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Our schedule

date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part of 9

29 Sep 2009 Tuesday 13.15-15.00 nonlinear conservation laws, finite volume methods 11 & 12

5 Oct 2009 Monday 13.15-15.00 nonlinear equations & systems 13, part of 14

12 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems part of 14, 15

19 Oct 2009 Monday 13.15-15.00 varying flux functions, source terms part of 16, 17

26 Oct 2009 Monday 13.15-15.00 multidimensional hyperbolic problems & methods 18 & 19

2 Nov 2009 Monday 13.15-15.00 systems & applications; project planning  20 & 21

16 Nov 2009 Monday 13.15-15.00 applications: tsunamis, pockmarks, venting, impacts

23 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

30 Nov 2009 Monday 13.15-15.00 review; progress, problems & projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE
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Gas Dynamics 
(Chapter 14 in Leveque)
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The barotropic equations and the shallow-
water equations

The conservation laws for the barotropic system (i.e. with                    )                                             

are exactly like the shallow water equations if we identify      with h and use 

the equation of state

Other barotropic forms include the isothermal equation of state 

and the polytropic (or gamma-law) equation of state

But next we add the energy equation…
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The Euler equations of gas dynamics

This is the full system of three conservation laws, for mass, momentum, and 
energy, for fully compressible gas dynamics:

where

The total energy is composed of internal energy plus kinetic energy, 

and the system is completed by an equation of state                        .       

The Jacobian              has eigenvalues u–c, c, u+c where the speed of 

sound is                     at constant entropy.
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The equation of state and associated 
relations for a polytropic gas

The ideal gas law:

The internal energy:

The enthalpy:

Relations between the specific heats:

      number of molecules per unit mass           Boltzmann’s constant                         

      specific heat at constant volume                number of degrees of freedom 

      specific heat at constant pressure              adiabatic exponent
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Entropy

In the system of Euler equations for gas dynamics, we have the advantage 
of having an explicit formula for entropy that we can use as an entropy 
condition.

The specific entropy s (i.e. entropy per unit mass) is given by the formula:

The additive constant is unimportant and may be omitted, since the 
important thing to keep track of is changes in entropy. In smooth flow, 
entropy is constant; at shocks it jumps to a higher value.
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v
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Primitive variables

It is often useful to examine the 
equivalent equations in directly 
observable “primitive” variables, 
rather than the conserved 
variables.

The Euler equations in primitive 
form for a polytropic gas:

in matrix notation:
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Then the eigenvalues and eigenvectors 
are:

where

is the speed of sound in the polytropic gas.
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The Jacobian for the conservation laws

This (for the polytropic gas) is slightly more complex, though equivalent:

where                                    is the total specific enthalpy.

And the eigenvalues and eigenvectors are:
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Genuine nonlinearity, linear degeneracy

Nonlinear systems of hyperbolic equations 
produce shocks and rarefaction waves; linear 
systems do not.

Nonlinear systems have integral curves and 
Hugoniot loci that diverge from one another; in 
linear systems these curves are identical.

But even in nonlinear systems, some waves can 
in fact act like linear waves in this sense. 
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Genuine nonlinearity, linear degeneracy

A wave (or field, we may say, referring to the collection of waves of the same 
family in all accessible space) is genuinely nonlinear if

Physically this means that the characteristics are either compressing or 
expanding.

The opposite case is linear degeneracy,

in this case the characteristics are parallel to one another.
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The Euler equations have one linearly 
degenerate field 

This is easiest to see in the eigensystem for the primitive equations. In this 
case the gradient operator is defined by 

                        ,    so we find

And therefore 
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The Riemann invariants for the polytropic gas

Thus, of the three eigenvectors, 1 and 3 represent waves that can become 
either rarefactions or shocks, while 2 is linearly degenerate and can only be 
a contact discontinuity.

For any simple wave (not a rarefaction or a shock), the Riemann invariants 
are constant along particle paths through the wave. These are, for the 3 
waves:

1-wave: s,     u +
2c

! "1

2-wave: u,   p  

3-wave: s,     u "
2c

! "1
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Now we can make 
more sense of the 
shock tube!

A closed tube filled with gas, separated by 
a membrane into sections with different 
densities. 

The membrane is suddenly removed, and 
the gas starts moving from the high-density 
region into the lower density region.

Three waves develop: a shock wave, a 
contact discontinuity, and a rarefaction 
wave (or fan). The first two travel to the 
right, the third to the left.

At the shock, velocity, pressure and 
density are all discontinuous. At the 
contact, only density is discontinuous. In 
the rarefaction fan, all variables are 
continuous, but their derivatives are not.
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The Riemann problem for 3 waves:

Now we have to solve for two intermediate states, not just one as 
before. And we have the rarefaction fan to deal with.

Note that only density changes across the contact discontinuity. This 
helps matters, in that we can use almost the same procedure as for the 
2-equation shallow water set. 

First we obtain              and then we use separate conditions to 
determine     and    .
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The Riemann problem for 3 waves:

The 2-field is linearly degenerate. Across the contact u and p will be 

constant and only ! will jump.

The strategy for solving the problem is to use the Hugoniot loci and integral 

curves for the 1-field and 3-field, in the phase plane of u and p, in the same 

way as for the shallow-water equations to obtain            . Then we calculate 
the densities on either side of the contact. Finally we solve for the solution 
within the rarefaction fan.
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The general (exact) Riemann solver for the 
Euler equations for a polytropic gas
As before, we define functions

where               . 

We then require that                           , using an iterative procedure to find 
the intersection             of the curves. The densities on either side of the 
contact will then be given by 
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Hugoniot loci and integral curves for the 
Euler Equations (polytropic gas)
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Some integral curves 
(solid) and Hugoniot loci 
(dotted) for the Euler 
equations. Just as in the 
shallow water equations, 
these curves are close 
together in many places. 
An iterative solver can 
start from the intersection 
of the integral curves, 
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explicitly.
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The 1-rarefaction to connect the 

states ql and ql
*. Again we take 

advantage of the fact that the 
solution is a similarity solution, 
constant along the rays            . And 
we also know that the 1-Riemann 
invariant is constant through a 
rarefaction wave: 

We now have everything except the rarefaction:

Then we have that                           within the rarefaction wave, so we can rewrite 
the Riemann invariant as

and solve for u as a function of #.
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The 1-rarefaction to connect the 

states ql and ql
*. Again we take 

advantage of the fact that the 
solution is a similarity solution, 
constant along the rays            . And 
we also know that the 1-Riemann 
invariant is constant through a 
rarefaction wave: 

We now have everything except the rarefaction:

Then we have that                           within the rarefaction wave, so we can rewrite 
the Riemann invariant as

and solve for u as a function of #.
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Continuing the solution within the rarefaction

Then since           is constant, Q
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we solve for u as a function of #:

With the Riemann invariant
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Continuing the solution within the rarefaction

The exact solution is a perfect and complete 
structure and can be solved using iterative 
methods. 
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we solve for u as a function of #:

With the Riemann invariant
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Continuing the solution within the rarefaction

The exact solution is a perfect and complete 
structure and can be solved using iterative 
methods. 

However, in practical computation all of this is 
not used; instead we will use approximate 
Riemann solvers. 
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With the Riemann invariant
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Continuing the solution within the rarefaction

The exact solution is a perfect and complete 
structure and can be solved using iterative 
methods. 

However, in practical computation all of this is 
not used; instead we will use approximate 
Riemann solvers. 

The exact solution is useful for verification, 
however.
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we solve for u as a function of #:

With the Riemann invariant
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Multifluid problems and other equations of state

The easiest multi-fluid case is when you have two ideal gases with different 

values of ". Then you set up the Riemann problem at the interface between 

the two fluids with right and left values for ". Things get complicated when 

mixing occurs.

Other analytical or tabular equations of state can also be incorporated into a 
finite volume conservative scheme. Sage, for example, uses the Sesame 
library of tabular equations of state for lots of materials. The Sesame library, 
developed at Los Alamos National Laboratory, contains mostly industrial 
materials, with a few materials of geological interest.

Leveque gives lots of references to papers in which Riemann solvers are 
developed for other equations of state in his section 14.15. Some of these 
will be worth looking into for geological applications.
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Dusty Gases, Anyone?

Marica Pelanti, a student of Randy 
Leveque, developed a code based on 
Clawpack for volcanic jets using a dusty 
gas model.  

See*: Pelanti & Leveque, "High-Resolution 
Finite Volume Methods for Dusty Gas Jets 
and Plumes", SIAM J. Sci. Comput. 28 (2006) 
1335-1360.

Their model was multifluid: Euler 
equations for the gas, and a pressure-
less fluid for the dust, coupled together 
by drag and heat transfer.

Or… we could try a single-fluid dusty gas 
equation of state. 

* http://www-roc.inria.fr/bang/Pelanti/
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What happens when we add dust to gas?

The speed of acoustic waves in a general medium is, 

which for an ideal gas is

  

Assuming the dust remains coupled to the gas (via Stokes drag), for a little 
loading the density increases without the pressure changing much.

Thus the speed of sound decreases. In fact, it does so dramatically.
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An equation of state for a dusty gas*

One version of a dusty-gas equation of state is: 

where K is the mass concentration and Z is the volume fraction of solid particles. 

These are related through                 where     is the particle solid density. 

The speed of sound is then

where the ratio of specific heats for the mixture is 

The specific heat of the dust particles is Csp and Cv is the specific heat at 

constant volume of the gas. 

p =
(1! K )

(1! Z )
"RT ,

cds =
!p

"(1# Z )

! =
"Cv (1# K )+CspK

Cv (1# K )+CspK
.

K =
Z!

s

!
,

*from Vishwakarma, Nath, & Singh (2008), Physica Scripta 78 035402.
http://stacks.iop.org/PhysScr/78/035402

!
s
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Density increases more rapidly than pressure as 
the dust content increases

ρ

Z (volume fraction of dust)

pressure right scaledensity left scale

p

2.0

10.0!

  1.0
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6.0

7.0

(g/cc)

0.00
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0.10

1.00

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+001E+00

(bar)

Assumptions: 

spherical dust particles 

150 ! radius, 2.5 g/cc density, specific heat 0.92 J/g K

air at density 1.204e-3 g/cc, temperature 293 K
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Adding 2% dust (by volume) to air reduces the speed of sound to 

50 m/s, and the mixture becomes nearly isothermal
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specific heats 
of the mixture

Γ

volume fraction occupied by dust particles

Assumptions: 

spherical dust particles 

150 ! in radius, 2.5 g/cc density, specific heat 0.92 J/g K

air at density 1.204e-3 g/cc, temperature 293 K
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De Laval Nozzle

Invented by the Swedish inventor 

Gustaf de Laval in 1897.

This nozzle is the basis of how jet 

engines and rocket engines work. 

The converging-diverging profile, 

with a sufficient difference in 

pressure between the reservoir and 

the exhaust, results in a smooth 

transition from subsonic to 

supersonic flow. 
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How does a deLaval nozzle work?

v
2

2
+

!
! "1

#
$%

&
'(
p

)
= constant along a streamline,

Bernoulli’s equation says that, for steady flow of a gas (ignoring gravity),

Suppose we have a reservoir at high pressure connected 
via a pipe to a medium at much lower pressure.

Then there is a maximum velocity at steady flow given by:

v
max

= c
0

2

!
0
"1

where c0 and "0 refer to the thermodynamic conditions 

in the reservoir (where v=0), and this maximum value is 

obtained when the gas flows out into a vacuum (p=0).

=
v

2

2
+

c
s

2

! "1
 for an ideal gas.
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How does a deLaval nozzle work?

Using                 where c is the local sound speed 

throughout the system, we get 

Euler’s equation gives us the relation between v and ! along a streamline:                     

vdv =
dp

!
.

dp = c
2!,

d !v( )
dv

= ! 1"
v
2

c
2

#
$%

&
'(
,

indicating that the mass flux !v has a maximum where v is 

equal to the local sound speed. By continuity, this maximum 

holds at the narrowest point of the pipe, where v itself is 

equal to its maximum.

For the isentropic case, the flux is 

!v =
p

p
0

"
#$

%
&'

1/(
2(
( )1

p
0
!
0
1)

p

p
0

"
#$

%
&'

( )1( )/(*

+
,
,

-

.
/
/

Monday, 12 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

How does a deLaval nozzle work?

The maximum discharge rate is 

reached, if ever, at the narrowest 

point of a nozzle. 

If the pressure at this point is less 

than 0.53 p0 (in air) or less than 0.6 

p0 (in a 2% dusty gas), the flow 

speed equals the sound speed at 

that point. In the diverging portion, 

it becomes supersonic without 

passing through a shock.

In a dusty gas it is easier to get to 

supersonic flow both because the 

local sound speed is lower and 

because the maximum discharge is 

reached with a lower pressure 

drop.

!v =
p

p
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,
,

-

.
/
/
,
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Vents, kimberlite pipes, and geysers may be 
natural deLaval nozzles for a dusty gas
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Shocks can be stronger in dusty gases

The maximum ratio of upstream to downstream densities across a shock is (see 

Landau & Lifshitz, Fluid Dynamics)

For a diatomic gas (like air),

For a dusty gas,                            can be arbitrarily large. At   

!
u

!
d

=
" +1

" #1
.

! = 1.4,  so 
"
u

"
d

= 6.

! "1,  so 
#
u

#
d

! = 1.01,  
"
u

"
d

= 201.
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The Mie-Grüneisen-Lemons Multiphase EOS 

This is an equation of state 
proposed by Don Lemons based 
on Mie-Grüneisen theory for 
substances that undergo 
relatively simple phase 
transitions from solid to liquid to 
gas. 

In common with the van der 
Waals EOS (see Leveque, ch 
14.15 and 16.3.2), this EOS 
results in loss of hyperbolicity 
unless Maxwell constructions 
are used. 

This EOS has substance-
specific constants 

p = !c
v
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Finite Volume Methods for 
Nonlinear Systems

(Chapter 15 in Leveque)
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Once again, we extend from what we’ve 
learned for linear systems of equations

We intend to solve the nonlinear conservation law

using a method that is in conservative form:

and yielding a weak solution to this conservation law. To get the correct 
weak solution we must use an appropriate entropy condition.

qt + f (q)x = 0

Q
i

n+1
=Q

i

n
!
"t

"x
F
i+1/2

n
! F

i!1/2

n( )
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Recall Godunov’s method:

Given a set of cell quantities       at time n:

1. Solve the Riemann problem at          to obtain 

2. Define the flux:

3. Apply the flux differencing formula:

This will work for any general system of conservation laws. Only the 
formulation of the Riemann problem itself changes with the system. 

Fi!1/2
n

= f Qi!1/2

"( )

Q
i

n

Qi!1/2

"
= q

"
(Qi!1

n
,Qi

n
)x

i!1/2

Q
i

n+1
=Q

i

n
!
"t

"x
F
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n
! F

i!1/2

n( )
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In terms of the REA scheme we have discussed

1. Reconstruct a piece-wise linear function from the cell 
averages.

with the property that TV(q) " TV(Q) 

2. Evolve the hyperbolic equation (approximately) with this 
function to obtain a later-time function, by solving 
Riemann problems at the interfaces. 

3. Average this function over each grid cell to obtain new 
cell averages.

 
!q
n
(x,t

n+1
)

The reconstruction step depends on the slope limiter that is chosen, and 
should be subject to TVD constraints. The other two steps do not affect TVD.

q
n
(x,tn ) =Qi

n
+! i

n
(x " xi ) for x in cell i

 

Qi

n+1
=
1

!x
!q
n
(x,tn+1)

xi"1/2

xi+1/2

# dx

evolve

reconstruct

average
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Recall what TVD means:

Monotonicity preserving methods:

If a grid function that is initially monotone, i.e.

remains monotone at the next time:  

then the method is monotonicity preserving.

Total Variation Diminishing (TVD) methods:

Define the total variation of a grid function Q as:

A method is Total Variation Diminishing if 

If Qn is monotone, then so is Qn+1, and no spurious oscillations are 

generated.

This gives a form of stability necessary for proving convergence, also for 
nonlinear conservation laws.

TV(Q) = Q
i
!Q

i!1

grid

"

TV(Q
n+1
) ! TV(Q

n
)

Q
i

n
!Q

i"1

n  for all i at step n

Q
i

n+1
!Q

i"1

n+1  for all i at step n +1
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For advection, the REA algorithm gives us:

We update the advection equation by

where the slope is given by 

where      is the flux limiter function. 

Choices for the flux limiter are:
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Slope limiters and flux limiters

The slope limiter formula for advection is:

The flux limiter formulation for advection is:

with the flux:
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Wave limiters:

Let:

Upwind formula:

Lax-Wendroff formula:

High-resolution method:
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Extension to linear systems

Approach 1: 

Diagonalise the system to

Apply the scalar algorithm to each component separately.

Approach 2: 

Solve the linear Riemann problem to decompose                  into a number 
of waves.

Apply a wave limiter to each wave.  

These approaches are equivalent.

But note that it is important to apply the limiters to the waves rather than to 
the original variables.
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Wave propagation methods

Solving the Riemann problem between cells i and i+1 gives the waves

and speeds          . In the nonlinear case, an approximate solution is used.

These waves update the neighbouring cell averages via fluctuations, 
depending on sign of           . 

The waves also give the decomposition of the slopes

Apply the limiter to each wave to obtain 

Use the limited waves in the second-order correction terms.
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High-resolution wave-propagation scheme

The fluctuation notation is more useful in the nonlinear case:

where

             represents the limited version of             .    

This is obtained by comparing                with              where  
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Wave limiters for a system

                is split into waves

We replace these waves with the limited versions

where                                        , and                                        .

Note that if                          then                          . 

In the scalar case this reduces to 
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The exact Riemann solver for the nonlinear problem is 
expensive, and most of it is not necessary!

These are useful for exact 
solutions of certain problems.

But in simulations we only need 
the solution at the cell interface!
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The exact Riemann solver for the nonlinear problem is 
expensive, and most of it is not necessary!

These are useful for exact 
solutions of certain problems.

But in simulations we only need 
the solution at the cell interface!
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But we do need to know where the cell interface lies with 
respect to the waves, and compute accordingly

Q
i

n

x
i!1/2

Q
i!1

n

ql

ql
*

q
r

*

q
r

Q
i

n

x
i!1/2

Q
i!1

n

ql

ql
*

q
r

*

q
r

Q
i

n

x
i!1/2

Q
i!1

n

ql

ql
* q

r

*

q
r

Q
i

n

x
i!1/2

Q
i!1

n

ql

ql
* q

r

*

q
r

Q
i

n

x
i!1/2

Q
i!1

n

ql

ql
*

q
r

*

q
r

Monday, 12 October 2009



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Wave interactions

Waves that interact with each other within a cell will not change the cell-
interface values on the next time step provided the Courant number is less 
than 1.
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Riemann solvers in CLAWPACK

In CLAWPACK, the hyperbolic problem is specified by providing a Riemann 

solver with 

Input: the value of q in each grid cell

Output: the solution to the Riemann problem at each cell interface:

The Waves                                  for a system of m equations

The Speeds

The Fluctuations              , for high-resolution corrections

Because the problem is solve entirely using Riemann solvers, you won’t see 
anything in the code that resembles the original system of partial differential 
equations. 

  W
p
, p = 1,2,…,m

 s
p
, p = 1,2,…,m

 A
±
!Q
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Wave propagation for nonlinear systems

An approximate Riemann solver is typically used to get the wave 
decomposition

where the wave                  propagates at a speed            .

If we define                                  as a linearised approximation to             

valid in the neighbourhood of (Qi, Qi-1 ),

then we can solve the simpler linear Riemann problem at that cell interface 
for the linearised equation:

to obtain
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Approximate Riemann Solvers

Approximate the true Riemann solution by a set of waves consisting of finite 
jumps propagating at constant speeds (as in the linear case).

Use a local linearisation: replace                             by                                 

where 

Then decompose

to obtain the waves                        with speeds  

But how do we chose 

qt + f (q)x = 0 qt + Âi!1/2qx = 0,

Â = Â(ql ,qr ) ! "f (qave ).

ql ! qr = "
p
r̂
p

p=1

m

#

 W
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= !

p
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p
                    s
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=

ˆ"
p
.

Â?
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Approximate Riemann Solvers

Properties desired for 

must be diagonalisable with real eigenvalues 

With these properties, the method will be conservative, it will give the right 
answer across shocks (why?), and it is a good approximation for smooth 
flow.

We could take                                    where           is a suitable average 

of                  . We’ll use basically this approach.

Or we could take 

Â :

Âi!1/2
" #f (q)!!!as Qi!1

,Qi " q

Âi!1/2 Qi !Qi!1( ) = s Qi !Qi!1( ) = f Qi( )! f Qi!1( )

Â

Âi!1/2 = "f Q̂i!1/2( ) Q̂
i!1/2

Q
i!1
,Q

i( )

Âi!1/2 =
1

2
"f Qi!1( ) + "f Qi( )#$ %&.
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Example: Roe solver for shallow-water equations

                             = depth

                             = bulk speed, varies only with x

Conservation of mass and momentum gives the system:

which has the Jacobian matrix:

qt + f (q)x =
h

hu

!

"
#

$

%
&
t

+

hu

hu
2
+
1

2
gh

2

!

"

#
#
#

$

%

&
&
&
x

= 0.

!f (q) =
0 1

"u2
+ gh 2u

#

$
%
%

&

'
(
(
,     )=u ± gh.

h = height of wave above bottom

u = speed of bulk water motion! = water density

h(x,t)

u(x,t)
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Roe solver for Shallow Water

Given                              define                                                                    .

Then if     is defined as the Jacobian matrix evaluated at the special state

we find that:

the Roe conditions are satisfied,

an isolated shock is modelled well,

and the wave propagation algorithm is conservative. 

If we use limited waves, we obtain high-resolution methods as before.
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Roe solver for Shallow Water

Given                              define                                                                    .

Then if     is defined as the Jacobian matrix evaluated at the special state

we find that:

the Roe conditions are satisfied,

an isolated shock is modelled well,

and the wave propagation algorithm is conservative. 

If we use limited waves, we obtain high-resolution methods as before.
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“Roe average”
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Roe solver for Shallow Water

Given                              define                                                                    .

Then if     is defined as the Jacobian matrix evaluated at the special state

the  eigenvalues of                      are:

and the eigenvectors are:
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The Shallow-water Riemann solver in 
Clawpack is a Roe solver

“Roe average”

from: $CLAW/book/chap13/swhump1/rp1sw.f
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The Harten-Lax-van Leer (HLL) Solver

This solver uses only 2 waves with 

s1 = minimum characteristic speed

s2 = maximum characteristic speed

Write

where the middle state       is uniquely determined by the conservation 
requirement:

Modifications of this include positivity constraints and the addition of a third 
wave.

 W
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f-wave approximate Riemann solver

Instead of splitting Q into waves, we might consider splitting the flux f into 

“waves”                   :

It turns out this is useful for spatially varying flux functions, i.e.

with applications, for example, in:

wave propagation in heterogeneous nonlinear media,

flow in heterogeneous porous media,

traffic flow with varying road conditions,

conservation laws on curved manifolds,

and certain kinds of source terms.
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Flux-based wave decomposition (f-waves) 

Choose wave forms rp (for example, eigenvectors of the Jacobian on each 

side).

Then decompose the flux difference:
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Wave propagation algorithm using waves

In the standard version:
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Wave propagation algorithm using f-waves

            Using f-waves:
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f-wave approximate Riemann solver

Let      be any averaged Jacobian matrix, for example:

Use eigenvectors of     to do f-wave splitting.

Then                                                                               , so the method is 
conservative. 

If        is the Roe average, then this is equivalent to the normal Roe Riemann 
solver, and 

Â
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Assignment for next time

Read Chapter 14 and Chapter 15.

Write (in Fortran) an approximate Riemann solver for the 
Euler equations using the Roe average. Test it on the 
shock tube problem, or (optionally) on the Woodward-
Collella blast-wave problem. Use the shallow-water 
Riemann solver as a guide.

Hand in your code and results to me by Monday 19 
October.
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