multiplication operation, and we have
called this an isometry. Let us now try to put this notion of when two groups are the same
into a more formal language.

Definition: Two groups G and H are homomorphic if there exists a map between
the elements of the groups ⇢ : G ! H, such that for 8g, g0 2 G, ⇢(g � g0) =
⇢(g) � ⇢(g0).

For homomorphic groups we say that the mapping conserves the structure of the group, or
in other words, all the rules for the group operation/multiplication. This leads to our notion
of group equality, namely isomorphic groups:
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Definition: Two groups G and H are isomomorphic, written G ⇠= H, if they are
homomorphic and the relevant mapping is one-to-one.

The one-to-one mapping ensures that there is a one-to-one correspondence between the el-
ements of the group, so that isomorphic groups e↵ectively contain both the same members
and have the same multiplication operation.

For matrix groups, a good way of checking the plausibility of isomorphism is to count the
number of free parameters. The di↵erence of the parameters for the two factors should be
equal to the number of parameters for the quotient group. In our example U(n)/SU(n), U(n)
has n2, while SU(n) has n2

� 1, and this gives n2
� (n2

� 1) = 1 parameters for the quotient
group, which matches the one parameter of U(1).

1.4 Representations

In some contrast to the treatment in most introductory group theory texts in mathematics,
physicists are mostly interested in the properties of groups G where the elements of G act

to transform some elements of a vector space v 2 V , g(v) = v0 2 V .7 Here, the members of
V can for example be the state of a system, say a wave-function in quantum mechanics or
a field in quantum field theory. To be useful in physics, we would like that the result of the
group operation gi � gj acts as (gi � gj)(v) = gi(gj(v)) and the group identity acts as e(v) = v.

We begin with the abstract definition of a representation that ensures these properties.

Definition: A representation of a group G on a vector space V is a map ⇢ : G !

GL(V,K), where GL(V,K) is the general linear group on V , i.e. the invertible
matrices of the field K of V ,a such that for 8gi, gj 2 G,

⇢(gi � gj) = ⇢(gi)⇢(gj). (homomorphism)

If this map is also isomorphic, we say that the representation is faithful.

aTechnically, we can only be sure that we can write GL(V,K) as matrices as long as V is a finite
dimensional vector space. However, we shall do our best not to ass around with infinite dimensional
representations.

From a physicist point of view, the underlying point here is that (the members of) our
groups will be used on quantum mechanical states, or fields in field theory, which can be just
complex numbers (functions) or multi-component vectors of such. They are thus members
of a vector space, and the definition of representations force the transformation properties of
the group to be written in terms of matrices. Furthermore, the mapping from the group, or,
if you like, the concrete way of writing the abstract group elements, must be homomorphic
(structure preserving), meaning that if we can write a group element as the product of two
others, the matrix for that element must be the product of the two matrices for the individual
group elements it can be written in terms of.

You may by now have realized that the matrix groups defined in Sec. 1.2 have the property
that they are defined in terms of one of their representations. These are called the fundamen-
tal or defining representations. However, we will also have use for other representations,

7This part of group theory is called representation theory.
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e.g. the adjoint representation which we will introduce later.
Let us now take a few examples that connect to our definition. We saw earlier that for

U(1) the group members can be written as the complex numbers on the unit circle ei✓, which
can be used as phase transformations on wavefunctions  (x) that form a one dimensional
vector space over the complex numbers.

For SU(2), a quick count of the number of free parameters in SU(2) should convince us
that we need three real numbers to parametrise the group elements, here the ↵i: each matrix
consists of four complex numbers, or eight real, the unitarity requirement removes four free
parameters, while the requirement on the determinant one more. This means that that we
should be able to write a general matrix in SU(2) in terms of the linear combination of three
unitary “basis” matrices. One common choice for this is the Pauli matrices.

�1 =


0 1
1 0

�
, �2 =


0 �i
i 0

�
, �3 =


1 0
0 �1

�
. (1.1)

Since the three Pauli matrices are linearly independent, the sum ↵i�i, ↵i 2 R, should then
(hopefully) span all of SU(2).8 In the Standard Model this representation is applied to weak
doublets of fields, e.g. the electron–neutrino doublet  = (⌫e, e) that form a two-dimensional
vector space, as the SU(2)L gauge transformation. In the SM the group elements are written
as the exponential ei↵i�i . We will return to why we want to write the group as an exponential
in Sec. 1.7.

However, we can construct many more representations of a single group such as SU(2).
Using the three free parameters in SU(2) it turns out that we can also write the elements in
the group in terms of three 3 ⇥ 3-matrices that act on vectors in a three-dimensional space.
For example we can use the matrices

J1 =

2

4
0 0 0
0 0 �1
0 1 0

3

5 , J2 =

2

4
0 0 1
0 0 0
�1 0 0

3

5 , J3 =

2

4
0 �1 0
1 0 0
0 0 0

3

5 . (1.2)

This forms the adjoint representation of SU(2) and is essentially the representation used in
the SM for operations on the gauge fields that transform under SU(2)L which is a three-
vector. The central point here is that the group structure is the same (isometric), even if the
objects in the representation are di↵erent.

The existence of more representations necessitates a definition of when representations
are actually equivalent or isomorphic. This should not be confused with whether groups are
isomorphic, but removes di↵erences in representations that are simply due to a change in
basis for the vector space the group is acting on, or trivial changes in the dimension of the
vector space.9

Definition: Two representations ⇢ and ⇢0 of G on V and V 0 are equivalent if and
only if there exists a map A : V ! V 0, that is one-to-one, such that for 8g 2 G,
A⇢(g)A�1 = ⇢0(g).

8We will later see to what extent this is true.
9Imagine, for example, that you create a representation for U(1) that consists of diagonal 2 ⇥ 2-matrices

with the unit complex numbers repeated twice on the diagonal. This is not essentially di↵erent from the
one-dimensional representation, and should not be considered as such.
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1.4.1 Irreducible representations

The building blocks of representations are so-called irreducible representations, also called
irreps. These are the essential ingredients in representation theory, and are defined as fol-
lows:

Definition: An irreducible representation ⇢ is a representation where there is
no proper subspace W ⇢ V that is closed under the group, i.e. there is no W ⇢ V
such that for 8w 2 W , 8g 2 G we have ⇢(g)w 2 W .a

aIn other words, we can not split the matrix representation of G in two parts that do not “mix”.

Let us take an example to try to clear up what a reducible representation means in contrast
to an irreducible. Assume the representation ⇢(g) for g 2 G acts on a vector space V as
matrices. If these matrices ⇢(g) can all be decomposed into ⇢1(g), ⇢2(g) and ⇢12(g) such that
for v = (v1,v2) 2 V

⇢(g)v =


⇢1(g) ⇢12(g)
0 ⇢2(g)

� 
v1

v2

�
,

then ⇢ is reducible. The subspace W of V spanned by v1 violates the irreducibility condition
above.

If we also have ⇢12(g) = 0 we say that the representation is completely reducible. It
can be shown that in most cases a reducible representation is also completely reducible. In
fact, representations for which this is not true tend to be mathematical curiosities. As a
result, there is a tendency in physics to use the term “reducible” where we should use the
term “completely reducible”. In the case of a completely reducible representation we can split
the vector space V into two vector spaces V = W1 �W2, where v1 2 W1 and v2 2 W2, and
define a representation of G on each of them using ⇢1 and ⇢2, which in turn could either be
reduced more, or would be irreducible.

We end this section with an important theorem that helps us decide whether a represen-
tation is irreducible, and ultimately gives a property identifying the representation. As many
important theorems, it is called a lemma.

Theorem: (Schur’s Lemma [1])
If we have an irreducible representation ⇢ of a group G, all the matrices A that
commute with ⇢(g) for 8g 2 G are proportional to the identity, A = �I. Here the �
are constants that label the representation.

1.5 Lie groups

In physics we are particularly interested in a special type of group, the Lie group, a class of
continuous groups that we can parametrise and which are the basic tool we use to describe
continuous symmetries. In order to define Lie groups we will need to use the technical
term (smooth) manifold, meaning a mathematical object (formally a topological space) that
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locally10 can be parametrised as a function of Rn or Cn. We will describe a Lie group G in
terms of a parameterisation of the members g(a) 2 G, where a 2 Rn (or Cn). Additionally,
in order to describe continous symmetries these parameterisations need to be smooth, also in
the technical sense of smooth, which means infinitely di↵erentiable.

Definition: A Lie group G is a finite-dimensional smooth manifold where group
multiplication and inversion are smooth functions, meaning that given elements
g(a), g(a0) 2 G, g(a0) � g(a0) = g(b) where b(a,a0) is a smooth function of a and a0,
and g�1(a) = g(b) where b(a) is a smooth function of a.

The situation we are usually interested in is that a Lie group G acting on anm-dimensional
vector space V through a representation. Here, it can be shown (for finite-dimensional repre-
sentations) that we can write the map of the representation G⇥V ! V for x 2 V in terms of
an explicit function f called the composition function. We have xi ! x0

i
= fi(x,a), where

fi is analytic11 in xi and ai. Additionally fi has an inverse.

From our earlier example we immediately see that the translation group T (1), given the

parameterisation of the elements g(a) = ea
d

dx , is a Lie group since g(a)·g(a0) = g(b) = g(a+a0)
and b = a+ a0 is an analytic function of a and a0, and for the inverse g�1(a) = g(b) = g(�a)
where b = �a is a smooth function of a. Here, we can write the action of the group on the
vector space R1 as x0 = f(x, a) = x + a. The matrix groups groups are also Lie groups as
they have n ⇥ n-matrix representations where the matrices A are parametrised by a certain
number of parameters ↵, so that x0

i
= fi(x,↵) = [A(↵)x]i.

By the analyticity of the explicit function f we can always construct the parametrisation
so that the zero parameter corresponds to the identity element of the group, g(0) = e, which
means that fi(xi, 0) = xi. By an infinitesimal change dai of the i-th parameter we then get
the following Taylor expansion12

x0i = xi + dxi = fi(x, da)

= fi(xi, 0) +
@fi
@aj

daj + . . .

= xi +
@fi
@aj

daj

This is the transformation by the member of the group that in the parameterisation sits da
from the identity.

If we now let F be a function from the vector space V that we are interested in, to either
the real R or complex numbers C – giving for example some interesting physical quantity –

10This insistence on local means that the parameterisation is not necessarily the same for the whole group.
11Meaning infinitely di↵erentiable and in possession of a convergent Taylor expansion. As a result analytic

functions (on R) are smooth, but the reverse does not hold.
12The fact that fi is analytic means that this Taylor expansion must converge in some radius around fi(xi, 0).
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then the group transformation defined by da changes F by

dF =
@F

@xi
dxi

=
@F

@xi

@fi
@aj

daj

⌘ dajXjF

where the operators defined by

Xj ⌘
@fi
@aj

@

@xi
,

are called the n generators of the Lie group. We see here that the number of generators is
the same as the dimension of the manifold, which is also the number of free parameters in
the parameterisation of the group. It is these generators X that then define the e↵ect of the
Lie group members in a given representation (near the zero parameter), while the n aj ’s are
mere parameters. We say that the generators determine the local structure of the group.

As an example of the above we can now go in the opposite direction and look at the
two-parameter transformation defined by

x0 = f(x) = a1x+ a2,

which gives

X1 =
@f

@a1

@

@x
= x

@

@x
,

which is the generator for dilation (scale change) in one dimension, and

X2 =
@f

@a2

@

@x
=

@

@x
,

which is the generator for translation, meaning the generator of the group that we have called
T (1). These are examples of representations that are not in terms of matrices, but rather
di↵erential representations. Notice that we can show the following relationship for these
two generators: [X1, X2] = X1X2 �X2X1 = �X2.

As we have seen, the group SU(2) has three free parameters ai, so it must have three
generators Xi. We can show that the generators for SU(2) in the two-dimensional repre-
sentation are proportional to the Pauli matrices in (1.1), namely Xi = 1

2
�i, see exercises.

By multiplying out we can also show the following commutation relationships between the
generators

[Xi, Xj ] = i✏ijkXk. (1.3)

These commutators should look familiar to us as they have the same structure as the com-
mutators for the spin Si and angular momentum operators Li in quantum mechanics. This
is no coincidence, the group that describes rotations is SO(3), and one can show that it has
the same generators as SU(2).

In general, the commutator of the generators of a Lie group satisfy

[Xi, Xj ] = iCk

ijXk,
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where Ck

ij
are called the structure constants of the group.13 We can easily see that these

are antisymmetric in i and j, Ck

ij
= �Ck

ji
. Lie also showed [2] that there is a Jacobi identity

among the generators,

[Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] + [Xk, [Xi, Xj ]] = 0. (1.4)

This immediately leads to the following identity for the structure constants: Ck

ij
Cm

kl
+Ck

jl
Cm

ki
+

Ck

li
Cm

kj
= 0.

We discussed the defining or fundamental representation of a matrix based group earlier.
These representations usually have the lowest possible dimension. The adjoint representa-
tion consists of the n matrices Mi with elements:

(Mi)jk = �iCk

ij ,

where Ck

ij
are the structure constants. From the Jacobi identity it follows that [Mi,Mj ] =

iCk

ij
Mk, meaning that the matrices of the adjoint representation fulfils the same commuta-

tion relationship as the fundamental (generators). Note that the dimension of the adjoint
representation for SO(m) and SU(m) is equal to the number of independent parameters,
m(m� 1)/2 and m2

� 1, respectively.
We can now briefly return to the SU(2) example. With structure constants Ck

ij
= ✏ijk we

get the elements of the adjoint matrices (Mi)jk = �i✏ijk, which gives Mi = iJi, with the Ji
being the matrices in (1.2).

1.6 Algebras

To further study the structure of groups we begin by defining an algebra. An algebra extends
the familiar structure of vector spaces by adding a multiplication operation for the vectors
which gives a new vector.

Definition: An algebra A over a field (say R or C) is a linear vector space with a
binary (multiplication) operation � : A⇥A ! A.

It is important to remember here that the vector space part of the definition implies that
there is field, so for example from x 2 A and a 2 R (as the field) we can always form new
members ax 2 A.

As a very simple example, the vector space R3 together with the standard cross-product
constitutes an algebra since the cross product results in a new vector in R3. Even more
trivially perhaps is that R with ordinary multiplication as the binary operation fulfils the
algebra requirements (more on this case below).

1.6.1 Normed division algebras⇤

As a slight aside to the main argument of the text, we want to give an interesting example of
algebras. We start with a division algebra, which informally is an algebra where the binary
operation of the algebra also has a meaningful (implicit) concept of division for all members
(except division by zero).

13There is an annoying di↵erence in notation here between physics and mathematics, where the i is commonly
dropped.
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Definition: An algebra D is a division algebra if for any element x in D and any
non-zero element y in D there exists precisely one element z in D with x = y �z and
precisely one element z0 in D such that x = z0 � y. In this sense y is a divisor of x.

We see that division algebras have the addition and subtraction properties of “ordinary
numbers” (reals) since they are vector spaces, and they have the multiplication (algebra) and
division (division algebra) properties of the reals as well. So, in a sense, division algebras are
structures close to the reals in terms of properties – and, of course, the reals are again an
example of a division algebra.

We can now add to the division algebra the notion of a norm, or length, of the members
kxk. This is a map from the algebra to the field, k k : D ! R, so that we can discuss for
example convergence of the members as we do for the reals. We have to require here that
the norm is homomorphic, meaning that it preserves the structure of the algebra, so that
for example the “product” of two objects with large norm has a large norm. We then get a
normed division algebra.

Definition: If there exists a homomorphic norm for the division algebra, i.e. one
where kx � yk = kxkkyk for all x, y 2 D, then the division algebra is a normed
division algebra.

There is an important theorem by Hurwitz (1923) that demonstrates that only four of
these real number “lookalikes” exist.

Theorem: Hurwitz’s theorem. There are only four normed division algebras over
the reals (up to isomorphism), the reals themselves R, the complex numbers C, the
quaternions H, and the octonions O.

In addition it is (relatively speaking) easy to show that R ⇢ C ⇢ H ⇢ O. One perspective
on the relationship between these algebras is that the reals is the only ordered normed division
algebra, i.e., where we can compare uniquely the elements a > b. This is not possible for the
complex numbers, but they keep the commutative and associate properties of the reals. The
quaternions in turn break the commutativity of the complex numbers, while being associative,
while the most unruly of the bunch, the octonions, are not even associative.

1.7 Lie algebras

We will now turn to the most crucial type of algebras for physics, namely Lie algebras. To
distinguish these from the more general algebras that we have introduced above, we will use
the notation [ , ] for the binary operation in Lie algebras.
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Definition: A Lie algebra L is an algebra where the binary operator [ , ], called
the Lie bracket, has the properties that for x, y, z 2 L and a, b 2 R (or C):

i) (bilinearity)
[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

ii) (anti-commutation)
[x, y] = �[y, x]

iii) (Jacobi identity)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

If the algebra is over R it is a real Lie algebra, and over C a complex Lie algebra.
Again the vectors of R3 with the Lie bracket defined in terms of the cross product, [x,y] =

x⇥y, is a simple example of a Lie algebra. However, we usually restrict ourselves to algebras
of linear operators where the Lie bracket is the commutator [x, y] = xy � yx, where the
defining properties follow automatically. Thus also explaining the notation that we have used
for the binary operator.

From what we learnt in Section 1.5 the generators of an n-dimensional Lie group then
span a unique n-dimensional Lie algebra where a general element X of the algebra (and vector
space!) can be written in terms of the generators Xi, as X = aiXi. However, the reverse is not
true. There can be multiple Lie groups that have the same algebra. The often quoted example
is SO(3) and SU(2). Here the generators are the same, however, while closely related, the
groups are not isomorphic. We will denote the Lie algebra of a matrix group using lowercase
letters, for example the algebra of SU(n) is su(n).14

1.7.1 Exponential map

As we also discussed in Section 1.5, the generators describe the local structure of the group.
We can now finally look at how the group (and matrix representation) is reconstructed from
the algebra. For this we use what is called the exponential map.

Definition: The exponential map from the Lie algebra L of a matrix group G to
G is defined by exp : L ! G, where for X 2 L we get the element g 2 G given by

g = exp(iX) ⌘
1X

n=0

(iaiXi)n

n!
. (1.5)

The infinite sum in this definition is nothing more than the formal series definition of an
exponential of a matrix. So, why use the exponential? One reason is that it gives us a
natural expansion of the group around the identity element. With the parameters a = 0 the
resulting matrix is the identity matrix, which means that the group element is the identity

14In some literature so-called fraktur is used to represent the algebra, e.g. su(2), as this is butt-ugly and
unreadable we will seek to avoid it.



18 CHAPTER 1. GROUPS AND ALGEBRAS

element g = e. Similarly, for an infinitesimal da we have the group elements near the identity,
g = I + idaiXi.

The question of whether the exponential map reaches all of the members of the group,
i.e. that it is surjective on G, depends on the properties of the group. What we do know
is that locally, meaning su�ciently close to the identity group element, the exponential map
generates the group.

For groups that can not be written as matrices the exponential map can be generalised,
however, this is somewhat beyond the scope of these notes.

Let us end here by returning to some of our examples. For U(1) we saw that we could
write a generic group member as ei✓. Comparing to the exponential map we see that the
single generator must here simply be 1, while ✓ is the parameter. For SU(2) the generators
were the Pauli matrices �i, and the exponential map is thus, as we alluded to earlier, ei↵i�i ,
where ↵i are the parameters. For the translation group T (1) we saw that a group member

could be written as ea
d

dx = eia(�i
d

dx
). Thus the generator is the di↵erential operator p = �i d

dx
,

which we should recognise from quantum mechanics as the momentum operator, suggesting
a connection between translations and momentum. (And indeed, Noether’s theorem tells us
that it is symmetry under translations that leads to momentum conservation.)

1.8 Exercises

Exercise 1.1 Show that T�1
a = T�a and that T (1) is group.

Exercise 1.2 What are the elements of O(1)? Can you find a group that it is isomorphic
to?

Exercise 1.3 Show that the U(n) and SU(n) groups have n2 and n2
� 1 independent (real)

parameters, respectively. Hint: Consider the fact that M = U †U is a hermitian matrix, i.e.
M † = M .

Exercise 1.4 Show that for a subset H ⇢ G, if hi � h
�1

j
2 H for 8hi, hj 2 H, then H is a

subgroup of G.

Exercise 1.5 Show that if H is a subgroup of G, then hi � h
�1

j
2 H for 8hi, hj 2 H.

Exercise 1.6 Show that SU(n) is a proper subgroup of U(n) and that U(n) is not simple.

Exercise 1.7 If H is a normal subgroup of G, show that its left and right cosets are the same,
and show that the set formed of the cosets is a group under an appropriate group operation.

Exercise 1.8 Show that the factors in a direct product of groups are normal groups to the
product.

Exercise 1.9 Show that the group G and the group (G⇥H)/H are isomorphic.

Exercise 1.10 Show that U(1) ⇠= R/Z ⇠= SO(2).

Exercise 1.11 Find the dimensions of the fundamental and adjoint representations of SU(n).
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Exercise 1.12 Find the fundamental representation for SO(3) and the adjoint representation
for SU(2). What does this say about the groups and their algebras?

Exercise 1.13 Find the generators of SU(2) and their commutation relationships. Hint: One
answer uses the Pauli matrices, but try to derive this from an infinitesimal parametrization.

Exercise 1.14 What are the structure constants of SU(2)?

Exercise 1.15 Let A be an algebra based on a finite-dimensional vector space over a field
F ,with a basis B = {bi|i = 1, . . . , n}. Show that the multiplication of elements in A is
completely determined by the n2 products bibj for each pair of basis vectors in B.

Exercise 1.16 Let V be a finite-dimensional vector space over a field F with a basis B =
{bi|i = 1, . . . , n}. Let {crst|r, s, t = 1, . . . , n} be a collection of n3 elements in F . Show that
there exists one, and only one, multiplication operation on V so that V is an algebra over F
under this multiplication and

brbs = crstbt,

for every pair of basis vectors in B. The elements crst are the structure constants of the
algebra.

Exercise 1.17 Show that R3 with the binary operator [x,y] = x⇥ y is a Lie algebra.

Exercise 1.18 Let Ai be the generators of the group G and Bj be the generators of group
H. Explain in what sense the Ai and Bj are generators of the direct product group G ⇥H
and show that [Ai, Bj ] = 0.
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