

Inelastic form factors, scattering cross sections, dipole selection rules

FYS5310/FYS9320 Lecture 4 16.02.2016

FYS5310 teaching schedule

Preliminary schedule only! You should keep the class-times on Wednesdays and Thursdays open unless notified by email (or in this schedule) that there is no class References to the textbook to Fultz & Howe unless stated otherwise.

Date		Time	Lecture/lab	Tonic	Chapters	Homework
	40.04.0047			•	<u> </u>	
Wednesday		14:15-16:00		Introduction to the course. Derivation of the structure factor (01)	4.1, 4.3.1, 6.1	Exercise set 1 (handout)
Thursday		12:15-14:00		No class (SMN seminar)		
Wednesday			Lab/Colloquium	Going through exercise set 1 + Lecture: The atomic form factor (02)	4.3	Excercise set 2 (handout)
Thursday		12:15-14:00		No class		
Wednesday			Lab/colloquium	Going though exercise set 2		
Thursday	02.02.2017	12:15-14:00	Lecture	Uses of EELS and EELS instrumentation (03)	5.1, 5.2; W&C 37	Exercise set 3 (handout)
Wednesday	08.02.2017	14:15-16:00	Lab/colloquium	Going though exercise set 3		
Thursday	09.02.2017	12:15-14:00	Lecture	Inelastic form factors (04)	5.4.1-5.4.3 + primer on Dirac notation	
Wednesday	15.02.2017	12:15-16:00	Lab/colloquium	No class		
Thursday	16.02.2017	12:15-14:00	Lecture	Inelastic form factors, scattering cross sections, dipole selection rules (05)	5.4.4-5.4.7, W&C 39, plus Brehm and Mullin on parity and dipole selectrion rules	
Wednesday	22.02.2017	12:15-16:00	Lab/colloquium	No class		
Thursday	23.02.2017	12:15-14:00	Lecture	Core losses: Quantification and electronic structure (06)	5.4, W&C 39+40	Exercise set 4 (handout)
Wednesday	01.03.2017	12:15-16:00	Lab/colloquium	Going through excercise set 4		
Thursday	02.03.2017	12:15-14:00	Lecture	Low energy loss; electronic structure and dielectric properties pt 1 (07)		
Wednesday	08.03.2017	12:15-16:00	Lab/colloquium	Computer lab?		
Thursday		12:15-14:00			5.3, W&C 38	
Wednesday Thursday			Lab/colloquium	No class		
Thursday		12:15-14:00		No class		
Wednesday	22.03.2017	12:15-16:00	Lab/colloquium	Computer lab?		

This lecture

- Recap from last time
 - The inelastic form factor
- Cross section of a single scattering event
- Cross section for several possible final states
- GOS
- Dipole selection rules

Figure 1: Sketch showing a plane wave scattered by atom in \mathbf{R}_{j} .

$$f(\mathbf{k}, \mathbf{k}_{0}) = \frac{-m_{e}}{2\pi\hbar^{2}} \langle \beta | \langle \mathbf{k} | \frac{e^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} + V(\mathbf{r}_{1}) | \mathbf{k}_{0} \rangle | \alpha \rangle$$

$$= \frac{-m_{e}}{2\pi\hbar^{2}} \left[\langle \beta | \langle \mathbf{k} | \frac{e^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} | \mathbf{k}_{0} \rangle | \alpha \rangle + \langle \beta | \langle \mathbf{k} | V(\mathbf{r}_{1}) | \mathbf{k}_{0} \rangle | \alpha \rangle \right]$$

$$= \frac{-m_{e}}{2\pi\hbar^{2}} \left[\langle \beta | \langle \mathbf{k} | \frac{e^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} | \mathbf{k}_{0} \rangle | \alpha \rangle + \langle \beta | \alpha \rangle \langle \mathbf{k} | V(\mathbf{r}_{1}) | \mathbf{k}_{0} \rangle \right]$$

$$= \frac{-m_{e}}{2\pi\hbar^{2}} \left[\langle \beta | \langle \mathbf{k} | \frac{e^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} | \mathbf{k}_{0} \rangle | \alpha \rangle \right]$$

Fermi golden rule – scattering between two distict states

$$\frac{\mathrm{d}\sigma(\mathbf{\Delta}\mathbf{k})}{\mathrm{d}\Omega} = |f(\mathbf{k}, \mathbf{k}_0)|^2 = \frac{4}{a_0^2 \Delta k^4} \left| \int_{-\infty}^{\infty} \Psi_{\beta}^*(\mathbf{r}_2) e^{-i\mathbf{\Delta}\mathbf{k}\cdot\mathbf{r}_2} \Psi_{\alpha}(\mathbf{r}_2) \mathrm{d}^3\mathbf{r}_2 \right|^2$$

 $\Delta \mathbf{k}$ – scattering vector $\Delta \mathbf{k} = \mathbf{k}_0 - \mathbf{k}$ Ψ_{α} – initial state of target electron Ψ_{β} – final state of target electron \mathbf{r}_2 – position of scattering event

Assumption 1
Only one scattering event at a time

Assumption 2
Separation of the electronic and atomic degrees of freedom

Double differential cross section

$$\frac{d\sigma}{\Delta \mathbf{k}} \to \frac{d^2\sigma(\Delta \mathbf{k}, E)}{\Delta \mathbf{k} dE}$$

 $\frac{d\sigma}{\Delta \mathbf{k}} \to \frac{d^2\sigma(\Delta \mathbf{k}, E)}{\Delta \mathbf{k} dE}$ We want to consider all possible transistions from Ψ_{α} with energy E

$$\left| \beta e^{-i\Delta \mathbf{k} \cdot \mathbf{r}} |\alpha\rangle \right|^2$$

Several possible final states with same energy

$$\frac{\mathrm{d}^2 \sigma(\mathbf{\Delta k}, E)}{\mathrm{d}\Omega \mathrm{d}E} = \frac{4}{a_0^2 \Delta k^4} \rho(E) \left| \langle \beta | e^{-i\mathbf{\Delta k \cdot r}} | \alpha \rangle \right|^2$$

Assumption 3 Matrix element is a constant for all β under consideration

UiO • Department of Physics

University of Oslo

$$G_{\alpha\beta}(\Delta k, E) = E_{\alpha\beta} \frac{2m_e}{\hbar^2 \Delta k^2} \left| \int_{-\infty}^{\infty} \Psi_{\beta}^*(\mathbf{r}) e^{-i\mathbf{\Delta}\mathbf{k}\cdot\mathbf{r}_2} \Psi_{\alpha}(\mathbf{r}_2) d^3\mathbf{r} \right|^2$$

$$\frac{\mathrm{d}^2 \sigma(\phi, E)}{\mathrm{d}\phi \mathrm{d}E} = \frac{2\pi \hbar^4}{a_0^2 m_2^2 E_{\alpha\beta} T} \underbrace{\frac{\phi}{\phi^2 + \phi_E^2}}_{\text{exp. scatt. angles}} \underbrace{\rho(E)}_{\text{sol. state eff.}} \underbrace{\frac{\mathrm{atomic osci. str.}}{G_{\alpha\beta}(\Delta k, E)}}_{\text{atomic osci. str.}}$$

Bethe surface for K-shell ionization of C, calculated using a hydrogenic model. The GOS is zero for energy losses below the ionization threshold $E_K = E_{\alpha\beta}$, or E < 0. The horizontal coordinate increases with scattering angle. The Bethe ridge is most distinct at large E towards the front of the figure. After [5.5]

Small scattering angles – the dipole selection rule

Most of the scattering is at small angles
Can be further limited by selecting small β

$$\Delta \mathbf{k} \cdot \mathbf{r} \ll 1$$
 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

$$e^{i\boldsymbol{q}\cdot\boldsymbol{r}} = 1 + i\Delta\mathbf{k}\cdot\boldsymbol{r} + \frac{(i\Delta\mathbf{k}\cdot\boldsymbol{r})^{2}}{2!} + \frac{(i\Delta\mathbf{k}\cdot\boldsymbol{r})^{3}}{3!} + \dots \qquad \frac{d\sigma}{d\Delta\mathbf{k}} = \frac{4}{a_{0}\Delta\mathbf{k}^{4}} \left| \left\langle \beta \left| e^{i\Delta\mathbf{k}\cdot\boldsymbol{r}} \right| \alpha \right\rangle \right|^{2}$$

$$\frac{d\sigma}{d\Delta\mathbf{k}} \approx \frac{4}{a_0 \Delta\mathbf{k}^4} |\langle \beta | 1 + i \Delta\mathbf{k} \cdot \boldsymbol{r} | \alpha \rangle|^2 = \frac{4}{a_0 \Delta\mathbf{k}^4} |\langle \beta | i \Delta\mathbf{k} \cdot \boldsymbol{r} | \alpha \rangle|^2$$

Matrix element dependent on spatial overlap of states The scattering is dominated by *local* states Under these assumtions, the core loss EELS spectrum probes the

- local density of states around the excited atom...
- with symmetry *l*±1...
- above the Fermi-level

The site and symmetry selected DOS

$$\frac{\mathrm{d}^2 \sigma(\mathbf{\Delta k}, E)}{\mathrm{d}\Omega \mathrm{d}E} = \frac{4}{a_0^2 \Delta k^4} \rho(E) \left| \langle \beta | e^{-i\mathbf{\Delta k \cdot r}} | \alpha \rangle \right|^2$$

Direct comparison with calculated density of states (DOS)

$$\frac{\mathrm{d}^2 \sigma(\mathbf{\Delta k}, E)}{\mathrm{d}\Omega \mathrm{d}E} = \frac{4}{a_0^2 \Delta k^4} \rho(E) \left| \langle \beta | e^{-i\mathbf{\Delta k \cdot r}} | \alpha \rangle \right|^2$$

- The transition matrix determines the underlying edge shape
- Usually slowly varying with energy
- The density of states gives more rapid variations on top of this
- Allows comparison with calculated DOS, e.g. from density functional theory (DFT)

Next time

- More on comparisons of EELS spectra with DOS
- Elemental quantification with EELS