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Where we are today
date Topic Chapter in 

LeVeque
1
2
3
4
5
6
7
8
9

10
11
12

*13

1.Sep 2011 introduction to conservation laws, Clawpack 1 & 2

15.Sep 2011 the Riemann problem, characteristics 3 & 5

22.Sep 2011 finite volume methods for linear systems, high resolution 4 & 6

29.Sep 2011 boundary conditions, accuracy, variable coeff. 7,8, part 9

6.Oct 2011 nonlinear conservation laws, finite volume methods 11 & 12

13.Oct 2011 nonlinear equations & systems 13 & 14

20.Oct 2011 finite volume methods for nonlinear systems 14 & 15

27.Oct 2011 source terms and multidimensions 16,17,18,19

3.Nov 2011 multidimensional systems 20 & 21

10.Nov 2011 no lecture

17.Nov 2011 waves in elastic media 22

24.Nov 2011 unfinished business: capacity functions, source terms, project plansunfinished business: capacity functions, source terms, project plans

1.Dec 2011 student presentations

8.Dec 2011 no lecture

15.Dec 2011 FINAL REPORTS DUE
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Nonlinear Conservation 
Laws 

(Chapter 11 in Leveque)

Thursday, 6 October 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

First we look at scalar nonlinear conservation laws

The basic scalar conservation law is                            where the flux              
is a nonlinear function of q.

Nonlinear equations are interesting because shocks and other forms of 
discontinuities may form. 

They are also relevant to a wide variety of physical situations.

A good motivating example, with which most of us are familiar, is traffic flow.

qt + f (q)x = 0 f (q)

4
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A simple nonlinear model for traffic flow
Consider the flow of cars on a one-lane 
highway. All cars are assumed to be the 
same length, and we measure the density 
of cars in units of 

<cars per car length> 

averaged over a reasonably long stretch of 
road. If q(x,t) is the density of cars at point 
x and time t, then the number of cars 
between x1 and x2 is

On an empty highway, q=0, and in 

bumper-to-bumper traffic q=1. We assume 
drivers are careful enough so that cars 
never collide, so that we always have 

q(x,t)dx.
x1

x2∫

0 ≤ q ≤ 1

5
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Traffic is like a highly 
compressible gas 

Traffic flow is very much like a one-
dimensional highly compressible gas 
of point molecules, so this example 
provides a good introduction to gas 
dynamics. 

Our equation is 

The flux of cars is                     where 
u is the speed of cars measured in 
units of <car lengths per unit time>.

In very light traffic, the speed u can 
be constant, and the equation is 
linear. Leveque treats this case in 
Section 9.4.2. In heavy traffic, u 
depends on density q, and the 
equation is therefore nonlinear. 

f (q) = uq

qt + f (q)x = 0

6
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Traffic speed depends on density

In heavy traffic, drivers will slow down. At this point we can assume a form 
for the dependence of speed on density, such as 

The flux is                           and the equation to be solved is 

We will call this the traffic flow equation. Simulations for this case 
demonstrate shocks, rarefaction and compression waves.

U(q) = umax (1− q) for 0 ≤ q ≤ 1.

qt + f (q)x = 0
qt + ′f (q)qx = 0

qt + umax (1− 2q)qx = 0

f (q) = qU(q)

10
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If speed depends only on initial density, 
cars from behind will run into the peak.
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Shock development in traffic congestion
13

in $CLAW/book/chap11/congestion
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Rarefaction waves and compression waves

In the traffic flow equation, 
if the initial data q (the 
density) is a decreasing 
function of x, the cars will 
spread out in time. This is 
a rarefaction wave.

On the other hand, if the 
initial data q is an 
increasing function of x, 
the cars pile up. This is a 
compression wave, and 
will steepen to become a 
shock wave to avoid the 
nonphysical triple-valued 
solution. 
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A green light makes a rarefaction wave propagating downstream
15

in $CLAW/book/chap11/greenlight
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A red light makes a shock propagating upstream
16

in $CLAW/book/chap11/redlight
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Burgers’ Equation

The traffic flow equation was 

An even simpler nonlinear partial differential equation is Burger’s equation:

This equation, which has an analytical exact solution, has been extensively 
studied for use in verification of techniques for solving PDEs.

It is the simplest nonlinear PDE that produces compression waves, 
rarefaction waves, and shocks.

qt + umax (1− 2q)qx = 0

ut +
1
2
u2⎛

⎝⎜
⎞
⎠⎟ x

= 0

ut + uux = 0

17
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Burgers’ Equation produces “N-waves”
18

in $CLAW/book/chap11/burgers
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Remember: The integral form of the 
conservation law is more fundamental!

The discontinuities that develop in the traffic flow and Burgers’ equations 
reveal an essential weakness in the differential-equation formulation of 
conservation laws.

Remember, they were derived in integral form, and converted to differential 
form under the assumption that the solutions were smooth. 

But they are not always smooth.

Still, we continue to write the differential form because it is more compact, 
but we regard it only as a short-hand for the more fundamental integral form.

19

Thursday, 6 October 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Shock waves usually make you think of 
military aircraft or rocket ships:

20
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But ducks make them too!

When something tries to move through a medium faster than the speed of 
characteristic waves in that medium, it makes a “shock” wave. 

… rather we should say a “critical” wave …

21
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A shock wave can arise from the pile-up of sound waves that are 
emitted from an object travelling faster than the speed of sound. The 
opening angle of the Mach cone is 

where u is the speed of the object and cs is the speed of sound.

α = sin−1 cs
u

⎛
⎝⎜

⎞
⎠⎟

cs

u

α

22
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Shock speed

The integral form of the conservation law enables 
us to determine the speed of a shock wave.

The diagram illustrates a small portion of the x–t 
plane in which the shock speed is constant and the 
solution is roughly constant on either side of the 
shock. 

The conservation law

gives us  

With shock speed                  , in the limit

we get the Rankine-Hugoniot jump condition: 

t1
x1 x1 + Δx

t1 + Δt

q = ql

q = qr

shock with speed s = − Δx
Δt

d
dt

q(x,t)dx
x1

x1 +Δx∫ = f (q(x1,t)) − f (q(x1 + Δx,t))

 Δxqr − Δxql = Δtf (ql )− Δtf (qr )+O(Δt 2 ).

Δt→ 0,s = − Δx
Δt

s(qr − ql ) = f (qr )− f (ql )

23
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Rankine-Hugoniot Conditions

For systems of conservations laws, the Rankine-Hugoniot jump conditions 
also apply. 

For linear systems, f(q) =Aq, and the jump condition becomes:

which means that the difference vector (qr –ql) must be an eigenvector of 
the system, and the speed s is the corresponding eigenvalue.

 

A(qr − ql ) = s(qr − ql )

24
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An initial discontinuity can lead to a (limited) 
variety of different states at the next time step:

In most cases, when we do a Riemann problem, we are interested in the 
future value only at the position of the original discontinuity. 

Because the solution to a Riemann problem is a similarity solution, for the 
scalar equation, the answer is either the right or the left original state, or a 
simple combination of the two determined by the equation.

ql qrt=tn

qr ql

t=tn+1

25
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The centred rarefaction is the only one that requires a separate calculation.  
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Centred rarefactions

The similarity solution

has derivatives

Placing these in the conservation law

we get 

So either                                               or         is constant.

For the centred rarefaction, the former holds. 

 

       q(x,t) = q(x / t)

qt (x,t) = − x
t 2
′q (x / t);      qx (x,t) =

1
t
′q (x / t)

                              qt + ′f (q)qx = 0

′f q(x / t)( ) ′q (x / t) = x
t
′q (x / t)

′f q(x / t)( ) = x
t  q

26
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′f ( q(x / t)) = umax 1− 2 q(x / t)[ ] = x / t

q(x / t) = 1
2
1− x

umaxt
⎛
⎝⎜

⎞
⎠⎟

In the case of the traffic flow equation 
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Weak solutions and entropy conditions

A strong solution of a differential equation is a solution that is sufficiently 
smooth that all the derivatives that are needed exist.

A weak solution is a solution of the related integral equation, and may have 
discontinuities so that the derivatives cannot be taken. 

Both weak solutions and strong solutions satisfy the integral equation. Only 
strong solutions rigorously satisfy the differential equation.

Weak solutions are not unique, unfortunately! (Integrals always introduce 
arbitrary constants, for example.)

Selecting the appropriate weak solution requires an entropy condition. 

 

27
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Eliminating non-unique solutions 

A shock and its characteristics:

A rarefaction wave and its characteristics:

An entropy-violating “shock” and its characteristics:

′f (ql ) < s < ′f (qr )
A discontinuity propagating with speed s must satisfy the entropy condition

28
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Characteristics can’t start in free space!
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Entropy functions

An entropy function is a function that is conserved when the solution is 
smooth, but changes in magnitude at a discontinuity. 

Leveque considers a variety of these from a mathematical/computational 
point of view. We will usually find a physical or information-theoretic entropy 
condition to help select the proper weak solution.

The thermodynamic entropy of a gas, for example, increases across a shock 
but is constant in smooth flow.

We will consider thermodynamic entropy further when we deal with gas 
dynamics.

29
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Finite Volume Methods for 
Nonlinear Equations 

(Chapter 12 in Leveque)

Thursday, 6 October 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

We extend from what we’ve learned for 
linear equations

We intend to solve the nonlinear conservation law

using a method that is in conservative form:

and yielding a weak solution to this conservation law. To get the correct 
weak solution we must use an appropriate entropy condition.

Things will get a little tricky, so for now we stick to the scalar problem.

qt + f (q)x = 0

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

31
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Recall Godunov’s method:

Given a set of cell quantities       at time n:

1. Solve the Riemann problem at          to obtain 

2. Define the flux:

3. Apply the flux differencing formula:

This will work for any general system of conservation laws. Only the 
formulation of the Riemann problem itself changes with the system. 

Fi−1/2
n = f Qi−1/2

↓( )

Qi
n

Qi−1/2
↓ = q↓(Qi−1

n ,Qi
n )xi−1/2

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

32
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In terms of the REA scheme we have discussed

1. Reconstruct a piece-wise linear function from the cell 
averages.

with the property that TV(q) ≤ TV(Q) 

2. Evolve the hyperbolic equation with this function to obtain 
a later-time function, by solving Riemann problems at the 
interfaces. 

3. Average this function over each grid cell to obtain new 
cell averages.

 q
n (x,tn+1)

The reconstruction step depends on the slope limiter that is chosen, and 
should be subject to TVD constraints. The other two steps do not affect TVD.

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

evolve

reconstruct

average

33
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First assume that the flux function is convex 
within the interval of interest.

The function            is defined as convex in a given range if its second 
derivative does not change sign over that range.

In the graph below, the nonconvex intervals are shaded and extrema of the 
flux function are marked with dots. Extrema only occur within convex 
intervals, but do not occur in all convex intervals.

 

f (q)

A fictitious nonlinear flux function
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We have one equation, therefore one characteristic 
— BUT it may be a rarefaction wave!

Only in the case that the rarefaction wave spreads both to left and right, 
does the Riemann solution give a value different from the right and left 
values. This is at the stagnation point, or sonic point in a flow calculation. 

ql

ql

qr

qr

x

t

t=tn+1

t=tn

qr

qr

ql

ql

35
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Using fluctuations
We use our fluctuation notation from before:  

 

where we define the fluctuations                       as 

The wave strength is simply, as before for linear systems,

but the wave speed is given by the Hugoniot jump condition:

 

A+ΔQi−1/2 = f Qi( )− f Qi−1/2
↓( )
A−ΔQi−1/2 = f Qi−1/2

↓( )− f Qi−1( ).

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 +A−ΔQi+1/2( ),

 A
±ΔQi−1/2

 Qi −Qi−1 =Wi−1/2 ,

si−1/2 =
f (qi )− f (qi−1)
(qi − qi−1)

.

36
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Entropy fix 
Unless the wave is a transonic rarefaction, we can use 

If it is a transonic rarefaction (as at right) then we must use 

where        is the value of      for which                 . If the flux function is 
convex within the interval, this value is unique within the interval, as marked 
in the graph below in the intervals (2,3), (4,5), and (7,8).

 

A+ΔQi−1/2 = si−1/2
+ Wi−1/2
A−ΔQi−1/2 = si−1/2

− Wi−1/2

 

A+ΔQi−1/2 = f Qi( )− f qs( )
A−ΔQi−1/2 = f qs( )− f Qi−1( )

qs q ′f (q) = 0

37
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Rarefaction wave without entropy fix
38

in $CLAW/book/chap12/efix, with efix = .false. in rp1.f
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Rarefaction wave with entropy fix
39

in $CLAW/book/chap12/efix, with efix = .true. in rp1.f
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Rarefaction wave with entropy fix and limiters
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Vanishing viscosity / numerical viscosity

One way to introduce an entropy fix is to add a little numerical viscosity. We 
consider the flux function in the Lax-Friedrichs method: 

This can be viewed as having a small numerical viscosity                   
throughout the computational domain. 

An improvement can be made if we make this viscosity dependent on the 
local derivative of the flux: 

where                                         over the interval. Note that                         if 
the CFL condition is satisfied. 

Fi−1/2
n = 1

2 f (Qi−1
n )+ f (Qi

n )⎡⎣ ⎤⎦ −
Δx
2Δt

Qi
n −Qi−1

n( )
a = Δx

Δt

Fi−1/2
n = 1

2 f (Qi−1
n )+ f (Qi

n )− ai−1/2 Qi
n −Qi−1

n( )⎡⎣ ⎤⎦

ai−1/2 = max ′f (q)( ) ′f (q) ≤ Δx
Δt
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High-resolution methods, nonlinear case

We can extend the high resolution methods we developed earlier to the 
nonlinear conservation law by writing

where 

and                                               is the wave strength limited by the chosen 
slope limiter (e.g. minmod, superbee, MC, or vanLeer). 

  
Fi−1/2
n = 1

2 si−1/2
p 1− Δt

Δx
si−1/2
p⎛

⎝⎜
⎞
⎠⎟
Wi−1/2p ,

 
Qi

n+1 =Qi
n − Δt

Δx
A+ΔQi−1/2 + A

−ΔQi+1/2( )− Δt
Δx

F i+1/2 − F i−1/2( ),
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p = α i−1/2

p φ(θi−1/2
p )r p
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Importance of Conservation Form

Solutions that have shocks are inconsistent with the differential equation, but 
obey the Rankine-Hugoniot conditions, which are derived from the integral 
equation. 

The differential equation can be manipulated in a variety of ways, but these 
involve the assumption of smoothness. It is important to keep the equation in 
a form that conserves the quantity that is actually physically conserved. 

A conservative finite volume method based on an integral conservation law, 
if that method converges, will converge to a solution to the conservation law. 

This is the Lax-Wendroff theorem.

Additional work must be done to establish convergence, mainly stability of 
the method, and that an entropy condition is satisfied so that the weak 
solution is in fact the correct solution.
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Assignment for next time

Read Chapter 11 and Chapter 12.

Work problem 11.1. Also work problem 11.8 
analytically and with Clawpack, and compare the 
results. Reproduce all 4 panels of Fig 12.2 using 
$CLAW/book/chap12/efix, and try other techniques of 
doing the entropy fix.
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Next: Nonlinear Systems of 
Conservation Laws 

(Chapter 13)
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