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Course Outline

CAMBRIDGE TEXTS
~__IN APPLIED
MATHEMATICS

_ Finite Volume
The book: Methods for
Hyperbolic Problems

Finite Volume Methods for Hyperbolic Problems,
by Randall J. Leveque, ISBN 0-521-00924-3

should be available at Akademika

The software:

RANDALL J. LEVEQUE

Clawpack, for Conservation LAW PACKage, by
Leveque and his team at the University of
Washington, Seattle

available at www.clawpack.org

Clawpack
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What we will do In this course

We will explore hyperbolic equations and finite volume methods for solving
them:

What are hyperbolic equations and why are they important?

Why are finite volume methods well suited to these equations?

How do we solve these equations on the computer?

How can we know whether we have solved the equations correctly?
We will apply our solution methods to problems of geophysical interest:

examples: vents, pockmarks, tsunamis, fluidised systems,
explosive volcanism, atmospheric dispersion

Metrics: grades in this course will be based on:
weekly homework assignments 40%
final project 40%
classroom participation 20%
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Time and Place

Normally we will meet in this room, V414 Fysikkbygnningen at the following
times:

Mondays, 13.15 to 15.00
Tuesdays, 14.15 to 16.00

We’'ll go through most lecture materials on Mondays, and on Tuesdays we
will take care of spill-overs and address any questions or concerns.

Problem sets will be due on Mondays, and | will occasionally ask a student
to illustrate how a problem is done in class the day it is due.
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An approximate syllabus - subject to change

week date Topic Chapter in
number LeVeque
» 1 35  30. aug. 2010 introduction to conservation laws, Clawpack 1&2
2 36 6. sep. 2010 the Riemann problem, characteristics 3&5
3 37  13. sep. 2010 finite volume methods for linear systems 4
4 38  20. sep. 2010 high resolution methods 6
5 40 4. okt. 2070 boundary conditions, accuracy, variable coeff. 7,8, part 9
6 40 5. Oct 2070 nonlinear conservation laws, finite volume methods 11 & 12
7 41 11. okt. 2010 nonlinear equations & systems 13 & 14
8 42 18. okt. 2010 finite volume methods for nonlinear systems 14 & 15
9 43 25. okt. 2010 source terms and multidimensions 16,17,18,19
10 44 1. nov. 2010 multidimensional systems 20 & 21
11 45 8. nov. 2010 capacity functions, source terms, project plans
12 46 15. nov. 2010 student presentations
13 47  22.nov. 2010 student presentations
14 48 6. des. 2010 FINAL REPORTS DUE

There will be problem sets assigned most weeks and due the following class time. Keep up with the reading,
and do the problems! Things get complicated quickly, and you will flounder if you don’t keep up.

Other chapters in the book may be interesting and important for some of you. Feel free to study these, and if
popular will demands, we can cover some of that material in class too.
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The Code Debate:
Build and use, or Procure and use?

Which is better?

Build your own code and use it to solve problems you're interested in”?

Procure an existing code and use it to solve problems you're interested in?

If you build:

You will know exactly what methods it uses, how it works, and its strengths
and limitations.

However, you will spend months and perhaps years debugging it; tweaking
its performance; adding features to it; porting it to different systems; and

you may never get adequate use from it, especially if you have limited time
(as a student, for example!).
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The Code Debate:
Build and use, or Procure and use?

Which is better?
Build your own code and use it to solve problems you're interested in”?
Procure an existing code and use it to solve problems you're interested in?
If you procure:

Once you install it and prepare your input files, you will be able to start
solving those problems immediately.

However, you won’t necessarily know the strengths and weaknesses of its
methods; you run the risk of generating mountains of meaningless output
by attempting to run it on problems for which it is ill-suited; and you may not
be able to defend your results.
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The best (infinite time) solution

Spend N years developing the world’s best code for the problems you're
interested in. Debug, tweak, and add features to your heart’s content.

Then freeze it.

Spend the next M years running your code on those problems, and publish
lots of papers.

By this time, numerical techniques have advanced far beyond those you
used in your code; the computers you wrote your code for are obsolete; you
haven't kept up with changes in the compilers and operating systems; etc.

Bottom line: it's not the world’s best code any more, and you have new
problems you want to solve.

You could do it all again...

OR...
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Stand on the shoulders of giants

A better solution is to find a flexible and extensible code framework that:

Applies the latest & best techniques to a broad class of problems
But requires you to write the piece specific to the problem you’re solving

Has a broad and experienced user base;
and a strong development team for porting, updating, and debugging

Allows you to modify the code yourself, if you need something different or
find a better technique. This condition rules out most (all?) commercial

codes.

If you do this, you are obligated to yourself and to your science to study the
framework and techniques carefully so that you clearly understand and can

defend the results you get!

That, in short, is the aim of this course.
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A few codes are documented with textbooks

_lawpack

www.clawpack.org

CAMBRIDGE TEXTS
IN APPLIED
MATHEMATICS

Finite Volume
Methods for

This isn’t the only one, but it's Hyperbolic Problems
the one we will use.

The techniques you learn using
Clawpack and building

applications with it will also help ~1 .
you use and build other codes. RANDALL J. LEVEQUE

ISBN 0-521-00924-3

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2010

10

mandag 30. august 2010


http://www.clawpack.org
http://www.clawpack.org

11

What you'll need to use Clawpack

A Unix/Linux/MacOS computer

A Fortran compiler (pref. gfortran, free, from http://gcc.gnu.org )

A Python interpreter (free, from www.python.org )

The SciPy extension for Python, which includes NumPy and Matplotlib

(free, from www.scipy.org or from www.macinscience.org (for Mac))
This gives you, for free, most of the capability of MatLab, which is expensive!

Clawpack itself (free, from www.clawpack.org, but requires registration)

Curiosity, motivation, patience, and cleverness.
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What are hyperbolic problems anyway?

There are three main types of second-order partial differential equations.
General prototypes of these are:

the wave equation: g —7q.— f(x)=0 “hyperbolic
the heat equation: g —0’q..— f(x)=0 “parabolic’
and Poisson’s equation: q.— f(x)=0 “elliptic”

Why the geometric terminology?

With suitable variable changes, all of these can be squeezed into the form:
a®,, +b® , +cDy + f(D,D,,D,,2.0)=0

Reminiscent of the equation for conic sections:

ax” +bxy+cy  +d=0
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Conic Sections and Partial Differential Equations

The general equation for conic sections  ax” + bxy + cy2 +d=0

has the discriminant b —4qc .

rb2 —4ac >0 the equation yields a hyperbola,
If

N\

b> —4ac=0 the equation yields a parabola,

b* —4ac <0 the equation yields an ellipse.

\

The general second-order partial differential equation in two variables:
a®  +b®,, +cPy + f(O,D,, P, ,x.0)=0

Is easily transformed to the hyperbolic equation ¢, — quxx — f(x) =0

inthe case b* —4ac>0.

The other two cases are more difficult to demonstrate.
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Examples of Partial Differential Equations in one
spatial dimension

elliptic equations
Poisson's equation: g — f(x)=0

conditions at boundaries determine the solution everywhere and
simultaneously, no time dependence

parabolic equations
heat equation: g —ot’q_. — f(x)=0

inhomogeneities diffuse away irreversibly, leading to a steady state

hyperbolic equations
wave equation: g, —y’q.. — f(x)=0

all physics is local and dynamic; waves that are generated propagate
away from the source
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Features of the three types of PDEs

hyperbolic

parabolic

elliptic

Semplisd 9, -7’9, =0 | ¢, -a’q, =0 | q.+q,=0
eigenvalues real zZero complex
wave-like, damping,
nature of g steady-state,
: energy- diffusion,
solutions .. I no waves
conserving |irreversibility
Types of Cauchy | Cauchy plus | Neumann or
slelllplakip2 | (initial value |Neumann or| Dirichlet
eo)nlaliitelal| problem) Dirichlet (edges)
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Features of the three types of PDEs

example

hyperbolic  parabolic

elliptic

eigenvalues

solutions

Types of
boundary
conditions

49, ~7°q.=0 | ¢-0q,=0| 4ut4,=0
real zero complex
wave-like, damping,
< < P E steady-state,
energy- diffusion, CL>
. . Ll no waves
conserving |irreversibility
Cauchy | Cauchy plus | Neumann or
(initial value | Neumann or| Dirichlet
problem) Dirichlet (edges)
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Features of the three types of PDEs

example

This course

hyperbolic  parabolic

elliptic

eigenvalues

solutions

Types of
boundary
conditions

49, ~7°q.=0 | ¢-0q,=0| 4ut4,=0
real zero complex
wave-like, damping,
< < P E steady-state,
energy- diffusion, CL>
. . Ll no waves
conserving |irreversibility
Cauchy | Cauchy plus | Neumann or
(initial value | Neumann or| Dirichlet
problem) Dirichlet (edges)
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Systems of first-order equations

Although the classification of PDEs into hyperbolic, parabolic, and elliptic
was designed around the appearance of second-order equations, we apply it
to systems of first-order equations.

For example, the linearised shallow-water (or tsunami) equations:

_ Here / is the wave height, v is the particle speed,
hf (X,t) + DVX ()C,t) =0 D is the ocean depth, and g is the acceleration
— due to gravity. We'll use different symbols when
th (x’t) T gth (’x’t) =0 we derive this later.

are a hyperbolic set, as can be seen from the derived wave equation:
h,—gDh_=0

The methods we speak of in this course are aimed at the solution of systems
of first-order equations like these.
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A little on notation, following Leveque

Use subscript notation to refer to partial derivatives:

_9dq. _dq g g

Qx — ’ q — N q =, q =,
ox a9y ¢ o9z ' ot
X, V, and z usually refer to the Cartesian coordinates; 7 to time.

g is some quantity of interest whose value we need to know: the true solution to
the partial differential equation under study. In general, g represents a vector of
quantities, the components of which are denoted by superscripts as g”. An

m X m system of equations has eigenvectors ¥ and eigenvalues A2.

Q,n is the numerical approximation to ¢ in the 7 ™ grid cell at the nt" time step,
and the time at the nth time step is denoted #,.

F,,, is the numerical approximation to the flux of quantity ¢ from cell i to cell
[ +1 at the nth time step.

For two dimensions, we use the additional cell-index subscript j, and the

additional flux approximation G;l+1/2'
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Finite Volume VS Finite Difference

Qi,j+1 | | Qi,j+1 |
Y2
Qi_1,j Ql] Qi+1,j °Qi—1,j )i Qij ) Qi+1,j
YT
Qi,j—l | | Qi,j_1 |
Xiciz Xivn
Approximate values are averaged Approximate values are evaluated

over cells: on a grid:

n 1 Yivr2 [ Xi+1/2 n
Qij - AX—Ay Yj-172 J.xz'—uz Q(x’y,tn)dx dy Qij = Q(xi ’yj ’tn)
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Finite Difference, Finite Volume, and Finite
Element Methods

Finite difference methods sample the solution to form the approximation.
Finite volume methods average the solution to form the approximation.

The approximation is the primary representation, the evolution uses
piecewise-polynomial mappings.

Finite element methods use piecewise-polynomial mappings as the primary
representation, and evolve them directly.

They are advantageous for complex geometries, but have difficulty in
dealing with evolving discontinuities like shocks and mixing.

They are the subject of FYS-GEO4510, given by Marcin Dabrowski in the
spring.
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For conservation laws, finite volume
methods are natural

If the quantity of interest is a Qi js
conserved quantity, we update - G
. . i,j+1/2
it by keeping track of the fluxes a Fln N,
into (and out of) each cell O X O T X 0
i—1,j ij i+1,]
yj_1/2 (Gi,jl/z
We can also allow for sources 0. . |
and sinks within the cells b
We will use something like this
to update Q for the next time Xiciz Xivn
step:
Qn+1 ~ n At (Fn Fn ) At
i X A \tiv2, T -2, ) AL
] ] AX J J Ay
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo
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Advantages and disadvantages of finite
volume methods

Finite volume methods: high resolution, but low order (2" at best, in general)
Best for cases with discontinuities (sharp material interfaces, shocks)
Best for any kind of waves: acoustic, seismic, water, electromagnetic, etc.
Good for highly compressible media
Good for high-speed flows
In general, best for hyperbolic problems
But...
Not good for slow, viscosity-dominated processes
Poor for parabolic problems (diffusion-dominated processes)
Difficult for elliptic problems (LaPlace or Poisson type equations)

For these latter cases, linear methods, high-order finite difference methods,
or finite element methods are better suited.
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Introduction to
Conservation Laws
(Chapters 1 & 2 in Leveque)
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Numerical solution of differential equations

The equation % = — % has a discrete analogue ﬁ ——A—

ot 0x At Ax

A
which can in principle be solved by time stepping: qf“ =q, — A(qu At

The difficulty is in suitably defining the numerical approximation of the spatial
derivative, and ensuring that the solution is stable and accurate. A naive
implementation of the above is highly unstable!

If the differential equation can be expressed as a conservation law, the
spatial derivative can be interpreted as a flux of the conserved quantity.

Straightforward analysis then produces robust numerical techniques in which
it is easier to guarantee stability and accuracy.
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Conservation laws

Many of the fundamental physical laws are conservation laws:

conservation of mass, energy, momentum, entropy (sometimes)...

For any vector of conserved quantities g:

The change with time of ¢ in a volume is due to the net flux of g into or out of
the volume and the net amount of g created or destroyed within the volume:

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2010
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General integral form for a three-dimensional
conservation law

%JH q(x,v,2;0)dV = — CJ;B F(g)dS - m R(q)dV

Volume Surface Volume

R(q) represents all sources and sinks for the quantity g in the volume V,
and F(q) represents the net flux into the volume through its surface.
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We start with a one-dimensional system

The integral form of the general one-dimensional conservation law over an
interval (x.,xv), ignoring sources and sinks, is:

d Xu
-] ate.ndy = £(qCx,.0) = Fqlx,0)
and the corresponding differential equation is:

qt(xat) + f(q(x,t))x =0

The integral form is more general and more fundamental. Finite volume
methods are designed to solve the integral form.

The differential form is more compact, but is not valid at discontinuities
(shocks or contact surfaces, for example).

We write the equations in differential form for convenience, and for
constructing the matrix representation of a system of partial differential
equations.

The finite volume method solves the integral form of the equation.
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The world has three space dimensions!

True!

But an advantage of hyperbolic systems is that it is straightforward to extend
the solution method to two, three, and even more dimensions.

The solutions are wavelike, and waves interact with each other in predictable
ways. Added complications include corner transport and boundary
conditions.

In the book, two dimensional systems are covered starting in Chapter 18.
We'll get there in October.

But first we have a lot of work to do to understand the one-dimensional
solution.
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Derivation of the conservation law

Assume we have a fluid of density g(x,?) flowing through a pipe.

|

i
!
=-mbhmm
]
]
1
1
1
1
- -
1
)
)
‘-

The total mass of the fluid between the positions x, and X is:

q(x,?)

!

X1 X2

sz q(x,t)dx

q(x,1) is measured in units of mass per unit length.

This mass changes only because of the flux of the fluid through the left or
right ends of the interval.
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Conservation law, continued

|

i
’
mmbhmm
1
]
]
1
1
1
- e -
1
)
\)
A Y

q(x,?)

!

X1 X2

This mass in the interval changes only because of the flux of the fluid
through the left or right ends of the interval:

d %)
— j q(x,t)dx = f(q(x,,1))— f(q(x,.1))

where f(q) is the flux function. For a fluid of density g flowing at a velocity u
(x,1), the flux function is

J(q(x,1))=u(x,t)q(x,1)

This is the integral form of the one-dimensional conservation law.
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Differential form of conservation law

i) s

q(x,?)

X1 X2

If g is smooth enough, we can rewrite:

d ¢x
E-"xl g(x,t)dx = f(q(x,,t))— f(q(x,,1))

as | g dv==]"f@.dx o [ (¢,+1(),)dx=0

X1

since this must be true for all x; and x,, then: ¢, + f(g). =0

This is the differential form of the one-dimensional conservation law.
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S0 we have two representations

The integral form of the general one-dimensional conservation law, valid
everywhere:

d ¢w
— j q(x,0)dx = f(q(x,,0)— f(q(x,,1),

and the differential form, valid where the function is smooth:

q,(x,t)+ f(q(x,1)), =0.

Because the differential form is not valid at discontinuities, it must be
supplemented there by the Rankine-Hugoniot jump conditions:

f, =1 =s(q,—q),

where the subscripts 7 and / refer to right and left states of the solution and

the flux function, and s is the speed with which the discontinuity moves. We
will derive this later.
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Differential vs. Integral forms

With finite difference methods:
Qi,j+1

approximate pointwise values, i.e. Q; = q(x;,t,)
Qi—l,j QU Qi+1,j

derivatives are approximated by differences Y5
use differential form of conservation law, assume smoothness Qrm
Qt + f(q)x — O X.
With finite volume methods:
X1+1/2
approximate cell averages, i.e. Q. —j q(x,t )dx 0 .
l -1/2
y‘+1/2
use integral form of the conservation law ]
Qi—l,j QU Qi+1,j
i+1/2 Yian
— J q(x,0)dx = F(qQx_y050) = F(G(X1100) 0.
Xi 1/2
This formulation does not assume smoothness, and leads directly Xl X
to the numerical method.
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Discontinuities occur in real problems

Discontinuities in function values:
shocks, contacts, edges, etc.

or discontinuities in function derivatives:
rarefactions, reaction fronts, etc.

In finite volume methods Riemann problems are solved to calculate the
propagation of waves away from discontinuities.

These waves are the characteristics, and their speeds are the eigenvalues
of the system of differential equations.
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Artificial discontinuities occur in the

numerical solution of equations

Discretising a problem for numerical solution involves the creation of many
small discontinuities; therefore understanding the characteristics and solving

Riemann problems is essential to accurate numerical work.
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Artificial discontinuities occur in the
numerical solution of equations

discontinuity in a piecewise
constant approximation

//

Discretising a problem for numerical solution involves the creation of many
small discontinuities; therefore understanding the characteristics and solving
Riemann problems is essential to accurate numerical work.

N ——
\__,//
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Artificial discontinuities occur in the
numerical solution of equations

discontinuity in a piecewise
constant approximation

//

Discretising a problem for numerical solution involves the creation of many
small discontinuities; therefore understanding the characteristics and solving
Riemann problems is essential to accurate numerical work.

discontinuity in a piecewise

\\ |_._\‘\Ii/near approximation
/

AT
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Reconstruct - Evolve - Average -(REA)

The scheme we use:

Godunovzumlg59
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Reconstruct - Evolve - Average -(REA)

reconstruct

i )
Reconstruct a piece-

wise polynomial function ‘7

from cell averages. )
\ evolve

Evolve this function to a\
later-time by solving

Riemann problems.
- Y,
\ average

g Average the later-time A ‘

function back to the

L cells . )

Godunov, 1959
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The advection equation — the simplest
hyperbolic differential equation

With g(x,?) a tracer concentration, ; ; ] \
and flow velocity g(x, 1)

T

u(x,f) = u = constant, * X

The flux function is:
J(x,t) =uq(x,t)
The conservation law is: u At
g (x,t)+uq (x,t)=0
And the solution is:

Q(X,t) — Q(x o Mt,())

The advection equation is also called the scalar wave equation, because the solution is
a one-way wave, propagating to the right with velocity u.
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36

The advection equation — the simplest
hyperbolic differential equation

With g(x, ) a tracer concentration, ; ; ] \
and flow velocity : g(x, 1) _ j

v oy

u(x,t) = u = constant, *

The flux function is;
f(x,t) =ug(x,t)
The conservatiod law is: u At

@ t)+uq (x, t)>

And the solution is:

Q(X,t) — Q(x o Mt,O)

The advection equation is also called the scalar wave equation, because the solution is
a one-way wave, propagating to the right with velocity u.
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Advection is easy; why bother?

g u At

T

If advection is simply the translation of a profile in space, we can do it trivially!

So why bother?
Actually, it's not that easy ... AND ...

Advection is always involved in more complex problems:

material is advected through shocks, for example: and
advection always occurs when fluids move, and fluids move in complex ways.

We will find that the solution to more general problems is a superposition of
advection solutions.
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Advection is difficult!

FYS-GEO 4500
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Advection is difficult!

= Solution at'tin‘\e t = Q.OOOOOOOO
first ord
- IFST order
0.5
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_e ' Solution at'tinﬁe t = (').OOOOOOOO '
d ord
- secondad ordaer
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Shapes are not well preserved, but volume is conserved

FYS-GEO 4500

1.5

Initial

after 4 revolutions
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We can do much better!

1.5
1.0 B ,f\ ;— — — —I
T , [
/ \ | [
! \ | |
/ \ , |
I \ | |
\ |
0.5 , \ | ,
I \ : |
/ \ ' |
/ \ | [
/ \ . [
/ \ ' |
/ \\ | |
oOop----- I S S i S
~0-3.0 0.2 0.4 0.6 0.8 1.0

second order with van Leer limiter, high resolution
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We can do much better!

5 Solution attime t = 0.00000000
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Advection is difficult. Why?

Advection, by itself, is notoriously difficult to do correctly in a numerical problem:

The fluid is discretised into finite volumes

spatial grid size
And the velocity is different from the discretisation ratio: time step
so every time step advance requires interpolation

But advection is a good, challenging, test problem to start with, so:
we will develop techniques using this problem
then use the same techniques to solve more difficult ones.

Problems we will be able to solve: acoustic, seismic, and electromagnetic wave

propagation, gas dynamics (airplanes, wind turbines, hydrothermal vents, volcanic jets),
water waves, tsunamis, traffic flow.
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We need to learn about characteristics
The one-dimensional advection equation

g (x,t)+uq (x,t)=0

has the solution

Q(X,t) — n(x o ut)

u At

T

The function ¢(x,?) is constant along any space-time ray for which

X—ut = constant = xp
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Characteristics for the advection equation

The solution g(x,?) = 1(x — ut) implies that g(x,f) is constant along lines
X(#)=x,+ut, t =20

d
Proof: Eq(}((t),t) =q. (X(t),t)X'(t) +4q, (X(t),t)

=q,(X(0).t)u+q,(X(1).1)
=q,tuq, =0

X(?) are the wave fronts, or characteristics. In the x—t plane they are lines of

17
)i

X
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Initial conditions 4/// 7
%

X

If we solve the advection equation on an infinite one-dimensional domain:

qt(x’t)_l_uqx(xat):() —o0o I X < 0o, t >0

Then we need the initial condition (initial data):

qg(x,0)=1n(x), —oco<x<o0

And we have the solution:

g(x,t)=N(x—ut) —oco<x<oo, t=20

This is an Initial Value Problem (IVP) or Cauchy problem
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Initial conditions ,T/// /

X
If we solve the advection equation on an infinite one-dimensional domain

qz(x’t)_l_uqx(xat):() —o0o I X < 0o, t >0

Cauchy problem:
all characteristics

g(x,0)=n(x), —oo<x<oo originate at =0

Then we need the initial condition (initial data):

And we have the solution:

ut
g(x,t)=N(x—ut) —oco<x<oo, t=20
This is an Initial Value Problem (IVP) or Cauchy problem
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Initial conditions 4/// /

X
If we solve the advection equation on an infinite one-dimensional domain

qz(x’t)_l_uqx(xst):() —o0o I X < 0o, t >0

Cauchy problem:
all characteristics

originate at =0

Then we need the initial condition (initial data):

qg(x,0)=1n(x), —oco<x<o0

And we have the solution:

ut
g(x,t)=N(x—ut) —oco<x<oo, t=20
This is an Initial Value Problem (IVP) or Cauchy problem
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Boundary Conditions

If we need to solve the same equation on a finite domain:

g (x,t)+uq (x,t)=0 a<x<b, 120

Then we need initial data:

g(x,0)=n(x), a<x<b

And boundary data at the inflow boundary (no boundary condition on outflow):

q(b,t)=g(1),

qla,t)=g(), 120 or

itu>0

This i$ an Initial-Boundary Valug Problem (IBVR)

|

itu<0

t =20

\\\\
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Boundary Conditions

If we need to solve the same equation on a finite domain:

q,(x,t)+uq (x,t)=0 a<x<b, t=20
Then we need initial data:
qg(x,0)=n(x), a<x<b
And boundary data at the inflow boundary (no boundary condition on outflow):

g(a,t)=g({), t=20 or qb,t)=gt), 120
1fu>0 1fu<0

This i$ an Initial-Boundary Valug Problem (IBVR)

0\, oS

all charactenst
iate at =0 Grke

sical boun
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Periodic Boundary Conditions

The easiest boundary conditions to implement numerically are periodic
boundary conditions. Under certain conditions this mimics an infinite domain,
but beware the inherent periodicity. For periodic boundary conditions:

qa,t)=qb,t), =20

In this case, the solution is:

q(x,0)=n(X,(x,1))

And the characteristics are:

X,(x,t)=a+mod(x—ut—a, b—a)
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Characteristics lead to the concept of
“domain of influence”

The domain of influence is the region of space that can be physically
affected by a source.

Iz

i—1 i+1 [+2

In this example, cell i can influence all of cell i+1 in the time At, and cell i is
in turn influenced by cell i—1.

For stability, a cell must not attempt to influence more than its immediate
neighbours during a single time step of a numerical method.
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Characteristic lines for systems of equations

\‘\\\

AN

AtI

Systems of equations can have as many characteristics as there are
equations. These characteristics can propagate in both directions.

i

Every point in the accessible space-time is crossed by all of the
characteristics.

In this example, following the blue characteristics, cell i can influence most

of cell i+1 in the time At, and cell i is in turn influenced by cell i—1.
Following the red characteristics, cell i+1 influences part of cell 7, and cell i
influences part of cell i—1.
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Causal domains in space-time

The domains of influence and dependence depend on the
characteristics of the equations.

The Courant-Friedrich-Lewy (CFL) condition for stability
states that the numerical domain of dependence must
completely contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is
bounded. For elliptic or parabolic systems, on the other
hand, the domain of dependence can be infinite.

49

Domain of
influence

| 4

Domain of
dependence
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Causal domains in space-time

The domains of influence and dependence depend on the
characteristics of the equations.

The Courant-Friedrich-Lewy (CFL) condition for stability
states that the numerical domain of dependence must
completely contain the physical domain of dependence.

Domain of

_ , _ influence
For any hyperbolic system, the domain of dependence is

bounded. For elliptic or parabolic systems, on the other
hand, the domain of dependence can be infinite.

The three-point
stencil with this

relation between
space and Ax
time «—>
Intervals
violates
o ® o

CFL
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Causal domains in space-time

The domains of influence and dependence depend on the
characteristics of the equations.

The Courant-Friedrich-Lewy (CFL) condition for stability
states that the numerical domain of dependence must
completely contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is
bounded. For elliptic or parabolic systems, on the other
hand, the domain of dependence can be infinite.

Domain of
influence

49

The three-point stencil with this
relation between the space and
time intervals is okay because
the physical domain of

dependence lies dDomec'jm of
within the ependence
numerical

stencil.
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Variable coefficients

If the fluid velocity varies with x, then the conservation law is:

g, +(u(x)g) =0

And then the characteristics are not straight lines, but curves which are found
by solving the ODE:

X =u(X(@))

In this case, ¢g is not constant along the curves, but the curves still track
material particles.

t

L

4

X
L Jd , d
The material derivative — + U — tracks changes observed by someone

ot 0x

moving along with the fluid (along a characteristic curve).
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A little gas dynamics: the continuity equation

A special kind of variable-coefficient equation arises from considering the
flow of a gas. Since gasses are compressible, the density and velocity can
both vary during the flow. Then the conservation equation derived before,
expressed in terms of density p is:

p,+f(p)=0

With the flux function f(x,t)=p(x,t)u(x,t)

This becomes the equation for the conservation of mass, called the
continuity equation:

p, +(pu), =0

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2010
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Conservation of momentum

The continuity equation by itself isn’t sufficient to solve the flow of a gas, so
we need additional conservation laws.

The product p(x,t)u(x,t) is the density of momentum, and we can derive a
conservation law equation from it, remembering that pressure p contributes to
change of momentum:

(pu)t +(,ou2 +p)x =0

And then we would need another conservation law for energy and an
equation of state relating energy to both p and p. As a short-cut, we could

simply use an equation relating p to p. This is sometimes sufficient.

One example is the polytropic equation p = pr, which is the isothermal
condition for ¥ = 1. More generally we may use the barotropic
relation p = P(p) .

Then we have a closed system of two equations. If P’(p) >0 for positive p,
the system is hyperbolic.
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The basic system of equations for a
barotropic fluid (simplified gas dynamics)

Our system is

(pu). +(,ou2 +P(p))x

p, +(pu), =0
0

Which we can write as ¢, + f(gq), =0 , if we define

q:

o,
pu

9

pu

(@)=
HOZ ooy

If g is sufficiently smooth, we can write ¢, + f'(q)q, =0 (quasilinear form)

Where f'(g)=

FYS-GEO 4500 —

o o
dg' 9q°
IS the Jacobian matrix.
of > of”
dg' 9q°
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Linear acoustics

This will be a useful example that we'll return to often. We linearise the
barotropic system by examining only a perturbation to the (constant)

background state. Let

. | P
Q(X,t) — QO + Q(.X,t), q —

pu

The conservation law ¢, + f(g). =0 becomes the constant-coefficient

linear system g, + f'(q,)g. = 0 since we discard powers of the perturbed

quantity.

The Jacobian of the perturbed barotropic system then becomes

afl afl )
, dq' 9q 0 1
A=f'(q)= , o= > o
oy || WP 2u
dg' 9q°
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Linear acoustics
The system just obtained can be written out as:
p,+(pu), =0
(pu), +(~ug + P'(py)) P, +2uy(pu), =0
Then writng P’(p,)p=p . pu=u,p+p,i ,and K =p P(p,)
We obtain the linear acoustics equations
p, +u,p. +Ku, =0
Polit, + p. + poutut, =0
With u, = 0, this becomes the system (dropping the tildes):
g (x,t)+ Ag (x,t)=0

0 kK p,+Ku =0
q = , A=l L o | S0 0
B u | pO p Out T p x
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo
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Sound waves

e 0 K
g (x,t)+ Agq (x,t)=0 q= , A= | 0

The acoustics equations must produce a solution with sound waves
travelling in both directions.

We try a solution of the form ¢g(x,#) = n(x — st) and then compute the
derivatives:

q,(x,t)=—sn'(x=st), q.(x,t)=1"(x—st)
Sofrom g (x,t)+ Aq (x,t)=0 we get
An'(x—st)=sn'(x—st)

iImplying that s is an eigenvalue and N’ the corresponding eigenvector of the
matrix A.

Can you calculate the sound speed?

This is an important key to the methods we will develop in this course.
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Reminder: eigenvalues of a 2x2 matrix

Eigenvalues A and eigenvectors r for a matrix 4 are found from Ar = Ar

For the matrix 4 = a b , the eigenvalues are:
c d
) ] 11,2:a+di\/4bc+(a—d)2
2 2
0k
Hence the acoustic equation matrix A=| 1 0
P

. 1,2 . 1,2
has eigenvalues: AN =xc=% and eigenvectors r " =

K +JKp
P

Important result: the eigenvalues are the wave speeds. The eigenvectors
express the relation between the components of the solution vector.
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One way to look at linear acoustics:

p,(x,1)+ Ku (x,r)=0
1, (X,0)+ 35 (1) = 0

The unknown functions p(x,7) and u(x,¢) are pressure and velocity; K and p

are the material constants (bulk modulus and density). Differentiate the first
with respect to 7 and the second with respect to x:

p,—Ku_, =0

xt p pxx T O

Then add K times the second to the first:
ptt p pxx — O

This is the familiar 2nd order wave equation, and it is hyperbolic. The

solution gives waves travelling in both directions at velocity ¢ = %

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2010

mandag 30. august 2010



Another way to look at linear acoustics:

The acoustic equations are:
p,(x,t)+ Ku (x,t)=0

1, (x,1)+ 45 p,(x,£) =0

Express in matrix notation: B
P - - 0 K
qt(x,t)+Aq (x,1)=0 q = P A= 1
X 1 - O
- - p
Resolve into the eigensystem: Ar = Ar,
. - 1,2 K . 1.2 T
with eigenvalues A~ =x¢c=% |[— and eigenvectors r "~ =
P I

The eigenvalues are the wave speeds, and the eigenvectors express
relations between the components of the solution g.
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Acoustic impedance

The eigenvalues and eigenvectors of linear acoustics are

K
Po

The quantity Z, = p,c, Is commonly known as the impedance of the

medium.

+JKp,

1
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Wave-propagation methods

A conservation law q, + f(Q)x =0

is locally linearised into the form q +Aqg, =0

The system is hyperbolic if the m X m matrix A is diagonalisable with
eigenvalues A2

The solution to the conservation law is the superposition of waves
propagating with velocities given by the eigenvalues.

We will calculate these waves and use them to construct the solution.
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Hyperbolicity Definition _

/i
. _ _ og'
The Jacobian matrix of a linear m X m A= (q) = :
system of partial differential equations: =/ (@)= a-
f‘m
Jg'

of "
dq™

A is diagonalisable if it has a complete set of eigenvectors/eigenvalues, i.e.

Art = APr? forp=1,2,....m

(the vectors ¥ must be nonzero)

Strongly hyperbolic:
the matrix A is diagonalisable and has real eigenvalues

Strictly hyperbolic:

the matrix A is diagonalisable and has distinct real eigenvalues

Weakly hyperbolic:

the matrix 4 is not diagonalisable but has real eigenvalues (not a complete set)
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Hyperbolic systems lead to wave methods

Our hyperbolic sytem has the locally diagonalisable Jacobian A:
Ar? = APr? forp=1,2,....m

2 . . .
r “rm} IS nonsingular. Forming

The matrix R = [rl

ll
R'AR=A= A

Am

we can write our conservation law as R_lqt + (R‘lAR)R‘qu =0
w, +Aw_ =0
with w(x,t) = R_lq(x,t) , and then we resolve it into:

wl+ A'w? =0 forp=1,2,...m
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Elastic waves In solids

These are also hyperbolic systems and may be solved by the same methods

11
. . . E —U, = 0
P-waves in one dimension: y
pu, —o =0
1
12
g ——v. =0
S-waves in one dimension: 2
12
pv,—o. =0

Higher dimensional systems are covered in Chapter 22 of Leveque; let me
know soon if anyone is interested in doing such problems, otherwise | won't
cover them in the course.
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Electromagnetic waves

A plane electromagnetic wave propagating in the x direction has electric and
magnetic field given by

0 0
E=|E*(x,t)|, B=|0
0 ] _B3(x,t)_

Maxwell's equations for this case reduce to:

1
E°'+—B’ =0
el

B'+E> =0

|
The eigenvalues are AP =tc=+—— giving the speed of light in the
medium. \EU
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Review: conservation law and advection

The fundamental conservation law in one spatial dimension, expressed in

differential form, is:
q (x,t)+ f(q(x,t)), =0.

The advection equation, the simplest hyperbolic differential equation,
q,(x,t) +uq (x,t) =0,

is a conservation law with the flux function f(x,#) =uqg(x,t) . Its solution is

q(x,t) = q(x —ut,0),

and this function is constant along rays in space-time (characteristics) with
X—ut = constant.

172722

i—1 l i+1 i+2
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CAMBRIDCE TEXTS
IN APPLIED

MATHEMATICS

Assignment (due Monday 6 Sept): e
Get the book! It's available at Akademika now. |

Download the Errata from
http://www.amath.washington.edu/~claw/book.html RANDALL J. LEVEQUE
and apply the corrections. Your copy may not need all of them since it's a newer printing.

Read all of Chapter 1, and Chapter 2 at least through section 2.11. Include 2.12 if you
think you might want to do waves in elastic media (like seismic waves).

Work Exercises 2.2 (a and b parts), 2.4, and 2.8 (a part only) and hand them in to me
by next Monday (the 24th). There is a file of sample solutions available at the above
website, but please try them first on your own before consulting it.

Read the instructions for downloading Clawpack. These instructions are attached to

the PDF of these slides, and also found on the Clawpack site at
http://kingkong.amath.washington.edu/clawpack/users/index.html.

Make sure you have access to a Unix/Linux/Mac OS X machine with a good development

environment, including at a minimum Fortran 90/95 (gfortran, for example), and Python

2.50r2.6.

Download Clawpack and install it on your computer. Run some tests to make sure it is
installed correctly. Try to reproduce Fig. 3.1 (and 3.8) in Leveque. Come see me if you

get stuck; let’s discuss difficulties this week.
Clawpack
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Installation instructions

Prerequisites

Operating systems. Clawpack should work fine on Unix/Linux or Mac OS X systems. Much of it will work under Windows using Cygwin,
but this is not officially supported.

Fortran. The main Clawpack routines are written in Fortran (a mixture of Fortran 77 and Fortran 90/95) and so compiling and running the
code requires a Fortran compiler, such as gfortran.

Makefiles are used in libraries and directories and you will need some version of make.

Python. Starting with Version 4.4, we use Python for visualization of results (see Plotting options in Python) and also for user input (see
Specifying run-time parameters in setrun.py). Older Matlab plotting scripts are still available but are no longer being developed and the
examples now included in Clawpack include setplot.py files to facilitate use of the Python plotting tools (see Using setplot.py to specify the
desired plots).

You will need Python Version 2.5 or above (but not 3.0 or above, which is not backwards compatible). You will also need NumPy and
matplotlib for plotting. See Python Hints for information on installing the required modules and to get started using Python if you are not
familiar with it.

Downloading Clawpack

For instructions on using the version of Clawpack in the Subversion repository instead of the tar file described below, see the Clawpack wiki
First download the tar file from the Clawpack download page:

¢ http:/kingkong.amath.washington.edu/clawpack/clawdownload
This file will be of the form clawpack-N.tar.gz where N is the version number.

Move this tar file to the directory where you want to install claw and then:

$ tar -zxvf clawpack-N.tar.gz
$ cd clawpack=N

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2010

mandag 30. august 2010



Setting environment variables

In this claw directory modify the setenv.py file if necessary and then:

$ python setenv.py

This will provide files to set environment variables appropriately. In particular, the variable CLAW should be set to point to this directory.

Now execute
S source setenv.bash
if you are using the bash shell, or

S source setenv.csh

if you use csh. If you don’t know what shell you are using, try both and see which one doesn’t give errors, you won't hurt anything.
If you don’t know about Unix shells, see these class notes, for an introduction and other links.

Consider putting the commands contained in the appropriate file setenv.bash or setenv.csh in your .cshrc or .bashrc file (which is executed
automatically in each new shell you create).

In particular, the commands found in these files set the following environment variables

o CLAW:is set to the path to the main directory of the Clawpack files.

e PYTHONPATH is a list of paths that should include $SCLAW/python. If this variable is already set in the shell from which
you execute setenv.py then it should provide an extension of the original path to include this.

e FCis setto gfortran as the default compiler to use for Fortran. You may want to change this.

Testing your installation and running an example

There are a number of test cases bundled with Clawpack in the directories $CLAW/apps and $CLAW/book. Here and below it is assumed
that the environment variable CLAW has been set properly as described above.

As a first test, go to the directory $CLAW/apps/advection/1d/examplel. You can try the following test in this directory, or you may want to first
make a copy of it (see the instructions in Copying an existing example).
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The Makefiles are set up to do dependency checking so that in many application directories you can simply type:
$ make .plots

and the Fortran code will be compiled, data files created, the code run, and the results plotted automatically, resulting in a set of webpages
showing the results.

However, if this is your first attempt to run a code, it is useful to go through these steps one at a time, both to understand the steps and so
that any problems with your installation can be properly identified.

You might want to start by examining the Makefile. This sets a number of variables, which at some point you might need to modify for other
examples, see Clawpack Makefiles for more about this. At the bottom of the Makefile is an include statement that points to a common
Makefile that is used by most applications, and where all the details of the make process can be found.

To compile the code, type:

S make .exe

If this gives an error, see Trouble running “make .exe”.,

This should compile the example code (after first compiling the required library routines) and produce an executable named xclaw in this
directory.

Before running the code, it is necessary to also create a set of data files that are read in by the Fortran code. This can be done via:
$ make .data

If this gives an error, see Trouble running “make .data”.

This uses the Python code in setrun.py to create data files that have the form *.data. For the 1d advection example, two files are created,
claw.data and setprob.data. The file claw.data contains standard run-time parameters of Clawpack (such as the number of grid cells mx,
indications of what method to use, what boundary conditions to impose, etc.). The file setprob.data typically contains parameters specific to
a particular application, in this case the advection velocity u.

In Clawpack 4.3 and earlier versions, the user would modify the claw.data and setprob.data files directly. Starting with Clawpack 4.4, the
recommended approach is to only modify the Python function setrun defined in the file setrun.py, and use “make .data” to create the *.data
files. See Specifying run-time parameters in setrun.py for more details.
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Once the executable and the data files all exist, we can run the code. The recommended way to do this is to type:

$ make .output

If this gives an error, see Trouble running “make .output”.

One could run the code by typing “./xclaw”, but using the make option has several advantages. For one thing, this checks dependencies to
make sure the executable and data files are up to date, so you could have typed “make .output” without the first two steps above.

Also, before running the code a subdirectory _output is created and the output of the code (often a large number of files) is directed to this
subdirectory. This is convenient if you want to do several runs with different parameter values and keep the results organized. After the code
has run you can rename the subdirectory, or you can modify the variable OUTDIR in the Makefile to direct results to a different directory.
See Clawpack Makefiles for more details. Copies of all the data files are also placed in the output directory for future reference.

If the code runs successfully, you should see output like the following:

Reading data file, first 5 lines are comments: claw.data

running...
first 5 lines are comments:

Reading data file, setprob.data

CLAW1EZ: Frame 0 output plot files done at time t = 0.0000D+00

CLAW1l... Step 1 Courant number = 5.000 dt = 0.1000D+00 t = 0.1000D+00
CLAW1l rejecting step... Courant number too large

CLAW1l... Step 1 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.1800D-01
CLAW1l... Step 2 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.3600D-01
CLAW1l... Step 3 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.5400D-01
CLAW1l... Step 4 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.7200D-01
CLAW1l... Step 5 Courant number = 0.900 dt = 0.1800D-01 t = 0.9000D-01
CLAW1l... Step 6 Courant number = 0.500 dt = 0.1000D-01 ¢t = 0.1000D+00
CLAW1EZ: Frame 1 output plot files done at time t = 0.1000D+00

——— etC === etCc ===

CLAW1EZ: Frame 9 output plot files done at time t = 0.9000D+00

CLAW1l... Step 1 Courant number = 0.900 dt = 0.1800D-01 t = 0.9180D+00
CLAW1l... Step 2 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.9360D+00
CLAW1l... Step 3 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.9540D+00
CLAW1l... Step 4 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.9720D+00
CLAW1l... Step 5 Courant number = 0.900 dt = 0.1800D-01 ¢t = 0.9900D+00
CLAW1l... Step 6 Courant number = 0.500 dt = 0.1000D-01 ¢t = 0.1000D+01
CLAW1EZ: Frame 10 output plot files done at time t = 0.1000D+01
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If you don’t like seeing output from every time step, you can suppress this by setting verbosity =0 in the file setrun.py. You might try doing
that and then typing:

$ make .output

It should recreate the data files and rerun the code, with less output along the way.

If the code runs properly, the subdirectory _output should contain the following files:

claw.data fort.q0003 fort.q0008 fort.t0002 fort.t0007
fort.info fort.q0004 fort.qg0009 fort.t0003 fort.t0008
fort.q0000 fort.q0005 fort.q0010 fort.t0004 fort.t0009
fort.q0001 fort.qg0006 fort.t0000 fort.t0005 fort.t0010
fort.q0002 fort.q0007 fort.t0001 fort.t0006 setprob.data

The fortinfo file contains information about the run just completed. The files with names of the form fort.tO0O0ON and fort.qOOON contain the
computed results for Frame N. See fortfiles for more information about the contents of these files.

Normally you will not want to examine these files directly, but instead will use a plotting tool to plot the results.
Plotting the results. Once the code has run and the files listed above have been created, there are several options for plotting the results.

To try the Python tools, type:

$ make .plots

If this gives an error, see Trouble running “make .plots”.

If this works, it will create a subdirectory named _plots that contains a number of image files (the *.png files) and a set of html files that can
be used to view the results from a web browser. See plotting_makeplots for more details.

An alternative is to view the plots from an interactive Python session, as described in the section Interactive plotting with Iplotclaw.
If you wish to use Matlab instead, see Plotting using Matlab.

Other visualization packages could also be used to display the results, but you will need to figure out how to read in the data. See fortfiles
for information about the format of the files produced by Clawpack.
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Creating html versions of source files.*

To best view the results, and the source code and README files, type:
$ make .htmls

and view the resulting README.html file with a web browser.

Starting a Python web server

This part is not required, but to best view README.html and other Clawpack generated html files, it is convenient to start a local webserver
via:

$ cd SCLAW
$ python python/startserver.py

Note that this will take over the window, so do this in a new window, or else do:

$ xterm -e python python/startserver.py &

to execute it in a new xterm (if available). The setenv commands described above will define an alias so that this last command can be
simplified to:

S clawserver

The main $CLAW directory will then be available at hitp:/localhost:50005 and jsMath should work properly to display latex on the
webpages (once you've downloaded the required fonts, see hitp//www.math.union.edu/locate/jsMath/users/fonts.html).
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Next: Riemann Problem
(Ch 3)
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