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ON THE QUESTION OF WHETHER THE MIND CAN BE
MECHANIZED, I: FROM GÖDEL TO PENROSE*

In this paper I want to address the question of whether “the mind
can be mechanized.” This is a question with a long history. But
it is also a question on which it has been difficult to make gen-

uine progress. For without a precise analysis of the concept of “mech-
anism,” it would be hard to even get started, and, even if one did
have such an analysis, it would be hard to see how one could give
a definitive argument for or against the claim that the mind can be
mechanized.

The situation changed somewhat in the 1930s, through two major
developments in mathematical logic. The first development was Tur-
ing’s analysis of the notion of “computability.” Turing gave a convinc-
ing analysis of the vague and informal notion of “being computable
by an idealized finite machine” in terms of the precise mathematical
notion of “being computable by a Turing machine.” This enabled one
to sharpen the question of whether “the mind can be mechanized” by
first focusing on the more specific question of whether “the mathe-
matical outputs of the idealized human mind can coincide with the
mathematical outputs of an idealized finite machine,” and then sharp-
ening the vague notion of “an idealized finite machine” in terms of

* I am grateful to Leon Horsten and Philip Welch for inviting me to speak on this
subject at Bristol, first on March 19, 2010, and then as part of their Workshop on the Scope
and Limits of Mathematical Knowledge, March 30–31, 2013. I benefited from the com-
ments I received at those talks, as well as from the comments I received when I spoke on
the subject at Barcelona, Columbia, Duke, MIT, Pittsburgh, Stanford, and Jerusalem.
In particular, I am grateful to Yuri Gurevich for drawing the allusion to Kafka, and to
Michael Friedman for an illuminating conversation in which he pressed me to say more
about what these results might tell us about the nature of reason. Finally, I would like to
thank Samuel Alexander, Sol Feferman, Gabriel Goldberg, Kentaro Fujimoto, Wesley
Holliday, Leon Horsten, Hannes Leitgeb, Johannes Stern, Panu Raatikainen, and an
anonymous referee for helpful comments on an earlier draft of this paper.
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the mathematically precise notion of “a Turing machine.” The sec-
ond development was Gödel’s discovery of the incompleteness phe-
nomenon. His incompleteness theorems demonstrated that for any
sufficiently strong consistent formal system of mathematics there are
mathematical truths that cannot be captured by that formal system.
Given the correspondence between formal systems and Turing ma-
chines, and given that it appears that we, on the outside, can cap-
ture these “missing truths,” Gödel’s discovery raised the prospect that
one might actually use the incompleteness theorems to argue that
the mathematical outputs of the idealized human mind do indeed
outstrip the mathematical outputs of any idealized finite machine.

This, then, is the question that I would like to address in this pa-
per: Do the incompleteness theorems imply that “the mind cannot
be mechanized” (understood in the above sense)? But I would like
to stress two things. First, I am addressing a specific version of this
question. I am not considering the performance of actual human
minds, with their limitations and defects; I am considering the ide-
alized human mind and looking at what it can do in principle. I am not
considering a broad array of outputs that the idealized human mind
might have; I am only considering mathematical outputs. I am not
considering a wide variety of abilities that the idealized human mind
might have, such as the ability to be creative, or form normative judg-
ments, or to fall in love, and so on; I am only considering the ability to
generate mathematical outputs. In short, I am only dealing with the
specific question of whether “the mathematical outputs of the ide-
alized human mind can coincide with the mathematical outputs of
an idealized finite machine.”1 Second, in addition to restricting my
attention to this specific version of the question, I will not be consid-
ering all possible arguments for the claim that “the mind cannot be
mechanized.” I will only be dealing with approaches based on the in-
completeness theorems. To summarize, I will only be addressing the
question of whether the incompleteness theorems imply that “the mathematical
outputs of the idealized human mind do not coincide with the mathematical
outputs of any idealized finite machine.”

B

1 Throughout this paper I will use the expression “the mind can be mechanized” as
shorthand for “the mathematical outputs of the idealized human mind coincide with
the mathematical outputs of an idealized finite machine.” I want to stress that I do not
think that the latter provides an adequate analysis of the former, in the sense of telling
us what it means to say that “the mind can be mechanized.” I am simply focusing on
this more specific version of the question and using a convenient shorthand. I will also
use “mechanism” as a convenient label for the thesis that the mathematical outputs of
the idealized human mind can coincide with the mathematical outputs of an idealized
finite mind.
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The story begins with Gödel. Gödel thought that his incomplete-
ness theorems had bearing on the question of mechanism, but his
position was quite subtle. He did not argue that his incompleteness
theorems implied that “the mind cannot be mechanized”; he argued,
rather, that they implied a weaker, disjunctive conclusion, what I shall
call ‘Gödel’s Disjunction’. The disjunction concerns two central philo-
sophical claims. The first is the claim that we have been considering,
namely, the claim that “the mind cannot be mechanized” (under-
stood in our specific sense). The second is the claim that “there are
mathematical truths that cannot be proved by the idealized human
mind” (or, equivalently, that “there are absolutely undecidable state-
ments”). The disjunction states that at least one of these claims must
hold—that is, it states that either “the mind cannot be mechanized”
or “mathematical truth outstrips the idealized human mind.”

Gödel thought that each disjunct had important philosophical con-
sequences, quite different in each case, but each “very decidedly op-
posed to materialist philosophy.”

Namely, if the first alternative holds, this seems to imply that the work-
ing of the human mind cannot be reduced to the working of the brain,
which to all appearances is a finite machine with a finite number of parts,
namely, the neurons and their connections. So apparently one is driven
to take some vitalistic viewpoint. On the other hand, the second alter-
native, where there exist absolutely undecidable mathematical proposi-
tions, seems to disprove the view that mathematics is only our creation;
for the creator necessarily knows all the properties of his creatures, be-
cause they can’t have any others except those he has given them. So
this alternative seems to imply that mathematical objects and facts (or
at least something in them) exist objectively and independently of our
mental acts and decisions, that is to say, [it seems to imply] some form
or other of Platonism or “realism” as to the mathematical objects.2

Now, it is rarely the case in philosophy that claims are actually es-
tablished beyond a shadow of a doubt, and this is especially true when
those claims concern such large matters as the relationship between
mechanism, mind, and mathematical truth. But Gödel—who was gen-
erally quite cautious in his claims—went so far as to call the disjunc-
tion a “mathematically established fact.”3

2 Kurt Gödel, “Some Basic Theorems on the Foundations of Mathematics and Their
Implications” (1951), reprinted in Collected Works, Volume III: Unpublished Essays and Lec-
tures, ed. Solomon Feferman et al. (New York: Oxford University Press, 1995), pp. 304–
23, at p. 311.

3 Ibid., p. 310.
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Our first order of business will be to determine whether the dis-
junction is indeed a “mathematically established fact.”4

B

Let us suppose for the moment that the disjunction is true. The
question then arises: Which disjunct holds?

Gödel himself was convinced that the first disjunct is true and the
second disjunct is false; that is, he was convinced that the mind cannot
be mechanized and that human reason is sufficiently powerful to cap-
ture all mathematical truths. But although he was convinced of these
stronger claims he did not believe that he was in a position to establish
either. He did, however, think that one day we would be in a position
to prove the first disjunct. What was missing, as he saw it, was an ad-
equate resolution of the paradoxes involving self-applicable concepts
like the concept of truth. And he thought that “[i]f one could clear
up the intensional paradoxes somehow, one would get a clear proof
that mind is not machine.”5 However, he did not think that we had yet
arrived at an adequate resolution of the paradoxes, and, lacking such
a resolution, he felt that the most he could claim to have established
was the disjunctive conclusion.

Others, who have discussed these matters since Gödel, have claimed
more. They have claimed that the incompleteness theorems imply
that the first disjunct holds.

There are really two different generations of arguments for the first
disjunct. The first generation began with Nagel and Newman in 1956
and continued with Lucas in a talk of 1959 and a subsequent publi-
cation in 1961.6 Nagel and Newman’s argument was criticized by Put-
nam, while Lucas’s argument was much more widely criticized in the
literature.7 The topic was revisited in 1989 by Penrose in his famous

4 I will not in this paper directly address Gödel’s claims concerning the philosophical
significance of each disjunct. However, in the final section of the successor to this paper
I will say some things that bear on it.

5 This quotation is from Hao Wang’s reconstruction of his conversations with Gödel:
Hao Wang, A Logical Journey: From Gödel to Philosophy (Cambridge, MA: MIT Press, 1996),
p. 187.

6 James R. Newman and Ernest Nagel, “Gödel’s Proof,” Scientific American, CXCIV, 6
(June 1956): 1668–95; Ernest Nagel and James R. Newman, Gödel’s Proof, rev. ed (New
York: New York University Press, 2001); John Randolph Lucas, “Minds, Machines and
Gödel,” Philosophy, XXXVI, 137 (1961): 112–27.

7 Hilary Putnam, “Minds and Machines,” in Sidney Hook, ed. Dimensions of Mind:
A Symposium (New York: New York University Press, 1960), pp. 138–64. It is also worth
noting that Gödel was quite unhappy with Nagel and Newman’s arguments, for rea-
sons that will be apparent from our account of his view below. See Solomon Feferman,
“Gödel, Nagel, Minds, and Machines,” this JOURNAL, CVI, 4 (April 2009): 201–19. See
Paul Benacerraf, “God, the Devil, and Gödel,” The Monist, LI, 1 (January 1967): 9–32,
for an influential criticism of Lucas.
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book The Emperor’s New Mind.8 This triggered an avalanche in the liter-
ature and in the following year there was an open peer commentary
of Penrose’s book in Behavioral and Brain Sciences.9

The second generation of arguments—one argument, really—
appeared in another book-length account by Penrose in 1994: Shad-
ows of the Mind: A Search for the Missing Science of Consciousness.10 This
argument also received a great deal of attention.11 Penrose has con-
tinued to defend his argument—for example, in his address at the
Gödel Centenary in 2006 and the subsequent published version of
2011.12

Our second order of business will be to assess the cogency of the
arguments for the first disjunct. In this paper I will concentrate on
the first generation of arguments, and in the successor to this paper I
will address the second generation of arguments.

B

The approach I shall take is somewhat different from the approach
that is customary in the literature. One difficulty with the discussion
in the literature is that the background assumptions governing the
underlying concepts—most notably, the concepts of “an idealized fi-
nite machine” (∼ “relative provability”), “the idealized human mind”

8 Roger Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and the Laws
of Physics (New York: Oxford University Press, 1989).

9 See, in particular, Roger Penrose, Précis of The Emperor’s New Mind: Concerning Com-
puters, Mind, and the Laws of Physics, Behavioral and Brain Sciences, XIII, 4 (December
1990): 643–54; George Boolos et al., Open Peer Commentary on The Emperor’s New
Mind, Behavioral and Brain Sciences, XIII, 4 (December 1990): 655–91; Roger Penrose,
“The Nonalgorithmic Mind,” Behavioral and Brain Sciences, XIII, 4 (December 1990):
692–706; Martin Davis et al., Continuing Commentary on The Emperor’s New Mind, Be-
havioral and Brain Sciences, XVI, 3 (September 1993): 611–16; and Roger Penrose, “An
Emperor Still without Mind,” Behavioral and Brain Sciences, XVI, 3 (September 1993):
616–22. For a more recent criticism see Haim Gaifman, “What Gödel’s Incompleteness
Result Does and Does Not Show,” this JOURNAL, XCVII, 8 (August 2000): 462–70.

10 Roger Penrose, Shadows of the Mind: A Search for the Missing Science of Consciousness
(New York: Oxford University Press, 1994).

11 See, for example, David J. Chalmers, “Minds, Machines, and Mathematics: A Re-
view of Shadows of the Mind by Roger Penrose,” Journal Psyche, II (June 1995): 11–20;
Solomon Feferman, “Penrose’s Gödelian Argument: A Review of Shadows of the Mind by
Roger Penrose,” Journal Psyche, II (May 1995): 21–32; Per Lindström, “Penrose’s New
Argument,” Journal of Philosophical Logic, XXX, 3 (June 2001): 241–50; Per Lindström,
“Remarks on Penrose’s ‘New Argument’,” Journal of Philosophical Logic, XXXV, 3 (June
2006): 231–37; Stewart Shapiro “Incompleteness, Mechanism, and Optimism,” Bulletin
of Symbolic Logic, IV, 3 (September 1998): 273–302; and Stewart Shapiro, “Mechanism,
Truth, and Penrose’s New Argument,” Journal of Philosophical Logic, XXXII, 1 (February
2003): 19–42.

12 Roger Penrose, “Gödel, the Mind, and the Laws of Physics,” in Matthias Baaz et
al., eds., Kurt Gödel and the Foundations of Mathematics: Horizons of Truth (New York: Cam-
bridge University Press, 2011), pp. 339–58.
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(∼ “absolute provability”), and “truth”—are seldom fully articulated
and, as a consequence, it is difficult to assess the cogency of the ar-
guments. One of my goals here is to sharpen the debate by making
the background assumptions governing the fundamental concepts ex-
plicit. Once we do this, we will be able to pull the entire discussion
into a framework where we can establish definitive results of the form:
“If the principles governing the fundamental concepts are such-and-
such, then there is no hope of proving or refuting the first disjunct.”13

We will see that there is a natural framework, EAT, governing the
concepts of relative provability, absolute provability, and truth, and
that in this framework one can give a rigorous proof of Gödel’s Dis-
junction, thereby vindicating, in some sense at least, Gödel’s claim
that the disjunction is a “mathematically established fact.” We will also
see that—for reasons Gödel anticipated—the particular arguments of
Lucas and Penrose are based on an oversight and, as a result, fail.
More generally, we shall see that results of Reinhardt and Carlson
show that there is no argument for the first disjunct in EAT. Since
the axioms of EAT would seem to encompass all of the assumptions
made by proponents of the first disjunct this places a fundamental
limitation on their program. I hope that this puts to rest the first gen-
eration of arguments for the first disjunct and that all participants in
the debate can agree on this.

My strategy is to be as charitable as possible, for the strength of a
criticism is proportional to the degree to which it is charitable. But
ultimately, for reasons I give at the end of the successor to this paper,
I am skeptical of the very terms in which the debate is formulated.
Nevertheless, I think that there is something of value in entering the
debate. It is like entering Kafka’s castle. We begin by accepting an
implausible scenario and from there everything proceeds rationally.
My hope is that we can enter the castle together and by dint of pure
reason find our way back out again.14

13 In pursuing this enterprise I see myself as doing little more than following and
underscoring the importance of the beautiful work of William Reinhardt. He was an
astonishing thinker. In every encounter with his work one witnesses an adventurous
mind, pushing the limits, reaching for the heavens, but always taking stock and return-
ing to the ground and doing the hard work required to ensure that his findings are
made rigorous and communicable to everyone.

14 The mathematical results I shall be discussing in this paper and its successor are
proved in a technical companion and the references therein: Peter Koellner, “Gödel’s
Disjunction,” in Leon Horsten and Philip Welch, eds., Gödel’s Disjunction: The Scope and
Limits of Mathematical Knowledge (New York: Oxford University Press, 2016), pp. 148–88.
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I. GÖDEL

Let us begin with an informal discussion of the disjunction, taking
Gödel as our guide.

I.1. Preliminaries. The disjunction concerns the concepts of “relative
provability,” “absolute provability,” and “truth,” and, in a variant for-
mulation, the related concepts of “an idealized finite machine” and
“the idealized human mind.” We shall formulate our discussion in
terms of the first three concepts.

There is no loss of generality in doing this. For it is assumed by
all participants in the debate that the terms are understood in a way
such that (1) the concept of what is “relatively provable with respect
to a given formal system F ” is co-extensive with the concept of what is
“producible by the idealized finite machine (a Turing machine) M”
(where M is the Turing machine corresponding to F ) and (2) the con-
cept of what is “absolutely provable” is co-extensive with the concept
of what is “producible by an idealized human mind.” The first of these
assumptions is uncontroversial; in fact, if we take (as we shall) “formal
system” to mean “recursive formal system” then the co-extensiveness
of the two concepts is a basic theorem in recursion theory. The second
assumption, in contrast, does not admit of anything like a proof, deal-
ing as it does with less definite notions. But it is assumed by all partic-
ipants in the debate that the two expressions are co-extensive. In any
case, for the purposes of this discussion the reader should take these
expressions as being interchangeable, and so, for example, when we
write something concerning what is “absolutely provable” this can be
taken to be interchangeable with what is “producible by the idealized
human mind.” Notice also that in each case we will only be concerned
with outputs; that is, we will be concerned with extension, not inten-
sion.

We thus have two variant formulations of the various statements we
will be dealing with. For example, in one formulation the statement
that “the mind can be mechanized” is the statement that “the state-
ments that are absolutely provable coincide with the statements that
are provable relative to a recursive formal system”; and in the other,
mentalistic formulation (what I shall call “the variant formulation”) it
is the statement “the outputs of the idealized human mind coincide
with the outputs of an idealized finite machine (a Turing machine).”
At times I will pass from one formulation to the other. However, it is
important to bear in mind that for the purposes of this discussion the
underlying notions are to be understood in such a way that the two
formulations are extensionally equivalent.

It will be useful to introduce some abbreviations. In this section
we will use ‘F ’ for the set of sentences that are provable relative to
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a given formal system (which we will also label with ‘F ’), ‘K ’ for the
set of sentences that are absolutely provable, and ‘T ’ for the set of
sentences that are true. For readability we will also write ‘K (ϕ)’ for
‘ϕ ∈ K ’. We shall say that F is correct if F ⊆ T . And we shall assume
throughout that K ⊆ T .

Our goal is to determine what the incompleteness theorems tell us
about the relationship between F , K , and T . Gödel makes three main
claims concerning this relationship. So let us start there.

I.2. The Incompleteness Theorems. To fix ideas, consider the standard
axiomatic system of arithmetic—the axiomatic system of Peano Arith-
metic (PA). The language, LPA, of this system contains the usual logical
symbols (connectives, quantifiers, and equality) and the following non-
logical symbols: the constant symbol ‘0’, the unary function symbol ‘S ’,
the binary operation symbols ‘+’ and ‘×’, and the binary relation sym-
bol ‘≤’. The axioms of PA contain such statements as ‘S(x) �= 0’ and
‘x+S(y) = S(x+y)’ along with the scheme of mathematical induction.

One of the first questions that arises when one considers a formal
system F is whether it is complete, that is, whether for every statement
ϕ in the language of the system, either F proves ϕ, or F proves ¬ϕ.
In certain cases, the answer is “yes”; for example, there is a complete
set of axioms for Euclidean Geometry. But remarkably, in the case of
arithmetic, the answer is “no,” as demonstrated by the first incomplete-
ness theorem.

Theorem 1 (Gödel). Assume that PA is consistent. Then there is a sentence
ϕ in LPA such that PA cannot prove ϕ, and PA cannot prove ¬ϕ.15

Such a statement ϕ is said to be independent of PA. If we assume (as
we shall) that the concept of truth is such that for every statement
ϕ of arithmetic either ϕ is true or ¬ϕ is true, then we arrive at the
conclusion that (assuming that PA is consistent) there are truths of
arithmetic that are beyond the reach of relative provability in PA.

The next question that arises is where such limitations “first” oc-
cur. To render this question precise we need a stratification of the
statements of arithmetic. The most natural way to do this is in terms
of quantifier complexity (which boils down to counting the number
of alternating quantifiers), and it leads to a hierarchical classifica-
tion of the statements of arithmetic, ranging from the simplest up

15 Strictly speaking, this version of the first incompleteness theorem is a strengthen-
ing, due to Rosser, of Gödel’s original result. Gödel had to assume more than the consis-
tency of PA—he had to assume that PA was Σ0

1-sound, that is, that for every Σ0
1-sentence

ϕ, if PA proves ϕ then ϕ holds. By selecting a different sentence than the one Gödel
selected, Rosser was able to weaken the assumption from Σ0

1-soundness to consistency.
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through layers of increasing complexity. Without going into the de-
tails, let us just say that the layers of this hierarchy are denoted Σ0

1, Π0
1,

Σ0
2, Π0

2, . . . , Σ0
n, Π0

n, . . . Our question then becomes: Where in this hi-
erarchy do the above limitations first appear?

It is routine to show that for all Σ0
1-statements ϕ, if ϕ is true, then ϕ

is provable in PA. In other words, PA captures Σ0
1-truth. So there are

no limitations at that level. The next possible place at which limita-
tions can appear is at the level Π0

1 and so the question arises: Does PA
capture Π0

1-truth?
The statement that Gödel produced in (his version of) the first in-

completeness theorem is actually a Π0
1-statement and, upon reflec-

tion, one can see that this statement is true. Thus, the answer to our
question is: “No, PA does not capture Π0

1-truth.” In fact, the second in-
completeness theorem provides us with a particularly nice example of a
Π0

1-statement that PA cannot prove, one that is closer to home:

Theorem 2 (Gödel). Assume that PA is consistent. Then PA cannot prove
Con(PA).

Here ‘Con(PA)’ is a statement in LPA which formally renders the infor-
mal statement that PA is consistent. The point, for present purposes,
is that this is a Π0

1-statement. Thus, granting the consistency of PA, the
second incompleteness theorem shows that PA cannot capture the
Π0

1-truth ‘Con(PA)’.16

It is important to stress that these theorems are perfectly general.
We have stated them for one particular system, namely, PA, but they
apply to any sufficiently strong formal system; for example, they apply
to very weak systems of arithmetic, like Robinson’s Q, and they apply
to very strong systems of set theory, like ZFC supplemented with large
cardinal axioms.

Henceforth we shall restrict our attention to formal systems F which
have the minimal amount of strength required for the incomplete-
ness theorems to be in effect.

I.3. The First Claim. Notice that if F is correct then it is consis-
tent, and so by the second incompleteness theorem there is a truth—
namely, Con(F )—that is not relatively provable in F . In the words of
Gödel, the incompleteness theorems tell us that

16 If one strengthens the assumption of the theorem to the assumption that PA is
Σ0

1-sound, then one can strengthen the conclusion by adding that PA does not prove
¬Con(PA); in other words, under this stronger assumption, Con(PA) is independent
of PA.
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no well-defined system of correct axioms [F ] can comprise all objective
mathematics [T], since the proposition which states the consistency of
the system is true, but not demonstrable in the system.17

In other words, we have:

Claim 1. For any F ,

F ⊆ T → F � T .

The informal reasoning is as follows. If F ⊆ T , then Con(F ) ∈ T . But
Con(F ) /∈ F , by the second incompleteness theorem. So F � T .

This proposition concerns only F and T , each of which is clear and
definite. It is thus a clear and definite consequence of the incomplete-
ness theorems.

I.4. The Second Claim. The above conclusion concerns the relation-
ship between F and T . Gödel is careful to note that at this point of
his discussion he has said nothing about K . He draws a distinction be-
tween “objective mathematics” (by which he means T) and “subjective
mathematics” (by which he means K), and he goes on to elaborate the
cautionary point about K as follows:

[O]ne has to be careful in order to understand clearly the meaning of
this state of affairs. Does it mean that no well-defined system of correct
axioms [F ] can contain all of mathematics proper? It does, if by mathe-
matics proper is understood the system of all true mathematical proposi-
tions [T]; it does not, however, if one understands by it the system of all
demonstrable mathematical propositions [K]. I shall distinguish these
two meanings of mathematics as mathematics in the objective [T] and
in the subjective [K] sense.18

So at this point we have only secured a definite conclusion concerning
the relationship between F and T . But our real interest is in the re-
lationship that K bears to F and T . Do the incompleteness theorems
tell us anything about this?

Let us say that a statement ϕ is relatively undecidable with respect to
F if neither ϕ ∈ F nor ¬ϕ ∈ F . And let us say that a statement ϕ
is absolutely undecidable if neither ϕ ∈ K nor ¬ϕ ∈ K . In this termi-
nology, Claim 1 tells us that for any sufficiently strong and correct F ,
the incompleteness theorems provide us with statements that are rela-
tively undecidable with respect to F . But are these statements absolutely
undecidable? Gödel certainly thought that they are not:

17 Gödel, “Some Basic Theorems on the Foundations of Mathematics and Their Im-
plications,” op. cit., p. 309.

18 Ibid. Here by “demonstrability” Gödel means “absolute provability.”
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[These statements are] not at all absolutely undecidable; rather, one can
always pass to “higher” systems in which the sentence in question is de-
cidable. (Some sentences, of course, nevertheless remain undecidable.)
In particular, for example, it turns out that analysis is a system higher
in this sense than number theory, and the axiom system of set theory is
higher still than analysis.19

Here is what he had in mind: We know that if PA is consistent then
it misses the Π0

1-truth Con(PA). Let PA2 be the natural axiomatiza-
tion of second-order arithmetic. It turns out that Con(PA) is provable
in PA2; so, in ascending from PA to PA2, we capture the Π0

1-truth that
was missed by PA. Of course, the second incompleteness theorem also
applies to PA2, and so, assuming that PA2 is consistent, it misses the
Π0

1-truth Con(PA2). But now if we let PA3 be the natural axiomatiza-
tion of third-order arithmetic we find that it proves Con(PA2) and so
captures the Π0

1-truth that was missed by PA2. This pattern continues
up through the orders of arithmetic and up through the hierarchy of
set-theoretic systems. At each stage a missing Π0

1-truth is captured and
a new one is revealed, and that new Π0

1-truth is captured at the next
stage.

If we grant that each of the systems F in the above hierarchy is
subsumed by K—that is, such that F ⊆ K—then we can conclude that
K outstrips each F in the above hierarchy (for at each successor stage
K will capture the Π0

1-truth missed by the system F at the previous
stage). It is tempting to conclude outright that K cannot coincide with
any F , period. But we have to be careful. We have to keep track of
our assumptions. Gödel is quite careful—he draws only a conditional
conclusion:

For, it makes it impossible that someone should set up a certain well-defined system
of axioms and rules and consistently make the following assertion about it: All of
these axioms and rules I perceive (with mathematical certitude) to be correct, and
moreover I believe that they contain all of mathematics. If someone makes such
a statement he contradicts himself. For if he perceives the axioms under
consideration to be correct [K (F ⊆ T )], he also perceives (with the same
certainty) that they are consistent. Hence he has a mathematical insight
not derivable from his axioms [F � K].20

In other words, we have:

Claim 2. For any F ,

K (F ⊆ T ) → F � K .

19 Gödel, “On Undecidable Sentences,” op. cit., p. 35.
20 Gödel, “Some Basic Theorems on the Foundations of Mathematics and Their Im-

plications,” op. cit., p. 309, his italics.
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The informal reasoning is as follows: Suppose K (F ⊆ T ). We saw
above (in the argument for Claim 1) that if F ⊆ T then Con(F ) ∈ T
but Con(F ) /∈ F . Now, if we also have K (F ⊆ T ) then we have
K (Con(F )). So Con(F ) ∈ K but Con(F ) /∈ F . Thus, F � K .

I.5. The Third Claim. But can we draw the stronger, non-conditional
conclusion; that is, can we drop the condition that K (F ⊆ T ) and
simply conclude outright that K cannot coincide with any F ? Gödel is
quick to point out that we cannot (at this point at least) draw such a
conclusion:

However, as to subjective mathematics [K], it is not precluded that there
should exist a finite rule [F ∗] producing all its evident axioms [F ∗ = K ].
However, if such a rule exists, we with our human understanding could
certainly never know it to be such, that is, we could never know with
mathematical certainty that all propositions it produces are correct [that
is, we can’t have K (F ∗ ⊆ T )].21

In other words, (for all we have shown) it may indeed be the case that
there is a “master system” F ∗ such that F ∗ = K . We have only shown
that if there is such an F ∗ then it must be “hidden” in the sense that
we cannot absolutely prove that it is correct.22

Now, if there was in fact such an F ∗ it would have important impli-
cations:

If it were so, this would mean that the human mind (in the realm of pure
mathematics) [K] is equivalent to a finite machine [F ∗] that, however,
is unable to completely understand its own functioning. This inability
[of man] to understand himself would then wrongly appear to him as its
[(the mind’s)] boundlessness or inexhaustibility.23

Moreover, “[it] would in no way derogate the incompletability of ob-
jective mathematics”; “[o]n the contrary, it would only make it partic-
ularly striking.”

For if the human mind were equivalent to a finite machine, then ob-
jective mathematics not only would be incompletable in the sense of
not being contained in any well-defined axiomatic system, but moreover
there would exist absolutely unsolvable diophantine problems of the type
described above, where the epithet “absolutely” means that they would

21 He elaborates in a footnote: “For this (or the consequence concerning the consis-
tency of the axioms) would constitute a mathematical insight not derivable from the
axioms [and] rules under consideration, contrary to the assumption.” Ibid.

22 See also the conversational reports in Wang, A Logical Journey, op. cit., section 6.1.7,
p. 186 (quoted in section IV.3 below) and section 6.1.8, pp. 186–87.

23 Gödel, “Some Basic Theorems on the Foundations of Mathematics and Their Im-
plications,” op. cit., pp. 309–10.



MECHANISM, I: FROM GÖDEL TO PENROSE 349

be undecidable, not just within some particular axiomatic system, but by
any mathematical proof that the human mind can conceive.24

In other words, if there were an F ∗ such that F ∗ = K , then we would
not only have F ∗ � T (and, more generally, F � T for any F such that
F ⊆ T), but we would also have K � T (and hence there would be
absolutely undecidable sentences, that is, sentences ϕ such that ϕ ∈ T
and yet neither ϕ ∈ K nor ¬ϕ ∈ K).25

Gödel then reformulates this in disjunctive form.

So the following disjunctive conclusion is inevitable: Either mathematics
is incompletable in this sense, that its evident axioms can never be comprised
in a finite rule, that is to say, the human mind (even within the realm of pure
mathematics) infinitely surpasses the powers of any finite machine, or else there
exist absolutely unsolvable diophantine problems of the type specified (where the
case that both terms of the disjunction are true is not excluded, so that
there are, strictly speaking, three alternatives).26

In other words, we have Gödel’s Disjunction:

Claim 3. Either
(
¬∃F (F = K )

)
or

(
∃ϕ (ϕ ∈ T ∧ ϕ /∈ K ∧ ¬ϕ /∈ K )

)
.

The argument for the disjunction is not too hard to provide infor-
mally: Suppose that there were an F ∗ such that F ∗ = K . Then we have
F ∗ ⊆ T (since K ⊆ T). So, by the incompleteness theorems, we have
F ∗ � T . Thus, there is a ϕ ∈ T such that ϕ /∈ F ∗, and for any such ϕ
we also have ¬ϕ /∈ F ∗ (since if ¬ϕ ∈ F ∗ then ¬ϕ ∈ T (as F ∗ ⊆ T),
which is impossible since ϕ ∈ T). But F ∗ = K . So this ϕ is such that
ϕ ∈ T and yet neither ϕ ∈ K nor ¬ϕ ∈ K .

II. SHARPENING THE NOTIONS

Let us now start spelling out our assumptions on F , K , and T , and
place the above informal discussion in a precise, formal setting, where
we can establish definitive results. In this section we will introduce two
systems of epistemic arithmetic—the first, EA, designed to deal with
F and K , and the second, EAT, designed to deal with F , K , and T .

24 Ibid., p. 310.
25 If K � T then there must be a ϕ such that ϕ ∈ T and ϕ /∈ K , and for any such ϕ

we also have ¬ϕ /∈ K (since if ¬ϕ ∈ K then ¬ϕ ∈ T , which is impossible since ϕ ∈ T).
26 Gödel, “Some Basic Theorems on the Foundations of Mathematics and Their Im-

plications,” op. cit., p. 310, his italics.
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II.1. Sharpening F . In the informal setting ‘F ’ was used to stand for
the set of sentences provable relative to a given formal system (or, in
the variant formulation, the set of sentences that can be produced by
“an idealized finite machine”). It is well-known how to sharpen this
notion. In fact, in this case we have a substantive analysis of the no-
tion: The informal notion of being “provable relative to a given for-
mal system” is rendered mathematically precise in terms of the notion
of being “provable relative to a recursive set of axioms.”27

Now, all of this can be formalized in PA, which we will take as our
base system. So, in all of the systems we will consider, we shall have
at our disposal the resources to quantify over formal systems Fe (or,
in the variant formulation, ideal finite machines, that is, Turing ma-
chines) in a perfectly precise manner. We will let ‘Fe ’ stand for the set
of sentences provable relative to the e th recursively enumerable set of
axioms, where ‘e’ ranges over the natural numbers.

II.2. Sharpening T. In the informal setting ‘T ’ was used to stand for
the set of sentences that are true. Here things are a little more deli-
cate, since in this case it would be hard to do something comparable—
it would be hard to give a substantive analysis of the notion of truth
in more fundamental terms. However, we can hope to give a structural
analysis; that is, instead of analyzing the notion in more fundamental
terms we can hope to articulate the principles that capture its essen-
tial features.

For the purposes of the arguments that we will consider in this
part of the paper—the first generation of arguments for the first
disjunct—we will only require a typed truth predicate, and for typed
truth we have a perfectly adequate structural analysis, namely that of
Tarski.28

It would take us too far afield to list all of the Tarskian principles
governing ‘T ’. Suffice it to say that these principles include such prin-
ciples as

(T1) (∀x)[Sent(x) → (T (¬. x) ↔ ¬T (x))] and
(T2) (∀x)(∀y)[Sent(x) ∧ Sent(y) → (T (x∨. y) ↔ T (x) ∨ T (y))].

27 This latter notion is provably co-extensive with the notion of “what can be pro-
duced by a Turing machine,” and so we have simultaneously rendered precise the cor-
responding notion in the variant formulation.

28 A typed truth predicate is one that applies only to statements that do not themselves
involve the truth predicate. In contrast, a type-free truth predicate is one which also ap-
plies to statements that themselves involve the truth predicate. The principles govern-
ing typed truth predicates are perfectly straightforward and uncontroversial, while the
principles governing type-free truth predicates are much more delicate.

In the successor to this paper—where we consider the second generation of argu-
ments for the first disjunct—we will have to employ a type-free truth predicate.
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The notation involving the dots is necessary for full precision, but
the details will not be important for our purposes. The main point I
wish to convey is that these principles capture uncontroversial aspects
of the (classical) notion of truth. For example, T2 simply says that a
disjunction is true if and only if one of its disjuncts is true.

II.3. Sharpening K. In the informal setting ‘K ’ was used to stand
for the set of sentences that are “absolutely provable” (or, in the vari-
ant formulation, the set of sentences that can be produced by “the
idealized human mind”). There is little hope of giving a substantive
analysis of this notion, as we did in the case of F . But perhaps we can
retreat and, as in the case of T , provide a structural analysis.

The trouble is that, in contrast to the case of truth, there is little
agreement even on what principles are supposed to govern the no-
tion “absolute provability” (or the notion of what can be produced by
“the idealized human mind”) since there is little agreement on how
absolute absolute provability is supposed to be (or how ideal the ide-
alized human mind is supposed to be).

What we shall do is follow the charitable course. Our opponent—
the proponent of the first disjunct—wishes to show that K outstrips
any correct F . Without fully understanding the specific nature of K ,
and without even taking a stance on which principles are supposed
to truly govern it, we will grant our opponent a very strong notion
of K along with a powerful set of principles governing it. Notice that
in doing so we are making the task for our opponent easier. For the
more we grant our opponent concerning K , the easier the task of
showing that K outstrips any F , and, correspondingly, the stronger
any negative result we might establish to the effect that even such a
strong notion of K cannot be shown to outstrip any F .

In the formal setting we will treat ‘K ’ as an operator.29 The basic
axioms of absolute provability are:

29 In our present setting we are forced to treat ‘K ’ as an operator. This is because
results of Gödel, Myhill, Montague, Thomason, and others show that under fairly gen-
eral conditions (of which our present conditions are an instance) if one formulates a
theory of absolute provability with ‘K ’ as a predicate then inconsistency ensues. See
Kurt Gödel, “An Interpretation of the Intuitionistic Propositional Calculus” (1933),
reprinted in Collected Works, Volume I: Publications 1929–1936, ed. Solomon Feferman et
al. (New York: Oxford University Press, 1986), pp. 301–03; John Myhill, “Some Remarks
on the Notion of Proof,” this JOURNAL, LVII, 14 (July 1960): 461–71; Richard Mon-
tague, “Syntactical Treatments of Modality, with Corollaries on Reflexion Principles
and Finite Axiomatizability,” Acta Philosophica Fennica, XVI (1963): 153–67; and Rich-
mond H. Thomason, “A Note on Syntactical Treatments of Modality,” Synthese, XLIV,
3 (July 1980): 391–95. (However, as we shall see in the successor to this paper, if one
situates a theory of absolute provability within a type-free theory of truth, then one can
treat ‘K ’ as a predicate and circumvent the aforementioned limitative results.)
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(K1) Universal closures of formulas of the form

Kϕ

where ϕ is a first-order validity.
(K2) Universal closures of formulas of the form

(K (ϕ → ψ) ∧ Kϕ) → Kψ.

(K3) Universal closures of formulas of the form

Kϕ → ϕ.

(K4) Universal closures of formulas of the form

Kϕ → KKϕ.

The first principle—known as logical omniscience—asserts that K
holds of all first-order logical validities. The second principle asserts
that K is closed under modus ponens, and so distributes across logical
derivations. The third principle is a way of asserting that K is correct.
And the fourth principle asserts that K is “absolutely self-reflective.”

These principles indicate that we are indeed granting our oppo-
nent an extremely strong notion of K . To see this, consider the first
principle. In the variant formulation this principle says that “the ide-
alized human mind” knows all first-order logical validities. But notice
that some (indeed, most) of the logical validities are too long for an
actual agent to even comprehend, let alone know; in fact, some (in-
deed most) logical validities have more symbols than there are funda-
mental particles in the observable universe. So, in granting logical omni-
science we are granting a strong notion of K , one that involves treat-
ing the “idealized human mind” in a highly idealized manner.30

These strong assumptions on K might seem like grand and ques-
tionable assumptions to make at the start of an attempt to make a
case for the first disjunct. But I want to stress once again that the
strong assumptions that I am making on K are made on behalf of my
opponent. Since my goal is to show that my opponent’s arguments
do not establish the conclusion, the more I grant in terms of strong
assumptions on K , the stronger any negative result to the effect that
the arguments do not show that even such a strong notion of K does
not coincide with any F .

30 In the final section of the successor to this paper I will examine the nature of this
idealization and conclude that already at this step there is an unjustified move. But for
the time being I want to grant my opponent as much as possible and place more weight
on limitative mathematical results than philosophical critique.
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II.4. The Systems EA and EAT. We are now in a position to describe
the systems that we shall be employing. The basic system EA of epis-
temic arithmetic has axioms of arithmetic and axioms of absolute
provability, and the extended system EAT has, in addition, axioms of
(typed) truth.31

The language LEA is LPA expanded to include an operator ‘K ’ that
takes formulae of LEA as arguments. The axioms of arithmetic are sim-
ply those of PA, only now the induction scheme is taken to cover all
formulas in LEA. For a collection Γ of formulas in LEA, let ‘KΓ’ denote
the collection of formulas ‘Kϕ’ where ‘ϕ’ is in Γ. The system EA is the
theory axiomatized by Σ ∪ KΣ, where Σ consists of the axioms of PA
(in the language LEA) and the basic axioms of absolute provability.

The language LEAT of EAT is the language LEA augmented with a
unary predicate ‘T ’. The system EAT is the theory axiomatized by Σ∪
KΣ, where Σ consists of the axioms of PA (in the language LEAT ), the
basic axioms of absolute provability (in the language LEAT ), and the
Tarskian axioms of truth (for the language LEA).

III. GÖDEL REVISITED

Let us now return to Gödel’s informal discussion, recasting it in the
framework of EAT. It turns out that each of the three positive claims
that Gödel makes (and which we described informally in section I)
can be formalized and proved within EAT.

III.1. The First Claim. The first claim concerns the relationship be-
tween F and T . It asserts that for any formal system F ,

F ⊆ T → F � T .32

This is formalizable and provable in EAT. But this is hardly surprising
since, as we noted, this application of the incompleteness theorems is
a straightforward meta-mathematical result.

31 Systems of this kind were first introduced by Myhill, “Some Remarks on the Notion
of Proof,” op. cit.; William N. Reinhardt, “The Consistency of a Variant of Church’s The-
sis with an Axiomatic Theory of an Epistemic Notion,” Revista Colombiana de Matemáticas,
XIX, 1–2 (1985): 177–200; William N. Reinhardt, “Absolute Versions of Incompleteness
Theorems,” Noûs, XIX, 3 (September 1985): 317–46, William N. Reinhardt, “Epistemic
Theories and the Interpretation of Gödel’s Incompleteness Theorems,” Journal of Philo-
sophical Logic, XV, 4 (November 1986): 427–74; and Stewart Shapiro, “Epistemic and In-
tuitionistic Arithmetic,” Studies in Logic and the Foundations of Mathematics, CXIII (1985):
11–46, and have been investigated by many others (see, for example, Leon Horsten,
“In Defense of Epistemic Arithmetic,” Synthese, CXVI, 1 (1998): 1–25; Hannes Leitgeb,
“On Formal and Informal Provability,” in Otávio Bueno and Øystein Linnebo, eds., New
Waves in Philosophy of Mathematics (New York: Palgrave Macmillan, 2009), pp. 263–99,
and the references therein).

32 Now, in the setting of EAT, the notation ‘F ⊆ T ’ is being used as a convenient
shorthand for ‘∀x

(
SentLPA (x) → (Fe(x) → T(x)

)
’, where Fe is the eth recursive set of

axioms.
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III.2. The Second Claim. The second claim involves K . It asserts that
for any formal system F ,

K (F ⊆ T ) → F � K .

This is also provable in EAT. In fact, something stronger is provable al-
ready in EA. The antecedent of the above conditional is the statement
that it is absolutely provable that F is correct (that is, K (F ⊆ T )). But
a weaker condition is the scheme asserting that for any ϕ in LPA, it is
absolutely provable that if F holds of ϕ then ϕ holds (that is, for any
ϕ in LPA, K (F (�ϕ� → ϕ))).33 In order to express this weaker condi-
tion we do not require the truth predicate, since in this case we are
dealing with the statements ϕ one by one (and not quantifying over
them), and so we can replace ‘T (�ϕ�)’ with ‘ϕ’.

Theorem 3 (Reinhardt). Assume that S includes EA. Suppose F (x) is a for-
mula with one free variable and is such that for each sentence ϕ

S 
 K (F (�ϕ�) → ϕ).

Then there is a sentence ψ such that

S 
 Kψ ∧ K¬F (�ψ�).34

Notice that here ‘F (x)’ stands for any formula in LEA with one free
variable. It need not be a formula defining what is provable relative to
a recursive set of axioms; that is, it need not be a Σ0

1-statement. The
result applies to even richer notions of relative provability.

It is worth mentioning that one also obtains an absolute version of
the second incompleteness theorem:

Theorem 4 (Reinhardt). Assume that S includes EA. Suppose F (x) is a for-
mula with one free variable and is such that for each sentence ϕ

S 
 K (Kϕ → F (�ϕ�)).

Then

S 
 K¬K (Con(F )).35

In other words, if it is absolutely provable (pointwise) that the system
F captures everything that is absolutely provable then (it is absolutely
provable that) the consistency of F is not absolutely provable.

33 Here �ϕ� is the Gödel code for the statement ϕ.
34 Reinhardt, “Absolute Versions of Incompleteness Theorems,” op. cit.
35 Ibid.
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III.3. The Third Claim. The third claim is the disjunction, that is,
(
¬∃F (F = K )

)
∨
(
∃ϕ (T (ϕ) ∧ ¬K (ϕ) ∧ ¬K (¬ϕ))

)
.

This is a little delicate to formalize in EAT since K is formalized as
an operator in EAT and so we are prohibited from quantifying into
it. The solution is to employ the truth predicate and use it to re-
place ‘∃x K (x)’ with ‘∃x T (K. x)’. The metamathematical details (like
the role of the dot under the ‘K ’) are a bit tedious, but routine. Let-
ting ‘x ∈ Fe ’ be shorthand for the statement “x is in the e th recursively
enumerable set,” we can now express the first disjunct as

¬∃e
(
∀x (SentLPA(x) → (T (K. x) ↔ x ∈ Fe))

)

and we can express the second disjunct as

∃x
(
SentLPA(x) ∧ T (x) ∧ ¬T (K. x) ∧ ¬T (K. ¬. x)

)
.

The formal statement of Gödel’s Disjunction is the disjunction of
these two statements, which we shall abbreviate as ‘GD’.

Theorem 5 (Reinhardt). Assume EAT. Then GD holds.36

III.4. Summary. Thus, once the background assumptions on the
fundamental concepts—F , K , and T—are made explicit, the entire
discussion can be pulled into a framework—EAT—in which one can
prove definitive results. Remarkably, as we have seen, each of Gödel’s
three main claims is provable in EAT. In this sense, Gödel was correct
in claiming that the disjunction is a “mathematically established fact.”

So the question arises: Which disjunct holds? In particular, can we
go further and establish that the first disjunct is a “mathematically
established fact”?

IV. LUCAS AND PENROSE: THE FIRST DISJUNCT

The first generation of arguments for the first disjunct—due primarily
to Lucas37 and early Penrose38—has been discussed extensively in the
literature. In our present setting, with the above technical apparatus
at hand, we can both sharpen the debate and present a critique that
is a good deal stronger than the standard critiques.

36 Reinhardt, “Epistemic Theories and the Interpretation of Gödel’s Incompleteness
Theorems,” op. cit.

37 Lucas, “Minds, Machines and Gödel,” op. cit.
38 Penrose, The Emperor’s New Mind, op. cit.
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IV.1. The Classic Argument for the First Disjunct. It turns out that the
first generation of arguments for the first disjunct are really just
versions of Gödel’s argument for his second claim, namely that if
K (F ⊆ T ) then F � K . In the words of Penrose: “Human mathemati-
cians are not using a knowably sound algorithm in order to ascertain
mathematical truth.”39 As we saw above, this conclusion, when suitably
formalized, is provable in EAT. (See Theorem 3 and the discussion
surrounding it.)

However, as Gödel (and many logicians who followed) pointed out,
the argument does not yield the first disjunct; rather, it provides us
with a conditional statement, and to arrive at the consequent of the
conditional, one needs to discharge the antecedent; that is, one needs
the additional premise that K (F ⊆ T ).

The question, then, is whether for any F one can determine (in the
sense of absolutely prove or refute) whether or not F is correct. This
would involve, in the very least, being able to determine whether or
not F is consistent. But this is no small task. For example, let S be the
system PA + R where ‘R’ stands for the famous open problem known
as the Riemann Hypothesis. A result of Kreisel shows that R can be
formulated as a Π0

1-sentence. It follows that PA+R is consistent if and
only if R is true.40 So to know whether or not PA+R is consistent is to
know whether or not R is true. But R is a major outstanding problem
in mathematics, so outstanding that the Clay Institute has offered one
million dollars for its resolution. No one at present knows the answer
to R , and it is no small task to determine the answer. It follows that no
one at present knows whether or not PA + R is consistent.

Now, one might push back on this argument by pointing out that
although Lucas and Penrose do not know whether PA + R is consis-
tent, they might plausibly maintain that the answer is indeed within
the reach of what is absolutely provable. For after all, Lucas and Pen-
rose are, like the rest of us, actual humans, with the limitations and
defects that come from being finite, real-world beings; but we are not
here concerned with the performance of actual human minds, we are
concerned with what the idealized human mind can do in principle. So
Lucas and Penrose might plausibly maintain that although the answer
to the question of whether PA + R is consistent is not actually within

39 Penrose, Shadows of the Mind, op. cit., p. 76.
40 The reasoning is as follows: We know that PA is Σ0

1-complete, and we are assuming
that PA is Σ0

1-sound (indeed, in EAT we have that K holds of PA, and since K outputs
only truths this means that PA is correct). So, if PA + R is consistent, then R must be
true (since if F were false, then, by Σ0

1-completeness, we would have PA � ¬R); and, if
PA + R is inconsistent, then PA � ¬R , and so, by Σ0

1-soundness, R must be false.
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reach, it is in principle within reach. But the choice of R was merely
representative, and the point is much stronger: To know of every sys-
tem F whether or not F is consistent (something that they maintain
these idealized human minds are capable of doing) is to have an or-
acle for Π0

1-truth, and that is not something one can claim to have at
the start of an argument for the first disjunct, since it trivially contains
the conclusion of the argument.

These considerations show that this particular argument for the first
disjunct fails, but perhaps there is another argument . . .

IV.2. The First Disjunct in EAT. In fact, we can say something much
stronger. Not only does this particular argument fail to establish the
first disjunct, even granting the very strong notion of K that is embod-
ied in EAT; there is no argument for the first disjunct in EAT.

To describe the limitative results and the subtle issues involved, it is
useful to distinguish (following Reinhardt) three grades of the mech-
anistic thesis:

(1) (WMT) ∃e (K = Fe)
(2) (SMT) K ∃e (K = Fe)
(3) (SSMT) ∃e K (K = Fe)

The first thesis is the weak mechanistic thesis.41 It asserts that there
is a Turing machine which coincides with the idealized human mind
(in the sense that the two have the same outputs). This is simply the
first disjunct of Gödel’s Disjunction. The second thesis is the strong
mechanistic thesis. It asserts that the idealized human mind knows that
there is a Turing machine which coincides with the idealized human
mind. The third thesis is the super strong mechanistic thesis. It asserts that
there is a particular Turing machine such that the idealized human
mind knows that that particular machine coincides with the idealized
human mind.

The first result that is of relevance to this discussion is the following:

Theorem 6 (Reinhardt). ‘EAT + SSMT’ is inconsistent.42

In other words, in the context of EAT, it is true that there cannot be
a Turing machine such that the idealized human mind knows that it
coincides with that machine.

This fact does not vindicate the proponents of the first disjunct. The
statement that there is a Turing machine such that the idealized hu-
man mind knows that it coincides with that machine, is a rather strong

41 In what follows I shall express matters in terms of the variant formulation.
42 Reinhardt, “Absolute Versions of Incompleteness Theorems,” op. cit.
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statement. As we have seen, it is refutable in EAT. But the mechanist
is not maintaining such a strong statement. The mechanist is main-
taining the more modest statement that there is a Turing machine
that coincides with the idealized human mind; that is, the mechanist
is maintaining WMT. This is what the proponents of the first disjunct
are denying, and it is what they are claiming to have refuted on the
basis of the incompleteness theorems. But now the following result
comes into play:

Theorem 7 (Reinhardt). ‘EAT + WMT’ is consistent.43

In other words, from the point of view of EAT it is entirely possible
that the idealized human mind is in fact a Turing machine. It just
cannot know which one.44 This shows that there is no argument for
the first disjunct in EAT, and since EAT would seem to embody all of
the assumptions held by the proponents of the first disjunct it shows
that there is a fundamental obstacle.

In fact, there is an even stronger conclusion. Reinhardt conjectured
that even SMT is consistent with EAT, and Carlson proved this conjec-
ture, via a sophisticated construction:

Theorem 8 (Carlson). ‘EAT + SMT’ is consistent.45

In other words, from the point of view of EAT it is entirely possible
that the idealized human mind knows that it is a Turing machine. It
just cannot know which one.

These results show that if one is to have a hope of establishing the
first disjunct, one must either invoke stronger assumptions or shift to
an entirely new framework.

IV.3. A Subtle Distinction. There is a subtle distinction that is likely to
have led people astray in thinking that they possessed a proof of the
first disjunct.

The distinction was glimpsed by Gödel in his discussion of his third
main claim. Here is another quote from Wang’s reports on his con-
versations with Gödel:

The incompleteness results do not rule out the possibility that there is a
theorem-proving computer [Fe] which is in fact equivalent to mathemat-
ical intuition [K = Fe]. But they imply that, in such a—highly unlikely

43 Reinhardt, “The Consistency of a Variant of Church’s Thesis with an Axiomatic
Theory of an Epistemic Notion,” op. cit.

44 This result gives precise mathematical substance to the possibility raised by Gödel
(see section I.5 above and section IV.3 below) and later raised by Benacerraf in “God,
the Devil, and Gödel,” op. cit.

45 Timothy J. Carlson, “Knowledge, Machines, and the Consistency of Reinhardt’s
Strong Mechanistic Thesis,” Annals of Pure and Applied Logic, CV, 1–3 (2000): 51–82.
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for other reasons—case, either we do not know the exact specification
of the computer [¬K (K = Fe)] or we do not know that it works correctly
[¬K (Fe ⊆ T )].46

This can all be made precise and rigorous in the setting of EAT: The
first sentence is substantiated by Reinhardt’s result (Theorem 6) that
∃e (K = Fe) is consistent with EAT. The second sentence has two parts.
The first part is substantiated by Reinhardt’s result (Theorem 7) that
EAT can prove ¬∃e K (K = Fe), and the second part is substantiated by
the result (see Theorem 3) that Gödel’s second claim is provable in
EAT.

It is striking that in addition to being correct about his three main
positive claims Gödel was able to appreciate these subtleties and
glimpse both Theorem 6 and Theorem 7. He in effect anticipated
every move in the subsequent debate and he was able to avoid the
pitfalls that beset others.

The proponents of the first disjunct may have seen an informal
argument for the fact that the incompleteness theorems imply that
¬∃e K (K = Fe). But it does not follow that ¬∃e (K = Fe), as Theorem
7 demonstrates. In fact, it does not even follow that ¬K∃e (K = Fe),
as Theorem 8 demonstrates. The difference between ‘∃e K ’ and ‘K∃e’
before ‘(K = Fe)’ is paramount. It is possible (as far as the princi-
ples embodied in EAT are concerned) to “know that you are a Tur-
ing machine” (K∃e (K = Fe)); it is just not possible for there to
be a Turing machine and “know that you are that Turing machine”
(∃e K (K = Fe)).

Regardless of what may have led Lucas and Penrose astray, the
above discussion shows that the arguments for ¬WMT are not valid
and, moreover, that there is no valid argument for ¬WMT (or even
¬SMT) that proceeds on the basis of EAT alone. If one is to hope
to prove the first disjunct, one must either invoke additional assump-
tions or shift to an entirely new framework.

V. CONCLUSION

One of the main things I have tried to illustrate is that these ques-
tions can be approached with precision by making the underlying
assumptions governing the fundamental concepts explicit. We saw
that Gödel’s informal arguments for his three central philosophical
claims—most notably, the disjunction—could be rendered formally
precise and proved in the system EAT, thereby vindicating, in some

46 Wang, A Logical Journey, op. cit., section 6.1.7, p. 186.
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sense at least, his claim that the disjunction is a “mathematically estab-
lished fact.” In this setting we could also clearly isolate the problems
with the early arguments for the first disjunct and, more importantly,
show that there is no argument for the first disjunct within EAT, a sys-
tem that would seem to cover every assumption that the proponents
of the first disjunct would be willing to make.47 I hope that this puts
to rest the first generation of arguments for the first disjunct and that
all participants in the dispute can agree on this.

B

The question of whether the second generation of arguments—that
is, Penrose’s new argument—establish the first disjunct is quite subtle.
Recall that Gödel had hoped that when we had an adequate resolu-
tion of the paradoxes—most notably an adequate type-free theory of
truth and absolute provability—we would be in a position to establish
the first disjunct. We now have many type-free theories of truth. And it
turns out that to formalize Penrose’s new argument one must employ
a type-free theory of truth. So perhaps Penrose has fulfilled Gödel’s
hope. The entire argument can be made precise, and, when one does
this, something interesting emerges. But that’s another story. . .
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47 I have said that EAT would seem to cover every such assumption and not that it does
cover every such assumption, since the proponents of the first disjunct do not clearly
state all of their assumptions on the fundamental concepts. In any case, EAT covers
the assumptions that they do make explicit, and it is hard to see what kind of implicit
assumptions going beyond EAT are at play in their arguments.


