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Preface

The goal of these lecture notes is to introduce the basics of low-energy models of supersym-
metry (SUSY) using the Minimal Supersymmetric Standard Model (MSSM) as our main
example. The notes are based on lectures given at the University of Oslo in 2011, 2013, 2015,
2017, 2019, 2021, and 2023, and lectures at the NORDITA Winter School on Theoretical
Particle Physics in 2012.

Several student have contributed significantly to the notes. We owe a particular gratitude
to Paul Batzing, who took notes during the 2011 lectures, forming the start of this document,
and to Carl Martin Favang who fixed many mistakes.

Oslo, October 2023
Are Raklev
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Introduction

Rather than the traditional approach of starting with the current problems of the Standard
Model of particle physics, and how supersymmetry can solve these, in these notes we will
focus on the algebraic origin of supersymmetry in the sense of an extension of the symmetries
of Einstein’s special relativity (SR). This was the original motivation for work on what we
today call supersymmetry.

We first need to introduce some basic mathematical concepts used in physics for exploring
symmetries, mainly groups and Lie algebras, which we will take care of in Chapter 1. In
Chapter 2 we will then study the symmetries of special relativity, through the Poincaré
group, and look at how these symmetries can be extended into the super-Poincaré group by
adding so-called supercharges to the Poincaré Lie algebra. We will then introduce superspace,
a coordinate system where supersymmetry is manifest, and use this to derive differential
representations for the supercharges in Chapter 3. Here, we also define superfields, which
function as representations of the super-Poincaré group, and are the building blocks of the
supersymmetric Largrangians we construct in Chapter 4. In Chapter 5 we discuss how to
break supersymmetry using spontaneous symmetry breaking.

From Chapter 6 and onwards we turn more towards phenomenology, constructing the
minimal realisation of a supersymmetric Standard Model, before we discuss its phenomenology
inChapter 7, before ending with a discussion of supersymmetric Dark Matter candidates in
Chapter 8.

Note that sections marked with an asterisk are somewhat tangential to the main argument
of the text and can be read for light entertainment only. Solutions to some of the exercises
can be found in Appendix A.
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Chapter 1

Groups and algebras

The study of symmetries plays a central part in theoretical physics, and the mathematical
language we use is that of groups. The action of the group elements on our (quantum)
states effects the transformation that has the symmetry, while the invariance of the physical
properties of the system under that transformation is the symmetry itself. For example,
rotations in three-dimensions can be carried out by the application of a 3× 3 rotation matrix
on the coordinates of an object. As we will see, these matrices form the group called SO(3).
For a sphere, which is invariant under these rotations, SO(3) is then the symmetry group.

Of special interest to us are the Lie groups, which are the groups that represent continuous
transformations, such as the SO(3) rotations. The properties of Lie groups can be further
studied by finding their generators which form a (Lie) algebra. The generators almost –
in a very specific sense of the word almost – describes the whole group, and allows us to
reconstruct the group elements by what is called the exponential map.

Here, we will begin by defining groups and looking at some of their most important
properties. What is crucial in physics are the representations of groups, meaning what the
operators of the transformations on the states actually look like. Returning to the rotation
example these are 3×3matrices, but with some restrictions on their elements. After discussing
representations we will move on to defining Lie groups, before we end on a discussion of their
generators and corresponding algebras.

1.1 Group definition

A group is an abstract mathematical structure that consists of a set of objects (elements),
and a multiplication rule acting between pairs of these objects. We define a group as follows.

3



4 CHAPTER 1. GROUPS AND ALGEBRAS

Definition: The set of elements G = {gi} and operation ◦ (sometimes called mul-
tiplication) form a group if and only if for all gi ∈ G :

i) gi ◦ gj ∈ G, (closure)

ii) (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk), (associativity)

iii) ∃e ∈ G such that gi ◦ e = e ◦ gi = gi, (identity element)

iv) ∃g−1
i ∈ G such that gi ◦ g−1

i = g−1
i ◦ gi = e. (inverse)

Below, where no confusion can occur, we will often drop the multiplication symbol for the
group multiplication (and other abstract multiplications), writing gi ◦ gj = gigj .

A straight forward example of a group is G = Z (the integers), with standard addition
as the operation ◦. Then e = 0 and g−1 = −g. Alternatively we can restrict the group to
Zn, where the operation is now addition modulo n. In this group, g−1

i = n− gi and the unit
element is again e = 0.1 Here, Z is an example of an infinite group, the set has an infinite
number of members, while Zn is finite, with order n, meaning n members. Both are abelian
groups, meaning that the elements commute: gi ◦ gj = gj ◦ gi, because the standard addition
commutes.

The simplest, non-trivial, of these Zn-groups is Z2 which only has the members e = 0 and
1. The “multiplication” operation is completely defined by the three possibilities 0 + 0 = 0,
0 + 1 = 1 and 1 + 1 = 0. Now, compare this to the set G = {−1, 1} with the ordinary
multiplication operation. Here, all the possible operations are 1 · 1 = 1, 1 · (−1) = −1 and
(−1) · (−1) = 1. This has exactly the same structure as Z2, only that the identity element
is now 1. We say that these two groups are isomorphic, because there is a one-to-one
correspondence between all the (two) elements, 0 ↔ 1 and 1 ↔ −1, and the results of the
multiplication operation is the same, and in fact we consider them as the same group despite
the considerable apparent visual differences.2 This notion of isomorphic (“identical”) groups
is very important, and we will return to it in more detail in Sec. 1.3.

A somewhat more sophisticated example of a group can be found in the Taylor expansion
of a function F , where

F (x+ a) = F (x) + aF ′(x) +
1

2
a2F ′′(x) + . . .

=

∞∑
n=0

an

n!

∂n

∂xn
F (x)

= ea
∂
∂xF (x).

The last equality uses the formal definition of the exponential series, but may drive some
mathematicians crazy.3 The resulting operator Ta = ea

∂
∂x is called the translation operator,

1Note that we here use e for the identity in an abstract group, while we will later use I or 1 as the identity
matrix in matrix representations of groups.

2This observation generalises to the set G = {e2πik/n|k = 1, . . . , n − 1}, the n-th roots of unity, which,
together with the standard multiplication operation, is isomorphic to Zn.

3We will not discuss this further, but there is a deep question here whether the operator formed by this
exponentiation is well defined.
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in this case in one dimension, since it shifts the coordinate x of the function F it is operating
on by an amount a. Defining the (natural) multiplication operation Ta ◦ Tb = Ta+b it forms
the translational group T (1), where we can show that T0 is the identity element and the
inverse is T−1

a = T−a.4 In n dimensions the group T (n) has the elements Ta = ea·∇. Whereas
we say that the groups Z and Zn are discrete groups, since we can count the number of
elements, Ta is a continuous group since the parameter a can be any real number.

1.2 Matrix groups
We next define some groups that are very important in physics and to the discussion in these
notes. They have in common that they are defined in terms of square matrices.

1.2.1 General and special linear groups

The largest matrix group for a given matrix dimension n is the general linear group.

Definition: The general linear group GL(n) is defined by the set of all invert-
ible n × n matrices A under matrix multiplication. If we additionally require that
det(A) = 1, the matrices form the special linear group SL(n).

Th closure property of groups is guaranteed by the fact that the product of two invertible
matrices is also invertible, and matrix multiplication is always associative. The existence of
the group identity is guaranteed by the identity matrix I being an invertible matrix (with
I as the inverse). Since the existence of an inverse is also necessary in the group definition,
we can not construct larger matrix groups. The general linear group also give us our first
example of a non-abelian group, since matrix multiplication does not in general commute.
For two matrices A and B, we may have AB 6= BA.

We usually take the matrices in matrix groups to be defined over the field of complex
numbers C. If we want to specify the field we may use the notation GL(n,R), signifying that
the group is defined over the real numbers. Defined over the complex numbers the GL(n)
groups have 2n2 free parameters since each of the n2 elements of the matrices can be a complex
number, needing two parameters. The SL(n) group has 2n2 − 2 free parameters since the
requirement on the determinant fixes both the real and imaginary part of the determinant.

1.2.2 Unitary and special unitary groups

We first remind you that the Hermitian conjugate or conjugate transpose of a matrix is
given by transposing the matrix and taking the complex conjugate of its elements. Here, we
will use the dagger symbol † for this operation, so that for a matrix A, A† = (AT )∗.

We now define the unitary groups.

Definition: The unitary group U(n) is defined by the set of complex unitary
n× n matrices U , i.e. matrices such that U †U = I or U−1 = U †. If we additionally
require that detU = 1 the matrices form the special unitary group SU(n).

4We could instead have defined the operation between two group elements to be ordinary multiplication
and used that to show the relationship Ta ◦ Tb = Ta+b. However, it is important to notice that showing this
is not entirely trivial because ordinary arithmetic rules for exponentials fail for operators. In this particular
case the proof is fairly simple, but this is in general not so. This will return to trouble us later in the notes.
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Since for U ∈ U(n),

det(UU †) = det(U) det(U †) = det(U) det(UT )∗ = det(U) det(U)∗ = det(I) = 1,

we have that the determinant of these matrices must be complex numbers on the unit circle,
i.e. det(U) = eiθ. It can be shown, see Ex. 4, that the U(n), groups have n2 independent
parameters, while the SU(n) groups have n2 − 1.

It is these unitary groups that form the gauge symmetry groups of the Standard Model:
SU(3), SU(2) and U(1). The group U(1) makes perfect sense despite the odd matrix dimen-
sions. This is simply the set of all complex numbers of unit length with ordinary multiplica-
tion, i.e. U(1) = {eiα|α ∈ R}, but notice that SU(1) would be trivial since it contains only
the element 1.

The members of the unitary group has has the important property that for all complex
vectors x,y ∈ Cn (think finite-dimensional quantum states) multiplication by a unitary matrix
leaves scalar products (inner products) unchanged. If x′ = Ux and y′ = Uy, then

x′ · y′ ≡ x′†y′ = (Ux)†Uy

= x†U †Uy = x†y = x · y.

Thus, as this implies |x′| = |x|, its members do not change the length of the vectors they
act on. Since we would like to let our group representations act on vectors that describe
quantum mechanical states, the unitary groups then conserve probability for these states.
For example, when acting on a complex number (a complex scalar), such as a wavefunction
ψ(x), the elements of U(1) rotate the phase of ψ, however, the magnitude is conserved since
ψ′ = eiαψ gives |ψ′|2 = ψ∗e−iαeiαψ = |ψ|2.

We can construct unitary matrices from either Hermitian or anti-Hermitian matrices by
using the matrix exponential. This formally interprets the exponential series in terms of a
real or complex valued n× n matrix M as

exp(M) ≡
∞∑
n=0

Mn

n!
= I +M +

1

2
M2 +

1

6
M3 + . . . .

This series can be shown to always converge, so the series is well defined. Since this is a series
of non-commuting objects we again have to be careful with using properties of the exponential
from ordinary arithmetic. The following useful properties of the matrix exponential can be
proven:

i) exp(AT ) = exp(A)T

ii) exp(A∗) = exp(A)∗

iii) If B is an invertible matrix then exp(BAB−1) = B exp(A)B−1

iv) If [A,B] = 0 then exp(A) exp(B) = exp(A+B)

v) det eA = eTrA.
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Given a Hermitian matrixM ,M † =M , the matrix U = eiM is then automatically unitary
since U † = e−iM†

= e−iM so that U †U = e−iMeiM = I, where the last equality is due to M
commuting with itself. We shall later in this chapter show that in fact all unitary matrices can
be written in terms of Hermitian matrices like this. This is the physics construction that we
will mostly use in these notes because of our quantum fondness for Hermitian operators. For
an anti-Hermitian matrix M , M † = −M , we could instead use that U = eM is automatically
unitary since U † = e−M so that U †U = e−MeM = I. This is the mathematical construction
found in a lot of mathematical literature.

SU(2)

A general member S of SU(2) can be written in terms of two complex parameters α, β ∈ C

as

S(α, β) =

[
α −β∗
β α∗

]
, (1.1)

with the additional constraint |α|2 + |β|2 = 1, leaving three free parameters as expected.
There is a deep connection between the SU(2) group and spin because the Hermitian

Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, (1.2)

that make up the spin-operators Si = ~
2σ

i, are members of SU(2), and indeed, as we shall see,
they can be used to generate (almost) any member of SU(2) by the exponential construction
U = eiαiσ

i , where αi ∈ R are three real parameters.5

1.2.3 Orthogonal and special orthogonal groups

If we restrict the unitary matrices to be real, we get the orthogonal groups.

Definition: The orthogonal group O(n) is the group of real n × n orthogonal
matrices O, i.e. matrices where OTO = I. If we additionally require that det(O) = 1
the matrices form the special orthogonal group SO(n).

It follows from the definition of the orthogonal group that the determinant of the members
is either 1 or −1, thus the special orthogonal group is simply one half of the members. For
x ∈ Rn the orthogonal group has the same property as the unitary group of leaving the length
of vectors invariant.

Matrices in the O(n) and SO(n) groups have n(n − 1)/2 independent parameters since
an n× n matrix with real entries has n2 elements, and there are n(n+ 1)/2 equations to be
satisfied by the orthogonality condition.6

5Make a note of the notation here, the position of the indices is used to prepare the ground for using these
in a four-vector σµ = (σ0,σ) together with the identity matrix

σ0 = I2 =

[
1 0
0 1

]
.

6Only the upper triangular part of OTO has independent equations since OTO is a symmetric matrix,
(OTO)T = OT (OT )T = OTO.
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The special orthogonal groups SO(2) and SO(3) are much used because their elements
represent rotations in two and three dimensions, respectively, while SO(n) extends this to
higher dimensions and represents the symmetries of a sphere in n dimensions. To see this
we can start from the fact that rotations, by definition, conserve angles and distances (and
orientation). This means that the original set of orthogonal axis – or orthogonal basis vectors
if you wish – must transform into another orthogonal set of axis under the rotation. The
matrix performing the rotation must then be orthogonal, and thus the collection of rotations
must be O(n). If we additionally require that orientation is preserved, this removes the
matrices with negative determinant, leaving the SO(n) group.

SO(2)

Given that SO(2) has only one parameter, we can write a general group member R as pa-
rameterised by θ

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (1.3)

As expected, we recognise this as the matrix of rotations of an angle θ around a point in the
plane, and it represents the (orientation preserving) symmetries of a circle. Some tinkering
with this representation will show that SO(2) is in fact an abelian group, despite the matrix
definition. From a physical viewpoint this should be expected: the order of rotations in the
plane should not matter.

It is interesting to observe that the elements of SO(2) rotate points in the plane, while the
elements of U(1) rotate complex numbers, which can be represented by points in the plane.
Indeed, a one-to-one correspondence can be found between the members of the two groups so
that the groups are indeed the same, or, as we say, isomorphic, SO(2) ∼= U(1).

SO(3)

This group has three free parameters. Already at this point writing down the explicit form
of a general group member is not very enlightening. There are also a number of different
conventions in use, so proper care is advised when using results from the literature. In terms
of a general rotation in three dimensions this can either be viewed as rotation angles around
three fixed axis, or as the fixing of a rotation axis by two angles, with a third rotation angle
around that axis.

One particular explicit form, where the angles correspond to the three Euler angles of
rotation in three dimensions, α, β and γ, is

R(α, β, γ) =

cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ cosα sinβ
sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ sinα sinβ

− sinβ cos γ sinβ sin γ cosβ

 ,
where 0 ≤ α, γ < 2π and 0 ≤ β ≤ π. These rotations do not commute, so the group is
non-abelian.

We have seen above that SU(2) has three free parameters, just the same as SO(3). You
may at this point guess that SO(3) is isomorphic to SU(2). That would be a very good guess,
however, it would also be wrong. We will return to this later, but this is one of those things
in mathematics that turn out to be disappointingly only almost true.
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1.2.4 Symplectic and compact symplectic groups∗

Definition: The symplectic group Sp(2n) is the group of 2n × 2n symplectic
matrices M , i.e. matrices where MTΩM = Ω, with

Ω =

[
0 In

−In 0

]
.

The compact symplectic group Sp(n) is the intersection of the symplectic group
Sp(2n) and the unitary group U(2n), i.e.

Sp(n) ≡ Sp(2n) ∩ U(2n),

so that its matrices are members of both groups.a

aThe n as apposed to 2n here is intentional, the reason is that the compact symplectic group
can be described in terms of the unitary group U(n,H) of n× n matrices over the quaternions (see
Sec. 1.6.1).

The choice here of Ω can be generalised to any nonsingular skew-symmetric matrix, i.e.
an invertible matrix Ω where ΩT = −Ω, however, this does not change the group structure.
Note that we can easily show detΩ = 1 and Ω−1 = ΩT = −Ω for our choice of Ω. This in
turn implies that the symplectic matrices have detM = ±1, but this can be strengthened to
show that indeed detM = 1.

The compact symplectic group has interesting applications in classical mechanics. If a
system of n particles has generalised coordinates qi and momenta pi we can stack the coor-
dinates in the vector η = (q1, . . . , qn, p1, . . . , pn)

T . It can then be shown that any symplectic
matrix M acting on η is a canonical transformation, meaning it is a transformation that
leaves Hamiltons equations unchanged, so the symplectic groups are the symmetry groups of
Hamilton’s equations.

In quantum mechanics we can write the canonical commutation relations [q̂i, p̂j ] = i~δij
as

[η̂, η̂T ] = i~Ω.

1.3 Group properties

1.3.1 Subgroups

We now extend our vocabulary for groups by defining the subgroup of a group G.
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Definition: A subset H ⊂ G is a subgroup if and only if:a

i) hi ◦ hj ∈ H for all hi, hj ∈ H, (closure)

ii) h−1
i ∈ H for all hi ∈ H. (inverse)

H is a proper subgroup if and only if H 6= G and H 6= {e}.
aAn alternative, equivalent, and more compact way of writing these two requirements is the

single requirement hi ◦ h−1
j ∈ H for all hi, hj ∈ H. This is often utilised in proofs.

We have already seen some examples of subgroups: the SU(n) groups are subgroups of U(n),
and the SO(n) groups are subgroups of the O(n) groups. This can easily be shown using the
properties of determinants.

There is a very important class of subgroup called the normal subgroup. The importance
will become clear in a moment.

Definition: A subgroup H is a normal (invariant) subgroup, if and only if the
conjugation of any element h ∈ H by any g ∈ G is in H,a meaning

ghg−1 ∈ H for all h ∈ H.

A simple group G has no proper normal subgroup. A semi-simple group G has
no proper abelian normal subgroup.

aAnother, pretty, but slightly abusive, way of writing the definition of a normal group is to say
that gHg−1 = H. This implies (correctly), that the image if H under the conjugation operation is
guaranteed to be the whole of H.

We can for example show that for n > 1, SU(n) is a normal subgroup of U(n), see Ex. 8.

1.3.2 Quotient groups

The normal subgroup can be seen as a factor in the original group that can be divided out to
form a simpler group that only retains the structure that was not in the normal group. To
be more precise we need the concept of cosets.

Definition: A left coset of a subgroup H ⊂ G with respect to g ∈ G is the set of
members {gh|h ∈ H}, and a right coset of the subgroup is the set {hg|h ∈ H}.
These are sometimes written gH and Hg, respectively.

Despite the appearance of containing many of the same members we can show any two cosets
are either disjoint or identical sets.

For normal subgroups H it can be shown that the sets of left and right cosets gH and Hg
coincide and form a group. This is called the quotient or coset group and denoted G/H.7
This has as its members all the distinct sets {gh|h ∈ H}, that can be generated by a g ∈ G,
and has the binary operation ∗ with {gh|h ∈ H} ∗ {g′h|h ∈ H} = {(g ◦ g′)h|h ∈ H}. To
simplify notation this can be written gH ∗ g′H = (g ◦ g′)H.

To make some sense of this, let us briefly discuss an example of a quotient group. We
7Sometimes also called the factor group. The notation G/H is pronounced “G mod H”, where “mod” is

short for modulo.



1.3. GROUP PROPERTIES 11

already know that SU(n) is a normal subgroup to U(n). This means that U(n)/SU(n) is
a group. What sort of group is this? Notice that two matrices Ui and Uj live in the same
coset of SU(n) if and only if det(Ui) = det(Uj). In other words, each coset constructed from
SU(n) is simply the set of all matrices with a given determinant, which we saw for the U(n)
group can be any unit complex number. Observe that this means that many of the cosets
are the same, all cosets generated by members in U(n) with the same determinant is the
same coset. When these cosets act on each other with the group operation of U(n)/SU(n)
they form new cosets of matrices with a determinant that is the product of their individual
determinants, i.e. with U,U ′ ∈ U(n) we have the product of quotient group member {US|S ∈
SU(n)} ∗ {U ′S|S ∈ SU(n)} = {UU ′S|S ∈ SU(n)}. Thus, the group behaves exactly as U(1),
and is in fact isomorphic to it.

1.3.3 Product groups

Now that we have introduced group division, we also need to introduce products of groups.

Definition: The direct product of groups G and H, G × H, is defined as the
ordered pairs (g, h) where g ∈ G and h ∈ H, with component-wise operation (gi, hi)◦
(gj , hj) = (gi ◦ gj , hi ◦ hj). G×H is then a group and G and H can be shown to be
normal subgroups of G×H.

We should note here that the subgroups are strictly G × {eH} and {eG} ×H, but these are
isomorphic to G and H.

Because it has an important appearance in this text we also need the definition of the
semi-direct product.

Definition: The semi-direct product of groups G and H, G o H, where G is
also a mapping G : H → H, is defined by the ordered pairs (g, h) where g ∈ G and
h ∈ H, with component-wise operation (gi, hi) ◦ (gj , hj) = (gi ◦ gj , hi ◦ gi(hj)). Here
H is not a normal subgroup of GoH, but G is.

Note how the semi-direct product is not symmetric between the factors.
The famous Standard Model gauge group SU(3)×SU(2)×U(1) is an example of a direct

product. Direct products are “trivial” structures because there is no “interaction” between
the subgroups, the elements of each group act only on elements of the same group. For the
Standard Model this means that the each of the gauge transformations can act independently
on the states unaffected by any other gauge transformation. This is not true for semi-direct
products.

1.3.4 Isomorphic groups

We have already talked about how two groups are the same if they have a one-to-one corre-
spondence between their members and the same results for the multiplication operation, and
we have called this an isometry. Let us now try to put this notion of when two groups are
the same into a more formal language.

Definition: Two groups G and H are homomorphic if there exists a map between
the elements of the groups ρ : G → H, such that for all g, g′ ∈ G, ρ(g ◦ g′) =
ρ(g) ◦ ρ(g′).
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For homomorphic groups we say that the mapping conserves the structure of the group, or
in other words, all the rules for the group operation/multiplication. This leads to our notion
of group equality, namely isomorphic groups:

Definition: Two groups G and H are isomomorphic, written G ∼= H, if they are
homomorphic and the relevant mapping is one-to-one (injective) and onto (surjec-
tive).

The one-to-one and onto (hitting all elements of H) mapping ensures that there is a one-
to-one correspondence between the elements of the two groups, so that isomorphic groups
effectively contain both the same members and have the same multiplication operation.

For matrix groups, a good way of checking the plausibility of isomorphism is to count the
number of free parameters. The difference of the parameters for the two factors should be
equal to the number of parameters for the quotient group. In our example U(n)/SU(n), U(n)
has n2, while SU(n) has n2 − 1, and this gives n2 − (n2 − 1) = 1 parameters for the quotient
group, which matches the one parameter of U(1).

At the end of this subsection, let us make a warning: despite the enticing notation it is
not in general the case that if H is a normal subgroup to G, then G ∼= G/H ×H.

1.4 Representations

In some contrast to the treatment in most introductory group theory texts in mathematics,
physicists are mostly interested in the properties of groups G where the elements of G act to
transform some elements of a vector space v ∈ V , g(v) = v′ ∈ V . This part of group theory
is called representation theory. Here, the members of V can for example be the state
of a system, say a wave-function in quantum mechanics or a field in quantum field theory.
To be useful in physics, we would like that the result of the group operation gi ◦ gj acts as
(gi ◦ gj)(v) = gi(gj(v)) and the group identity acts as e(v) = v.

1.4.1 Definition

We begin with the abstract definition of a representation that ensures these properties.

Definition: A representation of a group G on a vector space V over the field K
is a map ρ : G → GL(V,K), where GL(V,K) is the general linear group of the
vector space V ,a such that for all gi, gj ∈ G,

ρ(gi ◦ gj) = ρ(gi)ρ(gj). (homomorphism)

If this map is also isomorphic, we say that the representation is faithful.
aThe general linear group of the abstract vector space V is the set of all one-to-one and onto

linear transformations V → V , together with functional composition as group operation. For finite
dimensional spaces this group is isomorphic to the general linear group GL(n,K) that we introduced
earlier.

Here V is called the representation space and the dimension n of V is called the dimension
of the representation. While somewhat confusing, it is common to talk about V as the
representation itself, even though it is really the space on which the representation acts.
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To see that this fulfils our wanted properties, notice that ρ(g) = ρ(e◦g) = ρ(e)ρ(g), which
means that ρ(e) = 1 must be the identity transformation on V . The concatenation property
follows directly from the homomorphism.

Writing this definition in terms of a generic vector space V and field K may be a bit
obfuscating, but we need to keep in mind that our group elements can be acting on members
of abstract vector space, e.g. spaces where the members of the space are functions, such as
in the earlier example of the translation group acting on functions. In the case where V is
finite dimensional it is common to choose a concrete basis for V and identify GL(V,K) with
GL(n,K), the group of n×n invertible matrices with elements from the field K. So, in many
cases, the representations we are interested in are matrices acting on coordinate space vectors
over the fields R or C, i.e. vectors in Rn or Cn.

From a physics point of view, the underlying point here is that (the members of) our
groups will be used on quantum mechanical states, or fields in field theory, which can be just
complex numbers or functions, or multi-component vectors of such. They are thus members
of a vector space, and the definition of representations allows the transformation properties
of the group to be written in terms of matrices for finite dimensional representation spaces.
Furthermore, the mapping from the group, or, if you like, the concrete way of writing the
abstract group elements, must be homomorphic (structure preserving), meaning that if we
can write a group element as the product of two others, the matrix for that element must be
the product of the two matrices for the individual group elements it can be written in terms
of.

In physics an important category of representations are the unitary representations,
which are representations ρ of a group G on a complex Hilbert space V where ρ(g) is a unitary
operator for every g ∈ G, i.e. an operator that preserves the length of vectors in V . This
generalises the unitary (matrix) group, which are examples of unitary representations, beyond
finite dimensional vector spaces.

1.4.2 Representation examples

You may by now have realised that the matrix groups defined in Sec. 1.2 have the property that
they are defined in terms of one of their representations. These are called the fundamental
or defining representations. However, we will also have use for other representations, e.g.
the adjoint representation which we will introduce later.

Let us now take a few examples that connect to our definition and to relevant physics. We
saw earlier that for U(1) the group members can be written in the fundamental representation
as the complex numbers on the unit circle eiθ, which can be used as phase transformations
on wavefunctions ψ(x). This can be viewed as the action on a one-dimensional space over C
where the basis vector is the wavefunction.

For SU(2) we saw that we needed three real numbers to parametrise the group elements.
It then seems reasonable that we should be able to write a general matrix in SU(2) in terms
of the linear combination of three unitary “basis” matrices, for example the Pauli matrices
in (1.2). Since the three Pauli matrices are linearly independent, the sum αiσ

i, αi ∈ R, should
(hopefully) in some sense span all of SU(2).8 As it turns out, the group elements of SU(2)
in the fundamental representation can indeed written as the exponentials eiαiσ

i . We will
return to why we use an exponential in Sec. 1.7. In physics the fundamental representation

8We will later see to what extent this is true, but we must emphasise here that SU(2) is not a vector space,
so it is not spanning in the vector space sense.
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of SU(2) is often denoted 2, following the pattern that the representations are written up
with the dimension of their matrices in boldface. In the Standard Model the fundamental
representation is used on the vector space of doublets of fermion fields, e.g. the electron–
neutrino doublet ψ = (νe, e)

T that form a two-dimensional vector space, as the SU(2)L gauge
transformation.

However, we can construct many more representations than the fundamental from a single
group such as SU(2). Using the three free parameters in SU(2) it turns out that we can also
represent the elements in the group in terms of three 3× 3-matrices that act on vectors in a
three-dimensional space. In place of the Pauli matrices we can use the three (anti-Hermitian)
matrices

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 . (1.4)

You may recognise these as related to the angular momentum operators in quantum mechanics
in the Heisenberg picture. As we will see later, these matrices will form the basis for creating
the three-dimensional adjoint representation of SU(2), named 3. In the Standard Model this
is the representation used for operations on the gauge fields that transform under SU(2)L,
which are represented as three-component vectors. The central point here is that the group
structure is the same (isometric), even if the objects in the representation are different.

At this point you may be worried about the translation group T (1) that we saw earlier
and its extensions to higher dimensions. There we wrote down the elements using differential
operators Ta = ea

∂
∂x . This does not look a lot like matrices. However, here the abstract vector

space that is acted on by the group elements is made up of smooth (infinitely differentiable)
functions, and in our generic definition of a representation above there is no need for the
general linear group of such a space to be written in terms of matrices. Unless we are very
strict with what functions we allow, this is typically an infinite dimensional space. It is a
bit tricky to prove that our differential operators Ta form a representation, however, they do,
and these kinds of group representations are called differential representations.

The existence of multiple representations for the same group necessitates a definition of
when representations are actually equivalent, or isomorphic. This should not be confused with
whether groups are isomorphic, but removes differences in representations that are simply
due to a change in basis for the vector space the group is acting on, or trivial changes in the
dimension of the vector space.9

Definition: Two representations ρ and ρ′ of G on V and V ′ are equivalent if and
only if there exists a map A : V → V ′, that is one-to-one and onto, such that for all
g ∈ G, Aρ(g)A−1 = ρ′(g).

We again give the definition for an abstract representation space. For a finite-dimensional
space with a given basis, A and ρ(g) are simply matrices.

9Imagine, for example, that you create a representation for U(1) that consists of diagonal 2 × 2-matrices
with the unit complex numbers repeated twice on the diagonal. This is not essentially different from the
one-dimensional representation, and should not be considered as such.
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1.4.3 Irreducible representations

The building blocks of representations are so-called irreducible representations, also called
irreps. These are the essential ingredients in representation theory, and are defined as fol-
lows:

Definition: An irreducible representation ρ of a group G is a representation
where there is no proper subspace W ⊂ V that is closed under the group, i.e. there
is no W ⊂ V such that for all w ∈W , and all g ∈ G we have ρ(g)w ∈W .a

aIn other words, we can not split the matrix representation of G in two parts that do not “mix”.

Let us take an example to try to clear up what a reducible representation means in contrast
to an irreducible. Assume the representation ρ(g) for g ∈ G acts on a vector space V as
matrices. If these matrices ρ(g) can all be decomposed into ρ1(g), ρ2(g) and ρ12(g) such that
for v = (v1,v2) ∈ V

ρ(g)v =

[
ρ1(g) ρ12(g)
0 ρ2(g)

] [
v1

v2

]
,

then ρ is reducible. The subspaceW of V spanned by v1 violates the irreducibility condition
above.

If we also have ρ12(g) = 0 in our example we say that the representation is completely
reducible. It can be shown that in most cases a reducible representation is also completely
reducible. In fact, representations for which this is not true tend to be mathematical curiosi-
ties. For example, if the representation is unitary and the vector space is a Hilbert space
(states in quantum mechanics), we can prove that the representation is always completely
reducible. As a result, there is a tendency in physics to use the term “reducible” where we
should maybe use the term “completely reducible”.

In the case of a completely reducible representation we can split the vector space V into
a direct sum of two vector spaces V = V1 ⊕ V2, where v1 ∈ V1 and v2 ∈ V2, and define a
representation of G on each of them using ρ1 and ρ2, which in turn could either be reduced
more, or would themselves be irreducible. This process can then be continued until the
representation has been broken down into only irreducible components.

We end this section with an important theorem that helps us decide whether a represen-
tation is irreducible, and ultimately gives a property identifying the representation. As with
many important theorems, it started its life as a lemma.

Theorem: (Schur’s Lemma [1])
If we have an irreducible representation ρ of a group G on a vector space V and
a linear operator A : V → V that commutes with ρ(g) for all g ∈ G, then A is
proportional to the identity map, A = λ1. The constant of proportionality λ can
be used to label the representation.

Schur’s lemma as stated here has again been formulated in the language of general vector
spaces. In terms of matrix representations it says that any matrix A that commutes with all
the matrices in an irreducible representation must be equal to a constant times the identity
matrix, i.e. A = λI.
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The constant of proportionality λ is unique to the representation up to a common normal-
isation constant that can be incorporated into the linear operator/matrix (a constant multiple
of A would still have the same commutation properties). For us, these linear operators A will
generally turn out to have a very specific physical interpretation, so their natural normali-
sation will be clear. As a result the constants can be used to index the different irreducible
representations. The proof of this property is somewhat beyond the scope of these notes.

1.5 Lie groups

1.5.1 Definitions

In physics we are particularly interested in a special type of continuous groups that we can
parametrise, the Lie groups, which are the basic tools we use to describe continuous sym-
metries. The abstract mathematical notion of continuity comes from topology, along with a
notion of open sets and proximity, so continuous groups are also called topological groups.
For topological groups the group multiplication and inverse need to be continuous maps. We
further say that a topological group is a compact group if its topology is compact, meaning
that it has no punctures or missing endpoints, i.e. it includes all limiting values of the group
members. In practise the topology of our groups will be subspaces of Euclidean space En, in
which case the space is compact if and only if it is closed and bounded. We will return to
some examples of this later.

A Lie group extends the continuity of topological groups by requiring the multiplication
and inverse maps to be smooth (infinitely differentiable C∞). In order to define Lie groups
we will need to use the technical term (smooth) manifold, meaning a mathematical object
(formally a topological space) that locally10 can be parametrised as a function of Rn or Cn.
We will thus describe a Lie group G as a manifold in terms of a parameterisation of the
members g(a) ∈ G, where a ∈ Rn (or Cn). Additionally, in order to describe continuous
symmetries these parameterisations need to be smooth.

Definition: A Lie group G is a finite-dimensional smooth manifold where group
multiplication and inversion are smooth functions, meaning that given elements
g(a), g(a′) ∈ G, g(a) ◦ g(a′) = g(b) where b(a,a′) is a smooth function of a and a′,
and g−1(a) = g(b) where b(a) is a smooth function of a.

The dimension of a Lie group is the dimension n (or 2n) of the manifold.
From our earlier example we immediately see that the translation group T (1), given the

parameterisation of the elements g(a) = ea
∂
∂x , is a Lie group since g(a)g(a′) = g(b) = g(a+a′)

and b = a+ a′ is an analytic function of a and a′, and for the inverse g−1(a) = g(b) = g(−a)
where b = −a is a smooth function of a. Since a ∈ R is unbounded the group members are
also unbounded, and thus the group is not compact.

All the matrix groups are also Lie groups. While their dimension and parameterisation is
clear, for example a member of GL(n,R) has n2 parameters by its elements, to prove that they
are in fact Lie groups is tricky because of the requirement on the non-zero determinant. The
proof is done by showing it for the general linear group, and then using the closed subgroup
theorem, saying that any closed (in the topological sense) subgroup of a Lie group is a Lie
group, which applies to the other matrix groups.

10This insistence on local means that the parameterisation is not necessarily the same for the whole group.
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We saw several examples of parameterisations of matrix groups earlier, for example U(1)
could be parameterised by a single parameter θ ∈ [0, 2π] by writing an element U ∈ U(1) as
the complex number U = eiθ. We can then identify the group topologically with a subspace
of E2, and since |U | = 1 this group is bounded and closed, and thus a compact group.
Similar arguments can be made for the compactness of all the matrix groups U(n), SU(n),
O(n), SO(n), Sp(2n), and Sp(n), however, GL(n) and SL(n) are not compact because their
elements are not bounded.

1.5.2 Generators

The situation we are usually in in physics is that of a d-dimensional Lie group G acting on
a vector space V through a representation. This representation vector space may be finite
dimensional, in which case its members x ∈ V are written as vectors in some specific basis,
or it may be infinite dimensional and consist of functions that in turn have a domain Rn or
Cn.

For finite-dimensional representations we can locally write the map of the representation
G× V → V for x ∈ V in terms of an explicit function f called the composition function.
We have xi → x′i = fi(x,a), i = 1, . . . , n, where the composition function fi is analytic11 in xi
and aj , j = 1, . . . , d. Additionally fi should have an inverse. Note here that the dimensions of
x and a are different, the first is given by the dimensions of the space V , n, while the second
is given by the dimensions d of the Lie group.

By the analyticity of the explicit function f we can always construct the parametrisation
so that the zero parameter corresponds to the identity element of the group, g(0) = e, which
means that fi(x, 0) = xi.12 By an infinitesimal change da of the parameters we then get the
following Taylor expansion13

x′i = xi + dxi = fi(x, da)

= fi(x, 0) +
∂fi
∂aj

daj

∣∣∣∣
a=0

+ . . .

= xi + daj
∂fi
∂aj

∣∣∣∣
a=0

.

This is the result of the transformation by the member of the group that in the parameter-
isation sits da from the identity. For a group where the matrix A of the representation is
parametrised as A(a) the resulting change in the vector space is

dxi = daj
∂fi
∂aj

∣∣∣∣
a=0

= daj

[
∂A(a)

∂aj
x

]
i,a=0

= [idajX
jx]i,

where we have defined
iXj ≡ ∂A(a)

∂aj

∣∣∣∣
a=0

,

as the d matrix generators Xj of the Lie group.
11Analytic means infinitely differentiable and in possession of a convergent Taylor expansion. As a result

analytic functions (on R) are smooth, but the reverse does not hold.
12If this was not true for our parameterisation we could Taylor expand f around the parameter giving the

identity element and then redefine the parameterisation by a linear shift.
13The fact that fi is analytic means that this Taylor expansion must converge in some radius around fi(x, 0).
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If we now instead let F (x) be a function taken from the (infinite dimensional) vector space
V that we are interested in, mapping to either the real R or complex numbers C, where x is
now in the n-dimensional domain of the function, and letting f be the transformation of the
domain effected by the group elements, then the group transformation defined by da near the
identity changes F by

dF =
∂F

∂xi
dxi =

∂F

∂xi

∂fi
∂aj

∣∣∣∣
a=0

daj

≡ idajX
jF,

where the operators defined by

iXj ≡ ∂fi
∂aj

∣∣∣∣
a=0

∂

∂xi
, (1.5)

are called the d differential generators of the Lie group. We see here that in both cases the
number of generators is the same as the dimension of the manifold, which is also the number
of free parameters in the parameterisation of the group.

It is these generators X that then define the effect of the Lie group members in a given
representation (near the zero parameter), while the d numbers aj are mere parameters. We
say that the generators determine the local structure of the group. It turns out that this
linearisation, often called the tangent space, of a group using an infinitesimal change near
the origin is sufficient to recover the whole group locally. Note that the generators are not
unique, they do depend on the parameterisation of the group, but as we shall see later some
of their properties are independent of this.

For the translation group T (1) the action of the group on the domain R1 of the functions
in the representation space, is x′ = f(x, a) = x+ a. The resulting (single) generator is

iX1 =
∂f

∂a

∂

∂x
=

∂

∂x
.

Notice here how we represented a generic element of T (1) by the parameter and the generator
as

Ta = eiajX
j
= ea

∂
∂x .

This is of course no coincidence, and shows the way to a general recipe that we will use.14

As another example of the above we can now go in the opposite direction and look at the
two-parameter coordinate transformation defined by

x′ = f(x) = a1x+ a2,

which gives the generators
iX1 =

∂f

∂a1

∂

∂x
= x

∂

∂x
,

which is the generator for dilation (scale change) in one dimension D(1), and

iX2 =
∂f

∂a2

∂

∂x
=

∂

∂x
,

14While we are in the business of deja vu, notice also how the generator for translations is X = −i ∂
∂x

, which
can be compared with the quantum mechanical momentum operator p̂ = −i~ ∂

∂x
, keeping in mind that the

conservation of momentum through Noether’s theorem is intimately linked to the invariance of our models
under translation. This is a point we will return to later.
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which is again the generator for the translation T (1). Notice that we can show the following
relationship for these two generators: [X1, X2] ≡ X1X2 −X2X1 = iX2. This can be seen to
hold independently of the parameterisation of the group, something we will generalise later.

As we have seen, the group SU(2) has three free parameters ai, so it must have three
generators Xi. We can now show that the generators for SU(2) in the two-dimensional
representation are indeed proportional to the Pauli matrices in (1.2) as intimated earlier,
namely Xi = 1

2σ
i, see Ex. 18. By multiplying out we can also show the following commutation

relationships between the generators (Pauli matrices):

[Xi, Xj ] = iεijkX
k. (1.6)

These commutators should look familiar to us as they have the same structure as the com-
mutators for the spin Si operators in quantum mechanics.15

For matrix groups there is an alternative method to the generating functions for finding
the generators that sees a lot of use. Since we are looking for infinitesimal deviations from
the identity (matrix) I, we add an infinitesimal matrix dM (the generator) and look at the
properties of dM given the definition of the group. Let us take SO(2) as an example. Here
a matrix in the group O must fulfil OTO = I and detO = 1. Writing near the identity
O = I + dM we get the requirement OTO = I + dM + dMT = I to first order in the
infinitesimal. Thus the generator must fulfil dM = −dMT (it is a real, anti-symmetric
matrix). This means that the diagonal of dM must be zero, and in two dimensions, up to a
constant, the only matrix that fits the role of the generator is

X =

[
0 1
−1 0

]
,

so that the group element can be written O = I + dθX, where dθ is some infinitesimal
parameter of the group. To check the determinant we need to consider how we use the
generator to recreate the group since the generator is defined through an infinitesimal change.
For reasons that will become clearer later we use the exponential O = exp(θX), which to first
order in an infinitesimal parameter dθ recreates the behaviour near the identity we used.
By the properties of matrix exponentiation we can now check that detO = det exp(θX) =
exp(θTrX) = exp(0) = 1. Since X is an anti-Hermitian matrix, and we as physicists are
more comfortable as Hermitian, we tend to use instead

X = −i
[
0 1
−1 0

]
=

[
0 −i
i 0

]
,

as the generator, writing the group element as O = exp(iθX).
A similar calculation for SO(3), which has three free parameters, gives the generators

Xi = 1
2L

i, where Li are the three matrices in Eq (1.4). These generators have the exact same
commutator as the SU(2) generators, [Xi, Xj ] = εijkX

k, up to a constant factor, indicating
a structural similarity between the groups SU(2) and SO(3). For SO(3) we can further find
a corresponding set of differential generators

Lx = −i
(
y
∂

∂z
− z

∂

∂y

)
, Ly = −i

(
z
∂

∂x
− x

∂

∂z

)
, Lz = −i

(
x
∂

∂y
− y

∂

∂x

)
, (1.7)

15This would be [Si, Sj ] = i~εijkSk.
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see Ex. 17. Up to a constant factor of ~ you may recognise these operators as the angular
momentum operators in quantum mechanics. This is not a coincidence, the angular momen-
tum operators in quantum mechanics are a representation of the generators of the group of
rotations in three dimensions. In fact, the possibility of going back and forth between differ-
ential representations and matrix representations of the Lie group is the essence of the duality
between the Schrödinger and Heisenberg pictures of quantum mechanics.

1.5.3 Structure constants

In general, the commutator of the generators of a Lie group satisfy

[Xi, Xj ] = iC k
ij Xk,

where C k
ij are called the structure constants of the group.16 This implies that the gener-

ators close under the commutation operation.
We can easily see that these commutators are antisymmetric in the indices i and j,

C k
ij = −C k

ji .

We can also show that there is a Jacobi identity among the generators that just directly
follows from the properties of the commutator,

[Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] + [Xk, [Xi, Xj ]] = 0, (1.8)

which in turn leads to a corresponding identity for the structure constants:

C m
il C l

jk + C m
jl C l

ki + C m
kl C l

ij = 0. (1.9)

Note that just like the generators are basis dependent, so are the structure constants.
However, the closure in the commutation relationship is not. For example, we could have
chosen the Pauli matrices to be the generators of SU(2). They would then fulfil the commu-
tator relationship

[σi, σj ] = 2iεijkσ
k,

where the structure constant is 2εijk instead of εijk. For the N -dimensional unitary groups
in physics it is common to use the following normalisation of the structure constants,

C i
kl C

klj = Nδij , (1.10)

which coincides with the choices made above for SU(2).

1.6 Algebras
To further study the structure of groups we begin by defining an algebra. An algebra extends
the familiar structure of vector spaces by adding a multiplication operation for the vectors
which gives a new vector.

16There is an annoying difference in notation here between physics and mathematics, where the i is commonly
dropped. This has the same origin as the Hermitian versus anti-Hermitian operator used to create unitary
operators discussed earlier.
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Definition: An algebra A over a field (say R or C) is a linear vector space with a
binary (multiplication) operation ◦ : A×A→ A.

It is important to remember here that the vector space part of the definition implies that
there is field, so for example from x ∈ A and a ∈ R (as the field) we can always form new
members ax ∈ A.

As a very simple example, the vector space R3 together with the standard cross-product
constitutes an algebra since the cross product results in a new vector in R3. Even more
trivially perhaps is that R with ordinary multiplication as the binary operation fulfils the
algebra requirements (more on this case below).

Connecting to the discussion of Lie groups in Section 1.5, we see that the generators Xi of
a Lie group also span an algebra as basis vectors of a vector space, if we use the commutator
as the multiplication operation between two members. We leave it as an exercise to ponder
out how all the criteria for a vector space is fulfilled by the generators, but this is not very
difficult.

1.6.1 Normed division algebras∗

As a slight aside to the main argument of the text, we want to give an interesting example of
algebras. We start with a division algebra, which informally is an algebra where the binary
operation of the algebra also has a meaningful (implicit) concept of division for all members
(except division by zero).

Definition: An algebra D is a division algebra if for any element x in D and any
non-zero element y in D there exists precisely one element z in D with x = y ◦z and
precisely one element z′ in D such that x = z′ ◦ y. In this sense y is a divisor of x.

We see that division algebras have the addition and subtraction properties of “ordinary
numbers” (reals) since they are vector spaces, and they have the multiplication (algebra) and
division (division algebra) properties of the reals as well. So, in a sense, division algebras are
structures close to the reals in terms of properties – and, of course, the reals are again an
example of a division algebra.

We can now add to the division algebra the notion of a norm, or length, of the members
‖x‖. This is a map from the algebra to the field, ‖ ‖ : D → R, so that we can discuss for
example convergence of the members as we do for the reals. We have to require here that
the norm is homomorphic, meaning that it preserves the structure of the algebra, so that
for example the “product” of two objects with large norm has a large norm. We then get a
normed division algebra.

Definition: If there exists a homomorphic norm for the division algebra, i.e. one
where ‖x ◦ y‖ = ‖x‖‖y‖ for all x, y ∈ D, then the division algebra is a normed
division algebra.

There is an important theorem by Hurwitz (1923) that demonstrates that only four of
these real number “lookalikes” exist.
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Theorem: Hurwitz’s theorem. There are only four normed division algebras over
the reals (up to isomorphism), the reals themselves R, the complex numbers C, the
quaternions H, and the octonions O.

In addition it is (relatively speaking) easy to show that R ⊂ C ⊂ H ⊂ O. One perspective
on the relationship between these algebras is that the reals is the only ordered normed division
algebra, i.e., where we can compare uniquely the elements a > b. This is not possible for the
complex numbers, but they keep the commutative and associate properties of the reals. The
quaternions in turn break the commutativity of the complex numbers, while being associative,
while the most unruly of the bunch, the octonions, are not even associative.

1.7 Lie algebras

We will now turn to the most crucial type of algebras for physics, namely Lie algebras. To
distinguish these from the more general algebras that we have introduced above, we will use
the notation [ , ] for the binary operation in Lie algebras.

Definition: A Lie algebra l is an algebra where the binary operator [ , ], called
the Lie bracket, has the properties that for x, y, z ∈ l and a, b ∈ R (or C):

i) (bilinearity)
[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

ii) (anti-commutation)
[x, y] = −[y, x]

iii) (Jacobi identity)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

If the algebra is over R it is a real Lie algebra, and over C a complex Lie algebra. We write
the name of Lie algebras l in lower case fraktur style.

Since Lie algebras are vector spaces, a subalgebra m of a Lie algebra l is simply a subspace
m ⊆ l. An ideal is a subalgebra that satisfies [l,m] ⊆ m. A simple Lie algebra is a non-
abelian Lie algebra (non-zero structure constants) without any proper ideals. A Lie algebra
is semi-simple if it is a direct sum of simple Lie algebras.

Again the vectors of R3 with the Lie bracket defined in terms of the cross product, [x,y] =
x×y, is a simple example of a Lie algebra. However, we usually restrict ourselves to algebras
of linear operators where the Lie bracket is the standard commutator [x, y] ≡ xy− yx, where
the defining properties follow automatically. Thus also explaining the notation that we have
used for the binary operator.

From what we learnt in Section 1.5 the generators Xi of an d-dimensional Lie group then



1.7. LIE ALGEBRAS 23

span a d-dimensional Lie algebra with the commutator as the Lie bracket.17 Since this is also
a vector space, any element X of the algebra can be written in terms of the generators Xi,
as X = aiX

i. This is called the tangent space of the group at the identity. The differences
between choices in the definition of the generators and the normalisation of the structure
constants disappear as they can be absorbed into a rescaling and linear combinations of the
basis {Xi}di=1, this makes the Lie algebra of the group unique.

However, the reverse is not true. There can be multiple Lie groups that have the same
algebra. The often quoted example is the groups SO(3) and SU(2) where we have seen that
the commutator of the generators is the same up to constants, so the algebra is the same, we
say so(3) ∼= su(2). However, while closely related, the groups are not isomorphic.

1.7.1 Representations of a Lie algebra

We saw in the previous subsection that – just as for groups – we have many different way of
writing down a single Lie algebra. We then need a formal definition of representations of Lie
algebras.

Definition: A representation π of a Lie algebra l on a vector space V is a map

π : l → gl(V ),

where gl is the Lie algebra of all linear maps V → V (endomorphisms) with its
bracket defined as the composition [r, s] ≡ r ◦s−s◦r, for all r, s ∈ gl, and where the
map π is homomorphic (structure preserving) for the Lie algebra bracket so that for
all x, y ∈ l,

π([x, y]) = π(x) ◦ π(y)− π(y) ◦ π(x).

Again this is an abstract definition that is actually simple than it looks. For finite dimensional
vector spaces gl is the Lie algebra of the corresponding general linear matrix group, just as
the definition of representations of groups was a map to the general linear group GL(n).
This algebra of GL(n), called gl(n), can be written up in terms of n × n matrices and their
commutators, and in this case the multiplication operation ◦ is just matrix multiplication
in hiding. One word of warning here though, while the group GL(n) contained invertible
matrices, there is no guarantee that its generators are invertible matrices, e.g. we saw earlier
that the generators of SO(3) were the matrices Li in Eq (1.4) that are not invertible since
detLi = 0.

What makes this definition of representations even simpler for Lie algebras is that Ado’s
theorem [2] proves that every finite-dimensional Lie algebra has a faithful (isomorphic to
the Lie algebra) representation on a finite-dimensional vector space.18 In other words, the Lie
algebras for the groups we most care about, Lie groups with a finite number of parameters
and thus finite number of generators, is guaranteed to have representations using matrices.

As for groups, we can talk about irreducible representations, irreps, of the Lie algebras,
17If you are really paranoid here, you may question wether these generators are guaranteed to be linearly

independent. However, since the Lie group is parameterised by d parameters, if the generators were not linearly
independent we should be able to remove one of the parameters, leading to a contradiction. Stop it!

18For a modern version of a proof of Ado’s theorem, see Terence Tao’s blog https://terrytao.wordpress.
com/2011/05/10/ados-theorem/.

https://terrytao.wordpress.com/2011/05/10/ados-theorem/
https://terrytao.wordpress.com/2011/05/10/ados-theorem/


24 CHAPTER 1. GROUPS AND ALGEBRAS

which are representations such that V has no proper invariant subspace under the representa-
tion, meaning that we cannot construct proper sub-representations. An important result for
representations of Lie groups is Weyl’s complete reducibility theorem which says that
the any representation of a finite-dimensional semi-simple Lie algebra on a finite-dimensional
space is isomorphic to a direct sum of irreducible representations. This means that the clas-
sification of the representations of semi-simple Lie algebras can be done in a very systematic
way. In particular, every semi-simple Lie algebra is a subalgebra of sl, the Lie algebra of the
special linear group, and all our matrix groups have simple or semi-simple Lie algebras.

In Sec. 1.5.2 we saw the two sets of generators of the Lie algebras su(2) and so(3), derived
from the defining matrix representations of the groups that have different dimensions. Since
this is the same algebra this shows two distinct representations of the same algebra.

1.7.2 Exponential map

As we discussed in Section 1.5, the generators describe the local structure of the group near
the identity element. We can now finally look at how the group (and matrix representation)
is reconstructed from the algebra. For this we use what is called the exponential map.

Definition: The exponential map from a finite-dimensional Lie algebra l of a
group G to G is defined by exp : l → G, where for X ∈ l we get the element g ∈ G
given by

g = exp(iX) ≡
∞∑
n=0

(iaiX
i)n

n!
. (1.11)

Here the Xi are the generators of G and thus members of the Lie algebra, and
X = aiX

i.

By Ado’s theorem any (finite-dimensional) Lie algebra can be represented by matrices, in
which case the infinite sum in this definition is nothing more than the formal series definition
of the matrix exponential introduced in Sec. 1.2.2. However, we can also use the exponential
map for differential representations where the Xi are differential operators, and for infinite-
dimensional Lie groups, but the technical aspects why this extension works is a little beyond
the scope of these notes.

We have already seen multiple example of the exponential map construction, but we may
ask, why use the exponential? One reason is that it gives us a natural expansion of the group
around the identity element. With the parameters a = 0 the resulting matrix is the identity
matrix, which means that the group element is the identity element g = e. Similarly, for an
infinitesimal da step away from the parameters of the identity we have the group elements
near the identity, g = I+ idaiX

i that we used to derive the generators. And now, if we apply
a small finite step ai away from the identity g = I + iainX

i a total of n times we will get

g =
(
I + i

ai
n
Xi
)n
.

By the limit definition of the exponential, with smaller and smaller steps letting n→ ∞ this
is the exponential map

g = lim
n→∞

(
I + i

ai
n
Xi
)n

= exp(iaiX
i).
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We should now ask two important questions, is the structure of these elements g ac-
tually a group, and is it (isomorphic to) the group that gave the Lie algebra? For the
first question we may check the group definition. The exponential map does give an iden-
tity element which is just the identity matrix. Associativity similarly holds because we
are using matrices and matrix multiplication. There is indeed an inverse of an element
g = exp (iX), which is g−1 = exp (−iX), since by the properties of matrix exponentiation
we have gg−1 = exp (iX) exp (−iX) = I. The tricky point is whether group multiplication is
closed.

If we have two elements from the map g = exp (iX) and g′ = exp (iY ), then gg′ =
exp (iX) exp (iY ), and we would like to show that exp (iX) exp (iY ) = exp (iZ), where Z ∈ l.
However, unless X and Y commute we cannot easily join them in the same exponential. We
here use the Baker–Campbell–Haussdorff formula,

Z = X + Y +
1

2
[X,Y ] +

1

12
[[X,Y ], Y ]− 1

12
[[X,Y ], X] + . . . , (1.12)

where the omitted terms involve Lie brackets of four or more elements, and where every
element in the series contains the commutator [X,Y ]. If X and Y are close enough to the zero
in l (corresponding to the identity element in G) then this series can be shown to converge
to an element in l.19 Thus the exponential constructs a group at least locally around the
identity element.

The question of whether the exponential map reaches all of the members of the group, i.e.
that it is surjective on G, depends on the properties of the group. We certainly have counter
examples, since the groups SO(3) and SU(2) have the same Lie algebra and thus the same
exponential map, but are different groups, the map cannot reach all of the elements of both
groups. What we do know is that locally, meaning sufficiently close to the identity group
element, the exponential map generates the group.

Let us end this subsection by returning to some of our examples in view of what we now
know about the exponential map. For U(1) we saw that we could write a generic group
member as eiθ. Comparing to the exponential map we see that the single generator must here
simply be 1, while θ is the parameter. The Lie algebra is then a very simple one-dimensional
vector space R where the multiplication is ordinary arithmetic multiplication. Similarly, for
the translation group T (1) we saw that a group member could be written as ea

∂
∂x = eia(−i ∂

∂x
).

Thus the generator is the differential operator P = −i ∂
∂x and again the vector space of the

Lie algebra is one dimensional.
For SU(2) the generators taken from the fundamental representation 2 were proportional

to the Pauli matrices Xi = 1
2σi, and the exponential map generating a group member U

is thus, as we alluded to earlier, U = eiαiX
i , where αi are the parameters. For SO(3)

the (Hermitian) generators taken from the fundamental representation 3 are the matrices
Yi = −iLi, where the Li were given in (1.4), and the exponential map is O = eiαiY

i . Since
SU(2) and SO(3) have the same algebra for Xi and Yi, but the groups are not isomorphic,
in what sense, if any, does these exponential maps generate different elements? The answer
to that is that SU(2) is a double cover of SO(3), it has double the number of elements.
There exists a two-to-one group homomorphism f : SU(2) → SO(3). This can be represented
by U(α1, α2, α3) → O(α1, α2, α3). To see that this is two-to-one, assume that α1 = α2 = 0.

19This formula holds even if the elements in the Lie algebra l are not represented as finite-dimensional
matrices.
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Then O(0, 0, α3) = O(0, 0, α3 + 2π) since a rotation by an extra 2π does nothing. For SU(2)
we instead have

U(0, 0, α3) =

[
ei

α3
2 0

0 −ei
α3
2

]
and U(0, 0, α3 + 2π) =

[
ei

α3
2
+iπ 0

0 −ei
α3
2
+iπ

]
= −U(0, 0, α3)

Thus the SU(2) matrices has a period 4π versus the period 2π for SO(3).20 Notice that
this means that the three-dimensional representation of the Lie algebra coming from the
generators of SO(3) does not generate all the elements of SU(2), while the two-dimensional
one does.

Beyond the fundamental representation SU(2) has irreducible representations in all dimen-
sions 3, 4, 5, …. This is not true in general, for example SU(3) has irreducible representations
only in some dimensions, starting with 3, 6, 8, and 10, ….

From the exponential map and the properties of matrix exponentiation it immediately
follows that the generators T a for all groups SU(n) are matrices with zero trace. To see
this write an element in SU(n) as U = exp (iαaT

a), then by the defining group property
detU = 1, we have detU = exp (Tr[iαaT

a]) = exp (iαaTrT
a) which is only one if TrT a = 0

for all a.
We saw in Sec. 1.2.2 that we could construct unitary matrices from Hermitian ones by

matrix exponentiation, but in fact for unitary groups the generators need to be Hermitian.
To see this let a group member be U = exp(iaiM

i). Then U † = exp(iaiM
i)† = exp(−iaiM i†),

but for a unitary matrix U † = U−1 = exp(−iaiM i), thus M i† = M i and the generators Mi

are Hermitian.

1.7.3 Adjoint representations

The definition of the structure constants in Sec. 1.5.3 allows us to introduce another represen-
tation, the adjoint representation of the algebra – and by the exponential map the adjoint
representation of the group – where the representation of the algebra consists of the matrices
Mi with elements:

(Mi)
k
j = −iC k

ij ,

where C k
ij , are the structure constants. If the dimension of the Lie algebra is n, then this is

the number of generators, and it also means that the dimension of the matrices Mi is n× n.
To prove that this is actually a representation, we need to check that the mapping from the
elements of the algebra Xi to the matrices Mi satisfies the homomorphism criteria of the Lie
algebra representations. From the Jacobi identity of the algebra it follows that

[Mi,Mj ] = iC k
ij Mk, (1.13)

meaning that the matrices of the adjoint representation fulfils the same commutator relation-
ship as the fundamental (generators). As a direct consequence the Mi form a representation.

Note that the dimension n of the matrices in the adjoint representation for so(m) and
su(m), which is equal to the number of independent parameters, is n = m(m − 1)/2 and
n = m2 − 1, respectively. For the matrices in the representation derived from the defining
representation of the group the dimensions is the same as the dimension of the defining

20The argument can be made more formal and independent of the parameterisation, but is to extensive to
repeat here.
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matrices, m. This means that in most cases the matrices in the adjoint representation is
larger, with the exception of so(2) and so(3).

We can now briefly return to the SU(2) and SO(3) examples. These groups have the same
structure constants because they have the same commutators between generators. Thus the
adjoint representations of their algebras are the same. With structure constants C k

ij = ε k
ij

we get the elements of the adjoint matrices (Mi)jk = −iεijk, which gives Mi = −iLi, with
the Li being the matrices in (1.4).

From the adjoint representation of the Lie algebra we can construct the adjoint represen-
tations of the Lie group. For example the adjoint representation of su(2) or so(3) has the
exponential map exp (iaiM

i) = exp (aiL
i). This happens to generate the SO(3) fundamental

representations, but this is not generally the case, it is “accidental” that the dimensions of the
fundamental representation of SO(3), n = 3, and the dimension of its adjoint representation
n = 3(3− 1)/2 = 3 is the same.

1.7.4 Dual representations

Every representation of a Lie algebra on a vector space V (and every representation of a
group) has a dual representation (also known as a contragredient representation) that
is a representation on the dual vector space V ∗. The definition of a dual vector space is
somewhat abstract, it is formally the space consisting of all linear maps φ : V → K, where
K is the field of V . Since the map takes members of V and maps them linearly to the field
K, for a finite-dimensional vector space we must be able to write any member of V ∗ in terms
of a row-vector over the same field, so that if v ∈ V and wT ∈ V ∗, the map is given by the
matrix multiplication wTv which gives a scalar. This means that in practice V ∗ consists of
the corresponding row-vectors to the column vectors in V .21

The definition of the dual representation for a Lie algebra is as follows:22

Definition: If l is a Lie algebra with a representation ρ on a vector space V , then
the dual representation on the dual space V ∗ is ρ∗ given by

ρ∗(x) = −ρ(x)T ,

for all x ∈ l.
To see why this makes sense we need to look at the exponential map of the dual representation.
If Xi is a generator in the representation ρ, then the dual representation ρ∗ tells us to use
instead −XT

i . In the exponentiation the group element g = exp(iXi) becomes the group
element exp(−iXT

i ) = exp(−iXi)
T = (g−1)T with the dual representation. This is the only

sensible representation that fulfils the group multiplication properties as matrices acting on
row-vectors.

For unitary groups like U(n) or SU(n) we have matrix representations of the Lie alge-
bra with Hermitian generators Mi = M †

i , generating the members in the group as U =
exp(iaiM

i). From the definition of the dual representation the group members generated in

21It is slightly unfortunate and confusing that the symbol for the dual space uses a star since this seems
to imply complex conjugation, where instead we are actually talking about transpose, however, as we will see
below, the complex conjugation is central to dual representations of unitary groups.

22This definition also applies beyond finite-dimensional vector space with a basis since the transpose operation
can be generalised beyond matrices.
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the dual representation are then

U = exp(−iaiM iT ) = exp(−iai(M i†)∗) = exp(−iaiM i∗),

meaning that the Lie algebra in the dual representation can be written in terms of Hermitian
matrices M ′

i = −M∗
i . As a check we can see that M ′

i indeed fulfils the same algebra:

[M ′
i ,M

′
j ] = [M∗

i ,M
∗
j ] = −iC k

ij M∗
k = iC k

ij M ′
k,

which is true only if the structure constants C k
ij are real.23 For the matrix groups we denote

the dual representations using a bar, so that for example the dual of a representation 2
is 2̄. The dual representations play a special role in quantum field theories, as the known
fermions and anti-fermions transform under a representation of the gauge group and its dual,
respectively.

For some groups, such as SU(2), the original and dual representations can be shown to be
isomorphic. However, this is not in general the case. For SU(3) the dual representations 3̄, 6̄,
and 10, are not isomorphic to 3, 6, and 10. On the other hand, 8 and 8̄ are isomorphic.24 This
becomes important in the Standard Model as the quarks transform under the 3 representation
of the SU(3)c gauge group, and the anti-quarks under 3̄.

1.8 Exercises

Exercise 1.1
Show that for the translation group T (1) the identity element is T0 and that T−1

a = T−a, and
use this to show that T (1) is group.

Exercise 1.2
Show that the set of complex unitary n × n matrices U with matrix multiplication is a

group.

Exercise 1.3
What are the elements of O(1)? Can you find a group that it is isomorphic to?

Exercise 1.4
Show that the U(n) and SU(n) groups have n2 and n2−1 independent (real) parameters,

respectively. Hint: Consider the fact that M = U †U is a hermitian matrix, i.e. M † =M .

Exercise 1.5
Show that Eq. (1.1) is a parametrisation of SU(2).

Exercise 1.6
Show that for a subset H ⊂ G, if hi ◦ h−1

j ∈ H for all hi, hj ∈ H, then H is a subgroup of
G.

23You can take this as a proof that the structure constants are real if you prove that the dual representation
is actually a representation, or you can go the other way and prove that this is indeed a representation, if you
can first show that the structure constants of unitary groups are real.

24However, the dual of the dual of any representation is always isomorphic to the original representation.
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Exercise 1.7
Show that if H is a subgroup of G, then hi ◦ h−1

j ∈ H for all hi, hj ∈ H.

Exercise 1.8
Show that SU(n) is a proper subgroup of U(n) and that U(n) is not simple.

Exercise 1.9
Show any two (left or right) cosets are either disjoint or identical sets.

Exercise 1.10
If H is a normal subgroup of G, show that its left and right cosets are the same, and show

that the set formed of the cosets is a group under an appropriate group operation.

Exercise 1.11
Show that the factors in a direct product of groups are normal groups to the product.

Exercise 1.12
Show that the group G and the group (G×H)/H are isomorphic.

Exercise 1.13
Show that U(1) ∼= R/Z ∼= SO(2).

Exercise 1.14
Prove that all unitary representations on Hilbert spaces are completely reducible. Hint:

For Hilbert spaces we always have an inner product defined.

Exercise 1.15
Use the parameterisation of SO(2) in (1.3) to find the generator of the group using gener-

ating functions and show that you get the same answer as when using the infinitesimal matrix
demonstrated in the notes.

Exercise 1.16
Find the fundamental representation for SO(3).

Exercise 1.17
Find the differential generators for SO(3) and their commutation relationships by studying

how a function on R3 changes under SO(3) transformations. Show that they satisfy the same
commutators as the matrix generators.

Exercise 1.18
Find an expression for the generators of SU(2) and their commutation relationships. Hint:

One answer uses a composition function but this approach has some dangers, try also to derive
the properties of the generators from a member of the group an infinitesimal distance from
the identity.
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Exercise 1.19
What are the structure constants of SU(2)?

Exercise 1.20
Find the adjoint representation for SU(2). Compare this to the fundamental representa-

tion of SO(3).

Exercise 1.21
Let A be an algebra based on a finite-dimensional vector space over a field F ,with a basis

B = {bi|i = 1, . . . , n}. Show that the multiplication of elements in A is completely determined
by the n2 products bibj for each pair of basis vectors in B.

Exercise 1.22
Let V be a finite-dimensional vector space over a field F with a basis B = {bi|i = 1, . . . , n}.

Let {crst|r, s, t = 1, . . . , n} be a collection of n3 elements in F . Show that there exists one,
and only one, multiplication operation on V so that V is an algebra over F under this
multiplication and

brbs = crstbt,

for every pair of basis vectors in B. The elements crst are the structure constants of the
algebra.

Exercise 1.23
Show that R3 with the binary operator [x,y] = x× y is a Lie algebra.

Exercise 1.24
Show Eq. (1.13).

Exercise 1.25
Let Ai be the generators of the group G and Bj be the generators of group H. Explain

in what sense the Ai and Bj are generators of the direct product group G×H and show that
[Ai, Bj ] = 0.

Exercise 1.26 Properties of matrix exponentiation
Prove the following useful properties of matrix exponentiation. A and B are matrices.

1. If A and B commute, eA+B = eAeB.

2. If B has an inverse, eBAB−1
= BeAB−1.

3. eA∗
= (eA)∗

4. eAT
= (eA)T

5. eA†
= (eA)†

6. e−A = (eA)−1

7. det eA = eTr[A].



Chapter 2

The Poincaré group and its
extensions

We now take a look at the symmetry groups behind Special Relativity (SR), the Lorentz and
Poincaré groups. We will first see what sort of states transform properly under SR, which
has surprising connections to already familiar physics. We will then look for ways to extend
these external symmetries of the coordinates to internal symmetries of quantum fields, i.e.
the symmetries of gauge groups.

2.1 Representations of SU(2)

As a warm up, and to introduce some of the methods we will be using, we will start with the
SU(2) group and constructing its representations. As alluded to in the previous chapter the
SU(2) group is the symmetry group for spin. Since their Lie algebras are identical, this will
also provide us information about the rotation group in three dimensions SO(3). We have
seen that the (abstract) generators Xi of both groups fulfil the Lie algebra su(2),

[Xi, Xj ] = iεijkX
k, i, j, k = 1, 2, 3,

which should be well known to us as the commutator for spin operators Si from our first
quantum mechanics courses.1 So apparently the spin operators are part of something rather
fundamental.

To find a representation of SU(2) through the exponential map we need to find repre-
sentations π of the algebra in terms of finite dimensional matrices (which exist given Ado’s
theorem). Let us very suggestively call the matrices in such a representation Ji = π(Xi).
These will then act on some vector space which we will also need to find. We can remind our-
selves here that the spin operators we first learned about acted on a two-dimensional Hilbert
space for the spin states of spin-12 particles. The quantum mechanical notation for the vectors
in this space was the Dirac-ket |ψ〉, which we will stick to in the following.

Our first move in the construction is to consider that since the generators in any represen-
tation of the Lie algebra are not unique, we can change their basis by a similarity transform
J ′
i = SJiS

−1, where S is an invertible matrix. We can easily show that the J ′
i fulfil the same

algebra and that this is thus an isomorphism of the representation. We can then uses this
1To be more exact, this was [Si, Sj ] = i~εijkSk.

31
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freedom to now diagonalise one of the three matrices, J3, by a choice of basis. We can not
diagonalise more than one because we know from linear algebra – and operators in quantum
mechanics – that two matrices that are diagonalised by the same similarity transform must
commute (since diagonal matrices commute), and this would contradict our commutator for
the Ji.

In the following sections of this chapter we will be particularly interested in the eigen-
vectors of the generators that we can simultaneously diagonalise, in the SU(2) case only J3,
which we will call states. This follows what we did in quantum mechanics where we found the
set of all commuting operators for a given system, and found their common eigenstates/eigen-
functions, which we then used as basis states/vectors under the quantum mechanical axiom
that the eigenstates form a complete set of basis states. The eigenvalues in these cases are
the only possible measurements for the corresponding observables. Returning to our spin
example, for the spin-12 spin operator we have two states, the spin-up and spin-down states,
and can measure the spin in the z-direction (S3) to be in the up or down direction, S3 = ±~

2 .
Any spin-12 fermion must then be in a linear combination of the two states. We should like
to emphasise here that this says something dramatic about what exists according to quan-
tum mechanics, there are only two states labeled by the quantum number s3, |s3 = 1

2〉 and
|s3 = −1

2〉.

2.1.1 Ladder operators

We now return to our su(2) algebra and its representations. What follows might again cause
some deja vu, as you might feel you have done this before in an earlier life. Let us call the
eigenstates of J3 for |m〉 and its eigenvalues m, i.e. J3|m〉 = m|m〉, and assume that the states
are normalised, 〈m|m〉 = 1. We know that m ∈ R because the eigenvalues of a Hermitian
matrix, as we saw J3 was in the previous chapter, are real.

We are constructing finite-dimensional representations, so we also know that J3 has a finite
number of eigenvalues and eigenstates. We pick the state with the largest eigenvalue, called
the highest weight state, and denote it by |j〉.2 We now define lowering and raising
operators J±,

J± ≡ 1√
2
(J1 ± iJ2).

We can show that these have commutators

[J+, J−] = J3, and [J3, J±] = ±J±.

Notice also that J†
± = J∓. The lowering and raising operators have the property that oper-

ating on a state |m〉 we get

J3J±|m〉 = (J±J3 ± J±)|m〉 = (m± 1)J±|m〉,

meaning that J±|m〉 are also eigenstates of J3, but with eigenvalue m± 1. We normalise the
new eigenstates using the constants N±

m:

J±|m〉 = N±
m|m± 1〉.

2Although j suggests an integer, at this point all we know is that j is some real number.
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Starting from the highest weight state |j〉 we can use J− to walk down a ladder of states
|j〉, |j − 1〉, . . . , |Ω〉, but we know that the ladder must end at some point, since we are con-
structing a finite-dimensional representation. Thus there must be an eigenstate |Ω〉 such that
J−|Ω〉 = 0. The next step is to figure out what Ω is for a given j and what values of j that
are admissible. This will also give us the dimension of the representation we are constructing.
For this we shall need a very powerful structure in Lie group theory, the Casimir invariant.

2.1.2 The Casimir invariant

A Casimir element or Casimir invariant is a combination of the elements of the Lie
algebra that commutes with all the elements of the algebra. However, in constructing a
Casimir element we may take products of matrices in a given representation, and hence we
leave the algebra (which is a vector space, thus allowing only linear combinations).3 A semi-
simple Lie algebra, such as the algebras of our matrix groups, has a number of Casimir
invariants equal to its rank.4

In the context of su(2), this algebra has the single Casimir invariant

J2 = J2 ≡ J2
1 + J2

2 + J2
3 = J+J− + J−J+ + J2

3 ,

and therefore has rank-1. It is relatively easy to show that [J2, J1] = [J2, J2] = [J2, J3] = 0, so
that we can indeed confirm that this is a Casimir element, and we can convince ourselves that
there are no other combinations of the Ji that will work. Physically we should recognise this
as the total spin or angular momentum (squared). The significance of the Casimir invariant
comes from Schur’s lemma in Sec. 1.4.3. There is a corresponding version of Schur’s lemma
for Lie algebras that shows that a linear map on the representation space that commutes
with all the elements of the algebra in an irreducible representation (such as the Casimir) is
proportional to the identity map. Thus J2 must be a multiple of the identity matrix, J2 = λI.

If we let the Casimir invariant act on the highest weight state |j〉 we get

J2|j〉 = (J+J− + J−J+ + J2
3 )|j〉 = (J+J− + J2

3 )|j〉 = (N+
j−1N

−
j + j2)|j〉 = j(j + 1)|j〉.

This identifies the constant of proportionality as λ = j(j + 1). However, this must be inde-
pendent of which state is acted on, so J2|m〉 = j(j+1)I|m〉 = j(j+1)|m〉 for all states |m〉 in
the representation. In the above we have used that J+|j〉 = 0, otherwise the highest weight
assumption is violated, and that N+

j−1N
−
j = j, see Ex. 1.

The property of the Casimir invariant also allows us to find explicit expressions for the
normalisation constants using

|N±
m|2 = 〈m|J∓J±|m〉 = 1

2
〈m|J2 − J2

3 ∓ J3|m〉 = 1

2
(j(j + 1)−m2 ∓m),

which gives5

N±
m =

1√
2

√
j(j + 1)−m2 ∓m.

3For those interested in further reading, the technical statement is that the Casimir elements live in the
universal enveloping algebra of a Lie algebra. A detailed discussion of this is significantly beyond the
scope of these notes.

4Rank itself is a rather technical term and comes from the dimension of the Cartan subalgebra of the
algebra.

5We choose an arbitrary phase factor to be real and positive. There is an alternative way of arriving at
the same result that uses recursion relationships for the normalisations constants, but this is very heavy and
tedious algebraically.
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In turn, this finally allows us to determine where the ladder of states ends. The ladder ends
with J−|m〉 = 0 if and only if m = −j since N−

−j = 0. However, this also implies that
j = 0, 12 , 1,

3
2 , . . ., i.e. it is half-integer, since otherwise we would not reach m = −j from

m = j in a whole number of steps and then the ladder would never end, which contradicts
the finite-dimensional nature of the representation.

What we have now is proof that there exists an infinite tower of finite-dimensional repre-
sentations of su(2) that are indexed, or labeled, by the non-negative half-integer j, with one
representation for every dimension. Although it is beyond the scope of these notes, these rep-
resentations are irreducible, and they are indeed all the irreducible representations of su(2).
This fulfils the promise of Schur’s lemma, namely that the irreducible representations are
labeled by the eigenvalues of the Casimir, and show that these eigenvalues have a physical
interpretation, in this case the total spin or angular momentum. Each of these representations
has dimension 2j+1, with that many states denoted by |j,m〉, m = −j, j+1, . . . , j−1, j, that
are eigenstates of the J3 generator. We call these representations the spin-j representations
because they are indeed the representations of SU(2) used for the different spin possibilities.
These representations can also be used for SO(3) in odd dimensions, where j is integer

2.1.3 The lowest-dimensional representations

The spin-0 representation is the trivial representation where j = 0 and the representation
space is one dimensional and everything acts as the identity element.

The first non-trivial representation is for spin-12 with j = 1
2 . Here the two states are |12 ,

1
2〉

and |12 ,−
1
2〉. To write down a representation of the algebra in terms of 2 × 2 matrices we

think of the states as two basis vectors∣∣∣∣12 , 12
〉

=

(
1
0

)
,

∣∣∣∣12 ,−1

2

〉
=

(
0
1

)
,

and to fulfil the properties for the J± and J3 generators

J±|j,m〉 =
1√
2

√
j(j + 1)−m2 ∓m|j,m± 1〉

J3|j,m〉 = m|j,m〉,

we must have

J+ =
1√
2

[
0 1
0 0

]
, J− =

1√
2

[
0 0
1 0

]
, J3 =

1

2

[
1 0
0 −1

]
.

Going back to the Ji, i = 1, 2, 3, basis we then get

J1 =
1

2

[
0 1
1 0

]
, J2 =

1

2

[
0 −i
i 0

]
, J3 =

1

2

[
1 0
0 −1

]
,

which, unsurprisingly, leaves us back at the Pauli matrices Ji = 1
2σi that were the generators

we found from the defining representation of SU(2).
For the spin-1 representation we have j = 1 and the three states are |1, 1〉, |1, 0〉, and

|1,−1〉. The basis vectors are then

|1, 1〉 =

1
0
0

 , |1, 0〉 =

0
1
0

 , |1,−1〉 =

0
0
1

 ,
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and the J± and J3 generators

J+ =

0 1 0
0 0 1
0 0 0

 , J− =

0 0 0
1 0 0
0 1 0

 , J3 =

1 0 0
0 0 0
0 0 −1

 .
Going back to the Ji, i = 1, 2, 3, basis we get

J1 =
1√
2

0 1 0
1 0 1
0 1 0

 , J2 = − i√
2

 0 1 0
−1 0 1
0 −1 0

 , J3 =

1 0 0
0 0 0
0 0 −1

 .
We can check that these matrices indeed fulfil the su(2) algebra, and we can also find a
similarity transform that transforms them into the generators derived from the defining rep-
resentation of the SO(3) group in (1.4). Our arguments here can be repeated for higher and
higher dimensions at will.

One final note on differential representations of the generators. There is in principle
nothing in the arguments for the properties of the representations of the algebra in the
previous subsection that can not be carried over into differential representations. If for the
generators Ji we take the differential generators we found for SO(3) in Eq. (1.7) we have
here shown that there exists states, now functions Y l

m(θ, φ) in a vector space, that fulfil the
relationships

LzY
m
l (θ, φ) = mY m

l (θ, φ),

L2Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ),

for l = 0, 1, 2, . . ., and m = −l,−l+1, . . . , l−1, l. Here we write the functions in spherical co-
ordinates since rotations under SO(3) can be easily expressed in the two spherical coordinate
angles. The functions Y m

l (θ, φ) are well known as the spherical harmonics.
We have now shown what the representations of SU(2) look like, but we have not seen

why this group appears in physics in the first place. This will become clearer in the next
sections.

2.2 The Lorentz Group

Einstein’s requirement in Special Relativity was that the laws of physics should be invariant
under rotations and/or boosts (changes of velocity) between different inertial reference frames.
A point in the Minkowski space-time manifold M4 is given by a four-vector xµ = (t, x, y, z).
The resulting transformations of the space-time coordinates are captured in the Lorentz group.

Definition: The Lorentz group L is the group of linear transformations xµ →
x′µ = Λµ

νx
ν such that x2 ≡ xµx

µ = x′µx
′µ is invariant. The proper or-

thochronous or restricted Lorentz group is a subgroup of the Lorentz group
where detΛ = 1 (proper) and Λ0

0 ≥ 1(orthochronous).

The physical interpretation of the orthochronous property is that it keeps the direction (sign)
of time of the four vector, while a proper group preserves orientation in rotations.



36 CHAPTER 2. THE POINCARÉ GROUP AND ITS EXTENSIONS

Since the definition of the Lorentz group is in terms of a continuous transformation of
coordinates we have strong reason to suspect that it is a Lie group. In fact, if we allow for a
slight extension of the orthogonal group O(n) to the indefinite orthogonal group O(m,n),
where instead of the orthogonality property for group members O, meaning O−1 = OT , we
demand O−1 = g−1OT g where

g = diag(1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
m

),

is the metric,6 then we can write the Lorentz group as SO+(1, 3), where the plus sign signifies
the orthochronous property.7 This is also the part of the group that contains the identity
element. As a subgroup of the general linear group GL(4) this is indeed a Lie group.

Compared to the SO(4) group which it resembles the Lorentz group is more complicated.
Unlike SO(4), because of the metric, it is not compact which means that it does not have any
non-trivial finite-dimensional unitary representations. Fortunately, its algebra is semi-simple,
so its finite-dimensional representations are equivalent to direct sums of irreducible repre-
sentations by Weyl’s complete reducibility theorem. So we need only to find the irreducible
representations to construct any representation.

The counting of the free parameters of SO(n,m) works just as for SO(n), giving a total
of six free parameters for SO+(1, 3), and then six generators. Physically, we can identify
these with the three parameters needed to specify a general rotation in three dimensions,
with generators named Ji, i = 1, 2, 3, and the three parameters needed to specify a boost (the
velocity components), with generators Ki, i = 1, 2, 3.

Since the rotation operations are known to be closed, i.e. two rotations result in another
rotation, this forms a subgroup of SO+(1, 3). We know that the generators fulfil the so(3) ∼=
su(2) algebra

[Ji, Jj ] = iεijkJk. (2.1)
The boost operations are not closed, and one can show that their anti-Hermitian generators
Ki, see Ex. 3, have the following relationships with the rotation generators

[Ki, Jj ] = iεijkKk, (2.2)
[Ki,Kj ] = −iεijkJk. (2.3)

where (2.1)–(2.3) then defines the complete algebra of SO+(1, 3). This is consistent with
what we know about boost: two boosts are in general equivalent to a boost and a rotation,
so the generators of boosts commute into generators of rotation.

To simplify notation these generators can further be structured into an anti-symmetric
tensor Mµν given by

Mµν =


0 −K1 −K2 −K3

K1 0 J3 −J2
K2 −J3 0 J1
K3 J2 −J1 0

 . (2.4)

In terms of M the commutation relations of the algebra (2.1)–(2.3) can be written:

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (2.5)
6Indeed, we can recognise this matrix relationship as one of the defining (necessary) properties of Lorentz

transformations ΛT gΛ = g.
7Because of the metric, detO = 1 alone no longer insures that we do not have time or parity reversal.
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The differential representation of these generators is

Mµν = i(xµ∂ν − xν∂µ), (2.6)

where we can more or less see how the differential generators for SO(3) in (1.7) appear as the
Mij components. For a complete demonstration, see Ex. 4.

With the generators from the defining representation we can now write a general element
Λ ∈ SO+(1, 3) as8

Λµ
ν =

[
exp

(
i

2
ωρσMρσ

)]µ
ν

, (2.7)

where ωρσ = −ωσρ are the six free parameters of the transformation (the parameters that
were used to derive the generators). The anti-symmetry of ω is a consequence of the anti-
symmetry of M . The factor of a half takes into account that all generators appear twice in
M .

The generators Mρσ form the Lie algebra so(1, 3). In fact, this is also the algebra of
O(1, 3) since the orthochronous and proper requirements do not change the number of free
parameters, but rather restricts us to a subset of the matrices that do not change the sign
on the time and position components of the four-vector. As we have seen, in general the
exponential map from the algebra to the group is not guaranteed to be one-to-one, but
describes the group locally around the identity. Using the so(1, 3) generators we can in fact
not get outside of the SO+(1, 3) subgroup of O(1, 3). The larger group O(1, 3) can be seen
as four disconnected parts with detΛ = ±1 and |Λ0

0| ≥ 1 that are joined by the time T
and parity P inversion operators. However, the exponential map (2.7) is surjective (onto)
SO+(1, 3) . Thus, any group element in the connected component around the identity can
be expressed as an exponential of an element of the Lie algebra.

To learn more about the representations of the Lorentz group we want to look at the
structure of the Lie algebra so(1, 3). If study the algebra as given in (2.1)–(2.3) carefully
we may notice that a small change in basis would allow us to rewrite the algebra in a more
symmetric fashion. We define a new basis of six generators from a linear combination (not to
be confused with the earlier ladder operators):

J±,i =
1

2
(Ji ± iKi).

This gives the algebra

[J+,i, J−,j ] = 0,

[J+,i, J+,j ] = iεijkJ+,k,

[J−,i, J−,j ] = iεijkJ−,k.

What has happened is that we have separated the algebra into two instances of the su(2)
algebra that do not interact (the generators commute). We write this as a direct sum of the
(vector spaces of the) algebras, so(1, 3)C ∼= su(2)C ⊕ su(2)C. However, what we have done is
to do a linear transformation with complex coefficients, thus the algebra is now a complex
Lie algebra instead of a real one (this is called the complexification of the algebra).

8So this is definitely a finite-dimensional representation, but is it not also unitary? (Meaning conserves the
length of vectors.) It does conserve Lorentz invariants, yes, however, those are not defined as the length of
vectors.
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We can can find further relations by using the isomorphism su(2)C ∼= sl(2), where sl(2)
is the Lie algebra of the special linear group SL(2,C). This can be demonstrated by looking
at their commutation relations. Then we write so(1, 3)C ∼= sl(2) ⊕ sl(2) ∼= sl(2)C where we
complexify the real Lie algebra sl(2), using the real and imaginary parts to represent the two
sl(2) algebras in the direct sum.

The result is an isomorphism between the complexifications of two real Lie algebras.
However, if we restrict these two algebras to real Lie algebras we have just demonstrated the
isomorphism so(1, 3) ∼= sl(2). Thus the Lie groups SO(1, 3) and SL(2,C) have the same Lie
algebra, even though the dimension of the matrices are very different. It turns out that the
map SL(2,C) → SO(1, 3) is a double covering, just as SU(2) was a double cover of SO(3).
We will find an explicit expression for this map later in Sec. 2.5.

We will not immediately use this information to study the representations of the Lorentz
group, but delay this to the next sections where we extend the symmetry of the Lorentz group
to the Poincaré group.

2.3 The Poincaré group

We can now extend O(1, 3) by adding translation by a constant four-vector aµ to the trans-
formation of the Lorentz group: xµ → x′µ = Λµ

νx
ν + aµ. This transformation leaves lengths

(x − y)2 invariant in M4, and invariance under this group add symmetry of time and space
translation to the symmetries of the Lorentz group.

Definition: The Poincaré group P is the group of all transformations of the form

xµ → x′µ = Λµ
νx

ν + aµ.

We can also construct the restricted Poincaré group by restricting the matrices
Λ in the same way as in SO+(1, 3).

Writing a group member in terms of its parameters (Λ, a), we can see from the explicit
form of the transformation that the composition of two elements in this group is:

(Λ1, a1) ◦ (Λ2, a2) = (Λ1Λ2,Λ1a2 + a1).

This tells us that the Poincaré group is not a direct product of the Lorentz group and the
translation group, but rather a semi-direct product of O(1, 3) and the (indefinite) translation
group T (1, 3), O(1, 3) n T (1, 3). The translation group is a normal subgroup, and while the
Lorentz group is a subgroup, it is not normal. The restricted Poincaré group is written in the
same way as the restricted Lorentz group, SO+(1, 3)n T (1, 3).

The translation part of the Poincaré group adds four parameters to the six parameters
of the rotations and boosts. This means that there are four more generators compared to
the Lorentz group. Given our earlier discussion of the translation group in Sec. 1.7.2 we
can convince ourselves that we can use the momentum operators Pµ = −i∂µ as a differential
representation. These generators have a trivial commutation relationship:

[Pµ, Pν ] = 0. (2.8)
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Using the differential representation of Mµν one can also show the following commutators
with the generators of the Lorentz group:

[Mµν , Pρ] = −i(gµρPν − gνρPµ). (2.9)

Equations (2.5), (2.8) and (2.9) together form the Poincaré algebra, a Lie algebra for
the Poincaré group. This allows us to write a general member g of the restricted Poincaré
group by using the exponential map

g = exp

(
i

2
ωρσMρσ + iaµPµ

)
, (2.10)

where aµ are the additional parameters of the translation.
The Poincaré group, like the Lorentz group, is not compact, and thus does not have any

non-trivial finite-dimensional unitary representations, and we must instead search for infinite-
dimensional ones. The original classification of unitary representations of the Poincaré group
is due to Wigner [4].

2.4 Irreducible representations of the Poincaré group
We would now like to ask the following fundamental question: what sort of physical objects
– in particles physics what particles or maybe what quantum fields – can exist if we require
that they are representations of the Poincaré group, and what properties do they as a result
have?9 We have already learnt that this is an infinite-dimensional representation because of
the non-compact nature of the Poincaré algebra.

To answer that question we will classify the irreducible representations of the Poincaré
group. This seems like a dramatically difficult task, however, we will follow the arguments used
for SU(2) in Sec. 2.1 to find and classify the representations by the eigenvalues of the Casimir
invariants (via Schur’s lemma), and the states in each representation by the eigenvalues of
the set of commuting generators.

For the Poincaré algebra P 2 = PµP
µ is a Casimir operator because the following holds:

[Pµ, P
2] = 0, (2.11)

[Mµν , P
2] = 0. (2.12)

Let λ be the eigenvalue of P 2 for a given irreducible representation |λ〉, what can we say
about λ? Since all four-momentum operators Pµ commute, and commute with P 2, they have
simultaneous eigenvalues and eigenstates. We know from quantum mechanics that these are
Hermitian operators with real eigenvalues equal to the momenta pµ. Thus the eigenvalue of
P 2 is

P 2|λ〉 = (P 2
0 − P 2

1 − P 2
2 − P 3

3 )|λ〉 = (E2 − p2x − p2y − p2z)|λ〉 ≡ m2|λ〉.

So, in fact the eigenvalue of P 2 is the number m2 ∈ R that we have called mass, and we use
this to label our representations,

P 2|m〉 = m2|m〉,

of which there is a continuum. Note that nothing restricts m2 to be larger or equal to zero, a
negative m2 is acceptable since a four vector can be time-like, light-like or space-like. In fact,

9Exist here in the sense of being described by a vector space that the group representations act on.
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we can happily insert m2 < 0 into Special Relativity, but such objects would correspond to
objects moving faster than light, so-called tachyons, which do not seem to exist in nature.
Since there are no restrictions on the eigenvalues of the momentum operator pµ for a given
m2 we have infinite-dimensional irreducible representations of the translation subgroup of the
Poincaré group, where the states are labeled by the momentum value |m, pµ〉.

What we have done up to now does not reconstruct the full representation of the group
(algebra). To proceed we look for further Casimir invariants. Any Casimir invariant needs to
commute with the Lorentz group generators that are part of the algebra, thus it needs to be a
Lorentz invariant (the four-indices are all contracted). Since we only have the operators Mµν

and Pµ in the algebra, and we have already used up P 2, we need to consider MµνM
µν and

εµνρσM
µνMρσ. However, these both fail to commute with Pµ due to (2.9). The remaining

possibilities are combinations ofMµν and Pµ, and we need a combination that commutes with
Pµ.

Definition: We define the Pauli-Ljubanski polarisation vector by:

Wµ ≡ 1

2
εµνρσP

νMρσ. (2.13)

where εµνρσ is the totally antisymmetric Levi-Civita tensor with ε0123 = 1.

We can show that this vector is the one combination that is translation invariant, i.e. that it
commutes with the translation operator,

[Pµ,Wν ] = 0. (2.14)

This gives us two possibilities for Casimir invariants with the two Lorentz invariantsWµP
µ and

WµW
µ, unfortunately from the definition of Wµ it is easy to see that WµP

µ = 0. However,
the remaining option W 2 = WµW

µ is a Casimir operator of the Poincaré algebra. While
we argued from the Lorentz and translation invariance of the operators we can also show
explicitly that

[Pµ,W
2] = 0, (2.15)

[Mµν ,W
2] = 0. (2.16)

The second of these relationships is not trivial to demonstrate. See [3] for a complete proof.
This exhausts the list of possibilities, and the Poincaré algebra is a rank-2 algebra. The Wµ

do not in general commute among themselves, in fact

[Wµ,Wν ] = εµνρσP
ρW σ. (2.17)

Thus, to find the full representation we can now look for states that are simultaneous eigen-
states of W 2, P 2, the Pµ, as well as one component of Wµ.

We do this by starting from the representations of the translation subgroup with fixed
eigenvalues pµ. What we are using here is know as the method of little groups in physics.
The idea is to consider the subgroup of the Poincare group that indeed leaves pµ invariant:
this is what is called the little group.10 This will allow us to find unitary irreducible

10In mathematics, it is often called the stabiliser subgroup.
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representations of the whole group from the unitary irreducible representations of the little
group. Because the behaviour of the little group is different depending on the value of pµ, we
need to separate the problem into several discrete cases :

i) m = 0 and pµ = (0,0)

ii) m = 0 and pµ 6= (0,0)

iii) m2 > 0

iv) m2 < 0

Case i) Here, P 2 = 0 and W 2 = 0,11 and there is only one representation |0, 0〉. The little
group that leaves pµ = (0,0) invariant is the whole Lorentz group since boosts and rotations
on a zero momentum point-like object just gives the same thing back. However, since the
Lorentz group is not compact, we know that the only finite-dimensional unitary representation
of the little group is the trivial representation. Thus this representation corresponds to the
trivial representation for the Poincare group as well. We consider a state that transforms this
way as the vacuum.

Case iii) If we go to the rest frame of the particle, the states have momentum eigenvalues
pµ = (m,0).12 In this case, the little group turns out to be the group of rotations in three-
dimensional space, SO(3). To see this consider the Pauli-Ljubanski vector acting on such a
state

Wi|m, pµ〉 =
1

2
εi0jkmM

jk|m, pµ〉 = −mJi|m, pµ〉, (2.18)

where Ji = 1
2εijkM

jk is the spin operator that forms the so(3) ∼= su(2) algebra. Since
WP = 0 we also have W0 = 0 in this reference frame.13 This gives W 2 = −W2 = −m2J2.
So in this case we want to find the eigenstates of W 2 = −m2J2 and one component of Wµ

which we choose to be W3 = −mJ3 with eigenvalue named j3.
We already found the representations of su(2) in Sec. 2.1, so for this case we immediately

know that in total the irreducible representations can be labeled by two numbers, m3 ∈ R

and j = 0, 12 , 1,
3
2 , . . ., as |m, j〉, and while each representation is infinite dimensional because

it has continuous number for the momentum eigenvalues pµ, for each momentum eigenvalue
it has has 2j+1 spin states with J3 eigenvalue j3 = −j,−j+1, . . . , j−1, j, which we write as
|m, j, pµ, j3〉. Since the total spin operator acts on a state with spin j as J2|j〉 = j(j + 1)|j〉,
we also have that

W 2|m, j〉 = −m2j(j + 1)|m, j〉.

We have now arrived at the conclusion that massive particles transforming under the
Poincaré group, meaning the objects that obey Special Relativity, can be classified by two
numbers: mass m2 and spin j. The appearance of spin in physics is thus intimately connected
to the symmetries of Special Relativity.

11In the sense that their eigenvalues are always zero.
12This does not loose generality since the physics of the representation should be independent of frame.
13In the sense that W0 has eigenvalue 0 for all states.
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Case ii) We now want to look at massless particles, but with non-zero pµ. Here we can
not go to a rest frame and instead choose a frame such that pµ = (p, 0, 0, p). We again have
P 2 = 0 in the usual sense, and one can prove that Wµ and Pµ are proportional, Wµ = HPµ.
Thus W 2 = 0 and the proportionality factor can be found from

W0|0, pµ〉 =
1

2
ε0ijkP

iM jk|0, pµ〉 = P iJi|0, pµ〉 = P · J|0, pµ〉,

P0|0, pµ〉 = p|0, pµ〉,

as
H =

P · J
p

,

which is the definition of the helicity of a massless particle.
The little group that leaves pµ unchanged here is not so obvious to see. But it turns out

to be given by the so-called special Euclidean group SE(2), which consists of rotations and
translations in two dimensional Euclidean space. The eigenvalues h of H, H|0, pµ〉 = h|0, pµ〉
can then be shown to be h = ±j3, where j3 is another half-integer, j3 = 0, 12 , 1, . . ..

So, in summary, there is one representation |0, 0〉, which is infinite-dimensional since the
values of pµ form a continuum, and for each of these momentum eigenstates there are two
helicity eigenstates which we write in similarity with the massive case as |0, 0, pµ,±j3〉.

Case vi) Because of time constraints and since tachyons do not seem to appear in nature
we will not treat this case further.

Let us finally try to ask the question, what do these (irreducible) infinite-dimensional
unitary representations actually look like? If we start with spin-0 representations, j = 0, we
can write the corresponding infinite-dimensional representation of massive states without any
vector structure as |m, 0〉 ∼ e±ipx, where pµ is the four-momentum of the particle, since then

P 2|m, 0〉 = −∂µ∂µ|m, 0〉 = p2|m, 0〉 = m2|m, 0〉.

This exponential part of states can then always be used to take care of the eigenvalues of the
P 2-Casimir, and is often just implicitly implied in the states/fields.

We can also immediately write down the j = 1 vector representation of the Poincaré
group for massive particles, |m, 1〉 ∼ εµe

ipx. We simply use a four-vector εµ that transforms
under the fundamental (four-dimensional) representation of the Lorentz group SO+(1, 3). In
order to fulfil the eigenvalue equation of the W 2-Casimir, and describe the three spin states
j3 = −1, 0, 1, this vector (called the polarisation vector) needs to fulfil certain requirements
which we do not detail here (see a course on quantum field theory).

However, in order to find a spin-12 representation for fermions we need to take some
more care. In fact, we will find representations both in four and two dimensions. For those
familiar with quantum field theory, these will as expected be the Dirac and Weyl spinor
representations.

2.5 Weyl spinors
As we discussed at the end of Sec. 2.2 there exists a two-to-one homomorphism between the
SL(2,C) and the Lorentz group SO+(1, 3). This homomorphism, with Λµ

ν ∈ SO+(1, 3) and
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M ∈ SL(2,C), can be explicitly given by:14

Λµ
ν(M) =

1

2
Tr[σ̄µMσνM

†], (2.19)

M(Λµ
ν) = ± 1√

det(Λµ
νσµσ̄ν)

Λµ
νσµσ̄

ν , (2.20)

where σ̄µ = (1,−~σ) and σµ = (1, ~σ). The generators of SO+(1, 3) can be shown to transform
to (be proportional to) the Pauli matrices in SL(2,C):

Ji =
1

2
σi, Ki =

i

2
σi.

This two-to-one correspondence means that SO+(1, 3) ∼= SL(2,C)/Z2 and the groups
have the same algebra (as discussed in Sec. 2.2 ). Thus we can look at the representations
of SL(2,C) instead of the Lorentz group, when we describe spin-12 particles,15 and working
in SL(2,C) if often much easier, but what are those representations? It turns out that there
are two inequivalent fundamental representations ρ of SL(2,C) in terms of 2 × 2 matrices
M ∈ SL(2,C):

i) The self-representation ρ(M) =M acting on a member ψ of a representation vector space
V :

ψ′
A =MA

BψB, A,B = 1, 2.

ii) The complex conjugate self-representation ρ(M) =M∗ working on a vector ψ̄ in a space
V̇ :

ψ̄′
Ȧ
= (M∗)Ȧ

Ḃψ̄Ḃ, Ȧ, Ḃ = 1, 2.

The vectors ψ and ψ̄ in these representation spaces are called, respectively, left- and right-
handed Weyl spinors, and the induced representation of the Lorentz group is called the
spinor representation. In addition to these two representations there are two dual repre-
sentations, see Sec. 1.7.4, with ρ(M) =M−1T acting on vectors ψA in V ∗, and ρ(M) =M∗−1T

on vectors ψ̄Ȧ in V̇ ∗, that are equivalent to i) and ii), respectively.
The indices here follow the same summation rules as four-vectors. Indices can be lowered

and raised with:

εAB = εȦḂ =

(
0 −1
1 0

)
, (2.21)

εAB = εȦḂ =

(
0 1
−1 0

)
, (2.22)

which work as maps between the dual spaces. The dots on the indices for the complex
conjugate representation are there to help us remember which representation we are using
and does not carry any additional importance, other than being a different index.

14The choice of sign in Eq. (2.20) is the reason that this is a homomorphism, instead of an isomorphism.
Each element in SO+(1, 3) can be assigned to two in SL(2,C).

15We can of course also use the SL(2,C) representations to construct representations for higher spin.
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Since (2.20) gives M in terms of the Pauli matrices, their index structure must be σ̄µȦA

and σµ
AȦ

. For a consistent index notation, the relationship between the vectors ψ and ψ̄ can
be expressed with:

ψA = ψ̄∗
Ȧ
σ̄0ȦA, ψA = σ0

AȦ
ψ̄Ȧ∗, ψ̄Ȧ = σ̄0ȦAψ∗

A, and ψ̄Ȧ = ψA∗σ0
AȦ
.

This may be seen as a bit of an overkill in indices as σ̄0ȦA
= δȦA, and we will in the following

often omit the matrix and simply write (ψA)
∗ = ψ̄Ȧ. Note that from the above the following

relationships hold for the hermitian conjugate:

(ψA)
† = ψ̄Ȧ (2.23)

(ψ̄Ȧ)
† = ψA. (2.24)

We further define contractions of Weyl spinors that are invariant under SL(2,C) transfor-
mations – just as contractions of four-vectors are invariant under Lorentz transformations –
as follows:

Definition: The contraction of two Weyl spinors ψ and χ is given by ψχ ≡ ψAχA

and ψ̄χ̄ ≡ ψ̄Ȧχ̄
Ȧ.

With this in hand we see that

ψ2 ≡ ψψ = ψAψA = εABψBψA = ε12ψ2ψ1 + ε21ψ1ψ2 = ψ2ψ1 − ψ1ψ2.

This quantity is zero if the Weyl spinors commute. In order to avoid this we make the following
assumption which is consistent with how we treat fermions as anti-commuting operators:

Postulate: All Weyl spinors anticommute:a {ψA, ψB} = {ψ̄Ȧ, ψ̄Ḃ} = {ψA, ψ̄Ḃ} =
{ψ̄Ȧ, ψB} = 0.

aThis means that Weyl spinors are so-called Grassmann numbers.

This means that the contraction evaluates as

ψ2 ≡ ψψ = ψAψA = −2ψ1ψ2.



2.5. WEYL SPINORS 45

2.5.1 Useful relationships for Weyl spinors

For Weyl spinors ψ, η, and φ we can prove the following relationships16

ηψ = ψη, (2.25)
η̄ψ̄ = ψ̄η̄, (2.26)

(ηψ)† = ψ̄η̄, (2.27)

(ηψ)(ηφ) = −1

2
(ηη)(ψφ), (2.28)

ησµψ̄ = −ψ̄σ̄µη, (2.29)

(σµη̄)A(ησ
ν η̄) =

1

2
gµνηA(η̄η̄), (2.30)

(ησµη̄)(ησν η̄) =
1

2
gµν(ηη)(η̄η̄), (2.31)

(ησµ∂µψ̄)(ηψ) = −1

2
(ψσµ∂µψ̄)(ηη), (2.32)

(∂µψσ
µη̄)(η̄ψ̄) = −1

2
(∂µψσ

µψ̄)(η̄η̄), (2.33)

ησµνψ = −ψσµνη. (2.34)

Here σµν = i
4(σ

µσ̄ν − σν σ̄µ).

2.5.2 Dirac spinors

The Weyl spinors can in turn be used in a four-dimensional representation of the Poincaré
group for spin-12 fermions, stacking twoWeyl different spinors, one from the self-representation
φA, and one from the complex conjugate, χ̄Ȧ, into a four-component Dirac spinor ψa,

ψa =

(
φA

χ̄Ȧ

)
,

making a new vector space that is a direct sum of the two vector spacesW = V ⊕V̇ ∗. Here, we
have in general (φA)∗ 6= χ̄Ȧ. In order to describe a Dirac fermion, which has both particle and
antiparticle states, using this Dirac spinor we need two distinct Weyl spinors with different
handedness. For Majorana fermions that are their own antiparticles we can instead use the
simpler:

ψa =

(
ψA

ψ̄Ȧ

)
.

The representation of SL(2,C) on W is

ρ(M) =

[
M 0
0 M∗−1T

]
.

When we deal with four-component spinors we have a use for γ-matrices. These are
defined as objects that fulfil a type of Clifford algebra given by17

{γµ, γν} = 2gµν . (2.35)
16For clarity we have inserted parenthesis to show the different contractions.
17Be aware that the expression on the right hand side should be read as consisting of a rank-2 tensor with

each element being a 4× 4 identity matrix.
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There exists different representations of this algebra, just as for the Lie algebras. In these
notes we will use what is called the Weyl-representation where the γ-matrices are 4 × 4
matrices given in terms of the Pauli matrices as

γµ =

(
0 σµ

σ̄µ 0

)
. (2.36)

The γ-matrices can also be used to form a ‘fifth’ γ-matrix

γ5 ≡ iγ0γ1γ2γ3 =

(
−σ0 0
0 σ0

)
.

This can be used to project out the Weyl spinors in the Dirac spinors through the projection
operators PL = 1

2(1 − γ5) and PR = 1
2(1 + γ5), which projects out the left-handed and

right-handed Weyl spinor, respectively,

PLψ =

(
I 0
0 0

)
ψ =

(
ψA

0

)
, PRψ =

(
0 0
0 I

)
ψ =

(
0

ψ̄Ȧ

)
.

Note the projection properties PL + PR = I, P 2
L = PL, P 2

R = PR, and PLPR = 0.
The equation of motion for spin-12 particles with massm in relativistic quantum mechanics

is the Dirac equation
(i/∂ −m)ψ = 0, (2.37)

where the ‘slash’ notation signifies contraction with a γ-matrix, /∂ ≡ γµ∂µ, and where ψ is a
four component spinor constructed as above. Using Weyl spinors and the Weyl-representation
of the γ-matrices this can be written as the coupled differential equations

iσµ∂µχ̄−mφ = 0,

iσ̄µ∂µφ−mψ̄ = 0.

In the massless limit or the extreme relativistic limit, m → 0, these equations decouple into
one separate equation per Weyl-spinor and become the Weyl-equations

(i∂t − σ ·P)χ̄ = 0,

(i∂t + σ ·P)φ = 0.

These equations have plane wave solutions φ ∼ e−ipx and χ̄ ∼ e−ipx, which are the helicity
eigenstates for the massless particles discussed in Sec. 2.4, case ii), with eigenvalues ±1

2 . To
see this, notice that i∂tφ = Eφ = |p|φ, since m = 0, giving

|p|φ+ σ ·Pφ = 0 or 1

2

σ ·P
|p|

φ = −1

2
φ,

and similarly for χ̄
1

2

σ ·P
|p|

χ̄ =
1

2
χ̄.
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2.6 The no-go theorem and graded Lie superalgebras

The Poincaré group contains the complete set of transformations for the symmetries of special
relativity (invariance under rotations, translations and boosts), and we have seen that this
implies certain properties for the particles, or rather fields, that want to live in representations
of the Poincaré group. At the same time we know that the quantum fields have (internal)
gauge symmetries. It would then be tempting so ask if these are somehow related and can be
described in a larger symmetry.

Unfortunately, the answer to that question is ‘no’, at least as long as we keep to describing
our symmetries using Lie algebras. In 1967 Coleman and Mandula [5] showed that under
reasonable assumptions any extension of the restricted Pointcaré group P to include gauge
symmetries is isomorphic to Ggauge × P , where Ggauge is whatever gauge group the Standard
Model has. A direct product like this means that the generators of the two groups all commute,
meaning that the generators Bi of the standard model gauge groups all have

[Pµ, Bi] = [Mµν , Bi] = 0.

The result is that there can be no real interaction between the external and internal symme-
tries.

Not to be defeated by a simple mathematical proof, in 1975 Haag, Łopuszański and
Sohnius (HLS) [6] showed that there is a way around Coleman and Mandula’s no-go theorem,
if one introduces the concept of Z2 graded Lie superalgebras.18

Definition: A graded Lie superalgebra is a vector space l that is a direct sum
of two vector spaces l0 and l1, l = l0 ⊕ l1, with a binary operation ◦ : l× l → l such
that for all xi ∈ li

i) xi ◦ xj ∈ li+j mod 2 (grading)a

ii) xi ◦ xj = −(−1)ijxj ◦ xi (supersymmetrisation)

iii) xi ◦ (xj ◦ xk)(−1)ik + xj ◦ (xk ◦ xi)(−1)ji + xk ◦ (xi ◦ xj)(−1)kj = 0
(generalised Jacobi identity)

aFor x0 ∈ l0 and x1 ∈ l1, this means that x0 ◦ x0 ∈ l0, x1 ◦ x1 ∈ l0 and x0 ◦ x1 ∈ l1.

The second requirement generalises the definition of a Lie algebra in Sec. 1.7 to allow for
anti-commutators, x ◦ y = {x, y} ≡ xy + yx, as the binary operation for elements in l1.

We can now start, following HLS, with the Poincaré Lie algebra (l0 = p) and add a
new vector space l1 spanned by some generators Qa. It can be shown that the superalgebra
requirements are fulfilled if there are four generators, a = 1, 2, 3, 4, that together form a

18The definition of graded Lie algebras can be extended to Zn by a direct sum over n vector spaces li,
l = ⊕n−1

i=0 li, such that xi ◦ xj ∈ li+j mod n, with the same requirements for supersymmetrization and Jacobi
identity as for the Z2 graded algebra.
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four-component Majorana spinor,19 also called the supercharges. The algebra is then

[Qa, Pµ] = 0, (2.38)
[Qa,Mµν ] = (σµνQ)a, (2.39)
{Qa, Q̄b} = 2/P ab, (2.40)

where σµν is given in terms of the γ-matrices, σµν ≡ i
4 [γµ, γν ], and as usual /P ≡ Pµγ

µ and
Q̄a ≡ (Q†γ0)a.20 Together with the commutators in (2.5), (2.8) and (2.9) this is called the
super-Poincaré algebra sp.

Because of (2.40) this new algebra is a non-trivial extension of the Poincaré algebra that
avoids the no-go theorem. This extension can be proven, under some reasonable assumptions,
to be the largest possible extension of the symmetries of Special Relativity. However, in
the Qa we have introduced new operators that (disappointingly) do not correspond to the
generators of the gauge groups, which should in any case be related by commutators, not anti-
commutators. The gauge group generators can appear in the algebra if we instead extend the
algebra with N > 1 sets of new spinors Qα

a , where α = 1, . . . , N . This gives rise to so-called
N > 1 supersymmetries, while a single set of Qa is called N = 1 supersymmetry. Given
a gauge group algebra [Bi, Bj ] = iC k

ij Bk, we can then extended the superalgebra by the
non-trivial commutator [Qα

a , Bl] = iSαβ
l Qβ

a , where Sl are matrix representations of the gauge
symmetry group, which does not work for N = 1.

However, the N > 1 supersymmetries seem impossible to realise in nature due to an
extensive number of extra particles that do not conform to the particles and gauge symmetries
of the Standard Model. Note that N > 8 would include elementary particles with spin greater
than 2, which seems to be in contradiction with quantum field theory. The largest consistent
supersymmetry, N = 8, has a minimum of one spin-2 state (identified with the graviton),
8 spin-32 states, 28 vector bosons (spin-1), 56 spin-12 fermions and 70 scalar fields. One
fundamental problem with this, besides the plethora of particles, is that the vector bosons
here form an O(8) group which is too small to contain the Standard Model SU(3)×SU(2)×
U(1) symmetry. However, N = 8, supersymmetry has some very interesting theoretical
properties. It is currently unknown whether the theory is finite or not (has infinities that
need renormalisation). This has been checked up to four loops, surprisingly without any
divergences appearing [7].

We can also write the super-Poincaré algebra in terms of the Weyl spinors introduced in
Sec. 2.5. With

Qa =

(
QA

Q̄Ȧ

)
, (2.41)

for the Majorana spinor charges, we have instead

[QA, Pµ] = [Q̄Ȧ, Pµ] = 0, (2.42)
[QA,M

µν ] = σµνA
BQB, (2.43)

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0, (2.44)
{QA, Q̄Ḃ} = 2σµ

AḂ
Pµ, (2.45)

where now the σµν are given in terms of the Pauli matrices σµν = i
4(σ

µσ̄ν − σν σ̄µ).
19Thus the four generators are not independent.
20Alternatively, (2.40) can be written as {Qa, Qb} = −2(γµC)abPµ.
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2.7 Conformal symmetry∗

Despite the Coleman and Mandula no-go theorem, there exists a larger potential space-
time symmetry, namely conformal symmetry. This extends the boosts, rotations and
translations of the Poincaré symmetry with the special conformal transformations and
dilation, with the generators Kµ and D, respectively.

We saw the one-dimensional differential representation of the dilation operator that changes
scale in Sec. 1.5. Generalised to four space-time dimensions this is D = −xµ∂µ. The compo-
sition function for the special conformal transformation is

x′µ = fµ(xµ, aµ) =
xµ − aµx

2

1− 2ax+ a2x2
, (2.46)

which gives the representation Kµ = i(x2∂µ − 2xµxν∂
ν).

The extra products in the algebra are then

[Kµ,Kν ] = 0, (2.47)
[Kµ, D] = iKµ, (2.48)
[Kµ, Pν ] = 2i(gµνD −Mµν), (2.49)

[Kµ,Mνρ] = i(gµνKρ − gµρKν), (2.50)
[D,Pµ] = iPµ, (2.51)

[D,Mµν ] = 0. (2.52)

Unfortunately, the scale invariance in conformal symmetry means that all the particles
in the theory must be massless.21 The usual reason given is that a theory with a particular
particle mass scale has a corresponding length scale, and since the dilation symmetry would
require the action to be invariant under length scale transformation, this breaks the corre-
spondence.22 As a result, conformal symmetry can not be a symmetry of the Standard Model,
however, conformal symmetries are an interesting area of study, because they appear in other
important theories such as Maxwell’s equations for electromagnetism, general relativity in
two dimensions and the so-called N = 4 supersymmetric Yang-Mills theory.

2.8 Irreducible representations of the super-Poincaré group
We now want to find the (irreducible) representations, irreps, of the super-Poincaré algebra
and compare it to the known representations of the Poincaré algebra so see what sort of
particles/states this leads to.

2.8.1 The Casimir operators of the superalgebra

It is easy to see that P 2 is also a Casimir operator of the superalgebra. From Eq. (2.38) Pµ

commutes with the Qs, so in turn P 2 must commute.23 The algebra, just as the Poincaré
21It is technically possible to have a quantum field theory that is scale invariant, but not conformally

invariant, but examples are rare.
22However, be aware that this is not the complete story. It possible to get away with both theories with a

continuous mass spectrum and theories with infinite mass, that have conformal symmetry, however, neither of
these fit with the observed microcosmos.

23Although the fact that Eq. (2.38) holds crucially depends on Qa being four-dimensional. Pµ and Qa would
not commute if there had been five Qs.
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algebra, then also has irreducible representations labeled by the eigenvalue m2 ∈ R and an
infinite number of states |m, pµ〉 that are eigenstates of the momentum operator Pµ. However,
W 2 is not a Casimir because of the following result:24

[W 2, Qa] =Wµ(/Pγ
µγ5Q)a +

3

4
P 2Qa.

We want to find an extension of W that commutes with the Qs while retaining the com-
mutators we already have with Pµ and Mµν . The construction

Cµν ≡ BµPν −BνPµ,

where
Bµ ≡Wµ +

1

4
Xµ, Xµ ≡ 1

2
Q̄γµγ

5Q,

can be shown to have the required relation:

[Cµν , Qa] = 0.

Note that by (2.38) we also have
[Xµ, Pν ] = 0. (2.53)

We can show that C2 then indeed commutes with all the generators in the algebra:

[C2, Qa] = 0, (trivial by the above)
[C2, Pµ] = 0, (proof by excessive algebra)

[C2,Mµν ] = 0. (because C2 is a Lorentz scalar)

Thus C2 is a Casimir operator for the superalgebra.
To find the possible eigenvalues of C2, let us again assume that we are in the rest frame

(RF) of the particle.25 For C2 we have to do a bit of calculation:

C2 = 2BµPνB
µP ν − 2BµPνB

νPµ

RF
= 2m2BµB

µ − 2m2B2
0

= 2m2BkB
k,

where we used that [Bµ, Pν ] = 0, which we get from (2.14) and (2.53). From the definition of
Bµ:

Bk =Wk +
1

4
Xk = mSk +

1

8
Q̄γkγ

5Q ≡ mJk. (2.54)

The operator we just defined, Jk ≡ 1
mBk, is an extension of the ordinary spin operator

which we have here renamed to Sk due to a shortage of letters. This gives us, still in the rest
frame,

C2 = 2m4JkJ
k = −2m4J2,

24Which, by the way, is really hard work!
25We can again carry out a similar argument in a different frame for massless particles as we saw for the

Poincaré algebra.
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so J2 also commutes with all the elements in the algebra since C2 is a Casimir. We can also
show that the Jk commute with the Qs26

[Jk, Qa] = 0, (2.55)

and just like the spin operator Jk can be shown to fulfil the su(2) algebra:

[Ji, Jj ] = iεijkJ
k.

We then know that the eigenvalue equation for the second Casimir is:

C2|m, j〉 = −m4j(j + 1)|m, j〉,

for j = 0, 12 , 1,
3
2 , . . .. In addition, for each irrep with a value of j there are 2j + 1 distinct

states with labels j3 = −j,−j + 1, . . . , j − 1, j, so that we may further write |m, j, pµ, j3〉,
labelling also the states of the irrep. The above follows from the identical argument we made
for the Poincaré algebra, which in turn relies just on the properties of the su(2) algebra.

2.8.2 The states of the irreps of the super-Poincaré group

What we have learned above is that the irreducible representations of the superalgebra can
be labeled by (m, j), and any given set of m and j will give us 2j + 1 eigenstates of J3 with
different eigenvalues j3, as well as an infinite number of momentum eigenstates.27 However,
unlike for spin, because we have introduced another generator Q this does not exhaust the
number of states for the representation. We can have simultaneous eigenstates of P 2, C2, Pµ,
J2, and J3, but also of the original spin operator S3 which we can see commutes with all the
other operators in this list.28

To find all the states it is useful to write the generators Q in terms of two-component
Weyl spinors instead of four-component Dirac spinors, making explicit use of their Majorana
nature, as we did in Section 2.5. We note that from Eq. (2.55) above

[Jk, QA] = [Jk, Q̄Ḃ] = 0.

We begin by claiming that for any eigenstate of J3 with eigenvalue j3 there must then
exist a state |Ω〉 – possibly the same state – that has the same eigenvalue j3 and for which

QA|Ω〉 = 0. (2.56)

This state is called the Clifford vacuum.29

To show this, start with |β〉, an eigenstate of J3 with eigenvalue j3. Then the construction

|Ω〉 = Q1Q2|β〉,

has these properties. Using (2.44) we first we show that (2.56) holds:

Q1Q1Q2|β〉 = −Q1Q1Q2|β〉 = 0,

26Again the proof is algebraically extensive, and the interested reader is suggested to pursue [3].
27Make sure you remember that j here is not the spin of the particles, but a generalisation of spin.
28We know this for Pµ and Mµν already, and commutation with Jk follows from (2.55).
29It is called the Clifford vacuum because the operators satisfy a Clifford algebra {QA, Q̄Ḃ} = 2mσ0

AḂ
. Do

not confuse this with a vacuum state, it is only a name.
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and
Q2Q1Q2|β〉 = −Q1Q2Q2|β〉 = Q1Q2Q2|β〉 = 0.

For this state we also have:

J3|Ω〉 = J3Q1Q2|β〉 = Q1Q2J3|β〉 = j3|Ω〉,

in other words, |Ω〉 has the same value for j3 as the |β〉 it was constructed from and the
Clifford vacuum exists. This proof demonstrates a general feature of the supercharges, if
one supercharge with a particular index repeats in a term, then the term is zero by the
anticommutation property of the supercharges.

We can now use the explicit expression for Jk in terms of the two-component supercharges

Jk = Sk −
1

4m
Q̄Ḃσ̄

ḂA
k QA, (2.57)

in order to find the spin for this state. First we can see that

S3|Ω〉 = J3|Ω〉 = j3|Ω〉,

meaning that s3 = j3 is the eigenvalue of S3 for the Clifford vacuum |Ω〉. Further, since

S2|Ω〉 = J2|Ω〉 = j(j + 1)|Ω〉,

the eigenvalue of S2 is s(s+ 1) = j(j + 1) for the Clifford vacuum.
We can construct three more states from the Clifford vacuum using the Qs:30

Q̄1̇|Ω〉, Q̄2̇|Ω〉, Q̄1̇Q̄2̇|Ω〉.

This means that there are four possible states that can be constructed out of any state with
the labels m, j, j3. Taking a look at:

J3Q̄
Ȧ|Ω〉 = Q̄ȦJ3|Ω〉 = j3Q̄

Ȧ|Ω〉,

this means that all these states have the same j3 (and j) quantum numbers.31 We can now
find their eigenvalues for S3. From the superalgebra (2.43) we have:

[M ij , Q̄Ȧ] = −(σij)ȦḂQ̄
Ḃ, or [Sk, Q̄

Ȧ] = −1

2
εkij(σ

ij)ȦḂQ̄
Ḃ,

so that:

S3Q̄
Ȧ|Ω〉 = Q̄ȦS3|Ω〉+

i

8
(ε3ij [σ

i, σj ])ȦḂQ̄
Ḃ|Ω〉

= Q̄ȦS3|Ω〉 −
1

2
(σ̄3σ

0)ȦḂQ̄
Ḃ|Ω〉

=

(
j3 ∓

1

2

)
Q̄Ȧ|Ω〉,

30All other possible combinations of Qs and |Ω〉 give either one of the other four states, or zero.
31The same can easily be shown for Q̄1̇Q̄2̇|Ω〉.
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where − is for Ȧ = 1̇ and + is for Ȧ = 2̇. We can similarly show that

S3Q̄
1̇Q̄2̇|Ω〉 = j3Q̄

1̇Q̄2̇|Ω〉.

This means that for en irrep with labels m and j, there are 2j +1 different values of j3, each
giving two states with s3 = j3, and two with s3 = j3 ± 1

2 , meaning two bosonic and two
fermionic states with the same mass m, and in total 4(2j + 1) states per irrep.

We should be careful to note here that we have only found the spin-components s3 of these
states, not their spins s. For the state Q̄1̇Q̄2̇|Ω〉, s is the same as for the Clifford vacuum,
i.e. s = j. This is because in the application of Sk from (2.57) to the state the terms with
supercharges will all be zero since at least one of the Q̄Ȧ will repeat in each term, thus the
eigenvalues of S2 are the same as the eigenvalues of J2. For the other states we may need to
combine states into definite spin states using Clebsch-Gordan coefficients.

The above explains the much repeated statement that any supersymmetry theory has an
equal number of bosons and fermions, which, incidentally, is not true. What is true, is that
there must be an equal number of bosonic and fermionic states in all representations.

Theorem: For any representation of the superalgebra where Pµ is a one-to-one
operator there is an equal number of boson and fermion states.

To show this, divide the representation into two sets of states, one with bosons and one with
fermions. Let {QA, Q̄Ḃ} act on the members of the set of bosons. Q̄Ḃ transforms bosons
to fermions and QA does the reverse mapping. If Pµ is one-to-one, then so is {QA, Q̄Ḃ} =
2σµ

AḂ
Pµ. Thus there must be an equal number in both sets.

2.8.3 Examples of irreducible representations

Finally, let us briefly look at two examples of irreducible representations for a fixed positive
value of m.

j = 0

For j = 0, we must have j3 = 0 and as a result the Clifford vacuum |Ω〉 has s = 0, s3 = 0,
and is a bosonic state. We can then create two states Q̄Ȧ|Ω〉 with s3 = ±1

2 and s = 1
2 , and

one state Q̄1̇Q̄2̇|Ω〉 with s3 = 0 and s = 0. Note that we should really check the total spin s
of each of the fermion states, which would involve some algebra. In total there are two scalar
states and two spin-12 fermion states. We will later represent this set of states by the so-called
scalar superfield.

We should use be a little careful about using the term particle about these states since
what we have found for the fermions are in fact Weyl spinor states. From what we saw in
Sec. 2.5 a Dirac fermion can then only be described by a j = 0 representation together with a
different j = 0 complex conjugate representation, thus consisting of four states. The complex
conjugate representation of the first representation together with the self-representation of
the second then form the anti-particle of the fermion, and provide an additional two scalars.
So the total particle count from the two irreducible representations is a fermion–anti-fermion
pair, and four scalars. Note that all of the resulting particles have the same mass m.
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For a Majorana fermion the situation is simpler, since we only need one self-representation
and its complex conjugate representation.

j = 1
2

For j = 1
2 we have two Clifford vacua |Ω〉 with j3 = ±1

2 , and with s = 1
2 and s3 = ±1

2 , thus
they are fermionic states. For the moment we label them as |Ω; 12〉 and |Ω;−1

2〉. From each
of these we can construct two further fermion states Q̄1̇Q̄2̇|Ω;±1

2〉 where we know s = 1
2 and

s3 = ∓1
2 . Together these four states can form two fermions with s = 1

2 and s3 = ±1
2 .

In addition to this we have the two states Q̄1̇|Ω; 12〉 and Q̄
2̇|Ω;−1

2〉 with s3 = 0, the state
Q̄2̇|Ω; 12〉 with s3 = 1, and the state Q̄1̇|Ω;−1

2〉which has s3 = −1. By linear combinations
of these we can create three states with s = 1, and s3 = 1, 0,−1, and one state with s = 0
and s3 = 0, representing one massive vector particle and one scalar. Carefull consideration
of the transformation properties of these particles will show that the scalar is a pseudo-scalar
(a particle that changes sign under a parity transformation).

In total this representation then has one (massive) spin-1 vector with three spin-states,
two spin-12 fermions and one spin-0 scalar. We will later refer to this set of states as the
vector superfield.

2.9 Exercises

Exercise 2.1
Show the following relationship for the normalisation constants N±

m of the ladder operators
for su(2),

N−
m+1N

+
m +m = N+

m−1N
−
m,

and use this to conclude that N+
j−1N

−
j = j where j is the largest eigenvalue of the J3 operator.

Exercise 2.2
Find the spin-32 representation of su(2).

Exercise 2.3
Find an explicit expression for the boost generators Ki and show the commutation prop-

erties of the Lorentz group generators Ji and Ki. Hint: We advise that you use rapidity to
parametrise the boosts to avoid excessive algebra.

Exercise 2.4
Show that (2.6) are the differential generators of the Lorentz group.

Exercise 2.5
Use Eq. (2.7) to write out an explicit expression for a Lorentz boost in the x-direction

with rapidity η.

Exercise 2.6
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Show that a general boost in the direction of the unit vector n with rapidity η can be
written as

B(η,n) = I + (cosh η − 1)(n ·K)2 − i sinh η(n ·K).

Exercise 2.7
Show the commutation properties of the Poincaré group generators Pµ and Mµν .

Exercise 2.8
Show that [

Pµ, P
2
]

= 0,[
Mµν , P

2
]

= 0.

Exercise 2.9
Show that [Pµ,Wν ] = 0.

Exercise 2.10
Show that [

Pµ,W
2
]

= 0 (2.58)[
Mµν ,W

2
]

= 0. (2.59)

Hint: You can use that32

W 2 = −1

2
MµνM

µνP 2 +MρσMνσPρP
ν ,

Exercise 2.11
Starting from the four-component form of the super-Poincaré algebra, derive the two-

component (Weyl spinor) form.

Exercise 2.12
Show that [Xµ, Pν ] = 0.

Exercise 2.13
Show that SO+(1, 3) and SL(2,C) are indeed homomorphic, i.e. that the mapping de-

fined by (2.19) or (2.20) has the property that Λ(M1M2) = Λ(M1)Λ(M2) or M(Λ1Λ2) =
M(Λ1)M(Λ2).

Exercise 2.14
Show that the generalisation of the spin operator, Jk ≡ Sk+

1
8mQ̄γµγ

5Q, fulfils the algebra

[Ji, Jj ] = iεijkJk.

Exercise 2.15
What are the states for j = 1?

32This is non-trivial to demonstrate, see Chapter 1.2 of [3].
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Chapter 3

Superspace

In this chapter we will introduce a very handy notation system for considering supersymme-
try transformations effected by the Q elements of the superalgebra, or, more correctly, the
elements of the super-Poincaré group and their representations. This notation uses a coordi-
nate system called superspace, and allows us to define so-called superfields as a replacement
of ordinary field theory fields. This mirrors the Lorentz invariance built into relativistic field
theory by using four-vectors. In order to do this we need to know a little more about the
properties of Grassman (anti-commuting) numbers. However, we begin by taking another
look at the familiar four-vectors in light of what we have learnt about continuous groups and
Lie algebras.

3.1 An initial skirmish: four-vectors as a coset space
Traditionally, we are introduced to four-vectors as a record keeping device for time and space-
position in Special Relativity. In this notation we introduce (greek) four-vector indices, and
some (odd) rules for manipulating these.

Let us now go back to the Poincaré group and its generators in Sec. 2.3, and in particular
the exponential map in Eq. (2.10). We here followed the conventions of four-vectors, but we
could have equally well written it up using ordinary vector component notation, starting with
the generators we derived for the different transformations of the group, i.e. rotations Ji,
boosts Ki, time-translation P0, and space-translation Pi.

We can now form the (right) coset of the Poincaré group P with its Lorentz subgroup L,
P/L. This is not a group since L is not normal to P , however, the coset space is a vector
space formed by the elements {Λg|Λ ∈ L} where g ∈ P . As before, we parameterise a general
element g in the Poincaré group P as

g = exp

(
i

2
ωρσMρσ + iaµPµ

)
,

but keeping in mind the discussion above. Since any two cosets are either disjoint or iden-
tical, we can now represent each element in the coset space by one of the members in the
coset picking the member where ωρσ = 0 giving Λ = I. What remains in the coset is the
four-dimensional translation operator T (a) = eia

µPµ . Physically, this space is the set of
all translations independent of reference frames (boosts and rotations), and it is equivalent
(isomorphic) to the vector space formed by the four components of aµ (parameters of the

57
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translation) since there is a one-to-one map between aµ and the elements of the coset space.
Thus we can say that the four-vectors form the coset space between the Poincaré group and
the Lorentz group.

The transformation properties of four-vectors that we have learnt about can be demon-
strated by the properties of the Poincaré group. It is possible to show, using only the prop-
erties of the generators and their commutators, that with a member of the Lorentz group
Λ = exp( i2ω

ρσMρσ) we have

ΛT (a) = exp

(
i

2
ωρσMρσ

)
T (a) = T (Λa) exp

(
i

2
ωρσMρσ

)
= T (Λa)Λ,

where Λa ≡ Λµ
νaν is the same Lorentz transformation of the four-vector translation parameter

as the one we are accustomed to.
If we now want to see how a Lorentz transformation Λ acts for example on a scalar function

F (x) we can write F (x) = exp(ixµPµ)F (0). This means that the transformation is essentially
captured as x′ in Λexp(ixµPµ) = exp(ix′µPµ). Now, from the above we have

Λexp(ixµPµ) = ΛT (x) = T (Λx)Λ,

and since the Lorentz transformation does nothing to a scalar coordinate independent quantity
such as F (0), we have x′µ = Λµ

νxν , and the scalar function transforms the way we are used
to under Lorentz transformations, namely ΛF (x) = F (x′). This argument can easily be
extended to vector fields Aµ(x) and higher rank tensors, for example

ΛAν(x) = Λµ
νA

ν(x′).

The way we have defined four-vectors have built the Lorentz transformations of Special Rel-
ativity into our equations.

3.2 Superspace definition
Superspace1 is a coordinate system where supersymmetry transformations are manifest, in
other words, the action of elements in the super-Poincaré group (SP ) are treated like Lorentz-
transformations are in Minkowski space.

Definition: Superspace is an eight-dimension manifold that can be constructed
from the coset space of the super-Poincaré group, SP , and the Lorentz group,
L, SP/L, by giving coordinates zπ = (xµ, θA, θ̄Ȧ), π = µ,A, Ȧ, where xµ are the
ordinary Minkowski coordinates, and where θA and θ̄Ȧ are four Grassman (anti-
commuting) numbers in the form of Weyl spinors, being the parameters of the
supercharges QA and Q̄Ȧ, respectively, in the exponential map of the superalgebra.

To understand what all of this means we start from the same perspective as for the four-
vectors in the previous section, and begin by writing a general element of SP, g ∈ SP , using
the exponential map defined in Section 1.7:

g = exp

(
ixµPµ + iθAQA + iθ̄ȦQ̄

Ȧ +
i

2
ωρνM

ρν

)
,

1First introduced by Salam & Strathdee [8].
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where xµ, θA, θ̄Ȧ and ωρν constitute the parametrisation of the group, and Pµ, QA, Q̄Ȧ and
Mρν are the generators. Following the same argument as above we can now parametrise the
coset space SP/L simply by setting ωµν = 0.2 The remaining parameters of SP/L are then
the coordinates that span superspace.

In order for the exponential map to make sense the parameters θ need to anti-commute
just like the Qs so that the contractions θAQA and θ̄ȦQ̄

Ȧ follow ordinary commutation rules.
Otherwise the commutation properties of the exponential map would be different order by
order.3 As physicists we also want to know the dimensions of our new parameters. To do this
we first look at Eq. (2.45):

{QA, Q̄Ḃ} = 2σµ
AḂ
Pµ,

where we know that Pµ has mass dimension [Pµ] = M . This means that [Q2] = M and
[Q] = M1/2. In the exponential, all terms must have mass dimension zero to make sense.
This means that [θQ] = 0, and therefore [θ] =M−1/2.

We now want to find the effect of supersymmetry transformations (transformations by
the super-Poincaré group) on the superspace coordinates, and we begin by noting that any
SP transformation can effectively be written in the following way without the boosts and
rotations of the Lorentz group:

g0(a, α) = exp[iaµPµ + iαAQA + iᾱȦQ̄
Ȧ],

effectively setting ωρν = 0, because we can again show that4

exp

[
i

2
ωρνM

ρν

]
g0(a, α) = g0(Λa, S(Λ)α) exp

[
i

2
ωρνM

ρν

]
, (3.1)

i.e. that all that a Lorentz boost does is to transform spacetime coordinates by Λ and Weyl
spinors by S(Λ), which is the spinor representation of Λ (SL(2,C)). Thus, in more colloquial
terms, for the supersymmetry transformation it does not matter which reference frame we
are working in, we know how the transformation changes between the frames, given by Λa
and S(Λ)α.

We can now find the transformation of superspace coordinates under a supersymmetry
transformation, just as we have seen the Minkowski coordinates transform under Lorentz
transformations. It might be tempting to look directly at the effects of an element g0(a, α) on
a function on superspace coordinates, F (zπ) = F (xµ, θA, θ̄Ȧ), just as we did for the translation
group. However, the powers of the sum of generators in the infinite series will become very
unwieldy and messy. Instead, we pull out the coordinate dependence from the function
F (zπ) = eiz

πKπF (0), where Kπ = (Pµ, QA, Q̄
Ȧ), and we look at the transformation zπ → z′π

given by
g0e

izπKπ = eiz
′πKπ .

2SP/L is again not a coset group, because L is not a normal subgroup of SP , but it still forms a vector
space (the coset space) which we call superspace.

3We might already see how this can be useful: if we consistently use θAQA and θ̄ȦQ̄
Ȧ instead of only QA

and Q̄Ȧ in Eqs. (2.42)–(2.45) we can actually rewrite the superalgebra as an ordinary Lie algebra, but with
Grassman elements, because of these commutation properties.

4Fortunately we are not going to do this because it is messy, but it can be done using the algebra of the
group and the series expansion of the exponential function. Note, however, that the proof rests on the P s and
Qs forming a closed set, which we saw in the algebra Eqs. (2.42)–(2.45).
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In moving the problem to the exponential, we can use the power of some results on the expo-
nentials of non-commuting quantities, in particular the Campbell-Baker-Hausdorff expansion
from (1.12). We have5

g0e
izπKπ = exp(iaνPν + iαBQB + iᾱḂQ̄

Ḃ) exp(izπKπ)

= exp(iaνPν + iαBQB + iᾱḂQ̄
Ḃ + izπKπ

+
1

2
[iaνPν + iαBQB + iᾱḂQ̄

Ḃ, izπKπ] + )

Now we take a closer look at the commutator:6

[ , ] = −[αBQB, θ̄ȦQ̄
Ȧ]− [ᾱḂQ̄

Ḃ, θAQA]

= αB θ̄Ȧε
ȦĊ{QB, Q̄Ċ}+ ᾱḂθ

AεḂĊ{Q̄Ċ , QA}

= 2αB θ̄Ȧε
ȦĊσµ

BĊ
Pµ + 2ᾱḂθ

AεḂĊσµ
AĊ
Pµ

= 2(αB θ̄Ċσµ
BĊ

+ ᾱĊθAσµ
AĊ

)Pµ.

We can relabel B = A and Ċ = Ȧ which leads to
1

2
[ , ] = (αAσµAȦθ̄

Ȧ − θAσµAȦᾱ
Ȧ)Pµ.

The commutator is proportional with Pµ, and will therefore commute with all the operators
in the problem, in particular the higher terms in the Campbell-Baker-Hausdorff expansion,
meaning that the series reduces to

g0e
izπKπ = exp[i(xµ + aµ − iαAσµ

AȦ
θ̄Ȧ + iθAσµ

AȦ
ᾱȦ)Pµ + i(θA + αA)QA + i(θ̄Ȧ + ᾱȦ)Q̄

Ȧ].

So superspace coordinates transform under supersymmetry transformations as:

(xµ, θA, θ̄Ȧ) → (xµ + aµ − iαAσµ
AȦ
θ̄Ȧ + iθAσµ

AȦ
ᾱȦ, θA + αA, θ̄Ȧ + ᾱȦ), (3.2)

or given more explicitly as a composition function

fπ(x
µ, θA, θ̄Ȧ, a

µ, αA, ᾱȦ) = (xµ + aµ − iαAσµAȦθ̄
Ȧ + iθAσµAȦᾱ

Ȧ, θA + αA, θ̄Ȧ + ᾱȦ). (3.3)

As a crucial by-product we can now write down a differential representation for the su-
persymmetry generators by applying the standard expression for the generators Xi of a Lie
algebra, given the composition functions fπ:

iXj =
∂fπ
∂aj

∂

∂zπ
,

which gives us:

iPµ = ∂µ, (3.4)
iQA = −i(σµθ̄)A∂µ + ∂A, (3.5)

iQ̄Ȧ = −i(σ̄µθ)Ȧ∂µ + ∂Ȧ. (3.6)

The interested reader can now use these expressions to check the (anti-)commutation relations
for the supercharges in Eqs. (2.44) and (2.45).

5Here we use Campbell-Baker-Hausdorff expansion eAeB = eA+B+ 1
2
[A,B]+... where the terms that follow all

contain commutators of the first commutator [A,B] and the operators A and B.
6Using that Pµ commutes with all the other generators present, as well as [θAQA, ξ

BQB ] =

−θAξB{QA, QB} = 0, and similarly for Q̄Ḃ .



3.3. SUPERSPACE CALCULUS 61

3.3 Superspace calculus

It should be clear from the following section that we need to know something about the
calculus of anti-commuting Grassmann numbers in order to make sense of differentiation
(and integration) with respect to them. In this section we will briefly discuss their most
important properties, focusing on the coordinates of superspace.

As Grassmann numbers the superspace coordinates obey the following commutation rules:

{θA, θB} = {θA, θ̄Ḃ} = {θ̄Ȧ, θB} = {θ̄Ȧ, θ̄Ḃ} = 0.

From this we get the relationships:7

θ2A = θAθA = −θAθA = 0, (3.7)
θ̄2
Ȧ

= θ̄Ȧθ̄Ȧ = −θ̄Ȧθ̄Ȧ = 0, (3.8)
θ2 ≡ θθ ≡ θAθA = −2θ1θ2, (3.9)
θ̄2 ≡ θ̄θ̄ ≡ θ̄Ȧθ̄

Ȧ = 2θ̄1̇θ̄2̇. (3.10)

Notice that if we have a function f of a Grassman number, say θA, then the all-order expansion
of that function in terms of θA, is

f(θA) = a0 + a1θA, (3.11)

as there are simply no more terms because of (3.7).
We now need to define differentiation and integration on these numbers in order to create

a calculus for them.8

Definition: We define differentiation in superspace by:

∂Aθ
B ≡ ∂

∂θA
θB ≡ δA

B,

with a product rule

∂A(θ
B1θB2θB3 . . . θBn) ≡ (∂Aθ

B1)θB2θB3 . . . θBn

−θB1(∂Aθ
B2)θB3 . . . θBn

+ . . .+ (−1)n−1θB1θB2 . . . (∂Aθ
Bn). (3.12)

This implies that the differential operator ∂A is itself a Grassmann number and anti-commutes.
We can show that the indices of these operators can be raised and lowered with the ε in
Eqs. (2.21) and (2.22).

7There is no summation implied in the first two lines, only a repetition of the same superspace coordinate.
These are of course the same relations we already used for the Weyl spinors.

8These definitions have no infinitesimal interpretations, nor is there any separate notion of definite integrals.
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Definition: The integral of a function f of a superspace coordinate θA is defined
as a functional I[f ]

I[f ] =

∫
dθA f(θA),

which evaluates to a c-number (number in C). The evaluation is defined by the
relations ∫

dθA ≡ 0,

∫
dθA θA ≡ 1,

and similarly for θ̄Ȧ, and we demand linearity:∫
dθA[af(θA) + bg(θA)] ≡ a

∫
dθAf(θA) + b

∫
dθAg(θA).

In these definitions there is no implied summation over the index A.

This integral definition has a surprising property. If we take the integral of (3.11) we get:∫
dθAf(θA) = a1 = ∂Af(θA),

meaning that differentiation and integration has the same effect on functions of Grassmann
numbers.

To integrate over multiple Grassmann numbers we define volume elements as

d2θ ≡ −1

4
dθAdθA,

d2θ̄ ≡ −1

4
dθ̄Ȧdθ̄

Ȧ,

d4θ ≡ d2θd2θ̄,

and we demand that the integral operators anti-commute, just as the differential operators

{
∫
dθA,

∫
dθB} = {

∫
dθA, θB} = 0.

This specific volume element definition is made to normalise the following integrals∫
d2θ θθ = 1,∫
d2θ̄ θ̄θ̄ = 1,∫

d4θ (θθ)(θ̄θ̄) = 1.

Delta functions of Grassmann variables are given by:
δ(θA) = θA,

δ2(θA) = θθ,

δ2(θ̄Ȧ) = θ̄θ̄,

and we can easily show that these functions satisfy, just as the usual definition of delta
functions, ∫

dθAf(θA)δ(θA) = f(0).
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3.4 Covariant derivatives

Similar to the properties of covariant derivatives for gauge transformations in gauge theories,
it would be nice to have a derivative that is invariant under supersymmetry transformations,
i.e. commutes with the supersymmetry generators. Obviously Pµ = −i∂µ does this, but more
general covariant derivatives can be made.

Definition: The following covariant derivatives commute with supersymmetry
transformations:

DA ≡ ∂A + i(σµθ̄)A∂µ, (3.13)
D̄Ȧ ≡ −∂Ȧ − i(θσµ)Ȧ∂µ. (3.14)

These can be shown to satisfy the following relations that are useful in calculations:

{DA, DB} = {D̄Ȧ, D̄Ḃ} = 0, (3.15)
{DA, D̄Ḃ} = −2σµ

AḂ
Pµ, (3.16)

D3 = D̄3 = 0, (3.17)
DAD̄2DA = D̄ȦD

2D̄Ȧ. (3.18)

Here, D3 and D̄3 means the application of at least three of these covariant derivatives.
From the covariant derivatives we can also construct a set of three projection operators.

Definition: The operators

π+ ≡ − 1

16�
D̄2D2, (3.19)

π− ≡ − 1

16�
D2D̄2, (3.20)

πT ≡ 1

8�
D̄ȦD

2D̄Ȧ, (3.21)

with � ≡ ∂µ∂
µ, are orthogonal projection operators, i.e. they fulfil:

π2±,T = π±,T , (3.22)
π+π− = π+πT = π−πT = 0, (3.23)

π+ + π− + πT = 1. (3.24)

3.5 Superfields

Using the superspace coordinates we can now define functions of these to use in a field theory.
Naturally we should call these objects superfields.
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Definition: A superfield Φ is an operator valued function on superspace
Φ(x, θ, θ̄).

Notice how we write, just as for ordinary fields depending on four-vector coordinates, the
coordinates sans indices.

We can expand any such superfield Φ(x, θ, θ̄) as a power series in θ and θ̄. For a superfield
without explicit spinor indices this gives in general,

Φ(x, θ, θ̄) = f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + θθm(x) + θ̄θ̄n(x)

+θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ(x) + θ̄θ̄θAψA(x) + θθθ̄θ̄d(x), (3.25)

where the functions of space-time coordinates x are called the component fields. Any
superfield without explicit spinor indices, such as the one above, commutes with any other
superfield, because all the Grassmann numbers appear in contracted pairs.

The properties of the component fields can be deduced from the requirement that Φ must
be an (operator valued) Lorentz scalar or pseudoscalar. These are shown in Table 3.1 along
with the corresponding degrees of freedom each field has.

Component field Type d.o.f.

f(x), m(x), n(x) Complex (pseudo) scalar 2
ψA(x), φA(x) Left-handed Weyl spinor 4
χ̄Ȧ(x), λ̄Ȧ(x) Right-handed Weyl spinor 4

Vµ(x) Lorentz 4-vector (complex) 8
d(x) Complex scalar 2

Table 3.1: Component field content of a general superfield.

One can show that under supersymmetry transformations these component fields trans-
form linearly into each other, thus we say that superfields (with the differential form of the
supersymmetry generators) are representations of the super-Poincaré group – in the sense of
being states in a representation space – just as ordinary quantum fields are representations
of the Poincaré group, albeit highly reducible representations since there are subsets of the
component fields that are closed on the supersymmetry transformation!9 For example, the
scalar fields f and m, and the Weyl-spinor φ transform as10

δSf = αφ+ ᾱχ̄, (3.26)
δSφA = 2αAm+ (σµᾱ)A(i∂µf + Vµ), (3.27)

δSm = ᾱλ̄− i

2
∂µφσ

µᾱ. (3.28)

9Indeed, they are linear representations since a sum of superfields is a superfield, and the differential
supersymmetry operators act linearly.

10A word of warning is in order here. Considering Φ as a quantum field with operator value it transforms
under the supersymmetry transformations in the passive sense

Φ(x) → exp (−iαQ− iᾱQ̄)Φ(x) exp (iαQ+ iᾱQ̄).
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We can recover the known irreducible representations, see Section 2.8.2, by imposing some
restrictions on the fields. To do this we define the following three types of superfields that we
will discuss below:

D̄ȦΦ(x, θ, θ̄) = 0 (left-handed scalar superfield) (3.29)
DAΦ

†(x, θ, θ̄) = 0 (right-handed scalar superfield) (3.30)
Φ†(x, θ, θ̄) = Φ(x, θ, θ̄) (vector superfield) (3.31)

Note that it is Φ† which is the right handed superfield in Eq. (3.30), not Φ. However, we
can show that the hermitian conjugate of a left-handed scalar superfield fulfils the condition
for a right-handed scalar superfield. We always keep the “dagger” operator on the right-
handed fields to remember what they are since the difference between left- and right-handed
superfields will become crucial later. Supersymmetry transformations can also be shown to
transform left-handed superfields into left-handed superfields, right-handed superfields into
right-handed superfields and vector superfields into vector superfields. This means that they
are separate representations.

Products of the same type of superfield is a superfield of the same type since for left-handed
scalar superfields Φi and Φj ,

D̄Ȧ(ΦiΦj) = (D̄ȦΦi)Φj +Φi(D̄ȦΦj) = 0,

and similarly for a right-handed scalar superfields, and for vector superfields Φi and Φj ,

(ΦiΦj)
† = Φ†

jΦ
†
i = ΦjΦi = ΦiΦj .

The product of a left-handed scalar superfield Φ and its hermitian conjugate Φ†, V = ΦΦ†,
is a vector superfield since

V † = (ΦΦ†)† = ΦΦ† = V.

The same is true for sums of superfields of the same type. These properties will be important
when creating a superfield version of a Lagrangian.

Note that the projection operators that we defined in Section 3.4, π±, project out left-
/right-handed superfields, respectively, from the general superfield, because:

D̄Ȧπ+Φ = DAπ−Φ
† = 0,

which follows from using Eq. (3.17). This is analogous to the properties of PL/R = 1
2(1∓ γ5)

that we saw in Sec. 2.5.2.

3.5.1 Scalar superfields

What is the connection between the scalar superfields and the j = 0 irreducible representa-
tion? To see this we use a cute trick:11 Change to the variable yµ ≡ xµ + iθσµθ̄. Then the
covariant derivatives simplify to

DA = ∂A + 2i(σµθ̄)A
∂

∂yµ
, (3.32)

D̄Ȧ = −∂Ȧ. (3.33)
11Here cute is used in the widest possible sense.
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This means that a field fulfilling D̄ȦΦ = 0 in the new set of coordinates must be independent
of the θ̄ coordinates. Thus we can write this field as:

Φ(y, θ) = A(y) +
√
2θψ(y) + θθF (y), (3.34)

and looking at the much restricted component field content we get the result in Table 3.2.

Component field Type d.o.f.

A(x), F (x) Complex scalar 2
ψA(x) Left-handed Weyl spinor 4

Table 3.2: Component fields contained in a left-handed scalar superfield.

Since we wish to interpret the Weyl spinor here as a fermion quantum field with dimension
M3/2, and given that [θ] = M−1/2, the scalar superfield itself must have mass dimension
[Φ] = 1. This means that the scalar field A has the expected mass dimension M1 of an
ordinary scalar quantum field, however, the scalar F has the odd mass dimension [F ] = 2.12

The Weyl spinor is used to represent (half of) one of the Dirac fermions of the Standard
Model, while the scalar A is typically given the same name as the fermion with an ‘s’-prefix,
and the scalar F is called an auxiliary field, for reasons which will become clear later.

We can undo the coordinate change in (3.34) by inserting for y and expanding in powers
of θ and θ̄, giving

Φ(x, θ, θ̄) = A(x) + i(θσµθ̄)∂µA(x)−
1

4
θθθ̄θ̄�A(x) +

√
2θψ(x)− i√

2
θθ∂µψ(x)σ

µθ̄ + θθF (x).

(3.35)
By using the transformation yµ ≡ xµ − iθσµθ̄ we can show a similar field content for the

right-handed scalar superfield. The general form of a right handed scalar superfield is then
as could be expected:

Φ†(x, θ, θ̄) = A∗(x)−i(θσµθ̄)∂µA∗(x)− 1

4
θθθ̄θ̄�A∗(x)+

√
2θ̄ψ̄(x)+

i√
2
θ̄θ̄θσµ∂µψ̄(x)+θ̄θ̄F

∗(x).

(3.36)
We can now compare the above to the j = 0 representation of the super-Poincaré group

that had two scalar states and two fermionic states (d.o.f.). After applying the equations of
motions (e.o.m.) the auxiliary field F (x), with the strange mass dimension, can be completely
eliminated as it does not have any derivatives.13 The e.o.m. also eliminate two of the fermion
d.o.f. using the Direc/Weyl equations from Sec. 2.5.2.14 This does not happen for the scalar
A(x) since their e.o.m are not linear in the time-derivative. Thus, after the equations of
motion, we are left with the same states as in the j = 0 representation.

12Odd as in strange, 2 is known to be an even number.
13Remember that the classical equation of motion for a field/particle, the Lagrange equation, has a term with

the derivative of the Lagrangian w.r.t. to the field derivatives/velocities and one w.r.t. the fields/coordinates.
For F only the latter is non-zero and can be used to solve for F . We will show this in more detail in Sec. 4.6
when we construct supersymmetric Lagrangians.

14Since the Lagrangian is linear in time derivatives of ψ – it will have to be when we construct it from these
superfields that are linear – the generalised momenta π = ∂0ψ can be re-expressed in terms of the generalised
coordinates without time derivatives and are not independent coordinates.
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However, the scalar superfields will not correspond directly to particle states for the known
Standard Model particles since, as we discussed in Sec. 2.8.3, a Weyl spinor on its own cannot
describe a Dirac fermion. When we construct particle representations we will take one left-
handed scalar superfield and one different right-handed scalar superfield. These will form a
Dirac fermion and two scalars (and their anti-particles) after application of the e.o.m.

3.5.2 Vector superfields

If we take the general superfield in (3.25) and compare the Φ and Φ† expressions we can see
that the following is the restricted component field structure of a vector superfield:

V (x, θ, θ̄) = C(x) + θφ(x) + θ̄φ̄(x) + θθM(x) + θ̄θ̄M∗(x)

+θσµθ̄Vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄D(x).

The properties of the component fields are summarised in Table 3.3. Repeating the arguments
of mass dimension, if the Vµ is to represent a vector quantum field with [Vµ] =M1, then the
dimension of the vector superfield must be [V ] = M0, the Wey-spinor λ is a normal looking
[λ] =M3/2, while the scalar D again has the odd [D] =M2. For the C and φ fields the mass
dimension is even stranger.

Component field Type d.o.f.

C(x), D(x) Real scalar field 1
φA(x), λA(x) Weyl spinor 4

M(x) Complex scalar field 2
Vµ(x) Real Lorentz 4-vector 4

Table 3.3: Field content of a general vector superfield.

With the large number of component fields, and their strange mass dimensions, you may
now be a little suspicious that this vector superfield does not correspond to the promised
degrees of freedom in the j = 1

2 representation of the superalgebra, even after the application
of the equations of motion. However, gauge-freedom now comes to our rescue.

3.6 Supergauge
We first define what we will mean by an abelian (super)gauge transformation of a superfield.15

Later we will see how it relates to the ordinary gauge transformations of quantum fields. We
begin with the scalar superfields.

Definition: The abelian supergauge transformation (local or global) on a left
handed scalar superfield Φi is defined as:

Φi → Φ′
i = eiqiΛΦi (3.37)

where qi is the charge of Φi under that gauge group and Λ (global), or Λ(x) (local),
is the parameter of the gauge transformation.

15We promise that we will get back to the corresponding definition for non-abelian transformations.
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The definition is of course completely equivalent for right-handed scalar fields and generalises
the standard definition of (abelian) gauge transformation in quantum field theory. For the
definition to make sense the transformed field Φ′

i must be a left-handed scalar superfield itself,
thus

D̄ȦΦ
′
i = 0,

and this requires:

D̄ȦΦ
′
i = D̄Ȧe

iqiΛΦi = eiqiΛD̄ȦΦi + iqi(D̄ȦΛ)e
iqiΛΦi = iqi(D̄ȦΛ)Φ

′
i = 0.

Thus we must have D̄ȦΛ = 0, which means that the parameter Λ is also a left-handed
superfield. Note, however, that Λ has must have a mass dimension [Λ] =M0 in order for the
exponentiation to make sense.

Next, we move to the vector superfields.

Definition: Given a vector superfield V (x, θ, θ̄), we define the abelian supergauge
transformation as

V (x, θ, θ̄) → V ′(x, θ, θ̄) = V (x, θ, θ̄)− i[Λ(x, θ, θ̄)− Λ†(x, θ, θ̄)], (3.38)

where the parameter of the transformation Λ is a scalar superfield.

With the expressions for scalar superfields in (3.35) and (3.36), using Φ = iΛ, we can
show that under supergauge transformations the vector superfield components transform as:

C(x) → C ′(x) = C(x) +A(x) +A∗(x) (3.39)
φ(x) → φ′(x) = φ(x) +

√
2ψ(x) (3.40)

M(x) → M ′(x) =M(x) + F (x) (3.41)
Vµ(x) → V ′

µ(x) = Vµ(x) + i∂µ(A(x)−A∗(x)) (3.42)
λ(x) → λ′(x) = λ(x) (3.43)
D(x) → D′(x) = D(x). (3.44)

If we look at the transformation this implies for the vector field, this is equivalent to the
ordinary abelian gauge transformation for a vector field Vµ(x) → V ′

µ(x) = Vµ(x) + ∂µg(x),
with the gauge parameter given by the scalar component field of Λ, g(x) = i[A(x)−A∗(x)] =
−2 Im (A(x)). It then immediately follows that the standard field strength for a vector field,
Fµν = ∂µVν − ∂νVµ, is supergauge invariant.

If we demand that our theory is invariant under these gauge transformations we can
choose the component fields of Λ in order to eliminate some the remaining reducibility in the
representation.

Definition: The Wess-Zumiono (WZ) gauge is a supergauge transformation of
a vector superfield by a scalar superfield with

ψ(x) = − 1√
2
φ(x), (3.45)

F (x) = −M(x), (3.46)
A(x) +A∗(x) = 2Re (A(x)) = −C(x). (3.47)
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A vector superfield in the WZ-gauge can then be written:

VWZ(x, θ, θ̄) = (θσµθ̄)[Vµ(x) + i∂µ(A(x)−A∗(x))] + θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄D(x). (3.48)

Again, the equations of motion will eliminate the auxiliary D-field, as well as one d.o.f. from
the gauge field leaving the two d.o.f. of a massless on-shell gauge boson as found in the
Standard Model,16 and two d.o.f. from the (Majorana) fermion formed by λ, usually called
the gaugino partner of the gauge boson. This does contain the correct number of degrees
of freedom that corresponds to the representation j = 1

2 , however, for the massless m = 0
representation.17

Notice that the WZ gauge is particularly convenient for calculations because:

V 2
WZ =

1

2
θθθ̄θ̄[Vµ(x) + i∂µ(A(x)−A∗(x))][V µ(x) + i∂µ(A(x)−A∗(x))], (3.49)

and, since multiplying in any θ or θ̄ into V 2
WZ will then yield zero, we have

V 3
WZ = 0,

so that
eVWZ = 1 + VWZ +

1

2
V 2
WZ .

Unfortunately, supersymmetry transformations break the Wess-Zumiono gauge, meaning that
a vector superfield in the WZ-gauge will no longer be in the WZ-gauge after a supersymmetry
transformation.

3.7 Exercises

Exercise 3.1
Show that ∫

d2θ θθ = 1.

Exercise 3.2
Check that the explicit differential forms of the generators in Eqs. (3.4)–(3.6) fulfil the

superalgebra in Eqs. (2.44)–(2.42).

Exercise 3.3
Demonstrate the correctness of the general expression for the left-handed scalar superfield

in Eq. (3.35). Hint: You may have use for the spinor identities

(θσµθ̄)(θσν θ̄) =
1

2
gµνθθθ̄θ̄,

θ∂µψθσ
µθ̄ =

1

2
θθ∂µψσ

µθ̄.

16Hang on, where did that last d.o.f. go from V (x)? We have a remaining gauge freedom in the choice of the
imaginary component of A(x), which is the ordinary gauge freedom of a U(1) field theory. This can be used
to eliminate one d.o.f. from the vector field.

17The vector bosons will get mass through electroweak symmetry breaking just as in the Standard Model.
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Exercise 3.4
Show the vector superfield supergauge transformation properties for the component fields.

Hint: Use the field redefinitions:

λ(x) → λ(x)− i

2
σµ∂µφ̄(x),

D(x) → D(x)− 1

4
�C(x).

Exercise 3.5
Derive the expression for V 2

WZ in Eq. (3.49).



Chapter 4

Construction of a low-energy
supersymmetric Lagrangian

We would now like to construct models, in the form of a field theory Lagrangians, that are
invariant under supersymmetry transformations, much in the same way that the Standard
Model Lagrangian is invariant under Poincaré transformations. However, just as for ordinary
quantum field theory Lagrangians we will need to be able to impose gauge invariance for a
choice of gauge group, and we want to limit the models to models that are renormalisable, i.e.
models where any infinities can be cancelled by a finite number of counter-terms. Along the
way we will also find a way to deal with the problem of equal masses for the particles in an
irreducible representation – in other words, where are all the supersymmetric partners of the
Standard Model particles? – taking inspiration from the Standard Model Higgs mechanism
using spontaneous symmetry breaking.

4.1 Supersymmetry invariant Lagrangians and actions
As should be well known the relativistic field theory action

S ≡
∫
R
d4xL, (4.1)

is invariant under supersymmetry transformations if this transforms the Lagrangian by a total
derivative term L → L′ = L+∂µf(x), where f(x) → 0 on the surface S(R) of the integration
region R. The question then becomes: how can we construct a Lagrangian from superfields
with this property?

An infinitesimal supersymmetry transformation of a function on superspace F (x, θ, θ̄)
can be written as

F ′(x, θ, θ̄) = exp(iαQ+ iᾱQ̄)F (x, θ, θ̄) ' F (x, θ, θ̄) + (iαQ+ iᾱQ̄)F (x, θ, θ̄), (4.2)

where αA and ᾱȦ are the infinitesimal parameters of the transformation. If these parameters
are constant then we say that this is a global supersymmetry transformation which is what
we are (mostly) going to concern ourselves with in these notes. Replacing α → α(x) gives a
local supersymmetry transformation.1 Here we have ignored the action of the Pµ operators

1Allowing for local supersymmetry transformations leads to a gauge theory of supersymmetry called super-
gravity, which can incorporate gravity in a natural way.

71
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since they commute with all the Qs, so that this part of the group acts independently, and
only results in a translation of the Minkowski coordinate. The total change in the function
under the supersymmetry transformation is δsF = F ′ − F , where

δs = i(αQ+ ᾱQ̄). (4.3)

We can show that the highest order component fields in θ and θ̄ of a superfield always
transform as a total derivative under δs, e.g. for the general superfield the highest order
component field d(x) transforms as2

δsd(x) = d′(x)− d(x) =
i

2
(∂µψ(x)σ

µᾱ− ∂µλ̄(x)σ
µα), (4.4)

and the same is naturally true for the D component-field of a vector superfield. For a scalar
superfield it is the F -field which has this property:

δsF (x) = −i
√
2∂µψ(x)σ

µᾱ. (4.5)

These highest power θ-components can be isolated by using the projection property of
integration in Grassmann calculus writing

S =

∫
R
d4x

∫
d4θL,

where the Lagrangian density L, which is a function of superfields, is guaranteed to give a
supersymmetry invariant action. Note that this constitutes a redefinition of what we mean
by the Lagrangian L when working with superfields. We should in particular be careful
when counting the dimension of terms. We have, see Section 3.2, [θ] = M−1/2, which, since∫
dθθ = 1, leads to [

∫
dθ] = M1/2. We then have [

∫
d4θ] = M2. Since we must have

[
∫
d4θL] =M4 for the action to be dimensionless, we need [L] =M2, which is different from

the standard field theory Lagrangian with dimension M4.
We can now write down the generic form for a supersymmetric Lagrangian consisting of

scalar superfields Φi, where the indices indicate the highest power of θ in the term:

L = Lθθθ̄θ̄(Φi,Φ
†
i ) + θ̄θ̄Lθθ(Φi) + θθLθ̄θ̄(Φ

†
i ).

Here Lθθ (Lθ̄θ̄) is a function of only left-handed (right-handed) scalar superfields where we
project out the F -field by multiplying by θ̄θ̄ (θθ) and integrating over all the θ. The function
form is limited to holonomic functions which means that the term is itself a scalar super-
field. These two terms form what we call the superpotential. Meanwhile, the Lθθθ̄θ̄ term
is a real valued function of the scalar superfields where we project out the d-field, called the
Kähler potential. Possible terms include Φ†

iΦi, but not Φi +Φ†
i , since this would belong in

the superpotential.
The requirement of renormalisability of the resulting quantum field theory puts further

restrictions on the fields in L. We can at most have three factors of scalar superfields in each
term of the superpotential, and two factors of scalar superfields in the Kähler potentia, for

2A word of warning: we really have to be slightly more careful here with the supersymmetry transformation
since the superfields are operator valued functions acting on a state-space. A unitary transformation U |ψ〉 of
the state implies a unitary transformation U†AU of an operator A on that state.
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details see e.g. Wess & Bagger [9].3 Since the total action must be real, the (almost) most
general supersymmetry Lagrangian that can be written in terms of scalar superfields is:

L = Φ†
iΦi + θ̄θ̄W [Φi] + θθW [Φ†

i ].

Here the first term is called the kinetic term,4 andW is the symbol for the superpotential,
which by renormalisability is restricted to

W [Φ] = giΦi +mijΦiΦj + λijkΦiΦjΦk. (4.6)

This means that to specify a supersymmetric Lagrangian we only need to specify the superfield
content of the model and the form of the superpotential.

Dimension counting, starting from [L] = M2 and [Φ] = 1, means that the superpotential
terms must each be M3, for the couplings this gives [gi] = M2, [mij ] = M and [λijk] = 1.
Notice also that mij and λijk must be symmetric since the superfields commute.

4.2 Abelian gauge theories
We will of course require not only a supersymmetry invariant Lagrangian, but also a gauge
invariant Lagrangian, and we start with the requirements for an abelian gauge group.

Let us first look at the transformation of the superpotential W under the gauge transfor-
mation of the scalar superfields in (3.37):

W [Φ] →W [Φ′] = tie
iqiΛΦi +mije

i(qi+qj)ΛΦiΦj + λijke
i(qi+qj+qk)ΛΦiΦjΦk.

Requiring gauge invariance, W [Φ] =W [Φ′], we must have:

qi = 0 or ti = 0, (4.7)
qi + qj = 0 or mij = 0, (4.8)

qi + qj + qk = 0 or λijk = 0. (4.9)

This puts great restrictions on the form of the superpotential and the charge assignments of
the superfields, as in ordinary gauge theories.

What then about the kinetic term? This transforms as

Φ†
iΦi → Φ†

ie
−iqiΛ

†
eiqiΛΦi = eiqi(Λ−Λ†)Φ†

iΦi.

As in ordinary gauge theories we can introduce a gauge compensating vector (super)field
V with the appropriate gauge transformation to make the kinetic term invariant under su-
persymmetry transformations. We write the kinetic term instead as Φ†

ie
qiV Φi, which gives us

an invariant term:5

Φ†
ie

qiV Φi → Φ†
ie

−iqiΛ
†
eqi(V−iΛ+iΛ†)eiqiΛΦi = Φ†

ie
qiV Φi.

3The argument is similar to ordinary quantum field theory, terms with couplings with negative mass di-
mension is forbidden.

4The constant in front of this term can always be chosen to be one because we can rescale the whole
Lagrangian. It is possible to start from more general Kähler potentials, but this is mostly beyond the scope
of these notes, although we will return to modify this term to account for gauge invariance.

5In case you were worried: we can use the WZ gauge to show that the new kinetic term Φ†
ie

qiV Φi has no
term with dimension higher then four, and is thus renormalisable.
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This definition of gauge transformation can be shown to recover the Standard Model
minimal coupling for the component fields through the covariant derivative

Di
µ = ∂µ − i

2
qiVµ,

where Vµ is the vector component field of the vector superfield. The factor of a half here
is admittedly a little odd, but is in fact related to how we (in these notes) defined the
supergauge transformations. We can now simply redefine the charge, or go back and fiddle
with the numerical factor in front of the vector superfields in the kinetic terms. Your choice!

4.3 Non-Abelian gauge theories
How do we extend the above to deal with the much more complicated non-abelian gauge
theories? Let us take a gauge group G with the Lie algebra of group generators ta

[ta, tb] = ifab
ctc, (4.10)

where fabc are the structure constants. We recap that for an element g in the group G we want
to write down a unitary representation U(g) that transforms a vector Ψ in the representation
by Ψ → Ψ′ = U(g)Ψ.6 With an exponential map we can write this representation as U(g) =
eiλ

ata , where λa are the parameters and ta are hermitian operators, as you may perhaps have
expected.

As in ordinary gauge theories, we simply copy the structure of the abelian (super)gauge
transformation, and transform (a vector of) scalar superfields Φ under a non-abelian group
as

Φ → Φ′ = eiqΛ
aTaΦ,

in a non-abelian supergauge transformation. Here q is the charge of Φ under G. At this
point we need to choose a particular representation, reflected in a particular choice for the
generators which we write as Ta. Since for gauge groups we are almost exclusively interested
in groups defined by a matrix representation, U(g) will be a matrix with dimension fixed by
the dimension chosen for the representation. Again we can easily show that we must require
that the Λa has the defining property of a left-handed scalar superfield for Φ to transform to
a left-handed scalar superfield.

For the superpotential to be gauge invariant we must now have:

tiUir = tr or ti = 0, (4.11)
mijUirUjs = mrs or mij = 0, (4.12)

λijkUirUjsUkt = λrst or λijk = 0, (4.13)

where the indices on U are its matrix indices.
We also want a similar construction for the kinetic terms as for abelian gauge theories,

Φ†eqV
aTaΦ, to be invariant under non-abelian gauge transformations. Now, using that the

generators Ta are hermitian,

Φ†eqV
aTaΦ → Φ′†eqV

′aTaΦ′ = Φ†e−iqΛa†TaeqV
′aTaeiqΛ

aTaΦ,

6Of, course, you may ask, how do we even know that we can find a unitary representation for a particular
Lie group? For the unitary group this is by definition, but is it possible in general? It turns out that this is
always true for compact Lie groups which includes many of the matrix groups U(n), SU(n), O(n), SO(n),
Sp(2n), and Sp(n).
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so, in order to have gauge invariance, we have to require that the vector superfield V trans-
forms as:7

eqV
′aTa = eiqΛ

a†TaeqV
aTae−iqΛaTa . (4.14)

Using the Baker-Campbell-Hausdorff formula in (1.12) we can write this as

V ′aTa = V aTa − i(Λa − Λa†)Ta −
i

2
q[V aTa, (Λ

b + Λb†)Tb] +O(Λ2),

where the higher order terms all contain the commutator

[V aTa, (Λ
b + Λb†)Tb] = V a(Λb + Λb†)[Ta, Tb] = V a(Λb + Λb†)if c

ab Tc,

so that the vector superfield transforms as

V ′a = V a − i(Λa − Λa†)− 1

2
qf a

bc V
b(Λc† + Λc) +O(Λ2). (4.15)

This sensibly reduces to the definition for abelian groups in (3.38) since all the higher order
terms contain the structure constant f a

bc , which is zero for abelian groups. If we look at the
component vector fields of V a, V a

µ , these transform just like in a standard non-abelian gauge
theory:

V a
µ → V ′a

µ = V a
µ + i∂µ(A

a −Aa∗)− qf a
bc V

b
µ (A

c −Ac∗),

in the adjoint representation of the gauge group.
The supergauge transformations of vector superfields can be written more efficiently in a

representation independent way as

eV
′
= eiΛ

†
eV e−iΛ,

where we have defined matrix superfields Λ ≡ qΛaTa and V ≡ qV aTa, and the inverse
transformation is then given by

e−V ′
= eiΛe−V e−iΛ†

,

such that eV e−V = eV
′
e−V ′

= 1.8

4.4 Supersymmetric field strength
There is one type of term missing from the supersymmetric Lagrangian we are constructing,
namely field strength terms that make the gauge fields dynamical, e.g. terms to describe the
electromagnetic field strength term L ∼ −1

4F
µνFµν in QED.

Definition: The supersymmetric field strength for a vector superfield V is
defined by the spinor matrix scalar superfields WA and W̄Ȧ given by

WA ≡ −1

4
D̄D̄e−VDAe

V , (4.16)

W̄Ȧ ≡ −1

4
DDe−V D̄Ȧe

V , (4.17)

where again V ≡ qV aTa.
7This is independent of our choice of representation for the gauge group for the supergauge transformation.
8Notice that despite the non-commutative nature of the matrices involved, the identity eAe−A = 1 holds.

See Exercise 1.26.
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For an abelian gauge field this definition reduces to

WA = −1

4
D̄D̄DAV,

W̄Ȧ = −1

4
DDD̄ȦV,

where V is simply the vector superfield of the gauge group.
We can show that the components of WA (W̄Ȧ) are left-handed (right-handed) scalar

superfields, and that both Tr[WAWA] and Tr[W̄ȦW̄
Ȧ] are supergauge invariant constructions,

and thus potential terms in the supersymmetry Lagrangian. Firstly,

D̄ȦWA = −1

4
D̄ȦD̄D̄e

−VDAe
V = 0,

because from Eq. (3.17), D̄3 = 0, and similarly for W̄Ȧ, showing that they are both scalar
superfields of their particular type, and as such can be used to form a supersymmetric La-
grangian.

Under a supergauge transformation we have:

WA →W ′
A = −1

4
D̄D̄eiΛe−V e−iΛ†

DAe
iΛ†
eV e−iΛ

(D̄ȦΛ = 0) = −1

4
eiΛD̄D̄e−V e−iΛ†

DAe
iΛ†
eV e−iΛ

(DAΛ
† = 0) = −1

4
eiΛD̄D̄e−VDAe

V e−iΛ

= −1

4
eiΛD̄D̄e−V [(DAe

V )e−iΛ + eV (DAe
−iΛ)]

= eiΛWAe
−iΛ − 1

4
eiΛD̄D̄DAe

−iΛ. (4.18)

We are free to add zero to (4.18) in the form of −1
4e

iΛD̄DAD̄e
−iΛ = 0,9 giving

W ′
A = eiΛWAe

−iΛ − 1

4
eiΛD̄{D̄,DA}e−iΛ

= eiΛWAe
−iΛ +

1

2
eiΛD̄Ȧσ

µ
AḂε

ȦḂPµe
−iΛ

= eiΛWAe
−iΛ,

where we have used Eq. (3.16) to replace the anti-commutator. This means that the following
trace is gauge invariant:

Tr[W ′AW ′
A] = Tr[eiΛWAe−iΛeiΛWAe

−iΛ]

= Tr[e−iΛeiΛWAWA] = Tr[WAWA],

and can be used in the Lagrangian.
If we expandWA in the component fields we find, as we might have hoped, that it contains

the ordinary field strength tensor:

F a
µν = ∂µV

a
ν − ∂νV

a
µ + qfbc

aV b
µV

c
µ

and that the trace indeed contains terms with F a
µνF

µνa.
9Which is zero because again Λ is a left-handed scalar superfield, so D̄ȦΛ = 0.



4.5. THE (ALMOST) COMPLETE SUPERSYMMETRIC LAGRANGIAN 77

4.5 The (almost) complete supersymmetric Lagrangian
We can compile all our results up to now to write down the complete Lagrangian for a
supersymmetric theory with (possibly) non-abelian gauge symmetries:10

L = Φ†eV Φ+ δ2(θ̄)W [Φ] + δ2(θ)W [Φ†] +
1

2T (R)q2
δ2(θ̄)Tr[WAWA]. (4.19)

Here, T (R) given by T (R)δab = Tr[TaTb] is called the Dynkin index of the representation
R of the gauge group using the generators Ta. This number is representation dependent, and
deeply connected to the corresponding eigenvalues of the Casimir operators belonging to the
irrep, but independent of which generator we choose to calculate it from.

The Dynkin index appears in the field strength term to correctly normalise the energy
density for the chosen representation R of the gauge group. To see that this factor cancels
in a natural way, note that since the matrix structure of WA is spanned by Ta for a given
representation, we can write WA = qW a

ATa, where W a
A are spinor superfields, and where we

have taken out a common factor of the charge q that appears in all terms of WA. Then

Tr[WAWA] = q2W aAW b
ATr[TaTb] = q2WAaW b

AδabT (R) = q2T (R)W aAW a
A. (4.20)

In addition to the above, it is also possible to add a pure vector superfield term as part of
the Kähler potential, which is not constructed from scalar superfields, of the form LFI ∼ −kV
where V is the vector superfield and k some constant. This kind of term is called a Fayet–
Iliopoulos term. However, this is not possible for non-abelian gauge groups since a term
−kV a could not be supergauge invariant.11

4.6 Finding the equations of motion
To find the equations of motion from our supersymmetric Lagrangian construction we can
now perform the integration over superspace coordinates θ and θ̄ in the action and then
apply the standard Euler–Lagrange field equations that minimise the action for the generic
component fields φi of the Lagrangian L after the superspace integration:

∂L
∂φi

− ∂µ

(
∂L

∂(∂µφi)

)
= 0. (4.21)

We will now discuss some of the general properties of this solution without specifying field
content or gauge groups for the Lagrangian.

As already intimated the auxiliary component fields with unusual mass dimension, Fi and
Da, from scalar Φi and vector V a superfields, respectively, will be eliminated.12 Starting with

10There is no hermitian conjugate of the field strength term, and a slightly odd normalisation using 1/2
instead of 1/4. This is because the term can be proven to be real, although this is sometimes overlooked in
the literature when authors instead use

L ∼ 1

4T (R)q2
δ2(θ̄)Tr[WAWA] +

1

4T (R)q2
δ2(θ)Tr[W̄ȦW̄

Ȧ],

which admittedly looks more symmetric with respect to the superpotential part.
11Why is the abelian case supergauge invariant then? Well, the superspace integration in the action will

isolate the D-term from V , and this term is itself invariant under abelian supergauge transformations, see
Eq. (3.44). For non-abelian supergauge transformations the various V a fields mix as seen in (4.15).

12In the following we use the notation in Eqs. (3.35) and (3.48).
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the Fi-fields these occur only in the kinetic terms and the superpotential. From the kinetic
term Φ†

ie
V Φi the contribution is |Fi|2 as this is the only term with Fi that can survive the θ-

integration if we write the vector superfields in the Wess-Zumino gauge. In the superpotential
W [Φi] only the terms where a number of scalar fields Aj with no θ-coordinate multiply Fi can
survive the integration. The derivatives of these terms with respect to Fi can be expressed in
terms of the superpotential functional as

Wi ≡
∂W [A1, ..., An]

∂Ai
, (4.22)

where the scalar superfields have been replaced by their scalar component fields. This means
that the Euler–Lagrange equation for F ∗

i is

∂L
∂F ∗

i

= Fi +W ∗
i = 0,

which is used to eliminate Fi.
For a concrete example of how this can be worked out to arrive at a complete action

integral for a single scalar superfield, see Exercise 4.1. Generalising this to an expression for
the action for any number of scalar superfields Φi in terms of their component fields, ignoring
gauge interactions, gives:

S =

∫
d4x{i∂µψ̄iσ

µψi −A∗
i�Ai −

1

2
Wijψiψj −

1

2
W ∗

ijψ̄iψ̄j − |Wi|2}

where Wij , given by

Wij ≡
∂2W [A1, ..., An]

∂Ai∂Aj
, (4.23)

is called the fermionic mass matrix.
The Da-fields occur in the kinetic terms and the field strength terms. In the kinetic term,

in the Wess–Zumino gauge, it is relatively easy to see that Da appears only once in the
expansion of the exponential as qA∗

iT
a
ijAjD

a in the action. In the field strength term one can
show with some more effort that the contribution is DaDa in the Wess–Zumino gauge. For
abelian gauge fields there is also a possible kD contribution from the Fayet–Iliopoulos term.
This leads to the Euler–Lagrange equation

∂L
∂Da

= qA∗
iT

a
ijAj + 2Da = 0,

which can be used to eliminate Da.
Note that the terms discussed here with F - and D-fields exhaust all the non-derivative

terms that only have scalar fields since no terms with only A-fields can survive the θ-
integration. Thus the complete non-derivative scalar field contribution to the Lagrangian,
called the scalar potential, can be written as

V (Ai, A
∗
i ) =

∑
i

|Fi|2 +
∑
a

DaDa =
∑
i

∣∣∣∣∂W [A1, ..., An]

∂Ai

∣∣∣∣2 + 1

4

∑
a

q2(A∗
iT

a
ijAj)

2. (4.24)
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4.7 R-symmetry

The Lagrangian we have constructed is invariant under both internal gauge transformations
and external (coordinate) super-Poincaré transformations, where the latter has been built
in through the superspace coordinates. The Minkowski part of superspace, the four-vector
coordinates, transform under the Lorentz group, and since all our Lagrangian ingredients are
Lorentz scalars they are invariant. We can now ask the question if there is any transformation
of the superspace coordinates θ and θ̄ that the Lagrangian is also invariant under.

In Sec. 2.6 we claimed there there is no nontrivial interaction between a gauge group and
the supersymmetry generators for N = 1 supersymmetry. This is not entirely true as we may
have non-trivial commutators for the generator R of an abelian group, i.e.

[QA, R] = QA, [Q̄Ȧ, R] = −Q̄Ȧ. (4.25)

Using this we define a U(1)R transformation called R-symmetry as

θA → θ′A = eiαθA, θ̄Ȧ → θ̄′
Ȧ
= e−iαθ̄Ȧ, (4.26)

where α is the parameter of the transformation and the charge of θ and θ̄ under the transforma-
tion is 1 and −1, respectively. If a Lagrangian is to be invariant under such a transformation
then a superfield Φ must transform as

Φ(x, θ, θ̄) → Φ′(x, θ, θ̄) = eirΦαΦ(x, e−iαθ, eiαθ̄), (4.27)

where rΦ is the charge of that superfield under the transformation. The charge of a product
of two superfields is then just the sum of the charges of the fields. This is required so that
the kinetic term in the Lagrangian is invariant under the transformation.

This means that for a scalar (left- or right-handed) superfield the component fields A, ψ,
and F must transform as

A→ eirΦαA, ψ → ei(rΦ−1)αψ, F → ei(rΦ−2)αF, (4.28)

while vector superfields must have zero R-charge since they are real, and their component
fields, in the Wess-Zumino gauge must thus transform as

Vµ → Vµ, λ→ eiαλ, D → D. (4.29)

We can check that all the terms in the Lagrangian (4.19) are invariant under this transfor-
mation, with the exception of the superpotential W , which must have total R-charge 2. This
will exclude most allowed charge assignments for the the scalar superfields, and in the mini-
mal supersymmetruc models we shall look at there will be no viable continuous R-symmetry.
However, R-symmetry has importance in building models of supersymmetry breaking, and
could remain as a broken symmetry in the model.

4.8 The hierarchy problem

There is a fundamental problem with having scalar particles in a quantum field theory. Let
us take the Standard Model Higgs boson h as an example, however, the following would be
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f̄

f

h
λf λf

h

h
λs

h

s

Figure 4.1: Higgs self-energy diagrams with fermions f (left) and scalars s (right). The dots
indicate vertices with the given coupling strength.

true for any scalar particle. At tree level its behaviour is controlled by the Standard Model
scalar potential

V (h) = −µ2|h|2 + λ|h|4, (4.30)

where µ is the tree-level mass. and λ is its self-coupling. If we naively calculate loop-
corrections to its mass in self-energy diagrams like the ones shown in Fig. 4.1, where f is
a fermion and s some other scalar, they both diverge due to their loop momenta integrals,
meaning they are infinite. This then needs what is called regularisation in order to yield a
finite answer.

There are different ways of achieving regularisation. Since we know that the Standard
Model is an incomplete theory, at least when we go up to Planck scale energies where we
need an unknown quantum theory of gravity, we can introduce a cut-off regularisation
where we limit the integral in the loop-correction to momenta below a scale ΛUV . Then the
loop-correction to the Higgs mass is, at leading order in ΛUV ,

∆m2
h = −

|λf |2

8π2
Λ2
UV +

λs
16π2

Λ2
UV + . . . (4.31)

where λf and λs are the couplings of f and s to the Higgs, respectively, from the Lagrangian
interaction terms L ∼ λf ψ̄ψh+h.c.+λs|s|2|h|2. The dots represents terms that are less than
quadratically divergent in terms of the cut-off scale, the first missing terms being logarithmi-
cally divergent. Picking ΛUV suggestively as the Planck scale, ΛUV =MP = 2.44×1018 GeV,
meaning that the quantum corrections to the Higgs mass are some 15 orders of magnitude
greater than its measured value.

We observe that the difference in sign between the fermions and bosons in (4.31) means
that it could in principle be possible that these huge contributions cancel to keep mh ∼
125GeV as measured,13 however, as physicists we should worry why the Universe seems to be
organised in such a strange way without any specific cause. This is known as the Higgs fine
tuning problem, or the scale hierarchy problem because it is fundamentally a problem of
why the electroweak scale at around 100 GeV where the Higgs lives, is so much lighter than
the Planck scale of 1018 GeV, when the former should in principle be pulled up to the latter
by the sensitivity of scalars to loop corrections.14

13Could we not fix this by introducing a very large Lagrangian Higgs mass µ? Not really, in that the tree-level
Higgs mass is constrained by the properties of the other electroweak masses, i.e. the Z and W -bosons.

14With some background in renormalisation you may ask: What about choosing dimensional regularisation
instead where there is no cut-off scale? That would in principle work, however, as soon as you introduce any
new particle (significantly) heavier than the Higgs there is still a quadratic correction of the form of (4.31)
with the new particle masses as the scale, meaning that we cannot complete the Standard Model at a higher
scale without reintroducing the problem.
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Enter supersymmetry to the rescue: with unbroken supersymmetry we find that we au-
tomatically have |λf |2 = λs and exactly twice as many scalar as fermion degrees of freedom
running around in loops. This provides a magical exact cancellation of the quadratic diver-
gence in Eq. (4.31). To see that this relation between the couplings holds, notice that it is the
superpotential term W ∼ λijkΦiΦjΦk which is responsible for generating Lagrangian Yukawa
terms of the form λijkψiψjAk that couple two fermions to a scalar Ak. If the superfield Φk is
the one that contains the Higgs boson this means that Ak is the Higgs boson field h, and it
couples to the right-handed Weyl-spinors ψi and ψj in the superfields Φi and Φj as λijkψiψjh,
with the coupling λijk. From the superpotential with right-handed scalar superfields the same
term appears with right-handed Weyl-spinors λijkψ̄iψ̄jh

∗. These two terms can be combined
to the same interaction term with a single Dirac fermion ψ, λijkψ̄ψh, as in the Standard
Model, giving λf = λijk. There are no other such terms coupling two fermions to a scalar in
the whole Lagrangian.

At the same time, in the scalar potential (4.24), that same superpotential term is respon-
sible for the terms

V (A,A∗) ∼
∣∣∣∣∂W∂Ai

∣∣∣∣2 = |λijk|2A∗
jA

∗
kAjAk. (4.32)

If Aj is the second scalar s in Fig. 4.1, then this term becomes |λijk|2|s|2|h|2 and we have
λs = |λijk|2. As a result λ2f = λs.

The fact that there are loop contributions from two scalars for each fermion due to the same
number of states (two scalar states per fermion state), means that unbroken supersymmetry
predicts an exact cancellation in Eq. (4.31).15 Notice that there is nothing here that is special
about the Higgs boson, this mechanism will in fact protect all scalar particles from quadratic
corrections to their mass in supersymmetric models.

4.9 Vacuum energy
To explain the measured accelerated expansion of the universe one can introduce a constant
term Λ in Einstein’s field equation,

Rµν −
1

2
Rgµν − gµνΛ =

1

M2
P

Tµν (4.33)

and this contribution has been coined dark energy. The measured value of dark energy in
terms of an energy scale is ΛDE ' 2.4 × 10−3 eV. To get some sense of this energy scale the
rest mass of the lightest charged particle, the electron, is around 0.511 MeV, while the energy
of a photon in visible light is of the order of 1 eV.

This energy can be interpreted as vacuum energy, i.e. the energy predicted from the
contribution of Feynman diagrams with no external particles. However, the predicted value
of the vacuum energy in the Standard Model is ΛV E ∼MP .16 If we want to compare energy
densities, we should compare Λ4

DE to Λ4
V E ,17 which means that the prediction is off from the

measurement by some 120 orders of magnitude, which is said to be a record for the greatest
15To keep the argument simple we have avoided the contributions from vector bosons, however, we can show

that these also cancel exactly against the contributions from their fermionic partners.
16The origin of this is just the same as the quadratic divergence for the Higgs mass. It is the same type of

diagrams contributing, only without external legs.
17In natural units the unit of energy density has units [ρ] = [E/V ] =M/L3 =M4.
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ever discrepancy between theory and experiment. This problem is the hierarchy problem
for vacuum energy.

Can supersymmetry save us here as well? Sort of. For an unbroken global supersymmetry
we can use the supersymmetry non-renormalisation theorem18 of Grisaru, Roach and
Siegel (1979) [10] to show that the prediction in supersymmetry is exactly ΛV E = 0.

Theorem: Non-renormalisation theorem
All higher order contributions to the effective supersymmetric action Seff for a pro-
cess can be written:

Seff =
∑
n

∫
d4xi...d

4xnd
4θ F1(x1, θ, θ̄)× ...× Fn(x1, θ, θ̄)×G(x1, ..., xn), (4.34)

where Fi are products of the n external superfields in the process and their covariant
derivatives, and G is a supersymmetry invariant function.

While this is a rather technical statement, that fact that vacuum diagrams do not have
external superfields means that the higher order contributions are all zero, and since there are
no tree-level contributions for vacuum diagrams – you must have loops to not have external
legs – there can be no contribution at all.

This was a victory for supersymmetry before the discovery of dark energy, when the
problem was instead to prove that Λ = 0, modulo the fact that the breaking of supersymmetry,
as we will be doing in Chapter 5, changes this prediction. As we shall see there, the scale
of the contribution to the vacuum energy in broken supersymmetry has to be the mass scale
of the supersymmetric particles, so with for example mSUSY ' 2TeV as this scale, we have
mSUSY /ΛDE ' 1015, some 15 orders of magnitude too large, which is better than the Standard
Model prediction of MP /ΛDE = 1030, but still a bit off the measured value.19

So now we are left with showing that the contribution is very small but non-zero, which is
in general thought to be a much harder problem than finding models where it is exactly zero.
However, in supergravity something interesting happens. Introducing a local supersymmetry
the scalar potential is not simply given by the superpotential derivatives in (4.24), but instead
is (ignoring the effects of gauge fields)

V (A,A∗) = eK/M2
P

[
K−1

ij (DiW )(DjW
∗)− 3

M2
P

|W |2
]
, (4.35)

where Kij = ∂i∂jK[A,A∗] is the Kähler metric, Di the Kähler derivative Di = ∂i +
1

M2
P
(∂iK), and all the derivatives are with respect to the scalar fields in the Kähler potential

K and superpotential W . In the MP → ∞ limit, the low energy limit, we see that we recover
18The name of this theorem is a bit funny. Why? Well, mainly because the result is not about not being

able to renormalise the theory, but about about not needing to renormalise certain parts of it. Another
consequence of the theorem, which gives it its name, is that the couplings of the superpotential do not need
separate renormalisation. The renormalisation of the superfields suffices.

19So, one would be tempted to say that supersymmetry has solved half the problem. On a more serious
note, there is a significant difference in that the Standard Model prediction requires a cut-off to be finite, while
supersymmetry predicts a finite but too large value.
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the flat space result of Eq. (4.24). What is important to notice is that there is now a second
negative term in the potential that can in principle cancel the positive supersymetry breaking
contribution, however, given the large size of the breaking contribution this will come at the
price of fantastic fine-tuning unless some mechanism can be found where this is natural.

4.10 Excercises

Exercise 4.1
Write down the Lagrangian and find the action of the simplest possible supersymmetric field
theory with a single scalar superfield, without gauge transformations, in terms of component
fields, and show that it contains no kinetic terms for the F -field. Then show how the F -field
can be eliminated by the equations of motion. Hint: The kinetic part of the action will turn
out to be

Skin =

∫
d4x

{
−A∗(x)�A(x) + |F (x)|2 + i∂µψ(x)σ̄

µψ(x)
}
. (4.36)

To show this you may have use of the identities in Sec. 2.5.1.

Exercise 4.2
Show that the supersymmetric field strength term for an abelian gauge field can be written

in terms of component fields as

L = −iλ(x)σµ∂µλ̄(x) + 2D2(x)− 1

4
Fµν(x)F

µν(x)− i

4
Fµν(x)F̃

µν(x). (4.49)

Try to find an argument why the last term with the dual field tensor F̃µν(x) can be ignored
when finding the equations of motion. Hints: To get started it may be productive to consider
the coordinate change yµ = xµ + iθσµθ̄. You will also likely need the following algebraic
relationship

(σµνθ)AFµν(σ
ρσθ)AFρσ = −1

2
θθ[FµνF

µν + iFµνF̃
µν ]. (4.50)

Exercise 4.3
Extend Exercise 1 to include a single abelian gauge group under which the scalar superfield

has charge q. Simplify your answer using the covariant derivative Dµ ≡ ∂µ− i q2Vµ. Hint: The
spinor relationship

θψθ̄ψ̄(θσµθ̄) = −1

4
(θθ)(θ̄θ̄)ψ̄σ̄µψ, (4.58)

may also come in handy.

Exercise 4.4
Find the Lagrangian for supersymmetric QED (SQED) in terms of component fields,

eliminating any non-dynamical auxiliary fields. Supersymmetric QED is the smallest (in
terms of field content) supersymmetric theory that has the particles and interactions in QED
as a subset.
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Chapter 5

Breaking supersymmetry

In Chapter 2 we saw that supersymmetry predicts scalar partner particles with the same mass
as the known fermions, and new fermions with the same mass as the known vectors, living in
the same irreducible representation. These, somewhat unfortunately, contradict experiment
by not existing. In this chapter we will look at how we can break supersymmetry so that the
new states become more massive, and avoid current experimental bounds.

5.1 Spontaneous supersymmetry breaking
In the Standard Model we have already faced this problem: the vector bosons should remain
massless under the gauge symmetry of the model since explicit gauge boson mass terms break
the symmetry. Yet, some of them are observed to be very massive indeed. This is solved with
the introduction of the Higgs mechanism and spontaneous symmetry breaking in the
scalar potential.1 The idea is that while there is an internal symmetry of the Lagrangian
– in the Standard Model the gauge symmetry SU(3)c × SU(2)L × U(1)Y – this may not be
a symmetry for the particular vacuum state of the theory (the lowest energy state), thereby
allowing the properties of the vacuum to supply the masses. In the Standard Model this
is achieved by the shape of the scalar potential having a minimum for a non-zero value of
the Higgs field which means that the value of the field there – its vacuum expectation
value (vev) – can contribute to the masses. Would it not be great if we could have a similar
spontaneous symmetry breaking in order to break supersymmetry this way and boost the
masses of supersymmetric particles beyond current limits?

To find the properties of the vacuum state for our supersymmetric models we start by
pointing out that we can write the supersymmetric Hamiltonian as

H =
1

4
(Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2).

To see this, consider first

{QA, Q̄Ḃ}σ̄
νḂA = 2σµAḂσ̄

νḂAPµ

= 2Tr[σµσ̄ν ]Pµ

= 4gµνPµ = 4P ν .

1The potential of the Lagrangian are those terms not containing derivatives of the fields (kinetic terms).
The scalar potential are such terms that contain only scalar fields.

85
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Now,

H = P 0 =
1

4
{QA, Q̄Ḃ}σ̄

0ḂA

=
1

4
(Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2).

As discussed in Section 2.5 we have Q†
A = Q̄Ȧ. Thus the Hamiltonian is semipositive defi-

nite, i.e. 〈H〉 = 〈Ψ|H|Ψ〉 ≥ 0 for any state |Ψ〉, so the energy of any state in supersymmetry
is always non-negative.

Imagine now that there exists some lowest lying state (or possibly a set of degenerate
states), the ground state(s) |0〉, that has vanishing energy 〈0|H|0〉 = 0. These states are
supersymmetric – meaning invariant under the supersymmetry transformation – since, to
fulfil the energy assumption, we must have

QA|0〉 = Q̄Ȧ|0〉 = 0, for all A, Ȧ, (5.1)

and are thus invariant under the supersymmetry transformations given by (4.3)

δS |0〉 = (αAQA + ᾱȦQ̄
Ȧ)|0〉 = 0. (5.2)

The vanishing energy means that at this supersymmetric minimum of the potential the scalar
potential must contribute zero, 〈V (A,A∗)〉 = 0, and thus, from Eq. (4.24),

∂W

∂Ai
|0〉 = 0 and A∗

iT
a
ijAj |0〉 = 0.

Conversely, if the scalar potential does contribute to the energy for the vacuum (ground state)
|0〉, so that it does not have vanishing energy, meaning that either

∂W

∂Ai
|0〉 6= 0 or A∗

iT
a
ijAj |0〉 6= 0,

in the minimum of the potential for some Ai, then supersymmetry must be broken. As in the
Standard Model, the Lagrangian is still (super)symmetric, but |0〉 is not because (5.1) can no
longer hold for all the Qs.

The O’Raifeartaigh model (1975) [11] is an example of a model that spontaneously
breaks supersymmetry with three scalar superfields X, Y , Z, and the superpotential

W =MY Z + gX(Z2 −m2), (5.3)

where M , g and m are real non-zero parameters. The scalar potential is

V (A,A∗) =

∣∣∣∣ ∂W∂AX

∣∣∣∣2 + ∣∣∣∣ ∂W∂AY

∣∣∣∣2 + ∣∣∣∣ ∂W∂AZ

∣∣∣∣2
= |g(A2

Z −m2)|2 + |MAZ |2 + |MAY + 2gAXAZ |2, (5.4)

which can never be zero because setting AZ = 0, which is needed for the second term, gives a
non-zero contribution g2m4 from the first term. Since the expectation value at the minimum
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that breaks supersymmetry is 〈0| ∂W∂Ai
|0〉, and Fi = −∂W ∗

∂Ai
, the condition for spontaneous

supersymmetry breaking with the O’Raifeartaigh mechanism can be written

〈Fi〉 ≡ 〈0|Fi(x)|0〉 > 0, (5.5)

hence it is often given the more generic name F-term breaking outside of the specific
O’Raifeartaigh model. In general F -term breaking it is the vacuum expectation value of the
auxiliary field of a scalar superfield that supplies the breaking.

In a gauge theory, a similar mechanism is found by adding the Fayet-Iliopolous term
LFI ∼ 2kV where V is an abelian vector superfield. The vev of the D(x) auxiliary field,
〈D〉 = 〈0|D(x)|0〉, will then create a non-zero scalar potential.2 This is called the Fayet-
Iliopolous model, or D-term breaking.

5.2 Supertrace
Unfortunately, the above does not work in practice if all particles are at a low energy scale.
The problem is that at tree level the supertrace, STr, of the mass matrix M, meaning the
weighted sum of eigenvalues of the mass matrix of the particles in the model, can be shown
to vanish, STrM2 = 0 even after spontaneous supersymmetry breaking.3

Definition: The supertrace is given by

STr
(
M2

)
≡
∑
s

(−1)2s(2s+ 1) Tr[M2
s ], (5.6)

where M is the complete mass matrix of the Lagrangian, s is the spin of particles
and Ms is the mass matrix of all spin-s particles.

For a theory with only scalar superfields, with two fermionic and two bosonic degrees of
freedom each, and with mass matrices M1/2 and M0 containing the masses of each type of
particle on the diagonal, this means that STr

(
M2

)
= Tr[M2

0 − 2M2
1/2] = 0. While before

spontaneous supersymmetry breaking each fermion and boson in the same superfield had
equal masses, we now have that the sum of (the square of) the fermion and boson masses over
all the superfields is the same.4 Since in the Standard Model we have a lot more fermions
than scalars, the crucial consequence is that not all the scalar partners can be heavier than
our known fermions in order to balance out the supertrace relationship.

Adding vector superfields does not help because the fermions there have spin-1 vector
bosons partners, and in the supertrace these contributions get opposite sign, and cancel each
other out. This relationship is a tree level relationship, meaning it does not take into account
quantum corrections. However, accounting for those and using strong couplings to move the
supertrace value away from zero, the effect does not seems to be enough to build a consistent
model.

The solution to the supertrace dilemma is to put the spontaneous supersymmetry breaking
up at some higher energy scale

√
〈F 〉 – significantly higher than the electroweak scale – that

2It is always the auxiliary fields’ fault!
3See Ferrara, Girardello and Palumbo (1979) [12].
4The factor of two takes care of the fact that there is only half as many fermions as bosons.
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we do not currently have experimental access to, so that there are also superfields with fermion
and boson partners with much higher masses that fulfil the supertrace relationship, and the
electroweak scale fermions and bosons become only a small perturbation on it.

5.3 Soft breaking

There are many alternatives in the literature of how we can break supersymmetry sponta-
neously at a high energy scale. The names of some popular examples that we will return to
in the next section are:

• Planck-scale Mediated Symmetry Breaking (PMSB)

• Gauge Mediated Symmetry Breaking (GMSB)

• Anomaly Mediated Symmetry Breaking (AMSB)

Common to all of them is that the mass scale of the particles in the supersymmetry breaking
fields is so high, that we can not observe their effects directly. What we can do instead is to
parameterise our ignorance by adding effective explicit supersymmetry breaking terms to our
low-energy Lagrangian.

However, we cannot simply add arbitrary terms to the Lagrangian. The terms we can
add are so-called soft terms with couplings of mass dimension one or higher. The dis-
allowed terms with smaller mass dimension are terms that can lead to divergences in loop
contributions to scalar masses (such as the Higgs) that are quadratic or worse (because of the
high dimensionality of the fields in the loops). This will re-introduce the hierarchy problem.

The allowed terms are in superfield notation as follows:

Lsoft = − 1

4T (R)q2
Miθθθ̄θ̄Tr{WA

i WiA}

−1

6
aijkθθθ̄θ̄ΦiΦjΦk −

1

2
bijθθθ̄θ̄ΦiΦj − siθθθ̄θ̄Φi + h.c.

−m2
ijθθθ̄θ̄Φ

†
iΦj , (5.7)

whereMi, aijk, bij , si ∈ C, and m2
ij ∈ R are the couplings. Note that these terms are explicitly

not supersymmetric. From the θθθ̄θ̄-factors we see that only the lowest order in θ component
fields of the superfields contribute.

There are also some terms that are called “maybe-soft” terms:

Lmaybe = −1

2
θθθ̄θ̄cijkΦ

†
iΦjΦk + h.c., (5.8)

with cijk ∈ C. This last – oft ignored – type of term is soft as long as none of the scalar
superfields is a singlet under all gauge symmetries. It is, however, quite difficult to get large
values for cijk with spontaneous supersymmetry breaking.

In the above terms we have not specified any gauge symmetry, which will, in the same
way as it did for the superpotential, severely restrict the allowed terms. However, it still turns
out that soft-terms are responsible for most of the parameters in supersymmetric theories!
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We can instead write the soft terms in terms of their component fields as

Lsoft = −1

2
Miλ

a
i λ

a
i − (

1

6
aijkAiAjAk +

1

2
bijAiAj + siAi +

1

2
cijkA

∗
iAjAk + c.c.)

−m2
ijA

∗
iAj . (5.9)

Here we clearly see that the mij couplings provide extra mass terms to the scalar partners Ai

of the fermions in the scalar superfields, and Mi to the fermion partners λaiA of the vectors
in the vector superfields, 5 however, they provide no mass to the fermions ψA in the scalar
superfield, nor to the vectors Vµ in the vector superfield. Thus, they split the masses of the
partners as we wanted to achieve with breaking supersymmetry.

Now, what happens to the hierarchy problem? Restricting ourselves to soft supersymmetry
breaking terms guarantees that we end up with contributions to the Higgs mass of at most

∆m2
h = − λs

16π2
m2

s ln
Λ2
UV

m2
s

+ . . . , (5.10)

at the leading order in ΛUV , where ms is the mass scale of the soft term – or, in other
words, the mass of the supersymmetric partners. The correction to the Higgs mass is thus
proportional to the masses of the supersymmetric particles.

This is the most important argument in favour of supersymmetry existing at low energy
scales where we can detect it, becausems can not be too large if we want the above corrections
to be reasonably small. This is called the little hierarchy problem, and numerically, given
that 16π2 ∼ 100, and the couplings λs are not expected to be above unity, this means that
we want ms ∼ O(1 TeV) in order to keep the cancellations reasonable and of the order of the
measured Higgs mass, with little fine-tuning.

5.4 Models for supersymmetry breaking

Let us take a closer look at the models we use to motivate supersymmetry breaking, and what
their phenomenological consequences are. To be concrete, and to simplify the language used,
we will relate this discussion to the Minimal Supersymmetric Standard Model (MSSM) that
we will study in Chapter 6, however, the mechanisms for supersymmetry breaking will be the
same for most relevant models, and you could read the MSSM below as a generic low-energy
supersymmetric model.

Generically, breaking models can be illustrated as shown in Fig. 5.1. There is one or more
hidden sector (HS) scalar superfield X – by hidden we mean that it has no or very small di-
rect couplings to the MSSM fields – that has an effective (non-renormalisable) supersymmetric
coupling to the MSSM scalar fields Φi of the form

LHS = − 1

M
(θ̄θ̄)XΦiΦjΦk, (5.11)

whereM is some large scale, e.g. the Planck scale, that suppresses the interaction. Figure 5.2
shows interactions that can lead to such terms, where M is the mass scale of some mediator
particle Y .

5We use the index i in case there are multiple gauge groups. In addition the fermions from the vector
superfield may carry an index a, λa

iA, if there is more than one generator in the gauge group.



90 CHAPTER 5. BREAKING SUPERSYMMETRY

(Hidden sector)
(Visible sector)

Supersymmetry

breaking origin
     MSSMFlavor-blind

interactions

Figure 5.1: A generic illustration of how to generate soft breaking terms. Taken from Ref. [15].

Figure 5.2: Interactions leading to effective 4-superfield couplings in our example.

If the hidden sector is constructed so that X develops a non-zero vev for its auxiliary
F -component field, FX ,

〈X〉 = θθ〈FX〉, (5.12)

it breaks supersymmetry spontaneously, see the discussion leading up to Eq. (5.5). As a
result, the interaction in (5.11) will in the low-energy limit produce a soft-term of the form
of the second term in Eq. (5.9),

Lsoft = −〈FX〉
M

AiAjAk, (5.13)

with the soft-mass parameter

msoft =
〈FX〉
M

.

This has reasonable limits in that msoft → 0 as 〈FX〉 → 0, which is the limit of no supersym-
metry breaking, and msoft → 0 as M → ∞, where the interaction with the hidden sector is
decoupled because the mediating particle Y becomes too heavy to have any influence.

We will now look at two possible ways to construct such a hidden sector called Planck-scale
Mediated Supersymmetry Breaking (PMSB) and Gauge Mediated Supersymmetry Breaking
(GMSB).

5.4.1 Planck-scale Mediated Supersymmetry Breaking (PMSB)

In Planck-scale mediated supersymmetry breaking (PMSB) we blame some gravity mechanism
for mediating the supersymmetry breaking from the hidden sector to the MSSM so that
the scale of the breaking is M = MP = 2.4 · 1018GeV. Then we need to have

√
〈FX〉 ∼

1010−1011GeV in order to get msoft ' 50−5000GeV, which is roughly of the right magnitude
not to re-introduce the hierarchy problem. The use of

√
〈FX〉 is just a conventional shorthand
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notation for the magnitude of the vev of whichever F -term that breaks supersymmetry. This
is called the supersymmetry breaking scale.

The complete soft terms for such a mechanism can then be shown to be

Lsoft = −〈FX〉
MP

(
1

2
fiλ

a
i λ

a
i +

1

6
y′ijkAiAjAk +

1

2
µ′ijAiAj +

〈FX〉∗

M2
P

xijkA
∗
iAjAk + c.c.

)
−|〈FX〉|2

M2
P

kijAiA
∗
j . (5.14)

Here fi, y′ijk, µ′ij , xijk, and kij are breaking model dependent parameters. Incidentally, we
can now see why we assumed the maybe-soft breaking terms to be unimportant, as in this
model they are suppressed by |〈FX〉|/M2

P compared to the other couplings.
If one assumes a minimal form for the parameters at some high-scale, perhaps at the

GUT scale motivated by the wish for unification, e.g. fi = f , y′ijk = αyijk where yijk are the
Standard Model Yukawa couplings, µ′ij = βµ, and kij = kδij , then all the soft terms are fixed
by just four parameters

m1/2 = f
〈FX〉
MP

, m2
0 = k

|〈FX〉|2

M2
P

, A0 = α
〈FX〉
MP

, B0 = β
〈FX〉
MP

.

The resulting phenomenology is called minimal supergravity, or mSUGRA/CMSSM.
This is minimal in the sense of the form of the parameters, and is the most studied, but
perhaps not best motivated, version of the MSSM. Usually, B0 and |µ| are exchanged for the
parameter tanβ at low scales using the conditions for electroweak symmetry breaking that
we will see in Eq. (6.31), so it is common to say that there are four and a half parameters in
the CMSSM: m1/2, m0, A0, tanβ and sgnµ.

5.4.2 Gauge Mediated Supersymmetry Breaking (GMSB)

An alternative to PMSB is gauge-mediated supersymmetry breaking where soft terms come
from loop diagrams with messenger superfields that get their own mass M by coupling to
the hidden sector supersymmetry breaking vev 〈F 〉, and that have Standard Model gauge
interactions. By dimensional analysis we must have

msoft =
αi

4π

〈F 〉
M

.

If now the supersymmetry breaking scale
√
〈F 〉 and the messenger mass M are roughly

comparable in size, which is reasonable given where the messenger mass comes from, then√
〈F 〉 ' 100TeV can give a viable sparticle spectrum. Notice that there is now a lot less

difference in scale between the breaking scale and the mass scale of the supersymmetric
partners, msoft, in the GMSB compared to the PMSB.

One way of thinking about how these mass terms appear is that the messenger field(s)
get masses from hidden sector vevs and contribute to mass terms from the fermions in the
vector superfields – called gauginos – through diagrams such as the one in Fig. 5.3, where
messenger scalars and fermions run in the loop, and their masses from the hidden sector vevs
are symbolised by the mass insertions. Note that scalars can only get mass contributions like
this at two-loop order since the messenger interaction is a gauge interaction, involving gauge
bosons or gauginos in the MSSM. In order not to spoil the unification of gauge couplings, see
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Figure 5.3: Diagram for GMSB giving masses to the gauginos g̃, B̃, and W̃ , in the MSSM.
The messenger scalars and fermions run in the loop.

Sec. 6.8, messengers are often assumed to have small mass splittings and come in N5 complete
5+ 5 (fundamental) representations of SU(5).

The minimal parametrisation of GMSB models is in terms of the scale Λ = 〈F 〉
M , the

messenger massM , the number of representationsN5, and tanβ for the electroweak symmetry
breaking criterion. This gives the soft masses

Mi =
αi

4π
ΛN5, (gaugino masses) (5.15)

m2
j = 2Λ2N5

∑
C(R)i

(αi

4π

)2
, (scalar masses) (5.16)

where the sum is over the gauge groups, with C(R) being quadratic Casimir invariant for the
scalar superfield Φj that the scalar field belongs to. We clearly see that the scalar soft-masses
are a two-loop effect as discussed above.

While this parameterisation looks independent of the messenger mass M , the messenger
scale sets the starting point of the renormalisation running of the sparticle masses, see Sec. 6.7,
and thus influences their magnitude. For example, the tri-linear soft-term couplings aijk are
expected to be very small at the messenger scale, and are effectively set to zero, however, due
to the running they are small, but non-zero at the electroweak scale. Since the scalar masses
mj scale as

√
N5 compared to N5 for the gauginos, we in general expect the scalars to be

lighter in GMSB models. One should also notice that this parameterisation gives a hierarchy
of gaugino masses, M3 > M2 > M1, since (5.15) is ordered in terms of the strength of the
gauge couplings αi.

5.5 Excercises

Exercise 5.1
Show that adding a Fayet-Iliopolous term to the SQED constructed in Exercise 4.4 will break
supersymmetry spontaneously.

Exercise 5.2
Write down the supertrace relationship for a spontaneously broken SQED.



Chapter 6

The Minimal Supersymmetric
Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a minimal supersymmetric model
in the sense that it has the smallest field (and gauge) content consistent with the known
Standard Model fields. We will now construct this model on the basis of what we have learnt
the previous chapters, and look at some of its consequences.

6.1 MSSM field content
To specify a supersymmetric model we need to specify the superfield content and the gauge
symmetries. The gauge symmetry is already given as the Standard Model SU(3)c×SU(2)L×
U(1)Y . We start now with writing down the fields we need for the Standard Model fermions.
Previously we learnt that each (left-handed) scalar superfield S has a (left-handed) Weyl
spinor φA, a complex scalar s and an auxiliary complex scalar field F , since they are a j = 0
representation of the superalgebra. After an application of the equations of motion φA and
s have two fermionic and two bosonic degree of freedom remaining respectively, while the
auxiliary field has been eliminated along with two fermionic degrees of freedom.

In order to construct a Dirac fermion, which are plentiful in the Standard Model, we need
a right-handed Weyl spinor as well. We can acquire the needed right-handed Weyl spinor
from the hermitian conjugate T̄ † of a different scalar superfield T̄ with the right-handed Weyl
spinor χ̄Ȧ and the complex scalar t∗.1 With these four fermionic d.o.f. we can construct two
Dirac fermions, a particle–anti-particle pair,

ψa =

[
φA

χ̄Ȧ

]
, ψ̄a =

[
χA, φ̄Ȧ

]
,

and four scalars, two particle–anti-particle pairs, s, s∗, t and t∗.
We use these two superfield ingredients to construct all the known fermions:

1The bar here is used to (not) confuse us, it is part of the name of the superfields and does not denote
any hermitian or complex conjugate. The bar signifies that T̄ is the field where, when hermitian conjugated
into T̄ †, we will pick the right-handed Weyl-spinor to use in the Dirac fermion, while the left-handed Weyl
spinor in the bared field T̄ itself belongs to the corresponding anti-particle. Since SU(2)L acts only on the
left-handed Weyl spinors of particles (as opposed to anti-particles), another way to think about this is that
the left-handed Weyl-spinor in the bared field T̄ is the one that does not transform under SU(2)L.

93
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• To represent the Standard Model leptons we introduce the superfields li and Ēi for the
charged leptons (i is the generation index) and νi for the neutrinos, and form SU(2)L
doublet superfield vectors Li = (νi, li), which contain the left-handed Weyl spinors for
the particles, while Ēi contain the left-handed Weyl spinors that are singlets (do not
transform) under SU(2)L.

• There is an imbalance in the neutrinos in that we do not introduce the neutrino su-
perfield N̄i that through N̄ †

i would contain right-handed neutrino spinors needed for
massive Dirac neutrinos, instead leaving the neutrinos as massless Majorana particles
in the MSSM.2 This is a convention – the MSSM is older than the discovery of neutrino
mass – and including N̄i fields would have some interesting consequences. The N̄i su-
perfields and their component fields would not couple to any of the gauge fields since
they are SM singlets,3 however, the scalar field in the superfield could be a potential
dark matter candidate.

• For quarks the situation is similar. Up-type and down-type quarks get the superfields
ui and di, forming the SU(2)L doublets Qi = (ui, di), and the SU(2)L singlets Ūi and
D̄i.4

With all possible apologies, we now change notation for the component fields to what is
closer to conventions in phenomenology, as opposed to pure theory. The left-handed Weyl
spinors in these superfields will now be named for example li for the spinor in the superfield
li, νi for the one in the νi superfield, and ēi for the one in Ēi, ui for the one in the ui
superfield, di for the one in the di superfield, ūi for the one in the Ūi superfield, and finally
d̄i for the one in the D̄i superfield. This means that we leave our former notation where the
bar signifies right-handed Weyl spinor, but now instead signifies the left-handed Weyl spinor
for the anti-particle, or, in other words, a SU(2)L singlet. If we now want to indicate a right-
handed Weyl spinor we use the hermitian conjugation in (2.24) as an alternative notation, so
that for example the l†i superfield contains l̄†i and Ē†

i contains ē†i , and so on. The reason for
this change is in part that we need a simple way to write down component field Lagrangians
with fermions without greek letters and very many indices indicating particle type, as well as
running out of letters since we need two superfields for one fermion.

The scalar component fields are named after the fermions using the tilde notation, for
example in the superfield li we have the scalar l̃iL as the supersymmetric partner particle,
often just called sparticle, of the fermion li. Similarly, Ēi contains l̃∗iR, l

†
i contains l̃∗iL, and

Ē†
i contains l̃iR. Since scalars do not have any notion of handedness the L or R here is just

part of the conventional name; we still call these particles for left-handed and right-handed
scalar leptons though. The complex conjugates might be surprising, but remember that for
example the superfield Ēi contains the left-handed Weyl-spinor of the anti-leptons and thus
has positive electric charge. The collective term for these scalars are sfermions.

Additionally, we need vector superfields, which, after the equations of motion have elimi-
nated the auxiliary field, contain a massless vector boson Vµ component field with two scalar

2The anti-neutrino contained in the superfield ν†i is a right-handed Weyl-spinor consistent with experiment.
3They can not be colour-charged, they are singlets under SU(2)L by construction thus they have zero weak

isospin I3, but since they should also have zero electric charge Q, the hypercharge Y must also be zero through
the relationship Q = 1

2
Y + I3.

4Here we should really also include a colour index a so that ua
i is a component in an SU(3)c triplet superfield

vector. We omit these for simplicity.



6.2. THE KINETIC TERMS 95

degrees of freedom and a Weyl-spinor λA, with two fermionic degrees of freedom. Together
these form a m = 0, j = 1

2 representation of the superalgebra. If the vector superfield is
neutral, the Weyl-spinor can form a Majorana fermion, if not it can be combined with the
Weyl-spinor from another vector superfield to form a Dirac fermion.

Looking at the construction V ≡ qTaV
a for the vector superfields in the supersymmetric

Lagrangian we see that, as expected, we need one superfield V a per generator Ta of the
algebra, with the normal SU(3)c, SU(2)L and U(1)Y vector bosons as vector component
fields. We call these superfields Ca, W i and B0, where a = 1, . . . , 8 and i = 1, 2, 3.5 In order
to be really confusing, we use the following symbols for the fermion Weyl-spinors: g̃a, W̃+,
W̃ 0, W̃− and B̃0. The tilde here is supposed to tells us – just as for the scalar component
fields of the scalar superfields – that they are supersymmetric partners of the known Standard
Model particles. These particles are collectively known as the gauginos.

We also need superfields for the scalar Higgs boson. Now life gets interesting. The Higgs
SU(2)L doublet scalar field H used in the Standard Model cannot give mass to all fermions
because it relies on the construction HC ≡ −i(H†σ2)

T to give masses to up-type quarks, and
possibly neutrinos. The superfield version of this cannot appear in the superpotential because
it would mix left- and right-handed superfields due to the hermitian conjugation in HC . The
minimal Higgs content we can get away with are two Higgs superfield SU(2)L doublets, which
we will call Hu and Hd, indexing the quarks they give mass to.6 These must have (more on
the reason for that in Sec. 6.2) weak hypercharge Y = ±1 for Hu and Hd, respectively, so
that we have the superfield doublets:

Hu =

(
H+

u

H0
u

)
, Hd =

(
H0

d

H−
d

)
, (6.1)

where we have given the electric charges of the scalar superfield components of the super-
field doublets based on the standard Q = 1

2Y + T3 relationship after electroweak symmetry
breaking, where T3 is the weak isospin.7 The scalar component fields of these fields, before
their mixing following electroweak symmetry breaking, will have the same symbols as the
superfields. (Yes, really!) The fermion component fields will be denoted H̃+

u , H̃0
u, H̃0

d , and
H̃−

d , and are known as the higgsinos.

6.2 The kinetic terms
It is now straight forward to write down the kinetic terms of the MSSM Lagrangian giving
the matter-gauge interaction terms

Lkin = L†
ie

1
2
gσW− 1

2
g′BLi +Q†

ie
1
2
gsλC+ 1

2
gσW+ 1

3
· 1
2
g′BQi

+Ū †
i e

1
2
gsλC− 4

3
· 1
2
g′BŪi + D̄†

i e
1
2
gsλC+ 2

3
· 1
2
g′BD̄i

+Ē†
i e

2 1
2
g′BĒi +H†

ue
1
2
gσW+ 1

2
g′BHu +H†

de
1
2
gσW− 1

2
g′BHd, (6.2)

where g′, g and gs are the couplings constants (strengths) of U(1)Y , SU(2)L, and SU(3)c,
respectively, and 1

2σi and 1
2λa are the generators of SU(2)L and SU(3)c. As a convention

5And there we have another W.
6In some further insanity some authors prefer H1 and H2 so that you have no idea which is which.
7The upper component of a doublet has T3 = 1

2
while the lower has T3 = − 1

2
. This is again just the

eigenvalues of the J3 generator in two-dimensional representation of the SU(2) group, see Sec. 2.1.3.
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we assign the charges under U(1), hypercharge, in units of 1
2g

′. For a list of the hypercharge
assignments see Table 6.1. All non-singlets of SU(2)L and SU(3)C have the same charge, the
factor 1

2 here is used to get by without accumulation of numerical factors since the algebras
for the Pauli (σi) and Gell-Mann matrices (λa) are:[

1

2
σi,

1

2
σj

]
= iεijk

1

2
σk,

and [
1

2
λa,

1

2
λb

]
= if c

ab

1

2
λc.

These conventions lead to the wanted Standard Model gauge transformations for the com-
ponent fields and the familiar relations after electroweak symmetry breaking, e = g sin θW =
g′ cos θW , where e is the elementary electric charge (in natural units).

We mentioned earlier that the two Higgs superfields have opposite hypercharge. This is
needed for so-called anomaly cancellation in the MSSM. Gauge anomaly is the possibility
that at loop level contributions to processes such as in Fig. 6.1 break the gauge invariance
that we have established at the classical level in the Lagrangian, and ruins the predictability
of the theory. This rather miraculously does not happen in the SM because it has the exactly
field content it has, so that all such possible gauge anomalies exactly cancel – we do not know
of a deeper reason for why it has exactly this field content. If we have only one Higgs doublet
this cancellation does not happen for the MSSM. With two Higgs doublets, and with opposite
hypercharge, it does.

B

B

B

fB

B

B

Figure 6.1: The tree level coupling between three gauge bosons B (left), and the one-loop
fermion contribution to the same process (right).

6.3 Gauge terms
The pure gauge terms with supersymmetric field strengths are also fairly easy to write down:

LV =
1

2g2s
θ̄θ̄Tr[CACA] +

1

2g2
θ̄θ̄Tr[WAWA] +

1

2g′2
θ̄θ̄BABA + h.c., (6.3)

where we have used the Dynkin indices of the gauge group representations

T (R)L = Tr

[
1

2
σ1 ·

1

2
σ1

]
=

1

2
,

and
T (R)c = Tr

[
1

2
λ1 ·

1

2
λ1

]
=

1

2
,
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in the normalization of the terms, and where the field strengths are given as:

CA = −1

4
D̄D̄e−CDAe

C , C =
1

2
gsλaC

a, (6.4)

WA = −1

4
D̄D̄e−WDAe

W , W =
1

2
gσiW

i, (6.5)

BA = −1

4
D̄D̄DAB , B =

1

2
g′B0. (6.6)

6.4 The MSSM superpotential

With the gauge structure of the Standard Model in place we are ready to write down all
possible terms in the superpotential. First, we notice that there can be no tadpole terms tiΦi

(terms with only one superfield), since there are no superfields that are singlets (zero charge)
under all Standard Model gauge groups. The only alternative would be if we introduced
right-handed neutrino superfields N̄i.

For the possible mass terms mijΦiΦj we first check the abelian gauge group U(1)Y ,
where the requirement reduces to the relatively simple sum of hypercharges Yi + Yj = 0.
In Table 6.1 we see that the only contributions with sum zero hypercharge using superfields
that contain the Standard Model fermions are particle–anti-particle combinations such as lil†i ,
but these come from superfields with different handedness (Li and L†

i ) and cannot be used
together. Thus the superpotential can not be used to give masses to the Standard Model
fermions, and we will need a Higgs mechanism in the MSSM as well.

Superfield Li Ēi Qi Ūi D̄i Hu Hd

Fermion νi, li ēi ui, di ūi d̄i H̃+
u , H̃0

u H̃0
d , H̃

−
d

Hypercharge Y −1 2 1
3 −4

3
2
3 1 −1

Electric charge Q 0, −1 1 2
3 , −

1
3 −2

3
1
3 1, 0 0, −1

Table 6.1: The MSSM superfields with their Standard Model fermion content, hypercharge
Y , and electric charge Q.

Going beyond the superfields with Standard Model fermions we see that we can make a
mass term with the two Higgs superfields that have opposite hypercharge Y = ±1. These
fields are not charged under SU(3)c, but in order to also be invariant under SU(2)L we have
to write this superpotential term as

Wmass = µHT
u iσ2Hd, (6.7)

where µ ∈ C is the superpotential mass parameter for this term. This construction is invariant
under SU(2)L because, with the supergauge transformations Hd → eig

1
2
σkW

k
Hd and HT

u →
HT

u e
ig 1

2
σT
k Wk , we get

HT
u iσ2Hd → HT

u e
ig 1

2
σT
k Wk

iσ2e
ig 1

2
σkW

k
Hd

= HT
u iσ2e

−i 1
2
gσkW

k
ei

1
2
gσkW

k
Hd = HT

u iσ2Hd,
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since σTk σ2 = −σ2σk. Usually we ignore the SU(2)L specific structure and write terms like
this as µHuHd, confusing the hell out of anyone that is not used to this convention since we
really do mean Eq. (6.7). Notice that if we write (6.7) in terms of the component superfields
in the two SU(2)L doublets we get

Wmass = µHT
u iσ2Hd = µ(H+

u H
−
d −H0

uH
0
d),

which we should have been able to guess because the Lagrangian must also conserve electric
charge.

If you have paid very close attention to the argument above you may have noticed that
there is one more possibility, namely

Wmass = µ′iLiHu ≡ µ′iL
T
i iσ2Hu = µ′i(νiH

0
u − liH

+
u ),

where µ′ ∈ C is some other mass parameter in the superpotential. This is clearly an allowable
term (and we will return to it below), however, it also raises a very interesting question: Could
we have Li ≡ Hd? Could the lepton superfields Li play the rôle of Higgs superfields, thus
reducing the field content needed to describe the SM particles in a supersymmetric theory?
While not immediately forbidden as a superpotential term, this suggestions unfortunately
leads to problems with anomaly cancelation, processes with large lepton flavour violation
(LFV) and much too massive neutrinos, and has been abandoned.

We have now found all possible mass terms in the superpotential. What about the
Yukawa terms λijkΦiΦjΦk? The hypercharge requirement here is Yi + Yj + Yk = 0. From
our table of hypercharges only the following terms are found to be viable:

WYukawa = yeijLiHdEj + yuijQiHuŪj + ydijQiHdD̄j + λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k,

where we have named and indexed the Yukawa couplings in a hopefully natural way.8 For all
these terms we can simultaneously keep SU(2)L invariance with the iσ2 construction implicitly
inserted between any two superfield doublets. Note that because of the SU(2)L invariance,
we must have i 6= j for λijk, since i = j gives LiLiĒk = (νili − liνi)Ēk = 0.

For SU(3)c to be conserved for the Yukawa terms, we need to have colour singlets. Some
of these terms are colour singlets by construction since they do not contain any coloured fields
– the LHE and LLE terms. The terms with only two quark superfields contain left-handed
Weyl spinors for quarks and anti-quarks, which form SU(3)c singlets if the superfields come
in colour–anti-colour pairs. In representation language the superfields (and as a consequence
their component fields) are in the 3 and 3̄ representations of SU(3)c. Written with explicit
colour indices we have for example LiQjD̄k = Liiσ2Q

a
j D̄

a
k, where a is the colour index. The

final term ŪiD̄jD̄k is a colour singlet once we demand that it is totally anti-symmetric in
the colour indices: ŪiD̄jD̄k ≡ εabcŪ

a
i D̄

b
jD̄

c
k. The anti-symmetry property of the Levi-Civita

tensor εabc means that we must have j 6= k in λ′′ijk.
Our complete superpotential is then:

W = µHuHd + µ′iLiHu + yeijLiHdEj + yuijQiHuŪj + ydijQiHdD̄j

+λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k. (6.8)

The parameter µ, potentially complex, is a brand new supersymmetric parameter appearing
in the superpotential, with no corresponding parameter existing in the Standard Model La-
grangian. However, the Yukawa couplings yij are identical to the Standard Model Yukawa

8For some particular opinion of what is natural.
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couplings since they will be required to give mass to the Standard Model fermions after elec-
troweak symmetry breaking when the Higgs fields get a vev, see Section 6.9. The fate of the
other parameters will be discussed in the next section.

6.5 R-parity
The superpotential terms LHu, LLE and LQD̄ that we have written down in Eq. (6.8) all
violate lepton number conservation, and ŪD̄D̄ violates baryon number conservation. Such
terms do not exist in the Standard Model, although there is no symmetry forbidding their
existence there. Instead a seemingly accidental combination of what fields exist and the gauge
symmetries that limit their interactions means that there are no such tree-level interactions.
We call this an accidental symmetry of the Standard Model.

Allowing such terms in the MSSM would lead to, among other phenomenological problems,
processes like rapid proton decay, for example through p→ e+π0 as shown in Fig. 6.2, which
breaks both baryon number and lepton number. These are not observed in nature. We can
estimate the resulting proton life-time by noting that the exchange of a scalar particle (in
this example a strange squark s̃) creates an effective dimension-6 four-fermion interaction
Lagrangian term λūd̄eu with coupling

λ =
λ′112λ

′′
112

m2
s̃

, (6.9)

where the sparticle mass ms̃ comes from the scalar propagator in the diagram. The resulting
matrix element for the total proton decay process must then be proportional to |λ|2, which
has mass dimension M−4. Since decay width has mass dimension M , the phase space part of
the calculation must provide something of mass dimension M5. The only mass scale involved
in the problem is the proton mass mp, thus we approximate the phase space integration part
of the proton decay width by m5

p. We then have

Γp→e+π0 ∼ |λ|2m5
p = |λ′112λ′′112|2

m5
p

m4
s̃

. (6.10)

Figure 6.2: Possible Feynman diagram for proton decay with R-parity violating couplings
λ′′112 and λ′112.

The current measured lower limit on the lifetime from watching a lot of protons not decay
is τp→e+π0 > 1.6 · 1034 y [13], or, converting to seconds, τp→e+π0 > π · 107 s/y× 1.6 · 1034 y =
5.0 · 1041 s, which gives a limit on the width

Γp→e+π0 =
~
τ
<

6.582 · 10−25GeV s
5.0 · 1041 s

' 1.3 · 10−66GeV,
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so that we have the following very strict limit on the combination of the two couplings

|λ′112λ′′112| < 1.3 · 10−27
( ms̃

1 TeV

)2
. (6.11)

Such strict limits can be found on most of the lepton and baryon number couplings using
the measured properties of the Standard Model particles, with some exceptions for coupling
involving the second and third generation fermions.

To avoid all such lepton and baryon number couplings Fayet (1975) [14] introduced the
conservation of R-partity.

Definition: R-parity is a multiplicatively conserved quantum number given by

R = (−1)2s+3B+L

where s is a particle’s spin, B its baryon number and L its lepton number.

For all Standard Model particles, including all the scalar Higgs bosons, this gives R = 1, while
the superpartners all have R = −1. One usually defines the MSSM as conserving R-parity.
For the MSSM this excludes the terms LHu, LLĒ, LQD̄ and ŪD̄D̄ from the superpotential,9
leaving us with the R-partiy conserving superpotential

W = µHuHd + yeijLiHdEj + yuijQiHuŪj + ydijQiHdD̄j . (6.12)

The consequence of this somewhat ad hoc definition is that in all interactions the total
number of incoming and outgoing supersymmetric particles must be an even number 2n, so
that the total R-number is (−1)2n = 1. This leads to the following very important phe-
nomenological consequences:

1. All sparticles must be produced in pairs (ignoring the very low probability of producing
four or more).

2. Sparticles must annihilate in pairs.

3. The lightest supersymmetric particle (LSP) is absolutely stable, and every other
sparticle must decay down to the LSP (possibly in multiple steps).

6.6 Supersymmetry breaking terms in the MSSM

We can directly apply our previous arguments on gauge invariance, that we used when dis-
cussing the superpotential, on the general soft-breaking terms in Eq. (5.7) in order to deter-
mine which supersymmetry breaking terms are allowed in the MSSM, keeping also in mind
the requirement of R-party conservation.

9All the superpotential Yukawa terms lead to component field terms of the form Aiψjψk. If the scalar Ai

here is not a Higgs boson, then it is a superpartner and if none of the fermions come from a Higgs superfield
so that they are also a superpartner the term breaks R-parity conservation. This means that every Yukawa
term needs one, and only one, Higgs superfield to conserve R-parity. The superpotential mass terms have
component field terms of the form ψiψj . If one of the fermions here comes from a Higgs superfield, then it is
a superpartner, and if the other does not, the term breaks R-parity.
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Mass terms of the form

− 1

4T (R)q2
Mθθθ̄θ̄Tr[WAWA] + c.c.,

are allowed because they have the same gauge structure as the supersymmetric field strength
terms. In component fields only the fermions in the vector superfields survive, and are for
the MSSM:

Lsoft = −1

2
M1B̃

0B̃0 − 1

2
M2W̃

iW̃ i − 1

2
M3g̃

ag̃a + c.c.,

where Mi ∈ C. This gives six new parameters.
Yukawa terms

−1

6
aijkθθθ̄θ̄ΦiΦjΦk + h.c.,

are allowed when a corresponding term exist in the superpotential – meaning they are gauge
invariant. In component fields only the scalar parts of the superfields survive, and the allowed
terms are

Lsoft = −aeijL̃iHd l̃
∗
jR − auijQ̃iHuũ

∗
jR − adijQ̃iHdd̃

∗
jR + c.c.,

where we remind you that the H here refers to scalar parts of the Higgs superfield doublets,

Hd =

(
H+

u

H0
u

)
and Hd =

(
H0

d

H−
d

)
,

and
L̃i =

(
ν̃iL
l̃iL

)
and Q̃i =

(
ũiL
d̃iL

)
,

in the normal SU(2)L invariant construction. We can see that all of these terms are clearly R-
parity conserving, since they consist of two sparticles and one (Higgs) particle. The couplings
aij are all potentially complex valued, so this gives us 54 new parameters.

The mass terms
−1

2
bijθθθ̄θ̄ΦiΦj + h.c.,

are again only allowed for corresponding terms in the superpotential, i.e.

Lsoft = −bHuHd + c.c.,

where b is potentially complex valued, which gives us 2 new parameters.10 Tadpole terms are
not allowed, as there are no tadpoles in the superpotential.

Mass terms
−m2

ijθθθ̄θ̄Φ
†
iΦj ,

are allowed because they have the same gauge structure as the supersymmetric kinetic terms.
In component fields again only the scalar fields survive, and in the MSSM they are:

Lsoft = −(mL
ij)

2L̃†
i L̃j − (me

ij)
2 l̃∗iR l̃jR − (mQ

ij)
2Q̃†

i Q̃j − (mu
ij)

2ũ∗iRũjR − (md
ij)

2d̃∗iRd̃jR

−m2
Hu
H†

uHu −m2
Hd
H†

dHd, (6.13)
10The coupling b is sometimes written Bµ where B is a factor that indicates how different the coupling is

from the corresponding coupling in the superpotential.
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where the m2
ij are potentially complex valued, however, also hermitian. This gives rise to

47 new parameters. Despite technically being allowed the MSSM ignores the “maybe-soft”
terms in Eq. (5.8).

In total, after using our freedom to choose our basis for the fields wisely in order to remove
what freedom we can, the MSSM has 105 new parameters compared to the Standard Model,
104 of these are soft-breaking terms and µ is the only new parameter in the superpotential.

6.7 Renormalisation group equations

Renormalisation, the removal of infinities from field theory predictions, introduces a fixed
scale µ at which the fields and the parameters of the Lagrangian, the couplings, are defined.
For example, the charge of the electron is not simply the bare charge e0 given in the original
Lagrangian, but a charge at a given energy scale µ, e(µ), which is the scale at which the theory
wants to describe the electron, and which we can measure in an experiment at that scale.
Describing the scattering an electron at very high energy will require a different value of e(µ)
than at a low energy. This scale dependence in the coupling is an experimentally well verified
fact.11 The relationship between a bare field or coupling, and the (dressed) renormalised field
or coupling can be found from the so-called renormalisation constant Z that renormalises
the parameter. For example for a field φ, φ = Zφφ0, and for coupling g, g = Zgg0.

However, since µ is not an observable per se but in principle a choice of how to write down
the theory to compare to an experiment (at which energy scale to write down the Lagrangian),
the renormalised effective action S for a physical process should be invariant under a change
of µ, which is expressed as:12

µ
d

dµ
S(Φ, λ, µ) = 0, (6.14)

where λ is a generic name for the couplings of the theory and Φ represents the (super)fields
that have been renormalised.13 This equation can be re-written in terms of partial derivatives(

µ
∂

∂µ
+ βλ

∂

∂λ
+ nΦγΦ

)
S(Φ, λ, µ) = 0, (6.15)

which is the renormalisation group equation (RGE). Here βλ is the β-function:

βλ ≡ µ
∂λ

∂µ
. (6.16)

which describes the behaviour of a Lagrangian parameter λ as a function of the energy scale
µ away from the value where it was defined, often denoted µ0. The anomalous dimension

11It is also impossible to avoid if we accept that the electron is a point particle. Since the potential has
the form V (r) ∝ e/r an infinite energy would appear unless we were somehow to modify the charge at high
energies, or equivalently, short distances.

12It is more common in the literature to find this expressed in terms of the Green’s function G(n) for a
given n-point correlation, i.e. a process with n-field insertions. In this form the equation is known as the
Callan–Symanzik equation.

13In Sec. 4.9 we mentioned how the non-renormalisation theorem implies that we do not need to renormalise
the coupling constants of the superpotential separately. In the MSSM this is the µ coupling (not to be confused
with the energy scale here also called µ) and the Yukawa couplings. This will now have the consequence that
their renormalisation can be expressed in terms of the renormalisation of the fields.
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γ describes the scaling of the fields and the factor n gives the number of fields (of a given
kind) in the effective action. The RGE balances the different contributions to sum to zero.

The reason for keeping around the factor of µ in the definition of the β-function is that it
typically changes very slowly over large differences in energy scale, so it is practical to change
variable to t = ln µ

µ0
, so that µ ∂

∂µ = ∂
∂t and βλ = ∂λ

∂t . If the β-functions of a quantum field
theory are zero at some value of the couplings, then the value of the theory is said to be
scale-invariant.

As an example of finding a β-function, take the relationship between a bare gauge cou-
pling constant g0 and the renormalised coupling g. This is given by (in d = 4 − ε dimen-
sions):14

g0 = Zggµ
−ε/2.

Then, differentiating both sides with respect to µ,

0 =
∂Zg

∂µ
gµ−ε/2 + Zg

∂g

∂µ
µ−ε/2 − ε

2
Zggµ

−ε/2−1

µ
∂g

∂µ
=

ε

2
g − gµ

Zg

∂Zg

∂µ

µ
∂g

∂µ
=

ε

2
g − gµ

∂

∂µ
lnZg,

and taking the limit ε→ 0:
βg ≡ µ

∂g

∂µ
= −gγg,

where we have defined the anomalous dimension of g

γg = µ
∂

∂µ
lnZg. (6.17)

The renormalisation constant Zg can now be calculated to the required loop-order to find
the β-function to that order, and in turn the running of the coupling constant with µ. By
evaluating to one-loop order we can find that for our particular example of a gauge coupling
constant for a generic supersymmetric model

γg |1−loop = − 1

16π2
g2

(∑
R

T (R)− 3C(A)

)
, (6.18)

where the sum of Dynkin indices T (R) is over all superfields that transform under a repre-
sentation R of the gauge group in question, and C(A) is the quadratic Casimir invariant
of the adjoint representation A of the vector field under the gauge group

C(A)δij = (T aT a)ij .

For the adjoint representation of U(1) this is 0, and for SU(N) this is N . The running of the
coupling constants is particularly important since it will later lead us to the concept of gauge
coupling unification.

As a second relevant example, for the soft-breaking parameters Mi in (5.7) we have the
one-loop β-functions

βMi ≡
d

dt
Mi =

1

16π2
g2iMi

(
2
∑
R

T (R)− 6C(A)

)
. (6.19)

14The factor µ−ε/2 is there to ensure that the scale of g0 is correct.
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6.8 Gauge coupling unification

The one-loop β-functions for gauge couplings in a generic supersymmetric model were given in
Eq. (6.18). With the MSSM field content and the gauge couplings discussed in this chapter:15

g1 =

√
5

3
g′, g2 = g, g3 = gs,

we arrive at
βgi |1−loop =

1

16π2
big

3
i , (6.20)

with in the MSSM
bMSSM
i =

(
33

5
, 1,−3

)
.

For comparison, the same result in the Standard Model is

bSM
i =

(
41

10
,−19

6
,−7

)
.

The values of bi for the MSSM are found from the Casimir invariant and the Dynkin index
of the gauge group representations

C(A)SU(3) = 3, C(A)SU(2) = 2, C(A)U(1) = 0,

and
T (R)SU(3) =

1

2
, T (R)SU(2) =

1

2
, T (R)U(1) =

3

5
Y 2,

where for example b3 = 1
2 · 12− 3 · 3 = −3 in the MSSM, because, after careful counting, we

have twelve quark/squark scalar superfields transforming under SU(3)C .
At one-loop order we can do a neat rewrite using αi ≡

g2i
4π . Since

d

dt
α−1
i = −2

4π

g3i

d

dt
gi,

we have:
βα−1

i
≡ d

dt
α−1
i = −8π

g3i

1

16π2
g3i bi = − bi

2π
.

Thus α−1 runs linearly with t at one loop.
By running the couplings α−1

i from their values measured at the electroweak scale to high
energies it is observed that in the MSSM the coupling constants intersect at a single point,
which they do not naturally do in the Standard Model. See Fig. 6.3, taken from Martin [15].
The common assumption made is then that a unified gauge group, e.g. SU(5) or SO(10),
is broken at that scale, called the grand unification theory scale or GUT-scale, down to
the Standard Model gauge group. This scale is µGUT ≈ 2 · 1016GeV, about two orders of
magnitude below the Planck scale.

15The normalisation choice for g1 may seem a bit strange, however, this is the correct numerical factor when
for example breaking a unified group such as SU(5) or SO(10) down to the Standard Model gauge group. This
factor might be different with a different unified group.
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Figure 6.3: The RGE evolution of the inverse gauge couplings α−1
i (Q) in the Standard Model

(dashed lines) and the MSSM (solid lines). In the MSSM case, the sparticle mass thresholds
are varied between 250 GeV and 1 TeV and α3(mZ) between 0.113 and 0.123 to create the
bands shown by the red and blue lines. Two-loop effects are included.

Something funny happens to the gaugino soft-mass parameters Mi if we look at their
running. From (6.19) the one-loop β-functions for the Mi in the MSSM are

βMi |1−loop ≡ d

dt
Mi =

1

8π2
g2iMibi. (6.21)

As a consequence all three ratios Mi/g
2
i are scale independent at one loop. To see this let

R =Mi/g
2
i , then

βR ≡ dR

dt
=

dMi
dt g

2
i −Mi

d
dtg

2
i

g4i
=

1
8π2 g

2
iMibi · g2i −Mi · 2gi · 1

16πg
3
i bi

g4i
= 0. (6.22)

In other words, R does not change with scale t.
If we now use that the coupling constants unify at the GUT scale to the coupling gu, and

assume that the soft-masses are the same at that scale m1/2 = M1(µGUT) = M2(µGUT) =
M3(µGUT),16 it follows that

M1

g21
=
M2

g22
=
M3

g23
=
m1/2

g2u
, (6.23)

at all scales!17 This is a very powerful and predictive assumption. Because of the relationship
16Again, not unreasonable if the spontaneous symmetry breaking mechanism acts uniformly for all the

gauginos.
17At one-loop level.
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between the electroweak couplings and the electric charge, e = g′ cos θW = g sin θW , it leads
to the following relation

M3 =
αs

α
sin2 θWM2 =

3

5

αs

α
cos2 θWM1, (6.24)

which, inserting values for the fine structure constant, the strong coupling, and the Weinberg
angle, numerically predicts

M3 :M2 :M1 ' 6 : 2 : 1

at the electroweak scale. We will return to the implications of this when discussing the
gauginos in Sec. 6.12.

In Fig. 6.4, again taken from Martin [15], we show the running of all the types of soft
parameters in the MSSM. We assume unified soft-mass parameters m1/2 for the gauginos and
m0 for the Higgs and sfermions at the GUT scale. Shown is the gaugino mass parameters
Mi (solid black), the Higgs mass parameters m2

Hd/u
(dot-dashed green), the third generation

sfermion soft terms md3 , mQ3 , mu3 , mL3 and me3 (dashed red and blue, listed from top to
bottom), and the corresponding first and second generation terms (solid red and blue lines).
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Figure 6.4: The RGE evolution of soft-mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at 2·1016GeV. The parameter values used
for this illustration were m0 = 200GeV, m1/2 = −A0 = 600GeV, tanβ = 10, and sgn(µ) = +.

6.9 Radiative Electroweak Symmetry Breaking
In the Standard Model the gauge symmetries prevent mass terms for both vector bosons
and fermions. The W and Z bosons, and all the fermions are given mass by spontaneously
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electroweak symmetry breaking (EWSB), which is induced by the shape of the scalar potential
for the Higgs field H, which is an SU(2)L doublet of scalar fields:

V (H) = µ2|H|2 + λ|H|4, (6.25)

with |H|2 = H†H.
Here, the requirement for successful EWSB is that λ > 0 and µ2 < 0.18 The first of these

is a consistency requirement that ensures that the potential is bounded from below, i.e.
that in the limit of large field values the potential does not turn to negative infinity. The
second ensures that the minimum of the potential, the vacuum, is not given by zero field
values, i.e. that the Higgs field has a vacuum expectation value (vev).

In supersymmetry we found the following general scalar potential in Eq. (4.24) for unbro-
ken supersymmetry,

V (A,A∗) =
∑
i

∣∣∣∣∂W∂Ai

∣∣∣∣2 + 1

2

∑
a

g2(A∗T aA)2 > 0, (6.26)

where the first part is due to the elimination of the auxiliary F -fields in the scalar superfields,
while the second part is due to the elimination of the auxiliary D-fields in the vector super-
fields. In addition we have to add all terms containing only relevant scalar fields from the
soft breaking terms in Eq. 5.9.

For the scalar Higgs component fields in the MSSM this gives the potential

V (Hu,Hd) = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2) (from F -terms)

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 (from D-terms)

+
1

2
g2|H+

u H
0
d
∗ +H0

uH
−
d

∗|2

+m2
Hu

(|H0
u|2 + |H+

u |2) +m2
Hd

(|H0
d |2 + |H−

d |2) (from soft breaking terms)
+[b(H+

u H
−
d −H0

uH
0
d) + c.c.] (6.27)

This potential has 8 d.o.f. from 4 complex scalar fields H+
u , H0

u, H0
d and H−

d . At the same
time it has 6 parameters: the two Standard Model gauge couplings g and g′, the magnitude
of the supersymmetric parameter µ, and the three soft-breaking parameters b, m2

Hu
and m2

Hd
.

Notice how if b = m2
Hu

= m2
Hd

= 0, meaning no supersymmetry breaking terms, the Higgs
potential has a global minimum at V = 0 for zero values of all the Higgs fields. In this
case there is no EWSB, so EWSB is intimately connected to supersymmetry breaking in the
MSSM.

We now want to do as in the Standard Model and break SU(2)L × U(1)Y → U(1)em
in order to give masses to gauge bosons and SM fermions.19 To do this we need to show
that, and under which conditions, Eq. (6.27) has: i) a minimum for finite, i.e. non-zero, field
values, ii) that this minimum has a remaining U(1)em symmetry and iii) that the potential is
bounded from below. We will here restrict our analysis to tree level, ignoring loop effects on
the potential.

18This is called the Mexican hat or wine bottle potential, depending on preferences.
19You may ask why we can not use the soft-terms from the spontaneous breaking of supersymmetry to do

this. However, the soft-terms are unable to effectively provide masses to vector bosons and fermions because
they deal (mostly) with scalar fields.
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We start by using our SU(2)L gauge freedom, picking a gauge so that we rotate away
any field value for H+

u at the minimum of the potential. So without loss of generality we
can use that H+

u = 0 at the minimum in what follows. At the minimum we must also have
∂V/∂H+

u = 0 since it is a minimum, and by explicit differentiation of the potential one can
show that H+

u = 0 then also leads to H−
d = 0. This is good and proper since it guarantees

our item ii), that U(1)em is a symmetry for the minimum of the potential, since the charged
fields then have no vevs.

We are now left with the following potential only in terms of the uncharged Higgs fields
H0

u and H0
d (after the SU(2)L gauge choice and at the minimum):

V (H0
u,H

0
d) = (|µ|2 +m2

Hu
)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 − (bH0

uH
0
d + c.c.) (6.28)

We can now absorb a complex phase in H0
u or H0

d , in order to take b to be real and positive.
This does not affect other terms because they are protected by absolute values. The minimum
must also have the total phase of H0

uH
0
d real and positive, to get an as large as possible

negative contribution from the b term, which is the only term that can be negative. Thus the
vevs vu ≡ 〈H0

u〉 and vd ≡ 〈H0
d〉 must have opposite phases. By the remaining U(1)Y gauge

symmetry of the potential, which is effectively a phase rotation, and the fact that H0
u and H0

d

have opposite hypercharge, we can transform vu and vd so that they are real and have the
same sign. For the potential to have a negative mass term, and thus fulfill point i) above, we
must then have

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (6.29)

Since we have broken supersymmetry we must also check that the potential is actually
bounded from below, our point iii), which was guaranteed for a supersymmetric vacuum. For
large |H0

u| or |H0
d | the quartic gauge terms in (6.28) blows up to save the potential, except

for |H0
u| = |H0

d |, the so-called D-flat directions. This means that we must also require

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (6.30)

To summarise what we have learnt so far: at the minimum of the Higgs potential we know
that there exists a gauge choice so that the expectation values of the charged Higgs component
fields are zero, 〈H+

u 〉 = 0 and 〈H−
d 〉 = 0, and we fulfil the condition for the existence of an

extremal point in the neutral Higgs component fields

∂V

∂H0
u

=
∂V

∂H0
d

= 0. (6.31)

In addition, for the minimum to have non-zero field values that break EWSB, and for the
potential to be bounded from below, the parameters of the potential must simultaneously
fulfil the inequalities

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

),

2b < 2|µ|2 +m2
Hu

+m2
Hd
.

The resulting non-zero expectation values at the minimum for the neutral Higgs component
fields are denoted vu and vd.
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To satisfy (6.29) and (6.30), a negative value for m2
Hu

(or m2
Hd

) can help, in particular if
|µ|2 +m2

Hu
< 0, as that automatically fulfils (6.29). Such a negative value is indeed perfectly

allowed as a parameter in the Lagrangian. No negative particle masses will result.
In fact, if we assume that mHd

= mHu at some scale µ, for example the GUT scale, then
(6.29) and (6.30) cannot be simultaneously be satisfied at that scale. However, to 1-loop the
RGE running of these mass parameters is:

16π2βm2
Hu

≡ 16π2
dm2

Hu

dt
= 6|yt|2(m2

Hu
+m2

Q3
+m2

u3
) + ...

16π2βm2
Hd

≡ 16π2
dm2

Hd

dt
= 6|yb|2(m2

Hd
+m2

Q3
+m2

d3) + ...,

where yt and yb are the top and bottom quark Yukawa couplings, andmQ3 = mQ
33,mu3 = mu

33,
and md3 = md

33, in a simplification of our previous notation for the soft-masses in Sec. 6.6.
Because yt � yb, m2

Hu
runs much faster with scale than m2

Hd
. If the parameters start out the

same at some high scale, say from some universal supersymmetry breaking effect, as we go
down to the electroweak scale m2

Hu
becomes significantly smaller than m2

Hd
, and may become

negative, fulfilling the EWSB criteria. For an illustration, see Fig. 6.4, where the running of
µ2 + m2

Hu
and µ2 + m2

Hu
is shown. It is this property of starting our from some universal

Higgs parameters at a high scale, which then by RGE effects break electroweak symmetry at
lower scales, that is termed radiative EWSB (REWSB). Thus, in the MSSM with universal
soft terms at a high scale there is an explanation why EWSB happens, it is not put in by
hand in the potential as it is in the Standard Model.

Following EWSB, to get the familiar vector boson masses measured by experiment, the
vevs need to satisfy the constraint from the electroweak parameters:

v2u + v2d ≡ v2 =
2m2

Z

g2 + g′2
≈ (174 GeV)2. (6.32)

Thus we have one free parameter coming from the two Higgs vevs in the MSSM. We can write
this as

tanβ ≡ vu
vd
,

where by convention 0 < β < π/2, so that 0 < tanβ <∞.
Using the condition for the existence of an extremal point in (6.31), the two non-SM

parameters b and |µ| can be eliminated as free parameters from the model, however, not the
sign of µ. Alternatively, we can choose to eliminate m2

Hu
and m2

Hd
. You can look at this

as giving away the freedom of these parameters to the vevs, and then fixing one vev by the
electroweak constraint, and using tanβ for the other.

Let us make a little remark here on the parameter µ. Given the criteria for REWSB above
we have what is called the µ problem. The soft terms all get their scale from some common
mechanism at some common high energy scale, it is assumed, setting the parameters b, m2

Hu

and m2
Hd

in the Higgs potential. However, µ is a mass term in the superpotential (the only
one in fact) and could a priori take any value, evenMP . Why is µ then of the order of the soft
terms, which is what allows us to achieve REWSB, when a much larger value would prevent
us from fulfilling the criteria in (6.29) and (6.30)?20

20This problem can be solved in extensions of the MSSM such as the Next-to-Minimal Supersymmetric
Standard Model (NMSSM).
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6.10 Higgs boson properties
Of the eight d.o.f. in the scalar potential for the Higgs component fields three are Goldstone
bosons that get eaten by Z and W± to give them masses. The remaining five d.o.f. form two
neutral scalars h, H, two charged scalars H± and one neutral pseudo-scalar (CP-odd) A.21

At tree level one can show that these have the masses:

m2
A =

2b

sin 2β
= 2|µ|2 +m2

Hu
+m2

Hd
, (6.33)

m2
h,H =

1

2

(
m2

A +m2
Z ∓

√
(m2

A −m2
Z)

2 + 4m2
Zm

2
A sin2 2β

)
, (6.34)

m2
H± = m2

A +m2
W . (6.35)

As a consequence mA and tanβ can be used to parametrise the masses of the Higgs sector (at
tree level), and H, H± and A are in principle unbounded in mass since they grow as b/ sin 2β.
However, at tree level the lightest Higgs boson is restricted to

mh < mZ | cos 2β| < 91.2 GeV. (6.36)

In contrast we have the current best measurement of the Higgs boson mass of mh = 125.10±
0.14GeV, combining results from the LHC [16].

Fortunately, there are large loop-corrections or the MSSM would have been excluded
already.22 Because of the size of the Yukawa couplings the largest corrections to the mass
of the lightest Higgs comes from loops with top quarks and its supersymmetric partners, the
scalar top quarks, or stops, t̃L and t̃R. See Fig. 4.1 for the relevant Feynman diagrams. In the
limit where the mass of the stop quarks are larger than the top, mt̃R

,mt̃L
� mt, and with

stop mass eigenstates close to the chiral eigenstates (more on this later), we get the dominant
loop correction

∆m2
h =

3

4π2
cos2 α y2tm

2
t ln

(
mt̃L

mt̃R

m2
t

)
, (6.37)

where α is a mixing angle for h and H with respect to the superfield component fields H0
u

and H0
d , given by

sinα

sinβ
= −

m2
H +m2

h

m2
H −m2

h

, (6.38)

at tree level.
With this and other corrections the upper bound on the lightest Higgs boson mass is

weaker:
mh ≤ 135 GeV,

assuming a common sparticle mass scale of around mSUSY ≤ 1TeV. Higher values for the
sparticle masses give large fine-tuning and weaken the bound very little because of the loga-
rithm in Eq. (6.37). The bound can be further weakened by adding extra field content to the
MSSM, e.g. as in the NMSSM, but there is an upper perturbative limit of mh ≈ 150GeV.

21In addition to the scalars, we know that the Higgs supermultiplets contain four fermions, H̃0
u, H̃0

d , H̃+
u and

H̃−
d (higgsinos). We will see later that these mix with the fermion partners of the gauge bosons (gauginos).
22It is worth pointing out here that the MSSM, despite its many parameters, is a falsifiable theory. For

example, had the Higgs boson mass been ∼ 15GeV higher, which is perfectly allowed in the Standard Model,
the MSSM would have been excluded.
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It is very interesting to discuss what the Higgs discovery actually implies for low-energy
supersymmetry. As can be seen from the above numbers it requires rather large squark masses
even in the favourable scenario with tanβ � 1 where the tree level mass is mh ∼ 90 GeV. A
naive estimate from Eq. (6.37) gives mt̃ > 1 TeV. However, this does not take into account
possible negative contributions to the Higgs mass from heavy gauginos (fermions in the vector
superfields), and possible increases in the stop contribution due to tuning of the mixing of
the chiral eigenstates t̃L and t̃R, in the mass eigenstates t̃1 and t̃2.

Since the lightest stop quark is expected to be the lightest squark in scenarios with uni-
versal soft masses at some high scale – the reasoning here is the large downward RGE running
of mQ

33 from a common squark soft mass at some high scale due to the large top Yukawa cou-
pling – the expected sparticle spectrum lies mostly above 1 TeV, with the possible exception
of gauginos/higgsinos. This points to so-called Split-SUSY scenarios with heavy scalars
and light gauginos, and a relatively large degree of fine-tuning. If one can live with this little
hierarchy problem, it will explain why no signs of supersymemtry have been seen yet at the
LHC.

If you are willing to accept fine-tuning of the stop mixing instead, or come up with a good
reason for why the mixing should be just-so to give a maximal Higgs mass, you can keep
fairly light stop quarks. With the addition of light higgsinos and a light gluino the model is
then technically natural, these scenarios are called Natural SUSY and could be within the
current or near future reach of the LHC. The problem with these models, as we shall see, is
that the higgsinos are degenerate, and thus difficult to detect.

To do calculations with the Higgs bosons in the MSSM we need the Feynman rules that
result from the relevant Lagrangian terms. Since these have been listed elsewhere we will not
repeat them here, but recommend in particular the PhD-thesis of Peter Richardson [17], where
they can be found in Appendix A.6, including all interactions with fermions and sfermions.
These can also be found, together with all gauge and self-interactions, in the classic paper
by Gunion and Haber [18]. Note that in this paper a complex Higgs singlet appears in some
interactions because they perform their calculations in the NMSSM, but this can safely be
ignored and all other results carry over into the MSSM.

6.11 The gluino
The fermion partner of the Standard Model gluon g is called the gluino g̃, and as the gluon
it is a colour octet Majorana fermion. We usually talk about the gluino as being one particle,
however, as an adjoint representation of SU(3) there are actually eight (thus octet) distinct
gluons, and we write g̃a when we want to make the distinction. As a colour octet it has
nothing to mix with in the MSSM – this is still true even if we allow for R-parity violation –
and at tree level the mass is given by the soft term M3. Since it lives in the same superfield
as the massless gluon it would otherwise had zero mass.

The one complication for the gluino is that it is strongly interacting so M3(µ) runs,
relatively speaking, quickly with energy scale µ. It is useful to instead talk about the scale-
independent pole-mass mg̃, meaning the pole of the renormalised propagator,

i

/p−m0 − Σ(/p)
,

where m0 is the Lagrangian mass, Σ is the self-energy, and the pole mass is the solution
/p = m to the equation /p−m0−Σ(/p) = 0. For the gluino, including all one-loop effects in the
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self-energy due to gluon exchange and squark loops, see Fig. 6.5, in the DR renormalisation
scheme we get:23

mg̃ 'M3(µ)

1 + αs

4π

15 + 6 ln
µ

M3
+
∑
all q̃

Aq̃

 ,
where the squark loop contribution Aq̃ for a given squark depends on the squark mq̃ and
corresponding quark mq masses, and are given by

Aq̃ =

∫ 1

0
dxx ln

(
x
m2

q̃

M2
3

+ (1− x)
m2

q

M2
3

− x(1− x)− iε

)
.

Due to the 15-factor the correction can be significant (colour factor).

Figure 6.5: One loop contributions to the gluino mass.

Complete Feynman rules for gluinos can be found in Appendix C of the classic MSSM
reference paper of Haber & Kane [19]. A more comprehensible alternative may be Appendix
A.3 from the PhD-thesis of Bolz [20]. This thesis also provides a diagramatic prescription
of how to handle clashing fermion lines that can appear with Majorana fermions such as the
gluino.

6.12 Neutralinos & Charginos
In the MSSM we have a bunch of fermion fields that can mix when electroweak symmetry
is broken and we do not have to care about the SU(2)L × U(1)Y charges of the fields, only
the charges under the remaining U(1)em symmetry matter. The candidates for mixing are
the (Majorana) fermions from the U(1) and SU(2) vector superfields B0 and W a called the
gauginos:

B̃0 (bino), W̃ 0 (neutral wino), W̃± (charged wino),

and the fermions from the Higgs superfields Hu and Hd, called higgsinos:

H̃+
u , H̃0

u, H̃−
d and H̃0

d .

Together these are called the electroweakinos.
23Note that the right-hand side here is µ dependent since the expression is only to finite order.
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In the Standard Model the neutral gauge fields B0
µ and W 0

µ mix into the photon γ and
the Z-boson. The neutral gauginos can mix the same way into the states

γ̃ = N ′
11B̃

0 +N ′
12W̃

0 (photino), (6.39)
Z̃ = N ′

21B̃
0 +N ′

22W̃
0 (zino). (6.40)

However, more generally, they also mix with the neutral higgsinos to form the four neutrali-
nos:24

χ̃0
i = Ni1B̃

0 +Ni2W̃
0 +Ni3H̃

0
d +Ni4H̃

0
u, i = 1, 2, 3, 4, (6.41)

where Nij indicates size of the component of each of the fields in the gauge eigenstate basis

ψ̃0T =
(
B̃0, W̃ 0, H̃0

d , H̃
0
u

)
. (6.42)

In the gauge eigenstate basis the neutralino mass term can be written as

Lχ−mass = −1

2
ψ̃0TMχ̃ψ̃

0 + c.c.,

where the mass matrix Mχ̃ is found from the bilinear terms in the Lagrangian with gauge
eigenstates to be

Mχ̃ =


M1 0 − 1√

2
g′vd

1√
2
g′vu

0 M2
1√
2
gvd − 1√

2
gvu

− 1√
2
g′vd

1√
2
gvd 0 −µ

1√
2
g′vu − 1√

2
gvu −µ 0

 . (6.43)

In this matrix, the upper left diagonal part comes from the soft terms for the B̃0 and the
W̃ 0, the lower right off diagonal matrix comes from the superpotential term µHuHd, while
the remaining entries come from Higgs-higgsino-gaugino terms from the kinetic part of the
Lagrangian, e.g. H†

ue
1
2
gσW+g′BHu, which become mass terms when one of the neutral Higgs

component fields acquires a vev. With the Z-mass condition on the vevs (6.32) we can also
write

1√
2
g′vd = cosβ sin θWmZ , (6.44)

1√
2
g′vu = sinβ sin θWmZ , (6.45)

1√
2
gvd = cosβ cos θWmZ , (6.46)

1√
2
gvu = sinβ cos θWmZ . (6.47)

The mass matrix can now be diagonalised to find the χ̃0
i masses. If N is a unitary

diagonalisation matrix for Mχ̃, we can write25

Lχ−mass = −1

2
ψ̃0TNTN∗Mχ̃N

†Nψ̃0 + c.c.,= −1

2
χ̃0TDχ̃0 + c.c.,

24The neutral higgsinos are also Majorana fermions despite coming from scalar superfields. Unlike the
(s)fermion superfields the Higgs superfields have no H̄ chiral partners to supply the left–right Weyl spinor
combinations required for Dirac fermions. Thus the neutralinos are Majorana fermions.

25A symmetric matrix is always unitary diagonalisable.
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where D = N∗Mχ̃N
† is diagonal and contains the real and non-negative neutralino masses

mχ̃0
i
≥ 0 that are the eigenvalues of Mχ̃. We also see that N gives the mixing of the gauge

eigenstates ψ̃0 into the mass eigenstates χ̃0 = Nψ̃0. We number the neutralino mass eigen-
states in (6.41), or, equivalently, sort the mass eigenvalues after diagonalisation, so that the
neutralinos are numbered from lightest to heaviest. The neutralinos also have loop corrections
to their masses coming from the self energies, however, since the coupling is weak – in the
technical sense – these are usually significantly smaller than for the gluino.

The mass parameters of the neutralino mass matrix may in general be complex, leading
to complex entries in N . Redefinition of fields can rotate away either the M1 or M2 phase,
to make the parameter real and positive, but not both of these, and not the µ-phase. These
phases give rise to problematic CP-violation that can easily be in contradiction with exper-
iments. Therefore, M1, M2 and µ are often just assumed to be real in order not to violate
experimental bounds. In this case a diagonalisation matrix N can be found that is orthogonal,
meaning with only real entries, which simplifies calculations. In this case the diagonal mass
values in D are not guaranteed to be positive. This does not imply negative fermion masses,
but instead indicates a phase factor that must be incorporated into Feynman rules for the
interactions of the mass eigenstates.

One particularly interesting solution to the diagonalisation is in the limit where EWSB is
a small effect, mZ � |µ ±M1|, |µ ±M2|, and when we have the hierarchy M1 < M2 � |µ|.
The mass eigenvalues scale with the size of the supersymmetric parameters, which makes
the lightest neutralino bino-like, χ̃0

1 ≈ B̃0, the next-to-lightest wino like, χ̃0
2 ≈ W̃ 0, and

χ̃0
3,4 ≈ 1√

2
(H̃0

d ± H̃0
u), and the masses are to first order in 1/µ:

mχ̃0
1

= M1 +
m2

Z sin2 θW sin 2β

µ
+ . . . (6.48)

mχ̃0
2

= M2 −
m2

W sin 2β

µ
+ . . . (6.49)

mχ̃0
3,4

= |µ|+
m2

Z

2µ
(sgnµ∓ sin 2β) + . . . (6.50)

Since the LSP is stable in R-parity conserving theories the lightest neutralino is an excel-
lent candidate for dark matter. In particular since a neutralino with mass around 100 GeV
has a natural relic density close to the measured dark matter density of the Universe. We
will return to this issue in Chapter 8.

From the charged electroweakinos we can make charginos χ̃±
i that are Dirac fermions

with mass term
Lχ±−mass = −1

2
ψ̃±TMχ±ψ̃± + c.c.,

where the gauge eigenstate basis is ψ̃±T = (W̃+, H̃+
u , W̃

−, H̃−
d ), and the mass matrix is given

by

Mχ̃± =


0 0 M2 gvd
0 0 gvu µ
M2 gvu 0 0
gvd µ 0 0

 .
Here the M2 terms come from the soft terms for the charged winos W̃±, the µ terms come
from the superpotential as above, while the remaining terms come from the kinetic terms.
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We can here re-write

gvd =
√
2 cosβ mW , (6.51)

gvu =
√
2 sinβ mW . (6.52)

Diagonalising this mass matrix gives the mass eigenstates χ̃±
i , i = 1, 2. The eigenvalues

are doubly degenerate, giving the same masses to the χ̃+
i and χ̃−

i particle and anti-particle
pairs, and are explicitly given as:

mχ̃±
1,2

=
1

2

(
|M2|2 + |µ|2 + 2m2

W ∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin2 β|2

)
.

In the same limit of small EWSB effects discussed above we have a wino-like lightest
chargino, χ̃±

1 ≈ W̃±, and a higgsino-like heavy chargino, χ̃±
2 ≈ H̃+

u /H̃
−
d , with masses

mχ̃±
1

= M2 −
m2

W

µ
sin 2β + . . . , (6.53)

mχ̃±
2

= |µ|+
m2

W

µ
sgnµ+ . . . . (6.54)

Note that in this limit mχ̃0
2
' mχ̃±

1
since they are both wino-like and governed by the M2 soft

mass.
We saw earlier that the soft-mass ratio

M3 :M2 :M1 ' 6 : 2 : 1,

appears at a scale of around µ = 1TeV if the same soft-masses unify at the GUT-scale.
From our above discussion, as long as |µ| � M1,M2, this gives the very predictive mass
relationships mg̃ ' 6mχ̃0

1
, mχ̃0

2
' mχ̃±

1
' 2mχ̃0

1
. However, it is important to remember that

this often used relationship is based on the conjecture of gauge coupling unification, and the
unification of gaugino soft masses!

We should mention that some authors prefer other symbols for the neutralinos and
charginos. Common examples are Ñi or Z̃i for neutralinos, and C̃i or W̃i (again!) for the
charginos.

Feynman rules for charginos & neutralinos can again be found in Haber & Kane [19].

6.13 Sleptons & Squarks

The sfermions, the scalar partners of the Standard Model fermions, the quarks and leptons,
consists of the squarks and the sleptons. These inherit the interactions of their partner
fermions since they live in the same superfields.

For their masses, reading of from the MSSM Lagrangian, including the possible soft-
breaking terms, there are multiple tree-level contributions to the sfermion masses. In the
following discussion F̃i represents a generic SU(2)L doublet of sfermions with generation
index i, for example Q̃i = (ũiL, d̃iL), while f̃iR represents a singlet, for example ũiR.

We can make the following list of mass terms:
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i) Under the reasonable assumption that soft masses are (close to) diagonal26 the sfermions
get contributions −m2

Fi
F̃ †
i F̃i and −m2

fi
f̃∗iRf̃iR from the soft terms in (6.13). These are

typically dominant.

ii) There are F -term contributions that come from Yukawa terms in the superpotential of
the form yfFHK̄, where F and K̄ are two scalar superfields with sfermions, and H is
one of the two Higgs superfields. From the contribution

∑
|Wi|2 to the scalar potential

these give Lagrangian terms y2fH0∗H0f̃∗iLf̃iL and y2fH
0∗H0f̃∗iRf̃iR. After EWSB when

the Higgs field gets a vev we then get the mass terms m2
f f̃

∗
iLf̃iL and m2

f f̃
∗
iRf̃iR, where

mf = vu/d yf . These are only significant for large Yukawa coupling yf , and give the same
mass as their Standard Model fermion partner gets from the same Yukawa terms.

iii) There are also so-called hyperfine terms that come from D-terms
∑
g2(A∗T aA)2 in the

scalar potential that give Lagrangian terms of the form (sfermion)2(Higgs)2 when one of
the scalar fields A is a neutral Higgs field, and the other is a sfermion. Under EWSB,
when the Higgs field gets a vev these become mass terms. They contribute with a mass

∆F = (T3F g
2 − YF g

′2)(v2d − v2u) = (T3F −QF sin2 θW ) cos 2β m2
Z ,

where the weak isospin, T3, hypercharge, Y , and electric charge, Q, are for the left-
handed supermultiplet F to which the sfermion belongs. However, these contributions
are usually quite small.

iv) Furthermore, there are also F -terms that combine scalars from the µHuHd term and
Yukawa terms yfFHK̄ in the superpotential. These give Lagrangian terms−µ∗H0∗yf f̃Lf̃

∗
R.

With a Higgs vev this gives mass terms −µ∗vu/d yf f̃∗Rf̃L + c.c.

v) Finally, the soft Yukawa terms of the form af F̃Hf̃
∗
R with a Higgs vev give mass terms

afvu/df̃Lf̃
∗
R + c.c.27

For the first two generations of sfermions, terms of type ii), iv) and v) are small due to
small Yukawa couplings. Then the sfermion masses are for example

m2
ũL

= m2
Q1

+∆ũL, (6.55)
m2

d̃L
= m2

Q1
+∆d̃L, (6.56)

m2
c̃L

= m2
Q2

+∆c̃L, (6.57)
m2

s̃L
= m2

Q2
+∆s̃L, (6.58)

m2
ũR

= m2
u1

+∆ũR (6.59)
m2

d̃R
= m2

d1 +∆d̃R (6.60)

m2
s̃R

= m2
u2

+∆ũR. (6.61)

Mass splitting between same generation slepton/squark is then given by the hyperfine splitting

m2
ẽL

−m2
ν̃eL

= m2
d̃L

−m2
ũL

= −1

2
g2(v2d − v2u) = − cos 2β m2

W ,

26This assumption is of course made to avoid flavour changing neutral currents (FCNCs). However, it is also
reasonable in that if the soft masses are diagonal, or even all the same, at a high scale, the RGE running will
not create large off-diagonal terms.

27We often assume that af = A0yf in order to further reduce the FCNC, meaning that there is a global
constant A0 with unit mass relating the Yukawa couplings and the trilinear A-term couplings.
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since they have the same hypercharge, see Table 6.1. For tanβ > 1 this gives the definite
prediction m2

ẽL
> m2

ν̃eL
and m2

d̃L
> m2

ũL
.

The third generation sfermions t̃, b̃ and τ̃ have a more complicated mass matrix
structure, e.g. in the gauge eigenstate basis (t̃L, t̃R) for stop quarks the mass term is

Lstop = −
(
t̃∗L t̃∗R

)
m2

t̃

(
t̃L
t̃R

)
,

where the mass matrix is given by

m2
t̃
=

[
m2

Q3
+m2

t +∆ũL v(a∗t sinβ − µyt cosβ)

v(at sinβ − µ∗yt cosβ) m2
u3

+m2
t +∆ũR

]
. (6.62)

Here the diagonal elements come from i), ii) and iii), while the off-diagonal elements come
from iv) and v).

To find the particle masses, we must diagonalise this matrix, writing it in terms of the mass
eigenstates t̃1 and t̃2, acquiring also here a unitary mixing matrix for the mass eigenstates in
terms of the gauge eigenstates t̃L and t̃R:(

t̃1
t̃2

)
=

[
ct̃ −s∗

t̃
st̃ ct̃

](
t̃L
t̃R

)
, (6.63)

where the matrix entries are related by |ct̃|2 + |st̃|2 = 1 and m2
t̃1
< m2

t̃2
are the eigenvalues of

(6.62). The suggestive form of the mixing matrix indicates that if the off-diagonal elements
of the original mass matrix has only real elements, this mixing matrix can be written as
an element in SO(2), using sine and cosine of a mixing angle 0 ≤ θt̃ < π, ct̃ = cos θt̃ and
st̃ = sin θt̃. The matrices for b̃ and t̃ have the same structure.

Since the third generation sneutrino ν̃eL does not have a corresponding right-handed state
in the MSSM, there is no mixing, and it has the same mass term as the first and second
generation sneutrinos.

A good source for sfermion interaction Feynman rules is the PhD-thesis of Richardson [17].

6.14 Excercises

Exercise 6.1
Using the explicit form of the SU(3)C transformations with the Gell-Mann matrices, show
that with our definition of the superpotential term ŪiD̄jD̄k this is invariant under SU(3)C .

Exercise 6.2
Show how you can eliminate the parameters |µ| and b by using the properties of the

minimum of the potential in Eq. (6.28).

Exercise 6.3
Show Eqs. (6.44)–(6.47).
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Chapter 7

Sparticle phenomenology

In this chapter we discuss the phenomenology of supersymmetric models and how to search
for low-energy particle realisations of supersymmetry in experiments. We begin by returning
to supersymmetry breaking in order to define some reasonable and (partially) motivated
subsets of the 124 MSSM parameters which can be used to define more constrained models.
We then discuss supersymmetry at lepton and hadron colliders, and finally look at precision
measurements that are indirectly sensitive to the existence of sparticles.

7.1 Supersymmetry at lepton colliders

High-energy lepton colliders have traditionally been circular e+e−-colliders. These have the
advantage of a well known centre-of-mass (CoM) energy given by the total energy of the
electron–positron pair, clean final states, and periodic application of the accelerating gradient.
The challenge is to reach high energies and high luminosities (collision rates). Since the
electrons are light they radiate a lot of bremsstrahlung photons when bent in orbits. The
highest energy so-far at an e+e−-collider was the 209 GeV CoM-energy at LEP2 in 2000.
Plans are being made both for linear e+e−-colliders, and a muon collider where there is
less bremsstrahlung because of the higher muon mass, meaning that higher energies can
be reached. However, there are significant technical challenges ahead for both. The linear
colliders need very long installation tunnels and a very high accelerating gradient, while the
muon collider must be able to produce and store the unstable muons.

Most supersymmetry searches at lepton colliders rely on the pair production of oppositely
charged sparticles with electroweak couplings from e+e− → γ∗/Z∗ → SS̄, where S symbol-
ises a generic sparticle. Due to R-parity conservation these sparticles both decay to lighter
sparticles and Standard Model decay products, until they, potentially after several successive
decays known as a cascade decay, leave only the stable LSP. This LSP must be electrically
(and most likely colour) neutral due to experimental constraints on massive long-lived charged
particles that would bind to atomic nuclei. The neutrality of the LSP means that it escapes
detectors unseen.

The search for supersymmetry thus focuses on events with the Standard Model decay
products of sparticles and an imbalance in momentum conservation due to the two missing
LSPs. By the measured sum of the momenta of all the visible decay products the sum of the
total momenta for the invisible particles can be inferred as going in the opposite direction.
This is known as a missing energy signature.

119
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Figure 7.1: Feynman diagram for the pair production of left-handed sfermions in the s-channel
at an e+e−-collider.

In practice such missing energy measurements are challenging experimentally due to the
absence of detectors near the incoming beams in the longitudinal direction, where particles
that are in principle visible may escape undetected and create an artificial momentum im-
balance in the longitudinal direction. At high energies this is exacerbated by the increase
of collinear bremsstrahlung from the incoming electrons at the interaction point due to in-
teraction of the beams. This will be a particularly difficult for a future 0.5 − 3.0 TeV CoM
International Linear Collider (ILC) or the Compact LInear Collider (CLIC) project.1

We can now discuss more specifically the search for sfermions, neutralinos & charginos,
and Higgs bosons at lepton colliders.

7.1.1 Sfermions

We can estimate the leading order amplitude of the s-channel sfermion pair production process
shown in Fig. 7.1. We being by writing down the matrix element with an intermediary γ as:

M = vieγµu
−igµν
k2 + iε

[−ie · ef (p1 − p2)
ν ], (7.1)

which gives a squared matrix element of, assuming that the CoM s is much greater than mZ

and taking into account both the photon and the Z,

|M|2 '
g4e2f

8 cos θW

st+ (m2
f̃
− t)2

s2
× (1 + (4 sin2 θW − 1)2). (7.2)

Here, we take safely take (1+ (4 sin2 θW − 1)2) ' 1. The complete differential cross-section is
then:

dσ

dt
=

1

32π

1

s2
|M|2. (7.3)

This cross section is relatively small due to the electroweak coupling factor g4 and sfermion
mass suppression, so sfermion production events will be rare. We show an example of the slep-
ton pair production cross section including the Z-resonance, and the t-channel contributions
from neutralinos (see below) in Fig. 7.2.

After production sfermions will decay, typically to a lighter neutralino or chargino and a
Standard Model fermion f , in processes of the type f̃ → fχ̃0

i or f̃ → f ′χ̃±
i . Since the energy

1For more information on these projects see the websites for the International Linear Collider http://www.
linearcollider.org/ and the Compact LInear Collider https://clic.cern/

http://www.linearcollider.org/
http://www.linearcollider.org/
https://clic.cern/
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Figure 7.2: Cross sections for selectron pair production as a function of CoM energy. Cross
sections for ẽ∗LẽL (solid line), ẽ∗RẽR (dashed line), and ẽ∗LẽR (dashed dotted line) are shown
separately. The particular model point has a common slepton mass of mẽL/R

= 35 GeV.

reach is limited, only the very lightest sfermions are likely to be producible, which are usually
the sleptons, and these are likely to be near (but above) the mass of the lightest neutralino.
See Fig. 6.4 for some expectations of the masses in an mSUGRA context. This means that
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the most expected decay is ˜̀→ `χ̃0
1, and the total process is then e+e− → ˜̀+ ˜̀− → `+`−χ̃0

1χ̃
0
1,

giving two oppositely charged Standard Model leptons and missing energy as the experimental
signature.

Such a (weak) signal then needs to be discriminated from Standard Model backgrounds
from for exampleW+W− pair production, which can lead to the final state `+ν``−ν̄`, featuring
the same leptons and missing energy from the neutrinos. Since backgrounds are usually well
under control at lepton colliders, the limit to searches is the ability to produce the sparticles
at all. With a CoM energy

√
s sparticles up to

√
s/2 are energetically possible, and a rule of

thumb is that the reach approaches
√
s/2 from below given sufficient data, never quite getting

to
√
s/2.

Should some excess be discovered, we need a smoking duck in order to confirm that this
is indeed supersymmetry. We would like to identify and measure the masses of as many new
particles as possible, and hopefully also their spin. The properties of the sparticles can be
measured through the inferred cross section, and the kinematical distribution of the final state
products. The ability of a lepton collider to easily change the CoM energy

√
s, allows for a so-

called threshold scan of the cross section where the cross section is measured as a function
of

√
s around where it becomes zero. This in turn allows for a very precise measurement of

the mass of the pair produced particle. As an example of a kinematic distribution, for the
process discussed here, it can be shown that the energy distribution for the final state leptons
is a uniform distribution between Emin and Emax where

Emax/min =

√
s

4

(
1−

m2
χ̃0
1

m2
l̃

)1±

(
1−

4m2
l̃

s

)1/2
 , (7.4)

which, with a known slepton mass, also gives a handle on the LSP mass mχ̃0
1
even though it

is undetected.

7.1.2 Neutralinos & charginos

For charginos and neutralinos the production cross section depends on their wino, bino and
higgsino components. You would be forgiven to think that pair production of the lightest
neutralino e+e− → χ̃0

1χ̃
0
1 would be the natural sparticle to search for, however, this has some

significant problems. Since it is usually the LSP it does not decay, and there is nothing in the
event that can actually be measured. We cannot use the missing energy as that requires an
imbalance in momentum. Given sufficiently hard (energetic) radiation from either the initial
electron or positron, a single photon recoiling against missing energy could potentially be
measured, and this, so-called mono-photon search, was indeed a search channel for dark
matter production at LEP. However, for neutralino dark matter this does not work all that
well for other reasons. The Zχ̃0

i χ̃
0
j vertex shown in Fig. 7.3 has the Feynman rule

ig

2 cos θW
γµ
[(
Ni3N

∗
j3 −Ni4N

∗
j4

)
PL − (N∗

i3Nj3 −N∗
i4Nj4)PR

]
, (7.5)

which depends only on the higgsino components of the neutralinos, Ni3 and Ni4. This can be
understood from the fact that there are no ZZZ or Zγγ vertices in the Standard Model that
can be supersymmetrised, only a Zhh vertex. For the photon there is no tree level coupling
to the neutralinos at all since there are no direct couplings between the Higgs and the photon
in the Standard Model. Thus, only neutralinos with significant higgsino components can be
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produced this way. To top it off, a light higgsino with a mass dominated by the µ parameter
would have very similar values of Ni3 and Ni4, thus canceling the coupling.

Figure 7.3: Vertex for Zχ̃0
i χ̃

0
j .

The selectron and electron sneutrino have a special rôle for e+e− colliders due to the
resulting t-channel diagrams. Figure 7.4 shows the t-channel diagrams that are important
in pair production at a e+e− collider. Neutralino pair production with t-channel selectron
exchange does not suffer from the same problems as neutralino pair production in the s-
channel. However, the process depends on the selectron mass as m−4

ẽ for large mass values
and is rapidly suppressed.

Figure 7.4: The t-channel diagrams for pair production of a) selectrons and electron sneutri-
nos, and b) neutralinos and charginos.

The consequences of the above discussion is that it is the production of the second lightest
neutralino and the lightest chargino that is typically searched for in the combinations χ̃0

2χ̃
0
1,

χ̃0
2χ̃

0
2, and χ̃+

1 χ̃
−
1 . These decay – unless there is a slepton with a mass intermediary to the

produced particle and the LSP – to the LSP and a possibly off-shell vector boson, χ̃0
2 → Z(∗)χ̃0

1

and χ̃±
1 →W (∗)χ̃0

1. Thus the expected experimental signature is the fermionic decay products
of the vector bosons with additional missing energy from the LSPs.

If the mass relevant differences between the neutralinos and charginos are small then the
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resulting decay products of the off-shell vector bosons will have little energy – the technical
term for this is that they are soft, as opposed to very energetic particles that are hard.
Soft particles are difficult to reconstruct in detectors, and events dominated by soft particle
production are easily missed, meaning that degenerate scenarios are difficult to discover, and
sparticles mass bounds become very poor in this case. This is particularly unfortunate since a
scenario where µ�M1,M2 is well motivated on theoretical grounds, and with µ controlling
two neutralino masses and one chargino, the lightest two neutralinos and the lightest chargino
indeed become degenerate.

7.1.3 Higgs bosons

Because of the very small Yukawa coupling of electrons, Higgs bosons are not expected to have
significant direct production cross sections at a e+e− collider. The most realistic production
channels are Higgs-strahlung where the Higgs boson is attached to a vector boson: e+e− →
Zh, e+e− → ZH, e+e− → Ah and e+e− → AH, charged Higgs pair production e+e− →
H+H−, and W+W− vector boson fusion into Higgs bosons e+e− → νeν̄eh(H).

7.1.4 Current bounds at lepton colliders

The below bounds are all from the LEP (Large Electron Positron) collider, running from 1989
until 2000, which outdated all previous bounds with a top energy of

√
s = 209 GeV, recording

an integrated luminosity (amount of data) of 233 pb−1 above 204 GeV. Results exist from all
four LEP experiments ALEPH, DELPHI, L3 and OPAL.2 The numbers below are all taken
from the 2014 PDG (Particle Data Group) review [21], but the conclusions from the LEP
data has changed little since then.

While these bounds often come from pair-production of the relevant sparticles, and thus
are less model dependent than the hadron collider bounds presented in the next section, there
remains some model dependence in many results, which, unfortunately, is sometimes ignored
in the literature. Complicating matters is a reliance by the LEP experiments on theoretical
assumptions such as GUT-scale coupling and gaugino mass unification in many searches.

• Selectron: The strongest limit given is mẽL > 107 GeV and mẽR > 73 GeV (ALEPH
2002) in searches for acoplanar di-electrons.3 However, the limit is the result of a scan
over MSSM parameter space simplified by assuming a common m0 and m1/2 at GUT
scale. Interpreted in the even more constrained mSUGRA with A0 = 0 the bounds are
even stronger, 152 GeV and 95 GeV, respectively. In contrast, due to strict limits on
the precisely measured Z-width, there is a fully model independent limit of mẽL/R

> 40

GeV.4

• Smuon: mµ̃R > 94 GeV (DELPHI 2003). The limit is obtained as in the MSSM scenario
for the selectron.

• Stau: mτ̃1 > 81.9 GeV (DELPHI 2003) assuming exclusive τ̃1 → τ χ̃0
1 decays and mτ̃1 −

mχ̃0
1
> 15 GeV.

2Most of which are silly acronyms of course.
3The observant reader will notice that two electrons are always in the same plane, however, when experi-

mentalists say acoplanar, they mean not in one plane with the beam axis.
4Similar model independent limits around half the Z-mass exists for all sparticles that couple to the Z.
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• Sneutrinos: From LEP we have an indirect limit of mν̃ > 94 GeV (DELPHI 2003) in
neutralino & slepton searches. This assumes mẽR −mχ̃0

1
> 10 GeV. From the Z-width

we can obtain the model independent limit mν̃ > 44.7 GeV.

• Neutralino: The limit mχ̃0
1
> 46 GeV (DELPHI 2003) has been derived from the direct

searches for χ̃0
1χ̃

0
2 and χ̃0

2χ̃
0
2. This assumes gauge coupling unification and a common

gaugino mass m1/2 at GUT scale. Even in the Z-decays, the contribution to the width
depends on the higgsino component of the lightest neutralino, so mχ̃0

1
' 0 GeV is still

in principle allowed [22].

• Here we have mχ̃±
1

≥ 94 GeV (DELPHI 2003), assuming GUT scale universality of
m0 and m1/2 and using multiple direct search channels from production of charginos,
neutralinos and sleptons. It also assumes either no third generation sfermion mixing or
mχ̃±

1
−mχ̃0

1
> 6 GeV. From the Z-width we can extract a strict limit of mχ̃±

1
≥ 45 GeV.

7.2 Supersymmetry at hadron colliders
Since the particles collided at hadron colliders (protons and other nuclei) are heavier they are
not as susceptible to loosing energy through bremsstrahlung as the light leptons. Thus they
can more readily be accelerated in a circular collider with periodic acceleration. However,
this mass both means that linear colliders are inappropriate since the acceleration is smaller
for the same applied fields, and that it is more difficult to steer the hadrons in a circular
orbit. Thus the energy available at a hadron collider is limited by the strength of the bending
magnets.

Up to 2009 the highest energy hadron collider was the Tevatron based at Fermilab outside
of Chicago, that collided protons and anti-protons at

√
s = 1.96 TeV. The current record

is held by the Large Hadron Collider (LHC) at CERN, colliding protons at a top energy of√
s = 13 TeV.5
Since a proton–proton collider mostly collides partons, the quarks and gluons inside the

protons, and since the strong coupling is large, this means that we can get large cross sections
and potentially many events for QCD charged sparticles, i.e. squarks and gluinos, provided
their masses are low enough. Cross sections for particles that have only electroweak charges
(sleptons, electroweakinos, Higgs bosons) are expected to be considerably smaller, however,
these sparticles are also expected to be lighter. The balance between these factors means that
both types of sparticles are searched for.

As discussed earlier, with R-parity conservation sparticles are produced in pairs and both
decay to the LSP. In Fig. 7.5 we show the sparticle mass spectrum for a particular mSUGRA
benchmark point called SPS1a that has m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV,
tanβ = 10 and sgnµ = + [23].6 By producing the squarks or gluinos near the top of the
mass spectrum in a collision we see that we can get many different quite long decay chains,
called cascades. We illustrate such an event in Fig. 7.6.

In hadron collisions the momenta of the incoming partons is unknown, so no complete mo-
mentum balance can be made. However, the sum of the momenta in the direction transverse

5The LHC was designed to operate at
√
s = 14 TeV, but has had problems fully reaching that energy. In

the next round of the LHC to start in 2022, called Run III, the plan is to go to
√
s = 13.5 TeV.

6This benchmark point is now quite old and clearly excluded by searches, but it still serves as a nice
illustration of the kind of sparticle spectrum expected in mSUGRA models.
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Figure 7.5: Supersymmetric particle mass spectrum (coloured solid lines) and possible decay
channels (dashed lines) for the SPS1a benchmark point. Only decays with branching rations
above 5% are shown. The line opacity indicates relative branching ratios. This plot was
generated using PySLHA 3.0.1 [24].

to the beam direction is zero. Thus with escaping LSPs we can observe missing transverse
energy, /ET or Emiss

T , i.e. an imbalance in the directional sum of all energy deposits trans-
verse to the beam direction. The rest of the signal depends on which sparticles are searched
for. In broad terms this means that if searching for gluino of squark production then at some
point the cascade decay must shed colour charge to arrive at the LSP, resulting in Standard
Model quarks or gluons that hadronise and produce jets in the detector (hadronic showers). If
instead searching for electroweakly produced sparticles or Higgs bosons, one usually assumes
an absence of significant jet activity, and instead looks for leptons from the decays of the
sleptons or electroweakinos, possibly through vector bosons.

At the LHC the Standard Model backgrounds are much more significant and problematic.
For example, at design luminosity the LHC produces about 10 pairs of top quarks per second.
Due to the top quark decay t → bW+, resulting in charged leptons and potential missing
energy from neutrinos in W decays, as well as jets produced in hadronic W decays and
from the b-quarks, this alone is a significant background to many supersymmetry searches.
Figure 7.7 shows the expected backgrounds and signals produced in different channels at the√
s = 14 TeV LHC for different assumed particle masses. One can see that even the largest

supersymmetric cross sections that we get for squark and gluino production are orders of
magnitude below the Standard Model backgrounds for masses beyond 500 GeV.

To cope with this challenge, the searches define kinematical variables that are designed
to separate supersymmetry events from Standard Model events. For example, searching for
the production of squarks and/or gluinos decaying to the LSP, one expects jets and missing
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Figure 7.6: Cascade decays starting with the production of a gluino and squark pair from a
gluon–quark interaction.

energy from two LSPs. One can then define the effective mass

Meff =
∑

pjet
T + /ET , (7.6)

from the sum of the transverse momentum of the jets in the event, pT , and the missing energy.
The expectation is then that this is more significant in squark and gluino production events
than in Standard Model events, so that a high requirement on Meff reduces the number
of background events without significantly removing events with sparticles. This helps for
example to combat tt̄ production because the jet pT s in those events are limited by the
energy in the top quark mass, while the more massive squarks and gluinos will have higher
jet pT s.

However, there are also models where this kind of approach is ineffective. Imagine a
scenario where only the lightest stop t̃1 is light enough to be copiously produced. If mt̃1

−
mχ̃0

1
< mW then the stop will dominantly decay as t̃1 → cχ̃0

1 or t̃1 → blνχ̃0
1, where all final

state particles have rather low energy (pT ), so-called soft particles. As for the degenerate
neutralino scenario discussed above, this is very difficult to discover with standard techniques.

Another example of the use of kinematics is the distribution of invariant masses. In
Fig. 7.8 we show an example of two sequential two-body decays. Even if particle A here is
invisible, for example the LSP, we can use two visible decay products a and b to form the
invariant mass mab. One can show that the distribution for mab has a triangular shape with
a sharp endpoint at the maximum

(mmax
ab )2 =

(
m2

C −m2
B

) (
m2

B −m2
A

)
m2

B

, (7.7)

where we have assumed that a and b are massless.7 This can be used both to select events that
potentially have supersymmetric particles in them depending on the value of the invariant

7A more complicated expression covers the massive case.
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Figure 7.7: Plot of the expected cross sections and rates for various processes at the
√
s =

14 TeV LHC plotted against the mass of the particles, assuming the design final luminosity of
the LHC (rate of data taking). The current Run II of the LHC has collected around 140 fb−1

of data, so the lowest point on the cross section axis indicates that O(1) events are expected
to have been produced by now.

mass, and to determine relationships between the sparticle masses. In Fig. 7.9 we show
a simulation of the invariant mass distribution of two opposite-sign same-flavour (OSSF)
leptons m`` from the production of χ̃0

2 and its decay chain χ̃0
2 → `± ˜̀∓

R → `±`∓χ̃0
1.

As alternatives to these standard searches for pair produced sparticles with missing energy
there are ongoing searches for decaying LSPs when R-parity is violated, or the production of
single sparticles.8 There is also the possibility of massive metastable charged particles
(MMCPs), typically in scenarios with a gravitino LSP, where the next-to-lightest supersym-
metric particle (NLSP) is charged and long-lived because the decay to the gravitino is via a
very weak gravitational coupling. The latter also includes so-called R-hadrons if the NLSP
has colour charge, which means that it will hadronise after production and be a short-lived
but very massive meson or baryon. We should also mention the searches for the extra Higgs

8Single sparticle production at the LHC requires rather large R-parity violating couplings for the LQD̄ or
ŪD̄D̄ operators, of the order of λ > 10−2.
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Figure 7.8: A generic illustration of two successive two-body decays C → bB and B → aA.
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Figure 7.9: Invariant mass distribution of opposite sign same flavour (OSSF) dileptons for
the mSUGRA benchmark model point SPS1a [25].

states predicted in the MSSM.9

7.3 Current bounds on sparticle masses
The LHC has finished its Run II and collected a total of around 140 fb−1 of data per ex-
periment at

√
s = 13 TeV of energy. It is currently preparing for Run III to start in 2022.

Direct bounds from the LHC experiments ATLAS and CMS now supersede bounds from
other colliders (Tevatron and LEP) in almost all channels, with some exceptions for models

9But we don’t really have time.
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Figure 7.10: Plot of the excluded area in the m1/2-m0 plane of the mSUGRA parameter space
for tanβ = 30, A0 = −2m0 and µ > 0 for searches using missing energy and jets. The limit
is the red line. The green area is theoretically forbidden because it has a charged LSP (the
stau) [26].

with degenerate masses. The below limits are mostly limits with the full Run II dataset and
represent the current state-of-art in sparticle searches. We mostly use examples from ATLAS,
the corresponding plots from CMS are very similar.

The strongest current limits in terms of mass are on the gluino and squarks simply because
of the large production cross sections. Significant bounds on electroweakinos and sleptons
exist, but these are either model dependent (depend on squark/gluino mass assumptions and
cascade decays), or weaker if they rely only on electroweak production.

7.3.1 Squarks and gluinos

In Fig. 7.10 we show the limits from the ATLAS experiment on the mSUGRA model using
searches for jets plus missing energy with all the data collected at 8 TeV. The mSUGRA
parameters tanβ and A0 have been chosen in order to give relatively large Higgs masses for
small values of m1/2 and m0. The figure also shows the corresponding first and second gen-
eration squark masses, the gluino mass (both dot-dashed lines), and the Higgs mass (purple)
for these parameter values. We then have the following approximate bounds in mSUGRA:
mq̃ > 1600GeV and mg̃ > 1100GeV. Bounds on the mSUGRA space directly have not been
updated since this plot.

Notice that in the figure the squark mass bound is more or less equivalent to the mass
required for a sufficiently heavy Higgs, thus the direct search does not constrain the squarks
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Figure 7.11: Excluded regions in the (mg̃,mχ̃0
1
) (left) and (mq̃,mχ̃0

1
) (right) mass planes

under different assumptions on the decays of the gluino and squarks [27]. References for the
individual analysis given in the figure.

masses significantly more here than the indirect constraint from the Higgs mass.
An important question is how these bounds change as we move away from the mSUGRA

assumptions. In mSUGRA the resulting gluino and squark decays are very much constrained
by the model. For more general models the limits depend on what decay chains are dominant.
In Fig. 7.11 we show current limits in the gluino–lightest neutralino and squark–lightest
neutralino mass planes under various assumptions on the decay chain shown in different
colours.

For the gluino the most minimal assumption we can make is that the gluino sheds its
adjoint colour charge in the decay to two quarks of the first or second generation and a
neutralino, g̃ → qq̄χ̃0

1, either by a direct three-body decay or via an intermediary squark
(red line). We then get limits up to mg̃ > 2300GeV under the assumption of a very light
neutralino. This limit gradually weakens as the neutralino mass increases, and disappears
beyond mχ̃0

1
> 1000GeV for mg̃ > 1000GeV. For mg̃ < 1000GeV (not visible on the plot)

most of the parameter space is excluded, with the exception that a small sliver remains when
mg̃ ' mχ̃0

1
in the degenerate scenario.

For the first two generations of squarks the most minimal decay is q̃ → qχ̃0
1. Here the

bound (red) reaches to around mq̃ > 1800GeV for a light neutralino, while for heavier neu-
tralinos the bound disappears beyond mχ̃0

1
> 700 − 800GeV for mq̃ > 800GeV. Below a

squark mass of around 800GeV most of the parameter space is excluded, but we again lose
sensitivity when there is degeneracy between the squark and the neutralino. Here a search
for mono-jets has some impact in closing the gap, which shows as a spike in the excluded re-
gion between 800 and 900GeV, however, despite poor visibility in the plot, a very degenerate
squark–neutralino pair is still allowed below 800GeV.

An additional assumption made in this plot is that all the eight squarks of the first
two-generations are degenerate in mass and adding to the cross section. Should one squark
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Figure 7.12: Plot of the excluded area in the (mt̃1
,mχ̃0

1
) mass plane [27]. References for the

individual analysis given in the figure.

generation or flavour be significantly lighter than the others this means a further reduction in
the production cross section and thus a weaker bound. It is also fairly clear that removing R-
parity, meaning that the LSP decays, also weakens the above conclusions due to the possible
absence of significant missing energy.

7.3.2 Stop

For the stop there are many possible competing decay channels, meaning that limits set are
rather model dependent. The two main decay categories for the lightest stop are decays via
the chargino, t̃1 → bχ̃+

1 , a supersymmetrised version of the Standard Model t → bW+, and
decays directly to the neutralino t̃1 → tχ̃0

1/bWχ̃0
1/bff

′χ̃0
1, where ff ′ represents the fermions

in a W decay, and where the dominant decay mode depends on the stop–neutralino mass
difference. Since the chargino decay is also typically χ̃+

1 → ff ′χ̃0
1, the experimental signature

of stop production is bff ′χ̃0
1, a mixture of missing energy, fermions that may either be leptons

or result in jets, and a b-quark that forms a jet with distinct properties, called a b-jet.
A summary of (the many) ATLAS searches for the stop is found in Fig. 7.12 showing limits

in the (mt̃1
,mχ̃0

1
) mass plane. The dashed grey lines show the regions where the different stop

decays are kinematically possible. We observe that for light neutralinos the limit goes all the
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Figure 7.13: Plot of the excluded area in the (ml̃L,R
,mχ̃0

1
) plane for mass degenerate right-

and left-handed sleptons of different flavours [27].

way up to mt̃1
> 1250GeV, while there are essentially no limits for mχ̃0

1
> 580GeV. Again

degenerate scenarios have weaker bounds. When the stop approaches the neutralino plus top
mass stop masses down to 600GeV are allowed. And, again not very visible, for a degenerate
stop–neutralino the limit is virtually non-existent. As an additional complication, if the stop–
neutralino mass difference is below the bottom quark mass, the standard stop decays no longer
work and the flavour changing neutral current decay t̃1 → cχ̃0

1 becomes dominant. This decay
has multiple still open theoretical questions, both about the potentially long lifetime of the
stop in this scenario, and exactly where in parameter space this transition occurs.

7.3.3 Sleptons

The mass bounds on sleptons will be very dependent on the assumed production mechanism.
If the sleptons are produced indirectly in cascade decays from heavier squarks or gluinos they
could have large cross sections, however, the most model independent bounds come from
assuming only direct electroweak pair production through a virtual photon or Z.

The result for degenerate right- and left-handed charged sleptons from electroweak pro-
duction, assuming decays with 100% branching ratio to the lightest neutralino, are shown in
Fig. 7.13. These limits separate between selectron and smuon production, and stau produc-
tion. The former are assumed degenerate, and have stricter bounds than the stau, which is
harder to reconstruct due to the many different possible tau decays involving extra neutri-
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Figure 7.14: Plot of the excluded area in the (mχ̃±
1 ,χ̃0

2
,mχ̃0

1
) mass plane for different search

signatures [27]. This plot assumes a degenerate wino-like χ̃0
2 and χ̃±

1 and a 100% branching
ratio to the given decay channels.

nos. For all slepton flavours we see that there is a gap in the mass plane down to very low
masses where no sleptons are excluded, all the way down to masses below 100GeV where the
LEP bound applies. This is yet another example of the problems with degeneracy. If the
slepton–neutralino mass difference is around 50GeV and lower, it becomes difficult to reliably
reconstruct the soft leptons from the slepton decay and to separate them from the ordinary
Standard Model pair production of lepton pairs.

7.3.4 Charginos and neutralinos

As for the sleptons, bounds are dependent on the production process assumed. The search
for direct electroweak pair production of the lightest neutralino, χ̃0

1χ̃
0
1, has the same problem

as at LEP, the coupling is vanishingly small for a non-higgsino χ̃0
1. This means that it is the

heavier neutralinos and charginos that are typically searched for. Here some considerations
on the possible masses hierarchies come into play. If the lightest neutralino is dominantly bino
and the next-to-lightest dominantly wino (M1 < M2 < |µ|) then the χ̃0

2 and χ̃±
1 states are

degenerate in mass and the most important searches will be for χ̃0
2χ̃

±
1 and χ̃+

1 χ̃
−
1 production.10

These then decay as χ̃0
2 → Zχ̃0

1 or χ̃0
2 → hχ̃0

1, and χ̃
±
1 →Wχ̃0

1, where the bosons may be off-
shell if the mass difference is small. This is the scenario usually considered by the experiments,
in part because winos give the largest electroweak production cross sections.

10Again because of the coupling in Eq. (7.5) the production of a pair of wino-like χ̃0
2χ̃

0
2 is suppressed and

the cross section is small.
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We show the current limits assuming degenerate wino-like states χ̃0
2 and χ̃±

1 in Fig. 7.14.
We can see that limits up to 1050GeV can be set for χ̃0

2 and χ̃±
1 when the lightest neutralino

is below around 200GeV. When the bosons in the decay go off-shell we see that the sensitivity
of the searches go down significantly. If we move away from the wino-production scenario the
production cross sections drop, and so does the reach of the experiments in the mass plane.

An additional important complication appears if the lightest neutralino is wino (M2 <
M1, |µ|) or higgsino (|µ| < M1,M2). Then the lightest neutralino and chargino, χ̃0

1 and χ̃±
1

(for higgsinos also χ̃0
2), are degenerate, and the crucial question becomes how degenerate

they are. If the mass difference is small but above around 300MeV, then the particles are
very difficult to discover at all, despite potentially having very large cross sections if they are
light. The decays of the produced χ̃±

1 (and for higgsinos χ̃0
2) into χ̃0

1 lead to very soft decay
products, either leptons in χ̃±

1 → `±ν`χ̃
0
1 (and χ̃0

2 → `+`−χ̃0
1), or decays to pions (the lightest

hadronic states) χ̃±
1 → π±χ̃0

1 (and χ̃0
2 → π0χ̃0

1), that are unobservable above the backgrounds
of a hadron collider.

If instead the mass difference becomes of the order off or less than the pion mass the
width of the chargino can become so small that the state is sufficiently long lived to decay
somewhere inside the detector, and not, effectively, at the interaction point. This would lead
to charged tracks from the charginos that disappear somewhere inside the detector. Such
disappearing track signatures are readily observable, and in fact the limits on very degenerate
neutralinos and charginos are stronger than the limits on only somewhat degenerate ones.

The consequences of this complication is that it is very difficult to exclude near massless
wino- or higgsino-like charginos and neutralinos at the LHC. However, since the chargino
mass is constrained by the Z-width measured at LEP, there is an absolute lower limit of 45
GeV for both in this scenario. To improve significantly on this limit one may have to wait for
a new lepton collider.

7.4 Precision observables

A different way to search for the signs of supersymmetric particles is their indirect effect on
very accurately measured Standard Model particle properties and processes, so-called preci-
sion observables, mostly through loop diagrams with sparticles. We will here discuss four
different types of probes: the electroweak precision observables, the value of the anomalous
magnetic moment of the muon (g−2)µ, the flavour changing neutral current (FCNC) process
b→ sγ and the very rare (and FCNC) process Bs → µµ.

7.4.1 Electroweak precision observables

When we talk about electroweak precision observables, we study particle properties such
as MW (or MZ), ΓW , ΓZ , mt and sin θW , as well as the Higgs mass mh and the properties of
the Higgs such as its couplings to all the other particles (gauge and Yukawa couplings) and
its self-coupling.

Up to 2012 we could study all of these as functions of the unknown Higgs mass, looking
for deviations that could be a sign of for example supersymmetry. We show a fit of the Higgs
mass to all available electroweak data and direct exclusion bounds in Fig. 7.15, made by
the Gfitter Collaboration in 2011 just before the LHC started taking significant amounts of
data [28], a fit pretty much indicating that the most probable Standard Model Higgs mass
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Figure 7.15: Plot of the total ∆χ2 from all precision observable measurements and the direct
exclusions bounds for the Standard Model Higgs set by LEP and the Tevatron, as a function
of the Higgs mass [28].

was around 120 GeV. Here,

∆χ2 = χ2(mh)−min
mh

χ2(mh),

is the difference in the χ2 from the best fit point as a function of the Higgs mass, which has
a standard interpretation in terms of σs of significance for a one dimensional fit.

Figure 7.16 shows a similar plot for mSUGRA. At that time the absolute minimum of
the fit, even taking into account the different number of parameters, gave a better fit for
mSUGRA, minχ2

mSUGRA < minχ2
SM, but this changed quickly when the Higgs was found

because of the position of the two minima.
Now all the parameters of the Standard Model – neutrinos excepted – have been deter-

mined to some precision. Thus the Standard Model is a completely constrained system. If we
now do a electroweak fit the situation looks like that in Fig. 7.17, where we show the global
fit to all measurements except the top andW masses, compared to the measured values of the
W and top masses. Clearly what we are seeing here is (still?) consistent with the Standard
Model.
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Figure 7.16: Plot of the ∆χ2 from all precision observable measurements for mSUGRA as a
function of the Higgs mass. The yellow area shows the area excluded by LEP searches (not
included in the fit), while the brown shows the theoretically inaccessible area.
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7.4.2 (g − 2)µ

The anomalous magnetic moment of the muon, gµ, in effect the interaction of a muon
with an external electromagnetic field shown in Fig. 7.18 a), was calculated by Dirac in
relativistic quantum mechanics as gµ = 2. However, in quantum field theory we have higher
order corrections from loop-process such as shown in Fig. 7.18 b), that makes gµ deviate from
two.

It was very precisely measured by the E821 experiment at BNL [30] to be:

gexp
µ = 2.00116592089(63),

or, in terms of the deviation aµ = gµ − 2,

aexp
µ = 11659208.9(6.3) · 10−10,

where the parenthesis indicates the uncertainty on the last digits.
In the Standard Model we find the prediction

aSM
µ = 11659183.0(5.1) · 10−10,

giving a difference with respect to the experimental value of

∆aµ ≡ aexpµ − aSMµ = (25.9± 8.1) · 10−10,

a value which is 3.2σ away from zero. Recently, the Muon g-2 Collaboration at Fermilab
made a new measurement [31] confirming this discrepancy with the value

∆aµ = 25.1± 5.9 · 10−10,

corresponding to 4.2σ. The Muon g-2 Collaboration is set to make further improvements on
this number, expecting to reduce the uncertainty by a factor of 2− 4.

However, we should be aware that some of the Standard Model contributions involve
hadronic loops, e.g. the so-called hadronic vacuum polarisation shown in Figure 7.18 b),
where one has to rely on experimental information from low energy e+e− → γ∗ → hadrons
in order to estimate a contribution of aHVP

µ = 10.5(2.6) · 10−10, which is of the same order of
magnitude as the discrepancy, and may be prone to errors in the interpretation.

In the MSSM we can have contributions to aµ at the one-loop level, either by the exchange
of one of the new Higgs bosons across the muon line, or by loops containing a smuon µ̃ or
muon-sneutrino ν̃µ, together with a neutralino or chargino. The diagrams for the latter two
processes are shown in Figure 7.18 c) and d). These contribute opposite sign terms aµ(χ̃0)
and aµ(χ̃

−). A thorough analysis shows that we need µ > 0 in order to give a positive
contribution that will close the gap between the experimnetal value and the prediction. In
order to get a sufficiently large contribution the loop masses must be less than 500− 600GeV
for tanβ = 40− 50 and 200− 300GeV for tanβ ' 10. However, as we saw in Sec. 7.3 this is
not implausible.

7.4.3 b → sγ

The quark level process b → sγ is a Flavour Changing Neutral Current (FCNC) process
which must proceed through loops in the Standard Model since there are no tree-level FCNC
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Figure 7.18: Diagrams for muon interaction with an electromagnetic field. Loop corrections to
the tree level diagram a) give the value of aµ. Diagram b) shows hadronic vacuum polarization
where the blob contains QCD fields. Diagrams c) and d) show the lowest order MSSM
contributions to aµ.

interactions there. At meson level it leads to measurable decays of the type B → Xsγ, where
Xs is some meson with a strange quark, e.g. the decay B → Kγ. Figure 7.19 a) shows the one-
loop Standard Model contribution with a virtual W and up-type quarks. This contribution
is suppressed by the smallness of the CKM entries in the W -vertices which favours diagrams
with a top quark in the loop, and the large masses, MW and mt, in the loop.

The process has been calculated at next-to-next-to-leading order (NNLO) in the Standard
Model to be Br(B → Xsγ)SM = (3.36 ± 0.23) · 10−4 for Eγ ≥ 1.6GeV [32, 33], inclusively
summing over all meson final states.11

Supersymmetric particles may contribute to this process, for example with off diagonal
soft mass terms in diagrams such as Fig. 7.19 b) and d), where in b) a m2

bsb̃
∗s̃ soft-breaking

off-diagonal Lagrangian mass term changes a b̃1 squark to a s̃ squark, and in d) where a
m2

tct̃
∗c̃ term changes a t̃1 to a c̃. Charged Higgs bosons with flavour non-diagonal couplings

can also give important contributions in diagrams such as Fig. 7.19 c).
The main MSSM contributions are expected to come from the chargino–stop12 and charged

Higgs–top loops, as shown in Figs. 7.19 c) and d), respectively. However, there is little room
11For the process b→ dγ the Standard Model calculation yields BR(B → Xdγ) = 1.73+0.12

−0.22 · 10−5.
12We usually expect higher generation off-diagonal soft terms to be larger due to RGE running controlled

by Yukawa couplings.
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Figure 7.19: Diagrams for the process b→ sγ. a) shows the SM diagram while b), c) and d)
show MSSM contributions.

for effects from supersymmetry since the current experimental world average is Br(B →
Xsγ) = (3.32 ± 0.15) · 10−4 [34]. This means that either the charged Higgs is heavy enough
and the stop-scharm soft mass term small enough not to contribute significantly, or that there
are cancellations between the two contributions. This is both an example of a process that
puts significant constraints on off-diagonal soft terms, and a process that is important in
constraining the possible values of the charged Higgs mass.

7.4.4 Bs → µ+µ−

The process Bs → µ+µ− is another FCNC process as either the bottom or the strange quark
must change flavour in order to get a coupling to the muons. The Standard Model process
is shown in Fig. 7.20 a), where the CKM factor in the W vertex allows one of the quarks to
change flavour, but also suppresses the decay rate. For strange historical reasons involving
darts and illegal substances this process is known as a penguin diagram [35].

On top of the small CKM factor, the process also suffers from what is called helicity
suppression in the Standard Model. The Z-boson is spin-1, while the starting point meson
Bs is spin-0 (pseudoscalar), meaning that the spins of the quarks in the meson are opposite.
At some point in the diagram the helicity (chirality) must “flip”. This introduces an extra
suppression proportional to m2

µ/M
2
Bs
, making the expected rate extremely small and sensitive

to supersymmetry contributions. We get a similarly suppressed process for Bd with a d̄-quark
instead of the s̄ in the initial state.
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Figure 7.20: Diagrams for the process Bs → µ+µ−. Diagram a) shows one of the leading SM
contributions, while b) shows one contribution from the MSSM taken from [36].

The predicted SM branching ratios for these processes are [37]:

Br(Bs → µ+µ−) = (3.65± 0.23) · 10−9, (7.8)
Br(Bd → µ+µ−) = (1.06± 0.09) · 10−10. (7.9)

First evidence for the Bs → µ+µ− decay was shown by the LHCb Collaboration in 2012. The
current value for the branching ratio from combined measurements at LHCb, ATLAS and
CMS is [38]

Br(Bs → µ+µ−) = 2.69+0.37
−0.35 · 10

−9, (7.10)
Br(Bd → µ+µ−) < 1.6 · 10−10, (7.11)

where the value for Bd is an upper limit at the 90% confidence level. It is interesting to
observe that the measured value is lower than the Standard Model prediction at around the
2σ level, this has lead to speculations of destructive interference from new physics.

If we limit ourselves to scenarios with only diagonal soft terms the dominant contribution
in the MSSM is from process such as shown in Fig. 7.20 b), with a chargino and up-type squark
loop. These contributions are proportional to tan6 β, which makes the decay process highly
sensitive to scenarios with large tanβ. To see this dependence, notice that µ couples to the
mediating heavy higgses H/A0 through the Yukawa term yl22L2HdE2 in the superpotential,
and the Yukawa constant in this term, yl22 = yµ, is connected to the fermion mass through
mµ = yµv cosβ. Thus this vertex is proportional to 1/ cosβ or tanβ, giving a factor tan2 β



142 CHAPTER 7. SPARTICLE PHENOMENOLOGY

in the amplitude squared.13

Furthermore, a chargino(higgsino)–stop loop can couple the strange and bottom quarks
to the Higgs. These couplings are proportional to the bottom Yukawa coupling yb, from the
superpotential terms yd33Q3HdD̄3, which appears in the stop–chargino–bottom vertex, and
the yd32Q3HdD̄2, which appears in the strange–chargino–stop vertex. Both these Yukawa
couplings are proportional to yb and thus to 1/ cosβ, giving a further factor of tan4 β in
the amplitude squared. This tanβ dependence makes Bs → µ+µ− an excellent channel for
discovering supersymmetry, and puts very stringent bounds on the sparticle masses in large
tanβ scenarios.

7.5 Excercises

Exercise 7.1
From relativistic kinematics, show Eq. (7.7). Hint: the choice of rest frame is very important
in order to simplify the calculation.

Exercise 7.2
Find the total cross section for the process qq̄ → q̃q̃∗ via an s-channel gluon shown in

Fig. 7.21.

g

q̄sj , p

qri , k

q̃∗n, p
′

q̃m, k
′

µ ν

Figure 7.21: Strong production of a squark–anti-squark pair through a gluon.

13Remember that in the limit of large tanβ

cosβ = ± 1√
1 + tan2 β

= ± 1

tanβ
√

1 + 1
tan2 β

' ± 1

tanβ
. (7.12)



Chapter 8

Supersymmetric dark matter

We have a standard model also for cosmology, the Lambda Cold Dark Matter model (ΛCDM).
This models the observed universe on three main ingredients: the known Standard Model mat-
ter (dominantly the baryonic matter of the atoms, radiation and neutrinos), dark energy (Λ)
and cold dark matter (CDM), where the cold signifies that this ingredient is non-relativistic.
In this chapter we will look closer at candidates for dark matter (DM) in supersymmetric
models.

8.1 Evidence for dark matter

The idea of dark matter goes back quite a long way. Today we have evidence for the existence
of dark matter through several effects where we observe its gravitational influence on ordinary
matter. We list the evidence below:

1) Kinematics (Zwicky 1933 [40]): The motion of galaxies (velocity dispersion) cannot be
explained by the visible matter. This has also been observed on the scales of galaxies in
their rotation curves (Rubin 1970 [41]).

2) Gravitational lensing (Tyson 1996 [42]). First observed in galactic clusters. Clusters
show evidence of lensing not explained by luminous matter. Dark matter dynamics (non-
interacting) are demonstrated by the Bullet cluster (Clowe 2006 [43]).

3) Large scale structures (clusters, superclusters, filaments and voids): The structures ob-
served in the 2dFGRS (2-degree Field Galaxy Redshift survey Colles 2001 [44]) and the
SDSS (Sloan Digital Sky Survey Tegmark 2004 [45]) imply a relative matter density of
Ωm ≡ ρm

ρc
' 0.29 where ρc = 1.05 · 10−5h2GeV/cm3 is the critical energy density for a

flat universe.1 They also imply that the majority of DM must be cold (non-relativistic),
because warm DM would suppress clustering.

4) Big-Bang Nucleosynthesis (BBN): The formation of light elements in the period t = 1 −
1000 s after the Big Bang. Measurements of Early Universe abundance of light elements,
mainly D and He, points to a baryonic matter density of Ωb ≈ 0.04. This gives Ωleftover =
ΩDM ≈ 0.25.

1h is defined through the Hubble constant H0 as H0 = 100h km/Mpc/s.

143
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5) Supernovae (Riess 1998 [46] and Perlmutter 1999 [47]): Measurements of type Ia super-
novae (SNe Ia) were used as standard candles to show an accelerated expansion of the
Universe. This fixes ΩΛ − Ωm ' k where ΩΛ is the energy density of dark energy/cosmo-
logical constant.

6) Cosmic Microwave Background (CMB) (Penzias & Wilson 1965 [48]): The temperature
variation of the CMB over the sky of the order of 0.0002K is sensitive to all cosmological
parameters, and gives ΩΛ +Ωm ' k, where k is some constant.

The evidence above can be used to constrain the ΛCDM concordance model of cosmology,
which has just a handful of ingredients such as baryonic and dark matter, radiation (photons)
and dark energy. In Fig. 8.1 we show the effects of the SNe, CMB and large scale structure
data (BAO) on this model in the plane of matter density Ωm and dark energy density ΩΛ.

Figure 8.1: Limits from different observational sources on the dark energy density, ΩΛ, com-
pared to the total mass density in the universe, Ωm.

A maximum likelihood fit to a selected subset of the measurements by the Planck Col-
laboration [49] gives the parameters for the model shown in Table 8.1. This means that the
non-baryonic matter constitutes some 85% of the matter in the Universe, and that its relative
energy density is quite well determined, at the percent level.



8.2. WIMP MAGIC 145

Parameter ΩΛ Ωmh
2 Ωbh

2 H0 [km/Mpc/s] t0 [Gy]
Value 0.685+0.018

−0.016 0.1426± 0.0025 0.02205± 0.00028 67.3± 1.2 13.817± 0.048

Table 8.1: Measured values for cosmological parameters [49].

8.2 WIMP magic

The very existence of a stable Weakly2 Interacting Massive Particle (WIMP) χ automatically
gives an additional component to the total energy density of the Universe. WIMPs are found
in a number of theories, for example the lightest neutralino of the MSSM, the lightest Kaluza-
Klein particle of a theory with extra dimensions or an inert (no vev) Higgs boson.

This is due to the in equilibrium thermal production of the WIMP through the process
SM SM → χχ, where SM are some Standard Model particles, and the reverse annihilation
process χχ → SM SM , in the early hot Universe (T � mχ). As the temperature decreases
to T < mχ and there is not enough energy in an average collision for the production of χ
to occur, only the reverse process can take place, and the comoving density3 falls with the
temperature of the Universe.

The WIMPs then experience what is called a chemical decoupling, or loss of chemical
equilibrium, due to the expansion of the Universe. This is when the WIMPs become so
dilute, because of the expansion, that they in effect no longer interact inelastically, and this
roughly happens when the expansion rate becomes larger than the rate of annihilation. The
WIMPs then get a constant (comoving) density, we say that they experience a freeze-out
at this temperature Tc. With weak-scale masses and couplings the freeze-out happens at
Tc ≈ 0.05mχ, however, this is before or at the same time as kinetic decoupling where the
WIMPs effectively lose elastic interactions with the other matter, meaning that χ freezes-out
with non-relativistic velocities and become cold dark matter.

The exact time (temperature) of freeze-out is controlled by the annihilation cross section
of χ, larger cross sections keep chemical equilibrium for longer, in turn resulting in lower
dark matter relic abundance. This abundance, in number density, can be found from the
Boltzmann equation

dnχ
dt

= −3Hnχ − 〈σv〉(n2χ − neqχ
2), (8.1)

where neqχ and nχ are the chemical equilibrium and actual comoving number densities, H is
Hubble’s constant for the expansion rate, and 〈σv〉 the velocity averaged annihilation cross
section for χχ→ SM SM . Solutions to this equation for increasing 〈σv〉 are shown in Fig. 8.2.

In practice one must also often take into account co-annihilation with other particles with
mass within 10%−20% of the χ, and numerical codes such as DarkSUSY [50] or MicrOMEGAs [51,
52] are typically used to solve the Boltzmann equation. For weak scale particles a rough
approximation to the resulting dark matter density is

Ωχh
2 = 0.1× 3× 10−26 cm3s−1

〈σv〉
,

2Weak as in electro-weak, meaning on the same scale as the weak force.
3Taking the expansion of the universe into account by looking at the number of particles in a volume

expanding at the same rate.
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Figure 8.2: Illustration of the freeze-out of the comoving number density of a WIMP as a
function of time, where the black line represents a model without chemical decoupling, and
the dotted lines represent different freeze out temperatures for different velocity averaged
annihilation cross sections.

and since the annihilation cross section can be shown to be

〈σv〉 ≈
α2
weak

m2
weak

≈ 10−25 cm3s−1, (8.2)

the predicted dark matter density is

Ωχh
2 ≈ 0.1×

(
gweak

gχ

)4( mχ

mweak

)2

.

When compared to the values in Table 8.1 this is called the WIMP-miracle since it supplies
just about the correct missing energy density for the WIMP as long as it has a weak scale mass
and a weak scale coupling to the Standard Model. The strong sensitivity of the predicted dark
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matter density to both the mass and the coupling, and the precisely measured experimental
value, means that the WIMP scenario is very predictive and testable.

For a more detailed discussion of the WIMP miracle, see the standard cosmology book by
Kolb and Turner [53].

8.3 Dark matter candidates in supersymmetry

With R-parity conservation in place we have seen that the LSP is stable and any neutral
LSP can then in principle constitute all or part of the dark matter. Without R-parity only
super-weakly coupling particles like gravitinos and axinos are candidates. Below we briefly
discuss the various possibilities.

8.3.1 Neutralino

As soon as you have a stable neutralino LSP, you usually get into trouble trying to explain
why there is so little dark matter. For example, the standard mSUGRA bino-like χ̃0

1 scenario
prefers LSP masses around 100 GeV or lower not to overproduce dark matter. Due to current
lower bounds on the χ̃0

1 mass and the measured Higgs mass this tends to be difficult to realise
in practise. This scenario with a low mass bino-like neutralino is often called the bulk region
scenario, which can be seen in Fig. 8.3 in the lower left corner.

Alternatives to the bulk region scenario use co-annihilation or resonant annihilation to
increase 〈σv〉 and thus decrease the dark matter density. The stau-coannihilation region,
where τ̃1χ̃0

1 → SM SM is an efficient annihilation process reducing the dark matter density,
exists for mτ̃1 −mχ̃0

1
≤ 10GeV. This makes the scenario difficult to discover at collider exper-

iments due to the production of soft (low-energy) taus. In mSUGRA the stau-coannihilation
region can be found for small m0, and is shown as the lower strip in Fig. 8.3 which follows the
lower theoretical bound (brown) where the stau becomes the LSP. Outside of mSUGRA sim-
ilar regions can also be found for smuons and selectrons, with large mass degeneracy between
the slepton and the LSP.

The stop-coannihilation region, where t̃1χ̃0
1 → SM SM is efficient typically has mt̃1

−
mχ̃0

1
≤ 25GeV. In mSUGRA this exists for large values of |A0|, small m0 and m1/2. Again,

this is difficult to discover because of the soft decay products of the stop.
The Higgs funnel region is found for 2mχ̃0

1
' mA,H and large tanβ, where the neutralino

has resonant annihilation through a heavy Higgs boson. For mSUGRA, this is shown in Figure
8.3 as the two diagonal structures roughly in the middle of the plot, rising as a funnel upwards.

The chargino-coannihilation region can be found when we have higgsino or wino LSPs,
where a chargino is automatically degenerate with the LSP resulting in a lower dark matter
density typically below experimental bounds. In mSUGRA this region is called the focus
point region, and is found for large m0 and low µ, leading to so-called split-SUSY, as the
sfermion masses need to be pressed up quite a bit, and there is a large mass difference between
gauginos and sfermions. The focus point region can be seen in Fig. 8.3 following the upper
theoretical bound where EWSB breaks down.
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Figure 8.3: Generic illustration of the allowed neutralino dark matter regions (puke green) in
the (m0,m1/2)-plane for mSUGRA. Except for the low m0 and m1/2 regions the area outside
of the allowed green region gives too much dark matter. The dashed line shows the Higgs
mass limit which pushes towards larger values of m1/2, while the dotted line represents the
limit from the anomalous magnetic moment of the muon.

8.3.2 Sneutrinos

The left handed sneutrino ν̃L is happily excluded as a potential dark matter candidate due to
the large cross section for ν̃Lq → ν̃Lq via Z-exchange.4 The large cross means that it should
already have been seen by direct detection experiments, see Sec 8.4. It is also problematic to
get mν̃L < ml̃L

due to hyperfine-splitting. However, the right-handed sneutrino ν̃R couples
very weakly and is still a viable candidate. This would necessitate adding right-handed

4For the neutralinos this problem only exists for a higgsino χ̃0
1 LSP, as the wino and bino do not couple to

the Z.
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neutrinos and sneutrino superfields to the MSSM.

8.3.3 Gravitino

The gravitino is the massive spin-3/2 supersymmetric partner of the graviton in models with
supergravity. With only gravitational strength interactions, the gravitino is not a WIMP as
it is never in chemical equilibrium. If it is the LSP it can be created from the decays of the
next-to-lightest supersymmetric particle (NLSP), giving, in R-parity conserving scenarios,

ΩG̃ =
mG̃

mNLSP
ΩNLSP.

However, these scenarios are problematic because the NLSP is long-lived due to the extreamly
weak interaction and creates potential trouble in BBN by injecting energy that changes the
production of light elements.

Alternatively, the gravitino can be created in non-thermal production processes in the
period of reheating after inflation. One potential process gg → g̃G̃ is shown in Fig. 8.4. The
reverse process g̃G̃→ gg is not efficient as the density of gravitinos is never high enough given
the small cross section. This type of dark matter creation process is often called freeze-in.
For the gravitino this gives a new magic formula:

ΩG̃h
2 ≈ 0.5 ·

(
TR

1010GeV

)(
100GeV

mG̃

)( mg̃

1TeV

)2
, (8.3)

where TR is the unknown and very weakly constrained reheating temperature. This produc-
tion mechanism is also valid for models with R-parity violation. There the small gravitino
coupling ∝ 1

MP
makes the gravitinos very long-lived, with lifetimes longer than the age of the

Universe, but not absolutely stable because of the R-parity violating operators.

Figure 8.4: One possible diagram for the non-thermal production of gravitinos from the
scattering of gluons.

8.3.4 Others

One could even imagine colour charged supersymmetric particles as dark matter, in particular
the gluino, which, if stable, after hadronisation with Standard Model quarks and/or gluons
would form so-called R-hadrons. These have very strict limits from searches, but these
limits are somewhat obfuscated by complications in modelling R-hadron scattering.
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8.4 Direct detection
In addition to the direct production of dark matter at colliders and the corresponding searches
for missing energy, there are two other main ways to search for dark matter, direct and indirect
detection. Here we briefly discuss direct detection.

Direct detection seeks to make weak and thus rare dark matter interactions with standard
model matter visible by very low background searches in large volumes, using local galactic
halo dark matter interacting with ordinary matter on Earth. The feasibility of direct detection
is very dependent on the χ scattering cross section on nucleons (quarks), which can in principle
be calculated in a given model,5 but also on the dark matter halo density distribution and
velocity distribution, which have large uncertainties.

The rate of interaction between dark matter and a particular type of nucleons in a sample
can be expressed in the differential scattering rate with respect to the recoil energy Er of a
scattered nucleon with mass M as

dN

dEr
=

σρDM

2µ2mχ
|F (q)|2

∫ vesc

vmin

f(~v)

v
d3v, (8.4)

where σ is the dark matter scattering cross section off the nucleus in question, ρDM is the
dark matter halo density at Earth, µ = mχM/(mχ + M) is the dark matter and nucleus
reduced mass, F (q) is a nuclear form factor dependent on the scattering momentum transfer
q =

√
2MEr and the nucleon type, f(~v) is the velocity distribution of the dark matter in the

halo, vmin =
√
MEr/2µ2 is the minimal velocity that gives a recoil energy Er and vesc is the

escape velocity from the halo.
In general direct detection relies heavily on suppressing Standard Model backgrounds

which would be the overwhelmingly dominant cause of observed recoils. This is done by
moving the experiments deep under ground where they are shielded from cosmic rays, and
by specifically shielding the detector samples against local radioactivity. Beyond this, there
are two main tactics followed in order to try to directly detect dark matter:

• Suppress (almost) all backgrounds and monitor as large a volume as possible. This used
in experiments such as XENON, PANDAS and CDMS.

• Look for an annular modulation in the event rate – due to the Earth’s movement in the
galactic rest frame and thus in the dark matter halo, changing the velocity integral in
Eq. (8.4) – to observe a small dark matter signal on top of a constant background, such
as used in the DAMA and CoGeNT experiments.

Figure 8.5 shows results from the current most important direct detection experiments as
limits on the dark matter–nucleon cross section as a function of dark matter mass. Observe
that while DAMA claims a detection (closed regions), these are already excluded by many
other experiments. For reference, a neutralino WIMP could reasonably be expected to have
a scattering cross section in the range 10−45 − 10−50 cm2 for masses in the range 100–1000
GeV [54]. The dashed yellow line shows what is called the neutrino floor. This is the cross
section that can be reached before the experiments would be saturated with recoils due to
neutrinos scattering off the experiment sample. Going below the neutrino floor would need

5However, while the quark–dark matter cross section is relatively easy to calculate, the fact that the quark
is bound in a nucleon, and the nucleon bound to a nucleus makes this more difficult in practice, involving also
estimates from nuclear physics.



8.5. INDIRECT DETECTION 151

new experimental techniques, fundamentally, the direction of the particle creating the recoil
would need to be reconstructed.

Figure 8.5: Plot of different exclusion and detection results for direct detection of dark matter
in the WIMP mass versus WIMP–nucleon cross section plane [55]. The dashed yellow line
shows the neutrino floor.

8.5 Indirect detection
In indirect detection we look for the annihilation, χχ → SM SM , or decay products of
dark matter in multiple final (messenger) states in cosmic rays. The viable search channels
must be stable Standard Model particles, so that they can reach the Earth (or satellites in
orbit). The messengers should also have as low backgrounds from ordinary astrophysical
processes as possible, this makes searches with electrons and protons extra challenging. The
remaining candidates are photons, neutrinos, positrons, antiprotons and antideuterons.6 We
now discuss the properties of each of these in a little more detail.

Photons

These can either come from direct production processes such as the annihilation channels
χχ → γγ, Zγ, which is relatively easy to detect because the spectrum is a sharp line at

6Potentially, even heavier antinuclei than antideuterons could be used, but they would be even rarer.
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exactly the mass of the dark matter, or they could be γ from bremsstrahlung or pion decays
in the annihilation decay products, which creates a broad spectrum. This is harder to detect
because of the large background of bog-standard astrophysical photons, but is expected to
make up the majority of photons from dark matter. Photons from dark matter have the
advantage that they point to the source, so we can focus our searches on areas in our galaxy
or nearby galaxies with large ρDM , where annihilation or decay is more probable, and thus
reducing potential backgrounds relative to the signal. We can also look for photons that are
extragalactic in origin, but then we have to account for the red-shifting of the spectrum.

Dark matter annihilating in our own galaxy into photons should result in a differential
flux at Earth in terms of energy E and solid angle Ω given by

dΦ

dEdΩ
=

1

8πm2
χ

dNγ

dE
〈σv〉

∫
l.o.s.

ρ2DM (l)dl, (8.5)

where Nγ(E) gives the number of photons with energy E in a single annihilation event and the
integral is over the dark matter density in the line of sight. We see that the flux depends on
the square of the dark matter density since annihilation requires two particles to be present.
For decaying dark matter the corresponding expression is proportional to ρDM .

There have been some indications of an excess of photons above expected backgrounds
from the galactic centre (a.k.a. the Hooperon [56]), however, no unambiguous dark matter
signal has been confirmed. Current limits from the Fermi-LAT experiment seems to rule out
most possible models for a dark matter explanation for this excess, and, more importantly,
sets a cross section limit for dark matter annihilation close, and for some masses beyond, to
the canonical limit of

〈σv〉 = 3× 10−26 cm3s−1,

which would give the correct dark matter density, see Fig. 8.6.7 This limit is some of the
strongest evidence today against WIMP dark glitter.

Neutrinos

These also point to their source since since they are electrically neutral, and can be extra-
galactic in origin just like the photons, still reaching the Earth. The same flux calculation
can be used, starting from the neutrino spectrum from dark matter annihilation. While the
astrophysical background is much smaller, the neutrino signal is difficult to detect due to the
weak matter interaction. The current leading experiment in detecting neutrinos from dark
matter annihilation or decay is the IceCube experiment at the South Pole that has instru-
mented a cubic kilometre of the South Pole ice with photodetectors a kilometre below the
surface.8

One interesting alternative possibility is that dark matter scatters on ordinary matter
sufficiently strongly that the dark matter accumulates at the centre of the Sun (or possibly
the Earth), because it scatters of the Suns atoms, loses energy and becomes gravitationally
bound, ultimately being further downscattered in energy in multiple interactions, settling at
the Suns centre. When these DM particles annihilate the only decay products that can escape
the Sun’s interior are neutrinos. These could then potentially be detected, and the fact that

7Keep in mind though, that the velocity distribution of any dark matter today would not be the same as
during freeze-out at a much higher temperature, so the cross section numbers are not exactly translatable.

8This should, on galactic scales, get some sort of prize for the geniusly nutscase idea.
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Figure 8.6: Results from Fermi-LAT indirect gamma-ray searches in the χχ → bb̄ channel.
Grey line shows limit from Milky Way halo search, black line from Milky Way dwarf spheroidal
galaxy search with six years of data [57].

high energy neutrinos would be coming directly from the Sun would reduce astrophysical
backgrounds significantly.

Positrons

Charged particles propagate in a complicated way through the galactic magnetic field, and
they are therefore impossible to track back to the source. At the same time sources outside
of our own Galaxy cannot contribute significantly to the flux at Earth. Positrons also have
relatively large astrophysical backgrounds, for example pulsars are expected to produce a
significant amount of lower energy positrons, so experiments search for small excesses on
large backgrounds, mostly at high energies. Some potential excess has been seen in the past
by Fermi-LAT and PAMELA, but this has not been conclusive.

Antiprotons

Just as the positrons these propagate in a complicated manner, but the backgrounds are
under better control due to the lack of significant astrophysical antiproton production, except
from the scattering of very high energy cosmic rays on the interstellar medium. The current
best limits here come from the AMS-02 experiment.
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Antideuterons

These have very low backgrounds because the production of antideuterons in astrophysical
processes is extremely rare, in particular at low energies, due to the conservation of baryon
number and the required high energy of cosmic rays to produce two antibaryons (at least
two baryons must be produced in the same interaction). This means that the detection of an
antideuteron should be a smoking duck signal of dark matter annihilation or decay. However,
the physics of the formation of antideuterons from dark matter is quite complicated and hard
to reliably calculate, brining in extra uncertainty. Current searches set upper bounds on the
flux of antideuterons at the Earth. It is hoped that AMS-02 will provide new better data on
antideuterons soon.9

8.6 Excercises

Exercise 8.1
Show that χχ→ Z → ff̄ gives

σv ≈
g4E2

χ

128πm2
Z

, (8.6)

which in the low-velocity limit can be shown to be

〈σv〉0 ≈ 10−25 cm3s−1.

9This has been hoped for a very long time.
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Solutions to exercises

Exercise 1.1
Given the group multiplication definition the identity element must be e = T0 = 1 since
Ta ◦T0 = Ta+0 = Ta. Let T−1

a = Tb. Since Ta ◦Tb = Ta+b = 1, we find b = −a. (This does not
show that the inverse is unique, but this is not a requirement.) We have now demonstrated
the required existence of an identity element (iii) and an inverse (iv) for T (1) as required by
the group definition (the order of operations can obviously be reversed). The closure of the
multiplication operation (i) is true by its definition. The associativity (ii) can be demonstrated
as follows (Ta ◦ Tb) ◦ Tc = Ta+b ◦ Tc = Ta+b+c = Ta ◦ Tb+c = Ta ◦ (Tb ◦ Tc).

Exercise 1.2
We need to demonstrate the four group requirements. We have closure since the product of two
such unitary matrices U1 and U2 is a unitary matrix: (U1U2)

†U1U2 = U †
2U

†
1U1U2 = U †

2U2 = I.
Matrix multiplication is always associative. There exists an identity among the matrices since
the identity matrix is unitary: I†I = II = I. There exist an inverse U−1 = U † for every U ,
since the matrix U † is unitary if U is: (U †)†U † = UU † = I.

Exercise 1.3
Since O(1) consists of 1 × 1 matrices, over R we suppose, also known as real numbers, the
orthogonality requirement means that the transpose of that number (which is the number
itself) multiplied by the number should be 1. There are two such reals, 1 and -1. The group
thus has two elements. Since matrix multiplication in this case is just normal multiplication
we have re-found the group Z2.

Exercise 1.4
An n × n matrix U over C has n2 complex or 2n2 real parameters. The hermitian matrix
M = U †U has n real elements on the diagonal and (n2 − n)/2 complex elements above and
below the diagonal. BecauseM † =M all the (n2−n)/2 elements below the diagonal are given
by the complex conjugate the corresponding elements above the diagonal. Since U is unitary
M = I. That all the n real diagonal elements of M is equal to one gives n restrictions (n real
equations) for the elements of U . Further, all (n2−n)/2 complex elements above the diagonal
are zero, which gives (n2−n)/2 complex equations, which means n2−n real equations. For the

155
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terms below the diagonal we do not obtain any new equations. As a result the free parameters
for the U(n) matrices are 2n2 − n − (n2 − n) = n2. For SU(n) we must use the additional
requirement detU = 1. Because 1 = detM = det(U †U) = detU † detU = | detU |2, we see
that detU must be a phase factor, and that the requirement detU = 1 only gives one new
condition (equation). Thus there are n2 − 1 independent real parameters in SU(n).

Exercise 1.5
A matrix in SU(2) has 22 − 1 = 3 free parameters. Let us start with a generic 2× 2 complex
valued matrix

U =

[
α β
γ δ

]
.

For this to be unitary we must have

U †U =

[
α∗ γ∗

β∗ δ∗

] [
α β
γ δ

]
=

[
|α|2 + |γ|2 α∗β + γ∗δ
β∗α+ δ∗γ |β|2 + |δ|2

]
=

[
1 0
0 1

]
.

Then from the off-diagonal, δ∗γ = −β∗α and γ∗δ = −α∗β which gives |δ|2|γ|2 = |α|2|β|2, and
inserting from the diagonal we have (1 − |β|2)|γ|2 = (1 − |γ|2)|β|2 which can be solved for
|γ|2 = |β|2. Similarly from the diagonal |δ|2 = |α|2. We can then generically write γ = eiθβ
and δ = eiφα, where θ and φ are two phases. The diagonal requirement is then completely
fulfilled if |α|2 + |β|2 = 1 and the matrix is

U =

[
α β
eiθβ eiφα

]
.

The determinant then requires αeiφα− βeiθβ = 1 which is fulfilled for a phase φ that rotates
α to α∗ and a phase θ that rotates β to −β∗. Thus we can write

U =

[
α β

−β∗ α∗

]
.

Exercise 1.6

Exercise 1.7
Since H is a subgroup of G then by point ii) in the definition since hj ∈ H we must also have
h−1
j ∈ H. With hi, h−1

j ∈ H by point i) in definition hi ◦ h−1
j ∈ H.

Exercise 1.8
Let Ui, Uj ∈ SU(n), then

det(UiU
−1
j ) = det(Ui) det(U

−1
j ) = 1.

This means that UiU
−1
j ∈ SU(n). In other words, SU(n) is a proper subgroup of U(n). Let

V ∈ U(n) and U ∈ SU(n), then V UV −1 ∈ SU(n) because:

det(V UV −1) = det(V ) det(U) det(V −1) =
det(V )

det(V )
det(U) = 1.
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In other words, SU(n) is also a normal subgroup of U(n), thus U(n) is not simple.

Exercise 1.9
Let H be a subgroup of G and g ∈ G. For a member of the left coset f ∈ gH then gH = fH

because f ∈ gH implies that there must exist an x ∈ H so that gx = f . Thus fH = (gx)H =
g(xH). Since H is a group this means xH = H. Thus every element in G belong to exactly
one left coset. The argument of right cosets is identical.

Exercise 1.14
Split the representation space V = V1 ⊕ V2, where we assume V1 is a closed subspace of V
under the unitary representation ρ(g) (the reducible part). Let v1 ∈ V1 and v2 ∈ V2. Since
V1 is closed ρ(g)v1 ∈ V1 and thus the inner product (ρ(g)v1,v2) = 0. By unitarity the inner
product is also (ρ(g)v1,v2) = (v1, ρ(g)

−1v2), thus ρ(g)−1V2 ⊂ V2 and both subspaces are
closed, and the space thus completely reducible.

Exercise 1.18
A member U of SU(2) fulfils UU † = I and has detU = 1 and can be written as

U =

[
a+ ib c+ id
−c+ id a− ib

]
,

where a, b, c, d ∈ R and a2+b2+c2+d2 = 1. Using a composition function here it is tempting
to solve for a =

√
1− b2 − c2 − d2 and let a, b, c be the three free parameters if SU(2). Note

that solving for b, c or d is not really an option as a requirement for deriving the generators
from the composition function is that the zero parameters, here b = c = d = 0, give the
identity element of the group, which is the identity matrix. However, there is a potential
issue here that choosing the sign on the square root restricts the parameterisation to apply
for only group members with positive real components in the upper left element, meaning
that this composition function only works for part of the group. This is another example of a
local description of the group. Other parameterisations exist, however, they may have other
problems such as a non-unique zero element (meaning no inverse of the composition function
exists).

Fortunately, this parameterisation is enough to give all of the generators of the whole
group:

X1 =
∂U

∂d

∣∣∣∣
b=c=d=0

=

[
0 i
i 0

]
,

X2 =
∂U

∂c

∣∣∣∣
b=c=d=0

=

[
0 1
−1 0

]
,

X3 =
∂U

∂b

∣∣∣∣
b=c=d=0

=

[
i 0
0 −i

]
.

While these are not the Pauli matrices we might be expecting, they are related to the Pauli
matrices by a simple multiplicative factor σ1 = −iX1, σ2 = −iX2, and σ3 = −iX3. In
fact the matrices we have found are typically used in mathematical texts as the generators
of SU(2), but then the exponential map has no factor of i. Notice that these matrices are
anti-hermitian, while the Pauli matrices are hermitian.
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The infinitesimal approach writes the group member as U = eidaiXi ' I + idaiXi, and
applying the unitarity requirement

UU † ' (I + idaiXi)(I + idaiXi)
† = I + idai(Xi −X†

i ) + . . . ,

means that a necessary condition on the generators Xi is that they are hermitian Xi = X†
i .

The general form of the generators is thus restricted to

X =

[
α γ
γ∗ β

]
,

where α, β ∈ R and γ ∈ C. The property of the determinant can be found as follows (see
Exercise ??):

detU = det eidaiXi = eTr[idaiXi] = eidai Tr[Xi].

This means that for the determinant to be one, each trace must be zero, meaning that the
generators are traceless so that the general form of the generators is restricted to

X =

[
α γ
γ∗ −α

]
.

From the requirement α2 + |γ|2 = 1 we can recreate the three Pauli matrices by the three
choices: 1) α = 1, γ = 0, 2) α = 0, γ = 1, and 3) α = 0, γ = −i. Naturally, there is a
continuum of equivalent expressions for the generators from other compatible choices.

This approach emphasises two important properties of the generators. Firstly that the
generators are hermitian. Since the generators will function as operators in a QM of QFT
setting, this is very desirable. Second, the generators are traceless. This will often be a
calculational advantage.

Exercise 2.1
Since

J+J−|m〉 = (J−J++J3)|m〉 = (J−J++m)|m〉 = J−N
+
m|m+1〉+m|m〉 = (N−

m+1N
+
m+m)|m〉,

and
J+J−|m〉 = J+N

−
m|m− 1〉 = N+

m−1N
−
m|m〉,

we get by comparison N−
m+1N

+
m+m = N+

m−1N
−
m. Now N+

j = 0 since |j〉 is the highest weight
state, and thus N+

j−1N
−
j = j.

Exercise 2.3
A boost in the x-direction can be parameterised in terms of the rapidity η as β = tanh η and
γ = cosh η,

x′µ = Λµ
νx

ν =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1



t
x
y
z

 =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1



t
x
y
z

 .
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The generator is then

iK1 =
∂Λ

∂η

∣∣∣∣
η=0

=


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 or K1 = i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
Copying this for the y- and z-directions gives

K2 = i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 and K3 = i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .
Since rotations do not change time the corresponding matrices for the rotations must

consist of the generators for SO(3) from Eq. (1.7) inserted into the lower 3× 3 part of a 4× 4
matrix which is otherwise zero. We also append them with a factor i to consistently make
them Hermitian to be consistent with our definition of generators. This gives

J1 = i


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , J2 = i


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , J3 = i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .
By explicit calculation we then have [K1,K2] = −iJ3, [K1,K3] = iJ2 and [K2,K3] = −iJ1,
which can be more elegantly written as [Ki,Kj ] = −iεijkJk. Similarly, we find [K1, J2] = iK3,
[K1, J3] = −iK2, and [K2, J3] = iK1, with all other commutators of rotation and boost
generators zero, which can be summarised as [Ki, Jj ] = iεijkKk.

Exercise 2.4
The generators for the rotation part of the group have already been found in (1.7). Since
SO(3) is a subgroup there are no changes to these. In terms of M they give

Mij = εijkJk = εijkLk =
1

2
εijkεklmi(xl∂m − xm∂l)

=
1

2
i(δilδjm − δimδjl)(xl∂m − xm∂l)

= i(xi∂j − xj∂i).

The boost generators are found by looking first at a boost in the x-direction parameterised
in terms of the rapidity η as β = tanh η and γ = cosh η. The transformation of the domain
of functions defined on four-vectors is given explicitly by the Lorentz transformations

t′ = f0(x) = γ(t− vx) = cosh η(t− tanh η x),

and
x′ = f1(x) = γ(x− vt) = cosh η(x− tanh η t).



160 APPENDIX A. SOLUTIONS TO EXERCISES

This gives the following generator

iK1 =
∂f0
∂η

∂

∂t

∣∣∣∣
η=0

+
∂f1
∂η

∂

∂x

∣∣∣∣
η=0

=

(
sinh η(t− tanh η x)− x

cosh η

)
∂

∂t

∣∣∣∣
η=0

+

(
sinh η(x− tanh η t)− t

cosh η

)
∂

∂x

∣∣∣∣
η=0

= −x ∂
∂t

− t
∂

∂x
= −(x1∂0 − x0∂1),

orK1 = i(x1∂0−x0∂1). Similarly for boost in the y- and z-direction we getK2 = i(x2∂0−x0∂2)
and K3 = i(x3∂0 − x0∂3). This is consistent with Mi0 = Ki = i(xi∂0 − x0∂i).

Exercise 2.5
For a Lorentz boost in the x-direction all parameters are zero except ω10 = −ω01 = η. This
gives

Λ = exp(iω10M10) = exp(iηK1) = cosh(iηK1) + sinh(iηK1).

where we have used the relationship between the formal power series for the exponential and
hyperbolic functions. Now the hyperbolic cosine holds the terms even in K1 and hyperbolic
sine the odd terms. From

iK1 = −


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (iK1)
2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (iK1)
3 = −


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,
we can write

Λ = I + (cosh η − 1)


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

− sinh η


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 .
Thus we are left with the standard matrix for Lorentz transformations in the x-direction
(using rapidity).

Exercise 2.8
The first relation follows trivially from the commutation of Pµ with Pν . To show the second
we first use that

[Mµν , PρP
ρ] = [Mµν , Pρ]P

ρ + Pρ[Mµν , P
ρ],

and Eq. (2.9) to get:

[Mµν , PρP
ρ] = −i(gµρPν − gνρPµ)P

ρ − iPρ(gµ
ρPν − gν

ρPµ),

thus
[Mµν , PρP

ρ] = −2i[Pµ, Pν ] = 0.
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Exercise 2.9
From the definition of Wν we have

[Pµ,Wν ] =
1

2
ενρστ [Pµ, P

ρMστ ]

=
1

2
ενρστgµγ([P

γ , P ρ]Mστ + P ρ[P γ ,Mστ ])

=
i

2
ενρστgµγP

ρ(gσγP τ − gτγP σ)

=
i

2
ενρστgµγP

ρgσγP τ − i

2
ενρστgµγP

ρgτγP σ

=
i

2
ενρµτP

ρP τ − i

2
ενρσµP

ρP σ

= 0,

using the Poincaré algebra properties from (2.9).

Exercise 2.12

[Xµ, Pν ] =
1

2
[Q̄γµγ

5Q,Pν ] =
1

2
(Q̄γµγ

5)a[Qa, Pν ] +
1

2
[Q̄a, Pν ](γµγ

5Q)a = 0

Exercise 3.1

∫
d2θ θθ = −1

4

∫
dθAdθA θ

AθA

=
1

2

∫
dθAdθA θ1θ2 = −

∫
dθ1dθ2 θ1θ2 =

∫
dθ1θ1

∫
dθ2θ2 = 1

Exercise 3.3
We start from

Φ(y, θ) = A(y) +
√
2θψ(y) + θθF (y),

and yµ ≡ xµ + iθσµθ̄. This gives

Φ(x, θ, θ̄) = A(x+ iθσθ̄) +
√
2θψ(x+ iθσθ̄) + θθF (x+ iθσθ̄)

= A(x) + ∂µA(x)iθσ
µθ̄ +

1

2
∂µ∂νA(x)(iθσ

µθ̄)(iθσν θ̄) +
√
2θψ(x)

+
√
2∂µθψ(x)iθσ

µθ̄ + θθF (x)

= A(x) + iθσµθ̄∂µA(x)−
1

2
∂µ∂νA(x)

1

2
gµνθθθ̄θ̄ +

√
2θψ(x)

+i
√
2θ∂µψ(x)θσ

µθ̄ + θθF (x)

= A(x) + iθσµθ̄∂µA(x)−
1

4
�A(x)θθθ̄θ̄ +

√
2θψ(x) +

i√
2
θθ∂µψσ

µθ̄ + θθF (x),

where we have used that (θσµθ̄)(θσν θ̄) = 1
2g

µνθθθ̄θ̄ and θ∂µψθσµθ̄ = 1
2θθ∂µψσ

µθ̄.
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Exercise 4.1
The Lagrangian for a single scalar superfield Φ is

L = Φ†Φ+ δ2(θ̄)(gΦ+mΦΦ+ λΦΦΦ) + δ2(θ)(gΦ† +mΦ†Φ† + λΦ†Φ†Φ†). (4.37)

Using the following expressions for the scalar superfield in terms on component fields

Φ(x, θ, θ̄) = A(x) + i(θσµθ̄)∂µA(x)−
1

4
θθθ̄θ̄�A(x) +

√
2θψ(x)− i√

2
θθ∂µψ(x)σ

µθ̄

+θθF (x).

Φ†(x, θ, θ̄) = A∗(x)− i(θσµθ̄)∂µA
∗(x)− 1

4
θθθ̄θ̄�A∗(x) +

√
2θ̄ψ̄(x) +

i√
2
θ̄θ̄θσµ∂µψ̄(x)

+θ̄θ̄F ∗(x).

we have for the kinetic term,∫
d4θΦ†Φ = −1

4
A�A∗ − 1

4
A∗�A+ |F |2

+

∫
d4θ

{
(θσµθ̄)∂µA

∗(θσν θ̄)∂νA+ iθ̄θ̄θσµ∂µψ̄θψ − iθ̄rψθθ∂µψσ
µθ̄
}
,

where we have removed the factor θθθ̄θ̄ by integration. Using the identities

(θσµθ̄)(θσν θ̄) =
1

2
gµνθθθ̄θ̄, (4.38)

θσµ∂µψ̄θψ = −1

2
ψσµ∂µψ̄θθ, (4.39)

∂µψσ
µθ̄θ̄ψ̄ = −1

2
∂µψσ

µψ̄θ̄θ̄, (4.40)

gives ∫
d4θΦ†Φ = −1

4
A�A∗ − 1

4
A∗�A+

1

2
∂µA∂µA

∗ + |F |2

− i

2
ψσµ∂µψ̄ +

i

2
∂µψσ

µψ̄.

Now, since
1

2
∂µA∂µA

∗ =
1

2
∂µ(A∂µA

∗)− 1

2
A�A∗, (4.41)

and

−1

4
A�A∗ = −1

4
∂µ(A∂

µA∗) +
1

4
∂µA∂

µA∗

= −1

4
∂µ(A∂

µA∗) +
1

4
∂µ((∂µA)A

∗)− 1

4
A∗�A,

we can write

−1

4
A�A∗ − 1

4
A∗�A+

1

2
∂µA∂µA

∗ = −A∗�A+ total derivatives. (4.42)
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Using (2.29) we can similarly write

− i

2
ψσµ∂µψ̄ +

i

2
∂µψσ

µψ̄ =
i

2
∂µψ̄σ̄

µψ − i

2
ψ̄σ̄µ∂µψ

= i∂µψ̄σ̄
µψ − i

2
∂µ(ψ̄σ̄

µψ). (4.43)

Removing the terms with total derivatives the kinetic term is∫
d4θΦ†Φ =

∫
d4x

{
−A∗(x)�A(x) + |F (x)|2 + i∂µψ(x)σ̄

µψ(x)
}
. (4.44)

The (left-handed) superpotential terms are∫
d4θ θ̄θ̄Φ = F,∫

d4θ θ̄θ̄ΦΦ = 2AF + ψψ,∫
d4θ θ̄θ̄ΦΦΦ = 3A2F + 3Aψψ.

where we have used (2.28) to rewrite the terms with ψ. The total action is then

S =

∫
d4x

{
−A∗(x)�A(x) + |F (x)|2 + i∂µψ̄(x)σ̄

µψ(x)

+ gF (x) + 2mA(x)F (x) +mψ(x)ψ(x) + 3λA(x)2F (x) + 3λA(x)ψ(x)ψ(x) + h.c.
}

(4.45)

The equation of motion for F is then

∂L
∂F ∗ = F + g + 2mA∗ + 3λA∗2 = 0, (4.46)

which we can solve for F . With ∂W
∂A = g + 2mA+ 3λA2, F = −∂W ∗

∂A∗ and the action is

S =

∫
d4x {−A∗(x)�A(x) + i∂µψ(x)σ̄

µψ(x) +mψ(x)ψ(x) + 3λA(x)ψ(x)ψ(x)

+mψ̄(x)ψ̄(x) + 3λA∗(x)ψ̄(x)ψ̄(x)−
∣∣∣∣∂W∂A

∣∣∣∣2
}
. (4.47)

Using the fermionic mass matrices in (4.23) this can be written as

S =

∫
d4x

{
−A∗(x)�A(x) + i∂µψ̄(x)σ̄

µψ(x) +
1

2

∂2W

∂A2
ψ(x)ψ(x)

+
1

2

∂2W ∗

∂A∗2 ψ̄(x)ψ̄(x)−
∣∣∣∣∂W∂A

∣∣∣∣2
}
. (4.48)
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Exercise 4.2
To calculate the field strength in Wess–Zumino gauge we start from the vector superfield itself

VWZ(x, θ, θ̄) = θσµθ̄Vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄D(x), (4.51)

and make the coordinate change yµ = xµ + iθσµθ̄. This gives

VWZ(x, θ, θ̄) = θσµθ̄Vµ(y)− iθσν θ̄∂νθσ
µθ̄Vµ(y) + θθθ̄λ̄(y) + θ̄θ̄θλ(y) + θθθ̄θ̄D(y)

= θσµθ̄Vµ(y) + θθθ̄λ̄(y) + θ̄θ̄θλ(y) + θθθ̄θ̄[D(y)− i

2
∂µVµ(y)], (4.52)

where we have used (2.31).
Since, in this coordinate system, DA = ∂A + 2i(σµθ̄)A∂µ and D̄Ȧ = −∂Ȧ, so that D̄D̄ =

∂Ȧ∂
Ȧ, we can then find the field strength as

WA = −1

4
D̄D̄DAVWZ(y, θ, θ̄)

= −1

4
∂Ȧ∂

Ȧ
[
(σµθ̄)AVµ(y) + iθAθ̄θ̄∂

µVµ(y) + 2θAθ̄λ̄(y) + θ̄θ̄λA(y) + 2θAθ̄θ̄D(y)

+2i(σν θ̄)A∂ν
(
θσµθ̄Vµ(y) + θθθ̄λ̄(y)

)]
= −1

4
∂Ȧ∂

Ȧ
[
(σµθ̄)AVµ(y) + iθAθ̄θ̄∂

µVµ(y) + 2θAθ̄λ̄(y) + θ̄θ̄λA(y) + 2θAθ̄θ̄D(y)

+2i(σν θ̄)Aθσ
µθ̄∂νVµ(y)− iθθθ̄θ̄(σν∂ν λ̄(y))A

]
= iθA∂

µVµ(y) + λA(y) + 2θAD(y)

+2i∂Ȧ∂
Ȧ(σν θ̄)Aθσ

µθ̄∂νVµ(y)− iθθ(σν∂ν λ̄(y))A

= λA(y) + 2θAD(y) + (σµνθ)AFµν(y)− iθθ(σµ∂µλ̄(y))A (4.53)

where we have used ∂Ȧ∂
Ȧ(θ̄θ̄) = 4 and 2i(σν θ̄)Aθθθ̄∂ν λ̄(y) = −iθθθ̄θ̄(σν∂ν λ̄(y))A, and where

Fµν = ∂µVν − ∂νVµ is the field strength for the field Vµ.
Then the terms with a θθ factor in WAWA are

WAWA|θθ = −iθθλ(y)σµ∂µλ̄(y)− iθθ(σµ∂µλ̄(y))
AλA(y) + 4θθD2(y)

+2D(y)θσµνθFµν(y) + 2(σµνθ)AFµν(y)θAD(y) + (σµνθ)AFµν(y)(σ
ρσθ)AFρσ(y)

= −2iθθλ(y)σµ∂µλ̄(y) + 4θθD2(y)

+4θσµνθD(y)Fµν(y) + (σµνθ)AFµν(y)(σ
ρσθ)AFρσ(y)

= −2iθθλ(y)σµ∂µλ̄(y) + 4θθD2(y)− θθ
1

2
Fµν(y)F

µν(y)− θθ
i

2
Fµν(y)F̃

µν(y)(4.54)

where we have used that from (2.34) θσµνθ = 0 to remove a term, and rewritten

(σµνθ)AFµν(y)(σ
ρσθ)AFρσ(y) = −θθ1

2
Fµν(y)F

µν(y)− θθ
i

2
Fµν(y)F̃

µν(y), (4.55)

where F̃µν = 1
2ε

µνρσFρσ is the dual field strength tensor.
Since these terms are invariant under the change of coordinates yµ = xµ+ iθσµθ̄ – because

all terms beyond the first order disappear in the expansion due to too many θ-factors – and
since no other terms can survive the

∫
d4θ-integration in the Lagrangian, we are left with∫

d4θ θ̄θ̄WAWA = −2iλ(x)σµ∂µλ̄(x) + 4D2(x)− 1

2
Fµν(x)F

µν(x)− i

2
Fµν(x)F̃

µν(x). (4.56)
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We see that the component field Lagrangian, as expected and as promised in Sec. 4.4, contains
a field strength term for the vector component field. At this point we may worry about the
appearance of the dual field strength tensor which we do not have in the Standard Model.
However, we can show that the term in question can be written as a total derivative,

FµνF̃
µν =

1

2
(∂µAν − ∂νAµ)ε

µνρσ(∂ρAσ − ∂σAρ)

= 2εµνρσ(∂µAν)(∂ρAσ)

= 2εµνρσ(∂ρ∂µAν)Aσ − 2εµνρσ∂ρ(∂µAνAσ) (4.57)

where the first term disappears due to the asymmetry of the Levi-Civita symbol. That means
that the term with the dual field strength tensor disappears if the fields fall off rapidly enough
towards infinity. This will always be true for abelian field theories, but is not necessarily so
for non-abelian theories, where we can have so-called instanton effects.

Exercise 4.3
We should note that in this case W = 0 as we can not construct gauge invariant terms in
the superpotential with only one superfield that is charged under the gauge group. This also
implies that F (x) ≡ 0.

For an abelian gauge group the kinetic term in Wess–Zumino gauge is

Lkin =

∫
d4θΦ†eqVWZΦ =

∫
d4θ

[
Φ†Φ+ qΦ†ΦVWZ +

1

2
q2Φ†ΦV 2

WZ

]
. (4.59)

The first term in the integral we have calculated already in Exercise 1. Inserting Eqs. (3.35),
(3.36) and (3.48) the second term is∫

d4θΦ†ΦVWZ =

∫
d4θ

{
[iA∗(θσν θ̄)∂νA− iA(θσν θ̄)∂νA

∗ + 2θ̄ψ̄θψ](θσµθ̄)Vµ

+
√
2Aθ̄ψ̄θθθ̄λ̄+

√
2A∗θψθ̄θ̄θλ+ θθθ̄θ̄|A|2D

}
=

∫
d4θ

{
i

2
A∗θθθ̄θ̄∂µAVµ − i

2
Aθθθ̄θ̄∂µA∗Vµ − 1

2
(θθ)(θ̄θ̄)ψ̄σ̄µψVµ

+
1√
2
Aθθθ̄θ̄ψ̄λ̄+

1√
2
A∗θθθ̄θ̄ψλ+ θθθ̄θ̄|A|2D

}
=

i

2
(A∗∂µA−A∂µA∗)Vµ − 1

2
ψ̄σ̄µψVµ

+
1√
2
Aψ̄λ̄+

1√
2
A∗ψλ+ |A|2D, (4.60)

where we have used Eqs. (2.28), (2.31), and (4.58) for the second equality.
The third term is found from Eqs. (3.35), (3.36) and (3.49), with only one possible sur-

viving term ∫
d4θ

1

2
Φ†ΦV 2

WZ =

∫
d4θ

1

4
|A|2θθθ̄θ̄V µVµ =

1

4
|A|2V µVµ. (4.61)

Summing up these three terms the total contribution from the kinetic terms is then

Lkin = −A∗�A+ i∂µψ̄σ̄
µψ +

i

2
q(A∗∂µA−A∂µA∗)Vµ − 1

2
qψ̄σ̄µψVµ

+
1√
2
qAψ̄λ̄+

1√
2
qA∗ψλ+ q|A|2D +

1

4
q2|A|2V µVµ. (4.62)
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We can simplify this expression by defining a covariant derivative from the vector component
field Dµ ≡ ∂µ − i q2Vµ.

20 We immediately see that

i∂µψ̄σ̄
µψ − 1

2
qψ̄σ̄µψVµ = iD∗

µψ̄σ̄
µψ, (4.63)

and

|DµA|2 ≡ D∗
µA

∗DµA = (∂µA
∗ + i

q

2
VµA

∗)(∂µA− i
q

2
V µA)

= |∂µA|2 +
q2

4
VµV

µ|A|2 + i
q

2
(A∗∂µA− ∂µA∗A)Vµ, (4.64)

so that we can write, using −A∗�A = |∂µA|2,

Lkin =
1√
2
qAψ̄λ̄+

1√
2
qA∗ψλ+ q|A|2D + iD∗

µψ̄σ̄
µψ + |DµA|2

Adding the field strength terms from Exercise 2 the complete Lagrangian is

L = iD∗
µψ̄(x)σ̄

µψ(x) + |DµA(x)|2 − iλ(x)σµ∂µλ̄(x)

+
1√
2
qA(x)ψ̄(x)λ̄(x) +

1√
2
qA∗(x)ψ(x)λ(x) + q|A(x)|2D(x)

+2D2(x)− 1

4
Fµν(x)F

µν(x). (4.65)

Exercise 4.4
In QED we have three particles, the electron, positron and the photon. As a Dirac fermion the
electron needs two scalar superfields to provide the two different left- and right-handed Weyl-
spinor components. However, then the positron is already given by the hermitian conjugates
of these spinors. For the photon we need an abelian vector superfield for the U(1)em gauge
group. Thus the minimum field content consists of two scalar superfields L and Ē, and a
vector superfield V .

The supergauge transformations for the scalar superfields are L → L′ = exp (−ieΛ)L
and Ē → Ē′ = exp (ieΛ)Ē, where e is the elementary electrical charge, and the difference
in sign signifies the opposite charges of the electron and positron. The general form of the
superpotential must then be W = mLE with a single (mass) parameter m. No tadpole
terms in L and Ē can survive since these are not gauge singlets, and only the LE mass term
survives since the two fields in the mass term must have opposite charges under the gauge
group. Similarly, no Yukawa term can fulfil the gauge invariance criterium.

Solving for the auxiliary F -fields we get

F ∗
L = −WL = −∂W [AL, AE ]

∂AL
= −mAE ,

F ∗
e = −WE = −∂W [AL, AE ]

∂AE
= −mAL.

20The unusual factor of 2 here compared to the usual abelian gauge covariant derivative is due to our earlier
choices in how to write down the vector superfield in terms of component fields. If we want we can absorb this
by redefining Vµ.
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Generalising the discussion in Exercise 1, the contribution to the Lagrangian from the super-
potential in terms of component fields is

Lsuperpot = mψLψE +m∗ψ̄Lψ̄E − |m|2(|AL|2 + |AE |2), (4.66)

where we must reasonably identify m with the electron mass, see also that, as expected the
scalar fields AE and AL obtain the same mass.

From the field content we know that the kinetic terms take the form L†eeV L and Ē†e−eV Ē
where the sign ensures the gauge invariance under the supergauge transformations of the scalar
and vector superfields together. Taking results from Exercise 3 the Lagrangian contribution
from the kinetic terms is

Lkin =
1√
2
eALψ̄Lλ̄+

1√
2
eA∗

LψLλ+ e|AL|2D + iD∗
µψ̄Lσ̄

µψL + |DµAL|2

− 1√
2
eAEψ̄Eλ̄− 1√

2
eA∗

EψEλ− e|AE |2D + iD∗
µψ̄E σ̄

µψE + |DµAE |2,

where λ is the Weyl fermion from the vector superfield V, D is the auxiliary field from V ,
and the covariant gauge derivative is Dµ = ∂µ− ie

2 Aµ, where Aµ is the electromagnetic gauge
field.

In Exercise 2 we saw that the contribution from the abelian field strength term is

Lfield strength = −iλσµ∂µλ̄+ 2D2 − 1

4
FµνF

µν , (4.67)

where Fµν = ∂µAν − ∂νAµ.
Solving for the auxiliary D-field we get

D =
e

4
(|AE |2 − |AL|2). (4.68)

This gives a total Lagrangian of

L = iD∗
µψ̄Lσ̄

µψL + |DµAL|2 + iD∗
µψ̄E σ̄

µψE + |DµAE |2 − iλσµ∂µλ̄− 1

4
FµνF

µν

+mψLψE +m∗ψ̄Lψ̄E − |m|2(|AL|2 + |AE |2)

+
1√
2
eALψ̄Lλ̄+

1√
2
eA∗

LψLλ− 1√
2
eAEψ̄Eλ̄− 1√

2
eA∗

EψEλ− e2

8
(|AE |2 − |AL|2)2.

Exercise 7.2
We will in the following take all outgoing momenta to go out of the vertex. The indices abcd
are gluon indices (1, ..., 8), rs are spin indices (1, 2), and ijmn are colour indices (1, 2, 3). The
relevant Feynman rules are as follows:

• Incoming quark: ur(k).

• Incoming antiquark: v̄s(p).

• Gluon propagator: −igµνs δ
ab.

• Vertex qq̄g: −itaijγµgs.
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• Vertex q̃q̃∗g: −itbmn(k
′ − p′)νgs.

We will assume the SM particles to have negligible mass compared to the squarks.
The matrix element is then given as

M = −g
2
s

s
taijt

b
mnδ

abv̄sγµur(k′ − p′)µ.

In the squared amplitude we average over all incoming spin and colour, and sum over the
outgoing:

|M̄|2 = 1

4
· 1
9

g4s
s2

∑
ab

∑
cd

∑
rs

∑
ijmn

taijt
b
mnt

c
ijt

d
mnδ

abδcdv̄sγµurūrγνvs(k′ − p′)µ(k
′ − p′)ν

=
1

4
· 1
9

g4s
s2

∑
ijmn

(∑
a

taijt
a
mn

∑
c

tcjit
c
nm

)
︸ ︷︷ ︸

≡Cf

∑
rs

v̄sγµurūrγνvs(k′ − p′)µ(k
′ − p′)ν

=
1

4
· 1
9

g4s
s2
CfpαkβTR(γ

αγµγβγν)(k′ − p′)µ(k
′ − p′)ν

=
1

9

g4s
s2
Cfpαkβ(p

µkν − pβkβη
µν + pνkµ)(k′ − p′)µ(k

′ − p′)ν

=
1

9

g4s
s2
Cf (2p · (k′ − p′)k · (k′ − p′)− p · k(k′ − p′) · (k′ − p′)),

where we have isolated the colour factors into the coefficient Cf .
In the centre of mass frame, we have p = (E, ~p), k = (E,−~p), p′ = (E, ~p′) and k′ =

(E,−~p′). From this we find

2p · (k′ − p′)k · (k′ − p′)− p · k(k′ − p′) · (k′ − p′) = 2 · 4|~p|2|~p′|2(1− cos2 θ)

= 2s|~p′|2(1− cos2 θ),

where θis the acute angle between the incoming quarks, and s = (p+k)2 = 4E2 = 4|~p|2. This
gives the squared averaged amplitude

|M̄|2 = 2

9

g4s
s
Cf · |~p′|2(1− cos2 θ),

and the differential cross section

dσ

dΩ
=

|~p′|2

32π2
√
ss

|M̄|2

=
1

144

g4s
π2

√
ss2

Cf |~p′|3(1− cos2 θ).
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Integrating over the solid angle then gives the total cross section

σ =

∫ (
dσ

dΩ

)
dΩ

= 2π
1

144

g4s
π2

√
ss2

Cf |~p′|3
∫ 1

−1
(1− cos2 θ)d(cos θ)

=
4

3
2π

1

144

g4s
π2

√
ss2

Cf |~p′|3

=
1

54π

g4s√
ss2

Cf |~p′|3.

We can rewrite |~p′|3 by noticing that

|~p′| =
√
E2 −m2 =

1

2

√
4E2 − 4m2 =

√
s

2

√
1− 4m2

s
.

The colour factor is calculated below and found to be Cf = 2, so the total cross section is

σ =
g4s

216πs

√(
1− 4m2

s

)3

.

Using αs = g2s
4π , and assuming that both the left-, and right-handed squarks have the same

mass, we arrive at the final expression

σ =
4

27

πα2
s

s

√(
1− 4m2

s

)3

.

To calculate the colour factor Cf we use that the sum over the generators t is given (see
for example [39]) as: ∑

a

taijt
a
mn =

1

2

(
δinδjm − 1

NC
δijδmn

)
,

and using that δij = δji, we have

Cf =
1

4

∑
ijmn

(
δinδjm − 1

NC
δijδmn

)(
δjmδin − 1

NC
δjiδnm

)

=
1

4

∑
ijmn

(
δinδjmδjmδin − 2

NC
δijδmnδjmδin +

1

N2
C

δijδmnδjiδnm

)

=
1

4

∑
ijmn

(
δinδinδjmδjm − 2

NC
δijδmnδjmδin +

1

N2
C

δijδijδmnδmn

)

=
1

4

(
N2

C − 2

NC
NC +

1

N2
C

N2
C

)
=

1

4
(N2

C − 1) = 2.
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