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Our schedule

date Topic Chapter in 

LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17 Aug 2009 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2 & 5

24 Aug 2009 Monday 13.15-15.00 the Riemann problem, characteristics 3

28 Aug 2009 Friday 13.15-15.00 finite volume methods for linear systems 4

8 Sep 2009 Tuesday 13.15-15.00 high resolution methods 6

21 Sep 2009 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part of 9

29 Sep 2009 Tuesday 13.15-15.00 nonlinear conservation laws, finite volume methods 11 & 12

5 Oct 2009 Monday 13.15-15.00 nonlinear equations & systems 13 & 14

12 Oct 2009 Monday 13.15-15.00 finite volume methods for nonlinear systems 15

19 Oct 2009 Monday 13.15-15.00 source terms and multidimensions 16,17,18,19

26 Oct 2009 Monday 13.15-15.00 multidimensional systems 20 & 21

2 Nov 2009 Monday 13.15-15.00 any other topics; project planning

16 Nov 2009 Monday 13.15-15.00 applications: tsunamis, pockmarks, venting, impacts

23 Nov 2009 Monday 13.15-15.00 applications: volcanic jets, pyroclastic flows, lahars

30 Nov 2009 Monday 13.15-15.00 review; progress, problems & projects

7 Dec 2009 Monday 13.15-15.00 FINAL PROJECT REPORTS DUE
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Riemann solvers: exact vs approximate?

Whether to use a Roe solver, or other approximate Riemann solver, as 
opposed to an iterative exact solver is under dispute.

Exact solvers are typically costly in time and storage

You don’t need all the information generated

However, if you use a Roe solver:

You don’t get the full structure of the rarefaction wave

In certain circumstances, the approximation may be poor

As computers and methods improve, more people may prefer exact iterative 
solvers.
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How good is the Roe solver?

When the left and right states are 
close together, the Roe solver is 
very good
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How good is the Roe solver?

When the left and right states are 
connected by a single shock, there are 
no intermediate states, and the Roe 
solver is exact
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How good is the Roe solver?

For arbitrary right and left states, the Roe 
solver is definitely inaccurate.

If the resolution is sufficiently good, this 
circumstance should not occur in practice.

But in the other two cases, one or two 
iterations in the exact solve are enough!
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Multidimensional Scalar 
Equations  

(Chapter 20 in Leveque)
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High-resolution methods for scalar 
hyperbolic equations in two dimensions

Start once again with the constant-velocity advection equation, this time with 

a velocity                   with both x and y components. We consider both 
positive for now.

Then of course the solution is the unchanged original function, simply 
translated with time at the velocity    . But now it’s moving at an angle.

A Taylor series expansion gives us 
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Donor-cell upwind method

The donor-cell upwind method is simply

with                                                           as before. This can be written in the 
fluctuation form 

with 

and without the corrective limited fluxes, i.e. 
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The naive donor-cell upwind method 
misses the contribution from the corner

This method will have stability problems. Dimensional splitting (doing an 
intermediate update with a sweep in one direction, followed by a sweep in 
the other direction) may help.
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A better approach is to use the REA technique

The Godunov REA scheme can be easily 
extended to two (or three) dimensions:

1. Reconstruct a piece-wise linear function from 
the cell averages.

2. Evolve the advection equation exactly with 
these data to obtain a later-time function. 

3. Average this function over each grid cell to 
obtain new cell averages.
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Colella’s corner-transport upwind method

Following the REA procedure results in:

This expression is rearranged and simplified from 
Leveque’s Eqn 20.10

This is still just first-order accurate, but can be 
improved by introducing limited slopes, just as we did 
for 1-dimension.

Let’s look at it in still a different way.
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Wave-propagation implementation of CTU

In a sense, we turn CTU inside out.

Consider transport from the edges (faces), not the 
corners.

From the interface between (i–1,j) and (i, j) a 

wave goes into both (i, j) and (i, j +1): and four 

distinct waves affect (i, j).

You can work out how much each wave 
contributes to each cell from simple geometry. Just 
sum up the areas of the little triangles and 
squares!
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This interpretation leads to the fluctuation format

with the fluctuations defined as for Lax-Wendroff:

but now with the correction fluxes:
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Generalise to variable-velocity advection
The fluctuations generalise easily, using the cell-interface velocities:

But now the fluxes must be rewritten for the transverse velocities, taking into 
account that the velocities may be either negative or positive. The correction 
fluxes are set to zero to start each time step, then built up from consideration 
of the signs of the velocities. There are four possibilities in each direction. 

First set 

Then do an x-sweep to update
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Transverse fluxes are also needed

A transverse Riemann solver takes the right- and left-going fluctuations

and makes the four transverse fluctuations 

These are then used to update the correction fluxes

Similarly a y-sweep to update the       terms, also including the transverse 
fluxes.
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Then to High-Resolution

For the extension to high-resolution, all that is needed now is to add 

additional correction terms to        and        :

Once again,              represents the appropriately slope-limited version of the 
wave.

For the advection equation the waves are simply 

 
!F  

!G

  

!Fi!1/2, j :=
!Fi!1/2, j +

1

2
ui!1/2, j 1!

"t
"x

ui!1/2, j
#
$%

&
'(
!Wi!1/2, j

!Gi, j!1/2 :=
!Gi, j!1/2 +

1

2
vi, j!1/2 1!

"t
"y

vi, j!1/2
#
$%

&
'(
!Wi, j!1/2

  
!W
i, j!1/2

 

Wi!1/2, j =Qij !Qi!1, j

Wi, j!1/2 =Qij !Qi, j!1

Monday, 26 October 2009

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2009

Then to nonlinear conservation laws:
The scheme just developed works for nonlinear conservation laws as well. 
The waves are

  

the speeds are

the fluctuations are 

and the second-order correction terms are

with a similar, but slightly different recipe for the transverse fluxes…
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Multidimensional Systems of 
Equations  

(Chapter 21 in Leveque)
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Constant coefficient linear system

We look first at the linear system, with A and B constant (though 
noncommutative) matrices: 

and we will adopt the fluctuation form for the update:

so we will need the fluctuations themselves and the correction fluxes.

qt + Aqx + Bqy = 0
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Wave-propagation approach

The algorithm goes as follows:

1. Initialize 

2. Sweep through in x, solving each Riemann problem. Get the waves and 
speeds and compute the fluctuations. For the constant-coefficient linear 
case, the fluctuations are

3. With slope-limited waves, the correction fluxes are updated:

4. As in the scalar case, right-going transverse fluctuations are defined:
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Wave-propagation approach, continued

5. Use the fluctuations                          to update the correction fluxes 
above and below the current cell:  

6. Now left-going transverse fluctuations are defined and used to update 
the correction fluxes above and below the previous cell:

7. Sweep through in y, solving each Riemann problem as in steps 2-6. Get 

the waves and speeds and compute the fluctuations                    . Split 

these waves transversely to modify the      correction fluxes.   

8. Finally, apply the updating formula:
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Så enkelt er det!

We’re basically done. 

Leveque then goes on to describe how the two-dimensional algorithm is 
implemented in Clawpack, and illustrates examples for the acoustic 
equations (as a linear system) and the shallow-water equations (as a 
nonlinear system). 

There are some examples you can run in the code you have already, and I’ll 
attempt some more conversions from Clawpack 4.3 in the next few days.

There’s just one small thing more to be concerned with, before we do our 
projects, and that’s some new aspects of boundary conditions that apply in 
multi-dimensional systems.
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Boundary conditions

Boundary conditions are handled in two or more 
dimensions in much the same way as they are in one 
dimension - by using ghost cells in all dimensions. 
Note that the corners need to be taken care of and 
properly filled. 

Periodic: simply copy the data from the other side of 
the grid (doubly periodic maps a torus!). 

For Solid Walls, it is the velocity normal to the wall 

that is negated in the ghost cells (the x velocity along 

the right and left edges and the y velocity along the 
bottom and top edges) while the other quantities are 
copied from the neighboring interior cells. In 
particular, any tangential velocity (free slip) is 
allowed.

These boundary conditions, and simple extrapolation, 
are implemented in clawpack/2d/lib/bc2.f

A two-dimensional grid with a border 
of two ghost cells on all boundaries

Physical 
boundary 
of problem

Ghost cells
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Boundary conditions - Extrapolation

Extrapolation of outgoing waves is also 
included in clawpack/2d/lib/bc2.f, 
and often works fairly well. It works perfectly 
for waves moving normal to the boundaries, 
but may cause spurious reflections for 
waves moving obliquely, especially in the 
corners. See the discussion in Leveque 
section 21.8.5. 

The simplest solution is to make the 
computational box large enough that 
reflections don’t affect the region of interest.

Transmitted 
normal wave 
- OK

Partially reflected 
oblique wave - 
May cause trouble
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Boundary conditions - Extrapolation

Extrapolation of outgoing waves is also 
included in clawpack/2d/lib/bc2.f, 
and often works fairly well. It works perfectly 
for waves moving normal to the boundaries, 
but may cause spurious reflections for 
waves moving obliquely, especially in the 
corners. See the discussion in Leveque 
section 21.8.5. 

The simplest solution is to make the 
computational box large enough that 
reflections don’t affect the region of interest.

Transmitted 
normal wave 
- OK

Partially reflected 
oblique wave - 
May cause trouble

Another possibility is to fill a portion of the interior adjacent to the boundary 
with material of high impedance so that waves passing through are 
attenuated. This is tricky, and may result in loss of hyperbolicity. Also this 
absorbing material will diffuse into the interior and may affect the solution.
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No-Slip Boundaries

Real fluids experience wall friction and form a thin boundary layer next to a 
wall in which the tangential velocity rapidly approaches zero. In this 
boundary layer, viscosity is important, and there is therefore a loss of 
hyperbolicity in this region. You can implement no-slip conditions by negating 
the tangential velocity in the ghost cells, but be careful to watch for non-
physical spreading of the resultant vorticity beyond the boundary layer.

No-slip 
boundaries
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What we’ve accomplished

We started with the one-dimensional advection equation, and developed a 
Godunov-style REA approach tailored to it;

We realised that systems of linear hyperbolic partial differential equations 
could be broken down into independent advection equations;

We learned how Riemann problems can be used to advance the solution of 
such problems from one time step to the next;

We learned that the procedure can be generalised to nonlinear hyperbolic 
equations and systems of equations;

We learned (have we?) to accept the compromise of approximate Riemann 
solvers for nonlinear systems;

And we’ve extended what we’ve learned in one dimension to (at least) two.

Now a tiny bit more about the practicalities of the code - 
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Project recipe:

Write down all the equations of the problem in conservative form, including 
closure relations (equations of state, for example). You should also prepare 
an entropy equation that will be calculable should transonic conditions (or 
centred rarefactions) arise.

Find the Jacobian of the corresponding quasilinear system, and calculate its 
eigenvalues and eigenvectors. 

For an arbitrary pair of right and left states, solve the Riemann problem, 

either exactly or approximately. Then write down general formulas for the 

waves,             , the wave speeds    , the fluctuations                     and the 

entropy fix for the transonic case.
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Project recipe, continued

Under $CLAW/myclaw, prepare a new directory for the routines you must 
write. Write the Riemann solver (rp1.f or rp2n.f and rp2t.f) in Fortran in this 
directory. Copy over $CLAW/util/(testrp1.f or testrp2n.f), modify it and use it 
to test your Riemann solver. 

Figure out what special work space you need, what boundary conditions, 
source terms, and other things that you want, and what special variables you 
need to input or initialise. Then write (or copy and modify) the appropriate 
routines (driver, setprob, setaux, qinit, bcN, b4stepN, srcN) in the same 
directory. Write (or copy and modify) a Makefile that points to these files, 
and construct setrun.py and setplot.py to fill the data files and make the 
plots. 

Finally: compile, run, and check your results. 
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Examples of potential projects using Clawpack 
Euler equations:

Explosive volcanic eruptions
High-energy meteor impacts

Shallow-water equations:
Tsunami in a fjord system or in a basin of varied bathymetry

Dusty gas equations:
Fluidisation and hydrothermal venting
Geysers
Volcanic jets
Pyroclastic flows
DeLaval nozzle in a dusty gas

Airy-wave equations:
Normal (deep or intermediate) water waves
Pockmarks
Atmospheric dispersal of contaminants
Climate patterns

Elastic equations:
Seismic waves and deformations following impacts or severe earthquakes
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Assignment for next time

Read Chapters 20 & 21.

Based on the project drafts you hand me today, I will 
prepare some practical advice that I can give you during 
the course of this week and at next Monday’s lecture.

Come talk to me before Thursday regarding anything 
you would specifically like me to cover (or review) at next 
Monday’s lecture (I don’t have anything prepared, yet!); 
particularly if you have any doubts about how to proceed 
with your project. 

I will be gone 3 - 14 November, so there will be no lecture on 9 November. 
I will try to remain accessible by email during that time. 

At our class meeting on 16 November, I expect to see significant progress on 
your projects, and will ask several of you to present your progress and 
difficulties for general discussion. Our last two class meetings, on 23 and 30 
November will proceed in similar fashion, as needed. 

Final project reports will be due on 7 Dec.
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Next: Projects and Reviews
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