GRAPHICAL PRESENTATION AND STATISTICAL ORIENTATION OF STRUCTURAL DATA PRESENTED WITH STEREOGRAPHIC PROJECTIONS FOR 3-D ANALYSES. COMMONLY USED PLOTTING AND CONTOURING TOOLS CAN BE DOWNLOADED FOR VARIOUS OPERATIONG SYSTEMS FROM THE WEB.

Commonly used in structural geology

Commonly used in min/crystal

ROSE DIAGRAM, only 2-d

Våganecracks	Statistics
$\mathrm{N}=30$	Vector Mean $=353.3$
Class Interval $=5$ degrees	Conf. Angle $=31.23$
Maximum Percentage $=16.7$	R Magnitude $=0.439$
Mean Percentage $=5.88 \quad$ Standard Deviation $=4.11$	Rayleigh $=0.0031$

From 3 dimensions to stereogram

From great circle to pole

Equal area projections

Equal Area

Great circles and poles

TYPICAL STRUCTURAL DATA PLOT FROM A LOCALITY/AREA.
Crowded plots may be clearer with contouring of the data.

There are various forms of contouring, NB! notice what method you choose in the plotting program.

Kamb contouring statistical significance of point concentration on equal area stereograms: binominal distribution with mean $-\mu=(N A)$ and standard deviation -$\sigma=\operatorname{NA}[(1-A) / N A]^{1 / 2}$ or $\sigma / N A=[(1-A) / N A]^{1 / 2}$

A is chosen so that if the population has no preferred orientation, the number of points (NA) expected to fall within the counting circle is 3σ of the number of points (n) that actually fall within the counting circle under random sampling of the population

Figure 8-12. The Kamb method of contouring described in Problem 8-4, for the same data as Problem 8-1. Contours drawn at 2 σ, $4 \sigma, 6 \sigma$, and 8σ.

N - number of points, A area of counting circle, if uniform distribution (NA) - expected number of points inside counting circle and [$\mathrm{N} \times(1-\mathrm{A})]$ points outside the circle

Poles to bedding S-domain, Kvamshesten basin.

NB! the contouring is different with different methods!

Scatter Plot:
$\mathrm{N}=70$;
$\begin{array}{cc}\mathrm{N}= \\ \mathbf{1} \% \text { Area Contour: } & \text { Symbol }=\end{array}$
1% Area Contour
$\begin{aligned} & \text { Kamb Contour } \\ & \mathrm{N}=70\end{aligned}$
$\mathrm{N}=70$; first line $=1$; last line $=$
Contour Int. $=$
Expected Num. $=$
2.0 sigma; Counting Area $=11.4 \%$
Signif. Level $=3.0$ sigma

STEREOGRAM, STRUCTURAL NORDFJORD.
A) Eclogite facies pyroxene lineation
B) Contoured amphibolite facies foliations (Kamb contour, n=380)
C) Amphibolite facies lineations

Figure 8-18. Determining attitude of fold-axial surface from a π-diagram.

FOLDED LINEATIONS MAY BE USEFUL HERE TO DETERMINE FOLD MECHANISMS

Figure 8-26. Intersection lineation produced by a later planar foliation (S_{3}) cutting an earlier folded foliation $\left(\mathrm{S}_{1}\right)$. (Adapted from Turner and Weiss, 1963.)

Figure 8-27. Flexural-slip folding of a preexisting lineation. Lineation points lie on a small circle centered on the fold axis. Lineation that was perpendicular to the fold axis (open circles on equal-area plot) lies on a great circle after folding. (Adapted from Ramsay, 1967.)

Figure 8-28. Effect of buckling of individual layers during flexuralslip folding. The small-circle arc pattern of lineations is modified in the outer and inner arcs of the fold. (Adapted from Ramsay, 1967.)

Figure 8-29. Passive folding of a lineation. Lineation points lie on a great circle oblique to the fold axis. (Adapted from Ramsay, 1967.)

a

FAULTS AND LINEATIONS

STRESS INVERSION FROM FAULT AND SLICKENSIDE MEASUREMENTS

(a)

(b)

Figure 12-15. Ideal orientations of fault planes with respect to principal stresses. (a) Block diagram showing the orientation of principal stresses with respect to two conjugate strike-slip faults; (b) diagram showing principal stresses with respect to slip lineations on a single fault plane.

Fig. 11. Stereographic (Schmidt-net) representations of synsedimentary intrabasinal faults in the study area. (a) Present orientations of oblique faults that cut the basal unconformity. $n=10$. (b) Present orientation of main faults of the Selsvatn fault system. (c) Faults in (a) unfolded and back-roatated with bedding. $n=10$. (d) Data in (b) unfolded and back-rotated. The synsedimentary orientations of the four main faults reveal that the Selsvatn fault system originated as an orthorhombic fault system characterized by positive elongation in east-west and north-south directions. See discussion in text.

STRESS AXES LOCATED WITH THE ASSUMPTION OF PERFECT MOHR-COLOMB FRACTURING

Figure 12-17. Equal-area plot showing estimation of principal stresses from a single set of slip lineations.

Figure 12-16. Equal-area plot showing estimation of principal stresses from data on two faults of a conjugate system. $\mathrm{L}_{\mathbf{a}}$ and L_{b} are slip-lineation attitudes.

SLIP-LINEAR PLOT

 are particularly useful for ananalyses of large fault-slip lineation data sets.Slip-lines points away from σ_{1} towards σ_{3}

(a) and with low concentration around σ_{2}

(b)

(c)

(a)

Figure 12-18. M-plane method of calculating principal stresses from a complex fault array. (a) M-plane great-circle traces for members of a complex array. Circles show the common intersection points (from Aleksandrowski, 1985); (b) block diagram showing how the common intersection of three M-planes may be related to a principal stress; (c) slip linear plot for the faults of plot ' a '. Note that the slip linears point toward σ_{3} and and away from σ_{1} (from Aleksandrowski, 1985).

(b)

(c)

Weighting information: \square same fault as previous one
Seismic moment $=\square$ Displace, $(\mathrm{m})=\square$ Trace length $(\mathrm{m}) \quad \square$
Gouge thick, $(\mathrm{mm})=\square$

Cancel

Finished Enter

VARIOUS WAYS TO RECORD THE MEASUREMENTS IN DIFFERENT PROGRAMS

1	Azimuth Dip					Previous	
			$\begin{gathered} \text { Tren } \\ \hline \mathbf{1 8 5} \\ \hline \end{gathered}$	Plunge Sense			
	263	57		30	4		
2	229	72	174	14	4		
3	260	74	192	26	4	Sense: 1 = reverse 2 = normal 3 = dextral $4=$ sinistral 5 or $0=$?	
4	257	76	190	17	4		
5	260	68	157	38	4		
6	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00		
11	0.00	0.00	0.00	0.00	0.00		
12	0.00	0.00	0.00	0.00	0.00		
13	0.00	0.00	0.00	0.00	0.00		
14	0.00	0.00	0.00	0.00	0.00		
15	0.00	0.00	0.00	0.00	0.00	Save	
16	0.00	0.00	0.00	0.00	0.00	Exit	Next

FAULTS WITH SLICKENSIDE AND RECORDED RELATIVE MOVEMENT FROM ONE STATION

SAME DATA AS BEFORE, STRESS-AXES INVERSION, RIGHT HAND SIDE ROTATED

Field exercises Tuesday 21/09

Departure from IF w/IF car at 09.00 am
Station 1 a and b at Fornebo
(small-scale fractures, veins and faults with lineations)
(ca 2-3 hours)
Station 2 at Nærsnes
(large-scale fault between gneisses and sediments) (ca 2-3 hours)

Bring food/clothes/notebook/compass/etc.
Return to Blindern ca 4pm.
29/09 Report with graphical presentation of measurements

