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Our schedule

date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part of 9

29 Sep 2009 Tuesday 13.15-15.00 nonlinear conservation laws, finite volume methods 11 & 12

5 Oct 2009 Monday 13.15-15.00 nonlinear equations & systems 13 & 14

12 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems 15

19 Oct 2009 Monday 13.15-15.00 source terms and multidimensions 16,17,18,19

26 Oct 2009 Monday 13.15-15.00 multidimensional systems 20 & 21

2 Nov 2009 Monday 13.15-15.00 any other topics; project planning

16 Nov 2009 Monday 13.15-15.00 applications: tsunamis, pockmarks, venting, impacts

23 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

30 Nov 2009 Monday 13.15-15.00 review; progress, problems & projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE
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Newton’s Method for finding a root of a function

Newton’s method aims at finding a root by 
extrapolating from the function’s slope at the 
point where each successive guess is taken. 
This is very robust, provided there are no 
intervening extrema.

Each successive guess is given by 

where the slope k is chosen from 

First guess

Second guess

Third guess

xn+1 = xn !
f (xn )

k

(a)!k = !f xn( )

(b)!k =
f xn( )" f xn"1( )

xn " xn"1

(c)!k =
f xn( )" f xm( )

xn " xm

tangent method

secant method; more convenient than the tangent method 
when the derivative is unavailable or difficult to compute.

regula falsi; m is the most recent guess in which the function 
has the opposite sign. This method always brackets the root 
and is therefore most robust, but generally a bit slower. 
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An exact Riemann 
solver on a 

spreadsheet for the 
Euler equations
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How to use an approximate Riemann solver

Since we only need the solution at the cell interface, we determine the state 
along              , calling it       . Thus with 

we form the fluctuations as

You can sometimes use

which is conservative if

as is true for the Roe solver. 

x / t = 0 Q
*

 

Q
*
=Qi!1 + Wi!1/2

p

p:s
p
<0

" !!,!!Fi!1/2 = f (Q
*
),

 
A

!
"Q = Fi!1/2 ! f Qi!1( ),!!!A+"Q = f Qi( )! Fi!1/2 .
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+
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The Roe solver

The most widely used approximate Riemann solver is the one developed by 
Phil Roe at the Royal Aircraft Establishment. The approach is to solve the 
linearised equation 

where     is an average matrix such that 

and 

The Roe-average matrix can be determined analytically for many important 
nonlinear systems, including the shallow-water equations and the Euler 
equations.  

 

qt + Âqx = 0,

Â

Ârl qr ! ql( ) = f qr( )! f ql( ) = s qr ! ql( )

Â qr ,ql( ) ! Ârl " #f qave( ).
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Roe’s approximate Riemann solver

Roe suggested these constraints for       :

1.                                                         Cf. Rankine-Hugoniot condition.

2.      is diagonalisable with real eigenvalues.

3.                              smoothly as                    .

A single shock is captured exactly because (1.) is essentially the Rankine-
Hugoniot jump condition. 

                                                implies that             is an eigenvector of      .

It is a good approximation for weak waves, or smooth flow. 

The wave-propagation algorithm is also conservative since 

Â

Ârl (qr ! ql ) = f (qr )! f (ql )

Â

Ârl ! "f (q ) ql ,qr ! q

 

A
!
"Qi!1/2 +A

+
"Qi!1/2 = si!1/2
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p

p

# = Â Wi!1/2
p
.

p

#

f (qr )! f (ql ) = s(qr ! ql ) Âqr ! ql
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Roe solver for the Euler equations

The eigensystem of the Euler equations for a polytropic gas is:

These need to be evaluated at the Roe-averaged state, so we need the Roe 

averages for u, H, c. These are:

!1 = u " c !2 = u ! 3 = u + c

r
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û
2$

%&
'
()

Monday, 26 October 2009



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Roe solver for the Euler equations

Then the wave decomposition between the 
left and right states is

where 
Q
i

n
Q
i!1

n

Riemann

Roe

! "Q
i
#Q

i#1
= $

1
r̂
1
+$

2
r̂
2
+$

3
r̂
3

Q
i

n
Q
i!1

n

! 2
= " #1( )

Ĥ # û2( )$ 1 + û$ 2 #$ 3

ĉ
2

! 3
=
$ 2 + ĉ # û( )$ 1 # ĉ! 2

2ĉ

!1
= $ 1 #! 2 #! 3

But note that, while the Riemann solution consists of three waves, one of 
which is a rarefaction fan, the Roe solution only consists of three waves. In 

most cases this does not matter, since the desired solution at x/t=0 will be 
the same intermediate state. In the case of a transonic rarefaction a 
modification (in the form of an entropy fix) is necessary.
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2ĉ

!1
= $ 1 #! 2 #! 3

But note that, while the Riemann solution consists of three waves, one of 
which is a rarefaction fan, the Roe solution only consists of three waves. In 

most cases this does not matter, since the desired solution at x/t=0 will be 
the same intermediate state. In the case of a transonic rarefaction a 
modification (in the form of an entropy fix) is necessary.

Monday, 26 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Entropy fix for transonic rarefactions

Suppose there is a transonic rarefaction in the k wave:

The method proposed by Harten and Hyman, modified slightly by Leveque, 
and implemented in Clawpack, is the following. Define 

where       is the Roe-averaged eigenvalue for this wave. Then in computing 
the fluctuations 

for the speed of the k wave use 
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Ch 16: Nonclassical hyperbolic problems

Chapter 16 covers, not in very much detail, some situations that may be of 
interest to some of you:

flow in porous media

nearly singular equations

phase changes, van der Waals gases 

nonconservative transport

I recommend skimming this chapter so you’ll know where to look for this 
information if you need it later.
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Source Terms, etc.
(Chapter 17 in Leveque)
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Source terms

Many of the situations we will want to study, especially in geophysics, are 
conservation laws with source terms:

Of course this equation arises from the more fundamental integral form:

Examples:
external forces, for example gravity
reacting flow (combustion, dissolution, exsolution)
conductive or radiative heat transfer
drag, viscosity
varying depth in shallow-water equations
varying pipe shape in Euler equations 
systems with symmetries (geometrical source terms, see section 18.9)

A given system may have more than one of these sources!

qt + f (q)x =! (q)

!
!t

q(x,t)dx
x1

x2

" = f q x
1
,t( )( )# f q x

2
,t( )( ) + $ q x,t( )( )dx

x1

x2

"
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Fractional-Step Methods

In the system                                   :

If the homogeneous part                             is hyperbolic, and the source 

term part can be expressed as                                  (that is, without 

derivatives of q), then it is possible to alternate between solving the 
homogeneous hyperbolic equation and the source term equation.

Using the example of an advection-reaction equation, Leveque shows in 
some detail how fractional-step and “unsplit” methods relate to one another. 

Fractional step methods are easier to implement in code, they are generally 
faster than unsplit methods, they do nearly as well, and are readily extended 
to high resolution.

However, there is a splitting error one must be aware of.

qt + f (q)x =! (q)

qt + f (q)x = 0

q
t
=! q(x,t), x( )
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Fractional Step Methods

The system                                       is split into two parts:

A-part: Use a high-resolution method to solve 

B-part: Use a high-order method to solve 

There are two popular ways of doing this:

Godunov splitting:      (first-order accurate at best)         method(5)=1

full time step        on the A-part 

full time step        on the B-part

Strang splitting:          (second-order accurate at best)    method(5)=2

time step              on the B-part

time step              on the A-part

time step              on the B-part

Although the order of accuracy suffers, Godunov splitting is often preferred 
because it is usually faster, depending on the complexity of the source term.

qt + f (q)x =! (q)

qt + f (q)x = 0

q
t
=! q( )

!t

!t

!t / 2

!t

!t / 2
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Fractional Step Methods

The system                                       is split into two parts:

A-part: Use a high-resolution method to solve 

B-part: Use a high-order method to solve 

There are two popular ways of doing this:

Godunov splitting:      (first-order accurate at best)         method(5)=1

full time step        on the A-part 

full time step        on the B-part

Strang splitting:          (second-order accurate at best)    method(5)=2

time step              on the B-part

time step              on the A-part

time step              on the B-part

Although the order of accuracy suffers, Godunov splitting is often preferred 
because it is usually faster, depending on the complexity of the source term.

qt + f (q)x =! (q)

qt + f (q)x = 0

q
t
=! q( )

!t

!t

!t / 2

!t

!t / 2

in Clawpack
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Operator splitting for a general PDE: how the splitting error arises

A general form for a linear partial differential equation is

(For a conservation law in quasilinear form,                                           )  

Further time derivatives can be computed by

and we can form the Taylor series expansion

which we can write in short-hand (solution operator form) as

Using operator splitting we compute 

The difference between these two, in second order, is  

which is zero only when the differential operators commute.

 qt = A +B( )q.

 A = !f (q)"x;!B =# (!).

 qtt = A +B( )qt = A +B( )
2
q,

  q x,!t( ) = q x,0( ) + !t A +B( )q x,0( ) + 1
2
!t

2
A +B( )

2
q x,0( ) +!

 q x,!t( ) = e!t A+B( )
q x,0( ).

  
!
q x,!t( ) = e!tBe!tAq x,0( ).

  
q x,!t( )"

!
q x,!t( ) = 1

2
!t

2
AB "BA( )q x,0( ) +O !t 3( )
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Multidimensional problems can also use a 
kind of operator splitting

The two-dimensional conservation law

is similar to the one-dimensional conservation law with a source term, and 
can be solved in a similar way. In Clawpack (see $CLAW/2d/lib/claw2.f):

method(3)=-1 dimensional splitting, Godunov style

method(3)=-2 dimensional splitting, Strang style

This is the easiest way to extend good 1-D methods to 2-D and 3-D, and it is 
usually very effective and efficient. 

Other (unsplit) methods are also available in Clawpack (we’ll talk about 
these later): 

method(3)= 0 no transverse propagation, only normal waves

method(3)=+1 transverse propagation without correction waves

method(3)=+2 transverse propagation with correction waves

qt + f (q)x + g(q)y = 0
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The dimensionally split Godunov method

The two steps of a dimensionally-split Godunov method are:

For the linear system,                                  , the fluctuations are 

where                                        and                                         .  
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Multidimensional Hyperbolic 
Problems 

(Chapter 18 in Leveque)

Monday, 26 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

The world has more than one dimension!

A conservation law in two dimensions:

and in three dimensions:

where f(q), g(q), and h(q) are the fluxes in the x, y, and z directions 
respectively. 

More generally we write:

where            is a vector function representing the flux of  q, and the 
divergence operator is defined as 

qt + f (q)x + g(q)y = 0

qt + f (q)x + g(q)y + h(q)z = 0

 
qt +
!
! "
!
f (q) = 0

 

!
f (q)

 

for  
!
f = f ,g,h[ ],     

!
! "
!
f =

#f

#x
+
#g

#y
+
#h

#z
= fx + gy + hz
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A word about notation

In general we will refer to spatial vectors and their components as:

                position

                velocity

                      flux

vector of matrices

unit normal vector
 

!
x = [x, y, z]
!
u = u(x, y, z,t),v(x, y, z,t),w(x, y, z,t)[ ]
!
f (q) = [ f (q),g(q),h(q)]
!
A = [A,B,C]
!
n = n

x
,n

y
,n

z!" #$
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Hyperbolicity

The linear system in one dimension,                        , is hyperbolic if the 

matrix A is diagonalisable, with real eigenvalues. 

In two dimensions, we need a stronger condition. For the system

to be hyperbolic, not only must the matrices A and B be diagonalisable, with 
real eigenvalues, but so must every projection of these matrices in all spatial 
directions. 

Defining a unit vector                     , we define 

and require that this combination be diagonalisable, with real eigenvalues for 
any choice of     . Problem 18.3 is an example in which each matrix is 
separately hyperbolic, but the combination is not! For extra credit, do this.

This requirement is easily extended to a three-dimensional system.

qt + Aqx = 0

qt + Aqx + Bqy = 0

 

!
n = (n

x
,n

y
)

 

!
A = n

x
A + n

y
B

 
!
n
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Coupling among dimensions

We cannot in general decouple a linear multidimensional system into 
separate advection equations as we could in the one-dimensional case. 

We can diagonalise each matrix separately:

but unless BA=AB, performing these operations does not produce 
decoupling. 

The point is that hyperbolic equations in two or more dimensions produce 

waves that can travel in any direction, not just in the x or y directions. Thus 

there is coupling between the x and the y propagation that is unavoidable 
except under special circumstances. 

A = R
x
!

x
(R

x
)
"1
,!!!B = R

y
!

y
(R

y
)
"1

Dimensional splitting may not adequately 
deal with the coupling between dimensions. 
Effectively, the order of accuracy is reduced.
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Compressible barotropic flow in 2 dimensions

With the velocity vector defined as 

the equations of compressible flow in 2 dimensions are:

We can write these as 

by putting 

!
t
+ (!u)

x
+ (!v)

y
= 0

!u( )
t
+ !u2 + p( )

x
+ (!uv)

y
= 0
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y
= 0

 

!
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qt + f (q)x + g(q)y = 0
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$
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'
'
'
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The Jacobians for 2-d compressible flow

There are now two Jacobian matrices, for the quasilinear form

with the barotropic equation of state                       these are:

!f (q) =
0 1 0

"u2 + !P (#) 2u 0

"uv v u

$

%

&
&
&

'

(

)
)
)
,!! !g (q) =

0 0 1

"uv v u

"v2 + !P (#) 0 2v

$

%

&
&
&

'

(

)
)
)

qt + !f (q)qx + !g (q)qy = 0

p = P(!)
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Shallow-water equations in 2 dimensions 

In two dimensions the shallow-water equations are:

and the flux Jacobians are (similar to barotropic compressible flow):

ht + (hu)x + (hv)y = 0

(hu)t + hu
2
+
1

2
gh

2!
"#

$
%&
x

+ (huv)y = 0

(hv)t + (huv)x + hv
2
+
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2
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2!
"#

$
%&
y

= 0

h = height of wave above bottom

u,v = speed of bulk water motion! = water density
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Eigensystem for shallow-water equations

The Jacobian matrix            has these eigenvalues and eigenvectors:

and the other Jacobian matrix            has similar pattern, reversing u and v:

Notice the eigenvectors are different, but in general we have two nonlinear 

fields with the eigenvalues                  and the linearly degenerate field          .  
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The Euler equations in 3 dimensions

In 2 dimensions, we have 4 equations, and in 3 dimensions 5 equations:

The energy is                                                                             and this 

system still needs to be supplemented with an equation of state                    . 

Again there will be eigenvalues of the form            and                 , where

In any direction, there are two nonlinear acoustic fields and three nonlinearly 

degenerate fields.   
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Multidimensional Numerical 
Methods 

(Chapter 19 in Leveque)
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Finite Volume     vs        Finite Difference

Qij

x
i

y
jQij Qi+1, jQi!1, j

Qi, j+1

Qi, j!1

x
i!1/2

x
i+1/2

y
j!1/2

y
j+1/2

The values are considered to be averages within cells:

The values are considered to be 
evaluated on a grid:

Qij
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q(x, y,tn )dxdy
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The finite-difference form is useful for 
developing the Lax-Wendroff formula 
via a Taylor-series expansion

We consider first the linear system, with A and B constant 
(though noncommutative) matrices:

We make a Taylor-series expansion of q at the point             at 

time             in terms of its value at time    :

qt + Aqx + Bqy = 0

q(xi , yj ,tn + !t) = q + !tqt +
1

2
!t

2
qtt +…

= q " !t(Aqx + Bqy )+
1

2
!t

2
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2
qxx + ABqyx + BAqxy + B

2
qyy )+…

(xi , yj )
t
n
+ !t t

n

Qij

x
i

y
j
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Two-dimensional Lax-Wendroff

The pure double derivatives are approximated as in 
one dimension:

and there are also cross-double-derivative terms:

giving the method:
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Again, Lax-Wendroff is a good starting 
point, but we need to do better…

In a finite volume approach, using upwind biasing and flux limiting we can 
achieve second-order accuracy and high-resolution in multi-dimensions as 
we did in one dimension.

Note: the Riemann problem at a cell edge is essentially one-dimensional; we 
can do the problem as before, and bring in multidimensional information to 
improve the solution.

You can 

use a full flux-differencing (dimensionally unsplit) approach (better) or

split the problem into a sequence of one-dimensional problems (easier, but 
you have to take care of the corners)
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We update the conserved 
quantity by keeping track of the 
fluxes into and out of each cell 
(and sources and sinks, as 
relevant)

The fully discrete flux 
differencing method to update 
Q for the next time step is:

Qij
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n
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x
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y
j+1/2 F
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F
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Gi, j!1/2

For conservation laws, finite volume 
methods are natural
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The fluxes are found by integrating along the edges

With a Taylor expansion we approximate these, to second-order in time, as:

These fluxes can be used to re-interpret the Lax-Wendroff formula as a finite 
volume method. 
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The Godunov method is simpler

Here we simply find the Riemann solution that propagates with zero speed 
(straight up the time axis) and evaluate the flux functions at these values:

            is obtained by solving the Riemann problem for                            and

            is obtained by solving the Riemann problem for                           . 
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We can adopt the fluctuation form

Here the high-resolution corrections in the second line can be omitted for the 
pure Godunov method, or they can be included with appropriate flux limiters 
for high-resolution techniques.
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Dimensional Splitting - Godunov Splitting

We can split a multidimensional problem into a sequence of one-dimensional 
steps, for example for the two-dimensional linear problem:

In the x sweeps, we march along in i, 
keeping j fixed, and update 

In the y sweeps, we march along in j, 
keeping i fixed, and update

Alternating the order of the sweeps every 
time step is equivalent to Strang splitting 

Qij

*
=Qij

n
!
"t

"x
Fi+1/2, j
n

! Fi, j!1/2
n( )

Qij

n+1
=Qij

*
!
"t

"y
Gi, j+1/2

*
!Gi, j!1/2

*( )

qt + Aqx + Bqy = 0        
x sweeps:  qt + Aqx = 0

y sweeps:  qt + Bqy = 0
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Assignment for next time

Skim Chapter 16, read Chapter 17 through 17.5 (more 
if you’re interested) and read all of Chapters 18 and 
19 (they are short!).

Write a one-paragraph draft description of a project you 
would like to do with Clawpack, including a description of 
the physical circumstances, and how you might 
implement it in code. Indicate the dimensionality of the 
problem, the equations you would like to solve (naming 
the equation set will be sufficient for this draft), whether 
there are source terms, what boundary conditions, etc.

Let me have this by Monday 26 October. Even better, 
come talk to me about it this week.

The purpose of this preliminary exercise is to help me 
prepare to help you with the projects, and to know what to 
focus on in the next few lectures. I expect actual project 
design and execution to start in November, with 
completion by 7 December.
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Next: Multidimensional scalar 
equations and systems

(Ch 20 & 21)

Monday, 26 October 2009


