Dag Kristian Dysthe
PGP, University of Oslo, Norway
(Dated: August 31, 2004)

These analytical excersises are intended to make you familiar with some solutions to the diffusion equation and to obtain valuable information from typical distributions.

DIFFUSION FROM A POINT SOURCE

Verify that

$$
\begin{equation*}
c(x, t)=\frac{A}{\sqrt{t}} e^{-x^{2} / 4 D t} \tag{1}
\end{equation*}
$$

is a solution to

$$
\begin{equation*}
\frac{\partial c}{\partial t}-D \frac{\partial^{2} c}{\partial x^{2}} \tag{2}
\end{equation*}
$$

DIFFUSION IN LIQUIDS

Figure 1 shows typical concentration curves, $c(x, t)$, for diffusion from a point source at the origin $x=0$ at time $t=0$. Measure the width of the curves to determine the diffusion constant.

RANDOM WALKER

Release n_{p} random walkers at the origin of the x-axis at time $t=0$. The RW make steps of size d to the left or right at time steps τ. Assume that the random walk represents a diffusion process given by equation (1). Use the Einstein-Smoluchovski relation

$$
\begin{equation*}
D=\frac{d^{2}}{2 \tau} \tag{3}
\end{equation*}
$$

to calculate the distribution function $f\left(n_{p}, n_{t}\right)$ after $n_{t}=$ t / τ timesteps. The Matlab m-file given below simulates $n_{p}=10000$ random walkers performing $n_{t}=100$ steps (of unit length, $d=1, \tau=1$) and plots the distribution histogram together with the theoretical curve.

DISTRIBUTED SOURCE, THE ERROR FUNCTION

When the concentration distribution at time 0 is a step function: $c(x \leq 0, t=0)=c_{0}, c(x>0, t=0)=0$ the solution to the diffusion equation is the integrated effect over point sources between $x=0$ and $x=-\infty$:

$$
\begin{equation*}
c(x, t)=\int_{x}^{\infty} \frac{c_{0}}{2 \sqrt{\pi D t}} e^{-\xi^{2} / 4 D t} d \xi \tag{4}
\end{equation*}
$$

FIG. 1: Concentration curves $c(x, t)$ for diffusion from a point source at the origin at time $t=0$.

Use the transformation

$$
\begin{equation*}
\eta=\frac{\xi}{2 \sqrt{D t}} \tag{5}
\end{equation*}
$$

to express $c(x, t)$ in terms of the error function:

$$
\begin{equation*}
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-\eta^{2}} d \eta \tag{6}
\end{equation*}
$$

Use Matlab to plot the curves $c(x, t)$ and $c(\eta) / c_{0}$ at $1,5,10$ and 20 hours for the diffusion coefficient you calculated in the first excersise. (The error function in Matlab is $\operatorname{erf}()$.

APPENDIX

```
timesteps=100;
num_part=10000;
%Assume that no particle gets further in one
%direction than half the number of steps it does
xrange=timesteps/2;
%number of x positions is twice the range plus
%the origo
xnumbers=2*xrange+1;
%make a vector with all x positions from -xrange
%to xrange
x=linspace(-xrange,xrange,xnumbers);
%make an empty histogram
```

position_histogram=zeros(1, xnumbers);
\%repeat this for every particle
for $i=1:$ num_part;
$\%$ create an array (of length timesteps) of
$\%$ random numbers with equal probability of
\%being positive and negative.
dummy=rand(1,timesteps)-1/2;
$\%$ round negative numbers to -1 and positive
\%numbers to +1
random_jumps=floor(dummy)+ceil(dummy);
$\%$ the final position is the sum of individual
$\% j u m p s$. Add (xrange +1) which is the position
$\%$ of the origo in the histogram array
final_position=sum(random_jumps)+xrange +1 ;
\%increment with one the bin in the histogram
$\%$ array where the particle ended up
position_histogram(final_position)=...
position_histogram(final_position) +1 ;
end
\%Figure 1 shows that the odd x positions are
\%unobtainable for an even number of moves.
\%This is in fact unimportant, it only means
$\%$ we have data for intervals of 2 instead of 1. \%figure (1)
\%plot(x,position_histogram,'o')
\%Interpolate for odd x-positions to get a nice plot position_histogram(2:xnumbers-1)=...
position_histogram(2:xnumbers-1)+...
position_histogram(1:xnumbers-2)/2+...
position_histogram(3:xnumbers)/2;
figure(2)
plot(x, position_histogram)
hold on
\%calculate and plot the Maxwell distribution \%corresponding to this many particles and timesteps halfwidth=sqrt($2 *$ timesteps);
plot(x,2*num_part/(halfwidth*sqrt(pi))*... $\left.\exp \left(-(x / h a l f w i d t h) .{ }^{\prime} 2\right), r^{\prime}\right)$

