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Before we start:
Questions over the reading?

Problems installing Clawpack?

The problem set
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Our syllabus - still subject to change
date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions and accuracy 7 & 8

24 Sep 2009 Thursday 13.15-15.00 nonlinear conservation laws, traffic flow 11

28 Sep 2009 Monday 13.15-15.00 finite volume methods for nonlinear equations 12

5 Oct 2009 Monday 13.15-15.00 nonlinear systems, shallow-water equations 13

12 Oct 2009 Monday 13.15-15.00 gas dynamics, Euler equation 14

19 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems 15

26 Oct 2009 Monday 13.15-15.00 multidimensional hyperbolic problems & methods 18 & 19

2 Nov 2009 Monday 13.15-15.00 multidimensional scalar equations & systems  20 & 21

5 Nov 2009 Thursday 13.15-15.00 applications: tsunamis, pockmarks, venting, impactsapplications: tsunamis, pockmarks, venting, impacts

16 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

23 Nov 2009 Monday 13.15-15.00 review

30 Nov 2009 Monday 13.15-15.00 discuss progress and problems on projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE

Any problems with the schedule?

2

Monday, 24 August 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Review: conservation law and advection

The fundamental conservation law in one spatial dimension, expressed in 
differential form, is:

The advection equation, the simplest hyperbolic differential equation,

is a conservation law with the flux function                               . Its solution is 

and this function is constant along rays in space-time (characteristics) with 

x–ut = constant.

qt (x,t) + f (q(x,t))x = 0.

  
q

t
(x,t) + uq

x
(x,t) = 0,

f (x,t) = uq(x,t)

q(x,t) = q(x ! ut,0),

x
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!t
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Review: Linear acoustics in a stationary gas

The acoustic equations are:

Expressed in linear form, with matrix notation:

This can be resolved into the eigensystem 

with eigenvalues                                       and eigenvectors

The eigenvalues are the wave speeds, and the eigenvectors express 

relations between the components of the solution q.
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FYS-GEO4500
The Riemann Problem 
(Chapter 3 in Leveque)
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Resolution to the eigensystem is the key to 
the solution 

Our linear hyperbolic system of equations is written as

Since it is hyperbolic, we can resolve it into eigenvalues and eigenvectors 

The next step will be to show that we can form a series of new equations

that are equivalent to the original system, and from which we can assemble 

the solution vector q. 

Notice that these new equations are simply advection equations!

  
q

t
+ Aq

x
= 0.

Ar
p
= !

p
r
p
 for p = 1,2,…,m.

w
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p
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p
w
x

p
= 0 for p = 1,2,…,m
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Superposition of waves

But if we are to assemble the solution vector q from the p eigenvalue 
advection equations, we have to believe that we can superimpose the waves 
resulting from all of them.

This has to be proven eventually, but first a demonstration in a simple case.

The solution to the acoustic equations in one dimension,                                     

 

is a pair of sound waves, propagating away from the source with velocity 

p
t
(x,t) + Ku

x
(x,t) = 0

u
t
(x,t) + 1

!
p
x
(x,t) = 0,

±c = ±
K

!
.
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?
Demonstration of superposition

Clawpack with the linear acoustic equations

modified acousimple example from Chapter 3

second-order Lax-Wendroff with Superbee limiter

in $CLAW/book/chap3/acousimple
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Boundary Conditions for a System

The Initial-Boundary Value Problem for the advection equation required us to 
set inflow boundary conditions, either at left or right, depending on the sign of 
the velocity.

For a system with multiple characteristics, some boundary conditions must be 
set at left and some at right. In the decoupled advection equations

boundary conditions on wp (x,t) are specified on the left if !p > 0, and on the 

right if !p < 0.

In fact, however, boundary conditions are usually set on the physical 
variables and not on the characteristics. We’ll see how this is done later.

w
t

p
+ !

p
w
x

p
= 0,
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The Riemann problem

The Riemann problem is simply the hyperbolic equation being studied, plus 
special boundary data representing a single jump discontinuity:

This is fundamental for understanding the theory of hyperbolic equations and 
fundamental for finite volume solutions of these equations.

In developing numerical solutions, we will solve the Riemann problem  
repeatedly, at every cell border, and use these problems to advance the 
overall solution to the next time step. 

Over the course of a full simulation, the Riemann problem may be solved 
millions or hundreds of millions of times so it is important to do it correctly 
and efficiently. 

q(x,0) =
ql      if x < 0

qr      if x > 0

!
"
#
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The Riemann problem for the advection equation

For the advection equation,                       , with initial discontinuous data 

The solution is 

The discontinuity simply propagates with speed u. The discontinuity does 
not diffuse or disperse. 

  
q

t
+ uq

x
= 0

q(x,0) =
ql      if x < 0

qr      if x > 0

!
"
#
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"
#
$

ql

qr

x

q

ql

qr

x

q

11

Monday, 24 August 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

The Riemann problem for the advection equation

The characteristic tracks the position x of the discontinuity with time t

                             The characteristic:

q(x,0) =
ql      if x < 0

qr      if x > 0

!
"
#

q(x,T ) = q(x ! uT ,0) =
ql      if x < uT

qr      if x > uT

"
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$
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q
t=0
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Remember the discontinuity!

Strictly speaking, the Riemann solution is not a solution of the partial 
differential equation                         because the derivatives are infinite at the 
jump.

But it is a solution of the integral form:

Proof: integrate in time to get  

Both sides are zero if the interval does not bridge the jump; both sides are 

equal to u(ql–qr)(t2–t1) if it does.

  
q

t
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x
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We can apply the Riemann problem to 
systems of equations as well…

But first we must do some preliminary work.

You’ll see why the advection equation is important!
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Characteristics for a system of equations

For the linear m " m hyperbolic system of equations                                , the 

Jacobian is 

It has m eigenvectors and eigenvalues found from                        .

The matrix of eigenvectors                                   has an inverse 

So we can form the matrix 

qt + !f (q)qx = 0
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Characteristics for a system of equations

With the original Jacobian                                      now in diagonal form, 

and defining

we can rewrite the system                            as                               .

w(x,t) ! R
"1
q(x,t),    so   Rw(x,t) = q(x,t),

qt + Aqx = 0

Rwt + ARwx = 0

R
!1
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Characteristics for a system of equations

Since the matrix # is diagonal, the system becomes m independent 

advection equations:

The system then has m distinct characteristic waves travelling at the speeds 

given by the eigenvalues !p. The system is strictly hyperbolic because it has 

a full set of distinct eigenvalues.

Note we have so far assumed the matrix              is constant. We’ll 
generalise later.

w
t

p
+ !

p
w
x

p
= 0   for p = 1,...,m

A = !f
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Assembling the solution

Starting with the constant-coefficient system                          , we have found 
we can write it as 

where # is the matrix of eigenvalues. The vector w (sometimes called the 

vector of characteristic variables) is found from  

where                                 is the matrix of right eigenvectors.  

Hence the problem is resolved into the m independent advection equations

each of which has a solution of the form

qt + Aqx = 0

w(x,t) = R
!1
q(x,t),

w
t
+ !w

x
= 0,

w
t

p
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#
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w
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p
(x ! "

p
t,0).
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Assembling the solution

To get the solution to the full Riemann problem, we simply superimpose the 
waves 

 and the full solution is therefore

q(x,t) = Rw(x,t) = w
p
(x,t)r

p

p=1

m

! .

w
p
(x,t) = w

p
(x ! "

p
t,0),
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p-characteristics, superposition of waves

The solution to the Riemann problem for a linear m " m system of equations 

is

 a superposition of waves, each of strength wp and moving at speed !p.

The functions                 are called characteristic variables, whose initial 

values                  are simply advected at speed !p along the curves 

Each such curve is called a p-characteristic. 

Conventionally the eigenvalues and their characteristics are ordered in 

increasing value of the speed !p and labelled with the index p.

q(x,t) = Rw(x,t) = w
p
(x,t)r

p

p=1

m

! ,

w
p
(x,t)

w
p
(x,0)

X(t) = x
0
+ !

p
t.
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Every point in the x–t plane is crossed by all the characteristics, if the 
problem is strictly hyperbolic. 

In this diagram for a 2x2 system, the red lines are characteristics of the p=1 

family, the blue of the p=2 family. 

So the exact solution, everywhere, consists of a superposition of right states 
moving to the left along the red lines and left states moving to the right along 
the blue lines. The solution is defined in all of space-time by simply adding 

the appropriate right and left states. This can be extended to any m " m 

system, and to multiple dimensions as well.

It’s easy! Now we’ll go over it again, slightly differently…

The characteristics cover space-time

x

t 1-characteristics

2-characteristics
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The Riemann problem for a system of equations

The Riemann problem is simply the hyperbolic equation being studied, plus 
special boundary data, piecewise constant, with a single jump discontinuity:

This discontinuity will propagate along the characteristic curves. But note 

that q will now be considered to be a vector.

We can solve the Riemann problem for a linear m " m system of equations 

using the mathematics we’ve already developed. 

For a nonlinear system, the solution will have a similar structure, but we 
defer that discussion for later.

We start by writing                            and 

q(x,0) =
ql      if x < 0

qr      if x > 0

!
"
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ql = wl

p
r
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! q
r
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m

!
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Right and Left Eigenvectors

We construct the matrix R from the eigenvectors of the Jacobian of the PDE 
system. These are the right eigenvectors of the system:

The rows of the matrix inverse of R form the left eigenvectors:

We can therefore rewrite our w vector as

This vector satisfies the advection equation:                               with # the 

diagonal matrix of eigenvalues.

R = r
1
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(x,t) = l

p
q(x,t)
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The solution to the system of equations 

We obtained the m advection equations                                                            

whose solutions are                                                                             .

Now we combine all the wp into the vector w and write the solution to the 
original problem:

The solution is a superposition of m waves, each moving at its own 
characteristic speed.

w
t

p
+ !

p
w
x

p
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w
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p
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t,0)
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!
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Solving the Riemann problem

Then each advection equation has initial (Riemann) data:

And the discontinuity in each component propagates with its own speed !p:

The solution 

is then a mixture of left and right states, the mixture changing with time and 

space because the speeds !p are different. 

w
p
(x,0) =

wl

p
     if x < 0

wr

p
     if x > 0

!
"
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p
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q(x,t) = w
p
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p
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m

!
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a b

t

x0

x/t

Solving the Riemann problem

We assume that the eigenvalues !p have been ordered with increasing 

(positive) speeds at higher index p, and separate the sum into two pieces 

according as !p is less than or greater than x/t.

q(x,t) = wr

p
r
p

p:!
p
<x/t

" + wl

p
r
p

p:!
p
>x/t

"

In this two-equation system, the solution at the 
black dot is the sum of: 

     the left-going (blue, !2> x/t ) wave from a 

and 

     the right-going (red, !1< x/t ) wave from b.
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Look at it from the origin:

Because there are two waves, a 
simple discontinuity at the origin 
divides to produce two new 
discontinuities.

The left and right states persist 
on the left and right sides of the 
characteristics from the origin 
and a new intermediate state 
develops between them.

The state at the black dot is the 
intermediate state, in common 
with other points in the region.

t

x0

(x= !1 t) (x= !2 t)

ql
qm

qr

t

x0

x/t
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Riemann diagram for a two-equation system

For a linear two-equation Riemann problem with left and right states ql and 

qr, the discontinuity at the origin divides. Two waves (characteristics) 

propagate away from the origin with constant speeds !1 and !2. 

As the waves separate, a new constant state develops in the middle with 

At any later time, there are two discontinuities, each smaller than the original 
one.

qm = wr

1
r
1
+ wl

2
r
2

t

x0

(x= !1 t) (x= !2 t)

ql qm qr
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Similarity solutions

The Riemann problem for a linear system results in self-similar solutions: the 

solution depends on      and not on x or t separately. The solution is thus 

constant within the wedges defined by the characteristics.

And remember:

For any hyperbolic system, the domain of dependence is bounded.

t

x0

x

t

Riemann diagram valid for a 
constant-coefficient linear 3 
equation system
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Constructing the solution for a 3 " 3 system

The red dashed lines connect the points that influence the point (X,T); the 
blue solid lines connect the points affected by the origin.

In the wedge where point (X,T) sits, the solution can be denoted rll, short 

for

and so on for the other wedges. Across each characteristic, the solution has 
a jump discontinuity, and the solution is constant within each wedge.

t

x0

(X,T)

(X– !1 T)(X– !2 T)(X– !3 T)

(x= !1 t) (x= !2 t) (x= !3 t)

lll

rll rrl

rrr

q(X,T ) = wr

1
r
1
+ wl

2
r
2
+ wl

3
r
3
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Decomposing the jump

Generalise to an m " m system.

Along the red dashed line (i.e. at any time after t=0 ), the original jump 
discontinuity has been broken up into a linear combination of the 

eigenvectors of the system matrix A.

                                                                      where 

We solve for the jump coefficients " by:

The solution for q(x,t) can then be written 

                                                                        where 
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1
r
1
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2
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2
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!
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p
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p
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The wave notation

A notation that will be useful later on is to denote the jump in q across the pth 

wave in the Riemann solution as Wp where

These will be called waves.

Then the solution to the Riemann problem can be written

where H is the Heaviside function 

 W
p
= !

p
r
p

 

q(x,t) = ql + H (x ! "
p
t)W

p

p=1

m

#

H (x) =
0     if x ! 0

1     if x > 0

"
#
$
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Phase plane for the two-equation system

In a two-equation system, one can 
construct a phase plane of the components 

of q=(q1,q2) (below). The initial data are 
placed in this plane. The solution vector q 
can move in this plane only parallel to the 

eigenvectors r1 and r2. Hence the middle 

state qm can be found by construction. 

Since !1 < !2 the move from ql to qm must 

go parallel to r1.

t

x0

(x= !1 t) (x= !2 t)

ql qm qr

q1

q2

r2
r1

ql qm

qr qm

q1

q2

r2
r1

qr

ql
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Some examples: Burger’s Equation

The simplest nonlinear partial differential equation is Burger’s equation:

As the second form explicitly shows, it is in conservation form, and it is 
everywhere hyperbolic, with variable eigenvalue u, though nonlinear.

This is the simplest differential equation which demonstrates the 
development of discontinuities and so proves the differential form 
inadequate!

u
t
+
1

2
u
2!

"#
$
%&
x

= 0

u
t
+ uu

x
= 0.
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?
Demonstration of Burger’s Equation

Clawpack with Burger’s equation

modified example from Chapter 11

second-order Lax-Wendroff with VanLeer limiter

in $CLAW/book/chap11/burgers/_plots/_Plotindex.html
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Example: the Euler equations of gas dynamics

Recall the equations of continuity and momentum for the motion of a fluid:

To these we add an equation for the conservation of energy E:

And we must supplement with an equation of state,                      , but we 
won’t worry about the details for now. 

Here it is sufficient to recognise that this system of 3 equations gives rise to 
3 distinct characteristic waves. It is a nonlinear system, however. 

We’ll see how this works in a one-dimensional shock tube.

!
t
+ (!u)

x
= 0

!u( )
t
+ !u2 + p( )

x
= 0

E
t
+ u(E + p)( )

x
= 0

p = P(!,E)
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The shock tube:

The shock tube is a closed tube filled with gas, separated by a membrane 
into sections with different densities.  

The membrane is suddenly removed, and the gas is now free to move from 
one section to the other.

What happens?

How many waves are there, and which way do they propagate?

membrane
ρh ρl
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?
Demonstration of shock tube

Clawpack with the Euler equations

modified example from Chapter 15

second-order Lax-Wendroff with Superbee limiter

in $CLAW/book/myConversions/chap15/shocktube/_plots/_Plotindex.html
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The shock tube

A closed tube filled with gas, separated by 
a membrane into sections with different 
densities. 

The membrane is suddenly removed, and 
the gas starts moving from the high-density 
region into the lower density region.

Three waves develop: a shock wave, a 
contact discontinuity, and a rarefaction 
wave (or fan). The first two travel to the 
right, the third to the left.

At the shock, velocity, pressure and 
density are all discontinuous. At the 
contact, only density is discontinuous. In 
the rarefaction fan, all variables are 
continuous, but their derivatives are not.

The third wave is not a sharp discontinuity 
because of the problem’s nonlinearity. 

membrane
ρh ρl

density

ρp

pressure

x

u

velocity waves

t

x

shock

contact

discontinuity

rarefaction

fan

ρh

ρl
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Review of the Riemann problem

The Riemann problem is the original system of equations,                        
plus the special initial condition consisting of a jump discontinuity:

In the linear hyperbolic system, we have                                 and the 

Jacobian                                  can be diagonalised into the form 

with the eigenvalues !p , since the system is hyperbolic.

q(x,0) =
ql      if x < 0

qr      if x > 0

!
"
#

qt + f (q)x = 0

qt + !f (q)qx = 0

 

!f (q) =

"f 1

"q1
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"f 1
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" # "

"f m

"q1
!

"f m

"qm

#

$

%
%
%
%
%
%
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Review of the Riemann problem

The solution vector is resolved or projected onto the eigenvectors rp , 

and the system is replaced by the equivalent m advection equations

with the solution                                               . The initial left-right 
discontinuity is split among the eigenvectors

q(x,t) = w
p
(x,t)r

p

p=1

m

!

w
t

p
+ !

p
w
x

p
= 0,

w
p
(x,t) = w

p
(x ! "

p
t,0)

ql ! qr = "
p
r
p

p=1

m

# = wl

p
! wr

p( )r p
p=1

m

# .

t

x0

(X,T)

(X– !1 T)(X– !2 T)(X– !3 T)

(x= !1 t) (x= !2 t) (x= !3 t)
The solution at a later time is a mixture of 
these left and right states, depending on 

whether x is to the left or the right of the 
corresponding characteristic.
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Review of the Riemann problem

If we define the waves                                                then the solution to the 
Riemann problem can be written 

where H is the Heaviside function  

 W
p
! "

p
r
p
= (wl

p
# wr

p
)

H (x) =
0     if x ! 0

1     if x > 0

"
#
$

.

 

q(x,t) = ql + H (x ! "
p
t)W

p

p=1

m

#

t

x0

The Riemann solution for a 
linear system is a similarity 

solution: it depends on x/t 
and not on x or t separately. 
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Assignment for next time

Read all of Chapter 3.

Pay careful attention to the examples 3.1, 3.2, 3.3, and 3.4.

Work problems 3.1, 3.4, and 3.7. Hand them in to me by this Friday (the 
28th)
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Next: Finite Volume 
Methods for Linear Systems

(Ch 4)
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