
FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

FYS-GEO 4500               8 Sep 2009

Before we start:
Questions over the reading?

The problem set
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Our syllabus - still subject to change
date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part of 9

25 Sep 2009 Friday 13.15-15.00 nonlinear conservation laws, traffic flow 11

29 Sep 2009 Tuesday 13.15-15.00 finite volume methods for nonlinear equations 12

5 Oct 2009 Monday 13.15-15.00 nonlinear systems, shallow-water equations 13

12 Oct 2009 Monday 13.15-15.00 gas dynamics, Euler equation 14

19 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems 15

26 Oct 2009 Monday 13.15-15.00 multidimensional hyperbolic problems & methods 18 & 19

2 Nov 2009 Monday 13.15-15.00 multidimensional scalar equations & systems  20 & 21

6 Nov 2009 Friday 13.15-15.00 applications: tsunamis, pockmarks, venting, impactsapplications: tsunamis, pockmarks, venting, impacts

16 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

23 Nov 2009 Monday 13.15-15.00 review

30 Nov 2009 Monday 13.15-15.00 discuss progress and problems on projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE

Any problems with the schedule?
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Review: The wave propagation 
implementation of Godunov’s method

A three-equation system has three characteristics. At timestep n, there is a 

discontinuity at the cell edge between        and        . As we evolve the 

Riemann solution forward to form                   , this discontinuity splits into 

three pieces.

We use our knowledge of the splitting to compute the new cell averages. 
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Review: splitting the discontinuity

The wave             changes the cell average by                          . The three 

waves together give us:  

                                                           .

Defining                                                              , we generalise to m waves:
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Review: Fluctuations

If                                                   is the effect of all right-going waves, and 

                                                     is the effect of  all left-going waves from xi-1/2, 

then we can write the update as 

We take the right-going waves from the left interface and the left-going waves 
from the right interface.

The symbols                     are the fluctuations. 
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FYS-GEO4500
High Resolution Methods 
(Chapter 6 in Leveque)

Wednesday, 9 September 2009
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Reconstruct a piece-
wise polynomial function 
from cell averages.

reconstruct

Average the later-time 
function back to the 
cells .

average

Evolve this function to a 
later-time by solving 
Riemann problems.

evolve

Now to the high-resolution implementations of the 

Godunov REA method. 
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Extending Godunov’s method to high-resolution

      defines a piece-wise constant function. The discontinuities at the cell 
interfaces give rise to Riemann problems

and the solution at the next time step is obtained from
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Godunov’s method with piece-wise constant 
reconstruction is only first order

1. Reconstruct a piece-wise constant function from the cell 
averages.

2. Evolve the hyperbolic equation with this function to obtain a 
later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new cell 
averages.
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This is done at each time step. The method can be improved by using other 
interpolation functions, polynomials for example, to improve the accuracy. 

Physics is needed in the second step (evolution stage), as all the characteristics must 
be known and used in the solution. The first and third steps (projection stages) are 
entirely numerical (and problem independent). 
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Reconstruct     -     Evolve     -     Average
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Improvements on the simple system

Recall the update formula developed in chapter 4 that uses the notion of 
fluctuations:

This gives a method that is only first-order accurate. We can improve it by 
introducing corrections, and writing:

There are several possible techniques, and we illustrate a few here and 
show how well or how poorly they do.
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Piece-wise Linear Reconstruction

Instead of using piece-wise constant 
reconstruction as in the simple REA 
update,

We could use a piece-wise linear 
reconstruction:

We can choose how to do this, subject to the constraint that the cell averages 
are conserved, and that the slopes somehow reflect the local function 
behaviour. This is how second-order and high-resolution methods are done.
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Second-order methods:

Start with the linear system

Write the Taylor series expansion about the present time for the solution q at 
the advanced time:

The differential equation gives us                     and therefore 

so that:

qt + Aqx = 0

q(x,t
n+1
) = q(x,t

n
)+ !tq

t
(x,t

n
)+
1

2
(!t)

2
q
tt
(x,t

n
)+…

qt = !Aqx qtt = A
2
qxx

q(x,tn+1) = q(x,tn )! "tAqx (x,tn )+
1

2
("t)

2
A
2
qxx (x,tn )+…

Wednesday, 9 September 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

 Lax-Wendroff:

From the first three terms of the Taylor expansion 

using centred differences: 

we come to the Lax-Wendroff (1960) formula:
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 Beam-Warming:

From the first three terms of the Taylor expansion 

Using upwind differences: 

leads to the Beam-Warming (1976) formula for one-sided flows:
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?
Demonstration of simple methods

Clawpack comparing simple methods to high-
resolution methods

in $CLAW/book/myConversions/chap6/compareadv
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Lax-Wendroff as a 
finite-volume method

The basic finite-volume update formula is

We can put Lax-Wendroff in this form if we write:

then:
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We can choose a variety of slopes for a 
piecewise linear reconstruction
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The aim is to approximate the derivative over the ith cell, for second-order 
accuracy. The overshoots in these methods cause oscillatory behaviour near 
discontinuities.
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We can choose a variety of slopes for a 
piecewise linear reconstruction
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The aim is to approximate the derivative over the ith cell, for second-order 
accuracy. The overshoots in these methods cause oscillatory behaviour near 
discontinuities.

problem
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Need for limiters

Second-order methods give good results when the solutions are smooth but 
generate oscillations where discontinuities occur. 

First-order methods give poorer results, but do not generate oscillations near 
discontinuities. That is, they keep the solution varying monotonically.

The idea behind high-resolution methods is to get second-order accuracy 
when possible, but to keep the solution monotonic where the solution is not 
smooth.

Limiters are introduced to manage this.

The breakthrough work in this area was made by Bram van Leer in a series 
of papers culminating in 1979. 

Wednesday, 9 September 2009
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First we rewrite the Lax-Wendroff flux

using

we get

which is like the upwind flux with an added (antidiffusive) correction term. We 
can improve this by limiting the amount of correction actually applied, based 
on the solution behaviour. 

We illustrate how this is done with the scalar advection equation.  
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How do we choose a slope limiter?

We want to use the slope when the function is smooth to achieve second-
order accuracy.

But when the function is not smooth, using the slope results in overshoots, 
causing oscillatory behaviour. 

So we limit the slope, based on the local behaviour of the solution.

We write the slope as                                          , where      is the flux limiter 
function, and  

             in the Lax-Wendroff scheme,

             in the piecewise-constant upwind scheme.
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The REA algorithm suggests ...

that we update the advection equation by

where the slope is given by 

and      is the flux limiter function.
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How do we choose a slope limiter?

Monotonicity preserving methods:

If a grid function that is initially monotone, i.e.

remains monotone at the next time:  

then the method is monotonicity preserving.

Total Variation Diminishing (TVD) methods:

Define the total variation of a grid function Q as:

A method is Total Variation Diminishing if 

TVD methods are monotonicity preserving. We chose slope limiters that 
ensure the method is TVD.
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The minmod slope limiter

Define the minmod function: 

Then choose the slope to use by:

If the slopes have the same sign, the one with the smaller absolute value is 
chosen; if they have opposite signs, the slope is 0.

Extended to more arguments, the minmod function returns 0 unless all the arguments are the same 
sign, otherwise it returns the argument with the smallest absolute value.
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For generality, we write the slope in terms 
of the flux-limiter function   

For minmod:

                   where

                       and 

    measures the local smoothness of the data. At extrema,    is 
negative; if the data are smooth,           and at discontinuities,    
can be very large. 
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Widely used flux limiters are:

Linear methods

             upwind:

   Lax-Wendroff:

Beam-Warming:

             Fromm:

High-resolution methods

          minmod:

        superbee:

                 MC:

          vanLeer:
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Comparing minmod, superbee, MC and 
vanLeer limiters

superbee

minmod

MCcentred

cell data left 

slope

right 

slope

centred 

slope

theta minmod superbee MC vanLeer

0.5 8 -2

1.5 6 -2 -3 -2.5 0.666667 -2 -3 -2.5 -2.4

2.5 3 -3 -2 -2.5 1.5 -3 -3 -2.5 -2.4

3.5 1 -2 1 -0.5 -2 0 0 0 0

4.5 2 1 3 2 0.333333 1 2 2 1.5

5.5 5 3 3 3 1 3 3 3 3

6.5 8 3 -1 1 -3 3 0 0 0

7.5 7 -1

vanLeer
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Now we have an REA second order scheme
The steps are identical to the first order REA scheme, 
except for reconstruction:

1. Reconstruct a piece-wise linear function from the cell 
averages.

with the property that TV(q) ! TV(Q) 

2. Evolve the hyperbolic equation with this function to obtain 
a later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new 
cell averages.
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Reconstruct     -     Evolve     -     Average
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Reconstruct     -     Evolve     -     Average
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Reconstruct     -     Evolve     -     Average

… and then a new piecewise linear reconstruction is done …
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How do we make sure we satisfy the Total 
Variation Diminishing Constraint?

Compare the limiter functions           where                            . !(")

0
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4
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High-Resolution methods
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is shaded.  Any second-order accurate 
method must have            .!(1) = 1
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Wave limiters

We can think of slope limiters as limiters on the wave 
strengths. Let 

Then the upwind method for the scalar advection 
equation is 

The Lax-Wendroff method is:

where

For a high-resolution we use 

where 
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?
Demonstration of better methods

Clawpack comparing simple methods to high-
resolution methods

in $CLAW/book/myConversions/chap6/compareadv.2
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Extension to linear systems

Approach 1: 

Diagonalise the system to

Apply the scalar algorithm to each component separately.

Approach 2: 

Solve the linear Riemann problem to decompose                  into a number 
of waves.

Apply a wave limiter to each wave.  

These approaches are equivalent, but we’ll use the wave propagation 
method. Note that it is important to apply the limiters to the waves rather 
than to the original variables.
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High-resolution methods for systems

The Lax-Wendroff method in flux difference form had the flux written as:

We need to separate the eigenvectors in order to apply flux limiters, so we 
rewrite the correction term, using the Godunov-Riemann splititng: 

Recall from before that the discontinuity between cells i and i+1 is split into 

m pieces by the Riemann characteristics:
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High-resolution methods for systems

Now we apply the limiter to the coefficients of the eigenvectors:

Then the flux function is

If we write                                              as a limited version of the wave 

strength, and                   for a generalised wave speed,  we have: 
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Generalisation for Nonlinear Systems

For linear systems, we can rearrange the update into the form:

with

Generalising to nonlinear systems we can write the update as:

with the fluctuations suitably defined. There are some subtleties we’ll get into 
later, associated with rarefaction waves and entropy conditions.
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Review of High-Resolution Methods

We improve the first-order upwind method by introducing corrections, and 
writing:

We derive the corrections by considering piece-wise linear (instead of piece-
wise constant) reconstructions.
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Review of High-Resolution Methods

Taking the basic Lax-Wendroff formula:

we re-write it in the flux form 

with 

Then making use of the divided matrices          we can write this as 

Q
i

n+1
=Q

i

n !
"t
2"x

A Q
i+1

n !Q
i!1
n( ) +

1

2

"t
"x

#
$%

&
'(
2

A
2
Q
i+1

n ! 2Q
i

n
+Q

i!1
n( )

Q
i

n+1
= Q

i

n
!
"t

"x
F
i+1/2

n
! F

i!1/2

n( )

F
i!1/2

n
=
1

2
A Q

i

n
+Q

i!1

n( )!
1

2

"t

"x
A
2
Q
i

n
!Q

i!1

n( )

A
±

F
i!1/2
n

= A
!
Q
i

n
+ A

+
Q
i!1
n( ) +

1

2
A I !

"t
"x

A
#
$%

&
'(
Q
i

n !Q
i!1
n( )

Wednesday, 9 September 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Review of High-Resolution Methods

This version of the Lax-Wendroff formula has a correction term that can be 
limited, if we choose, to avoid oscillations around extrema.

For a one-equation system (the advection equation), we can apply a simple 
functional limiter to the slope:

Examples of limiters:
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   Lax-Wendroff:

          minmod:

        superbee:

                 MC:

          vanLeer:

!(") = 1

!(") = minmod(1,")

!(") = max(0,min(1,2"),min(2,"))

!(") = max(0,min((1+") / 2,2,2"))

!(") =
(" + " )

(1+ " )
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Review of High-Resolution Methods

For a system of equations, we use limiters on the waves. The wave-
propagation form for a high-resolution version of Lax-Wendroff is: 

with the limited version of the waves defined as :

and a generalised wave speed  
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Assignment for next time

Read Chapter 6 at least through 6.15.

Run the tests of different linear methods in claw/book/
chap6/compareadv as described in Fig 6.1, and 6.2, and 
in claw/book/chap6/wavepacket in Fig 6.3. Nothing to 
hand in, but be prepared to discuss your experience.

Work problems 6.1, 6.5, and 6.10. Hand them in to me 
by Monday 21 September.
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Next: Boundary Conditions, 
Accuracy and Variable 

Coefficients
(Chs 7, 8, part of 9)
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