GRAPHICAL PRESENTATION AND STATISTICAL ORIENTATION
OF STRUCTURAL DATA PRESENTED WITH STEREOGRAPHIC
PROJECTIONS FOR 3-D ANALYSES. COMMONLY USED PLOTTING AND
CONTOURING TOOLS CAN BE DOWNLOADED FOR VARIOUS
OPERATIONG SYSTEMS FROM THE WEB.

Commonly used in structural geology

Commonly used in min/crystal

ROSE DIAGRAM, only 2-d

Våganecracks		Statistics
N = 30		Vector Mean = 353.3
Class Interval = 5 degrees		Conf. Angle = 31.23
Maximum Percentage = 16.7		R Magnitude = 0.439
Mean Percentage = 5.88	Standard Deviation = 4.11	Rayleigh = 0.0031

From 3 dimensions to stereogram

From great circle to pole

Equal area projections

PLOT PLANE 143/56 (data recorded as right-hand-rule)

TYPICAL STRUCTURAL DATA PLOT FROM A LOCALITY/AREA. Crowded plots may be clearer with contouring of the data.

There are various forms of contouring, NB! notice what method you choose in the plotting program.

Common method, % = n(100)/N (N- total number of points)

Kamb contouring statistical significance of point concentration on equal area stereograms: binominal distribution with mean - μ = (NA) and standard deviation - $\sigma = NA[(1-A)/NA]^{1/2}$ or $\sigma/NA = [(1-A)/NA]^{1/2}$

N - number of points, A area of counting circle, if uniform distribution (NA) - expected number of points inside counting circle and [N x (1-A)] points outside the circle

of the population

4σ, 6σ, and 8σ.

Poles to bedding S-domain, Kvamshesten basin.

NB! the contouring is different with different methods!


```
Scatter Plot:
    N = 70;    Symbol =
1 % Area Contour:
    N = 70;    Contour Interval = 2.0 %/1% area
```

```
Kamb Contour:
   N = 70; first line = 1; last line = 70
Contour Int. = 2.0 sigma; Counting Area = 11.4%
Expected Num. = 7.97 Signif. Level = 3.0 sigma
```


STEREOGRAM, STRUCTURAL NORDFJORD.

- A) Eclogite facies pyroxene lineation
- B) Contoured amphibolite facies foliations (Kamb contour, n=380)
- C) Amphibolite facies lineations

Fold geometries and the stereographic projections of the folded surface

FOLDED LINEATIONS MAY BE USEFUL HERE TO DETERMINE FOLD MECHANISMS

Inner Outer arc Neutral surface Plane containing folded lineation Slip direction

Figure 8-28. Effect of buckling of individual layers during flexural-slip folding. The small-circle arc pattern of lineations is modified in the outer and inner arcs of the fold. (Adapted from Ramsay, 1967.)

Figure 8-29. Passive folding of a lineation. Lineation points lie on a great circle oblique to the fold axis. (Adapted from Ramsay, 1967.)

FAULTS AND LINEATIONS STRESS INVERSION FROM FAULT AND SLICKENSIDE MEASUREMENTS

Figure 12-15. Ideal orientations of fault planes with respect to principal stresses. (a) Block diagram showing the orientation of principal stresses with respect to two conjugate strike-slip faults; (b) diagram showing principal stresses with respect to slip lineations on a single fault plane.

"Andersonian faulting", Mohr-Colomb fracture "law"

Orthorhombic faults!

Fig. 11. Stereographic (Schmidt-net) representations of synsedimentary intrabasinal faults in the study area. (a) Present orientations of oblique faults that cut the basal unconformity. n = 10. (b) Present orientation of main faults of the Selsvatn fault system. (c) Faults in (a) unfolded and back-roatated with bedding. n = 10. (d) Data in (b) unfolded and back-rotated. The synsedimentary orientations of the four main faults reveal that the Selsvatn fault system originated as an orthorhombic fault system characterized by positive elongation in east-west and north-south directions. See discussion in text.

STRESS AXES LOCATED WITH THE ASSUMPTION OF PERFECT MOHR-COLOMB FRACTURING

Figure 12-17. Equal-area plot showing estimation of principal stresses from a single set of slip lineations.

Figure 12-16. Equal-area plot showing estimation of principal stresses from data on two faults of a conjugate system. La and Lb are slip-lineation attitudes.

SLIP-LINEAR PLOT are particularly useful for ananalyses of large fault-slip lineation data sets.

Slip-lines points away from σ_1 towards σ_3

and with low concentration

around σ_2

(a)

Figure 12-14. Construction of a slip linear plot. (a) Block diagram illustrating the position of the M-plane with respect to fiber slip lineations; (b) equal-area plot showing the slip linear and the great-circle traces of the fault plane and M-plane; (c) slip linears representing an array of faults in the southern Pyrenees of Spain. (From Anastasio, 1987.)

(c)

common intersection of three M-planes may be related to a principal stress; (c) slip linear plot for the faults of plot 'a'. Note that the slip linears point toward σ_3 and and away from σ_1 (from Aleksandrowski, 1985).

○ ⊖ ○ Edit/Enter Fo	ault Data
Fault Plane No. : 1 Dip Quadrant =	Geologist:
Striae/Slickensides:	Location:
Trend = Plunge = Sense-of-slip = [R = right lateral; L = left lateral; T = thrust; N = norm	Field #: 1 Sequential Day: Month: Year:
Quality Rating: ○ A ○ B ○ C • no rating	Lithologies:
Weighting Information: same fault as previous one Seismic moment = Displace. (m) =	Upper Block:
Gouge thick, (m) = Trace length (m)	Sedding: Strike = Dip Dip Quad
Cancel	Delete Finished Enter

VARIOUS WAYS TO RECORD THE MEASUREMENTS IN DIFFERENT PROGRAMS

FAULTS WITH SLICKENSIDE AND RECORDED RELATIVE MOVEMENT FROM ONE STATION

SAME DATA AS BEFORE, STRESS-AXES INVERSION, RIGHT HAND SIDE ROTATED

Field exercises Tuesday 21/09

Departure from IF w/IF car at 09.00 am

Station 1 a and b at Fornebo (small-scale fractures, veins and faults with lineations) (ca 2-3 hours)

Station 2 at Nærsnes (large-scale fault between gneisses and sediments) (ca 2-3 hours)

Bring food/clothes/notebook/compass/etc.

Return to Blindern ca 4pm.

29/09 Report with graphical presentation of measurements