
Introduction to Matlab

Roger Hansen (rh@fys.uio.no)

PGP, University of Oslo

September 2004

Introduction to Matlab – p.1/22

Contents

� Programming Philosophy

� What is Matlab?

� Example: Linear algebra

� Example: Curve fitting

� Plotting

� Programming techniques

� Example: Diffusion equation

Introduction to Matlab – p.2/22

Programming Philosophy

There are many different programming languages made for
different purposes.

High level Offers advanced built-in functions. Examples are
Matlab and Perl. Easier to learn and program.

Low level More focus on details. Examples are C and
Fortran. Programming is more tedious and error-prone.

We also distinguish between general purpose (C) and spe-

cial purpose languages (Matlab).

Introduction to Matlab – p.3/22

What is Matlab?

Matlab is a tool for doing scientific computing and
visualization.

� Interactive

� Lots of built-in functions

� Advanced plotting features

� (Relatively) easy to do advanced computation and
visualization.

It is not the holy grail. Some problems are not easily solved

with Matlab.

Introduction to Matlab – p.4/22

Example: Matrix system

Matlab has a wide set of operators and functions for
calculations with matrices and vectors.

We start by solving a system of linear equations

� �� � � �� � �� � �	

� �� � � �� � �� � �

�� � � �� � � �� � �� (1)

Introduction to Matlab – p.5/22

Using matrix notation the system looks like

� � �
�� (2)

where

� �
�

���
� � �

� � �

� � �
�

��� � �
�

���
���

��
���

�
���
 �

�
���

�	
�

��
�

��� (3)

The solution to the system is given by
� � �� � �

(4)

Introduction to Matlab – p.6/22

In Matlab we can solve this problem in two ways.

1. Find � by left-multiplication of

with

� � �
2. Left-division of

with

�

The matlab code looks like

A = [3, 2, 1; 2, 3,1; 1, 2, 3];
b = [39; 34; 26];
x = inv(A)*b

In the second case left-division is performed straight away
with the command

x = A\b

The latter is fastest.
Introduction to Matlab – p.7/22

Efficiency

It is easy to verify that second case is fastest.

A = rand(1000,1000); % Creates random matrix A
b = rand(1000,1); % Creates random vector b

det(A) % Calculates the
% determinant of A

tic, % Starts the time-watch
x = inv(A)*b; % Solves the system
toc % Stops the watch

tic, y = A\b; toc % Solves the system
% with left division

Introduction to Matlab – p.8/22

Example: Curve Fitting

A dataset may be fitted into a polynomial of degree N by
use of the function polyfit. The error is minimized in a least
square-sense.
A = polyfit(y,x,N)
returns the coefficients of the polynomial ��� � � � defined as

�� � � � � �! � ! � #" � � � ! � � �%$ $ $ � � �� � � � � & (5)

where

� � ' " � ! � � � $ $ $ � � � � � & (

The next slides shows some examples.

Introduction to Matlab – p.9/22

Here we create a data set that almost match the sine
function. Then we plot it with the sine function and a 3.order
polynomial function.

x = 0:pi/10:2*pi; % Create array x
y = sin(x); % Sine of x
a = randn(1,21)*0.1; % array of random numbers

% with normal distribution
z = y+a;

plot(x,z,’x’, x,y,’r’);
hold on; % show plots in same window

p3 = polyfit(x,z,3); % Create polynom of degree 3
f3 = polyval(p3,x);
plot(x,f3,’b’);
legend(’data (z)’,’y = sin(x)’,

’3.order polynom’);
Introduction to Matlab – p.10/22

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5
data (z)
y = sin(x)
3.order polynom

Introduction to Matlab – p.11/22

More Plotting

The last example shows plotting of 1D arrays representing
discrete data and functions. Matlab can of course also do
2D and 3D plotting.
The next example shows how to make a mesh plot.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.ˆ2 + Y.ˆ2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,’EdgeColor’,’black’)

Introduction to Matlab – p.12/22

Mesh Plot

−10

−5

0

5

10

−10

−5

0

5

10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Introduction to Matlab – p.13/22

Surface Plots

Let us reuse the last example, but make a colored surface
plot instead

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.ˆ2 + Y.ˆ2) + eps;
Z = sin(R)./R;
surf(X,Y,Z)
colormap hsv
colorbar

Introduction to Matlab – p.14/22

Surface Plot

−10

−5

0

5

10

−10

−5

0

5

10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

Introduction to Matlab – p.15/22

Programming Advice

Strive for order and logic in your program. Use logical
operators, tests, loops and functions where appropriate.
For example, the statement:

) * � + ,- . � � / 021 3
 � �

(6)

is written in Matlab code as

if a == 0 | a > 2
b = 1;

end

Introduction to Matlab – p.16/22

Loops

A while loop runs until some condition is met. In this
example the loop run as long as 4 � +65 � � +5 	 �

a = 0.5;
while ((a > 0.1) & (a < 0.9))

a = rand;
n = n+1;

end

Another type of loop is the for loop, which runs a given
number of rounds.

for n = 1:N
a(n) = 1/n;

end

Introduction to Matlab – p.17/22

Functions

Sometimes there are no built-in functions for what you
need. Then you can create your own functions.
Say we want to define this function in matlab:

* � � � �

�

� � 7 +5 � � � � +5 + � � �

� � 7 +5 	 � � � +5 +
 7 � (7)

That can be done like this:

function y = humps(x)
y = 1./((x - 0.3).ˆ2 + 0.01) +

1./((x - 0.9).ˆ2 + 0.04) - 6;

Introduction to Matlab – p.18/22

� A function is an m-file beginning with the word
’function’

� A function has a user-specified input and output

� A function has its own ’local’ workspace. Variables
defined in the function are not stored in the ordinary
workspace. Nor are your workspace variables altered if
given a new value in the ’local’ workspace. A function
does not assign any values to anything

� Exception to this rule is if you define a global variable.
Type ’help global’ for more information

� You can have several functions stored in one file. The
’subfunctions’ work exactly as a normal function, but
can not be axcessed directly from the command
window (unlike other languages).

Introduction to Matlab – p.19/22

General Advice

� Use built-in functions. Safer and more efficient

� Use built-in documentation. See the help menu.

� Try to avoid nested loops. It is inefficient.

� Document your code. Add comments.

� Logical structure

Introduction to Matlab – p.20/22

Example: Diffusion equation

The diffusion equation (also known as the heat equation)
have this form:

8:9 � 8#; ; � 8#< < (8)

where 8:9 � = 8 > = /, 8#; ; � =� 8 > = �� , and so on.

The equation can model a temperature 8 at a given time /

at position

� � � � � in a 2D plane.

Given suitable boundary conditions and initial condition we

can find a numerical solution for this equation.

Introduction to Matlab – p.21/22

An algorithm for this equation is:

1. Define geometry
2. Set constants and variables
3. Set initial condition
4. loop until t >= end_time:

4.1. Calculate inner points
4.2. Set boundary conditions
4.3. plot u(x,t) at this level
4.4. t = t + dt

Introduction to Matlab – p.22/22

	Contents
	Programming Philosophy
	What is Matlab?
	Example: Matrix system
	
	
	Efficiency
	Example: Curve Fitting
	
	
	More Plotting
	Mesh Plot
	Surface Plots
	Surface Plot
	Programming Advice
	Loops
	Functions
	
	General Advice
	Example: Diffusion equation
	

