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Before we start:
Questions over the reading?

The problem set
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Our schedule

date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part of 9

29 Sep 2009 Tuesday 13.15-15.00 nonlinear conservation laws, finite volume methods 11 & 12

5 Oct 2009 Monday 13.15-15.00 nonlinear equations & systems 13, part of 14

12 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems part of 14, 15

19 Oct 2009 Monday 13.15-15.00 varying flux functions, source terms part of 16, 17

26 Oct 2009 Monday 13.15-15.00 multidimensional hyperbolic problems & methods 18 & 19

2 Nov 2009 Monday 13.15-15.00 systems & applications; project planning  20 & 21

16 Nov 2009 Monday 13.15-15.00 applications: tsunamis, pockmarks, venting, impacts

23 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

30 Nov 2009 Monday 13.15-15.00 review; progress, problems & projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE
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Nonlinear Systems 
(Chapter 13 in Leveque)
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Nonlinear systems

For linear systems we learned how to apply high-resolution methods based 
on the Godunov technique, resolving cell interfaces into a series of 
Riemann-problem waves.

For nonlinear systems the procedure will be similar, except that some of the 
waves may be shock waves and others may be rarefaction fans.
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Real Waves

At last we get to the meat of this course: the treatment of real waves.

Up to now we’ve been using toy problems with limited applicability.

Even the traffic-flow problem we discussed last time oversimplified by 
assuming a velocity law dependent only on density, with no concept of 
reaction or acceleration, in order to reduce the problem to a single equation.

This has been necessary to help us develop the relatively complex 
framework that is necessary to calculate wave-like phenomena in the real 
world. But we are now becoming familiar with Riemann solutions, how they 
work, what their limitations are, and how they can be improved.

We will soon be able to write our own Riemann solvers and insert them into 
Clawpack to solve real problems. 

From now on, we can start thinking of projects that we want to develop with 
what we’ve learned.
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Traffic, anyone?

Found on Wikipedia this week: 
Considerable contemporary 
research, especially in Germany, 
on traffic flow as a fluid problem. 
The “fundamental diagram” at 
right is criticised by proponents of 
the “three-phase traffic theory”.

B.S. Kerner, The Physics of 
Traffic, Springer 2004, ISBN 
3-540-20716-3. 
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Examples of potential projects using Clawpack 
Euler equations:

Explosive volcanic eruptions
High-energy meteor impacts

Shallow-water equations:
Tsunami in a fjord system or in a basin of varied bathymetry

Dusty gas equations:
Fluidisation and hydrothermal venting
Geysers
Volcanic jets
Pyroclastic flows
DeLaval nozzle in a dusty gas

Airy-wave equations:
Normal (deep or intermediate) water waves
Pockmarks
Atmospheric dispersal of contaminants
Climate patterns

Elastic equations:
Seismic waves and deformations following impacts or severe earthquakes
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Project recipe:
Write down all the equations of the problem in conservative form, including 
closure relations (equations of state, for example). You should also prepare 
an entropy equation that will be calculable should transonic conditions (or 
centred rarefactions) arise.

Find the Jacobian of the corresponding quasilinear system, and calculate its 
eigenvalues and eigenvectors. 

For an arbitrary pair of right and left states, solve the Riemann problem: 

write down general formulas for the waves,             , the wave speeds    , the 

fluctuations                     and the entropy fix for the transonic case.

Prepare a new directory for the routines you must write. Write the Riemann 
solver (rp1.f) in Fortran in this directory. Figure out what special work space 
you need, what boundary conditions, source terms, and other things that you 
want, and what special variables you need to input or initialise, and write the 
appropriate routines (driver, setprob, setaux, qinit, bcN, b4stepN, srcN) in 
the same directory. Write a Makefile that points to these files, and construct 
setrun.py and seplot.py to fill the data files and make the plots. 

Then compile, run, and check your results. 
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Riemann 
solver for 
Burgers’ 
equation
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The shallow-water equations

We start this investigation with a system of 2 equations, the equations of 
wave propagation in shallow water. And we stay in one horizontal dimension.

The shallow-water equations are used, among other things, to calculate the 
propagation of tsunamis in mid ocean. Because tsunami wavelengths are 
often 20 times greater than typical ocean depths, their propagation closely 
follows the shallow-water equations. The water is assumed incompressible.

Conservation of mass:

Conservation of momentum:

Hydrostatic equation for pressure: 

!h
t
+ !(uh)

x
= 0

!(hu)t + !(hu2 )x + px = 0

p =
1

2
!gh2

D = unperturbed water depth h = height of wave above bottom

u = speed of bulk water motion! = water density

s = wave speed

Monday, 5 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

The shallow-water equations

Substituting the pressure equation into the momentum conservation 
equation and eliminating the constant density from both equations, we obtain 
the system of one-dimensional shallow-water equations:

Where the solution is smooth, we can linearise in the form 

and obtain the Jacobian matrix
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Eigenvalues and eigenvectors of the 
shallow-water equation

The Jacobian of the shallow-water system is

whose eigenvalues are

and eigenvectors 
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Small-amplitude shallow-water waves

If the water has constant unperturbed depth D and is moving with constant 

velocity (or is stationary), and if                             , then the Jacobian is  

with eigenvalues 

Small-amplitude shallow-water waves thus move at speed           relative to 

the motion of the water. In the deep ocean,  D ~ 5000 m, and the speed is 
therefore > 200 m/s, as fast as a jet plane. Tsunamis in mid ocean have 
typical amplitudes of centimetres and wavelengths of 10s of kilometres, so 
this small-amplitude shallow-water approximation applies for their mid-ocean 
propagation.  

As these waves approach a shore, the water depth decreases, the speed 
decreases, and the wave piles up; eventually the waves become nonlinear, 
steepen, and break.
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Other types of waves on water have 
different speeds (from Airy wave theory)

For deep-water and intermediate 
waves, the wave speed also 

depends on the wavelength !.

The diagram is for waves in a deep 

(D=5000 m) ocean basin. The 
transition to shallow-water behaviour 
occurs at wavelengths greater 
than           .
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?in $CLAW/book/chap13/swhump

see Fig 13.1 of Leveque

note: have to change in setplot.py:

 plotaxes.ylimits = varlimits[1]

Shallow-water waves: initial hump
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The hydraulic jump
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?in $CLAW/book/chap13/dambreak

see Fig 13.4 of Leveque

note: have to change in setplot.py:

 plotaxes.ylimits = varlimits[1]

Shallow-water waves: the dam break, 
showing both a shock and a rarefaction 
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The dam-break problem is a macroscopic 
Riemann problem

It resembles the shock 
tube from gas dynamics, 
but has only two waves, 
the shock and the 
rarefaction wave.

(Pressure and height are 
not independent)

heightpressure, vertically 
integrated

x

velocity waves

t

x

shock

rarefaction

fan
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t

x
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rarefaction
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2-characteristics

shock

Characteristics in the dam-break problem

Since there are two equations, there are two 
sets of characteristics. The 1-characteristics 
satisfy 

and the 2-characteristics satisfy 

The 1-characteristics spread out in the 
rarefaction 1-wave, and they cross the 2-
shock, bending because of the discontinuity 

in h.

The 2-characteristics meet each other at the 
2-shock and cross the rarefaction 1-wave, 
curving slightly as they go through it. 

The characteristics are straight elsewhere.

dX

dt
= !
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= u " gh,

dX

dt
= !

2
= u + gh.

Monday, 5 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Strategy for the Riemann problem in a 
nonlinear system

There may be more than one shock; sometimes shocks collide with one 
another - see the example at $CLAW/book/chap13/collide.

Given arbitrary right and left states ql, and qr representing two adjoining cells:

Determine which wave(s) are shocks and which are rarefactions.

Determine the intermediate states between the waves.

Determine the solution structure through the rarefaction waves - this is the 
only tricky part.

Usually an approximate Riemann solution will be used in practical finite 
volume methods. Such an approximate solver (the Roe solver) is found in 
$CLAW/book/chap13/collide/rp1sw.f 
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An isolated shock

Across an isolated shock, propagating with speed s with left and right states 

ql, and qr the Rankine- Hugoniot condition must be satisfied:

This can only hold for certain pairs ql and qr.

For example, for a linear system, qr – ql  must be an eigenvector of the 

system. For any given left state ql, the only possible right states qr  are those 

that lie (in state space) on straight lines in an eigen-direction from ql.

For a nonlinear system, there will be an equivalent requirement, but instead 

of straight lines, the allowable right states qr lie on curves, called Hugoniot 

loci, through ql.

f (qr )! f (ql ) = s(qr ! ql )
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The Hugoniot loci for shallow water equations

Fix                              We may think of this as either      or      in a Riemann 
problem, in which we need to find       , the middle state.  

We must ask: Which states    can be connected to       by an isolated shock?

The Rankine-Hugoniot condition                                             gives:

These are two equations with 3 unknowns               . We expect 1-parameter 
families of solutions, i.e. curves in the              state space.

We’ll get a quadratic equation, so in fact we will have two curves, or families 
of solutions. These are the Hugoniot loci, and on these curves lie candidates 
for states connected by 1-shocks or 2-shocks.

q
*
= (h

*
,u
*
).

q
*

q

s(q
*
! q) = f (q

*
)! f (q)

s(h
*
! h) = h

*
u
*
! hu

s(h
*
u
*
! hu) = h

*
u
*

2
! hu

2
+

1
2 g(h*

2
! h

2
)

(h,u, s)

q
r

ql
q
m

(u,uh)

Monday, 5 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

The Hugoniot loci for shallow water equations

We want to examine curves in the state space                so we eliminate s 
from the system: 

Substituting into the second equation, we get the quadratic equation

which has the two solutions 

s(h
*
! h) = h

*
u
*
! hu

s(h
*
u
*
! hu) = h

*
u
*

2
! hu

2
+

1
2 g(h*

2
! h

2
)

(u,uh)

s =
h
*
u
*
! hu

h
*
! h

u
2 ! 2u

*
u + u

*

2 !
g

2

h
*

h
!
h

h
*

"
#$

%
&'
(h
*
! h)

(

)
*

+

,
- = 0

u(h) = u
*
±

g

2

h
*

h
!
h

h
*

"
#$

%
&'
(h
*
! h)

Monday, 5 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

The Hugoniot loci for shallow water equations

The graph at right shows the two solutions 
for the Hugoniot loci for a particular case.

The blue curve is the solution with the + 
sign, the green one with the – sign. The 
system eigenvectors at     are shown as 
red arrows, tangent to the curves. 
Observe that the families switch curves 
at     . 

Consider that       could be either      or    . 

The states accessible from     are on the 

green curve to the left of     but on the blue 

curve to the right of     , following the 2-

eigenvector. Similarly the states 

accessible from      lie on the other curve.

Bot only the states to the right satisfy the 
entropy condition.
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The entropy condition for the shallow-water 
equations

The Lax Entropy condition is:

The characteristic velocities at                
are:

Across a 1-shock connecting      to      , 
the characteristic velocity must 

decrease, implying h must increase; 
likewise, across a 2-shock connecting    

to      , but in this case h must decrease.

Put       at      , then      must lie on the 
blue curve above and to the right.
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The Lax entropy condition

More fully, the Lax entropy condition is that the speed s of a shock between 

states ql and qr, is such that 

for some index p which defines the shock.

That is, the p-characteristics impinge on the p-shock, while the other 
characteristics simply cross the shock.

The eigenvalues and characteristics are assumed to be ordered: 
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Entropy: what is it anyway?

A little thermodynamics: for now,    ,   ,  , and     
represent heat, entropy, temperature, and work. 

A body giving off heat to its environment 
experiences a change in entropy defined by 

The second law of thermodynamics says that a 
cool body cannot spontaneously transfer heat to a 
warmer one. This implies that, for any system, 

!S
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Tsystem

" # 0
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heat 
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!Qcold
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The first law of thermodynamics says that a cyclical heat engine (perfectly 
reversible) operating between two reservoirs produces work equal to the 
amount of heat exchanged:

!W
reversible

= !Q
hot

" !Q
cold
.
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Entropy represents a degradation of energy

The condition for reversibility is that the entropy 
change be zero: 

so the reversible work is:

But if                  the work produced is reduced:
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The entropy increase thus degrades the energy into a form less 
available for producing work. This is the only completely objective and 
rigorous definition of entropy.

Monday, 5 October 2009



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

What does entropy mean for us?

In gas dynamics, a shock converts kinetic energy (upstream) into thermal 
energy (downstream), which is less useful for work. 

In the shallow-water equations, the hydraulic jump converts velocity into 
height. There is no energy equation, so height isn’t immediately useful. 

Usually in dynamic systems, it is bulk velocity or kinetic energy that suffers 
going across a shock. A collection of particles that enters a shock with high 
speed, leaves it at lower bulk speed but higher temperature.

A fluid element that enters a shock with high speed leaves it at lower speed. 
This is indeed the essence of the Lax entropy condition:

There are other notions of entropy that can be useful in other systems: for 
example, lack of information, larger number of microstates for a given 
macrostate, etc. The widely used notion of “disorder” is subjective and 
difficult to quantify.

!
p
(ql ) > s > !

p
(qr ).
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What if there are two shocks?

Since only certain pairs ql and qr can be connected by a single shock, what 

do we do in the general case when we have an arbitrary pair ql and qr and 
we know there are two shocks?

Answer: we find two shocks to connect them. Specifically, we find an 

intermediate state qm that is connected to both ql and qr by opposing 
shocks.

This is just as we did for the linear system, recall: 

q1

q2

t

x0

(x= !1 t) (x= !2 t)

ql qm qr

ql

qr
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The two-shock solution - collision!

But now we have a nonlinear system, 
and we must solve

for the intermediate state. This can be 
done graphically, but in a code it 
would be done by Newton’s method. 
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We can show that the dam-break has only one shock

A trial intermediate state is found by 
solving the same two equations:

but we see that the Hugoniot locus 
between     and      is not an allowable 
shock, since the 1-characteristic 
increases along that path. 

Instead those states must be 
connected by a rarefaction wave. We 
have to replace the Hugoniot locus 
with the integral curve of     . 
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Integral curves for the dam-break problem

Since a shock is not an allowable 
connection between     and      , 

we need to connect these states via 
the rarefaction wave, within which the 
1-characteristics vary smoothly 
varying. 

So we construct integral curves of the 
appropriate eigenvector,    in this case. 

These are curves in the state plane 
that are everywhere tangent to    . We 
obtain the integral curves by solving 
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The integral curves and Riemann invariants

The integral curves for     , shown at 
right, have the form 

for the curve passing through 

and therefore the function 

is invariant along each curve. These 
curves are therefore a contour diagram 
for this function, called the 1-Riemann 
invariant. 

Compare the integral curves for    to 
the equation for the 1-Hugoniot locus:
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The integral curves and Riemann invariants

Similarly,      has integral curves given 
by  

for the curve passing through 

and therefore the function 

is the 2-Riemann invariant. 

For comparison, the equation for the 2-
Hugoniot locus is:
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The correct solution for the dam-break problem

We have to connect    and       through 
a rarefaction wave via an integral 
curve, and at the same time connect      
and      through a shock via a Hugoniot 
locus. 

Here the Hugoniot loci through     and    

are shown as solid lines (blue for p=1, 

green for p=2) and the integral curves 
are shown as dotted lines (purple for  

p=1, red for p=2). They are close 
together, but their difference is 
important.

The true middle state is thus given by 
the intersection of the green solid line 
and the purple dotted line. Again, this 
can be found by an iterative method. 
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The general (exact) Riemann solver for the 
shallow-water equations

For general values of      and     we could have a combination of shocks and 
rarefactions and we have to find out which are which. 

We define two functions 

and then we find the state      for which                                 .  

ql q
r

u = ! l h( ) =

ul + 2 ghl " gh( )           if h < hl

ul " h " hl( )
g

2

1

h
+

1

hl

#
$%

&
'(

   if h > hl

)

*
+
+

,
+
+

u = !r h( ) =

ur " 2 ghr " gh( )           if h < hr

ur + h " hr( )
g

2

1

h
+

1

hr

#
$%

&
'(

   if h > hr

)

*
+
+

,
+
+

q
m

!
l
h
m( ) = !r

h
m( )

Monday, 5 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Some integral curves 
(solid) and Hugoniot loci 
(dotted) for the shallow-
water equations. An 
iterative solver can start 
from the intersection of 
the integral curves, which 
can be obtained explicitly.
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There’s still more in Chapter 13

Learn the differences between:

simple waves, rarefactions, contact discontinuities, and shocks

What is meant by: 

genuine nonlinearity, linear degeneracy
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Gas Dynamics 
(Chapter 14 in Leveque)
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We’ve already encountered the barotropic 
set of equations

Conservation of 

mass:                           flux:

momentum:                  flux:

(energy) - not needed in the barotropic case; we’ll save this for later

The conservation laws in one dimension are:

Together with the barotropic equation of state:

these define the system. 

!
t
+ (!u)

x
= 0

!u( )
t
+ !u2 + p( )

x
= 0

p = P(!),

! !u

!u (!u)u + p
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Compressible gas dynamics - flow in a pipe
Conservation laws:

Let’s first try to understand the momentum equation a little better.

                 is the advective flux;

          , the pressure in a cell, (times the cell’s cross-sectional area) is the 
force, which by Newton’s second law changes the momentum.       

But       can also be understood more directly as a momentum flux due to the 
microscopic motion of gas molecules.

x1 x2

!
t
+ (!u)

x
= 0

!u( )
t
+ !u2 + p( )

x
= 0

(!u)u

p

p
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Momentum flux arising from pressure

The green and blue molecules are at the same 
temperature and pressure. Nevertheless the 
pressure contributes to a momentum flux in the 
following way:

Green molecules moving right across x1 increase 
the positive momentum in [x1, x2].

Blue molecules moving left across x1 decrease the 
negative momentum in [x1, x2] and therefore also 
increase the positive momentum.

If the pressure is uniform everywhere, however, 
there is no net increase in positive momentum in 
[x1, x2] because the same considerations at x2 lead 
to a decrease in the positive momentum in [x1, x2] 
by exactly the same amount.

x1 x2x0
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Acceleration arising from pressure gradient

The green molecules have the same density 
but higher temperature, therefore higher 
pressure, than the blue molecules.

Again, green molecules that cross to the right 
increase the momentum in [x1, x2] and blue 
molecules that cross to the left do also.

But in this case this momentum flux is not 
exactly compensated at x2 because the 
exchange of momentum there is less 
vigorous. 

Hence there is a net positive momentum flux 
across x1 due to the pressure gradient, which 
leads to a macroscopic acceleration, even 
though the individual molecules are not 
accelerated.

x1 x2x0
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!
t
+ (!u)

x
= 0

!u( )
t
+ !u2 + p( )

x
= 0

The barotropic equations and the shallow-
water equations

The conservation laws for the barotropic system (i.e. with                    )                                             

are exactly like the shallow water equations if we identify      with h and use 

the equation of state

Other barotropic forms include the isothermal equation of state 

and the polytropic (or gamma-law) equation of state

But next we add the energy equation…

p = P(!)
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p = P(!) =
1

2
g!2
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p = P(!) = K!"
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The Euler equations of gas dynamics

This is the full system of three conservation laws, for mass, momentum, and 
energy, for fully compressible gas dynamics:

where

The total energy is composed of internal energy plus kinetic energy, 

and the system is completed by an equation of state                        .       

The Jacobian              has eigenvalues u–c, c, u+c where the speed of 

sound is                     at constant entropy.

e = e(p,!)
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The equation of state and associated 
relations for a polytropic gas

The ideal gas law:

The internal energy:

The enthalpy:

Relations between the specific heats:

      number of molecules per unit mass           Boltzmann’s constant                         

      specific heat at constant volume                number of degrees of freedom 

      specific heat at constant pressure              adiabatic exponent
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Entropy

In the system of Euler equations for gas dynamics, we have the advantage 
of having an explicit formula for entropy that we can use as an entropy 
condition.

The specific entropy s (i.e. entropy per unit mass) is given by the formula:

The additive constant is unimportant and may be omitted, since the 
important thing to keep track of is changes in entropy. In smooth flow, 
entropy is constant; at shocks it jumps to a higher value.

s = c
v
log

p

!"

#
$%

&
'(
+ constant
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Primitive variables

It is often useful to examine the 
equivalent equations in directly 
observable “primitive” variables, 
rather than the conserved 
variables.

The Euler equations in primitive 
form for a polytropic gas:

in matrix notation:
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Then the eigenvalues and eigenvectors 
are:

where

is the speed of sound in the polytropic gas.
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The Jacobian for the conservation laws

This (for the polytropic gas) is slightly more complex, though equivalent:

where                                    is the total specific enthalpy.

And the eigenvalues and eigenvectors are:
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The Riemann invariants for the polytropic gas

Of the three eigenvectors, 1 and 3 represent waves that can become either 
rarefactions or shocks, while 2 is linearly degenerate and can only be a 
contact discontinuity.

For any simple wave (not a rarefaction or a shock), the Riemann invariants 
are constant along particle paths through the wave. These are, for the 3 
waves:

1-wave: s,     u +
2c

! "1

2-wave: u,   p  

3-wave: s,     u "
2c

! "1
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Assignment for next time

Read Chapter 13 and Chapter 14.

Work problems 13.2 and 13.4. 

For extra credit, write a Fortran program that uses an 
iterative root finder (like Newton’s method) to find the 

intermediate state qm from the Hugoniot loci and integral 
curves for the shallow-water equation as described in 
section 13.10. 

Hand these in to me by Monday 12 October.
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Next: Finite Volume 
Methods for Nonlinear 

Systems
(Ch 15)
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