GRAPHICAL PRESENTATION AND STATISTICAL ORIENTATION OF STRUCTURAL DATA PRESENTED WITH STEREOGRAPHIC PROJECTIONS FOR 3-D ANALYSES. COMMONLY USED PLOTTING AND CONTOURING TOOLS CAN BE DOWNLOADED FOR VARIOUS OPERATING SYSTEMS FROM THE WEB.

Commonly used in structural geology

Commonly used in min/crystal

GRAPHICAL PRESENTATION AND STATISTICAL ORIENTATION OF STRUCTURAL DATA PRESENTED WITH STEREOGRAPHIC PROJECTIONS FOR 3-D ANALYSES. COMMONLY USED PLOTTING AND CONTOURING TOOLS CAN BE DOWNLOADED FOR VARIOUS OPERATING SYSTEMS FROM THE WEB.

Commonly used in structural geology

Commonly used in min/crystal

ROSE DIAGRAM, only 2-d

Våganecracks	Statistics
$\mathrm{N}=30$	Vector Mean $=353.3$
Class Interval $=5$ degrees	Conf. Angle $=31.23$
Maximum Percentage $=16.7$	R Magnitude $=0.439$
Mean Percentage $=5.88 \quad$ Standard Deviation $=4.11$	Rayleigh $=0.0031$

From 3 dimensions to stereogram

From great circle to pole

Equal area projections

TYPICAL STRUCTURAL DATA PLOT FROM A LOCALITY/AREA.
Crowded plots may be clearer with contouring of the data.

There are various forms of contouring, NB! notice what method you choose in the plotting program.

Common method, $\%=n(100) / N(N-$ total number of points)

Kamb contouring statistical significance of point concentration on equal area stereograms: binominal distribution with mean $-\mu=(N A)$ and standard deviation -$\sigma=\operatorname{NA}[(1-A) / N A]^{1 / 2}$ or $\sigma / N A=[(1-A) / N A]^{1 / 2}$

A is chosen so that if the population has no preferred orientation, the number of points (NA) expected to fall within the counting circle is 3σ of the number of points (n) that actually fall within the counting circle under random sampling of the population

Figure 8-12. The Kamb method of contouring described in Problem 8-4, for the same data as Problem 8-1. Contours drawn at 2 σ, $4 \sigma, 6 \sigma$, and 8σ.

N - number of points, A area of counting circle, if uniform distribution (NA) - expected number of points inside counting circle and $[\mathrm{N} \times(1-\mathrm{A})]$ points outside the circle

Poles to bedding S-domain, Kvamshesten basin.

NB! the contouring is different with different methods!

Scatter Plot.

Kamb $_{\mathrm{N}}=$ Contour $_{70}$

Poles to bedding S-domain, Kvamshesten basin.

NB! the contouring is different with different methods!

Scatter Plot:
$1 \underset{\%}{\mathrm{~N}}=\underset{\text { Area }}{70}$; Sontour: Symbol $=$
$1 \mathrm{~N}^{\%}=\underset{70}{\mathrm{~N}} \mathrm{Area} \begin{gathered}\text { Contour: } \\ \text { Contour } \\ \text { Interval }\end{gathered}=2.0 \% / 1 \%$ area

Kamb Contour

STEREOGRAM, STRUCTURAL NORDFJORD.
A) Eclogite facies pyroxene lineation
B) Contoured amphibolite facies foliations (Kamb contour, $n=380$)
C) Amphibolite facies lineations

Concentric fold

Chevron fold

Fold geometries and the stereographic projections of the folded surface

Figure 8-18. Determining attitude of fold-axial surface from a π-diagram.

FOLDED LINEATIONS MAY BE USEFUL HERE TO DETERMINE FOLD MECHANISMS

Figure 8-26. Intersection lineation produced by a later planar foliation $\left(S_{3}\right)$ cutting an earlier folded foliation $\left(\mathrm{S}_{1}\right)$. (Adapted from Turner and Weiss, 1963.)

Figure 8-27. Flexural-slip folding of a preexisting lineation. Lineation points lie on a small circle centered on the fold axis. Lineation that was perpendicular to the fold axis (open circles on equal-area plot) lies on a great circle after folding. (Adapted from Ramsay, 1967.)

Figure 8-28. Effect of buckling of individual layers during flexuralslip folding. The small-circle arc pattern of lineations is modified in the outer and inner arcs of the fold. (Adapted from Ramsay, 1967.)

Figure 8-29. Passive folding of a lineation. Lineation points lie on a great circle oblique to the fold axis. (Adapted from Ramsay, 1967.)

FAULTS AND LINEATIONS

STRESS INVERSION FROM FAULT AND SLICKENSIDE MEASUREMENTS

(a)

(b)

Figure 12-15. Ideal orientations of fault planes with respect to principal stresses. (a) Block diagram showing the orientation of principal stresses with respect to two conjugate strike-slip faults; (b) diagram showing principal stresses with respect to slip lineations on a single fault plane.
"Andersonian faulting", Mohr-Colomb fracture "law"

Fig. 11. Stereographic (Schmidt-net) representations of synsedimentary intrabasinal faults in the study area. (a) Present orientations of oblique faults that cut the basal unconformity. $n=10$. (b) Present orientation of main faults of the Selsvatn fault system. (c) Faults in (a) unfolded and back-roatated with bedding. $n=10$. (d) Data in (b) unfolded and back-rotated. The synsedimentary orientations of the four main faults reveal that the Selsvatn fault system originated as an orthorhombic fault system characterized by positive elongation in east-west and north-south directions. See discussion in text.

STRESS AXES LOCATED WITH THE ASSUMPTION OF PERFECT MOHR-COLOMB FRACTURING

Figure 12-17. Equal-area plot showing estimation of principal stresses from a single set of slip lineations.

Figure 12-16. Equal-area plot showing estimation of principal stresses from data on two faults of a conjugate system. L_{a} and L_{b} are slip-lineation attitudes.

STRESS AXES LOCATED WITH THE ASSUMPTION OF PERFECT MOHR-COLOMB FRACTURING

Angle between fault \& $\sigma 1$ is 30^{\prime} Fault contains $\sigma 2$ at 90 ' to L

Figure 12-17. Equal-area plot showing estimation of principal stresses from a single set of slip lineations.
$\sigma 1$ bisects acute angle between fault 1 and 2 Fault 1 and 2 intersect at $\sigma 2$

Figure 12-16. Equal-area plot showing estimation of principal stresses from data on two faults of a conjugate system. L_{a} and L_{b} are slip-lineation attitudes.

SLIP-LINEAR PLOT

 are particularly useful for ananalyses of large fault-slip lineation data sets. Slip-lines points away from σ_{1} towards σ_{3}
(a)

Figure 12-14. Construction of a slip linear plot. (a) Block diagram illustrating the position of the M-plane with respect to fiber slip lineations; (b) equal-area plot showing the slip linear and the great-circle traces of the fault plane and M-plane; (c) slip linears representing an array of faults in the southern Pyrenees of Spain. (From Anastasio, 1987.) and with low concentration around σ_{2}

(c)

(a)

Figure 12-18. M-plane method of calculating principal stresses from a complex fault array. (a) M-plane great-circle traces for members of a complex array. Circles show the common intersection points (from Aleksandrowski, 1985); (b) block diagram showing how the common intersection of three M-planes may be related to a principal stress; (c) slip linear plot for the faults of plot ' a '. Note that the slip linears point toward σ_{3} and and away from σ_{1} (from Aleksandrowski, 1985).

(b)

(c)

1000
 Edit/Enter Fault Data

FAULTS WITH SLICKENSIDE AND RECORDED RELATIVE MOVEMENT FROM ONE STATION

SAME DATA AS BEFORE, STRESS-AXES INVERSION, RIGHT HAND SIDE ROTATED

Field exercises Tuesday 04/09

Departure from IF w/IF car at 09.00 am
Station 1 at $\mathrm{N} æ r s n e s$
(large-scale fault between gneisses and sediments)
(ca 2-3 hours)
Station 2 a and b at Fornebo
(small-scale fractures, veins and faults with lineations)
(ca 2-3 hours)

Bring food/clothes/notebook/compass/etc.
Return to Blindern ca 4 pm .
10/09 Report in (presentation of measurements, interpretation and descriptions)

