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(a) Find an expression for the entropy of this system in terms of N and N,
the number of links pointing to the right.

(b) Write down a formula for L in terms of N and Ng.

(c) For a one-dimensional system such as this, the length L is analogous to
the volume V of a three-dimensional system. Similarly, the pressure P
is replaced by the tension force F. Taking F' to be positive when the
rubber band is pulling inward, write down and explain the appropriate
thermodynamic identity for this system.

Using the thermodynamic identity, you can now express the tension force F'
in terms of a partial derivative of the entropy. From this expression, com-
pute the tension in terms of L, T, N, and £.

Show that when L « N¢, the tension force is directly proportional to L
(Hooke's law).

Discuss the dependence of the tension force on temperature. If you increase
the temperature of a rubber band, does it tend to expand or contract? Does
this behavior make sense?

Suppose that you hold a relaxed rubber band in both hands and suddenly
stretch it. Would you expect its temperature to increase or decrease? Ex-
plain. Test your prediction with a real rubber band (preferably a fairly
heavy one with lots of stretch), using your lips or forehead as a thermome-
ter. (Hint: The entropy you computed in part (a) is not the total entropy
of the rubber band. There is additional entropy associated with the vibra-~
tional energy of the molecules; this entropy depends on U but is approxi-
mately independent of L.)
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When two systems are in thermal equilibrium, their temperatures are the same. )
When they’re in mechanical equilibrium, their pressures are _theasiela_ne.v_\j_\{_l_lgmuan- ' /Vg
tity is the same when they’re in diffusive equilibrium? o

We can find out by applying the same logic as in the previous section. Consider
two systems, A and B, that are f free to exchange both energy and particles, as
shown in Figure 3.18. (The volumes of the s systems ms could also var?fbfﬂ take /(/7 /
these to be fixed for 31mp11c1ty) I've drawn ‘a system of two interacting gases, but
it could just as well be a , gas interacting with a liquid or solid, or even two solids in
which atoms gradually migrate around. I'm assuming, though, that both systems

are made of the same species of particles, for instance, HoO molecules.

i T

Figure 3.18. Two systems that can exchange both energy and particles.
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Assuming that the total energy and total number of particles are fixed, the total
entropy of this system is a function of Uy and N4. At equilibrium, the total entropy
is a maximum, so

(astom) “0  and (aiz_l) — 0. (3.52)
BUA Na,Va aNA Us,Va

(If the volumes of the systems are allowed to vary, then 8Siota1/0Va = 0 as well.)
Again, the first condition says that the two systems must be at the same temper-
ature. The second condition is new, but is entirely analogous to the condition on
volume from the previous section. Following the same reasoning as there, we can
conclude

0S4 _ 0Sg

N, — 9N, at equilibrium, (3.53)

where the partial derivatives are taken at fixed energy and volume. We’re free to

multiply this equation through by a factor of T, the temperature, since the systems
are also in thermal equilibrium. By convention, we also multiply by —1:

-T =-T at equilibrium. (3.54)

The quantity —T(8S/8N) is much less familiar to most of us t\han temperature or
pressure, but it’s still extremely important. It is called the chemical potential,

denoted u:
. 8S

This is the quantity that’s the same for both systems when they’re in diffusive
equilibrium:
1A = UB at equilibrium. (3.56)

If the two systems are not in equilibrium, then the one with the larger value of
0S/ON will tend to gain particles, since it will thereby gain more entropy than the

other loses. However, because of the minus sign in definition 3.55, this system has

the smaller value of . Conclusion: Particles tend to flow from the system with
higher u into the system with lower u (see Figure 3.19).

)
0._
1 Figure 3.19. Particles tend to flow toward lower
kA | values of the chemical potential, even if both values
! Particles are negative.
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It’s not hard to generalize the thermodynamic identity to include processes in
which N changes. If we imagine changing U by dU, V by dV, and N by dN, then,
by the same logic as in the previous section, the total change in the entropy is

08 oS 0S
o (%), dm(w) (%), a

(3.57)

Solving for dU as before, we obtain
dU =TdS — PdV + pdN. (3.58)

Just as the —P dV term is usually associated with mechanical work, the y dN term
is sometimes referred to as “chemical work.”

This generalized thermodynamlc identity is a great way to remember the various
partial-derivative formulas for T', P, and u, and to generate other similar formulas.
Notice that four quantities are changing in this equation: U, S, V, and N. Now
just imagine a process in which any two of these are fixed. For instance, in a process
with fixed U and V,

0=TdS + pdN, that is, = T(gf/) (3.59)

Similarly, in a process with fixed S and V,

dU = pdN,  thatis, p= (g—]({,-) . (3.60)
A%

This last result is another useful formula for the chemical potential. It tells us
dlrectly that b p has units of energy; specifically, 4 is the amount by which a system’s
energy changes, when you add one particle and keep the entropy and volume fixed.
Normally, to hold the entropy (or mult1p11c1ty) fixed, you must remove some energy
as you add a particle, so u is negative. However, if you have to give the particle some
potential energy (gravitational, if the system lives on a mountain top, or chemical,
if the system is a solid crystal) to get it into the system, this energy also contributes
to . In Chapter 7 we’ll see an example where you have to give a particle kinetic
energy just to get it into a system.

Now let’s look at some examples. First consider a very small Einstein solid, with
three oscillators and three units of energy. The multiplicity is 10, so the entropy
is kIn10. Now suppose we add one more oscillator (thinking of each oscillator as
a “particle”). If we leave all three units of energy in the system, the multiplicity
increases to 20 and the entropy increases to k1n20. To hold the entropy fixed, we
need to remove one unit of energy, as shown in Figure 3.20. Thus the chemical

potential of this system is
AU
s
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N=3¢=3 Q=10 N=4,¢=20=10

Figure 3.20. In order to add an oscillator (represented by a box) to this very small
Einstein solid while holding the entropy (or multiplicity) fixed, we must remove
one unit of energy (represented by a dot).

if € is the size of a unit of energy. (Because the addition of one particle is not an
infinitesimal change for such a small system, this example should be taken with a
grain of salt. Strictly speaking, the derivative OU/JN is not well defined. Besides,
in a real solid crystal, adding an atom would entail adding three oscillators, not
just one, and we would also have to add some negative potential energy to create
the chemical bonds around the added atom.)

As a more realistic example, let’s compute p for a monatomic ideal gas. Here
we need the full Sackur-Tetrode equation (2.49) for the entropy,

3/2
S = Nk [ln (V("‘—’;;-%g) / ) ~In NS/ 4 g} (3.62)

Differentiating with respect to N gives

_ 4rmU \3/2 52, 0 51
u——T{k[ln(V(W) )—lnN +5| - Nk o=
V /4nmU\3/2
— | ¢ ()|
V /2rmkT \3/2
=”’“T1“["ﬁ(—h—z—) ]

(In the last line I used the relation U = 3NkT.) At room temperature and atmo-

spheric pressure, the volume per molecule, V/N, is 4.2 x 10726 m3, while the quan-
tity (h?/27mkT)3/2 is much smaller. For helium, this quantity is 1.3 x 10731 m3,
so the argument of the logarithm is 3.3 x 10%, the logarithm itself is 12.7, and the
chemical potential is

p=-0.32eV  for helium at 300 K, 10° N/m?2. (3.64)

If the concentration is increased while holding the temperature fixed, u becomes
less negative, indicating that the gas becomes more willing to give up particles
to other nearby systems. More generally, increasing the density of particles in a
system always increases its chemical potential.

Throughout this section, I've implicitly assumed that each system contains only
one type of particle. If a system contains several types of particles (such as air, a
mixture of nitrogen and oxygen molecules), then each species has its own chemical

potential:
oS s

uls—T(—) , /LzE—T(—> , (3.65)
oM U,V,N2 ON, U,V,N;
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and so on for each species 1, 2,.... The generalized thermodynamic identity is then

dU =TdS - PdV +)_ pidN;, (3.66)

where the sum runs over all species, i = 1, 2, .... If two systems are in diffusive
equilibrium, the chemical potentials must be separately equal for each species:
14 = W18, H24 = U2B, and so on, where A and B are the two systems.

The chemical potential is a central concept in the study of equilibrium in chem-
ical reactions and phase transformations. It also plays a central role in “quantum
statistics,” the study of exotic, dense gases and other related systems. We’ll make
use of it many times in Chapters 5 and 7.

One more comment: I should mention that chemists usually define the chemical
potential in terms of moles, not individual particles:

08
Hchemistry = _T('a—n) ) (3.67)
uv

where n = N/N, is the number of moles of whatever type of particle is being
considered. This means that their chemical potentials are always larger than ours
by a factor of Avogadro’s number, Ny. To translate this section into chemistry
conventions, just change every N to an n, except in the examples in equations 3.61
through 3.64, where every formula for u should be multiplied by Nj.

Problem 3.35. In the text I showed that for an Einstein solid with three os-
cillators and three units of energy, the chemical potential is p = —e (where € is
the size of an energy unit and we treat each oscillator as a “particle”’). Suppose
instead that the solid has three oscillators and four units of energy. How does the
chemical potential then compare to —e? (Don'’t try to get an actual value for the
chemical potential; just explain whether it is more or less than —e.)

¢’ Problem 3.36. Consider an Einstein solid for which both N and ¢ are much

greater than 1. Think of each oscillator as a separate “particle.”

(a) Show that the chemical potential is

u=—krin(TE9)

N
(b) Discuss this result in the limits N > ¢ and N < ¢, concentrating on the

question of how much S increases when another particle carrying no energy
is added to the system. Does the formula make intuitive sense?

Problem 3.37. Consider a monatomic ideal gas that lives at a height z above sea
level, so each molecule has potential energy mgz in addition to its kinetic energy.

(a) Show that the chemical potential is the same as if the gas were at sea level,
plus an additional term mgz:
V [ 2rnmkT \3/2
u(z) = —kTn [ﬁ(—hz ) ] + mgz.

(You can derive this result from either the definition u = —T(8S/0N)y v
or the formula u = (OU/ON)g, v .)
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