Observe, explore, simplify and quantify. The role of experimental physics in geology

Dag Kristian Dysthe

Experiments and geological processes

Geological processes

- Are slow: mountain building, basin subsidence, weathering, continental subduction
 - Leave only "frozen states" for observation
- Are explosive: Earth quakes, volcanoes, venting
- Involve hard (large stresses needed) and hot materials
- Require heavy equipment and patience for direct experiments on real rocks
 - Because 3D, confinement and high pressure impedes good experimental techniques

Experiments and geological processes

- Similarity and scaling
 - Geometrically similar models where governing parameters scale equally
- Complex, not complicated
 - Simplify complicate geology until only complexity remains

Extrusion simplified and quantified

Slip line =fracture =ductile/brittle transition

COESQA

- Choose
 - Phenomena, patterns, processes to study
- Observe
 - Field work with a physicists glasses
- Explore
 - Perform simple experiments with different materials to explore possible processes and practical materials
- Simplify
 - Boundary conditions, materials, few processes
- Quantify
 - Use high resolution techniques for extrordinary data sets:
 - Control environment and excitation
 - Optical imaging, dilatometry, interferometry, stress imaging, infrared imaging, balances, Lego, Xray reflectometry, AFM, Raman
- Apply
 - Insights about processes to geological context. Modelling

Problem choice

- Choice criteria
 - What are the geologists
 - What problems can out
 - Is there an application answer the questions the with)
- Application to a comple numerical simulation.
 - Boundary conditions
 - Instabilities

COESQA

- Choose
 - Phenomena, patterns, processes to study
- Observe
 - Field work with a physicists glasses
- Explore
 - Perform simple experiments with different materials to explore possible processes and practical materials
- Simplify
 - Boundary conditions, materials, few processes
- Quantify
 - Use high resolution techniques for extrordinary data sets:
 - Control environment and excitation
 - Optical imaging, dilatometry, interferometry, stress imaging, infrared imaging, balances, Lego, Xray reflectometry, AFM, Raman
- Apply
 - Insights about processes to geological context. Modelling

Compaction

Can an exceedingly booring subject become fun?

(yes, snowballs are made by compacting snow!)

Demonstration

Compaction

Simplify

- Uniaxial compaction, viscous round grains
- Parameters:
 - − φ porosity
 - σ stress

 - η_{α} grain viscosity
 - μ friction coefficient
- Dimensional analysis: Does there exist a
 - $\phi = \phi_0 + f(\sigma t/\eta_g, \mu)$ universal compaction
 - $\phi = \phi_0 + f'(\sigma/(\eta_g d\phi/dt), \mu)$ curve, $\eta_e(\phi, \mu)$?
 - $d\phi/dt = (\sigma/\eta_g) f''(\phi,\mu) = \sigma/\eta_e(\phi,\mu)$
- Grain viscosity variability factor 10¹⁹
- => experiment with any size and stress that is practical

Dimensional analysis

- Dimensions: LMT: $[\rho]_{IMT}=ML^{-3}$, LFT: $[\rho]_{IFT}=K^{-4}FT^2$
- What is to be determined? $\phi \phi_0$
- Find governing parameters $\sigma,\,\eta_{\text{g}},\,\mu,\,t,\,\text{d}\phi/\text{d}t$
- Dimensions of governing parameters:

$$[\sigma] = MLT^{-2}, \quad [\eta_{\alpha}] = MLT^{-1}, \quad [t] = T, \quad [\mu] = 1, \quad [d\phi/dt] = T^{-1}$$

Number of independent dimensional gov. par.:

$$[\eta_q] = [\sigma t] = 2$$
 independent

No. indep., dim. gov. par. = no. gov. par. - no. gov. par. with indep. dim. = 4 - 2 => ϕ - ϕ_0 = $\Pi(\sigma t/\eta_q,\mu)$

Scaling

- Scale bound: Process with governing parameter that does not scale or with limited range of scaling
 - Chemical processes (no scaling)
 - Diffusion (in liquids: factor 10-100)
- Scaling: Process with governing parameters that scale over a large range
 - Viscosity (14 orders of magnitude)
- Scale free: Self similar patterns e.g. fracture

Compaction "microscopy"

Compaction of spagetti, constant load

Compaction of Play-Doh, constant load, (Lego sensor)

Compaction of Play-Doh, constant load

Compaction of salt and clay in brine, constant load

Universal compaction curve?

 ϵ ~ log(t) => Dramatic work hardening: $\eta_e = \eta_g \exp(\alpha/\phi)$

Revealed by high resolution measurements!

Pressure Solution Creep

Mechano-chemical processes

- Chemical potential depends on stress
- Viscosity governed by pressure solution creep (PSC)

- dε/dt = (dz/dt)/ L_g = s α ($\Delta D/L_g^3$) (σ- σ_f)/ σ_f	variation
 Δ – thickness of confined fluid 	10?
 s – solubility of mineral in water 	104
 D – diffusion coefficient 	10
• $(\sigma - \sigma_f)/\sigma_f$ – effective stress	100
• $\alpha = \sigma ds/d\sigma - stress sensitivity of solubility$	1

- L_g⁻³ -> use small contacts and measure small displacements!
- Max solubility and stress, 100μm contacts: dz/dt = 3 nm/h
- => Diffusion limited mechano-chemical processes require microscopic or nanoscopic methods

Indentation experiments

- Inert indenter
- Constant load, F
- Constant contact area, d²
- Constant temperature, T
- Sensitive and stable displacement, ε, measurements
- Expected result: dε/dt constant,
 i.e. ε ~ t
- Goal: study dε/dt as function of F, d, T, crystal, where does it precipitate...

Interface evolution in fluid transport controlled creep

- Measurements of indentation by Pressure Solution Creep (PSC): ε~t^{1/3}
- Measurements of interface structure in PSC: λ~t^{1/3}
- Coarsening in time as spinodal decomposition: λ~t^{1/3}
- Consistent power law behaviour in diffusion limited model

Measurement of PSC indentation rate

Stress roughening -> coarsening -> new equilibrium?

Unexpected phenomena revealed by high resolution data sets

 Universal scaling in transient creep

 Roughening and coarsening towards stressed equilibrium

Compaction bands

Compaction "microscopy"

Dilatation 13 2200 _[0.02

Stylolites

Conclusion

- Observe
 - Field work with a physicists glasses
- Explore
 - Perform simple experiments with different materials to explore possible processes and practical materials
- Simplify
 - Boundary conditions, materials, few processes
- Quantify
 - Use whatever high resolution technique necessary to obtain extrordinary data sets:
 - Control environment and excitation
 - Optical imaging, dilatometry, interferometry, stress imaging, infrared imaging, balances, Lego, Xray reflectometry, AFM, Raman