
Chapter 2

The Poincaré algebra and its
extensions

We now take a look at the symmetry groups behind Special Relativity (SR), the Lorentz and
Poincaré groups. We will first see what sort of states transform properly under SR, which
has surprising connections to already familiar physics. We will then look for ways to extend
these external symmetries of the coordinates to internal symmetries of quantum fields, i.e.
the symmetries of gauge groups.

2.1 The Lorentz Group

Einstein’s requirement in Special Relativity was that the laws of physics should be invariant
under rotations and/or boosts (changes of velocity) between di↵erent inertial reference frames.
A point in the Minkowski space-time manifold M4 is given by a four-vector xµ = (t, x, y, z).
The resulting allowed transformations of the space-time coordinates are captured in the
Lorentz group.

Definition: The Lorentz group is the group of linear transformations xµ ! x0µ =
⇤µ

⌫x⌫ such that x2 ⌘ xµxµ = x0µx
0µ is invariant. The proper orthochronous or

restricted Lorentz group is a subgroup of the Lorentz group where det⇤ = 1
(proper) and ⇤0

0 � 1(orthochronous).

The physical interpretation of the orthochronous property is that it keeps the direction (sign)
of time of the four vector, while a proper group preserves orientation in rotations.

Since the definition of the Lorentz group e↵ectively gives a composition function we can
easily conclude that it is a Lie group. In fact, if we allow for a slight extension of the
orthogonal group O(n) to the indefinite orthogonal group O(m,n), where instead of the
orthogonality property for group members O, O�1 = OT , we demand O�1 = g�1OT g where

g = diag(1, . . . , 1| {z }
n

,�1, . . . ,�1| {z }
m

),

is the “metric”,1 then we can write the Lorentz group as SO+(1, 3), where the plus sign signi-
fies the orthochronous property. The counting of the free parameters of SO(n,m) works just

1Indeed, we can recognise this matrix relationship as one of the defining (necessary) properties of Lorentz
transformations ⇤T g⇤ = g.
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as for SO(n), giving a total of six free parameters for SO+(1, 3). Physically, we can identify
these with the three parameters needed to specify a general rotation in three dimensions, and
the three parameters needed to specify a boost (the velocity components).

Since the rotation operations are closed, i.e. two rotations result in another rotation,
one can prove that this forms a subgroup of SO+(1, 3). We have earlier claimed that the
generators of SO(3) (rotations in three dimensions) are identical to the generators of SU(2).
This now allows us to identify three of the generators of SO+(1, 3) as the Ji that fulfil the
su(2) algebra

[Ji, Jj ] = i✏ijkJk. (2.1)

The boost operations are not closed, and one can show that their generators Ki (exercises)
have the following relationships with the rotation generators

[Kj , Ji] = i✏ijkKk, (2.2)

[Ki,Kj ] = �i✏ijkJk. (2.3)

where (2.1) and (2.3) then defines the complete algebra of SO+(1, 3).
To simplify notation these generators can further be structured into a matrix M given by

M =

2

664

0 �K1 �K2 �K3

K1 0 J3 �J2
K2 �J3 0 J1
K3 J2 �J1 0

3

775 .

In terms of M the commutation relations (2.1) and (2.3) can be written:

[Mµ⌫ ,M⇢�] = �i(gµ⇢M⌫� � gµ�M⌫⇢ � g⌫⇢Mµ� + g⌫�Mµ⇢). (2.4)

From the discussion in Sec. 1.7 and here, any ⇤ 2 SO+(1, 3) can now be written as

⇤µ
⌫ =


exp

✓
i

2
!⇢�M⇢�

◆�
µ

⌫ , (2.5)

where !⇢� = �!�⇢ are the six free parameters of the transformation and M⇢� are the gen-
erators of the group SO(1, 3) and form the basis of the Lie algebra for O(1, 3). In fact, this
is also the algebra of O(1, 3) since the orthochronous and proper requirements do not change
the number of free parameters, but rather restricts us to a subset of the matrices. This also
nicely illustrates the local property of the exponential map: using these generators we can in
fact not get outside of the SO+(1, 3) subgroup of O(1, 3). The larger group O(1, 3) can be
seen as four connected components with det⇤ ± 1 and |⇤0

0| � 1 that are joined by the time
T and parity P inversion operators.

2.2 The Poincaré group

We can now extend O(1, 3) by adding translation by a constant four-vector aµ to the trans-
formation of the Lorentz group: xµ ! x0µ = ⇤µ

⌫x⌫ + aµ. This transformation leaves lengths
(x� y)2 invariant in M4.



2.3. IRREDUCIBLE REPRESENTATIONS OF THE POINCARÉ GROUP 23

Definition: The Poincaré group is the group of all transformations of the form

xµ ! x0µ = ⇤µ
⌫x

⌫ + aµ.

We can also construct the restricted Poincaré group by restricting the matrices
⇤ in the same way as in SO+(1, 3).

Writing a group member in terms of its parameters (⇤, a), we can see from the explicit
form of the transformation that the composition of two elements in this group is:

(⇤1, a1) � (⇤2, a2) = (⇤1⇤2,⇤1a2 + a1).

This tells us that the Poincaré group is not a direct product of the Lorentz group and the
translation group, but rather a semi-direct product of O(1, 3) and the (indefinite) translation
group T (1, 3), O(1, 3) n T (1, 3). The translation group is a normal subgroup, and while the
Lorentz group is a subgroup, it is not normal. The restricted Poincaré group is written in the
same way as SO+(1, 3)n T (1, 3).

The translation part of the Poincaré group adds four parameters to the six parameters
of the rotations and boosts. This means that there are four more generators compared to
the Lorentz group. Given our earlier discussion of the translation group in Sec. 1.7.1 we can
convince ourselves that we can use the momentum operators Pµ = �i@µ. These generators
have a trivial commutation relationship:

[Pµ, P⌫ ] = 0. (2.6)

Finally, one can show the following commutators with the generators of the Lorentz group:2

[Mµ⌫ , P⇢] = �i(gµ⇢P⌫ � g⌫⇢Pµ). (2.7)

Equations (2.4), (2.6) and (2.7) together form the Poincaré algebra, a Lie algebra.
This allows us to write a general member g of the restricted Poincaré group by using the
exponential map

g = exp

✓
i

2
!⇢�M⇢� + iaµPµ

◆
, (2.8)

where aµ are the additional parameters of the translation.

2.3 Irreducible representations of the Poincaré group

We would now like to ask the question: what sort of particles, or, if you like, quantum fields,
can exist if we require that they are representations of the Poincaré group?3

To answer that question we will need to classify all the irreducible representations of the
Poincaré group. This seems like a dramatically di�cult task, however, we can now use Schur’s
lemma that we saw in Sec. 1.4.1. To do this we need to find the Casimir operators of the
algebra.

2For a rigorous derivation of this see Chapter 1.2 of [3]. The proof is constructed by looking at the
infinitesimal action of the generators.

3In the sense of being described by a vector space that the group representations act on.
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Definition: The Casimir operators of a Lie algebra are the elements that com-
mute with all other elements of the algebra

From Schur’s lemma the Casimir operators should then be proportional to the identity for
irreducible representations, and, most importantly, the constants of proportionality classify
the irrep.

Let us take an example to demonstrate how this works. We saw earlier that SO(3) and
SU(2) had the same algebra, with three members that we can generically write as Ji. We
can show that J2 = J2

1
+ J2

2
+ J2

3
is a Casimir invariant of this algebra, meaning that in a

given representation, we can write J2 = �I, where � is this constant and I is the identity
matrix. It may not surprise you to find out that the constant is � = `(` + 1), where ` can
take half-integer values, meaning that we have the relationship J2 = `(`+1)I that is familiar
from quantum mechanics. We can now go back and test this, checking the relationship for the
Pauli matrices and the Ji matrices in (1.2). We will find that for the Pauli matrices J2 = 3

4
,

corresponding to ` = 1

2
, and for the Ji matrices, ` = 1. The point here is that ` labels the

representation, here the spin-1
2
and spin-1 representations.

We can now use the constants of proportionality to classify the (irreducible) represen-
tations of our Lie algebra (and group). For the Poincaré algebra P 2 = PµPµ is a Casimir
operator because the following holds:

⇥
Pµ, P

2
⇤

= 0, (2.9)
⇥
Mµ⌫ , P

2
⇤

= 0. (2.10)

This allows us to label the irreducible representation of the Poincaré group with a quantum
number that we will (randomly, or maybe not) name m2

2 R, writing a corresponding state
in the vector space as |mi, such that:4

P 2
|mi = m2

|mi.

If we go to the rest frame of a particle the state has eigenvalues (m,~0) for the operator
Pµ, where m is the mass (rest energy) of the particle.5 This demonstrates that the label m2

can indeed be interpreted as the (square) of the mass,
The number of Casimir operators is equal to the rank of the algebra, e.g. the rank of

su(n) is n � 1. It turns out that the Poincare algebra has rank 2, and thus two Casimir
operators. To demonstrate this is rather involved, and we will not make an attempt here, but
note that it can be shown that SO+(1, 3) is homomorphic to SU(2)⇥ SU(2), because of the
structure of the boost and rotation generators, where the algebra of each SU(2) has rank 1.

So, what is the second Casimir of the Poincaré algebra?

Definition: We define the Pauli-Ljubanski polarisation vector by:

Wµ ⌘
1

2
✏µ⌫⇢�P

⌫M⇢�. (2.11)

4Note that in general m2 is not restricted to be larger than zero.
5This does not loose generality since physics should be independent of frame, however, this argument needs

to be modified somewhat for massless particles.
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Then W 2 = WµWµ is a Casimir operator of the Poincaré algebra since we can show that
⇥
Mµ⌫ ,W

2
⇤

= 0, (2.12)
⇥
Pµ,W

2
⇤

= 0. (2.13)

Note that these relationships are not trivial to demonstrate. See [3] for a complete proof.
If we again look at the situation in the rest frame we can write

Wi =
1

2
✏i0jkmM jk = mSi,

where Si =
1

2
✏ijkM jk is the spin operator. 6 By showing that WP = 0 we also have W0 = 0

in this reference frame. This gives W 2 = �W2 = �m2S2. Since the spin operator acts on a
state with spin s as S2

|si = s(s+ 1)|si, we have that

W 2
|m, si = �m2s(s+ 1)|m, si

The conclusion of this subsection is that anything transforming under the Poincaré group,
meaning the objects considered by special relativity, can be classified by two quantum num-
bers: mass and spin.

2.4 The no-go theorem and graded Lie algebras

Since we now know the Poincaré group and its representations well, we can ask: Can the
external space-time symmetries be extended, perhaps also to include the internal gauge sym-
metries? Unfortunately no. In 1967 Coleman and Mandula [4] showed that any extension

of the Pointcaré group to include gauge symmetries is isomorphic to GSM ⇥ P "
+
, i.e. the

generators Bi of standard model gauge groups all have

[Pµ, Bi] = [Mµ⌫ , Bi] = 0.

Not to be defeated by a simple mathematical proof this was countered by Haag,  Lopuszański
and Sohnius (HLS) in 1975 in [5] where they introduced the concept of graded Lie algebras
to get around the no-go theorem.

Definition: A (Z2) graded Lie algebra or superalgebra is a vector space L that
is a direct sum of two vector spaces L0 and L1, L = L0�L1 with a binary operation
• : L⇥ L ! L such that for 8xi 2 Li

i) xi • xj 2 Li+j mod 2 (grading)a

ii) xi • xj = �(�1)ijxj • xi (supersymmetrization)

iii) xi • (xj • xk)(�1)ik + xj • (xk • xi)(�1)ji + xk • (xi • xj)(�1)kj = 0 (generalised
Jacobi identity)

This definition can be generalised to Zn by a direct sum over n vector spaces Li,
L = �

n�1

i=0
Li, such that xi • xj 2 Li+j mod n with the same requirements for super-

symmetrization and Jacobi identity as for the Z2 graded algebra.

aThis means that x0 • x0 2 L0, x1 • x1 2 L0 and x0 • x1 2 L1.

6Observe that this discussion is problematic for massless particles. However, it is possible to find a similar
relation for massless particles, when we chose a frame where the velocity of the particle is mono-directional.
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