
Diffusion excersise, FYS-PGP 4300

Dag Kristian Dysthe
PGP, University of Oslo, Norway

(Dated: August 31, 2004)

These analytical excersises are intended to make you familiar with some solutions to the diffusion
equation and to obtain valuable information from typical distributions.

DIFFUSION FROM A POINT SOURCE

Verify that

c(x, t) =
A√
t
e−x2/4Dt (1)

is a solution to

∂c

∂t
− D

∂2c

∂x2
(2)

DIFFUSION IN LIQUIDS

Figure 1 shows typical concentration curves, c(x, t), for
diffusion from a point source at the origin x = 0 at time
t = 0. Measure the width of the curves to determine the
diffusion constant.

RANDOM WALKER

Release np random walkers at the origin of the x-axis
at time t = 0. The RW make steps of size d to the left
or right at time steps τ . Assume that the random walk
represents a diffusion process given by equation (1). Use
the Einstein-Smoluchovski relation

D =
d2

2τ
(3)

to calculate the distribution function f(np, nt) after nt =
t/τ timesteps. The Matlab m-file given below simulates
np = 10000 random walkers performing nt = 100 steps
(of unit length, d = 1, τ = 1) and plots the distribution
histogram together with the theoretical curve.

DISTRIBUTED SOURCE, THE ERROR
FUNCTION

When the concentration distribution at time 0 is a step
function: c(x ≤ 0, t = 0) = c0, c(x > 0, t = 0) = 0 the
solution to the diffusion equation is the integrated effect
over point sources between x = 0 and x = −∞:

c(x, t) =
∫ ∞

x

c0

2
√

πDt
e−ξ2/4Dtdξ (4)

FIG. 1: Concentration curves c(x, t) for diffusion from a point
source at the origin at time t = 0.

Use the transformation

η =
ξ

2
√

Dt
(5)

to express c(x, t) in terms of the error function:

erf(z) =
2√
π

∫ z

0

e−η2
dη (6)

Use Matlab to plot the curves c(x, t) and c(η)/c0 at
1, 5, 10 and 20 hours for the diffusion coefficient you
calculated in the first excersise. (The error function in
Matlab is erf().)

APPENDIX

timesteps=100;
num_part=10000;
%Assume that no particle gets further in one
%direction than half the number of steps it does
xrange=timesteps/2;
%number of x positions is twice the range plus
%the origo
xnumbers=2*xrange+1;
%make a vector with all x positions from -xrange
%to xrange
x=linspace(-xrange,xrange,xnumbers);
%make an empty histogram



position_histogram=zeros(1,xnumbers);
%repeat this for every particle
for i=1:num_part;

%create an array (of length timesteps) of
%random numbers with equal probability of
%being positive and negative.
dummy=rand(1,timesteps)-1/2;
%round negative numbers to -1 and positive
%numbers to +1
random_jumps=floor(dummy)+ceil(dummy);
%the final position is the sum of individual
%jumps. Add (xrange+1) which is the position
%of the origo in the histogram array
final_position=sum(random_jumps)+xrange+1;
%increment with one the bin in the histogram
%array where the particle ended up
position_histogram(final_position)=...

position_histogram(final_position)+1;
end
%Figure 1 shows that the odd x positions are

%unobtainable for an even number of moves.
%This is in fact unimportant, it only means
% we have data for intervals of 2 instead of 1.
%figure(1)
%plot(x,position_histogram,’o’)
%Interpolate for odd x-positions to get a nice plot
position_histogram(2:xnumbers-1)=...

position_histogram(2:xnumbers-1)+...
position_histogram(1:xnumbers-2)/2+...
position_histogram(3:xnumbers)/2;

figure(2)
plot(x,position_histogram)
hold on
%calculate and plot the Maxwell distribution
%corresponding to this many particles and timesteps
halfwidth=sqrt(2*timesteps);
plot(x,2*num_part/(halfwidth*sqrt(pi))*...

exp(-(x/halfwidth).^2),’r’)


