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Recap from last time
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Density of States

If the initial states are sharply peaked in
energy, then all transitions originate at this
energy

One particular E; and one particular E
takes you to a single point in the
conduction band E;

In effect we are convoluting the
conduction band DOS with a delta
function

Delta function @ cDOS = cDOS

The spectrum reflects a scaled conduction
band DOS

vDOS Q cDOS =?

But what if the initial states are in the
valence band?
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The EELS spectrum as a Joint Density
of States

This is good for core losses:

20(AKk, E) 4

2
10dE  agakd’ |

(E) | (Ble" Ak |a)

But for single electron transitions in the low loss region we need to
consider the convolution of valence DOS with conduction DOS
(also called Joint Density of States, JDOS):

EF

I(E) « j (9 e oo (Edpeo B + EMIE,

Er—E

No dipole approximation?
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The dielectric polarization of the
material

The polarization of a material subjected to a time warying electric field is:

P(w) = gle(w) — 1]E(w)

The displacement (total field) in the material is then:

D(w) = gE(w) + P(w)

= &E(w) + gle(w) — 1]E(w)
= e(w)egE(w)

So what happens if e(w)=07?
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The dielectric function in the Drude

model

 For free electrons in a uniform
background potential, the
dielectric fuction is

2

(@)=1——P
S = w+iw/T

* Where w, Is a harmonic
oscilator resonance frequency
given by

ne?

(,() =
P Mmpép

e T is the scattering time/damping
factor
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Fig. 6. Schematic of £;. & and the loss-function calculated with
Drude—Lorentz theory where there is a plasmon excitation and a single in-
terband transition. There is a peak in the loss-function corresponding to the
interband energy. but at a different transition to where it appears in &3.
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Fig. 5.7 Displacement of a
slab of electric charge,
leading to doubling of the
charge density at the top of
the slab over thickness x, and
depletion of charge at the
bottom. A wide, flat slab
idealizes the problem as one
dimensional
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Table 5.1 Plasmon data for selected materials [5.5]

Material Ep (calc.) (eV) E, (expt.) (eV) AE, (eV) ¢k, (mrad) 2 (nm)
Li 8.0 7.1 23 0.039 233
Be 18.4 18.7 4.8 0.102 102
Al 15.8 15.0 0.5 0.082 119
Si 16.6 16.5 3.7 0.090 115
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Figure 4.7: The low loss region of Si and Co. In the case of simple metals and semi-conductors,
multiple, sharp plasmon peaks are usually observed in the low loss region, as is the case for Si seen
in the figure. For more complex metals such as Co a single broad peak is observed. Also seen is the
Co M> 5 edge at approximately 60 eV.
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Thickness measurements and the
mean free path

The electron can lose
energy to plasmon
excitations many times

—
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F&H

Thickness measurements and the
mean free path

free path

Absolute thickness
determination is also
possible, but need
model or experimental
detemination for mean
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Fig. 5.8 Low-loss spectrum

taken from a thick sample of

~120 nm Al metal on C

using 120 keV electrons and

B =100 mrad. Plasmon

peaks are visible at energies

of n x 15 eV, where n is the

number of plasmons excited

in the sample. After [5.4]
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Dielectric function, refractive index,
speed of light

The real part of the dielectric fuction gives the
refractive index n="v

The refractive index gives the phase velocity of light
In the material c=cy/n.

This is lower than the speed of light in vacuum

Nsi(A~600 nm, E~2 eV) ~ 4

c
Cg; = n—; ~ 0,25 ¢,

1,(200 kV) =~ 0,7 ¢, ﬁ C
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FIG. 3. (Color) (a) w-g map of h-GaN at a thick region with
strong Cerenkov losses and (b) line profiles extracted at different ¢
values with a linewidth of about 5 urad. The energy loss of Ceren-
kov radiation has a narrow angular distribution.

Erni & Browning, Ultramic (2008)
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The Kroger equation

PPk, o) o e? ~ {l — ep? 5
IAEF () W 2 h*vicosa | e¢”
(& — (L:g)2 sin?(ka/vy) cosZ(ka/v.)\ B>
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Only non-
relativistic bulk
effects
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Bulk plus
relativistic effects

16
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C

Bulk plus
relativistic plus
surface effects
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Figure 3. ~q = 0 (zero order beam)

*

L. . “q = +1 (arbitrary amount)
Schematic diagram demonstrating how

the distribution of angular momentum
mn a diffraction pattern transfers to the
image of a spectrum, following the
focusing effects of the GIF lenses.

q=+2

q = +x (maximum q defined by
collection aperture)

Row 0 (in the image of the spectrum) contaimns the momentum present between f and g (in the
diffraction pattern), 1.e. the integral from q =0 to q = +x.

Row +1 contains the momentum present between d and e, 1.e. the integral from q =+1 to q = +x.
Row +2 contains the momentum present between b and ¢, 1.¢. the integral from q=+2 to q=+x.
Row +3 contains the momentum present at a, i.e. q = +X.
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H. R. Daniels, Phd thesis (2003)
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Fig. 3. Illustration of how the scattering vector is chosen by
a narrow slit. In (a) the slit is placed symmetrically about the
transmitted beam so that all the included scattering vectors are
parallel to the slit axis. In (b) the slit is displaced slightly so that
the included scattering vectors have a component of g perpen-
dicular to the slit. This range of scattering is then integrated
across the slit width and dispersed in energy to form the w—g
pattern as shown in (c).
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Midgley, Ultramic. (1999)
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FIG. 3. (Color) (a) w-g map of h-GaN at a thick region with
10 strong Cerenkov losses and (b) line profiles extracted at different ¢

values with a linewidth of about 5 urad. The energy loss of Ceren-
kov radiation has a narrow angular distribution.
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Problems for next time

1) Make a plot of the phase velocity of light as a
function of refractive indexes n between 1 and 10.

The critical acceleration voltage is defined as the
voltage giving an electron velocity equal to the phase
velocity of a material with refractive index n

2) Make a plot of the critical acceleration voltage as a
function of n.



