

Review: The wave propagation implementation of Godunov's method

A three-equation system has three characteristics. At timestep *n*, there is a discontinuity at the cell edge between Q_i^n and Q_{i+1}^n . As we evolve the Riemann solution forward to form $\tilde{q}^n(x,t_{n+1})$, this discontinuity splits into three pieces.

We use our knowledge of the splitting to compute the new cell averages.

Our syllabus - still subject to change

	date		Торіс	Chapter in LeVeque
1	17 Aug 2009	Monday 13.15-15.00	introduction to conservation laws, Clawpack	1&2&5
2	24 Aug 2009	Monday 13.15-15.00	the Riemann problem, characteristics	3
3	28 Aug 2009	Friday 13.15-15.00	finite volume methods for linear systems	4
4	8 Sep 2009	Tuesday 13.15-15.00	high resolution methods	6
5	21 Sep 2009	Monday 13.15-15.00	boundary conditions, accuracy, variable coeff.	7,8, part of
6	25 Sep 2009	Friday 13.15-15.00	nonlinear conservation laws, traffic flow	11
7	29 Sep 2009	Tuesday 13.15-15.00	finite volume methods for nonlinear equations	12
8	5 Oct 2009	Monday 13.15-15.00	nonlinear systems, shallow-water equations	13
9	12 Oct 2009	Monday 13.15-15.00	gas dynamics, Euler equation	14
10	19 Oct 2009	Monday 13.15-15.00	finite volume methods for nonlinear systems	15
11	26 Oct 2009	Monday 13.15-15.00	multidimensional hyperbolic problems & methods	18 & 19
12	2 Nov 2009	Monday 13.15-15.00	multidimensional scalar equations & systems	20 & 21
13	6 Nov 2009	Friday 13.15-15.00	applications: tsunamis, pockmarks, venting, impacts	6
14	16 Nov 2009	Monday 13.15-15.00	applications: volcanic jets, pyroclastic flows, lahars	
15	23 Nov 2009	Monday 13.15-15.00	review	
16	30 Nov 2009	Monday 13.15-15.00	discuss progress and problems on projects	
17	7 Dec 2009	Monday 13.15-15.00	FINAL PROJECT REPORTS DUE	

FYS-GEO 4500 Wednesday, 9 September 2009 Galen Gisler, Physics of Geological Processes, University of Oslo

Autumn 2009

Wednesday, 9

Review: Fluctuations

If
$$\mathcal{A}^+ \Delta Q_{i-1/2} = \sum_{p=1}^m (\mathcal{A}^p)^+ \mathcal{W}_{i-1/2}^p$$
 is the effect of all right-going waves, and

$$\mathcal{A}^{-}\Delta Q_{i-1/2} = \sum_{p=1}^{m} (\lambda^{p})^{-} \mathcal{W}_{i-1/2}^{p}$$
 is the effect of all left-going waves from $x_{i-1/2}$,

then we can write the update as

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \Big(\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \Big)$$

We take the right-going waves from the left interface and the left-going waves from the right interface.

Galen Gisler, Physics of Geological Processes, University of Oslo

Autumn 2009

The symbols $\mathcal{A}^{\pm} \Delta Q_{i+1/2}$ are the *fluctuations*.

FYS-GEO 4500

Wednesday, 9 Sentember 2009

Galen Gisler, Physics of Geological Processes, University of Oslo

 Q_i^n defines a piece-wise *constant* function. The discontinuities at the cell interfaces give rise to Riemann problems

$$F_{i-1/2}^n = f(q^{\downarrow}(Q_{i-1}^n, Q_i^n)),$$

and the solution at the next time step is obtained from

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right)$$

FYS-GEO 4500

Galen Gisler, Physics of Geological Processes, University of Oslo

Autumn 2009

Autumn 2009

Wednesday, 9 September 2009

FYS-GEO 4500

Wednesday, 9 September 2009

FYS-GEO 4500 Wednesday, 9 September 2009 Autumn 2009

Wednesday, 9 September 2009

Second-order methods:

Start with the linear system $q_t + Aq_x = 0$

Write the Taylor series expansion about the present time for the solution \boldsymbol{q} at the advanced time:

$$q(x,t_{n+1}) = q(x,t_n) + \Delta t q_t(x,t_n) + \frac{1}{2} (\Delta t)^2 q_{tt}(x,t_n) + \dots$$

The differential equation gives us $q_t = -Aq_x$ and therefore $q_{tt} = A^2 q_{xx}$

so that:

$$q(x,t_{n+1}) = q(x,t_n) - \Delta t A q_x(x,t_n) + \frac{1}{2} (\Delta t)^2 A^2 q_{xx}(x,t_n) + \dots$$

Galen Gisler, Physics of Geological Processes, University of Oslo

Autumn 2009

Autumn 2009

Beam-Warming:
$$t_{n+1} \xrightarrow{\text{advection}} Q_i^{n+1}$$

$$\frac{Q_{i-1}^{n}}{Q_{i-2}^{n}} Q_i^{n}$$

$$t_n \xrightarrow{x_{i-3/2}} X_{i-1/2} \xrightarrow{x_{i+1/2}} Q_i^{n}$$
From the first three terms of the Taylor expansion
$$q(x,t_{n+1}) \approx q(x,t_n) - \Delta t A q_x(x,t_n) + \frac{1}{2} (\Delta t)^2 A^2 q_{xx}(x,t_n)$$
Using upwind differences:
$$\begin{cases} q_x(x,t_n) \approx \frac{1}{2\Delta x} (3Q_i^n - 4Q_{i-1}^n + Q_{i-2}^n) \\ (-1)^2 \end{cases}$$

nces:
$$\begin{cases} q_{xx}(x,t_n) \approx \left(\frac{1}{\Delta x}\right)^2 \left(Q_i^n - 2Q_{i-1}^n + Q_{i-2}^n\right) \end{cases}$$

leads to the Beam-Warming (1976) formula for one-sided flows:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A \left(3Q_i^n - 4Q_{i-1}^n + Q_{i-2}^n \right) + \frac{1}{2} \left(\frac{\Delta t}{\Delta x} \right)^2 A^2 \left(Q_i^n - 2Q_{i-1}^n + Q_{i-2}^n \right)$$

Galen Gisler, Physics of Geological Processes, University of Oslo

Lax-Wendroff:
$$t_{n+1}$$
 Q_i^{n+1} Q_i^{n+1} μ_{i-1} Q_{i-1}^{n} Q_i^{n} Q_{i+1}^{n} μ_{i-1} Q_{i-1}^{n} Q_i^{n} Q_{i+1}^{n} μ_{i-1} Q_{i-1}^{n} Q_{i-1}^{n} Q_{i+1}^{n} μ_{i-1} Q_{i-1}^{n} Q_{i-1}^{n} Q_{i+1}^{n} μ_{i-1} Q_{i-1}^{n} Q_{i-1}^{n} Q_{i+1}^{n} Tom the first three terms of the Taylor expansion $(q_i(x,t_n) + \frac{1}{2}(\Delta t)^2 A^2 q_{xx}(x,t_n)$ $(q_i(x,t_n) = \frac{1}{2\Delta x} (Q_{i+1}^n - Q_{i-1}^n))$ $(q_{x}(x,t_n) = \frac{1}{2\Delta x} (Q_{i+1}^n - Q_{i-1}^n) + Q_{i-1}^n)$ using centred differences: $\left(q_{x}(x,t_n) = \frac{1}{2\Delta x} (Q_{i+1}^n - Q_{i-1}^n) + Q_{i-1}^n (Q_{i+1}^n - Q_{i-1}^n (Q_{i+1}^n - Q_{i-1}^n) + Q_{i-1}^n (Q_{i+1}^n - Q_{i-1}^n (Q_{i+1}^n - Q_{i-1}^n (Q_$

FYS-GEO 4500 Wednesday, 9 September 2009

We can choose a variety of slopes for a piecewise linear reconstruction

The aim is to approximate the derivative over the i^{th} cell, for second-order accuracy. The overshoots in these methods cause oscillatory behaviour near discontinuities.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Wednesday, 9 Sentember 2009

Need for limiters

Second-order methods give good results when the solutions are smooth but generate oscillations where discontinuities occur.

Galen Gisler, Physics of Geological Processes, University of Oslo

First-order methods give poorer results, but do not generate oscillations near discontinuities. That is, they keep the solution varying *monotonically*.

The idea behind high-resolution methods is to get second-order accuracy when possible, but to keep the solution *monotonic* where the solution is not smooth.

Limiters are introduced to manage this.

The breakthrough work in this area was made by Bram van Leer in a series of papers culminating in 1979.

FYS-GEO 4500

Wednesday, 9 September 2009

and ϕ is the flux limiter function.

FYS-GEO 4500 Wednesday, 9 September 2009 Autumn 2009

FYS-GEO 4500 Wednesday, 9 September 2009

A method is Total Variation Diminishing if

ensure the method is TVD.

TVD methods are monotonicity preserving. We chose slope limiters that

 $\mathrm{TV}(O^{n+1}) \leq \mathrm{TV}(O^n)$

Widely used flux limiters are:

Linear methods

High-resolution methods

minmod:
$$\phi(\theta) = \text{minmod}(1,\theta)$$

superbee: $\phi(\theta) = \max(0,\min(1,2\theta),\min(2,\theta))$
MC: $\phi(\theta) = \max(0,\min((1+\theta)/2,2,2\theta))$
vanLeer: $\phi(\theta) = \frac{(\theta+|\theta|)}{(1+|\theta|)}$

Galen Gisler, Physics of Geological Processes, University of Oslo

For generality, we write the slope in terms of the flux-limiter function ϕ

Wednesday, 9 September 2009

Autumn 2009

FYS-GEO 4500 Wednesday, 9 September 2009

Autumn 2009

Wednesday, 9 September 2009

Autumn 2009

1	
	Wave limiters
	We can think of slope limiters as limiters on the wave strengths. Let $W_{i-1/2} = Q_i - Q_{i-1}$. Q_{i-1}^n
	Then the upwind method for the scalar advection equation is $Q_i^{n+1} = Q_i^n - u \frac{\Delta t}{\Delta x} \mathcal{W}_{i-1/2}.$
	The Lax-Wendroff method is: $Q_i^{n+1} = Q_i^n - u \frac{\Delta t}{\Delta x} \mathcal{W}_{i-1/2} - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2} \right),$
	where $\tilde{F}_{i-1/2} = \frac{1}{2} \left(1 - \left u \frac{\Delta t}{\Delta x} \right \right) u \mathcal{W}_{i-1/2}.$
	For a high-resolution we use $\tilde{F}_{i-1/2} = \frac{1}{2} \left(1 - \left u \frac{\Delta t}{\Delta x} \right \right) \left u \right \widetilde{\mathcal{W}}_{i-1/2},$
	where $\widetilde{\mathcal{W}}_{i-1/2} = \phi_{i-1/2} \mathcal{W}_{i-1/2}$.
	FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2009

Wednesday, 9 September 2009

High-resolution methods for systems

The Lax-Wendroff method in flux difference form had the flux written as:

$$F_{i-1/2}^{n} = \left(A^{-}Q_{i}^{n} + A^{+}Q_{i-1}^{n}\right) + \frac{1}{2}|A|\left(I - \frac{\Delta t}{\Delta x}|A|\right)\left(Q_{i}^{n} - Q_{i-1}^{n}\right)$$

We need to separate the eigenvectors in order to apply flux limiters, so we rewrite the correction term, using the Godunov-Riemann splitting:

$$\frac{1}{2}|A|\left(I-\frac{\Delta t}{\Delta x}|A|\right)\left(Q_i^n-Q_{i-1}^n\right)=\frac{1}{2}|A|\left(I-\frac{\Delta t}{\Delta x}|A|\right)\sum_{p=1}^m\alpha_{i-1/2}^pr^p$$

Recall from before that the discontinuity between cells i and i+1 is split into m pieces by the Riemann characteristics:

High-resolution methods for systems

Now we apply the limiter to the coefficients of the eigenvectors:

$$\tilde{\alpha}_{i-1/2}^{p} = \alpha_{i-1/2}^{p} \phi(\theta_{i-1/2}^{p}) \\ \theta_{i-1/2}^{p} = \frac{\alpha_{l-1/2}^{p}}{\alpha_{i-1/2}^{p}}; \ l = \begin{cases} i-1 \text{ if } \lambda^{p} > 0 \\ i+1 \text{ if } \lambda^{p} < 0 \end{cases}$$

Then the flux function is

$$F_{i-1/2}^{n} = \left(A^{-}Q_{i}^{n} + A^{+}Q_{i-1}^{n}\right) + \frac{1}{2}\sum_{p=1}^{m} \left|\lambda^{p}\right| \left(1 - \frac{\Delta t}{\Delta x}\left|\lambda^{p}\right|\right) \alpha_{i-1/2}^{p} \phi(\theta_{i-1/2}^{p}) r^{p}.$$

If we write $\widetilde{W}_{i-1/2}^{p} = \alpha_{i-1/2}^{p} \phi(\theta_{i-1/2}^{p}) r^{p}$ as a limited version of the wave strength, and $s_{i-1/2}^{p} = \lambda^{p}$ for a generalised wave speed, we have:

$$F_{i-1/2}^{n} = \left(A^{-}Q_{i}^{n} + A^{+}Q_{i-1}^{n}\right) + \frac{1}{2}\sum_{p=1}^{m} \left|s_{i-1/2}^{p}\right| \left(1 - \frac{\Delta t}{\Delta x} \left|s_{i-1/2}^{p}\right|\right) \widetilde{\mathcal{W}}_{i-1/2}^{p}$$

FYS-GEO 4500 Wednesday, 9 September 2009 Galen Gisler, Physics of Geological Processes, University of Oslo

Generalisation for Nonlinear Systems

For linear systems, we can rearrange the update into the form:

$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{\Delta t}{\Delta x} \left(A^{+} \Delta Q_{i-1/2} + A^{-} \Delta Q_{i+1/2} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2} \right)$$

with
$$\tilde{F}_{i-1/2}^{n} = \frac{1}{2} \sum_{p=1}^{m} \left| s_{i-1/2}^{p} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| s_{i-1/2}^{p} \right| \right) \widetilde{\mathcal{W}}_{i-1/2}^{p}$$

Generalising to nonlinear systems we can write the update as:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left(\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2} \right)$$

with the fluctuations suitably defined. There are some subtleties we'll get into later, associated with rarefaction waves and entropy conditions.

Galen Gisler, Physics of Geological Processes, University of Oslo

FYS-GEO 4500 Wednesday, 9 September 2009

Review of High-Resolution Methods

Taking the basic Lax-Wendroff formula:

$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{\Delta t}{2\Delta x} A \left(Q_{i+1}^{n} - Q_{i-1}^{n} \right) + \frac{1}{2} \left(\frac{\Delta t}{\Delta x} \right)^{2} A^{2} \left(Q_{i+1}^{n} - 2Q_{i}^{n} + Q_{i-1}^{n} \right)$$

we re-write it in the flux form

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right)$$

with

$$F_{i-1/2}^{n} = \frac{1}{2} A \left(Q_{i}^{n} + Q_{i-1}^{n} \right) - \frac{1}{2} \frac{\Delta t}{\Delta x} A^{2} \left(Q_{i}^{n} - Q_{i-1}^{n} \right)$$

Then making use of the divided matrices A^{\pm} we can write this as

$$F_{i-1/2}^{n} = \left(A^{-}Q_{i}^{n} + A^{+}Q_{i-1}^{n}\right) + \frac{1}{2}|A|\left(I - \frac{\Delta t}{\Delta x}|A|\right)\left(Q_{i}^{n} - Q_{i-1}^{n}\right)$$

Autumn 2009

Autumn 2009

Review of High-Resolution Methods

We improve the first-order upwind method by introducing corrections, and writing:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left(\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right) - \frac{\Delta t}{\Delta x} \left(\widetilde{F}_{i+1/2} - \widetilde{F}_{i-1/2} \right)$$

We derive the corrections by considering piece-wise linear (instead of piecewise constant) reconstructions.

Review of High-Resolution Methods

$$F_{i-1/2}^{n} = \left(A^{-}Q_{i}^{n} + A^{+}Q_{i-1}^{n}\right) + \frac{1}{2}|A|\left(I - \frac{\Delta t}{\Delta x}|A|\right)\left(Q_{i}^{n} - Q_{i-1}^{n}\right)$$

This version of the Lax-Wendroff formula has a correction term that can be limited, if we choose, to avoid oscillations around extrema.

For a one-equation system (the advection equation), we can apply a simple functional limiter to the slope:

$$\sigma_i^n = \left(\frac{Q_{i+1}^n - Q_i^n}{\Delta x}\right)\phi_i^n$$

Examples of limiters:

Lax-Wendroff:
$$\phi(\theta) = 1$$

minmod: $\phi(\theta) = \text{minmod}(1,\theta)$
superbee: $\phi(\theta) = \max(0,\min(1,2\theta),\min(2,\theta))$
MC: $\phi(\theta) = \max(0,\min((1+\theta)/2,2,2\theta))$
vanLeer: $\phi(\theta) = \frac{(\theta+|\theta|)}{(1+|\theta|)}$

FYS-GEO 4500 Wednesday, 9 September 2009 Galen Gisler, Physics of Geological Processes, University of Oslo

Review of High-Resolution Methods

For a system of equations, we use limiters on the waves. The wavepropagation form for a high-resolution version of Lax-Wendroff is:

$$F_{i-1/2}^{n} = \left(A^{-}Q_{i}^{n} + A^{+}Q_{i-1}^{n}\right) + \frac{1}{2}\sum_{p=1}^{m} \left|s_{i-1/2}^{p}\right| \left(1 - \frac{\Delta t}{\Delta x} \left|s_{i-1/2}^{p}\right|\right) \widetilde{\mathcal{W}}_{i-1/2}^{p}$$

with the limited version of the waves defined as :

Next: Boundary Conditions, Accuracy and Variable Coefficients (Chs 7, 8, part of 9)