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Before we start:
Questions over the reading?

Problems installing Clawpack?

The problem set
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Where we are today
2

date Topic Chapter in 
LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16. aug. 2010 Monday 13.15-15.00 introduction to conservation laws, Clawpack 1 & 2

23. aug. 2010 Monday 13.15-15.00 the Riemann problem, characteristics 3 & 5

30. aug. 2010 Monday 13.15-15.00 finite volume methods for linear systems 4

6. sep. 2010 Monday 13.15-15.00 high resolution methods 6

13. sep. 2010 Monday 13.15-15.00 boundary conditions, accuracy, variable coeff. 7,8, part 9

20. sep. 2010 Monday 13.15-15.00 nonlinear conservation laws, finite volume methods 11 & 12

27. sep. 2010 Monday 13.15-15.00 nonlinear equations & systems 13 & 14

4. okt. 2010 Monday 13.15-15.00 finite volume methods for nonlinear systems 14 & 15

11. okt. 2010 Monday 13.15-15.00 source terms and multidimensions 16,17,18,19

18. okt. 2010 Monday 13.15-15.00 multidimensional systems 20 & 21

25. okt. 2010 Monday 13.15-15.00 capacity functions, source terms, project plans

1. nov. 2010 Monday 13.15-15.00 review

8. nov. 2010 Monday 13.15-15.00 student presentations

15. nov. 2010 Monday 13.15-15.00 student presentations

week 
number

date Topic Chapter in 
LeVeque

1

2

3

4

5

6

7

8

9

10

11

12

13

14

35 30. aug. 2010 introduction to conservation laws, Clawpack 1 & 2

36 6. sep. 2010 the Riemann problem, characteristics 3 & 5

37 13. sep. 2010 finite volume methods for linear systems 4

38 20. sep. 2010 high resolution methods 6

40 4. okt. 2010 boundary conditions, accuracy, variable coeff. 7,8, part 9

40 5. Oct 2010 nonlinear conservation laws, finite volume methods 11 & 12

41 11. okt. 2010 nonlinear equations & systems 13 & 14

42 18. okt. 2010 finite volume methods for nonlinear systems 14 & 15

43 25. okt. 2010 source terms and multidimensions 16,17,18,19

44 1. nov. 2010 multidimensional systems 20 & 21

45 8. nov. 2010 capacity functions, source terms, project plans

46 15. nov. 2010 student presentations

47 22. nov. 2010 student presentations

48 6. des. 2010 FINAL REPORTS DUE
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Review: conservation law and advection

The fundamental conservation law in one spatial dimension, expressed in 
differential form, is:

The advection equation, the simplest hyperbolic differential equation,

is a conservation law with the flux function                               . Its solution is 

and this function is constant along rays in space-time (characteristics) with 
x–ut = constant.

qt (x,t) + f (q(x,t))x = 0.

  qt (x,t) + uqx (x,t) = 0,

f (x,t) = uq(x,t)
q(x,t) = q(x ! ut,0),

x
ii–1 i+1 i+2

t

!t
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Review: Linear acoustics in a stationary gas
The acoustic equations are:

Expressed in linear form, with matrix notation:

This can be resolved into the eigensystem 

with eigenvalues                                       and eigenvectors

The eigenvalues are the wave speeds, and the eigenvectors express 
relations between the components of the solution q.

pt (x,t) + Kux (x,t) = 0
ut (x,t) + 1

! px (x,t) = 0.

q = p
u

!

"
#
#

$

%
&
&
,!!A =

0 K
1
'0 0

!

"
#
#

$

%
&
&
.  qt (x,t) + Aqx (x,t) = 0

Ar = !r,

!1,2 = ±c = ±
K
"

r1,2 = ± K!
1

"

#
$
$

%

&
'
'
.
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FYS-GEO4500
The Riemann Problem 
(Chapter 3 in Leveque)
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Resolution to the eigensystem is the key to 
the solution 

Our linear hyperbolic system of equations is written as

Since it is hyperbolic, we can resolve it into eigenvalues and eigenvectors 

The next step will be to show that we can form a series of new equations

that are equivalent to the original system, and from which we can assemble 
the solution vector q. 

Notice that these new equations are simply advection equations!

  qt + Aqx = 0.

Ar p = ! pr p  for p = 1,2,…,m.

wt
p + ! pwx

p = 0 for p = 1,2,…,m

6
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Boundary Conditions for a System

The Initial-Boundary Value Problem for the advection equation required us to 
set inflow boundary conditions, either at left or right, depending on the sign of 
the velocity.

For a system with multiple characteristics, some boundary conditions must be 
set at left and some at right. In the decoupled advection equations

boundary conditions on wp (x,t) are specified on the left if !p > 0, and on the 
right if !p < 0.

In fact, however, boundary conditions are usually set on the physical 
variables and not on the characteristics. We’ll see how this is done later.

wt
p + ! pwx

p = 0,

7

mandag 6. september 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

Superposition of waves

But if we are to assemble the solution vector q from the p eigenvalue 
advection equations, we have to believe that we can superimpose the waves 
resulting from all of them.

This has to be proven eventually, but first a demonstration in a simple case.

The solution to the acoustic equations in one dimension,                                     

 

is a pair of sound waves, propagating away from the source with velocity 

pt (x,t) + Kux (x,t) = 0
ut (x,t) + 1

! px (x,t) = 0,

±c = ±
K
!
.

8
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Superposition demonstration - initial conditions:
9

mandag 6. september 2010

FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2010

Superposition demonstration - just after starting 
10
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… and a little later on …
11
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But superposition really works!
12
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But superposition really works!
12
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The Riemann problem

The Riemann problem is simply the hyperbolic equation being studied, plus 
special boundary data representing a single jump discontinuity:

This is fundamental for understanding the theory of hyperbolic equations and 
fundamental for finite volume solutions of these equations.

In developing numerical solutions, we will solve the Riemann problem  
repeatedly, at every cell border, and use these problems to advance the 
overall solution to the next time step. 

Over the course of a full simulation, the Riemann problem may be solved 
millions or hundreds of millions of times so it is important to do it correctly 
and efficiently. 

q(x,0) =
ql      if x < 0
qr      if x > 0

!
"
#

13
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The Riemann problem for the advection equation

For the advection equation,                       , with initial discontinuous data 

The solution is 

The discontinuity simply propagates with speed u. The discontinuity does 
not diffuse or disperse. 

  qt + uqx = 0

q(x,0) =
ql      if x < 0
qr      if x > 0

!
"
#

q(x,t) = q(x ! ut,0) =
ql      if x < ut
qr      if x > ut

"
#
$

ql

qr

x

q

ql

qr

x

q
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The Riemann problem for the advection equation

The characteristic tracks the position x of the discontinuity with time t

                             The characteristic:

q(x,0) =
ql      if x < 0
qr      if x > 0

!
"
#

q(x,T ) = q(x ! uT ,0) =
ql      if x < uT
qr      if x > uT

"
#
$

x

t

T

ql

qr

x

q

t=T

ql

qr

x

q
t=0

15
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Remember the discontinuity!

Strictly speaking, the Riemann solution is not a solution of the partial 
differential equation                         because the derivatives are infinite at the 
jump.

But it is a solution of the integral form:

Proof: integrate in time to get  

Both sides are zero if the interval does not bridge the jump; both sides are 
equal to u(ql–qr)(t2–t1) if it does.

  qt + uqx = 0

d
dt

q(x,t)dx
x1

x2! = uq(x1,t) " uq(x2 ,t)

q(x,t2 )dxx1

x2! " q(x,t1)dxx1

x2! = uq(x1,t) " uq(x2 ,t)( )dt
t1

t2!

t2

x2x1

t1

ql

qr

u(t2–t1)

16
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We can apply the Riemann problem to 
systems of equations as well…

But first we must do some preliminary work.

You’ll see why the advection equation is important!

17
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Characteristics for a system of equations
For the linear m " m hyperbolic system of equations                                , the 
Jacobian is 

It has m eigenvectors and eigenvalues found from                        .

The matrix of eigenvectors                                   has an inverse 

So we can form the matrix 

qt + !f (q)qx = 0

 

A = !f (q) =

"f 1

"q1
!

"f 1

"qm

" # "
"f m

"q1
!

"f m

"qm

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

.

Ar p = ! pr p  

R = r1 r2 ... rm!" #$ R!1

 

R!1AR = " =

#1

#2

!
#m

$

%

&
&
&
&

'

(

)
)
)
)
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Characteristics for a system of equations

With the original Jacobian                                      now in diagonal form, 

and defining

we can rewrite the system                            as                               .

w(x,t) ! R"1q(x,t),    so   Rw(x,t) = q(x,t),

qt + Aqx = 0
Rwt + ARwx = 0

R!1R( )wt + R!1AR( )wx = 0

wt + !wx = 0

 

A =

!f 1

!q1
!

!f 1

!qm

" # "
!f m

!q1
!

!f m

!qm

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'  

R!1AR = " =

#1

#2

!
#m

$

%

&
&
&
&

'

(

)
)
)
)
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Characteristics for a system of equations

Since the matrix ! is diagonal, the system becomes m independent 
advection equations:

The system then has m distinct characteristic waves travelling at the speeds 
given by the eigenvalues !p. The system is strictly hyperbolic because it has 
a full set of distinct eigenvalues.

Note we have so far assumed the matrix              is constant. We’ll 
generalise later.

wt
p + ! pwx

p = 0   for p = 1,...,m

A = !f

20
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Assembling the solution

Starting with the constant-coefficient system                          , we have found 
we can write it as 

where ! is the matrix of eigenvalues. The vector w (sometimes called the 
vector of characteristic variables) is found from  

where                                 is the matrix of right eigenvectors.  

Hence the problem is resolved into the m independent advection equations

each of which has a solution of the form

qt + Aqx = 0

w(x,t) = R!1q(x,t),

wt + !wx = 0,

wt
p + ! pwx

p = 0   for p = 1,...,m,

R = r1 r2 ... rm!" #$

wp (x,t) = wp (x ! " pt,0).

21
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Assembling the solution

To get the solution to the full Riemann problem, we simply superimpose the 
waves 

 and the full solution is therefore

q(x,t) = Rw(x,t) = wp (x,t)r p
p=1

m

! .

wp (x,t) = wp (x ! " pt,0),

22
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p-characteristics, superposition of waves

The solution to the Riemann problem for a linear m " m system of equations is

 a superposition of waves, each of strength wp and moving at speed !p.

The functions                 are called characteristic variables, whose initial 
values                  are simply advected at speed !p along the curves 

Each such curve is called a p-characteristic. 

Conventionally the eigenvalues and their characteristics are ordered in 
increasing value of the speed !p and labelled with the index p.

q(x,t) = Rw(x,t) = wp (x,t)r p
p=1

m

! ,

wp (x,t)
wp (x,0)

X(t) = x0 + ! pt.

23
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Every point in the x–t plane is crossed by all the characteristics, if the 
problem is strictly hyperbolic. 

In this diagram for a 2x2 system, the red lines are characteristics of the p=1 
family, the blue of the p=2 family. 

So the exact solution, everywhere, consists of a superposition of right states 
moving to the left along the red lines and left states moving to the right along 
the blue lines. The solution is defined in all of space-time by simply adding 
the appropriate right and left states. This can be extended to any m " m 
system, and to multiple dimensions as well.

It’s easy! Now we’ll go over it again, slightly differently…

The characteristics cover space-time

x

t 1-characteristics
2-characteristics

24
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The Riemann problem for a system of equations

The Riemann problem is simply the hyperbolic equation being studied, plus 
special boundary data, piecewise constant, with a single jump discontinuity:

This discontinuity will propagate along the characteristic curves. But note 
that q will now be considered to be a vector.

We can solve the Riemann problem for a linear m " m system of equations 
using the mathematics we’ve already developed. 

For a nonlinear system, the solution will have a similar structure, but we 
defer that discussion for later.

We start by writing                            and 

q(x,0) =
ql      if x < 0
qr      if x > 0

!
"
#

ql = wl
pr p

p=1

m

! qr = wr
pr p

p=1

m

!

25
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Right and Left Eigenvectors
We construct the matrix R from the eigenvectors of the Jacobian of the PDE 
system. These are the right eigenvectors of the system:

The rows of the matrix inverse of R form the left eigenvectors:

We can therefore rewrite our w vector as

This vector satisfies the advection equation:                               with # the 
diagonal matrix of eigenvalues.

R = r1 r2 ... rm!" #$ Ar p = ! pr p  

 

L = R!1 =

l1

l2

!
lm

"

#

$
$
$
$

%

&

'
'
'
'

l pA = ! pl p  

w(x,t) = R!1q(x,t) = Lq(x,t)
wp (x,t) = l pq(x,t)

wt + !wx = 0

26
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The solution to the system of equations 

We obtained the m advection equations                                                            

whose solutions are                                                                             .

Now we combine all the wp into the vector w and write the solution to the 
original problem:

The solution is a superposition of m waves, each moving at its own 
characteristic speed.

wt
p + ! pwx

p = 0

wp (x,t) = wp (x ! " pt,0)

q(x,t) = Rw(x,t)

= wp (x,t)r p
p=1

m

!

= l pq(x " # pt,0)$% &'r
p

p=1

m

!

27
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Solving the Riemann problem
Then each advection equation has initial (Riemann) data:

And the discontinuity in each component propagates with its own speed !p:

The solution 

is then a mixture of left and right states, the mixture changing with time and 
space because the speeds !p are different. 

wp (x,0) =
wl

p      if x < 0
wr

p      if x > 0

!
"
#

$#

wp (x,t) =
wl

p      if x ! " pt < 0
wr

p      if x ! " pt > 0

#
$
%

&%

q(x,t) = wp (x,t)r p
p=1

m

!

28
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a b

t

x0

x/t

Solving the Riemann problem

We assume that the eigenvalues !p have been ordered with increasing 
(positive) speeds at higher index p, and separate the sum into two pieces 
according as !p is less than or greater than x/t.

q(x,t) = wr
pr p

p:! p<x/t
" + wl

pr p
p:! p>x/t
"

In this two-equation system, the solution at the 
point c is the sum of: 
     the left-going (blue, !2> x/t ) wave from a 

and 
     the right-going (red, !1< x/t ) wave from b.

29

c
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Explicit versus implicit methods

For hyperbolic equations in general:

Note that (in the linear case) the solution at c depends only on the points a 
and b

In a nonlinear equation, it may depend on a bounded interval, but not on the 
entire real line. 

This is because information propagates at finite speed. Explicit methods, 
where the future point c is simply predicted from a and b (or the appropriate 
interval) can therefore be used efficiently.

Parabolic and elliptic equations, on the other hand, frequently require implicit 
methods.

30

a b

t

x0

x/t

c
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Look at it from the origin:

Because there are two waves, a 
simple discontinuity at the origin 
divides to produce two new 
discontinuities.

The left and right states persist 
on the left and right sides of the 
characteristics from the origin 
and a new intermediate state 
develops between them.

The state at the black dot is the 
intermediate state, in common 
with other points in the region.

t

x0

(x= !1 t) (x= !2 t)

ql
qm

qr

t

x0

x/t

31
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Riemann diagram for a two-equation system

For a linear two-equation Riemann problem with left and right states ql and 
qr, the discontinuity at the origin divides. Two waves (characteristics) 

propagate away from the origin with constant speeds !1 and !2. 

As the waves separate, a new constant state develops in the middle with 

At any later time, there are two discontinuities, whose sum makes up the 
original one.

qm = wr
1r1 + wl

2r2

t

x0

(x= !1 t) (x= !2 t)

ql qm qr

32
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Similarity solutions

The Riemann problem for a linear system results in self-similar solutions: the 

solution depends on      and not on x or t separately. The solution is thus 

constant within the wedges defined by the characteristics.

And remember:

For any hyperbolic system, the domain of dependence is bounded.

t

x0

x
t

Riemann diagram valid for a 
constant-coefficient linear 3 
equation system

33
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Constructing the solution for a 3 " 3 system

The red dashed lines connect the points that influence the point (X,T); the 
blue solid lines connect the points affected by the origin.

In the wedge where point (X,T) sits, the solution can be denoted rll, short 
for

and so on for the other wedges. Across each characteristic, the solution has 
a jump discontinuity, and the solution is constant within each wedge.

The jumps between wedges are each eigenvectors of the system.

t

x0

(X,T)

(X– !1 T)(X– !2 T)(X– !3 T)

(x= !1 t) (x= !2 t) (x= !3 t)

lll

rll rrl

rrr

q(X,T ) = wr
1r1 + wl

2r2 + wl
3r3

34
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Decomposing the jump

Generalise to an m " m system.

Along the red dashed line (i.e. at any time after t=0 ), the original jump 
discontinuity has been broken up into a linear combination of the 
eigenvectors of the system matrix A.

                                                                      where 

We solve for the jump coefficients " by:

The solution for q(x,t) can then be written 

                                                                        where 

ql ! qr = "
1r1 +" 2r2 +…+" mrm

R! = ql " qr
! = R"1(ql " qr )
! p = l p (ql " qr )

q(x,t) = ql + H (x ! " pt)# pr p
p=1

m

$ H (x) =
0     if x ! 0
1     if x > 0
"
#
$

! p = (wr
p " wl

p )

t

x0

(x= !1 t) (x= !2 t) (x= !3 t) 35
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The wave notation

A useful notation is to denote the jump in q across the pth wave in the 
Riemann solution as Wp where

These are called waves.

Then the solution to the Riemann problem can be written

where H is the Heaviside function 

 W p = ! pr p

 
q(x,t) = ql + H (x ! " pt)W p

p=1

m

#

H (x) =
0     if x ! 0
1     if x > 0
"
#
$

36
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Phase plane for the two-equation system

In a two-equation system, one can 
construct a phase plane of the components 
of q=(q1,q2) (below).  

The only states that can be connected to a 
given state q by a single discontinuity must 
lie along lines parallel to the eigenvectors 
r1 and r2. 

Each of these lines is known as the 
Hugoniot locus of states that differ from q 
by the jump of either a 1-wave or a 2-
wave.

Using the phase plane is a key technique 
for solving Riemann problems.

t

x0

ql qm qr

37

space-time 
diagram

q1

q2

r2
r1

q

r2

r1

phase plane 
diagram
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Phase plane for the two-equation system

Place points corresponding to right and left 
states in the phase plane, and draw lines 
parallel to the eigenvectors r1 and r2 through 
each point. 

The middle state qm is at one of the two 
intersections. You determine which by 
comparing the two eigenvalues. Since !1 < !2 
the jump from ql to qm must go parallel to r1.

38

q1

q2

r2
r1

qr

qm ql

q1

q2

r2
r1

ql qm

qr

t

x0

(x= !1 t) (x= !2 t)

ql qm qr

space-time 
diagram

phase plane 
diagram

phase plane 
diagram
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Some examples: Burger’s Equation

The simplest nonlinear partial differential equation is Burger’s equation:

As the second form explicitly shows, it is in conservation form, and it is 
everywhere hyperbolic, with variable eigenvalue u, though nonlinear.

This is the simplest differential equation which demonstrates the 
development of discontinuities and so proves the differential form 
inadequate!

ut +
1
2
u2!

"#
$
%& x

= 0

ut + uux = 0.

39
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Demonstration of Burger’s Equation
40
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Demonstration of Burger’s Equation
40
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Example: the Euler equations of gas dynamics

Recall the equations of continuity and momentum for the motion of a fluid:

To these we add an equation for the conservation of energy E:

And we must supplement with an equation of state,                      , but we 
won’t worry about the details for now. 

Here it is sufficient to recognise that this system of 3 equations gives rise to 
3 distinct characteristic waves. It is a nonlinear system, however. 

We’ll see how this works in a one-dimensional shock tube.

!t + (!u)x = 0
!u( )t + !u2 + p( )x = 0

Et + u(E + p)( )x = 0
p = P(!,E)

41
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The shock tube:

The shock tube is a closed tube filled with gas, separated by a membrane 
into sections with different densities.  

The membrane is suddenly removed, and the gas is now free to move from 
one section to the other.

What happens?

How many waves are there, and which way do they propagate?

membrane
ρh ρl
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Shock Tube
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The shock tube

A closed tube filled with gas, separated by 
a membrane into sections with different 
densities. 

The membrane is suddenly removed, and 
the gas starts moving from the high-density 
region into the lower density region.

Three waves develop: a shock wave, a 
contact discontinuity, and a rarefaction 
wave (or fan). The first two travel to the 
right, the third to the left.

At the shock, velocity, pressure and 
density are all discontinuous. At the 
contact, only density is discontinuous. In 
the rarefaction fan, all variables are 
continuous, but their derivatives are not.

The third wave is not a sharp discontinuity 
because of the problem’s nonlinearity. 

membrane
ρh ρl

density

ρp

pressure

x

u

velocity waves

t

x

shock

contact
discontinuity

rarefaction
fan

ρh

ρl
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Review of the Riemann problem

The Riemann problem is the original system of equations,                        
plus the special initial condition consisting of a jump discontinuity:

In the linear hyperbolic system, we have                                 and the 

Jacobian                                  can be diagonalised into the form 

with the eigenvalues !p , since the system is hyperbolic.

q(x,0) =
ql      if x < 0
qr      if x > 0

!
"
#

qt + f (q)x = 0

qt + !f (q)qx = 0

 

!f (q) =

"f 1

"q1
!

"f 1

"qm

" # "
"f m

"q1
!

"f m

"qm

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(  

! =

"1

"2

!
"m

#

$

%
%
%
%

&

'

(
(
(
(

.
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Review of the Riemann problem

The solution vector is resolved or projected onto the eigenvectors rp , 

and the system is replaced by the equivalent m advection equations

with the solution                                               . The initial left-right 
discontinuity is split among the eigenvectors

q(x,t) = wp (x,t)r p
p=1

m

!

wt
p + ! pwx

p = 0,

wp (x,t) = wp (x ! " pt,0)

ql ! qr = " pr p
p=1

m

# = wl
p ! wr

p( )r p
p=1

m

# .

t

x0

(X,T)

(X– !1 T)(X– !2 T)(X– !3 T)

(x= !1 t) (x= !2 t) (x= !3 t)
The solution at a later time is a mixture of 
these left and right states, depending on 
whether x is to the left or the right of the 
corresponding characteristic.
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Review of the Riemann problem

If we define the waves                                                then the solution to the 
Riemann problem can be written 

where H is the Heaviside function  

 W
p ! " pr p = (wl

p # wr
p )

H (x) =
0     if x ! 0
1     if x > 0
"
#
$

.

 
q(x,t) = ql + H (x ! " pt)W p

p=1

m

#

t

x0

The Riemann solution for a 
linear system is a similarity 
solution: it depends on x/t 
and not on x or t separately. 
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Guide to Clawpack
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a screenshot from the documentation webpage:
http://kingkong.amath.washington.edu/clawpack/users/index.html
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Program flow -1d - Fortran version
driver

call claw1ez
call opendatafile
call setprob*
call setaux*
call qinit*
call out1
loop on output steps

call claw1
loop on single steps
call copyq1 (if variable time step)
call bc1*
call b4step1*
call src1* (if using Strang splitting)
call step1
call rp1*
call limiter

call src1* (if needed)
call copyq1 (if needed)

end loop on single steps
call out1

end loop on output steps
end

end

*The red names are the user routines. Bold text 
means the user must supply these for all 
problems, others are supplied (or modified, in the 
case of bc1) as needed for specific problems. 

51
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Clawpack (1d) flow of control

*The red boxes are the user routines. Bold text 
means the user must supply these for all 
problems; the others are supplied (or modified, in 
the case of bc1) as needed for specific problems. 
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What Makefile does
54
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Your Makefile must point to the appropriate 
source code files

# ---------------------------------
# List of sources for this program:
# ---------------------------------
CLAW_SOURCES = \
  driver.f \
  qinit.f \
  rpn2.f \
  rpt2.f \
  setprob.f 

# Clawpack library to be used:
CLAW_LIB = $(CLAW)/clawpack/2d/lib
    
CLAW_LIBSOURCES = \
  $(CLAW_LIB)/claw2ez.f \
  $(CLAW_LIB)/bc2.f \
  $(CLAW_LIB)/setaux.f \
  $(CLAW_LIB)/b4step2.f \
  $(CLAW_LIB)/claw2.f \
  $(CLAW_LIB)/step2.f \
  $(CLAW_LIB)/step2ds.f \
  $(CLAW_LIB)/dimsp2.f \
  $(CLAW_LIB)/flux2.f \
  $(CLAW_LIB)/copyq2.f \
  $(CLAW_LIB)/limiter.f \
  $(CLAW_LIB)/philim.f \
  $(CLAW_LIB)/src2.f\
  $(CLAW_LIB)/out2.f\
  $(CLAW_LIB)/restart2.f\
  $(CLAW_LIB)/opendatafile.f

These are the files you write (or change) yourself. Include other files 
like bc2.f, b4step2.f, src2.f, and so on as needed. These should be in 
your run directory under $CLAW/myclaw (as this Makefile is).

These are the files you use from the Clawpack library referenced in 
the line above (2d or 1d are available now; 3d will come later).
 
If you want to make changes to any of these, make a copy first and 
move the copy to your run directory under $CLAW/myclaw. You may 
change it there, but to use it you must add its name to the list above 
and remove it from this list.
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What Makefile does
In $CLAW/util/Makefile.common (which should be invoked by every 
Clawpack Makefile):

#       Makefile for the clawpack code:
#
#       For this help summary, type:              make .help
#
#       To make all object files, type:           make .objs
#
#       To compile a single file.f:               make file.o
#
#       To make the executable, type:             make .exe
#
#       To make data files by running 
#       setrun.py:                                make .data
#
#       To make and run code putting results
#       in subdirectory named output:             make .output
#
#       To make and run code and then plot        
#       results from subdirectory output
#       into subdirectory named plots:            make .plots
#
#       To create html files from the program
#       and data files using clawcode2html:       make .htmls
#
#       To clean up files created by make:        make clean
#       Deletes *.o, x*, .htmls
#
#       To clean up output and graphics files:    make clobber
#

setplot.py

setrun.py

$CLAW/util/Makefile.common
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What Makefile does
In $CLAW/util/Makefile.common:

# Executable:
.objs: $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
$(CLAW_EXE): $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
! $(LINK) $(LFLAGS) $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) -o $(CLAW_EXE)
.exe: $(CLAW_EXE) ;

# Make data files needed by Fortran code:
.data: $(CLAW_setrun_file) ;
! python $(CLAW_setrun_file) $(CLAW_PKG)
! touch .data

# Run the code and put fort.* files into subdirectory named output:
# runclaw will execute setrun.py to create data files and determine
# what executable to run, e.g. xclaw or xamr.
.output: $(CLAW_EXE) .data;
! python $(CLAW)/python/pyclaw/runclaw.py  $(CLAW_EXE) $(CLAW_OUTDIR)
! @echo $(CLAW_OUTDIR) > .output

# Rule to make the plots into subdirectory specified by CLAW_PLOTDIR,
# using data in subdirectory specified by CLAW_OUTDIR and the plotting
# commands specified in CLAW_setplot_file.
.plots: .output $(CLAW_setplot_file) ;
! $(PLOTCMD) $(CLAW_OUTDIR) $(CLAW_PLOTDIR) $(CLAW_setplot_file)
! @echo $(CLAW_PLOTDIR) > .plots

CLAW_PKG = Classic                  # Clawpack package to use
CLAW_EXE = xclaw                    # Executable to create
CLAW_setrun_file = setrun.py        # File containing function to make data
CLAW_OUTDIR = _output               # Directory for output
CLAW_setplot_file = setplot.py      # File containing function to set plots
CLAW_PLOTDIR = _plots               # Directory for plots
PLOTCMD := python $(CLAW)/python/pyclaw/plotters/plotclaw.py
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What Makefile does
In $CLAW/util/Makefile.common:

# Executable:
.objs: $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
$(CLAW_EXE): $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
! $(LINK) $(LFLAGS) $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) -o $(CLAW_EXE)
.exe: $(CLAW_EXE) ;

# Make data files needed by Fortran code:
.data: $(CLAW_setrun_file) ;
! python $(CLAW_setrun_file) $(CLAW_PKG)
! touch .data

# Run the code and put fort.* files into subdirectory named output:
# runclaw will execute setrun.py to create data files and determine
# what executable to run, e.g. xclaw or xamr.
.output: $(CLAW_EXE) .data;
! python $(CLAW)/python/pyclaw/runclaw.py  $(CLAW_EXE) $(CLAW_OUTDIR)
! @echo $(CLAW_OUTDIR) > .output

# Rule to make the plots into subdirectory specified by CLAW_PLOTDIR,
# using data in subdirectory specified by CLAW_OUTDIR and the plotting
# commands specified in CLAW_setplot_file.
.plots: .output $(CLAW_setplot_file) ;
! $(PLOTCMD) $(CLAW_OUTDIR) $(CLAW_PLOTDIR) $(CLAW_setplot_file)
! @echo $(CLAW_PLOTDIR) > .plots

CLAW_PKG = Classic                  # Clawpack package to use
CLAW_EXE = xclaw                    # Executable to create
CLAW_setrun_file = setrun.py        # File containing function to make data
CLAW_OUTDIR = _output               # Directory for output
CLAW_setplot_file = setplot.py      # File containing function to set plots
CLAW_PLOTDIR = _plots               # Directory for plots
PLOTCMD := python $(CLAW)/python/pyclaw/plotters/plotclaw.py

Rule
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What Makefile does
In $CLAW/util/Makefile.common:

# Executable:
.objs: $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
$(CLAW_EXE): $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
! $(LINK) $(LFLAGS) $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) -o $(CLAW_EXE)
.exe: $(CLAW_EXE) ;

# Make data files needed by Fortran code:
.data: $(CLAW_setrun_file) ;
! python $(CLAW_setrun_file) $(CLAW_PKG)
! touch .data

# Run the code and put fort.* files into subdirectory named output:
# runclaw will execute setrun.py to create data files and determine
# what executable to run, e.g. xclaw or xamr.
.output: $(CLAW_EXE) .data;
! python $(CLAW)/python/pyclaw/runclaw.py  $(CLAW_EXE) $(CLAW_OUTDIR)
! @echo $(CLAW_OUTDIR) > .output

# Rule to make the plots into subdirectory specified by CLAW_PLOTDIR,
# using data in subdirectory specified by CLAW_OUTDIR and the plotting
# commands specified in CLAW_setplot_file.
.plots: .output $(CLAW_setplot_file) ;
! $(PLOTCMD) $(CLAW_OUTDIR) $(CLAW_PLOTDIR) $(CLAW_setplot_file)
! @echo $(CLAW_PLOTDIR) > .plots

CLAW_PKG = Classic                  # Clawpack package to use
CLAW_EXE = xclaw                    # Executable to create
CLAW_setrun_file = setrun.py        # File containing function to make data
CLAW_OUTDIR = _output               # Directory for output
CLAW_setplot_file = setplot.py      # File containing function to set plots
CLAW_PLOTDIR = _plots               # Directory for plots
PLOTCMD := python $(CLAW)/python/pyclaw/plotters/plotclaw.py

Target Requirements

Rule
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What Makefile does
In $CLAW/util/Makefile.common:

# Executable:
.objs: $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
$(CLAW_EXE): $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
! $(LINK) $(LFLAGS) $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) -o $(CLAW_EXE)
.exe: $(CLAW_EXE) ;

# Make data files needed by Fortran code:
.data: $(CLAW_setrun_file) ;
! python $(CLAW_setrun_file) $(CLAW_PKG)
! touch .data

# Run the code and put fort.* files into subdirectory named output:
# runclaw will execute setrun.py to create data files and determine
# what executable to run, e.g. xclaw or xamr.
.output: $(CLAW_EXE) .data;
! python $(CLAW)/python/pyclaw/runclaw.py  $(CLAW_EXE) $(CLAW_OUTDIR)
! @echo $(CLAW_OUTDIR) > .output

# Rule to make the plots into subdirectory specified by CLAW_PLOTDIR,
# using data in subdirectory specified by CLAW_OUTDIR and the plotting
# commands specified in CLAW_setplot_file.
.plots: .output $(CLAW_setplot_file) ;
! $(PLOTCMD) $(CLAW_OUTDIR) $(CLAW_PLOTDIR) $(CLAW_setplot_file)
! @echo $(CLAW_PLOTDIR) > .plots

CLAW_PKG = Classic                  # Clawpack package to use
CLAW_EXE = xclaw                    # Executable to create
CLAW_setrun_file = setrun.py        # File containing function to make data
CLAW_OUTDIR = _output               # Directory for output
CLAW_setplot_file = setplot.py      # File containing function to set plots
CLAW_PLOTDIR = _plots               # Directory for plots
PLOTCMD := python $(CLAW)/python/pyclaw/plotters/plotclaw.py

Command

Rule
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What Makefile does
In $CLAW/util/Makefile.common:

# Executable:
.objs: $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
$(CLAW_EXE): $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) 
! $(LINK) $(LFLAGS) $(CLAW_OBJECTS) $(CLAW_LIBOBJECTS) -o $(CLAW_EXE)
.exe: $(CLAW_EXE) ;

# Make data files needed by Fortran code:
.data: $(CLAW_setrun_file) ;
! python setrun.py   Classic
! touch .data

# Run the code and put fort.* files into subdirectory named output:
# runclaw will execute setrun.py to create data files and determine
# what executable to run, e.g. xclaw or xamr.
.output: $(CLAW_EXE) .data;
! python $CLAW/python/pyclaw/runclaw.py    xclaw    _output
! @echo $(CLAW_OUTDIR) > .output

# Rule to make the plots into subdirectory specified by CLAW_PLOTDIR,
# using data in subdirectory specified by CLAW_OUTDIR and the plotting
# commands specified in CLAW_setplot_file.
.plots: .output $(CLAW_setplot_file) ;
! python $CLAW/python/pyclaw/plotters/plotclaw.py    _output    _plots    setplot.py
! @echo $(CLAW_PLOTDIR) > .plots

CLAW_PKG = Classic                  # Clawpack package to use
CLAW_EXE = xclaw                    # Executable to create
CLAW_setrun_file = setrun.py        # File containing function to make data
CLAW_OUTDIR = _output               # Directory for output
CLAW_setplot_file = setplot.py      # File containing function to set plots
CLAW_PLOTDIR = _plots               # Directory for plots
PLOTCMD := python $(CLAW)/python/pyclaw/plotters/plotclaw.py
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What Makefile does
In $CLAW/util/Makefile.common:

setrun.py and setplot.py should be defined in the run directory and can be changed by you

runclaw.py and plotclaw.py are defined in $CLAW/python/pyclaw and should not be changed

# Make data files needed by Fortran code:
.data: $(CLAW_setrun_file) ;
! python setrun.py   Classic
! touch .data

# Run the code and put fort.* files into subdirectory named output:
# runclaw will execute setrun.py to create data files and determine
# what executable to run, e.g. xclaw or xamr.
.output: $(CLAW_EXE) .data;
! python $CLAW/python/pyclaw/runclaw.py    xclaw    _output
! @echo $(CLAW_OUTDIR) > .output

# Rule to make the plots into subdirectory specified by CLAW_PLOTDIR,
# using data in subdirectory specified by CLAW_OUTDIR and the plotting
# commands specified in CLAW_setplot_file.
.plots: .output $(CLAW_setplot_file) ;
! python $CLAW/python/pyclaw/plotters/plotclaw.py    _output    _plots    setplot.py
! @echo $(CLAW_PLOTDIR) > .plots

CLAW_PKG = Classic                  # Clawpack package to use
CLAW_EXE = xclaw                    # Executable to create
CLAW_setrun_file = setrun.py        # File containing function to make data
CLAW_OUTDIR = _output               # Directory for output
CLAW_setplot_file = setplot.py      # File containing function to set plots
CLAW_PLOTDIR = _plots               # Directory for plots
PLOTCMD := python $(CLAW)/python/pyclaw/plotters/plotclaw.py
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What about Python? 
Directory structure of $CLAW/python/pyclaw:

Makefile
README.txt

__init__.py  
controller.py  
data.py  
runclaw.py  
solution.py  
util.py

evolve
! __init__.py  
! clawpack.py
! limiters.py
! solver.py
! rp
! ! __init__.py  
! ! rp_acoustics.py
! ! rp_advection.py
! ! rp_burgers.py
! ! rp_euler.py
! ! rp_shallow.py
! !
io
! __init__.py  
! ascii.py
! hdf5.py
! netcdf.py
!
plotters
! __init__.py  
! Iplotclaw.py
! colormaps.py
! data.py
! frametools.py
! multiframetools.py
! plotclaw.py
! plotpages.py
! TODO

} input/output routines for Python version of clawpack

plotting routines for Fortran or Python version of clawpack

} Python version of clawpack

}

controllers, etc., for Fortran or Python version of clawpack}
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More information about using Clawpack with 
Python and Makefiles is available from: 

61

http://kingkong.amath.washington.edu/clawpack/users/index.html

http://kingkong.amath.washington.edu/clawpack/users/plotting.html

http://kingkong.amath.washington.edu/uwamath583/sphinx/notes/html/shells.html

And if you have trouble with using Unix or shells, 
please see

and there is lots more information available on the 
vast internet!
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Assignment for next time

Read all of Chapter 3.

Pay careful attention to the examples 3.1, 3.2, 3.3, and 3.4.

Work problems 3.1, 3.2, and 3.4. For extra credit, do 3.7. We will discuss 
these on Friday, but hand them in to me by next Monday, 30 August. 

Read Chapter 5, but note that our version of Clawpack differs in how it is 
structured, and in how to install and run it. For those aspects, use the 
documentation on the Clawpack website. The bulk of the information in 
Chapter 5 remains valid for the current version.
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Next: Finite Volume 
Methods for Linear Systems

(Ch 4)

63

mandag 6. september 2010


