GRAPHICAL PRESENTATION AND STATISTICAL ORIENTATION OF STRUCTURAL DATA PRESENTED WITH STEREOGRAPHIC PROJECTIONS FOR 3-D ANALYSES. COMMONLY USED PLOTTING AND CONTOURING TOOLS CAN BE DOWNLOADED FOR VARIOUS OPERATING SYSTEMS FROM THE WEB.

GRAPHICAL PRESENTATION AND STATISTICAL ORIENTATION OF STRUCTURAL DATA PRESENTED WITH STEREOGRAPHIC PROJECTIONS FOR 3-D ANALYSES. COMMONLY USED PLOTTING AND CONTOURING TOOLS CAN BE DOWNLOADED FOR VARIOUS OPERATING SYSTEMS FROM THE WEB.

ROSE DIAGRAM, only 2-d

Våganecracks	Statistics
N = 30	Vector Mean = 353.3
Class Interval = 5 degrees	Conf. Angle = 31.23
Maximum Percentage = 16.7	R Magnitude = 0.439
Mean Percentage = 5.88 Standard Deviation = 4.11	Rayleigh = 0.0031

From 3 dimensions to stereogram

Equal area projections

PLOT PLANE 143/56 (data recorded as right-hand-rule)

PLOT PLANE 143/56 (data recorded as right-hand-rule)

PLOT PLANE 143/56 (data recorded as right-hand-rule)

TYPICAL STRUCTURAL DATA PLOT FROM A LOCALITY/AREA. Crowded plots may be clearer with contouring of the data.

There are various forms of contouring, NB! notice what method you choose in the plotting program.

Figure 8-8. Procedure for contouring described in Problem 8-1. (a) Equal-area projection of poles to 72 foliation measurements; (b) point count using grid and Schmidt counter; (c) the final contoured diagram with contours at 1, 3, 7, 11, and 15%. A Schmidt counting grid is available in Appendix 4.

Contours at 1, 3, 7, 11 and 15%

Common method, % = n(100)/N (N- total number of points)

Kamb contouring statistical significance of point concentration on equal area stereograms: binominal distribution with mean - μ = (NA) and standard deviation - σ = NA[(1-A)/NA]^{1/2} or σ /NA = [(1-A)/NA]^{1/2}

A is chosen so that if the population has no preferred orientation, the number of points (NA) expected to fall within the counting circle is 3σ of the number of points (n) that actually fall within the counting circle under random sampling of the population

Figure 8-12. The Kamb method of contouring described in Problem 8-4, for the same data as Problem 8-1. Contours drawn at 2σ , 4σ , 6σ , and 8σ .

N - number of points, A area of counting circle, if uniform distribution (NA) - expected number of points inside counting circle and [N x (1-A)] points outside the circle

Poles to bedding S-domain, Kvamshesten basin.

NB! the contouring is different with different methods!

Kamb	Cor	1tou

camb Contour: N = 70; first line = 1; last line = 70 Contour Int. = 2.0 sigma; Counting Area = 11.4% Expected Num. = 7.97 Signif. Level = 3.0 sigma

Poles to bedding S-domain, Kvamshesten basin.

NB! the contouring is different with different methods!

Kamb Contour: N = 70; first line = 1; last line = 70 Contour Int. = 2.0 sigma; Counting Area = 11.4% Expected Num. = 7.97 Signif. Level = 3.0 sigma

STEREOGRAM, STRUCTURAL NORDFJORD.

- A) Eclogite facies pyroxene lineation
- B) Contoured amphibolite facies foliations (Kamb contour, n=380)
- **C)** Amphibolite facies lineations

Plunging fold: Fold hinge 1) Determine pre-fold sedimentary lineation Lineation Lineation 2) Determine post fold lineation Fold limbs on western limb. a Tilt fold axis horizontal (and all other points follow small-circles) N72°E Rotate around the fold axis until pole to limb P1 is horizontal. All poles rotate along small circles The original sedimentary lineation 072/00 must have been horizontal since it was formed on a horizontal bed. d The original sedimentary lineation 072/00 or 252/00 Rotate P2 back to folded position around F and the lineation follows on small circle Rotate F back to EW and restore it to original h Plunge, all poles follow on small circles. Restore to original orientation of axis.

Figure 6-16. Procedure for unfolding and folding a plunging fold and determining the orientation of a prefolding lineation.

Lineation on western limb is found 231/09

Plunging fold: Fold hinge 1) Determine pre-fold sedimentary lineation Lineation Lineation 2) Determine post fold lineation Fold limbs on western limb. a Tilt fold axis horizontal (and all other points follow small-circles) N72°E Rotate around the fold axis until pole to limb P1 is horizontal. All poles rotate along small circles The original sedimentary lineation 072/00 must have been horizontal since it was formed on a horizontal bed. d The original sedimentary lineation 072/00 or 252/00 L Rotate P2 back to folded position around 252 F and the lineation follows on small circle Rotate F back to EW and restore it to original h Plunge, all poles follow on small circles.

Figure 6-16. Procedure for unfolding and folding a plunging fold and determining the orientation of a prefolding lineation.

Restore to original orientation of axis. Lineation on western limb is found 231/09

Fold geometries and the stereographic projections of the folded surface

FOLDED LINEATIONS MAY BE USEFUL HERE TO DETERMINE FOLD MECHANISMS

Figure 8-26. Intersection lineation produced by a later planar foliation (S_3) cutting an earlier folded foliation (S_1) . (Adapted from Turner and Weiss, 1963.)

Figure 8-27. Flexural-slip folding of a preexisting lineation. Lineation points lie on a small circle centered on the fold axis. Lineation that was perpendicular to the fold axis (open circles on equal-area plot) lies on a great circle after folding. (Adapted from Ramsay, 1967.)

Figure 8-28. Effect of buckling of individual layers during flexuralslip folding. The small-circle arc pattern of lineations is modified in the outer and inner arcs of the fold. (Adapted from Ramsay, 1967.)

FAULTS AND LINEATIONS STRESS INVERSION FROM FAULT AND SLICKENSIDE MEASUREMENTS

Figure 12-15. Ideal orientations of fault planes with respect to principal stresses. (a) Block diagram showing the orientation of principal stresses with respect to two conjugate strike-slip faults; (b) diagram showing principal stresses with respect to slip lineations on a single fault plane.

"Andersonian faulting", Mohr-Colomb fracture "law"

Orthorhombic faults!

Fig. 11. Stereographic (Schmidt-net) representations of synsedimentary intrabasinal faults in the study area. (a) Present orientations of oblique faults that cut the basal unconformity. n = 10. (b) Present orientation of main faults of the Selsvatn fault system. (c) Faults in (a) unfolded and back-roatated with bedding. n = 10. (d) Data in (b) unfolded and back-rotated. The synsedimentary orientations of the four main faults reveal that the Selsvatn fault system originated as an orthorhombic fault system characterized by positive elongation in east-west and north-south directions. See discussion in text.

STRESS AXES LOCATED WITH THE ASSUMPTION OF PERFECT MOHR-COLOMB FRACTURING

Figure 12-17. Equal-area plot showing estimation of principal stresses from a single set of slip lineations.

Figure 12-16. Equal-area plot showing estimation of principal stresses from data on two faults of a conjugate system. L_a and L_b are slip-lineation attitudes.

STRESS AXES LOCATED WITH THE ASSUMPTION OF PERFECT MOHR-COLOMB FRACTURING

Figure 12-17. Equal-area plot showing estimation of principal stresses from a single set of slip lineations.

 σ 1 bisects acute angle between fault 1 and 2 Fault 1 and 2 intersect at σ^2 Ν -fault A σ a fault B σ

Figure 12-16. Equal-area plot showing estimation of principal stresses from data on two faults of a conjugate system. L_a and L_b are slip-lineation attitudes.

SLIP-LINEAR PLOT are particularly useful for ananalyses of large fault-slip lineation data sets. Slip-lines points away from σ_1 towards σ_3 and with low concentration around σ_2

(c)

Figure 12-18. M-plane method of calculating principal stresses from a complex fault array. (a) M-plane great-circle traces for members of a complex array. Circles show the common intersection points (from Aleksandrowski, 1985); (b) block diagram showing how the common intersection of three M-planes may be related to a principal stress; (c) slip linear plot for the faults of plot 'a'. Note that the slip linears point toward σ_3 and and away from σ_1 (from Aleksandrowski, 1985).

000	Edit/Enter Fault Da	ta
Fault Plane	No.: 1	
Strike =	Dip = Dip Quadrant =	Geologist:
Striae/Slickensides: • Trend = Rake =	Plunge = Sense-of-slip = [[R = right lateral; L = left lateral; T = thrust; N = normal]	Location:
Quality Rating: 🔘	A 🔘 B 🔘 C 💿 no rating	
Weighting Informatic	on: same fault as previous one = Displace. (m) =	Lithologies: Upper Block: Lower Block:
Gouge thick. (m)	= Trace length (m)	Bedding: Strike = Dip Dip Quad
Cancel	!	Delete Finished Enter

VARIOUS WAYS TO RECORD THE MEASUREMENTS IN DIFFERENT PROGRAMS

	Faults							
	Azimuth	Dip	Trend	Plunge	Sense			
1	263	57	185	30	4	Previous		
2	229	72	174	14	4			
3	260	74	192	26	4			
4	257	76	190	17	4			
5	260	68	157	38	4	6		
6	0.00	0.00	0.00	0.00	0.00	1 = reverse		
7	0.00	0.00	0.00	0.00	0.00	2 = normal 2 = doxtral		
8	0.00	0.00	0.00	0.00	0.00	4 = sinistral		
9	0.00	0.00	0.00	0.00	0.00	5 or 0 = ?		
10	0.00	0.00	0.00	0.00	0.00			
11	0.00	0.00	0.00	0.00	0.00			
12	0.00	0.00	0.00	0.00	0.00			
13	0.00	0.00	0.00	0.00	0.00			
14	0.00	0.00	0.00	0.00	0.00			
15	0.00	0.00	0.00	0.00	0.00	Save		
16	0.00	0.00	0.00	0.00	0.00	Exit Next		

FAULTS WITH SLICKENSIDE AND RECORDED RELATIVE MOVEMENT FROM ONE STATION

SAME DATA AS BEFORE, STRESS-AXES INVERSION, RIGHT HAND SIDE ROTATED

Field exercises Tuesday 04/09

Departure from IF w/IF car at 09.00 am

Station 1 at Nærsnes (large-scale fault between gneisses and sediments) (ca 2-3 hours) Station 2 a and b at Fornebo (small-scale fractures, veins and faults with lineations) (ca 2-3 hours)

Bring food/clothes/notebook/compass/etc.

Return to Blindern ca 4 pm.

10/09 Report in (presentation of measurements, interpretation and descriptions)