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Our syllabus - converging

date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part of 9

29 Sep 2009 Tuesday 13.15-15.00 nonlinear conservation laws, finite volume methods 11, part of 12

5 Oct 2009 Monday 13.15-15.00 nonlinear equations & systems; shallow-water eqn part of 12,13

12 Oct 2009 Monday 13.15-15.00 gas dynamics, Euler equations, methods 14, part of 15

19 Oct 2009 Monday 13.15-15.00 varying flux functions, source terms part of 16, 17

26 Oct 2009 Monday 13.15-15.00 multidimensional hyperbolic problems & methods 18 & 19

2 Nov 2009 Monday 13.15-15.00 systems & applications; project planning  20 & 21

16 Nov 2009 Monday 13.15-15.00 applications: tsunamis, pockmarks, venting, impactsapplications: tsunamis, pockmarks, venting, impacts

23 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

30 Nov 2009 Monday 13.15-15.00 review; progress, problems & projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE
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Review of High-Resolution Methods

We improve the first-order upwind method by introducing corrections, and 
writing:

We derive the corrections by considering piece-wise linear (instead of piece-
wise constant) reconstructions.
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Review of High-Resolution Methods

Taking the basic Lax-Wendroff formula:

we re-write it in the flux form 

with 

Then making use of the divided matrices          we can write this as 
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Review of High-Resolution Methods

This version of the Lax-Wendroff formula has a correction term that can be 
limited, if we choose, to avoid oscillations around extrema.

For a one-equation system (the advection equation), we can apply a simple 
functional limiter to the slope:

Examples of limiters:
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   Lax-Wendroff:

          minmod:

        superbee:

                 MC:

          vanLeer:

!(") = 1

!(") = minmod(1,")

!(") = max(0,min(1,2"),min(2,"))

!(") = max(0,min((1+") / 2,2,2"))

!(") =
(" + " )

(1+ " )
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Review of High-Resolution Methods

For a system of equations, we use limiters on the waves. The wave-
propagation form for a high-resolution version of Lax-Wendroff is: 

with the limited version of the waves defined as :

and a generalised wave speed  
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Boundary Conditions 
(Chapter 7 in Leveque)
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Real problems have boundaries

In computing the values        for the next time step, we have assumed the 

availability of data from        and        . But we can never compute on an 

infinite grid, and in practice we must often deal with physical boundaries 

such as solid walls or materials with different properties.  

Q
i

n+1

Q
i!1

n
Q
i+1

n

Monday, 21 September 2009



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

a = x
1/2

b = x
N+1/2

Q
1

Q
2

Q
N

Q
N+1

Q
N+2

Q
0

Q
!1

Q
i

x
i!1/2

x
i+1/2

Q
i+1

Q
N!1

… …Q
i!1

… ……

Real problems have boundaries

In computing the values        for the next time step, we have assumed the 

availability of data from        and        . But we can never compute on an 

infinite grid, and in practice we must often deal with physical boundaries 

such as solid walls or materials with different properties.  

Q
i

n+1

Q
i!1

n
Q
i+1

n

Monday, 21 September 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Calculation from the Stanford Center for Turbulence Research of a portion of 
the main compressor turbine in a modern jet engine. There are inflow and 
outflow boundaries as well as internal reflective boundaries for the turbine 
fan blades. The coordinate system rotates with the turbine, which starts 
slowly and approaches cruising speed.

This calculation couples to a separate calculation for the combustor, which 
uses the outflow from the compressor, and supplies the energy to rotate the 
turbine. 
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Calculation from the Stanford Center for Turbulence Research of a portion of 
the main compressor turbine in a modern jet engine. There are inflow and 
outflow boundaries as well as internal reflective boundaries for the turbine 
fan blades. The coordinate system rotates with the turbine, which starts 
slowly and approaches cruising speed.

This calculation couples to a separate calculation for the combustor, which 
uses the outflow from the compressor, and supplies the energy to rotate the 
turbine. 
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Boundary conditions may be of several 
different types

Reflective walls

Reflective interior structures

inflow outflow

Periodic boundaries

No-slip 
boundaries

Monday, 21 September 2009
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One common approach is to use ghost cells

Ghost cells are cells that participate in the 
computational scheme, but are reset at the 
beginning of each time step to values that 
effectively implement the appropriate boundary 
condition. 

If this is done, then no special formulas are 
needed on the physical boundary during the 
computational step.

A two-dimensional grid with a border 
of two ghost cells on all boundaries

Physical boundary of problem

Ghost cells
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Boundary conditions in one dimension.

The solution in the domain [a,b] is the interior solution, and is computed by 
the wave-propagation procedure, solving Riemann problems at each 
interface. 

To compute the appropriate fluxes to update cells 1 and N, we need values 
from the neighbouring ghost cells (0,-1) and (N+1, N+2). These are provided 
by the boundary-condition procedure.

This boundary-condition procedure will depend on the nature of the 
boundary conditions being used.
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Periodic boundary conditions

For periodic boundary conditions, we simply set

at the beginning of each time step.

In Clawpack, the work is done in the Fortran routine 
$CLAW/clawpack/1d/lib/bc1.f 

and you invoke it in setrun.py by setting 
clawdata.mthbc_xlower = 2
clawdata.mthbc_xupper = 2
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Outflow boundary conditions

For a pure upwind method, we don’t need any outflow boundary condition. 
But we do for higher-order methods, and if waves are travelling in both 
directions. 

The simplest and most effective procedure is simply to extrapolate the 
solution from the last physical cell. If the outflow boundary is at right, we set:

for a zero-order or constant extrapolation, or 

for a first-order or linear extrapolation. In most circumstances, constant 
extrapolation gives better stability.
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Inflow boundary conditions

For inflow conditions it is sufficient to reset the ghost cells on the inflow 
boundary to the desired source values, which may be time-dependent. 

For the advection equation with velocity u, and the inflow boundary at right, 
set 

Note that we advance the time by the travel time from the centre of each of 
these cells to the physical boundary.
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Boundary conditions for systems of equations

For systems with both positive and negative eigenvalues, each boundary 
may have both incoming and outgoing characteristics. 

Then you treat the boundary cells with the normal Riemann solution, for 
example

but the incoming waves have strength zero. The outgoing waves may have 
nonzero strength, but it doesn’t matter since the ghost cells will be reset at 
the start of the next cycle.

It should be possible to apply the appropriate boundary conditions for the 
separate characteristics, with some knowledge of the appropriate physics.
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An example from the acoustics equation

Recall the acoustics equations 

To implement a solid reflecting wall in this system, we reverse the velocity in 
the ghost cells and make the pressure the same: 
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Set the boundary conditions in setrun.py

# --------------------
# Boundary conditions:
# --------------------

# Number of ghost cells (usually 2)
clawdata.mbc = 2

# Choice of BCs at xlower and xupper:
#   0 => user specified (must modify bcN.f to use this option)
#   1 => extrapolation (non-reflecting outflow)
#   2 => periodic (must specify this at both boundaries)
#   3 => solid wall for systems where q(2) is normal velocity

clawdata.mthbc_xlower = 1
clawdata.mthbc_xupper = 1

For inflow and other options, you must modify bc1.f

Monday, 21 September 2009
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Accuracy and Convergence 
(Chapter 8 in Leveque)
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Accuracy, stability, and convergence: how 
do we ensure confidence in the code?

Numerical computation is still an art; there are many things that can go 
wrong in a calculation.

It is important to be suspicious of peculiar behaviour, but even if things look 
right, they may not be right!

Code systems are subject to a variety of tests to ensure correct behaviour:

Verification: test the code solutions against analytical solutions for simple 
problems. 

Validation: test the code solutions against experimental results.

Convergence: prove that the code solution converges to the correct 
solution as the grid is refined.

Uncertainty Quantification: develop confidence measures that tell us 
how much we can rely on the results.

Monday, 21 September 2009
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Sources of error
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Sources of error

Truncation error: Your functional representation is incomplete; you can’t 
include all the terms in the Taylor series, for example.
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Sources of error

Truncation error: Your functional representation is incomplete; you can’t 
include all the terms in the Taylor series, for example.

Roundoff error: The computer’s representation of a real number is 
imprecise; least significant digits are dropped. Beware subtracting 
numbers of similar magnitude!
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Sources of error

Truncation error: Your functional representation is incomplete; you can’t 
include all the terms in the Taylor series, for example.

Roundoff error: The computer’s representation of a real number is 
imprecise; least significant digits are dropped. Beware subtracting 
numbers of similar magnitude!

Numerical diffusion, numerical viscosity: The finite resolution of a gridded 
calculation fails to resolve fine physical structures, which then diffuse on 
the scale of the grid resolution. 
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Sources of error

Truncation error: Your functional representation is incomplete; you can’t 
include all the terms in the Taylor series, for example.

Roundoff error: The computer’s representation of a real number is 
imprecise; least significant digits are dropped. Beware subtracting 
numbers of similar magnitude!

Numerical diffusion, numerical viscosity: The finite resolution of a gridded 
calculation fails to resolve fine physical structures, which then diffuse on 
the scale of the grid resolution. 

Imperfect boundary conditions: Outgoing waves may partially reflect back 
into the grid, causing distortions.

Monday, 21 September 2009



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Sources of error

Truncation error: Your functional representation is incomplete; you can’t 
include all the terms in the Taylor series, for example.

Roundoff error: The computer’s representation of a real number is 
imprecise; least significant digits are dropped. Beware subtracting 
numbers of similar magnitude!

Numerical diffusion, numerical viscosity: The finite resolution of a gridded 
calculation fails to resolve fine physical structures, which then diffuse on 
the scale of the grid resolution. 

Imperfect boundary conditions: Outgoing waves may partially reflect back 
into the grid, causing distortions.

The most obvious, and easiest to deal with are the following:

Errors in setup, incorrect initial conditions or material properties
Coding errors (bugs)
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Measures of error

In a finite volume method, the numerical solution value      in grid cell i is an 
approximation to the cell integral of the true solution  

If the solution is sufficiently smooth, this is also reasonably close to the value 

q(xi,tn) at the cell centre. We may choose to compare        with either of           

or  q(xi,tn).

Errors tend to grow with time, so we need to specify the time at which the 
error comparison of the computed solution against the calculated solution is 
made. If the comparison is done at time                  , we denote the global 
error as 

We will assume that the ratio          is constant as we refine the grid.  
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The global error: norms

The global error                            is computed from the errors at each grid 

cell by using an appropriate norm. A p-norm is defined by: 

The most useful norms are the 1-norm (corresponding to the solution 
integrals) the 2-norm (the root-mean-square error) and the infinity-norm, or 
maximum overall error, which measures point-wise convergence:

Point-wise convergence is generally impossible when the solutions are not 
smooth.
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Convergence and Accuracy

There’s some divergence of terminology in this area.

Leveque gives the following definition for convergence: 

and he writes that a method is accurate to order s if 

Very often you will hear people speak of a method as convergent to order s if

where             is the error evaluated on a grid with spacing       . This latter 
notion enables convergence (or resolution) studies in the absence of 
knowledge of the true solution, but invites the danger that a method may be 
validated while converging to the wrong solution! 
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Above is the exact analytical 
solution (resolved to a finite 
grid) for a radial shock tube in 
cylindrical geometry, showing 
1/4 of the system, colours 
indicating density.

We ran simulations of this with 
the Sage/Rage code at Los 
Alamos. 

Variants of the classic shock tube problem 
are used for code validation

density

ρp

pressure

x

u

velocity waves

t

x

shock

contact

discontinuity

rarefaction

fan

The one-dimensional shock tube problem that 
we’ve seen before.
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An accuracy and convergence 
study on an analytical test problem
A calculation of the Noh spherical shock tube problem in two 
dimensions with the Rage code (Los Alamos, SAIC).

We used the p-1 norm, summed in bands instead of over the whole 
domain, to illustrate differences in convergence in different parts of the 
solution space.

Outside the shock we saw 2nd order convergence, as expected from 
the algorithm, but within the shock the convergence was at best linear. 
The position of the shock was accurately determined, and it was sharp 
at all resolutions.

Analytical Solution

RAGE Solution 
150x150

Bands for 
Analysis

||RAGE!Analytical||
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SGt0c          62.5 m

SGt0b        31.25 m

SGt0a      15.625 m

SGt00      7.8125 m

  run          resolution

A resolution (not convergence!) study
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SGt0c          62.5 m

SGt0a      15.625 m

SGt00      7.8125 m

SGt0b        31.25 m

35 40 45 50 55 km
  run          resolution

A resolution (not convergence!) study
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Consistency, robustness, and numerical stability

Errors occur at each time step as a simulation progresses. These are 
inevitable because of the approximations involved (truncation error) and 
because of machine accuracy (round-off error).

A method is consistent if the error introduced at a single time step is small.

Small single-step errors affect the calculation subsequently. After hundreds 
or thousands of time steps, these errors accumulate and the numerical 
solution diverges from the true solution. 

The divergence will be bounded if the method is stable. If the method is 
unstable, the errors grow exponentially. 

The method is robust if small changes in the input parameters produce 
reasonably small changes in the solution after many time steps.

Robustness is tested by running many simulations with different inputs; 
consistency and stability can be checked analytically.
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The fundamental theorem of numerical methods

The Lax-Richtmeyer equivalence theorem states that:

A numerical method for a linear differential equation 
will converge if that method is consistent and stable.

Consistency means the single-step error is small.

Stability means that single-step errors do not grow catastrophically with time.
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Single-step errors

A single step of a numerical method can be written as

 

where the operator      maps the approximate solution at one time step to the 
next time step. We define the local truncation error by applying the same 

operator to the true solution at time step n and comparing it to the true 

solution (resolved to the grid) at time step n+1:

If                     then the method is consistent with the differential equation.

The truncation error is calculated by doing a Taylor series expansion and 
estimating the size of all the terms that are omitted from the numerical 
approximation. 

 Q
n+1

= N (Q
n
),

 
truncation error = !

n
=
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"t
N (q

n
)# q

n+1
.

 N

lim
!t"0

#
n
= 0
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Assessing stability for linear methods

If at time step n we have an error                       , then at time step n+1 our 
error will be 

If the numerical solution operator      is contractive, that is if

 

in an appropriate norm, then the operator is stable in that norm, and we get 
a bound on the global error:

Unfortunately, it may be difficult to prove contractivity for nonlinear systems. 
In that case, we insist on Total Variation Diminishing methods, which 
accomplishes the same thing.
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The formal order of accuracy isn’t a 
guarantee of true accuracy!

Comparing the 2nd-order accurate Lax-Wendroff with a high-resolution 
method of lower formal order: the high-resolution method is more accurate 
for all but the finest grids in the max norm. 

Order of accuracy isn’t everything

Comparison of Lax-Wendroff and a high-resolution method on
linear advection equation with smooth data.

The high-resolution method is not formally second-order
accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.
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Variable Coefficients 
(Chapter 9 in Leveque)
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A brief-look at variable-coefficient problems

Before we get into nonlinear equations and systems, it’s useful to consider 
systems of the form:

or the similar conservation law:

or the capacity-function form:

Real examples include: advection of a tracer in a pipe with variable cross-
section, two conveyor belts with different speeds, traffic flow on a highway 
with a sudden change in the speed limit, or linear acoustics in a layered 
medium. 

qt + A(x)qx = 0

qt + A(x)q( )
x
= 0

! (x)qt + A(x)q( )
x
= 0

Monday, 21 September 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

We’ll look at the acoustics equations with 
variable coefficients

The equation is

with

and the eigensystem is

where  

qt + A(x)qx = 0

q(x,t) =
p(x,t)

u(x,t)

!
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Piece-wise constant coefficients

We consider a medium with a discontinuity in the coefficients:

and consider it with the piecewise constant initial data

Much as before, we have the Riemann problem illustrated here:

!(x) =
!
l
   if x < 0,

!
r
   if x > 0,

!!!

"
#
$

%$
K(x) =

K
l
   if x < 0,

K
r
   if x > 0.

"
#
$

%$

q(x,0) =
ql    if x < 0,

qr    if x > 0.

!
"
#

$#

ql qr

qm

–cl +cr
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Resolve the discontinuity, using the 
appropriate coefficients 
For each wave the jump is:

and the total discontinuity is therefore

We can define the special mixed eigenvector matrix

then
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–cl +cr

qm ! ql = "
1 !Zl

1

#

$
%
%

&

'
(
(

  and  qr ! qm = " 2 Zr

1

#

$
%
%

&

'
(
(
,

qr ! ql = "
1

!Zl

1

#

$
%
%

&

'
(
(
+" 2

Zr

1

#

$
%
%

&

'
(
(
.

R
lr
=

!Z
l

1

Z
r

1

"

#
$
$

%

&
'
'
,

Rlr! = qr " ql .

Monday, 21 September 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

?
Demonstration of variable coefficient 
acoustics

in $CLAW/book/chap9/acoustics/interface
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Review: Boundary Conditions 

Implement boundary conditions by using ghost cells and setting them 
appropriately.

Then treat the boundary cells with the normal Riemann solution:

with incoming waves having strength zero. The outgoing waves may have 
nonzero strength.

The ghost cells are reset at the start of the next cycle.
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Review: Accuracy and Convergence

A method is consistent if the single-step error is small.

Single-step errors include truncation error and (round-off error).

Small single-step errors accumulate and the numerical solution diverges 
from the true solution after many time steps. 

If the method is stable, the divergence will be bounded. If the method is 
unstable, the errors grow exponentially. 

The Lax-Richtmeyer equivalence theorem states that:

A numerical method for a linear differential equation 
will converge if that method is consistent and stable.
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Assignment for next time

Read Chapter 7, Chapter 8, and 9.0-9.2, 9.6-9.9 and 
more of Chapter 9 if interested.

Work problems 7.2a and 8.2. Hand them in to me by 
Tuesday 29 September.
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Next: Nonlinear 
Conservation Laws 

(Ch 11)
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