
Chapter 2

The Poincaré algebra and its
extensions

We now take a look at the symmetry groups behind Special Relativity (SR), the Lorentz and
Poincaré groups. We will first see what sort of states transform properly under SR, which
has surprising connections to already familiar physics. We will then look for ways to extend
these external symmetries of the coordinates to internal symmetries of quantum fields, i.e.
the symmetries of gauge groups.

2.1 The Lorentz Group

Einstein’s requirement in Special Relativity was that the laws of physics should be invariant
under rotations and/or boosts (changes of velocity) between di↵erent inertial reference frames.
A point in the Minkowski space-time manifold M4 is given by a four-vector xµ = (t, x, y, z).
The resulting allowed transformations of the space-time coordinates are captured in the
Lorentz group.

Definition: The Lorentz group is the group of linear transformations xµ ! x0µ =
⇤µ

⌫x⌫ such that x2 ⌘ xµxµ = x0µx
0µ is invariant. The proper orthochronous or

restricted Lorentz group is a subgroup of the Lorentz group where det⇤ = 1
(proper) and ⇤0

0 � 1(orthochronous).

The physical interpretation of the orthochronous property is that it keeps the direction (sign)
of time of the four vector, while a proper group preserves orientation in rotations.

Since the definition of the Lorentz group e↵ectively gives a composition function we can
easily conclude that it is a Lie group. In fact, if we allow for a slight extension of the
orthogonal group O(n) to the indefinite orthogonal group O(m,n), where instead of the
orthogonality property for group members O, O�1 = OT , we demand O�1 = g�1OT g where

g = diag(1, . . . , 1| {z }
n

,�1, . . . ,�1| {z }
m

),

is the “metric”,1 then we can write the Lorentz group as SO+(1, 3), where the plus sign signi-
fies the orthochronous property. The counting of the free parameters of SO(n,m) works just

1Indeed, we can recognise this matrix relationship as one of the defining (necessary) properties of Lorentz
transformations ⇤T g⇤ = g.
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22 CHAPTER 2. THE POINCARÉ ALGEBRA AND ITS EXTENSIONS

as for SO(n), giving a total of six free parameters for SO+(1, 3). Physically, we can identify
these with the three parameters needed to specify a general rotation in three dimensions, and
the three parameters needed to specify a boost (the velocity components).

Since the rotation operations are closed, i.e. two rotations result in another rotation,
one can prove that this forms a subgroup of SO+(1, 3). We have earlier claimed that the
generators of SO(3) (rotations in three dimensions) are identical to the generators of SU(2).
This now allows us to identify three of the generators of SO+(1, 3) as the Ji that fulfil the
su(2) algebra

[Ji, Jj ] = i✏ijkJk. (2.1)

The boost operations are not closed, and one can show that their generators Ki (exercises)
have the following relationships with the rotation generators

[Kj , Ji] = i✏ijkKk, (2.2)

[Ki,Kj ] = �i✏ijkJk. (2.3)

where (2.1) and (2.3) then defines the complete algebra of SO+(1, 3).
To simplify notation these generators can further be structured into a matrix M given by

M =

2

664

0 �K1 �K2 �K3

K1 0 J3 �J2
K2 �J3 0 J1
K3 J2 �J1 0

3

775 .

In terms of M the commutation relations (2.1) and (2.3) can be written:

[Mµ⌫ ,M⇢�] = �i(gµ⇢M⌫� � gµ�M⌫⇢ � g⌫⇢Mµ� + g⌫�Mµ⇢). (2.4)

From the discussion in Sec. 1.7 and here, any ⇤ 2 SO+(1, 3) can now be written as

⇤µ
⌫ =


exp

✓
i

2
!⇢�M⇢�

◆�
µ

⌫ , (2.5)

where !⇢� = �!�⇢ are the six free parameters of the transformation and M⇢� are the gen-
erators of the group SO(1, 3) and form the basis of the Lie algebra for O(1, 3). In fact, this
is also the algebra of O(1, 3) since the orthochronous and proper requirements do not change
the number of free parameters, but rather restricts us to a subset of the matrices. This also
nicely illustrates the local property of the exponential map: using these generators we can in
fact not get outside of the SO+(1, 3) subgroup of O(1, 3). The larger group O(1, 3) can be
seen as four connected components with det⇤ ± 1 and |⇤0

0| � 1 that are joined by the time
T and parity P inversion operators.

2.2 The Poincaré group

We can now extend O(1, 3) by adding translation by a constant four-vector aµ to the trans-
formation of the Lorentz group: xµ ! x0µ = ⇤µ

⌫x⌫ + aµ. This transformation leaves lengths
(x� y)2 invariant in M4.
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Definition: The Poincaré group is the group of all transformations of the form

xµ ! x0µ = ⇤µ
⌫x

⌫ + aµ.

We can also construct the restricted Poincaré group by restricting the matrices
⇤ in the same way as in SO+(1, 3).

Writing a group member in terms of its parameters (⇤, a), we can see from the explicit
form of the transformation that the composition of two elements in this group is:

(⇤1, a1) � (⇤2, a2) = (⇤1⇤2,⇤1a2 + a1).

This tells us that the Poincaré group is not a direct product of the Lorentz group and the
translation group, but rather a semi-direct product of O(1, 3) and the (indefinite) translation
group T (1, 3), O(1, 3) n T (1, 3). The translation group is a normal subgroup, and while the
Lorentz group is a subgroup, it is not normal. The restricted Poincaré group is written in the
same way as SO+(1, 3)n T (1, 3).

The translation part of the Poincaré group adds four parameters to the six parameters
of the rotations and boosts. This means that there are four more generators compared to
the Lorentz group. Given our earlier discussion of the translation group in Sec. 1.7.1 we can
convince ourselves that we can use the momentum operators Pµ = �i@µ. These generators
have a trivial commutation relationship:

[Pµ, P⌫ ] = 0. (2.6)

Finally, one can show the following commutators with the generators of the Lorentz group:2

[Mµ⌫ , P⇢] = �i(gµ⇢P⌫ � g⌫⇢Pµ). (2.7)

Equations (2.4), (2.6) and (2.7) together form the Poincaré algebra, a Lie algebra.
This allows us to write a general member g of the restricted Poincaré group by using the
exponential map

g = exp

✓
i

2
!⇢�M⇢� + iaµPµ

◆
, (2.8)

where aµ are the additional parameters of the translation.

2.3 Irreducible representations of the Poincaré group

We would now like to ask the question: what sort of particles, or, if you like, quantum fields,
can exist if we require that they are representations of the Poincaré group?3

To answer that question we will need to classify all the irreducible representations of the
Poincaré group. This seems like a dramatically di�cult task, however, we can now use Schur’s
lemma that we saw in Sec. 1.4.1. To do this we need to find the Casimir operators of the
algebra.

2For a rigorous derivation of this see Chapter 1.2 of [3]. The proof is constructed by looking at the
infinitesimal action of the generators.

3In the sense of being described by a vector space that the group representations act on.
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Definition: The Casimir operators of a Lie algebra are the elements that com-
mute with all other elements of the algebra

From Schur’s lemma the Casimir operators should then be proportional to the identity for
irreducible representations, and, most importantly, the constants of proportionality classify
the irrep.

Let us take an example to demonstrate how this works. We saw earlier that SO(3) and
SU(2) had the same algebra, with three members that we can generically write as Ji. We
can show that J2 = J2

1
+ J2

2
+ J2

3
is a Casimir invariant of this algebra, meaning that in a

given representation, we can write J2 = �I, where � is this constant and I is the identity
matrix. It may not surprise you to find out that the constant is � = `(` + 1), where ` can
take half-integer values, meaning that we have the relationship J2 = `(`+1)I that is familiar
from quantum mechanics. We can now go back and test this, checking the relationship for
the Pauli matrices and the Ji matrices in (1.2). We will find that if Ji =

1

2
�i, where �i are

the Pauli matrices, J2 = 3

4
, corresponding to ` = 1

2
, and for the Ji matrices, ` = 1. The point

here is that ` labels the representation, here the spin-1
2
and spin-1 representations.

We can now use the constants of proportionality to classify the (irreducible) represen-
tations of our Lie algebra (and group). For the Poincaré algebra P 2 = PµPµ is a Casimir
operator because the following holds:

⇥
Pµ, P

2
⇤

= 0, (2.9)
⇥
Mµ⌫ , P

2
⇤

= 0. (2.10)

This allows us to label the irreducible representation of the Poincaré group with a quantum
number that we will (randomly, or maybe not) name m2

2 R, writing a corresponding state
in the vector space as |mi, such that:4

P 2
|mi = m2

|mi.

If we go to the rest frame of a particle the state has eigenvalues (m,~0) for the operator
Pµ, where m is the mass (rest energy) of the particle.5 This demonstrates that the label m2

can indeed be interpreted as the (square) of the mass,
The number of Casimir operators is equal to the rank of the algebra, e.g. the rank of

su(n) is n � 1. It turns out that the Poincare algebra has rank 2, and thus two Casimir
operators. To demonstrate this is rather involved, and we will not make an attempt here, but
note that it can be shown that SO+(1, 3) is homomorphic to SU(2)⇥ SU(2), because of the
structure of the boost and rotation generators, where the algebra of each SU(2) has rank 1.

So, what is the second Casimir of the Poincaré algebra?

Definition: We define the Pauli-Ljubanski polarisation vector by:

Wµ ⌘
1

2
✏µ⌫⇢�P

⌫M⇢�. (2.11)

where ✏µ⌫⇢� is the totally antisymmetric Levi-Civita tensor with ✏0123 = 1.

4Note that in general m2 is not restricted to be larger than zero.
5This does not loose generality since physics should be independent of frame, however, this argument needs

to be modified somewhat for massless particles.
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We can show that this vector is translation invariant, i.e. that it commutes with the translation
operator,

[Pµ,W⌫ ] = 0. (2.12)

Then W 2 = WµWµ is a Casimir operator of the Poincaré algebra since we can show that

⇥
Pµ,W

2
⇤

= 0. (2.13)
⇥
Mµ⌫ ,W

2
⇤

= 0, (2.14)

Note that the second of these relationships is not trivial to demonstrate. See [3] for a complete
proof.

If we again look at the situation in the rest frame we can write

Wi =
1

2
✏i0jkmM jk = mSi, (2.15)

where Si =
1

2
✏ijkM jk is the spin operator. 6 By showing that WP = 0 we also have W0 = 0

in this reference frame. This gives W 2 = �W2 = �m2S2. Since the spin operator acts on a
state with spin s as S2

|si = s(s+ 1)|si, we have that

W 2
|m, si = �m2s(s+ 1)|m, si

The conclusion of this subsection is that anything transforming under the Poincaré group,
meaning the objects considered by special relativity, can be classified by two quantum num-
bers: mass m2 and spin s.

What do these (irreducible) representations then look like? If we start with spin-0
representations, s = 0, we can write the corresponding states without any vector struc-
ture as |m, 0i ⇠ e±ipx, where pµ is the four-momentum of the particle, since P 2

|m, 0i =
�@µ@µ|m, 0i ⇠ p2|m, 0i = m2

|m, 0i. This exponential part of states can then always be used
to take care of the eigenvalues of the P 2-Casimir, and is often just implicitly implied in the
states/fields.

We can also immediately write down the s = 1 vector representation of the Poincaré group,
|m, 1i ⇠ ✏µeipx. We simply use a four-vector ✏µ that transforms under the fundamental (four-
dimensional) representation of the Lorentz group SO+(1, 3). In order to fulfil the eigenvalue
equation of the W 2-Casimir, this vector (called the polarisation vector) needs to fulfil certain
requirements which we do not detail here (see a course on quantum field theory).

However, to find a spin-1
2
representation we need to take some more care. In fact, we will

find representations both in four and two dimensions. For those familiar with quantum field
theory, these will as expected be the Dirac and Weyl spinor representations.

6Observe that this discussion is problematic for massless particles. However, it is possible to find a similar
relation for massless particles, when we chose a frame where the velocity of the particle is mono-directional.
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2.4 Weyl spinors

Interestingly, there exists a homomorphism between the groups SO+(1, 3) and SL(2,C). This
homomorphism, with ⇤µ

⌫ 2 SO+(1, 3) and M 2 SL(2,C), can be explicitly given by:7

⇤µ
⌫(M) =

1

2
Tr[�̄µM�⌫M

†], (2.16)

M(⇤µ
⌫) = ±

1p
det(⇤µ

⌫�µ�̄⌫)
⇤µ

⌫�µ�̄
⌫ , (2.17)

where �̄µ = (1,�~�) and �µ = (1,~�).
This two-to-one correspondence means that SO+(1, 3) ⇠= SL(2,C)/Z2. Thus we can look

at the representations of SL(2,C) instead of the Poincaré group, when we describe particles,
but what are those representations? It turns out that there exist two inequivalent fundamental
representations ⇢ of SL(2,C):

i) The self-representation ⇢(M) = M acting on an element  of a representation vector
space V :

 0
A = MA

B B, A,B = 1, 2.

ii) The complex conjugate self-representation ⇢(M) = M⇤ working on a vector  ̄ in a space
V̇ :

 ̄0
Ȧ
= (M⇤)

Ȧ

Ḃ ̄
Ḃ
, Ȧ, Ḃ = 1, 2.

The vectors  and  ̄ in these representation spaces are called, respectively, left- and right-
handed Weyl spinors.

The indices here follow the same summation rules as four-vectors. Indices can be lowered
and raised with:

✏AB = ✏
ȦḂ

=

✓
0 �1
1 0

◆

✏AB = ✏ȦḂ =

✓
0 1
�1 0

◆
.

The dots on the indices for the complex conjugate representation are there to help us remem-
ber which representation we are using and does not carry any additional importance. For
a consistent index notation, the relationship between the vectors  and  ̄ can be expressed
with:

�̄0
ȦA

( A)
⇤ =  ̄Ȧ.

This may be seen as a bit of an overkill in indices as �̄0
ȦA

= �ȦA, and we will in the following
often omit the matrix and simply write ( A)⇤ =  ̄Ȧ. Note that from the above the following
relationships hold for the hermitian conjugate:

( A)
† =  ̄

Ȧ

( ̄
Ȧ
)† =  A.

7The choice of sign in Eq. (2.17) is the reason that this is a homomorphism, instead of an isomorphism.
Each element in SO+(1, 3) can be assigned to two in SL(2,C).
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We further define contractions of Weyl spinors that are invariant under SL(2,C) trans-
formations – just as contractions of four-vectors are invariant under Lorentz transformations
– as follows:

Definition: The contraction of two Weyl spinors is given by  � ⌘  A�A and
 ̄�̄ ⌘  ̄

Ȧ
�̄Ȧ.

With this in hand we see that

 2
⌘   =  A A = ✏AB B A = ✏12 2 1 + ✏21 1 2 =  2 1 �  1 2.

This quantity is zero if the Weyl spinors commute. In order to avoid this we make the following
assumption which is consistent with how we treat fermions as anti-commuting operators:

Postulate: All Weyl spinors anticommute:a { A, B} = { ̄
Ȧ
,  ̄

Ḃ
} = { A,  ̄Ḃ

} =
{ ̄

Ȧ
, B} = 0.

aThis means that Weyl spinors are so-called Grassmann numbers.

This means that the contraction evaluates as

 2
⌘   =  A A = �2 1 2.

Because of (2.17) we can now find how the Lorentz part of the Poincare group acts on
the Weyl spinors, and can use this to show that they fulfil the requirements of the spin-1

2

representation of the Poincaré group. In the rest frame of a particle, this is relatively straight
forward since the spin operators Si in (2.15) in the fundamental representation of SL(2,C)
can be written in terms of the Pauli matrices �i as Si = 1

2
�i, and we already know that

�2 = 3I, so S2 = 3

4
I, which corresponds to s = 1

2
.

The Weyl spinors can in turn be used in a four-dimensional representation of the Poincaré
group, stacking two Weyl spinors into a four-component Dirac spinor  a:

 a =

✓
 A

�̄Ȧ

◆
.

Here, we have in general ( A)⇤ 6= �̄Ȧ. In order to describe a Dirac fermion, which has both
particle and antiparticle states, with this Dirac spinor we need two distinct Weyl spinors with
di↵erent handednesses. For Majorana fermions that are their own antiparticles we have:

 a =

✓
 A

 ̄Ȧ

◆
.

2.5 The no-go theorem and graded Lie algebras

The Poincaré group contains the complete set of transformations for the symmetries of special
relativity (invariance under rotations, translations and boosts), and we have seen that this
implies certain properties for the particles, or rather fields, that want to live in representations
of the Poincaré group. At the same time we know that the quantum fields have (internal)
gauge symmetries. It would then be tempting so ask if these are somehow related and can be
described in a larger symmetry.



28 CHAPTER 2. THE POINCARÉ ALGEBRA AND ITS EXTENSIONS

Unfortunately, the answer to that question is ‘no’, at least as long as we keep to describing
our symmetries using Lie algebras. In 1967 Coleman and Mandula [4] showed that under
reasonable assumptions any extension of the restricted Pointcaré group P to include gauge
symmetries is isomorphic to Ggauge⇥P . A direct product like this means that the generators
of the two groups all commute, meaning that the generators Bi of the standard model gauge
groups all have

[Pµ, Bi] = [Mµ⌫ , Bi] = 0.

The result is that there can be no real interaction between the external and internal symme-
tries.

Not to be defeated by a simple mathematical proof, in 1975 Haag,  Lopuszański and
Sohnius (HLS) [5] showed that there is a way around Coleman and Mandula’s no-go theorem,
if one introduces the concept of Z2 graded Lie superalgebras.8

Definition: A graded Lie superalgebra is a vector space L that is a direct sum
of two vector spaces L0 and L1, L = L0�L1, with a binary operation � : L⇥L ! L
such that for 8xi 2 Li

i) xi � xj 2 Li+j mod 2 (grading)a

ii) xi � xj = �(�1)ijxj � xi (supersymmetrization)

iii) xi � (xj � xk)(�1)ik + xj � (xk � xi)(�1)ji + xk � (xi � xj)(�1)kj = 0
(generalised Jacobi identity)

aFor x0 2 L0 and x1 2 L1, this means that x0 � x0 2 L0, x1 � x1 2 L0 and x0 � x1 2 L1.

The second requirement generalises the definition of a Lie algebra in Sec. 1.7 to allow for
anti-commutators, x � y = {x, y} ⌘ xy + yx, as the binary operation for elements in L1.

We can now start, following HLS, with the Poincaré Lie algebra (L0 = P ) and add a
new vector space L1 spanned by some generators Qa. It can be shown that the superalgebra
requirements are fulfilled if there are four generators, a = 1, 2, 3, 4, that together form a
four-component Majorana spinor. The algebra is then

[Qa, Pµ] = 0 (2.18)

[Qa,Mµ⌫ ] = (�µ⌫Q)a (2.19)

{Qa, Q̄b} = 2/P ab, (2.20)

where �µ⌫ is given in terms of the �-matrices, �µ⌫ = i

4
[�µ, �⌫ ], and as usual /P = Pµ�µ and

Q̄a = (Q†�0)a.9 This is called the super-Poincaré algebra.
Because of (2.19) this new algebra is a non-trivial extension of the Poincaré algebra that

avoids the no-go theorem. However, in the Qa we have introduced new operators that (disap-
pointingly) do not correspond to the generators of the gauge groups (which should be related

8The definition of graded Lie algebras can be extended to Zn by a direct sum over n vector spaces Li,
L = �n�1

i=0 Li, such that xi � xj 2 Li+j mod n, with the same requirements for supersymmetrization and Jacobi
identity as for the Z2 graded algebra.

9Alternatively, (2.20) can be written as {Qa, Qb} = �2(�µC)abPµ.
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by commutators, not anti-commutators). The gauge group generators can appear in the al-
gebra if we extend the algebra with a set of N > 1 new spinors Q↵

a , where ↵ = 1, . . . , N . This
gives rise to so-called N > 1 supersymmetries. However, this seem impossible to realise in
nature at energies accessible in experiments due to an extensive number of extra particles.10

This extension, including the potential for N > 1, can be proven, under some reasonable
assumptions, to be the largest possible extension of the symmetries of special relativity.

We can also write the super-Poincaré algebra in terms of the Weyl spinors introduced in
Sec. 2.4. With

Qa =

✓
QA

Q̄Ȧ

◆
, (2.21)

for the Majorana spinor charges, we have instead

[QA, Pµ] = [Q̄
Ȧ
, Pµ] = 0, (2.22)

[QA,M
µ⌫ ] = �µ⌫

A

BQB, (2.23)

{QA, QB} = {Q̄
Ȧ
, Q̄

Ḃ
} = 0, (2.24)

{QA, Q̄Ḃ
} = 2�µ

AḂ
Pµ, (2.25)

where now �µ⌫ = i

4
(�µ�̄⌫ � �⌫ �̄µ).

2.6 The Casimir operators of the super-Poincaré algebra

It is easy to see that P 2 is still a Casimir operator of the superalgebra. From Eq. (2.18)
Pµ commutes with the Qs, so in turn P 2 must commute.11 However, W 2 is not a Casimir
because of the following result:12

[W 2, Qa] = Wµ(/P�µ�
5Q)a +

3

4
P 2Qa.

We want to find an extension of W that commutes with the Qs while retaining the
commutators we already have. The construction

Cµ⌫ ⌘ BµP⌫ �B⌫Pµ,

where

Bµ ⌘ Wµ +
1

4
Xµ,

and with

Xµ ⌘
1

2
Q̄�µ�

5Q,

has the required relation:
[Cµ⌫ , Qa] = 0.

Note that we also have
[Xµ, P⌫ ] = 0. (2.26)

10Note that N > 8 would also include elementary particles with spin greater than 2, which seems to be in
contradiction with quantum field theory.

11Although the fact that Eq. (2.18) holds crucially depends on Qa being four-dimensional. Pµ and Qa would
not commute if there had been five Qs.

12Which, by the way, is really hard work!
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We can show that C2 then indeed commutes with all the generators in the algebra:

[C2, Qa] = 0, (trivial)

[C2, Pµ] = 0, (proof by excessive algebra)

[C2,Mµ⌫ ] = 0. (because C2 is a Lorentz scalar)

Thus C2 is a Casimir operator for the superalgebra.
As was the case for the original Poincaré group, states are labeled by m, where m2 is the

eigenvalue of P 2. To find the possible eigenvalues of C2, let us again assume without loss of
generality that we are in the rest frame (RF).13 For C2 we have to do a bit of calculation:

C2 = 2BµP⌫B
µP ⌫

� 2BµP⌫B
⌫Pµ

RF
= 2m2BµB

µ
� 2m2B2

0

= 2m2BkB
k,

where we used that [Bµ, P⌫ ] = 0, which we get from (2.12) and (2.26). From the definition of
Bµ:

Bk = Wk +
1

4
Xk = mSk +

1

8
Q̄�k�

5Q ⌘ mJk. (2.27)

The operator we just defined, Jk ⌘
1

m
Bk, is an extension of the ordinary spin operator

Sk. Just like the spin operator it can be shown to fulfil the angular momentum su(2) algebra:

[Ji, Jj ] = i✏ijkJk,

and, additionally, commutes with the Qs14

[Jk, Qa] = 0.

This gives us, still in the rest frame,

C2 = 2m4JkJ
k,

so that the eigenvalue equation is:

C2
|m, ji = m4j(j + 1)|m, ji,

for j = 0, 1
2
, 1, 3

2
, . . ., where the proof follows that for the angular momentum eigenvalues

in quantum mechanics, because this relies only on the properties of the su(2) algebra. In
addition, for each irrep with a value of j, the angular momentum algebra allows us to show
there are 2j+1 distinct states with labels j3 = �j,�j+1, . . . , j�1, j, so that we may further
write

C2
|m, j, j3i = m4j(j + 1)|m, j, j3i,

labelling also the states of the irrep.15 So, in summary, the irreducible representations of the
superalgebra can be labeled by (m, j), and any given set of m and j will give us 2j +1 states
with di↵erent j3.16

13We can again carry out a similar argument in a di↵erent frame for massless particles.
14Again the proof is algebraically extensive, and the interested reader is suggested to pursue [3].
15Note that, as we shall see, unlike for spin this does not exhaust the number of states for the irrep.
16Make sure you remember that that j is not the spin, but a generalisation of spin.
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