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Course Outline

The book: 

Finite Volume Methods for Hyperbolic Problems, 
by Randall J. Leveque, ISBN 0-521-00924-3

should be available at Akademika 

The software:

Clawpack, for Conservation LAW PACKage, by 
Leveque and his team at the University of 
Washington, Seattle

available at www.clawpack.org
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What we will do in this course

We will explore hyperbolic equations and finite volume methods for solving 
them:

What are hyperbolic equations and why are they important?

Why are finite volume methods well suited to these equations?

How do we solve these equations on the computer?

How can we know whether we have solved the equations correctly?

We will apply our solution methods to problems of geophysical interest:

examples:  vents, pockmarks, tsunamis, fluidised systems, 
                   explosive volcanism, atmospheric dispersion

Metrics: grades in this course will be based on:
weekly homework assignments                40%
final project                                               40%
classroom participation                             20%
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Time and Place

Normally we will meet in this room, V414 Fysikkbygnningen at the following 
times:

Mondays, 13.15 to 15.00

Tuesdays, 14.15 to 16.00

We’ll go through most lecture materials on Mondays, and on Tuesdays  we 
will take care of spill-overs and address any questions or concerns.

Problem sets will be due on Mondays, and I will occasionally ask a student 
to illustrate how a problem is done in class the day it is due. 
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An approximate syllabus - subject to change

There will be problem sets assigned most weeks and due the following class time. Keep up with the reading, 
and do the problems! Things get complicated quickly, and you will flounder if you don’t keep up.
 
Other chapters in the book may be interesting and important for some of you. Feel free to study these, and if 
popular will demands, we can cover some of that material in class too. 

5

week 
number

date Topic Chapter in 
LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

35 30. aug. 2010 introduction to conservation laws, Clawpack 1 & 2

36 6. sep. 2010 the Riemann problem, characteristics 3 & 5

37 13. sep. 2010 finite volume methods for linear systems 4

38 20. sep. 2010 high resolution methods 6

40 4. okt. 2010 boundary conditions, accuracy, variable coeff. 7,8, part 9

40 5. Oct 2010 nonlinear conservation laws, finite volume methods 11 & 12

41 11. okt. 2010 nonlinear equations & systems 13 & 14

42 18. okt. 2010 finite volume methods for nonlinear systems 14 & 15

43 25. okt. 2010 source terms and multidimensions 16,17,18,19

44 1. nov. 2010 multidimensional systems 20 & 21

45 8. nov. 2010 capacity functions, source terms, project plans

46 15. nov. 2010 student presentations

47 22. nov. 2010 student presentations

48 6. des. 2010 FINAL REPORTS DUE
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The Code Debate: 
Build and use, or Procure and use?

Which is better? 

Build your own code and use it to solve problems you’re interested in?

Procure an existing code and use it to solve problems you’re interested in?

If you build: 

You will know exactly what methods it uses, how it works, and its strengths 
and limitations.

However, you will spend months and perhaps years debugging it; tweaking 
its performance; adding features to it; porting it to different systems; and 
you may never get adequate use from it, especially if you have limited time 
(as a student, for example!).
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The Code Debate: 
Build and use, or Procure and use?

Which is better? 

Build your own code and use it to solve problems you’re interested in?

Procure an existing code and use it to solve problems you’re interested in?

If you procure: 

Once you install it and prepare your input files, you will be able to start 
solving those problems immediately.

However, you won’t necessarily know the strengths and weaknesses of its 
methods; you run the risk of generating mountains of meaningless output 
by attempting to run it on problems for which it is ill-suited; and you may not 
be able to defend your results.

7

mandag 30. august 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

The best (infinite time) solution

Spend N years developing the world’s best code for the problems you’re 
interested in. Debug, tweak, and add features to your heart’s content.

Then freeze it.

Spend the next M years running your code on those problems, and publish 
lots of papers.

By this time, numerical techniques have advanced far beyond those you 
used in your code; the computers you wrote your code for are obsolete; you 
haven’t kept up with changes in the compilers and operating systems; etc. 

Bottom line: it’s not the world’s best code any more, and you have new 
problems you want to solve.

You could do it all again…

OR…
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Stand on the shoulders of giants

A better solution is to find a flexible and extensible code framework that:

Applies the latest & best techniques to a broad class of problems
But requires you to write the piece specific to the problem you’re solving

Has a broad and experienced user base;
and a strong development team for porting, updating, and debugging 

Allows you to modify the code yourself, if you need something different or 
find a better technique. This condition rules out most (all?) commercial 
codes.

If you do this, you are obligated to yourself and to your science to study the 
framework and techniques carefully so that you clearly understand and can 
defend the results you get!

That, in short, is the aim of this course.
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A few codes are documented with textbooks

This isn’t the only one, but it’s 
the one we will use.

The techniques you learn using 
Clawpack and building 
applications with it will also help 
you use and build other codes.

ISBN 0-521-00924-3

www.clawpack.org
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What you’ll need to use Clawpack

A Unix/Linux/MacOS computer

A Fortran compiler (pref. gfortran, free, from http://gcc.gnu.org )

A Python interpreter (free, from www.python.org )

The SciPy extension for Python, which includes NumPy and Matplotlib
(free, from www.scipy.org or from www.macinscience.org (for Mac))

This gives you, for free, most of the capability of MatLab, which is expensive!

Clawpack itself (free, from www.clawpack.org, but requires registration)

Curiosity, motivation, patience, and cleverness.
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What are hyperbolic problems anyway?

There are three main types of second-order partial differential equations. 
General prototypes of these are: 

the wave equation:                                                         “hyperbolic”

the heat equation:                                                           “parabolic”

and Poisson’s equation:                                                  “elliptic”

Why the geometric terminology?

With suitable variable changes, all of these can be squeezed into the form:

Reminiscent of the equation for conic sections:

qtt ! "
2qxx ! f (x) = 0

qt !"
2qxx ! f (x) = 0

qxx ! f (x) = 0

a!"" + b!"# + c!## + f (!,!" ,!# ,",# ) = 0

ax2 + bxy + cy2 + d = 0
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Conic Sections and Partial Differential Equations

The general equation for conic sections 

has the discriminant                  .

                                   the equation yields a hyperbola,

   If                              the equation yields a parabola,

                                   the equation yields an ellipse.

The general second-order partial differential equation in two variables: 

is easily transformed to the hyperbolic equation

in the case                          . 

The other two cases are more difficult to demonstrate.

b2 ! 4ac > 0
b2 ! 4ac = 0
b2 ! 4ac < 0

"

#
$

%
$

ax2 + bxy + cy2 + d = 0

b2 ! 4ac

a!"" + b!"# + c!## + f (!,!" ,!# ,",# ) = 0

qtt ! "
2qxx ! f (x) = 0

b2 ! 4ac > 0
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Examples of Partial Differential Equations in one 
spatial dimension

elliptic equations

conditions at boundaries determine the solution everywhere and 
simultaneously, no time dependence

parabolic equations

inhomogeneities diffuse away irreversibly, leading to a steady state

hyperbolic equations

all physics is local and dynamic; waves that are generated propagate 
away from the source

wave equation: qtt ! "
2qxx ! f (x) = 0

Poisson's equation: qxx ! f (x) = 0

heat equation: qt !"
2qxx ! f (x) = 0

14

mandag 30. august 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

Features of the three types of PDEs

hyperbolic parabolic elliptic

example

eigenvalues

nature of 
solutions

Types of 
boundary 
conditions

real zero complex

wave-like, 
energy-

conserving

damping, 
diffusion, 

irreversibility

steady-state, 
no waves

Cauchy 
(initial value 
problem)

Cauchy plus 
Neumann or 

Dirichlet 

Neumann or 
Dirichlet
(edges)

qtt ! "
2qxx = 0 qt !"

2qxx = 0 qxx + qyy = 0
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Features of the three types of PDEs

hyperbolic parabolic elliptic

example

eigenvalues

nature of 
solutions

Types of 
boundary 
conditions

real zero complex

wave-like, 
energy-

conserving

damping, 
diffusion, 

irreversibility

steady-state, 
no waves

Cauchy 
(initial value 
problem)

Cauchy plus 
Neumann or 

Dirichlet 

Neumann or 
Dirichlet
(edges)

qtt ! "
2qxx = 0 qt !"

2qxx = 0 qxx + qyy = 0

This course
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Systems of first-order equations

Although the classification of PDEs into hyperbolic, parabolic, and elliptic 
was designed around the appearance of second-order equations, we apply it 
to systems of first-order equations.

For example, the linearised shallow-water (or tsunami) equations:

are a hyperbolic set, as can be seen from the derived wave equation: 

The methods we speak of in this course are aimed at the solution of systems 
of first-order equations like these.

ht (x,t) + Dvx (x,t) = 0
Dvt (x,t) + gDhx (x,t) = 0

Here h is the wave height, v is the particle speed, 
D is the ocean depth, and g is the acceleration 
due to gravity. We’ll use different symbols when 
we derive this later.

htt ! gDhxx = 0

16

mandag 30. august 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

A little on notation, following Leveque
Use subscript notation to refer to partial derivatives:

x, y, and z usually refer to the Cartesian coordinates; t to time. 

q is some quantity of interest whose value we need to know: the true solution to 
the partial differential equation under study. In general, q represents a vector of 
quantities, the components of which are denoted by superscripts as qp. An 
m ! m system of equations has eigenvectors rp  and eigenvalues !p. 

       is the numerical approximation to q in the i th grid cell at the nth time step, 
and the time at the nth time step is denoted tn. 

           is the numerical approximation to the flux of quantity q from cell  i to cell  
i +1 at the nth time step. 

For two dimensions, we use the additional cell-index subscript j, and the 
additional flux approximation           . 

qx !
"q
"x

;   qy !
"q
"y

;   qz !
"q
"z

;   qt !
"q
"t

;

Qi
n

Fi+1/2
n

Gj+1/2
n

17
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Finite Volume      vs      Finite Difference

Approximate values are averaged 
over cells:

Approximate values are evaluated 
on a grid:

Qij
n !

1
"x"y

q(x, y,tn )dxdyxi#1/2

xi+1/2$yj#1/2

yj+1/2$ Qij
n ! q(xi , yj ,tn )

18

Qij Qi+1, jQi!1, j

Qi, j+1

Qi, j!1

xi!1/2 xi+1/2

yj!1/2

yj+1/2
Qij Qi+1, jQi!1, j

Qi, j+1

Qi, j!1
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Finite Difference, Finite Volume, and Finite 
Element Methods

Finite difference methods sample the solution to form the approximation.

Finite volume methods average the solution to form the approximation.

The approximation is the primary representation, the evolution uses 
piecewise-polynomial mappings.

Finite element methods use piecewise-polynomial mappings as the primary 
representation, and evolve them directly.

They are advantageous for complex geometries, but have difficulty in 
dealing with evolving discontinuities like shocks and mixing. 

They are the subject of FYS-GEO4510, given by Marcin Dabrowski in the 
spring.

19
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For conservation laws, finite volume 
methods are natural

If the quantity of interest is a 
conserved quantity, we update 
it by keeping track of the fluxes 
into (and out of) each cell

We can also allow for sources 
and sinks within the cells

We will use something like this 
to update Q for the next time 
step:

Qij
n+1 !Qij

n "
#t
#x

Fi+1/2, j
n " Fi"1/2, j

n( ) " #t
#y

Gi, j+1/2
n "Gi, j"1/2

n( )

20

Qij Qi+1, jQi!1, j

Qi, j+1

Qi, j!1

xi!1/2 xi+1/2

yj!1/2

yj+1/2
Fi!1/2, j Fi+1/2, j

Gi, j+1/2

Gi, j!1/2

mandag 30. august 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

Advantages and disadvantages of finite 
volume methods
Finite volume methods: high resolution, but low order (2nd at best, in general)

Best for cases with discontinuities (sharp material interfaces, shocks)

Best for any kind of waves: acoustic, seismic, water, electromagnetic, etc.

Good for highly compressible media

Good for high-speed flows

In general, best for hyperbolic problems

But…

Not good for slow, viscosity-dominated processes

Poor for parabolic problems (diffusion-dominated processes)

Difficult for elliptic problems (LaPlace or Poisson type equations)

For these latter cases, linear methods, high-order finite difference methods, 
or finite element methods are better suited.

21
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 Introduction to 
Conservation Laws 

(Chapters 1 & 2 in Leveque)
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Numerical solution of differential equations

The equation                            has a discrete analogue 

which can in principle be solved by time stepping:

The difficulty is in suitably defining the numerical approximation of the spatial 
derivative, and ensuring that the solution is stable and accurate. A naive 
implementation of the above is highly unstable!

If the differential equation can be expressed as a conservation law, the 
spatial derivative can be interpreted as a flux of the conserved quantity. 

Straightforward analysis then produces robust numerical techniques in which 
it is easier to guarantee stability and accuracy.

!q
!t

= "A
!q
!x

!q
!t

= "A
!q
!x

qi
n+1 = qi

n ! A
"q
"x

#
$%

&
'( i
"t
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Conservation laws
Many of the fundamental physical laws are conservation laws:

conservation of mass, energy, momentum, entropy (sometimes)…

For any vector of conserved quantities q: 

The change with time of q in a volume is due to the net flux of q into or out of 
the volume and the net amount of q created or destroyed within the volume:

flux(q) flux(q
)

source(q) sink(q)

24
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General integral form for a three-dimensional 
conservation law

R(q) represents all sources and sinks for the quantity q in the volume V, 
and          represents the net flux into the volume through its surface.

   

d
dt

q(x, y, z;t) dV
Volume
!!! = "

!
F(q) dS

Surface
"!! " R q( )dV

Volume
!!!

flux(q) flux(q
)

source(q) sink(q)

   
!
F(q)

25
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We start with a one-dimensional system

The integral form of the general one-dimensional conservation law over an 
interval (xL,xU), ignoring sources and sinks, is:

and the corresponding differential equation is:

The integral form is more general and more fundamental. Finite volume 
methods are designed to solve the integral form.

The differential form is more compact, but is not valid at discontinuities 
(shocks or contact surfaces, for example). 

We write the equations in differential form for convenience, and for 
constructing the matrix representation of a system of partial differential 
equations. 

The finite volume method solves the integral form of the equation.

d
dt

q(x,t)dx
xL

xU! = f (q(xL ,t)) " f (q(xU ,t))

qt (x,t) + f (q(x,t))x = 0

26
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The world has three space dimensions!

True!

But an advantage of hyperbolic systems is that it is straightforward to extend 
the solution method to two, three, and even more dimensions.

The solutions are wavelike, and waves interact with each other in predictable 
ways. Added complications include corner transport and boundary 
conditions.

In the book, two dimensional systems are covered starting in Chapter 18. 
We’ll get there in October.

But first we have a lot of work to do to understand the one-dimensional 
solution.

27
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Assume we have a fluid of density q(x,t) flowing through a pipe.

The total mass of the fluid between the positions x1 and x2 is:

 q(x,t) is measured in units of mass per unit length.

This mass changes only because of the flux of the fluid through the left or 
right ends of the interval.

Derivation of the conservation law

x1 x2

q(x,t)dx
x1

x2!

q(x,t)

28
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Conservation law, continued

This mass in the interval changes only because of the flux of the fluid 
through the left or right ends of the interval:

where  f(q) is the flux function. For a fluid of density q flowing at a velocity u
(x,t), the flux function is  

This is the integral form of the one-dimensional conservation law.

d
dt

q(x,t)dx
x1

x2! = f (q(x1,t)) " f (q(x2 ,t))

f (q(x,t)) = u(x,t)q(x,t)

x1 x2

q(x,t)

29
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Differential form of conservation law

If q is smooth enough, we can rewrite:

as                                                 or        

since this must be true for all x1 and  x2, then:

This is the differential form of the one-dimensional conservation law.

d
dt

q(x,t)dx
x1

x2! = f (q(x1,t))" f (q(x2 ,t))

qt dxx1

x2! = " f (q)x dxx1

x2! qt + f (q)x( )dx
x1

x2! = 0

qt + f (q)x = 0

x1 x2

q(x,t)

30
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So we have two representations

The integral form of the general one-dimensional conservation law, valid 
everywhere:

and the differential form, valid where the function is smooth:

Because the differential form is not valid at discontinuities, it must be 
supplemented there by the Rankine-Hugoniot jump conditions:

where the subscripts r and l refer to right and left states of the solution and 
the flux function, and s is the speed with which the discontinuity moves. We 
will derive this later.

d
dt

q(x,t)dx
xL

xU! = f (q(xL ,t))" f (q(xU ,t)),

qt (x,t)+ f (q(x,t))x = 0.

fr ! fl = s(qr ! ql ),

31
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Differential vs. Integral forms
With finite difference methods:

approximate pointwise values, i.e.  

derivatives are approximated by differences

use differential form of conservation law, assume smoothness

With finite volume methods:

approximate cell averages, i.e.

use integral form of the conservation law

This formulation does not assume smoothness, and leads directly 
to the numerical method.

Qij Qi+1, jQi!1, j

Qi, j+1

Qi, j!1

xi!1/2 xi+1/2

yj!1/2

yj+1/2

Qi
n ! q(xi ,tn )

Qi
n ! 1

"x
q(x,tn )xi#1/2

x1+1/2$ dx

qt + f (q)x = 0

d
dt

q(x,t)dx
xi!1/2

xi+1/2" = f (q(xi!1/2 ,t)) ! f (q(xi+1/2 ,t))

32

xi

yj
Qij Qi+1, jQi!1, j

Qi, j+1

Qi, j!1
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Discontinuities occur in real problems

Discontinuities in function values:
shocks, contacts, edges, etc.

or discontinuities in function derivatives:
rarefactions, reaction fronts, etc.

In finite volume methods Riemann problems are solved to calculate the 
propagation of waves away from discontinuities.

These waves are the characteristics, and their speeds are the eigenvalues 
of the system of differential equations. 

33
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Artificial discontinuities occur in the 
numerical solution of equations

Discretising a problem for numerical solution involves the creation of many 
small discontinuities; therefore understanding the characteristics and solving 
Riemann problems is essential to accurate numerical work.

34

mandag 30. august 2010



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

Artificial discontinuities occur in the 
numerical solution of equations

Discretising a problem for numerical solution involves the creation of many 
small discontinuities; therefore understanding the characteristics and solving 
Riemann problems is essential to accurate numerical work.

discontinuity in a piecewise 
constant approximation
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Artificial discontinuities occur in the 
numerical solution of equations

Discretising a problem for numerical solution involves the creation of many 
small discontinuities; therefore understanding the characteristics and solving 
Riemann problems is essential to accurate numerical work.

discontinuity in a piecewise 
constant approximation

discontinuity in a piecewise 
linear approximation
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Reconstruct - Evolve - Average -(REA)

Godunov, 1959

35

The scheme we use:
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Reconstruct - Evolve - Average -(REA)

Reconstruct a piece-
wise polynomial function 
from cell averages.

reconstruct

Average the later-time 
function back to the 
cells .

average

Evolve this function to a 
later-time by solving 
Riemann problems.

evolve

Godunov, 1959

35
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With q(x,t) a tracer concentration, 
and flow velocity 

u(x,t) = u = constant,

The flux function is:

The conservation law is: 

And the solution is: 

The advection equation — the simplest 
hyperbolic differential equation

f (x,t) = uq(x,t)

  qt (x,t) + uqx (x,t) = 0

q(x,t) = q(x ! ut,0)

x1 x2

q(x,t)

The advection equation is also called the scalar wave equation, because the solution is 
a one-way wave, propagating to the right with velocity u. 

q
u   "t

x

36
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With q(x,t) a tracer concentration, 
and flow velocity 

u(x,t) = u = constant,

The flux function is:

The conservation law is: 

And the solution is: 

The advection equation — the simplest 
hyperbolic differential equation

f (x,t) = uq(x,t)

  qt (x,t) + uqx (x,t) = 0

q(x,t) = q(x ! ut,0)

x1 x2

q(x,t)

The advection equation is also called the scalar wave equation, because the solution is 
a one-way wave, propagating to the right with velocity u. 

q
u   "t

x
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Advection is easy; why bother?

If advection is simply the translation of a profile in space, we can do it trivially!

So why bother?

Actually, it’s not that easy … AND …

Advection is always involved in more complex problems:
material is advected through shocks, for example: and
advection always occurs when fluids move, and fluids move in complex ways.

We will find that the solution to more general problems is a superposition of 
advection solutions.

37

q
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Advection is difficult!
38

first order

second order
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Advection is difficult!
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Shapes are not well preserved, but volume is conserved
39

Initial

2nd order 1st order

after 4 revolutions
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We can do much better!
40

second order with van Leer limiter, high resolution
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We can do much better!
40

second order with van Leer limiter, high resolution
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Advection is difficult. Why?

Advection, by itself, is notoriously difficult to do correctly in a numerical problem:

The fluid is discretised into finite volumes 

And the velocity is different from the discretisation ratio:
    so every time step advance requires interpolation

But advection is a good, challenging, test problem to start with, so:
we will develop techniques using this problem 
then use the same techniques to solve more difficult ones.

Problems we will be able to solve: acoustic, seismic, and electromagnetic wave 
propagation, gas dynamics (airplanes, wind turbines, hydrothermal vents, volcanic jets), 
water waves, tsunamis, traffic flow. 

spatial grid size
time step

!
"#

$
%&

41
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We need to learn about characteristics
The one-dimensional advection equation

has the solution

The function q(x,t) is constant along any space-time ray for which

                                          x–ut = constant = x0

  qt (x,t) + uqx (x,t) = 0

q(x,t) = !(x " ut)

q
u   "t

x

42
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Characteristics for the advection equation

The solution                                   implies that q(x,t) is constant along lines

Proof:

q(x,t) = !(x " ut)

X(t) = x0 + ut,!!t ! 0
d
dt
q X(t),t( ) = qx X(t),t( ) !X (t) + qt X(t),t( )

= qx X(t),t( )u + qt X(t),t( )
= qt + uqx = 0

X(t)  are the wave fronts, or characteristics. In the x–t plane they are lines of 
constant slope:

x

t
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Initial conditions

If we solve the advection equation on an infinite one-dimensional domain: 

Then we need the initial condition (initial data):

And we have the solution:

This is an Initial Value Problem (IVP) or Cauchy problem

  qt (x,t) + uqx (x,t) = 0       ! " < x < ",   t # 0

q(x,0) = !(x),      " # < x < #

q(x,t) = !(x " ut)     " # < x < #,   t $ 0

x

t

u  t

44
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Cauchy problem: 
all characteristics 
originate at t=0
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Initial conditions

If we solve the advection equation on an infinite one-dimensional domain: 

Then we need the initial condition (initial data):

And we have the solution:

This is an Initial Value Problem (IVP) or Cauchy problem
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Boundary Conditions
If we need to solve the same equation on a finite domain:

Then we need initial data:

And boundary data at the inflow boundary (no boundary condition on outflow):

This is an Initial-Boundary Value Problem (IBVP)

t

x bax ba

t

  qt (x,t) + uqx (x,t) = 0       a < x < b,   t ! 0

q(x,0) = !(x),      a < x < b

q(a,t) = g(t),      t ! 0         or         q(b,t) = g(t),      t ! 0
                if u > 0                                         if u < 0

45
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Boundary Conditions
If we need to solve the same equation on a finite domain:

Then we need initial data:

And boundary data at the inflow boundary (no boundary condition on outflow):

This is an Initial-Boundary Value Problem (IBVP)

t

x bax ba

t

  qt (x,t) + uqx (x,t) = 0       a < x < b,   t ! 0

q(x,0) = !(x),      a < x < b

q(a,t) = g(t),      t ! 0         or         q(b,t) = g(t),      t ! 0
                if u > 0                                         if u < 0

IBVP: all characteristics 
originate at t=0 or on a 

physical boundary

45
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x ba

The easiest boundary conditions to implement numerically are periodic 
boundary conditions. Under certain conditions this mimics an infinite domain, 
but beware the inherent periodicity. For periodic boundary conditions:

In this case, the solution is:

And the characteristics are:

Periodic Boundary Conditions

t

q(a,t) = q(b,t),      t ! 0

q(x,0) = ! X0 (x,t)( )

X0 (x,t) = a + mod(x ! ut ! a,  b ! a)

46
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The domain of influence is the region of space that can be physically 
affected by a source.

In this example, cell i can influence all of cell i+1 in the time "t, and cell i is 
in turn influenced by cell i–1.

For stability, a cell must not attempt to influence more than its immediate 
neighbours during a single time step of a numerical method.

Characteristics lead to the concept of 
“domain of influence”

x
ii–1 i+1 i+2

t

"t
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Characteristic lines for systems of equations

Systems of equations can have as many characteristics as there are 
equations. These characteristics can propagate in both directions.

Every point in the accessible space-time is crossed by all of the 
characteristics.

In this example, following the blue characteristics, cell i can influence most 
of cell i+1 in the time "t, and cell i is in turn influenced by cell i–1. 
Following the red characteristics, cell i+1 influences part of cell i, and cell i 
influences part of cell i–1.

x
ii–1 i+1 i+2

t

"t
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Causal domains in space-time
The domains of influence and dependence depend on the 
characteristics of the equations.

The Courant-Friedrich-Lewy (CFL) condition for stability 
states that the numerical domain of dependence must 
completely contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is 
bounded. For elliptic or parabolic systems, on the other 
hand, the domain of dependence can be infinite.

Domain of 
influence

Domain of 
dependence

x

t
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Causal domains in space-time
The domains of influence and dependence depend on the 
characteristics of the equations.

The Courant-Friedrich-Lewy (CFL) condition for stability 
states that the numerical domain of dependence must 
completely contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is 
bounded. For elliptic or parabolic systems, on the other 
hand, the domain of dependence can be infinite.

Domain of 
influence

Domain of 
dependence

x

t

!t

!x

The three-point 
stencil with this 
relation between 
space and 
time 
intervals 
violates 
CFL

49
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Causal domains in space-time
The domains of influence and dependence depend on the 
characteristics of the equations.

The Courant-Friedrich-Lewy (CFL) condition for stability 
states that the numerical domain of dependence must 
completely contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is 
bounded. For elliptic or parabolic systems, on the other 
hand, the domain of dependence can be infinite.

Domain of 
influence

Domain of 
dependence

x

t

!t
!x

The three-point stencil with this 
relation between the space and 
time intervals is okay because 
the physical domain of 
dependence lies 
within the 
numerical 
stencil.

49
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Variable coefficients

If the fluid velocity varies with x, then the conservation law is:

And then the characteristics are not straight lines, but curves which are found 
by solving the ODE:

In this case, q is not constant along the curves, but the curves still track 
material particles.

  
qt + u(x)q( )

x
= 0

!X = u X(t)( )

!
!t

+ u !
!x

The material derivative                            tracks changes observed by someone 

moving along with the fluid (along a characteristic curve).

x

t
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A little gas dynamics: the continuity equation

A special kind of variable-coefficient equation arises from considering the 
flow of a gas. Since gasses are compressible, the density and velocity can 
both vary during the flow. Then the conservation equation derived before, 
expressed in terms of density ρ is:

With the flux function 

This becomes the equation for the conservation of mass, called the 
continuity equation:

f (x,t) = !(x,t)u(x,t)

!t + f (!)x = 0

!t + (!u)x = 0

51
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Conservation of momentum
The continuity equation by itself isn’t sufficient to solve the flow of a gas, so 
we need additional conservation laws.

The product ρ(x,t)u(x,t) is the density of momentum, and we can derive a 
conservation law equation from it, remembering that pressure p contributes to 
change of momentum:

And then we would need another conservation law for energy and an 
equation of state relating energy to both p and ρ. As a short-cut, we could 
simply use an equation relating p to ρ. This is sometimes sufficient.

One example is the polytropic equation                  , which is the isothermal 
condition for          . More generally we may use the barotropic 
relation                    . 

Then we have a closed system of two equations. If                     for positive ρ, 
the system is hyperbolic.

!u( )t + !u2 + p( )x = 0

p = P(!)

!P (") > 0 

p = K!"

! = 1

52
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The basic system of equations for a 
barotropic fluid (simplified gas dynamics)

Our system is 

Which we can write as                             , if we define

If q is sufficiently smooth, we can write                                 (quasilinear form)

Where                                                 is the Jacobian matrix. 

!t + (!u)x = 0
!u( )t + !u2 + P(!)( )x = 0

qt + f (q)x = 0

q =
!
!u

"

#
$
$

%

&
'
'
,      f (q) =

!u
!u2 + P(!)

"

#
$
$

%

&
'
'

qt + !f (q)qx = 0

!f (q) =

"f 1

"q1
"f 1

"q2

"f 2

"q1
"f 2

"q2

#

$

%
%
%
%
%

&

'

(
(
(
(
(
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Linear acoustics
This will be a useful example that we’ll return to often. We linearise the 
barotropic system by examining only a perturbation to the (constant) 
background state. Let 

The conservation law                              becomes the constant-coefficient 

linear system                                   since we discard powers of the perturbed 

quantity.  

The Jacobian of the perturbed barotropic system then becomes  

 

q(x,t) = q0 + !q(x,t),  !q =
!!

!u"
"

#
$
$

%

&
'
'

 !qt + !f (q0 ) !qx = 0
qt + f (q)x = 0

A = !f (q) =

"f 1

"q1
"f 1

"q2

"f 2

"q1
"f 2

"q2

#

$

%
%
%
%
%

&

'

(
(
(
(
(

=
0 1

)u2 + !P (*) 2u
#

$
%
%

&

'
(
(
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Linear acoustics
The system just obtained can be written out as:

Then writing                           ,                               , and 

We obtain the linear acoustics equations

With               , this becomes the system (dropping the tildes): 

 !P ("0 ) !" = !p
 

!!t + (!u")x = 0

(!u")t + "u0
2 + #P (!0 )( ) !!x + 2u0 (!u")x = 0

 !u! = u0 "! + !0 "u

 

!pt + u0 !px + K !ux = 0
!0 !ut + !px + !0u0 !ux = 0

K = !0 "P (!0 )

u0 = 0

  qt (x,t) + Aqx (x,t) = 0

q = p
u

!

"
#
#

$

%
&
&
,!!A =

0 K
1
'0

0

!

"

#
#
#

$

%

&
&
&
,          so 

pt + Kux = 0
'0ut + px = 0
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Sound waves

The acoustics equations must produce a solution with sound waves 
travelling in both directions.

We try a solution of the form                                    and then compute the 
derivatives:

So from                                                we get 

implying that s is an eigenvalue and      the corresponding eigenvector of the 
matrix A. 

Can you calculate the sound speed?

This is an important key to the methods we will develop in this course. 

q(x,t) = !(x " st)

  qt (x,t) + Aqx (x,t) = 0

qt (x,t) = !s "# (x ! st),       qx (x,t) = "# (x ! st)

A !" (x # st) = s !" (x # st)

q = p
u

!

"
#
#

$

%
&
&
,!!A =

0 K
1
'0 0

!

"
#
#

$

%
&
&  qt (x,t) + Aqx (x,t) = 0

!"
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Reminder: eigenvalues of a 2x2 matrix
Eigenvalues ! and eigenvectors r for a matrix A are found from                    

For the matrix                                  , the eigenvalues are:

Hence the acoustic equation matrix 

has eigenvalues:                                     and eigenvectors 

Important result: the eigenvalues are the wave speeds. The eigenvectors 
express the relation between the components of the solution vector.

!1,2 = a + d
2

±
4bc + (a " d)2

2

 
A = a b

c d
!

"
#

$

%
&

A =
0 K
1
!

0

"

#

$
$
$

%

&

'
'
'

!1,2 = ±c = ±
K
"

Ar = !r

r1,2 = ± K!
1

"

#
$
$

%

&
'
'
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One way to look at linear acoustics: 

The unknown functions p(x,t) and u(x,t) are pressure and velocity; K and ρ 
are the material constants (bulk modulus and density). Differentiate the first 
with respect to t and the second with respect to x:

pt (x,t) + Kux (x,t) = 0

ut (x,t) + 1! px (x,t) = 0

ptt ! Kuxt = 0

uxt ! 1" pxx = 0

Then add K times the second to the first:

ptt ! K
" pxx = 0

This is the familiar 2nd order wave equation, and it is hyperbolic. The 

solution gives waves travelling in both directions at velocity               .c = K
!
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Another way to look at linear acoustics:
The acoustic equations are:

Express in matrix notation:

Resolve into the eigensystem: 

with eigenvalues                                       and eigenvectors

The eigenvalues are the wave speeds, and the eigenvectors express 
relations between the components of the solution q.

q = p
u

!

"
#
#

$

%
&
&
,!!A =

0 K
1
'

0

!

"

#
#
#

$

%

&
&
&
.  qt (x,t) + Aqx (x,t) = 0

Ar = !r,

!1,2 = ±c = ±
K
"

r1,2 = ± K!
1

"

#
$
$

%

&
'
'
.
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Acoustic impedance

The eigenvalues and eigenvectors of linear acoustics are

The quantity                      is commonly known as the impedance of the 
medium.

60

!1,2 = ±c0 = ±
K
"0

r1,2 = ± K!0
1

"

#
$
$

%

&
'
'
=

±!0c0
1

"

#
$
$

%

&
'
'
.

Z0 = !0c0
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Wave-propagation methods

A conservation law 

is locally linearised into the form

The system is hyperbolic if the m ! m matrix A is diagonalisable with 
eigenvalues 

The solution to the conservation law is the superposition of waves 
propagating with velocities given by the eigenvalues.

We will calculate these waves and use them to construct the solution.

61

qt + f (q)x = 0

qt + Aqx = 0

!1,!2 ,…!m
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Hyperbolicity Definition

A is diagonalisable if it has a complete set of eigenvectors/eigenvalues, i.e.

                                  (the vectors rp must be nonzero)

Strongly hyperbolic:
the matrix A is diagonalisable and has real eigenvalues

Strictly hyperbolic:
the matrix A is diagonalisable and has distinct real eigenvalues

Weakly hyperbolic:
the matrix A is not diagonalisable but has real eigenvalues (not a complete set)

Ar p = ! pr p  for p = 1,2,…,m

 

A = !f (q) =

"f 1

"q1
!

"f 1

"qm

" # "
"f m

"q1
!

"f m

"qm

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

The Jacobian matrix of a linear m ! m 
system of partial differential equations:
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Hyperbolic systems lead to wave methods
Our hyperbolic sytem has the locally diagonalisable Jacobian A:

The matrix                                   is nonsingular. Forming

we can write our conservation law as 

with                                     , and then we resolve it into:

Ar p = ! pr p  for p = 1,2,…,m

R = r1 r2 … rm!
"

#
$

 

R!1AR = " =

#1

#2

!
#m

$

%

&
&
&
&

'

(

)
)
)
)

,

R!1qt + R!1"R( )R!1qx = 0
wt + "wx = 0

w x,t( ) = R!1q x,t( )
wp
t + ! pwp

x = 0 for p = 1,2,…m
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Elastic waves in solids

These are also hyperbolic systems and may be solved by the same methods

P-waves in one dimension:

S-waves in one dimension:

Higher dimensional systems are covered in Chapter 22 of Leveque; let me 
know soon if anyone is interested in doing such problems, otherwise I won’t 
cover them in the course.

64

! t
11 " ux = 0

#ut "$
11
x = 0

! t
12 " 1

2
vx = 0

#vt "$
12
x = 0

mandag 30. august 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

Electromagnetic waves

A plane electromagnetic wave propagating in the x direction has electric and 
magnetic field given by 

Maxwell’s equations for this case reduce to:

The eigenvalues are                                    giving the speed of light in the 
medium.

65

E =

0
E2 x,t( )
0

!

"

#
#
#

$

%

&
&
&
,   B =

0
0
B3 x,t( )

!

"

#
#
#

$

%

&
&
&

Et
2 + 1

!µ
Bx
3 = 0

Bt
3 + Ex

2 = 0

!1,2 = ±c = ± 1
"µ
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Review: conservation law and advection

The fundamental conservation law in one spatial dimension, expressed in 
differential form, is:

The advection equation, the simplest hyperbolic differential equation,

is a conservation law with the flux function                               . Its solution is 

and this function is constant along rays in space-time (characteristics) with 
x–ut = constant.

qt (x,t) + f (q(x,t))x = 0.

  qt (x,t) + uqx (x,t) = 0,

f (x,t) = uq(x,t)
q(x,t) = q(x ! ut,0),

x
ii–1 i+1 i+2

t

"t
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Assignment (due Monday 6 Sept):
Get the book! It’s available at Akademika now.

Download the Errata from 
                http://www.amath.washington.edu/~claw/book.html
and apply the corrections. Your copy may not need all of them since it’s a newer printing.

Read all of Chapter 1, and Chapter 2 at least through section 2.11. Include 2.12 if you 
think you might want to do waves in elastic media (like seismic waves).

Work Exercises 2.2 (a and b parts), 2.4, and 2.8 (a part only) and hand them in to me 
by next Monday (the 24th). There is a file of sample solutions available at the above 
website, but please try them first on your own before consulting it.

Read the instructions for downloading Clawpack. These instructions are attached to 
the PDF of these slides, and also found on the Clawpack site at
             http://kingkong.amath.washington.edu/clawpack/users/index.html. 
Make sure you have access to a Unix/Linux/Mac OS X machine with a good development 
environment, including at a minimum Fortran 90/95  (gfortran, for example), and Python 
2.5 or 2.6. 

Download Clawpack and install it on your computer. Run some tests to make sure it is 
installed correctly. Try to reproduce Fig. 3.1 (and 3.8) in Leveque. Come see me if you 
get stuck; let’s discuss difficulties this week.
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Next: Riemann Problem 
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