
FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

FYS-GEO 4500               28 Aug 2009

Before we start:
Questions over the reading?
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Our syllabus - still subject to change
date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions and accuracy 7 & 8

24 Sep 2009 Thursday 13.15-15.00 nonlinear conservation laws, traffic flow 9 & 11

29 Sep 2009 Tuesday 13.15-15.00 finite volume methods for nonlinear equations 12

5 Oct 2009 Monday 13.15-15.00 nonlinear systems, shallow-water equations 13

12 Oct 2009 Monday 13.15-15.00 gas dynamics, Euler equation 14

19 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems 15

26 Oct 2009 Monday 13.15-15.00 multidimensional hyperbolic problems & methods 18 & 19

2 Nov 2009 Monday 13.15-15.00 multidimensional scalar equations & systems  20 & 21

5 Nov 2009 Thursday 13.15-15.00 applications: tsunamis, pockmarks, venting, impactsapplications: tsunamis, pockmarks, venting, impacts

16 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

23 Nov 2009 Monday 13.15-15.00 review

30 Nov 2009 Monday 13.15-15.00 discuss progress and problems on projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE

Any problems with the schedule?
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Review of the Riemann problem

The Riemann problem is the original system of equations,                        
plus the special initial condition consisting of a jump discontinuity:

In the linear hyperbolic system, we have                                 and the 

Jacobian                                  can be diagonalised into the form 

with the eigenvalues !p , since the system is hyperbolic.
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Review of the Riemann problem

The solution vector is resolved or projected onto the eigenvectors rp , 

and the system is replaced by the equivalent m advection equations

with the solution                                               . The initial left-right 
discontinuity is split among the eigenvectors
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The solution at a later time is a mixture of 
these left and right states, depending on 

whether x is to the left or the right of the 

corresponding characteristic.
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Review of the Riemann problem

If we define the waves                                                then the solution to the 
Riemann problem can be written 

where H is the Heaviside function  
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The Riemann solution for a 
linear system is a similarity 

solution: it depends on x/t 

and not on x or t separately. 
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FYS-GEO4500
Finite Volume Methods for 

Linear Systems 
(Chapter 4 in Leveque)
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Next question: How do we get the fluxes?

The equation we want to solve is                               and we think we know 
how to do it, from one time step to the next, by solving Riemann problems at 
each interface. 

If it’s a linear system we can write                                 and resolve the 
(constant) Jacobian into its eigenvalues and eigenvectors. But we still need 
a way to determine the appropriate numerical  flux that we will use to 
advance the numerical solution from one time step to the next, using 
something like:

We’ll put aside the Riemann problem for the moment, we’ll need it in an hour 
or so.

qt + f (q)x = 0
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Explicit versus Implicit

For hyperbolic equations, the domain of dependence is bounded, since 
information propagates with a finite speed.

We can therefore use explicit methods, in which the state at the later time is 
calculated in terms of the state at the present time. 

For elliptic and parabolic equations, implicit methods, solving an equation 
involving both the later and present times, are required.
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General formulation for conservation laws

In finite volume methods, we divide the problem domain (here one-dimensional) 
into a grid of cells, and form an approximation of the solution value within each cell:

                                                               , where

The integral form of the conservation law is 

Then by integrating over time, we get 
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Getting the fluxes

If we can find a way to formulate                                                    in terms of 

the       , then we can write:

This scheme is in conservation form. The fluxes cancel except at the boundaries: 

In hyperbolic equations, information propagates at finite speed, so we should 

formulate the           from the values      ,         in neighbouring cells. Then the 

future          will depend on the three values         ,       , and         . This is known 

as a three-point stencil.
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Convergence: consistency and stability

The key to finite volume methods is how to approximate the time-integral of 
the flux from the present time to the future time.

Everything depends now on how we formulate the flux function           , so we 
need to define criteria for judging the choice.

The method must be convergent, i.e. the numerical solution must  approach 
the true solution as the cell size and time step decrease (                    ).

The method must be consistent with the system of equations.

The method must be stable, so that small errors don’t grow rapidly.
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The Courant-Friedrich-Lewy stability limit 

We define the CFL number                   and require that            for stability. 

For a hyperbolic system of equations, we can have up to m different wave 

speeds given by !1, !2,..., !p, so the Courant number must be 
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dependence
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The numerical stencil must contain the true 
domain of influence. This is a necessary 
condition for stability.

Since influence is propagated by the 
characteristic waves, the true domain of 
influence depends on the wave speeds. 

For a symmetric wave equation there are two 
waves, but only a single characteristic speed. 
For acoustics in a stationary medium, the 

characteristic speed is the speed of sound c. 
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The Courant-Friedrich-Lewy stability limit

Unstable, because the domain 
of influence is larger than the 
numerical stencil.

At the limit of stability the domain 
of influence corresponds exactly 
to the numerical stencil.

Within the limit of stability the 
stencil completely contains the 
domain of influence. 
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The domain of influence for the symmetric wave 

equation, wave speed c, three-point stencil.
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Causal domains in space-time

The domains of influence and dependence depend on the 
characteristics of the equations.

The Courant-Friedrich-Lewy condition for stability states 
that the numerical domain of dependence must completely 
contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is 
bounded. This is not true for elliptic or parabolic systems.

Domain of 
influence

Domain of 
dependence

x

t

!t

!x
The three-point stencil with this 
relation between the space and 
time intervals is okay because 
the physical domain of 
dependence lies 
within the 
numerical 
stencil.
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Formulation of the flux function and update rule

Here are a few historical choices for centred methods:
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Formulation of the flux function and update rule
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But centred methods do not make the best 
use of the structure of hyperbolic equations

In hyperbolic equations, the information propagates along characteristics.

Since we know where the information is coming from, we should make use 
of that knowledge to formulate the flux function.

For the one-dimensional advection equation, there is only one characteristic, 

the fluid velocity u. The information comes from the left if u is positive, from 

the right if u is negative.

So in this simple case, we can use a one-sided upwind method, where we 
decide which side to use from the flow direction.

For systems with characteristics travelling in both directions, we must decide 
which information to transfer from which side.
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A simple upwind method for advection

In the advection problem, the flux is in one direction,                        and the 
update is

If you don’t know a priori which direction the flux is, you can use: 
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We have just now simply prototyped 

the Godunov REA method. 

Reconstruct a piece-
wise polynomial function 
from cell averages.

reconstruct

Average the later-time 
function back to the 
cells .

average

Evolve this function to a 
later-time by solving 
Riemann problems.

evolve
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How does this work?

An illustration of the upwind method for CFL number                               .

The cell averages        are advected by the velocity u from time n to n+1,to 

produce an intermediate value     .  Because the shift is less than a full cell, 

new cell averages must be computed to obtain the new quantities          .  

Each cell edge has a discontinuity: we can solve for the new cell value either 

directly (as we have done), or with the help of the Riemann technique. 
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First-order upwind for advection problem

Reconstruct a function from the cell averages: piecewise constant in this case

Evolve the solution: advect it with the characteristic speed
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Then compute the new cell averages

The cell average is changed by

So the upwind method is, as before, simply 
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To generalise, let’s write it in wave-propagation form

We write the change in the cell average as

Where                                     is the wave strength and s is the wave speed. 

At this point, this is only a change in notation, to prepare for the use of the 

method with systems of equations. But this is the same         we have 

already encountered in the Riemann problem.

In the advection equation there is (of course) only one upwind direction. 

In a system of equations, waves may travel in any direction. We have to 

handle this somehow.

That’s where the Riemann solver comes in.
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Generalising the upwind method to systems

The general upwind method for s of either sign for a single wave is

and as before, we define

Now recall the Riemann solution for a many-wave problem:

We just have to put these together.
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Godunov’s method for linear systems
The upwind scheme is representative of REA algorithms, first 
invented by S.K. Godunov in 1959. REA stands for:

1. Reconstruct a piece-wise constant function from the cell 
averages.

2. Evolve the hyperbolic equation with this function to obtain a 
later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new cell 
averages.
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This is done at each time step. The method can be improved by using other 
interpolation functions, polynomials for example, to improve the accuracy. 

Physics is needed in the second step (evolution stage), as all the characteristics must 
be known and used in the solution. The first and third steps (projection stages) are 
entirely numerical (and problem independent). 
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Reconstruct     -     Evolve     -     Average

Q
i

n+1

Q
i

n

Q
i+1

n

Q
i!1

n

x
i+1/2

x
i!1/2

Q
i+1

n+1

Q
i!1

n+1

characteristics

u

 
!q
n

 
!q
n
(x,t

n+1
)

 

Qi

n+1
= !q

n
(x,tn+1)

xi!1/2

xi+1/2

" dx

q
n
(x,tn ) =Qi

n
 for x in cell i

Friday, 28 August 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Care must be taken with interacting 
characteristics

In problems where the characteristics travel in both directions, solving the 
Riemann problem independently at each interface requires that the 
characteristics from neighbouring cell boundaries do not intersect. 

This apparently gives a considerably stricter CFL limit:                          . 

But in fact there are ways of solving the Riemann problem (cooperatively 
among adjacent cells) that relax this limit.
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But if we replace               by               

we have a tremendous advantage, 

since the solution to the Riemann 

problem is a similarity solution, 

constant along rays from the interface 

(yellow, orange dashed lines).

Numerical flux function in Godunov’s method

Recall the formula for the numerical flux:

The numerical flux should be the average of the true flux over the time 
step, but we don’t know how the true flux varies.
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Godunov’s method for a general system

Given a set of cell quantities       at time n:

1. Solve the Riemann problem at          to obtain 

2. Define the flux:

3. Apply the flux differencing formula:

This will work for any general system of conservation laws. Only the 
formulation of the Riemann problem itself changes with the system. 
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The wave propagation implementation of 
Godunov’s method

For a linear m ! m system                        , the Riemann problem consists of 

m waves Wp  propagating with constant speed  !p.

Then 
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The wave propagation implementation of 
Godunov’s method

This is analogous to the basic upwind scheme.

A three-equation system has three characteristics. At timestep n, there is a 

discontinuity at the cell edge between        and        . As we evolve the 

Riemann solution forward to form                   , this discontinuity splits into 

three pieces.

We use our knowledge of the splitting to compute the new cell averages. 
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The waves split the discontinuity

The wave             changes the cell average by                          . Taking all 

three waves, keeping track of which direction the information is coming from, 

we have:                                                                                        .

Defining                                                               (as we did for the upwind 

advection case), we generalise to the m ! m case:
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The waves split the discontinuity

The wave             changes the cell average by                          . Taking all 

three waves, keeping track of which direction the information is coming from, 

we have:                                                                                        .

Defining                                                               (as we did for the upwind 

advection case), we generalise to the m ! m case:
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Introduce the notion of fluctuations

If                                                   is the effect of all right-going waves, and 

                                                     is the effect of  all left-going waves from xi-1/2, 

then we can write the update as 

Notice that we take the right-going waves from the left interface and the left-
going waves from the right interface!

The symbols                     will be referred to as fluctuations. 

This notation will be useful for nonlinear systems.
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What are these fluctuations?

The symbols                     are the fluctuations, and we will use these heavily 
when we get to nonlinear systems.

But for linear systems, these are easily resolved into                             etc. 

Here’s how…
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To resolve the fluctuations in a linear system:

For the linear m ! m system                       ,  remember we had

Now we separate this into matrices of positive and negative eigenvalues: 

and we define                                             so                                         .

Then  

qt + Aqx = 0
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The fluctuations for a linear system

Recall the solution in terms of waves for the m ! m case

and remember that by our definition of the waves for a linear system: 

so, keeping careful track of where the left-going and right-going waves come 
from, we have 

in analogy with
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Flux-difference splitting

For the linear system,                               and since 

then                                                     . From this we get 

and then the update is

or, written in terms of the flux, 

with 
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Flux-difference splitting

For the more general conservation law,                               we define 

These two are equivalent, the same flux through the same cell border, 

representing either a left-going flux that updates        or a right-going 

fluctuation that updates      .

If we subtract one from the other, we have  

directly showing the difference in fluxes split into right- and left-going 
fluctuations.

qt + f (q)x = 0
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Generalisation to nonlinear problems

For the nonlinear Riemann problem, the solution is still a similarity solution:

A system of m equations consists of mw waves propagating at constant 

speed.

Often                but not always.

Some waves may be rarefaction waves instead of discontinuities (as in the 
shock tube problem). 

The numerical method is based on an approximate Riemann solution with 
the decomposition 

where              is a wave propagating at some speed          . 

We’ll get much more of this later ...
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Review of Finite Volume Methods

We need a scheme for obtaining the fluxes from 
one cell to the next in terms of the available 
solution values at the present time step.

The conservation law tells us how to do this, so 
we must ensure that the difference formula we 
produce is in conservation form.

In hyperbolic problems, the domain of influence 
is limited; we use this limitation to decide where 
to take information from.
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Review of the upwind method

Reconstruct     -     Evolve     -     Average
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Review: The wave propagation 
implementation of Godunov’s method

A three-equation system has three characteristics. At timestep n, there is a 

discontinuity at the cell edge between        and        . As we evolve the 

Riemann solution forward to form                   , this discontinuity splits into 

three pieces.

We use our knowledge of the splitting to compute the new cell averages. 
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Review: splitting the discontinuity

The wave             changes the cell average by                          . The three 

waves together give us:  

                                                           .

Defining                                                              , we generalise to m waves:

 
Q
i

n+1
=Q

i

n
!
"t

"x
#
2
W

i!1/2

2
+ #

3
W

i!1/2

3
+ #

1
W

i+1/2

1( )

 
!
"
2
#t

#x
W

i!1/2

2

 Wi!1/2
2

!
+
= max(!,0),    !

"
= min(!,0)

 

Qi

n+1
=Qi

n !
"t

"x
(# p

)
+
Wi!1/2

p

p=1

m

$ + (# p
)
!
Wi+1/2

p

p=1

m

$
%

&
'

(

)
*

 

Qi !Qi!1 = " i!1/2

p
r
p

p=1

m

# $ Wi!1/2
p

p=1

m

#

Q
i

n
Q
i+1

n

 Wi!1/2
2

 Wi!1/2
3

 Wi+1/2
1

!
2
"t

!
3
"t !

1
"t

Q
i!1

n

 Wi!1/2
1

Friday, 28 August 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Review: Fluctuations

If                                                   is the effect of all right-going waves, and 

                                                     is the effect of  all left-going waves from xi-1/2, 

then we can write the update as 

We take the right-going waves from the left interface and the left-going waves 
from the right interface.

The symbols                     are the fluctuations. 
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Next we examine high-resolution implementations 

of the Godunov REA method. 

Reconstruct a piece-
wise polynomial function 
from cell averages.

reconstruct

Average the later-time 
function back to the 
cells .

average

Evolve this function to a 
later-time by solving 
Riemann problems.

evolve
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Assignment for next time

Read all of Chapter 4.

Work problems 4.1 and 4.2. Hand them in to me by 
Tuesday 8 September.

Read all of Chapter 5. Note that there are some 
differences between the Clawpack 4.4 that you have 
downloaded and the version described in the book. The 
bulk of the information is still good, however. The file in 
your downloaded package called claw43user.pdf is much 
more complete, and you should start to become familiar 
with it.

Work problems 5.1, 5.2, and 5.3 using Clawpack. 
These give you some experience in modifying the data 
and the code. Take notes on your results (nothing to hand 
in) and be prepared to discuss them in class on the 8th.
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Next: High Resolution 
Methods
(Ch 6)
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