Observe, explore, simplify and quantify.
The role of experimental physics in geology

Dag Kristian Dysthe



Experiments and geological processes

* Geological processes

— Are slow: mountain building, basin subsidence,
weathering, continental subduction
» Leave only "frozen states” for observation

— Are explosive: Earth quakes, volcanoes, venting
— Involve hard (large stresses needed) and hot

materials
— Re(qUire=+ae aninment And=setreErTee for direct
experlaaes Jll feal roCcKs

Because 3D, confinement and high pressure
Impedes good experimental techniques



Experiments and geologlcal processes

e Similarity and
scaling

— Geometrically
similar models
where governing
parameters scale
equally

Complex, not

complicated

— Simplify complicate
geology until only ¥
complexity remains e

gy
e


http://www.virtualexplorer.com.au/2002/7/wosnitza/img/Fig12.jpg
http://www.virtualexplorer.com.au/2002/7/wosnitza/img/Fig2.jpg

Extrusion simplified and quantified
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COESQA
Choose

— Phenomena, patterns, processes to study

Observe
— Field work with a physicists glasses

Explore

— Perform simple experiments with different materials to explore
possible processes and practical materials

Simplify

— Boundary conditions, materials, few processes

Quantify

— Use high resolution techniques for extrordinary data sets:
» Control environment and excitation

» Optical imaging, dilatometry, interferometry, stress imaging, infrared
imaging, balances, Lego, Xray reflectometry, AFM, Raman

Apply

— Insights about processes to geological context. Modelling



Problem choice

« Choice criteria |
— What are the geologistg®
— What problems can ouf
— Is there an application §&
answer the questions tEs=
with) o ;
. Application to a compli §=
numerical simulation.
— Boundary conditions
— Instabllities



COESQA
Choose

— Phenomena, patterns, processes to study

Observe
— Field work with a physicists glasses

Explore

— Perform simple experiments with different materials to explore
possible processes and practical materials

Simplify

— Boundary conditions, materials, few processes
Quantify

— Use high resolution techniques for extrordinary data sets:

e Control environment and excitation

« Optical imaging, dilatometry, interferometry, stress imaging, infrared
imaging, balances, Lego, Xray reflectometry, AFM, Raman

Apply

— Insights about processes to geological context. Modelling



Compaction
Can an exceedingly booring subject become fun?

(yes, snowballs are made by compacting snow!)




Demonstration
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Simplify

« Uniaxial compaction, viscous round grains

e Parameters: Single grain viscosity
— ¢ porosity G
— o Ssftress 1 “
g

— t time or d¢/dt strain rate
— T4 grain viscosity

— u friction coefficient Oy ‘
* Dimensional analysis: 5.« ihere exist a de/dt
- ¢:¢o+f(0th’lg1ﬂ) universal compaction . : .
— 0=¢oHf'(c/(ydo/dt), 1) curve, n,(6,1)? Effective viscosity
— do/dt= (o/mg) f'(d,1) = o/Mme(d,1) e,

e Grain viscosity variability factor 101°
=> experiment with any size and stress
that is practical

v
<




Dimensional analysis

Dimensions: LMT: [p], yt=ML3, LFT: [p] (r=K*FT?
What is to be determined? $-0,

Find governing parameters G, Mg 1, t, do/dt
Dimensions of governing parameters:

[6]=MLT2, [n]=MLTL [t]=T, [u]l=1, [d¢/dt]=T"
Number of independent dimensional gov. par.:

[ngl= [ot] => 2 independent

Il teorem:

No. indep., dim. gov. par. = no. gov. par. — no. gov. par. with indep. dim.
= 4 — 2

=> ¢-0o=T1(ctng, 1)



Scaling

e Scale bound: Process with governing parameter
that does not scale or with limited range of
scaling

— Chemical processes (no scaling)
— Diffusion (in liquids: factor 10-100)

e Scaling: Process with governing parameters that
scale over a large range

— Viscosity (14 orders of magnitude)
e Scale free: Self similar patterns e.g. fracture



Compaction “microscopy”

Boilt
spaghetti
/]

oil

Glass
container/’envelope”



Compaction of spagetti, constant load

040202, load 192g
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Compaction of Play-Doh, constant load,
(Lego sensor)

Light Sensor

Black paper [N ‘/

Silver foil - Infra Red link (o
Piston output data to
T computer
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Compaction of Play-Doh, constant load

l0g,(dd/d)

_8‘5 | | | | 1 1 1 |
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Compaction of salt and clay in brine, constant load

[0l o] 713 459 . - I -
R s
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log, (1)

Data collaps of different loads, grain
sizes and clay content




Strain

0.15

0.1

0.05

Universal compaction curve?

Spagetti Salt+clay

15
Icgm[t}

Time (minutes) |09|10(t)

e~ log(t) => Dramatic work hardening: n,=n, exp(a/¢)

Revealed by high resolution measurements!



! Pressure Solution Creep

e Dissolution at high
stress surfaces

*1@590‘“ T  Mass transport in
| S%“g’:ﬂ‘ : fluid
- —  Precipitation at
low stress
surfaces

High stress

Low stress Low stress




Mechano-chemical processes

Chemical potential depends on stress

Viscosity governed by pressure solution creep (PSC)
— de/dt = (dz/dt)/L,= s a (AD/L ) (c—o)/o;

variation

» A —thickness of confined fluid 107
e s — solubility of mineral in water 104
o D — diffusion coefficient 10

* (o—oy)/c;— effective stress 100
* o = o ds/do — stress sensitivity of solubility 1

* L, ->use small contacts and measure small displacements!
— Max solubility and stress, 100um contacts: dz/dt = 3 nm/h

=> Diffusion limited mechano-chemical processes
reguire microscopic or nanoscopic methods



Indentation experiments

e Inertindenter
 Constant load, F

e Constant contact area, d?
 Constant temperature, T

e Sensitive and stable
displacement, &, measurements

« EXxpected result: de/dt constant,
l.e.e~t
o Goal: study de/dt as function of F,

d, T, crystal, where does it
precipitate...




Interface evolution Iin fluid transport
controlled creep

2
_+» Measurements of
slope=1/3 < . .
— °o __ 1% Indentation by Pressure
o I .
§_ == Solution Creep (PSC):
= ' > 30 8~t1/3

N e . * Measurements of
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.1.% : } ' PSC: )~tl/3
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o) #: 4 - behaviour in diffusion

limited model



Measurement of PSC indentation rate
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Stress roughening —> coarsening —> new equilibrium?

Perepex holder {5 mm high, r = 20-25 cm)
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Unexpected phenomena revealed by high
resolution data sets

* Universal scaling in
transient creep

 Roughening and
coarsening towards
stressed equilibrium

 Compaction bands



Compaction “microscopy”

Boilt
spaghetti
/]

oil

Glass
container/’envelope”
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Conclusion

Observe
— Field work with a physicists glasses

Explore

— Perform simple experiments with different materials to
explore possible processes and practical materials

Simplify

— Boundary conditions, materials, few processes

Quantify

— Use whatever high resolution technigue necessary to
obtain extrordinary data sets:
« Control environment and excitation

» Optical imaging, dilatometry, interferometry, stress imaging,
infrared imaging, balances, Lego, Xray reflectometry, AFM,
Raman
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