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Where we are today
2

date Topic Chapter in 
LeVeque

1
2
3
4
5
6
7
8
9

*10
11
12

*13

1.Sep 2011 introduction to conservation laws, Clawpack 1 & 2

15.Sep 2011 the Riemann problem, characteristics 3 & 5

22.Sep 2011 finite volume methods for linear systems, high resolution 4 & 6

29.Sep 2011 boundary conditions, accuracy, variable coeff. 7,8, part 9

6.Oct 2011 nonlinear conservation laws, finite volume methods 11 & 12

13.Oct 2011 nonlinear equations & systems 13 & 14

20.Oct 2011 finite volume methods for nonlinear systems 14 & 15

27.Oct 2011 source terms and multidimensions 16,17,18,19

3.Nov 2011 multidimensional systems 20 & 21

10.Nov 2011 no lecture

17.Nov 2011 capacity functions, source terms, project plans

24.Nov 2011 other topics and project plans

1.Dec 2011 student presentations

8.Dec 2011 no lecture

15.Dec 2011 FINAL REPORTS DUE
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Review of the Riemann problem

The Riemann problem is the original system of equations,                        
plus the special initial condition consisting of a jump discontinuity:

In the linear hyperbolic system, we have                                 and the  

Jacobian                                                     is diagonalised into the form 

with the eigenvalues λp , since the system is hyperbolic.

q(x,0) =
ql      if x < 0
qr      if x > 0

⎧
⎨
⎩

qt + f (q)x = 0

qt + ′f (q)qx = 0
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Review of the Riemann problem

The solution vector is resolved or projected onto the eigenvectors rp , 

and the system is replaced by the equivalent m advection equations

with the solution                                               . The initial left-right 
discontinuity is split among the eigenvectors

q(x,t) = wp (x,t)r p
p=1

m

∑

wt
p + λ pwx

p = 0,

wp (x,t) = wp (x − λ pt,0)

ql − qr = α pr p
p=1

m

∑ = wl
p − wr

p( )r p
p=1

m

∑ .

t

x0

(X,T)

(X– λ1 T)(X– λ2 T)(X– λ3 T)

(x= λ1 t) (x= λ2 t) (x= λ3 t)

The solution at a later time is a mixture of 
these left and right states, depending on 
whether x is to the left or the right of the 
corresponding characteristic.
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Review of the Riemann problem

If we define the waves                                                then the solution to the 
Riemann problem can be written 

where H is the Heaviside function  

 W
p ≡ α pr p = (wl

p − wr
p )

H (x) =
0     if x ≤ 0
1     if x > 0
⎧
⎨
⎩

.

 
q(x,t) = ql + H (x − λ pt)W p

p=1

m

∑

t

x0

The Riemann solution for a 
linear system is a similarity 
solution: it depends on x/t 
and not on x or t separately. 
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Next question: How do we get the fluxes?

The equation we want to solve is                               and we think we know 
how to do it, from one time step to the next, by solving Riemann problems at 
each interface. 

If it’s a linear system we can write                                 and resolve the 
(constant) Jacobian into its eigenvalues and eigenvectors. But we still need 
a way to determine the appropriate numerical  flux that we will use to 
advance the numerical solution from one time step to the next, using 
something like:

We’ll put aside the Riemann problem for the moment, we’ll need it in an hour 
or so.

qt + f (q)x = 0

f (q)x = ′f (q)qx

Qi
n+1 ≈Qi

n −
Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

xi−1/2 xi+1/2tn

tn+1 Fi−1/2
n Fi+1/2

n

Qi
n Qi+1

nQi−1
n

Qi
n+1
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Explicit versus Implicit

For hyperbolic equations, the domain of dependence is bounded, since 
information propagates with a finite speed.

We can therefore use explicit methods, in which the state at the later time is 
calculated in terms of the state at the present time. 

For elliptic and parabolic equations, implicit methods, solving an equation 
involving both the later and present times, are required.

xi−1/2 xi+1/2tn

tn+1 Fi−1/2
n Fi+1/2

n

Qi
n Qi+1

nQi−1
n

Qi
n+1
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General formulation for conservation laws

In finite volume methods, we divide the problem domain (here one-dimensional) 
into a grid of cells, and form an approximation of the solution value within each cell:

                                                               , where

The integral form of the conservation law is 

Then by integrating over time, we get 

xi−1/2 xi+1/2tn

tn+1 Fi−1/2
n Fi+1/2

n

Qi
n Qi+1

nQi−1
n

Qi
n+1

d
dt

q(x,t)dx
xi−1/2

xi+1/2∫ = f (q(xi−1/2 ,t)) − f (q(xi+1/2 ,t))

Qi
n+1 ≈Qi

n −
1
Δx

f (q(xi+1/2 ,t))dttn

tn+1∫ − f (q(xi−1/2 ,t))dttn

tn+1∫( )

Qi
n ≈ 1

Δx
q(x,tn )xi−1/2

xi+1/2∫ dx Δx = xi+1/2 − xi−1/2
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Getting the fluxes

If we can find a way to formulate                                                    in terms of 

the       , then we can write:

This scheme is in conservation form. The fluxes cancel except at the boundaries: 

In hyperbolic equations, information propagates at finite speed, so we should 

formulate the           from the values      ,         in neighbouring cells. Then the 

future          will depend on the three values         ,       , and         . This is known 

as a three-point stencil.

Fi+1/2
n ≈

1
Δt

f (q(xi+1/2 ,t))dttn

tn+1∫

Qi
n+1 ≈Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )
Qi

n

Fi+1/2
n Qi

n Qi+1
n

Qi
n+1 Qi

n Qi+1
nQi−1

n

Δx Qi
n+1

i=1

N

∑ = Δx Qi
n −

i=1

N

∑ Δt FN +1/2
n − F1

n( )

xi−1/2 xi+1/2tn

tn+1 Fi−1/2
n Fi+1/2

n

Qi
n Qi+1

nQi−1
n

Qi
n+1
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Convergence: consistency and stability

The key to finite volume methods is how to approximate the time-integral of 
the flux from the present time to the future time.

Everything depends now on how we formulate the flux function           , so we 
need to define criteria for judging the choice.

The method must be convergent, i.e. the numerical solution must  approach 
the true solution as the cell size and time step decrease (                    ).

The method must be consistent with the system of equations.

The method must be stable, so that small errors don’t grow rapidly.

Fi+1/2
n

Δx,Δt→ 0

Fi+1/2
n ≈ 1

Δt
f (q(xi+1/2 ,t))dttn

tn+1∫
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The Courant-Friedrich-Lewy stability limit 

We define the CFL number                   and require that            for stability. 

For a hyperbolic system of equations, we can have up to m different wave 
speeds given by λ1, λ2,..., λp, so the Courant number must be 

ν ≡ c Δt
Δx

ν ≤ 1

ν ≡ Δt
Δx
max λ p ≤ 1

Domain of 
influence

Domain of 
dependence

x

t

Δt
Δx

The numerical stencil must contain the true 
domain of influence. This is a necessary 
condition for stability.

Since influence is propagated by the 
characteristic waves, the true domain of 
influence depends on the wave speeds. 

For a symmetric wave equation there are two 
waves, but only a single characteristic speed. 
For acoustics in a stationary medium, the 
characteristic speed is the speed of sound c. 
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The Courant-Friedrich-Lewy stability limit

Unstable, because the domain 
of influence is larger than the 
numerical stencil.

At the limit of stability the domain 
of influence corresponds exactly 
to the numerical stencil.

Within the limit of stability the 
stencil completely contains the 
domain of influence. 

xi−1/2 xi+1/2tn

tn+1

Qi
n Qi+1

nQi−1
n

Qi
n+1

Δt = Δx
c

Δt > Δx
c

xi−1/2 xi+1/2tn

tn+1

Qi
n Qi+1

nQi−1
n

Qi
n+1

xi−1/2 xi+1/2tn

tn+1

Qi
n Qi+1

nQi−1
n

Qi
n+1

Δt < Δx
c

The domain of influence for the symmetric wave 
equation, wave speed c, three-point stencil.
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Causal domains in space-time

The domains of influence and dependence depend on the 
characteristics of the equations.

The Courant-Friedrich-Lewy condition for stability states 
that the numerical domain of dependence must completely 
contain the physical domain of dependence.

For any hyperbolic system, the domain of dependence is 
bounded. This is not true for elliptic or parabolic systems.

Domain of 
influence

Domain of 
dependence

x

t

Δt
Δx

The three-point stencil with this 
relation between the space and 
time intervals is okay because 
the physical domain of 
dependence lies 
within the 
numerical 
stencil.
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Formulation of the flux function and update rule

Here are a few historical choices for centred methods:

Fi+1/2
n = 1

Δt
f (q(xi+1/2 ,t))dttn

tn+1∫ Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )
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Formulation of the flux function and update rule

Here are a few historical choices for centred methods:

Fi+1/2
n = 1

Δt
f (q(xi+1/2 ,t))dttn

tn+1∫ Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Naive method;
unstable

Fi−1/2
n = 1

2
f (Qi−1

n )+ f (Qi
n )⎡⎣ ⎤⎦

Qi
n+1 =Qi

n − Δt
2Δx

f (Qi+1
n )− f (Qi−1

n )⎡⎣ ⎤⎦
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Formulation of the flux function and update rule

Here are a few historical choices for centred methods:

Fi+1/2
n = 1

Δt
f (q(xi+1/2 ,t))dttn

tn+1∫ Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Lax-Friedrichs method;
stable, but diffusive;
first-order accurate

Fi−1/2
n = 1

2
f (Qi−1

n )+ f (Qi
n )⎡⎣ ⎤⎦ −

Δx
2Δt

Qi
n −Qi−1

n( )
Qi

n+1 = 1
2
Qi−1

n +Qi+1
n( )− Δt

2Δx
f (Qi+1

n )− f (Qi−1
n )⎡⎣ ⎤⎦

Naive method;
unstable

Fi−1/2
n = 1

2
f (Qi−1

n )+ f (Qi
n )⎡⎣ ⎤⎦

Qi
n+1 =Qi

n − Δt
2Δx

f (Qi+1
n )− f (Qi−1

n )⎡⎣ ⎤⎦
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Formulation of the flux function and update rule

Here are a few historical choices for centred methods:

Fi+1/2
n = 1

Δt
f (q(xi+1/2 ,t))dttn

tn+1∫ Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Lax-Friedrichs method;
stable, but diffusive;
first-order accurate

Fi−1/2
n = 1

2
f (Qi−1

n )+ f (Qi
n )⎡⎣ ⎤⎦ −

Δx
2Δt

Qi
n −Qi−1

n( )
Qi

n+1 = 1
2
Qi−1

n +Qi+1
n( )− Δt

2Δx
f (Qi+1

n )− f (Qi−1
n )⎡⎣ ⎤⎦

Two-step 
Richtmyer-Lax-Wendroff; 
second-order accurate, 

but oscillatory

Fi−1/2
n = f (Qi−1/2

n+1/2 )

Qi−1/2
n+1/2 = 1

2
Qi−1

n +Qi
n( )− Δt

2Δx
f (Qi

n )− f (Qi−1
n )⎡⎣ ⎤⎦

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Naive method;
unstable

Fi−1/2
n = 1

2
f (Qi−1

n )+ f (Qi
n )⎡⎣ ⎤⎦

Qi
n+1 =Qi

n − Δt
2Δx

f (Qi+1
n )− f (Qi−1

n )⎡⎣ ⎤⎦
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1st Order Godunov (Lax-Friedrichs)

16

Advection using simple methods
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2nd Order Lax-Wendroff

17

Advection using simple methods
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But centred methods do not make the best 
use of the structure of hyperbolic equations

In hyperbolic equations, the information propagates along characteristics.

Since we know where the information is coming from, we should make use 
of that knowledge to formulate the flux function.

For the one-dimensional advection equation, there is only one characteristic, 
the fluid velocity u. The information comes from the left if u is positive, from 
the right if u is negative.

So in this simple case, we can use a one-sided upwind method, where we 
decide which side to use from the flow direction.

For systems with characteristics travelling in both directions, we must 
transfer some information from each side. How do we do this?

18
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A simple upwind method for advection

In the advection problem, the flux is in one direction,                        and the 
update is

If you don’t know a priori which direction the flux is, you can use: 

where

tn+1

tn

Qi
n+1

Qi
n Qi+1

nQi−1
n

xi+1/2xi−1/2

Fi−1/2
n = uQi−1

n

Qi
n+1 =Qi

n − uΔt
Δx

Qi
n −Qi−1

n⎡⎣ ⎤⎦

Fi−1/2
n = u−Qi

n + u+Qi−1
n

Qi
n+1 =Qi

n − Δt
Δx

u+ (Qi
n −Qi−1

n )+ u− (Qi+1
n −Qi

n )( )
u+ = max(u,0),    u− = min(u,0).
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We have just now simply prototyped 
the Godunov REA method. 

Reconstruct a piece-
wise polynomial function 
from cell averages.

reconstruct

Average the later-time 
function back to the 
cells .

average

Evolve this function to a 
later-time by solving 
Riemann problems.

evolve

20
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How does this work?

An illustration of the upwind method for CFL number                               .

The cell averages        are advected by the velocity u from time n to n+1,to 
produce an intermediate value     .  Because the shift is less than a full cell, 
new cell averages must be computed to obtain the new quantities          .  

Each cell edge has a discontinuity: we can solve for the new cell value either 
directly (as we have done), or with the help of the Riemann technique. 

Qi
n+1

Qi
n

Qi+1
n

Qi−1
n

xi+1/2xi−1/2

Qi+1
n+1

Qi−1
n+1

characteristics

u

 q
n

 
ν ≡ u Δt

Δx
 0.7

Qi
n

Qi
n+1 q

n
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First-order upwind for advection problem
Reconstruct a function from the cell averages: piecewise constant in this case

Evolve the solution: advect it with the characteristic speed

22
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Then compute the new cell averages

The cell average is changed by

So the upwind method is, as before, simply 

uΔt

Δx

+u Δt
Δx

Qi−1
n −Qi

n( )

Qi
n+1 =Qi

n − u Δt
Δx

Qi
n −Qi−1

n( )
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To generalise, let’s write it in wave-propagation form

We write the change in the cell average as

Where                                     is the wave strength and s is the wave speed. 

At this point, this is only a change in notation, to prepare for the use of the 
method with systems of equations. But this is the same         we have 
already encountered in the Riemann problem.

In the advection equation there is (of course) only one upwind direction. 

In a system of equations, waves may travel in any direction. We have to 
handle this now.

That’s where the Riemann solver comes in.

 
u Δt
Δx

Qi−1
n −Qi

n( ) = −s Δt
Δx
Wi−1/2

 Wi−1/2 = Qi
n −Qi−1

n( )

 W

24
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Generalising the upwind method to systems

The general upwind method for s of either sign for a single wave is

and as before, we define

Now recall the Riemann solution for a many-wave problem:

We just put these together.

 
Qi

n+1 =Qi
n − Δt

Δx
s+Wi−1/2 + s−Wi+1/2( )

s+ = max(s,0),    s− = min(s,0).

 
q(x,t) = ql + H (x − λ pt)W p

p=1

m

∑ ;   H (x) =
0     if x ≤ 0
1     if x > 0
⎧
⎨
⎩

.
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Godunov’s method for linear systems
The upwind scheme is representative of REA algorithms, first 
invented by S.K. Godunov in 1959. REA stands for:

1. Reconstruct a piece-wise constant function from the cell 
averages.

2. Evolve the hyperbolic equation with this function to obtain a 
later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new cell 
averages.

qn (x,tn ) =Qi
n  for x in cell i

 q
n (x,tn+1)

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

This is done at each time step. The method can be improved by using other 
interpolation functions, polynomials for example, to improve the accuracy. 

Physics is needed in the second step (evolution stage), as all the characteristics must 
be known and used in the solution. The first and third steps (projection stages) are 
entirely numerical (and problem independent). 

26
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Reconstruct     -     Evolve     -     Average

Qi
n+1

Qi
n

Qi+1
n

Qi−1
n

xi+1/2xi−1/2

Qi+1
n+1

Qi−1
n+1

characteristics

u

 q
n

 q
n (x,tn+1)

 
Qi

n+1 = qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn (x,tn ) =Qi
n  for x in cell i
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Care must be taken with interacting 
characteristics

In problems where the characteristics travel in both directions, solving the 
Riemann problem independently at each interface requires that the 
characteristics from neighbouring cell boundaries do not intersect. 

This apparently gives a considerably stricter CFL limit:                          . 

But in fact there are ways of solving the Riemann problem (cooperatively 
among adjacent cells) that relax this limit.

xi−1/2 xi+1/2tn

tn+1

Qi
n Qi+1

nQi−1
n

Qi
n+1

ν ≡ u Δt
Δx

< 1
2
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But if we replace               by               
we have a tremendous advantage, 
since the solution to the Riemann 
problem is a similarity solution, 
constant along rays from the interface 
(yellow, orange dashed lines).

Numerical flux function in Godunov’s method

Recall the formula for the numerical flux:

The numerical flux should be the average of the true flux over the time 
step, but we don’t know how the true flux varies.

Fi+1/2
n ≈ 1

Δt
f (q(xi+1/2 ,t))dttn

tn+1∫

 q
n (x,t)qn (x,t)

Leveque defines a special symbol for                     , namely 

and then the flux function is simply
 q
n (xi−1/2 ,t) q↓(Qi−1

n ,Qi
n )

Fi−1/2
n = f q↓(Qi−1

n ,Qi
n )( )

t

x0

lll

rll rrl

rrr
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Godunov’s method for a general system

Given a set of cell quantities       at time n:

1. Solve the Riemann problem at          to obtain 

2. Define the flux:

3. Apply the flux differencing formula:

This will work for any general system of conservation laws. Only the 
formulation of the Riemann problem itself changes with the system. 

Fi−1/2
n = f q↓(Qi−1

n ,Qi
n )( )

Qi
n

q↓(Qi−1
n ,Qi

n )xi−1/2

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )
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The wave propagation implementation of 
Godunov’s method

For a linear m × m system                        , the Riemann problem consists of 
m waves Wp  propagating with constant speed  λp.

Then 

xi−1/2tn

tn+1

xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

Δt
 Wi−1/2

1

qt + Aqx = 0

 
Qi −Qi−1 = α i−1/2

p r p =
p=1

m

∑ Wi−1/2p

p=1

m

∑
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The wave propagation implementation of 
Godunov’s method

This is analogous to the basic upwind scheme.

A three-equation system has three characteristics. At timestep n, there is a 
discontinuity at the cell edge between        and        . As we evolve the 
Riemann solution forward to form                   , this discontinuity splits into 
three pieces.

We use our knowledge of the splitting to compute the new cell averages. 

 q
n (x,tn+1)
Qi

n Qi+1
n

xi−1/2tn

tn+1

xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

Δt
 Wi−1/2

1
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The waves split the discontinuity

The wave             changes the cell average by                          . Taking all 

three waves, keeping track of which direction the information is coming from, 

we have:                                                                                        .

Defining                                                               (as we did for the upwind 
advection case), we generalise to the m × m case:

 
Qi

n+1 =Qi
n − Δt

Δx
λ2Wi−1/22 + λ 3Wi−1/23 + λ1Wi+1/21( )

 
− λ2Δt

Δx
Wi−1/22 Wi−1/2

2

λ+ = max(λ,0),    λ− = min(λ,0)

 
Qi

n+1 =Qi
n − Δt

Δx
(λ p )+Wi−1/2p

p=1

m

∑ + (λ p )−Wi+1/2p

p=1

m

∑⎡

⎣
⎢

⎤

⎦
⎥

 
Qi −Qi−1 = α i−1/2

p r p
p=1

m

∑ ≡ Wi−1/2p

p=1

m

∑
Qi

n Qi+1
n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

 Wi−1/2
1
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The waves split the discontinuity

The wave             changes the cell average by                          . Taking all 

three waves, keeping track of which direction the information is coming from, 

we have:                                                                                        .

Defining                                                               (as we did for the upwind 
advection case), we generalise to the m × m case:
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n − Δt
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λ+ = max(λ,0),    λ− = min(λ,0)
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⎥
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Introduce the notion of fluctuations

If                                                   is the effect of all right-going waves, and 

                                                     is the effect of  all left-going waves from xi-1/2, 

then we can write the update as 

Notice that we take the right-going waves from the left interface and the left-
going waves from the right interface!

The symbols                     will be referred to as fluctuations. 

This notation will be useful for nonlinear systems.

 

A+ΔQi−1/2 = (λ p )+Wi−1/2p

p=1

m

∑

A−ΔQi−1/2 = (λ p )−Wi−1/2p

p=1

m

∑

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )

 A
±ΔQi±1/2
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What are these fluctuations?

The symbols                     are the fluctuations, and we will use these heavily 
when we get to nonlinear systems.

But for linear systems, these are easily resolved into                             etc. 

Here’s how…

 A
±ΔQi±1/2

A± (Qi
n −Qi−1

n )
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To resolve the fluctuations in a linear system:

For the linear m × m system                       ,  remember we had

Now we separate this into matrices of positive and negative eigenvalues: 

and we define                                             so                                         .

Then  

qt + Aqx = 0

 

R−1AR = Λ =

λ1

λ2


λm

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Λ+ =

(λ1)+

(λ2 )+


(λm )+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

Λ− =

(λ1)−

(λ2 )−


(λm )−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

A+ = RΛ+R−1,  A− = RΛ−R−1 Λ+ + Λ− = Λ,  A+ + A− = A

Qi
n+1 =Qi

n − Δt
Δx

A+ (Qi
n −Qi−1

n )+ A− (Qi+1
n −Qi

n )⎡⎣ ⎤⎦
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The fluctuations for a linear system
Recall the solution in terms of waves for the m × m case

and remember that by our definition of the waves for a linear system: 

so, keeping careful track of where the left-going and right-going waves come 
from, we have 

in analogy with

 
Qi

n+1 =Qi
n − Δt

Δx
(λ p )+Wi−1/2p

p=1

m

∑ + (λ p )−Wi+1/2p

p=1

m

∑⎡

⎣
⎢

⎤

⎦
⎥

 
A Qi −Qi−1( ) = λ pα i−1/2

p r p =
p=1

m

∑ λ pWi−1/2p

p=1

m

∑

Qi
n+1 =Qi

n − Δt
Δx

A+ (Qi
n −Qi−1

n )+ A− (Qi+1
n −Qi

n )⎡⎣ ⎤⎦

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )
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Flux-difference splitting

For the linear system,                               and since 

then                                                     . From this we get 

and then the update is

or, written in terms of the flux, 

with 

 Wi−1/2
p = α i−1/2

p r p A± = RΛ±R−1

A±α i−1/2
p r p = (λ p )±α i−1/2

p r p

 
A±ΔQi−1/2 = (λ p )±Wi−1/2p

p=1

m

∑ = A± (Qi
n −Qi−1

n )

Qi
n+1 =Qi

n − Δt
Δx

A+ (Qi
n −Qi−1

n )+ A− (Qi+1
n −Qi

n )( )

Fi−1/2
n = A+Qi−1 + A

−Qi

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )
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Flux-difference splitting

For the more general conservation law,                               we define 

These two are equivalent, the same flux through the same cell border, 
representing either a left-going flux that updates        or a right-going 
fluctuation that updates      .

If we subtract one from the other, we have  

directly showing the difference in fluxes split into right- and left-going 
fluctuations.

qt + f (q)x = 0

 
Fi−1/2
n = f (Qi−1)+ (λ p )−Wi−1/2p

p=1

m

∑ ≡ f (Qi−1)+A−ΔQi−1/2

 
Fi−1/2
n = f (Qi )− (λ p )+Wi−1/2p

p=1

m

∑ ≡ f (Qi )−A+ΔQi−1/2

Qi−1
Qi

 f (Qi )− f (Qi−1) = A−ΔQi−1/2 +A+ΔQi−1/2
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Generalisation to nonlinear problems

For the nonlinear Riemann problem, the solution is still a similarity solution:

A system of m equations consists of mw waves propagating at constant 
speed.

Often                but not always.

Some waves may be rarefaction waves instead of discontinuities (as in the 
shock tube problem). 

The numerical method is based on an approximate Riemann solution with 
the decomposition 

where              is a wave propagating at some speed          . 

We’ll get much more of this later ...

q(x,t) = q*(x / t)

mw = m

 
Qi −Qi−1 = Wi−1/2p

p=1

m

∑
 Wi−1/2

p si−1/2
p
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Review of Finite Volume Methods

We need a scheme for obtaining the fluxes from 
one cell to the next in terms of the available 
solution values at the present time step.

The conservation law tells us how to do this, so 
we must ensure that the difference formula we 
produce is in conservation form.

In hyperbolic problems, the domain of influence 
is limited; we use this limitation to decide where 
to take information from.

xi−1/2 xi+1/2tn

tn+1 Fi−1/2
n Fi+1/2

n

Qi
n Qi+1

nQi−1
n

Qi
n+1

Domain of 
influence

Domain of 
dependence

x

t

Δt
Δx
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Review of the upwind method

Reconstruct     -     Evolve     -     Average

Qi
n+1

Qi
n

Qi+1
n

Qi−1
n

xi+1/2xi−1/2

Qi+1
n+1

Qi−1
n+1

characteristics

u

 q
n

 q
n (x,tn+1)

 
Qi

n+1 = qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn (x,tn ) =Qi
n  for x in cell i
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Review: The wave propagation 
implementation of Godunov’s method

A three-equation system has three characteristics. At timestep n, there is a 
discontinuity at the cell edge between        and        . As we evolve the 
Riemann solution forward to form                   , this discontinuity splits into 
three pieces.

We use our knowledge of the splitting to compute the new cell averages. 

 q
n (x,tn+1)
Qi

n Qi+1
n

xi−1/2tn

tn+1

xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

Δt
 Wi−1/2

1
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Review: splitting the discontinuity

The wave             changes the cell average by                          . The three 

waves together give us:  

                                                           .

Defining                                                              , we generalise to m waves:

 
Qi

n+1 =Qi
n − Δt

Δx
λ2Wi−1/22 + λ 3Wi−1/23 + λ1Wi+1/21( )

 
− λ2Δt

Δx
Wi−1/22 Wi−1/2

2

λ+ = max(λ,0),    λ− = min(λ,0)

 
Qi

n+1 =Qi
n − Δt

Δx
(λ p )+Wi−1/2p

p=1

m

∑ + (λ p )−Wi+1/2p

p=1

m

∑⎡

⎣
⎢

⎤

⎦
⎥

 
Qi −Qi−1 = α i−1/2

p r p
p=1

m

∑ ≡ Wi−1/2p

p=1

m

∑
Qi

n Qi+1
n

 Wi−1/2
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 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

 Wi−1/2
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Review: Fluctuations

If                                                   is the effect of all right-going waves, and 

                                                     is the effect of  all left-going waves from xi-1/2, 

then we can write the update as 

We take the right-going waves from the left interface and the left-going waves 
from the right interface.

The symbols                     are the fluctuations. 

 

A+ΔQi−1/2 = (λ p )+Wi−1/2p

p=1

m

∑

A−ΔQi−1/2 = (λ p )−Wi−1/2p

p=1

m

∑

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )

 A
±ΔQi±1/2
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Next we examine high-resolution implementations 
of the Godunov REA method. 

Reconstruct a piece-
wise polynomial function 
from cell averages.

reconstruct

Average the later-time 
function back to the 
cells .

average

Evolve this function to a 
later-time by solving 
Riemann problems.

evolve
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Next: High Resolution 
Methods
(Ch 6)
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Extending Godunov’s method to high-resolution

      defines a piece-wise constant function. The discontinuities at the cell 
interfaces give rise to Riemann problems

and the solution at the next time step is obtained from

xi−1/2tn

tn+1

xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

Δt
 Wi−1/2

1

 
Qi −Qi−1 = α i−1/2

p r p
p=1

m

∑ ≡ Wi−1/2p

p=1

m

∑

Qi
n

Fi−1/2
n = f q↓(Qi−1

n ,Qi
n )( ),

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( ).
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Godunov’s method with piece-wise constant 
reconstruction is only first order

1. Reconstruct a piece-wise constant function from the cell 
averages.

2. Evolve the hyperbolic equation with this function to obtain a 
later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new cell 
averages.

 q
n (x,tn+1)

This is done at each time step. The method can be improved by using other 
interpolation functions, polynomials for example, to improve the accuracy. 

Physics is needed in the second step (evolution stage), as all the characteristics must 
be known and used in the solution. The first and third steps (projection stages) are 
entirely numerical (and problem independent). 

qn (x,tn ) =Qi
n  for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx
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Reconstruct     -     Evolve     -     Average

Qi
n+1

Qi
n

Qi+1
n

Qi−1
n

xi+1/2xi−1/2

Qi+1
n+1

Qi−1
n+1

characteristics

u

 q
n

 q
n (x,tn+1)

 
Qi

n+1 = qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn (x,tn ) =Qi
n  for x in cell i
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Improvements on the simple system

Recall the update formula developed in chapter 4 that uses the notion of 
fluctuations:

This gives a method that is only first-order accurate. We can improve it by 
introducing corrections, and writing:

There are several possible techniques, and we illustrate a few here and 
show how well or how poorly they do.

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )

  
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )− Δt

Δx
F i+1/2 − F i−1/2( )
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Piece-wise Linear Reconstruction

Instead of using piece-wise constant 
reconstruction as in the simple REA 
update,

We could use a piece-wise linear 
reconstruction:

We can choose how to do this, subject to the constraint that the cell averages 
are conserved, and that the slopes somehow reflect the local function 
behaviour. This is how second-order and high-resolution methods are done.
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Second-order methods:

Start with the linear system

Write the Taylor series expansion about the present time for the solution q at 
the advanced time:

The differential equation gives us                     and therefore 

so that:

qt + Aqx = 0

q(x,tn+1) = q(x,tn )+ Δtqt (x,tn )+
1
2
(Δt)2qtt (x,tn )+…

qt = −Aqx qtt = A
2qxx

q(x,tn+1) = q(x,tn )− ΔtAqx (x,tn )+
1
2
(Δt)2A2qxx (x,tn )+…
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 Lax-Wendroff:

From the first three terms of the Taylor expansion 

using centred differences: 

we come to the Lax-Wendroff (1960) formula:

q(x,tn+1) ≈ q(x,tn )− ΔtAqx (x,tn )+
1
2
(Δt)2A2qxx (x,tn )

Qi
n+1 =Qi

n − Δt
2Δx

A Qi+1
n −Qi−1

n( ) + 12
Δt
Δx

⎛
⎝⎜

⎞
⎠⎟
2

A2 Qi+1
n − 2Qi

n +Qi−1
n( )

qx (x,tn ) ≈
1
2Δx

Qi+1
n −Qi−1

n( )

qxx (x,tn ) ≈
1
Δx

⎛
⎝⎜

⎞
⎠⎟
2

Qi+1
n − 2Qi

n +Qi−1
n( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

xi−1/2 xi+1/2tn

tn+1

Qi
n Qi+1

nQi−1
n

Qi
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 Beam-Warming:

From the first three terms of the Taylor expansion 

Using upwind differences: 

leads to the Beam-Warming (1976) formula for one-sided flows:

Qi
n+1 =Qi

n − Δt
2Δx

A 3Qi
n − 4Qi−1

n +Qi−2
n( ) + 12

Δt
Δx

⎛
⎝⎜

⎞
⎠⎟
2

A2 Qi
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n +Qi−2
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1
2Δx

3Qi
n − 4Qi−1

n +Qi−2
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1
Δx

⎛
⎝⎜

⎞
⎠⎟
2

Qi
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n +Qi−2
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⎧

⎨
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⎪
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56

Demonstration of simple methods

1st Order Godunov (Lax-Friedrichs)
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2nd Order Lax-Wendroff

57

Demonstration of simple methods
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2nd Order Beam-Warming

58

Demonstration of simple methods
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Why is Lax-Wendroff Oscillatory?
We can choose a variety of slopes for a piecewise linear reconstruction. 

constant

σ i
n = 0

centred

σ i
n = Qi+1

n −Qi−1
n

Δx

upwind

σ i
n = Qi

n −Qi−1
n

Δx

downwind

σ i
n = Qi+1

n −Qi
n

Δx

The aim is to approximate the derivative over the ith cell, for second-order 
accuracy. The overshoots in these methods cause oscillatory behaviour near 
discontinuities.
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Why is Lax-Wendroff Oscillatory?
We can choose a variety of slopes for a piecewise linear reconstruction. 

constant

σ i
n = 0

centred

σ i
n = Qi+1

n −Qi−1
n

Δx

upwind

σ i
n = Qi

n −Qi−1
n

Δx

downwind

σ i
n = Qi+1

n −Qi
n

Δx

The aim is to approximate the derivative over the ith cell, for second-order 
accuracy. The overshoots in these methods cause oscillatory behaviour near 
discontinuities.

problem
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Need for limiters

Second-order methods give good results when the solutions are smooth but 
generate oscillations where discontinuities occur. 

First-order methods give poorer results, but do not generate oscillations near 
discontinuities. That is, they keep the solution varying monotonically.

The idea behind high-resolution methods is to get second-order accuracy 
when possible, but to keep the solution monotonic where the solution is not 
smooth.

Limiters are introduced to manage this.

The breakthrough work in this area was made by Bram van Leer in a series 
of papers culminating in 1979. 
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Lax-Wendroff as a 
finite-volume method

The basic finite-volume update formula is

We can put Lax-Wendroff in this form if we write:

then:

xi−1/2 xi+1/2tn

tn+1

Qi
n Qi+1

nQi−1
n

Fi−1/2
n Fi+1/2

n

Qi
n+1

Qi
n+1 = Qi

n −
Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Fi−1/2
n = 1

2
A Qi

n +Qi−1
n( )− 12

Δt
Δx

A2 Qi
n −Qi−1

n( )

Fi+1/2
n = 1

2
A Qi+1

n +Qi
n( )− 12

Δt
Δx

A2 Qi+1
n −Qi

n( )

Qi
n+1 =Qi

n − Δt
2Δx

A Qi+1
n −Qi−1

n( ) + 12
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Δx

⎛
⎝⎜

⎞
⎠⎟
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First we rewrite the Lax-Wendroff flux

using

we get

which is like the upwind flux with an added (antidiffusive) correction term. We 
can improve this by limiting the amount of correction actually applied, based 
on the solution behaviour. 

We illustrate how this is done with the scalar advection equation.  

Fi−1/2
n = 1

2
A Qi

n +Qi−1
n( )− 12

Δt
Δx

A2 Qi
n −Qi−1

n( )

Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 A I − Δt

Δx
A⎛

⎝⎜
⎞
⎠⎟ Qi

n −Qi−1
n( )

 

Λ± =

(λ1)±

(λ2 )±


(λm )±

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

A± = RΛ±R−1

A = A+ + A−

A = A+ − A−

⎧

⎨
⎪

⎩
⎪
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How do we choose a slope limiter?

We want to use the slope when the function is smooth to achieve second-
order accuracy.

But when the function is not smooth, using the slope results in overshoots, 
causing oscillatory behaviour. 

So we limit the slope, based on the local behaviour of the solution.

We write the slope as                                          , where      is the flux limiter 
function, and  

             in the Lax-Wendroff scheme,

             in the piecewise-constant upwind scheme.

φ = 1
φ = 0

σ i
n = Qi+1

n −Qi
n

Δx
⎛
⎝⎜

⎞
⎠⎟
φi
n φ
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The REA algorithm suggests ...

that we update the advection equation by

where the slope is given by 

and      is the flux limiter function.

Qi
n+1 =Qi

n − uΔt
Δx

Qi
n −Qi−1

n( )− 12
uΔt
Δx

Δx − uΔt( ) σ i
n −σ i−1

n( )

σ i
n = Qi+1

n −Qi
n

Δx
⎛
⎝⎜

⎞
⎠⎟
φi
n

φ
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How do we choose a slope limiter?

Monotonicity preserving methods:

If a grid function that is initially monotone, i.e.

remains monotone at the next time:  

then the method is monotonicity preserving.

Total Variation Diminishing (TVD) methods:

Define the total variation of a grid function Q as:

A method is Total Variation Diminishing if 

TVD methods are monotonicity preserving. We chose slope limiters that 
ensure the method is TVD.

TV(Q) = Qi −Qi−1
grid
∑

TV(Qn+1) ≤ TV(Qn )

Qi
n ≥Qi−1

n  for all i at step n

Qi
n+1 ≥Qi−1

n+1  for all i at step n +1
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The minmod slope limiter

Define the minmod function: 

Then choose the slope to use by:

If the slopes have the same sign, the one with the smaller absolute value is 
chosen; if they have opposite signs, the slope is 0.

Extended to more arguments, the minmod function returns 0 unless all the arguments are the same 
sign, otherwise it returns the argument with the smallest absolute value.

minmod a,b( ) ≡
a if a < b  and ab > 0
b if b < a  and ab > 0
0 if ab ≤ 0

⎧

⎨
⎪

⎩
⎪

 

minmodcentred (Lax-Wendroff)

σ i
n = minmod Qi

n −Qi−1
n

Δx
,Qi+1

n −Qi
n

Δx
⎛
⎝⎜

⎞
⎠⎟
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For generality, we write the slope in terms 
of the flux-limiter function   

For minmod:

                   where

                       and 

    measures the local smoothness of the data. At extrema,    is 
negative; if the data are smooth,           and at discontinuities,    
can be very large. 

φ
σ i

n = minmod Qi
n −Qi−1

n

Δx
,Qi+1

n −Qi
n

Δx
⎛
⎝⎜

⎞
⎠⎟

= Qi+1
n −Qi

n

Δx
⎛
⎝⎜

⎞
⎠⎟
φ(θi

n )

φ(θ) = minmod(θ,1)

θi
n = Qi

n −Qi−1
n

Qi+1
n −Qi

n

θ θ
θθ ≈ 1
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Widely used flux limiters are:

Linear methods

             upwind:

   Lax-Wendroff:

Beam-Warming:

             Fromm:

High-resolution methods

          minmod:

        superbee:

                 MC:

          vanLeer:

φ(θ) = 0
φ(θ) = 1
φ(θ) = θ

φ(θ) = 1
2
(1+θ)

φ(θ) = minmod(1,θ)
φ(θ) = max(0,min(1,2θ),min(2,θ))
φ(θ) = max(0,min((1+θ) / 2,2,2θ))

φ(θ) = (θ + θ )
(1+ θ )
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Comparing minmod, superbee, MC and 
vanLeer limiters

superbee

minmod

MCcentred

cell data left 
slope

right 
slope

centred 
slope

theta minmod superbee MC vanLeer

0.5 8 -2
1.5 6 -2 -3 -2.5 0.666667 -2 -3 -2.5 -2.4
2.5 3 -3 -2 -2.5 1.5 -3 -3 -2.5 -2.4
3.5 1 -2 1 -0.5 -2 0 0 0 0
4.5 2 1 3 2 0.333333 1 2 2 1.5
5.5 5 3 3 3 1 3 3 3 3
6.5 8 3 -1 1 -3 3 0 0 0
7.5 7 -1

vanLeer
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Now we have an REA second order scheme
The steps are identical to the first order REA scheme, 
except for reconstruction:

1. Reconstruct a piece-wise linear function from the cell 
averages.

with the property that TV(q) ≤ TV(Q) 

2. Evolve the hyperbolic equation with this function to obtain 
a later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new 
cell averages.

 q
n (x,tn+1)

The reconstruction step depends on the slope limiter that is chosen, and 
should be subject to TVD constraints. The other two steps do not affect TVD.

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

evolve

reconstruct

average
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Reconstruct     -     Evolve     -     Average

 q
n (x,tn+1)

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

71

Thursday, 6 October 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Reconstruct     -     Evolve     -     Average

 q
n (x,tn+1)

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn
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Reconstruct     -     Evolve     -     Average

 q
n (x,tn+1)

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn
 q
n
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Reconstruct     -     Evolve     -     Average

 q
n (x,tn+1)

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn
 q
n

xi+1/2xi−1/2

Qi
n+1

Qi+1
n+1

Qi−1
n+1
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Reconstruct     -     Evolve     -     Average

… and then a new piecewise linear reconstruction is done …

 q
n (x,tn+1)

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

qn
 q
n

xi+1/2xi−1/2

Qi
n+1

Qi+1
n+1

Qi−1
n+1

qn+1
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How do we make sure we satisfy the Total 
Variation Diminishing Constraint?
Compare the limiter functions           where                            . φ(θ)

0

1

2

3

4

0 1 2 3 4

Linear methods

φ

θ

Lax-Wendroff

Fromm

Beam-Warming

TVD is satisfied when 0 ≤φ(θ ) ≤minmod(2,2θ )

θ =
ΔQupwind

ΔQdownwind

0

1

2

3

4

0 1 2 3 4

High-Resolution methods

φ

θ

Minmod

van Leer

Superbee MC

Sweby’s region where TVD is satisfied 
is shaded.  Any second-order accurate 
method must have            .φ(1) = 1
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Wave limiters
We can think of slope limiters as limiters on the wave 
strengths. Let 

Then the upwind method for the scalar advection 
equation is 

The Lax-Wendroff method is:

where

For a high-resolution we use 

where 

 Wi−1/2 =Qi −Qi−1.

 
Qi

n+1 =Qi
n − u Δt

Δx
Wi−1/2 .

  
Qi

n+1 =Qi
n − u Δt

Δx
Wi−1/2 −

Δt
Δx
Fi+1/2 − Fi−1/2( ),

  
Fi−1/2 =

1
2
1− u Δt

Δx
⎛
⎝⎜

⎞
⎠⎟
uWi−1/2 .

  
Fi−1/2 =

1
2
1− u Δt

Δx
⎛
⎝⎜

⎞
⎠⎟
uW i−1/2 ,

  W i−1/2 = φi−1/2Wi−1/2 .

xi−1/2

Qi
n

 Wi−1/2
Qi−1

n
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Demonstration of methods with limiters
74

Minmod
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Demonstration of methods with limiters
75

Superbee
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Demonstration of methods with limiters
76

van Leer
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Demonstration of methods with limiters
77

Monotonised Centred
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78Set order and limiters in setrun.py

Thursday, 6 October 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Wavepacket advection with superbee
79
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Wavepacket advection with superbee
79
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Wavepacket advection with superbee
80

Note that the extrema are clipped. This is a limitation of the methods with the 
limiters we’ve discussed. 
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Extension to linear systems

Approach 1: 

Diagonalise the system to

Apply the scalar algorithm to each component separately.

Approach 2: 

Solve the linear Riemann problem to decompose                  into a number 
of waves.

Apply a wave limiter to each wave.  

These approaches are equivalent, but we’ll use the wave propagation 
method. Note that it is important to apply the limiters to the waves rather 
than to the original variables.

qt + Λqx = 0

Qi
n −Qi−1

n

xi−1/2 xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

Qi−1
n

 Wi−1/2
1
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High-resolution methods for systems

The Lax-Wendroff method in flux difference form had the flux written as:

We need to separate the eigenvectors in order to apply flux limiters, so we 
rewrite the correction term, using the Godunov-Riemann splititng: 

Recall from before that the discontinuity between cells i and i+1 is split into 
m pieces by the Riemann characteristics:

Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 A I − Δt

Δx
A⎛

⎝⎜
⎞
⎠⎟ Qi

n −Qi−1
n( )

1
2
A I − Δt

Δx
A⎛

⎝⎜
⎞
⎠⎟ Qi

n −Qi−1
n( ) = 12 A I − Δt

Δx
A⎛

⎝⎜
⎞
⎠⎟ α i−1/2

p r p
p=1

m

∑

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

λ2Δt λ 3Δt λ1Δt

Qi−1
n

 Wi−1/2
1

 
Qi −Qi−1 = α i−1/2

p r p
p=1

m

∑ ≡ Wi−1/2p

p=1

m

∑
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High-resolution methods for systems

Now we apply the limiter to the coefficients of the eigenvectors:

Then the flux function is

If we write                                              as a limited version of the wave 

strength, and                   for a generalised wave speed,  we have: 

 

α i−1/2
p = α i−1/2

p φ(θi−1/2
p )

θi−1/2
p = α l−1/2

p

α i−1/2
p ;  l =

i −1 if λ p > 0
i +1 if λ p < 0
⎧
⎨
⎩⎪

Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 λ p 1− Δt

Δx
λ p⎛

⎝⎜
⎞
⎠⎟ α i−1/2

p φ(θi−1/2
p )r p

p=1

m

∑ .

  W i−1/2
p

= α i−1/2
p φ(θi−1/2

p )r p

  
Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 si−1/2

p 1− Δt
Δx

si−1/2
p⎛

⎝⎜
⎞
⎠⎟W
 i−1/2

p

p=1

m

∑

si−1/2
p = λ p
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Generalisation for Nonlinear Systems

For linear systems, we can rearrange the update into the form:

with

Generalising to nonlinear systems we can write the update as:

with the fluctuations suitably defined. There are some subtleties we’ll get into 
later, associated with rarefaction waves and entropy conditions.

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 + A

−ΔQi+1/2( )− Δt
Δx
Fi+1/2 − Fi−1/2( )

  
Fi−1/2
n = 1

2
si−1/2
p 1− Δt

Δx
si−1/2
p⎛

⎝⎜
⎞
⎠⎟W
 i−1/2

p

p=1

m

∑

  
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )− Δt

Δx
Fi+1/2 − Fi−1/2( )
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Review of High-Resolution Methods

We improve the first-order upwind method by introducing corrections, and 
writing:

We derive the corrections by considering piece-wise linear (instead of piece-
wise constant) reconstructions.

  
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( )− Δt

Δx
F i+1/2 − F i−1/2( )
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Review of High-Resolution Methods

Taking the basic Lax-Wendroff formula:

we re-write it in the flux form 

with 

Then making use of the divided matrices          we can write this as 

Qi
n+1 =Qi

n − Δt
2Δx

A Qi+1
n −Qi−1

n( ) + 12
Δt
Δx

⎛
⎝⎜

⎞
⎠⎟
2

A2 Qi+1
n − 2Qi

n +Qi−1
n( )

Qi
n+1 = Qi

n −
Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Fi−1/2
n = 1

2
A Qi

n +Qi−1
n( )− 12

Δt
Δx

A2 Qi
n −Qi−1

n( )

A±

Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 A I − Δt

Δx
A⎛

⎝⎜
⎞
⎠⎟ Qi

n −Qi−1
n( )
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Review of High-Resolution Methods

This version of the Lax-Wendroff formula has a correction term that can be 
limited, if we choose, to avoid oscillations around extrema.

For a one-equation system (the advection equation), we can apply a simple 
functional limiter to the slope:

Examples of limiters:

Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 A I − Δt

Δx
A⎛

⎝⎜
⎞
⎠⎟ Qi

n −Qi−1
n( )

σ i
n = Qi+1

n −Qi
n

Δx
⎛
⎝⎜

⎞
⎠⎟
φi
n

   Lax-Wendroff:

          minmod:

        superbee:

                 MC:

          vanLeer:

φ(θ) = 1
φ(θ) = minmod(1,θ)
φ(θ) = max(0,min(1,2θ),min(2,θ))
φ(θ) = max(0,min((1+θ) / 2,2,2θ))

φ(θ) = (θ + θ )
(1+ θ )
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Review of High-Resolution Methods

For a system of equations, we use limiters on the waves. The wave-
propagation form for a high-resolution version of Lax-Wendroff is: 

with the limited version of the waves defined as :

and a generalised wave speed  

  
Fi−1/2
n = A−Qi

n + A+Qi−1
n( ) + 12 si−1/2

p 1− Δt
Δx

si−1/2
p⎛

⎝⎜
⎞
⎠⎟W
 i−1/2

p

p=1

m

∑

  W i−1/2
p

= α i−1/2
p φ(θi−1/2

p )r p

si−1/2
p = λ p

0

1

2

3

4

0 1 2 3 4

High-Resolution methods

φ

θ

Minmod

vanLeer

Superbee
MC
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Assignment for next time

Read all of Chapter 4.

Work problems 4.1 and 4.2.

Read Chapter 6 at least through 6.15.

Run tests of different methods in claw/book/chap6/
compareadv and claw/book/chap6/wavepacket. 
Reproduce Fig 6.1, 6.2, and 6.3. Add the other limiters 
discussed in the book. Try increasing the number of 
gridpoints. Does this help? Try advection with a triangular 
pulse and discuss which limiter does best in that case. 
Hand in resulting output plots together with your 
conclusions.

Work problems 6.1, 6.5, and 6.10. 
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