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Where we are today
date Topic Chapter in 

LeVeque
1
2
3
4
5
6

7
8

9
10
11

12

1.Sep 2011 introduction to conservation laws, Clawpack 1 & 2

15.Sep 2011 the Riemann problem, characteristics 3 & 5

22.Sep 2011 finite volume methods for linear systems, high resolution 4 & 6

29.Sep 2011 boundary conditions, accuracy, variable coeff. 7,8, part 9

6.Oct 2011 nonlinear conservation laws, finite volume methods 11 & 12

13.Oct 2011 nonlinear equations & systems 13 & 14

20.Oct 2011 no lecture

27.Oct 2011 finite volume methods for nonlinear systems 15,16,17

3.Nov 2011 multidimensional systems and source terms, etc. 18, 19, 20, 21

10.Nov 2011 no lecture

17.Nov 2011 waves in elastic media 22

24.Nov 2011 unfinished business: capacity functions, source terms, project plansunfinished business: capacity functions, source terms, project plans

1.Dec 2011 student presentations

8.Dec 2011 no lecture

15.Dec 2011 FINAL REPORTS DUE
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Other topics in Gas 
Dynamics 
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De Laval Nozzle

Invented by the Swedish engineer 
Gustaf de Laval in 1897.

This nozzle is the basis of how jet 
engines and rocket engines work. 

The converging-diverging profile, 
with a sufficient difference in 
pressure between the reservoir and 
the exhaust, results in a smooth 
transition from subsonic to 
supersonic flow. 

4
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How does a deLaval nozzle work?

v2

2
+ γ

γ −1
⎛
⎝⎜

⎞
⎠⎟
p
ρ
= constant along a streamline,

Bernoulli’s equation says that, for steady flow of a gas (ignoring gravity),

Suppose we have a reservoir at high pressure 
connected via a pipe to a medium at much 
lower pressure.

Then there is a maximum velocity at steady flow given by:

vmax = c0
2

γ 0 −1

where c0 and γ0 refer to the thermodynamic conditions in the reservoir (where v=0), 
and this maximum value is obtained when the gas flows out into a vacuum (p=0).

= v
2

2
+ cs

2

γ −1
 for an ideal gas.
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How does a deLaval nozzle work?

Using                 where c is the local sound speed 
throughout the system, we get 

Euler’s equation gives us the relation between v and ρ along a streamline:                     

vdv = dp
ρ
.

dp = c2ρ,

d ρv( )
dv

= ρ 1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟
,

indicating that the maximum possible mass flux ρv obtains when v is equal to the local 
sound speed. By continuity, the flux is constant throughout the pipe, including the 
narrowest point.

For the ideal gas, the flux is 

ρv = p
p0

⎛
⎝⎜

⎞
⎠⎟

1/γ
2γ
γ −1

p0ρ0 1−
p
p0

⎛
⎝⎜

⎞
⎠⎟

γ −1( )/γ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Velocity increases throughout the nozzle

The maximum discharge rate is 
reached, if ever, at the narrowest 
point of a nozzle. 

If the pressure at this point is less 
than 0.53 p0 (in air) or less than 0.6 
p0 (in a nearly isothermal gas), the 
flow speed equals the sound speed 
at that point. The nozzle throat is 
the transition from subsonic to 
supersonic flow.

The velocity continues to increase 
through the diverging part of the 
nozzle, by continuity:

ρv = p
p0

⎛
⎝⎜

⎞
⎠⎟

1/γ
2γ
γ −1

p0ρ0 1−
p
p0

⎛
⎝⎜

⎞
⎠⎟

γ −1( )/γ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

0
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ρ0c0
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d ρv( )
dv

= ρ 1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟
,
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De Laval Nozzle

Invented by the Swedish engineer 
Gustaf de Laval in 1897.

This nozzle is the basis of how jet 
engines and rocket engines work. 

The converging-diverging profile, 
with a sufficient difference in 
pressure between the reservoir and 
the exhaust, results in a smooth 
transition from subsonic to 
supersonic flow. 
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d ρv( )
dv

= ρ 1− v
2

c2
⎛
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⎞
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Simulation of an 
erupting column 
using the Sage 

multi-material code
               600 m ice

          3.2 km basalt

Magma column, 98% 
basalt, 2% water (by mass)
1500 K, 1 kbar
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Shock waves and Mach 
disks (“shock diamonds”) 
in the supersonic nozzle 
flow

DeLaval nozzle
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Multifluid problems and other equations of state: 
How to do in Clawpack?

The easiest multi-fluid case is when you have two ideal gases with different 
values of γ. Then you set up the Riemann problem at the interface between 
the two fluids with right and left values for γ. Things get complicated when 
mixing occurs.

Other analytical or tabular equations of state can also be incorporated into a 
finite volume conservative scheme. Sage, for example, uses the Sesame 
library of tabular equations of state for lots of materials. The Sesame library, 
developed at Los Alamos National Laboratory, contains mostly industrial 
materials, with a few materials of geological interest.

Leveque gives lots of references to papers in which Riemann solvers are 
developed for other equations of state in his section 14.15. Some of these 
will be worth looking into for geological applications.

11
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The Mie-Grüneisen-Lemons Multiphase EOS 

This is an equation of state 
proposed by Don Lemons based 
on Mie-Grüneisen theory for 
substances that undergo 
relatively simple phase 
transitions from solid to liquid to 
gas. 

In common with the van der 
Waals EOS (see Leveque, ch 
14.15 and 16.3.2), this EOS 
results in loss of hyperbolicity 
unless Maxwell constructions 
are used. 

This EOS has substance-
specific constants 

p = ΓcvρT + 3B
n − m( )

ρ
ρ0

⎛
⎝⎜

⎞
⎠⎟

n+3
3
− ρ

ρ0

⎛
⎝⎜

⎞
⎠⎟

m+3
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

e = cvT + 9B
ρ0 n − m( )

1
n

ρ
ρ0

⎛
⎝⎜

⎞
⎠⎟

n
3
− 1
m

ρ
ρ0

⎛
⎝⎜

⎞
⎠⎟

m
3
− 1
n
+ 1
m

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n,m,ρ0 ,B,Γ
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Dusty Gases, Anyone?

Marica Pelanti, a student of Randy 
Leveque, developed a code based on 
Clawpack for volcanic jets using a dusty 
gas model.  

See*: Pelanti & Leveque, "High-Resolution 
Finite Volume Methods for Dusty Gas Jets 
and Plumes", SIAM J. Sci. Comput. 28 (2006) 
1335-1360.

Their model was multifluid: Euler 
equations for the gas, and a pressure-
less fluid for the dust, coupled together 
by drag and heat transfer.

Or… we could try a single-fluid dusty gas 
equation of state. 

* http://www-roc.inria.fr/bang/Pelanti/

13
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What happens when we add dust to gas?

The speed of acoustic waves in a general medium is, 

which for an ideal gas is

  

Assuming the dust remains coupled to the gas (via Stokes drag), for a little 
loading the density increases without the pressure changing much.

Thus the speed of sound decreases. In fact, it does so dramatically.

cs =
∂p
∂ρ

⎛
⎝⎜

⎞
⎠⎟
isentropic

cs =
γ p
ρ

14
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An equation of state for a dusty gas*

One version of a dusty-gas equation of state is: 

where K is the mass concentration and Z is the volume fraction of solid particles. 

These are related through                 where     is the particle solid density. 

The speed of sound is then

where the ratio of specific heats for the mixture is 

The specific heat of the dust particles is Csp and Cv is the specific heat at 
constant volume of the gas. 

p = (1− K )
(1− Z )

ρRT ,

cds =
Γp

ρ(1− Z )

Γ =
γCv (1− K )+CspK
Cv (1− K )+CspK

.

K = Zρs

ρ
,

*from Vishwakarma, Nath, & Singh (2008), Physica Scripta 78 035402.
http://stacks.iop.org/PhysScr/78/035402

ρs
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Density increases more rapidly than pressure as 
the dust content increases

ρ

Z (volume fraction of dust)

pressure right scaledensity left scale
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Assumptions: 
spherical dust particles 

150 µ radius, 2.5 g/cc density, specific heat 0.92 J/g K
air at density 1.204e-3 g/cc, temperature 293 K
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Adding 0.1% dust (by volume) to air cuts the speed of sound in 
half, and the mixture approaches isothermal
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Shocks can be stronger in dusty gases

The maximum ratio of upstream to downstream densities across a shock is (see 
Landau & Lifshitz, Fluid Dynamics)

For a diatomic gas (like air),

For a dusty gas,                            can be arbitrarily large. At   

ρu
ρd

= γ +1
γ −1

.

γ = 1.4,  so ρu
ρd

= 6.

γ ⇒1,  so ρu
ρd

γ = 1.01,  ρu
ρd

= 201.
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The deLaval nozzle in a dusty gas

The maximum discharge rate is 
reached, if ever, at the narrowest 
point of a nozzle. 

If the pressure at this point is less 
than 0.53 p0 (in air) or less than 0.6 
p0 (in a 2% dusty gas), the flow 
speed equals the sound speed at 
that point. In the diverging portion, 
it becomes supersonic without 
passing through a shock.

In a dusty gas it is easier to get to 
supersonic flow both because the 
local sound speed is lower and 
because the maximum discharge is 
reached with a lower pressure 
drop.

ρv = p
p0

⎛
⎝⎜

⎞
⎠⎟

1/γ
2γ
γ −1

p0ρ0 1−
p
p0

⎛
⎝⎜

⎞
⎠⎟

γ −1( )/γ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

0
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Vents, kimberlite pipes, volcanos, and geysers 
may be natural deLaval nozzles for a dusty gas
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Finite Volume Methods for 
Nonlinear Systems

(Chapter 15 in Leveque)
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Once again, we extend from what we’ve 
learned for linear systems of equations

We intend to solve the nonlinear conservation law

using a method that is in conservative form:

and yielding a weak solution to this conservation law. To get the correct 
weak solution we must use an appropriate entropy condition.

qt + f (q)x = 0

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

22
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Recall Godunov’s method:

Given a set of cell quantities       at time n:

1. Solve the Riemann problem at          to obtain 

2. Define the flux:

3. Apply the flux differencing formula:

This will work for any general system of conservation laws. Only the 
formulation of the Riemann problem itself changes with the system. 

Fi−1/2
n = f Qi−1/2

↓( )

Qi
n

Qi−1/2
↓ = q↓(Qi−1

n ,Qi
n )xi−1/2

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

23
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In terms of the REA scheme we have discussed

1. Reconstruct a piece-wise linear function from the cell 
averages.

with the property that TV(q) ≤ TV(Q) 

2. Evolve the hyperbolic equation (approximately) with this 
function to obtain a later-time function, by solving 
Riemann problems at the interfaces. 

3. Average this function over each grid cell to obtain new 
cell averages.

 q
n (x,tn+1)

The reconstruction step depends on the slope limiter that is chosen, and 
should be subject to TVD constraints. The other two steps do not affect TVD.

qn (x,tn ) =Qi
n +σ i

n (x − xi ) for x in cell i

 
Qi

n+1 = 1
Δx

qn (x,tn+1)xi−1/2

xi+1/2∫ dx

evolve

reconstruct

average

24
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Recall what TVD means:

Monotonicity preserving methods:

If a grid function that is initially monotone, i.e.

remains monotone at the next time:  

then the method is monotonicity preserving.

Total Variation Diminishing (TVD) methods:

Define the total variation of a grid function Q as:

A method is Total Variation Diminishing if 

If Qn is monotone, then so is Qn+1, and no spurious oscillations are 
generated.

This gives a form of stability necessary for proving convergence, also for 
nonlinear conservation laws.

TV(Q) = Qi −Qi−1
grid
∑

TV(Qn+1) ≤ TV(Qn )

Qi
n ≥Qi−1

n  for all i at step n
Qi

n+1 ≥Qi−1
n+1  for all i at step n +1

25
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For advection, the REA algorithm gives us:
We update the advection equation by

where the slope is given by 

where      is the flux limiter function. 

Choices for the flux limiter are:

Qi
n+1 =Qi

n − uΔt
Δx

Qi
n −Qi−1

n( )− 12
uΔt
Δx

Δx − uΔt( ) σ i
n −σ i−1

n( )

σ i
n = Qi+1

n −Qi
n

Δx
⎛
⎝⎜

⎞
⎠⎟
φi
n

φ

φ(θ) = 0
φ(θ) = 1
φ(θ) = θ

φ(θ) = 1
2
(1+θ)

φ(θ) = minmod(1,θ)
φ(θ) = max(0,min(1,2θ),min(2,θ))
φ(θ) = max(0,min((1+θ) / 2,2,2θ))

φ(θ) = (θ + θ )
(1+ θ )

upwind:

Lax-Wendroff:

Beam-Warming:

Fromm:

minmod:

superbee:

MC:

van Leer:

θi
n = Qi

n −Qi−1
n

Qi+1
n −Qi

n

26
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Slope limiters and flux limiters

The slope limiter formula for advection is:

The flux limiter formulation for advection is:

with the flux:

 

Qi
n+1 =Qi

n − uΔt
Δx

Qi
n −Qi−1

n( )− 12
uΔt
Δx

Δx − uΔt( ) σ i
n −σ i−1

n( )

Qi
n+1 =Qi

n − Δt
Δx

Fi+1/2
n − Fi−1/2

n( )

Fi−1/2
n = uQi−1

n + 1
2
u(Δx − uΔt)σ i−1

n

27
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Wave limiters:

Let:

Upwind formula:

Lax-Wendroff formula:

High-resolution method:

 

where

xi−1/2

Qi
n

 Wi−1/2
Qi−1

n

 Wi−1/2 =Qi
n −Qi−1

n

 
Qi

n+1 =Qi
n − uΔt

Δx
Wi−1/2

 
Qi

n+1 =Qi
n − uΔt

Δx
Wi−1/2 −

Δt
Δx

Fi+1/2 − Fi−1/2( )

 
Fi−1/2 =

1
2
1− uΔt

Δx
⎛
⎝⎜

⎞
⎠⎟
uWi−1/2

  
Fi−1/2 =

1
2
1− u Δt

Δx
⎛
⎝⎜

⎞
⎠⎟
uW i−1/2 ,

  W i−1/2 = φi−1/2Wi−1/2 .

28
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Extension to linear systems

Approach 1: 

Diagonalise the system to

Apply the scalar algorithm to each component separately.

Approach 2: 

Solve the linear Riemann problem to decompose                  into a number 
of waves.

Apply a wave limiter to each wave.  

These approaches are equivalent.

But note that it is important to apply the limiters to the waves rather than to 
the original variables.

qt + Λqx = 0

Qi
n −Qi−1

n

xi−1/2 xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

Qi−1
n

 Wi−1/2
1

29
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Wave propagation methods

Solving the Riemann problem between cells i and i+1 gives the waves

and speeds          . In the nonlinear case, an approximate solution is used.

These waves update the neighbouring cell averages via fluctuations, 
depending on sign of           . 

The waves also give the decomposition of the slopes

Apply the limiter to each wave to obtain 

Use the limited waves in the second-order correction terms.

xi−1/2 xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

Qi−1
n

 Wi−1/2
1

 
Qi −Qi−1 = Wi−1/2

p

p=1

m

∑ , 

si−1/2
p

si−1/2
p

 
Qi −Qi−1

Δx
= 1
Δx
Wi−1/2

p

p=1

m

∑ , 

  W i−1/2 = φi−1/2Wi−1/2 .

30
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High-resolution wave-propagation scheme

The fluctuation notation is more useful in the nonlinear case:

where

             represents the limited version of             .    

This is obtained by comparing                with              where  

  
Fi−1/2
n = 1

2
si−1/2
p 1− Δt

Δx
si−1/2
p⎛

⎝⎜
⎞
⎠⎟W
 i−1/2

p

p=1

m

∑
 
Qi

n+1 =Qi
n − Δt

Δx
A−ΔQi+1/2 +A+ΔQi−1/2( )− Δt

Δx
Fi+1/2 − Fi−1/2( )

  W i−1/2
p
 Wi−1/2

p

 Wi−1/2
p
 Wl−1/2

p

l =
i −1 if si−1/2

p > 0
i +1 if si−1/2

p < 0
⎧
⎨
⎩⎪
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Wave limiters for a system

                is split into waves

We replace these waves with the limited versions

where                                        , and                                        .

Note that if                          then                          . 

In the scalar case this reduces to 

xi−1/2 xi+1/2

Qi
n Qi+1

n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

Qi−1
n

 Wi−1/2
1

 Qi −Qi−1                             Wi−1/2
p = α i−1/2

p ri−1/2
p , 

  Wi−1/2
p = φ(θi−1/2

p )Wi−1/2p .

 
θi−1/2
p = Wi−1/2

p ⋅Wl−1/2p

Wi−1/2p ⋅Wi−1/2p l =
i −1 if si−1/2

p > 0
i +1 if si−1/2

p < 0
⎧
⎨
⎩⎪

ri−1/2
p = rl−1/2

p θi−1/2
p = α l−1/2

p

α i−1/2
p

 
θi−1/2
p = Wl−1/2

p

Wi−1/2p = Ql −Ql−1

Qi −Qi−1
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The exact Riemann solver for the nonlinear problem is 
expensive, and requires an iterative solver…

Qi
n

xi−1/2

tn+1

Qi−1
n

tn

ql

ql
* qr

*

qr

u =ϕ l p( ) =
ul +

2cl
γ −1

1− p / pl( )
γ −1
2γ

⎡
⎣⎢

⎤
⎦⎥

                if    p ≤ pl

ul +
2cl

2γ γ −1( )
1− p / pl
1+ β p / pl

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      if    p ≥ pl

⎧

⎨

⎪
⎪

⎩

⎪
⎪

u =ϕr p( ) =
ur −

2cr
γ −1

1− p / pr( )
γ −1
2γ

⎡
⎣⎢

⎤
⎦⎥

                if    p ≤ pr

ur −
2cr

2γ γ −1( )
1− p / pr
1+ β p / pr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      if    p ≥ pr

⎧

⎨

⎪
⎪

⎩

⎪
⎪

ϕ l pm( ) =ϕr pm( ) (p*,u*) ρl
* = 1+ β p* / pl

p* / pl + β
⎛
⎝⎜

⎞
⎠⎟
ρl ;  ρr

* = 1+ β p* / pr
p* / pr + β

⎛
⎝⎜

⎞
⎠⎟
ρrSolving yields , then

In the rarefaction fan,

ρ ξ( ) = ρl
γ

γ pl
u(ξ)− ξ( )2⎛

⎝⎜
⎞
⎠⎟

1/(γ −1)

p ξ( ) = pl
ρl

γ

⎛
⎝⎜

⎞
⎠⎟
ρ ξ( )γ

u ξ( ) = γ −1( )ul + 2 cl + ξ( )
γ +1

.
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Newton’s Method for finding a root of a function
Newton’s method aims at finding a root by 
extrapolating from the function’s slope at the 
point where each successive guess is taken. 
This is very robust, provided there are no 
intervening extrema.

Each successive guess is given by 

where the slope k is chosen from 

First guess

Second guess

Third guess

xn+1 = xn −
f (xn )
k

(a) k = ′f xn( )

(b) k =
f xn( )− f xn−1( )

xn − xn−1

(c) k =
f xn( )− f xm( )

xn − xm

tangent method

secant method; more convenient than the tangent method 
when the derivative is unavailable or difficult to compute.

regula falsi; m is the most recent guess in which the function 
has the opposite sign. This method always brackets the root 
and is therefore most robust, but generally a bit slower. 
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An exact Riemann 
solver on a 

spreadsheet for the 
Euler equations
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The exact Riemann solver for the nonlinear problem is 
expensive, and most of it is not necessary!

These are useful for exact 
solutions of certain problems.

But in simulations we only need 
the solution at the cell interface!

Qi
n

xi−1/2

tn+1

Qi−1
n

tn

ql

ql
* qr

*

qr

u =ϕ l p( ) =
ul +

2cl
γ −1

1− p / pl( )
γ −1
2γ

⎡
⎣⎢

⎤
⎦⎥

                if    p ≤ pl

ul +
2cl

2γ γ −1( )
1− p / pl
1+ β p / pl

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      if    p ≥ pl

⎧

⎨

⎪
⎪

⎩

⎪
⎪

u =ϕr p( ) =
ur −

2cr
γ −1

1− p / pr( )
γ −1
2γ

⎡
⎣⎢

⎤
⎦⎥

                if    p ≤ pr

ur −
2cr

2γ γ −1( )
1− p / pr
1+ β p / pr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      if    p ≥ pr

⎧

⎨

⎪
⎪

⎩

⎪
⎪

ϕ l pm( ) =ϕr pm( ) (p*,u*) ρl
* = 1+ β p* / pl

p* / pl + β
⎛
⎝⎜

⎞
⎠⎟
ρl ;  ρr

* = 1+ β p* / pr
p* / pr + β

⎛
⎝⎜

⎞
⎠⎟
ρrSolving yields , then

In the rarefaction fan,

ρ ξ( ) = ρl
γ

γ pl
u(ξ)− ξ( )2⎛

⎝⎜
⎞
⎠⎟

1/(γ −1)

p ξ( ) = pl
ρl

γ

⎛
⎝⎜

⎞
⎠⎟
ρ ξ( )γ

u ξ( ) = γ −1( )ul + 2 cl + ξ( )
γ +1

.
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The exact Riemann solver for the nonlinear problem is 
expensive, and most of it is not necessary!

These are useful for exact 
solutions of certain problems.

But in simulations we only need 
the solution at the cell interface!
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⎥
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⎢

⎤
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⎥
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⎧

⎨

⎪
⎪

⎩

⎪
⎪

ϕ l pm( ) =ϕr pm( ) (p*,u*) ρl
* = 1+ β p* / pl

p* / pl + β
⎛
⎝⎜

⎞
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p* / pr + β

⎛
⎝⎜

⎞
⎠⎟
ρrSolving yields , then

In the rarefaction fan,

ρ ξ( ) = ρl
γ

γ pl
u(ξ)− ξ( )2⎛

⎝⎜
⎞
⎠⎟

1/(γ −1)

p ξ( ) = pl
ρl

γ

⎛
⎝⎜

⎞
⎠⎟
ρ ξ( )γ

u ξ( ) = γ −1( )ul + 2 cl + ξ( )
γ +1

.
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But we do need to know where the cell interface lies with 
respect to the waves, and compute accordingly

Qi
n

xi−1/2
Qi−1

n

ql

ql
* qr

*

qr

Qi
n

xi−1/2
Qi−1

n

ql

ql
* qr

*

qr
Qi

n

xi−1/2
Qi−1

n

ql

ql
* qr

*

qr

Qi
n

xi−1/2
Qi−1

n

ql

ql
* qr

*

qr

Qi
n

xi−1/2
Qi−1

n

ql

ql
* qr

*

qr
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Wave interactions

Waves that interact with each other within a cell will not change the cell-
interface values on the next time step provided the Courant number is less 
than 1.

Qi
n

xi−1/2
Qi−1

n Qi+1
n

xi+1/2
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Riemann solvers in CLAWPACK

In CLAWPACK, the hyperbolic problem is specified by providing a Riemann 
solver with 

Input: the value of q in each grid cell

Output: the solution to the Riemann problem at each cell interface:

The Waves                                  for a system of m equations

The Speeds

The Fluctuations              , for high-resolution corrections

Because the problem is solved entirely using Riemann solvers, you won’t 
see anything in the code that resembles the original system of partial 
differential equations. 

  W
p , p = 1,2,…,m

 s
p , p = 1,2,…,m

 A
±ΔQ
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Wave propagation for nonlinear systems

An approximate Riemann solver is typically used to get the wave 
decomposition

where the wave                  propagates at a speed            .

If we define                                  as a linearised approximation to             
valid in the neighbourhood of (Qi, Qi-1 ),

then we can solve the simpler linear Riemann problem at that cell interface 
for the linearised equation:

to obtain

 
Qi −Qi−1 = Wi−1/2

p

p=1

m

∑ , 

 Wi−1/2
p si−1/2

p

qt + Âi−1/2qx = 0,

Âi−1/2 = Â(Qi
n ,Qi−1

n ) ′f (q)

 Wi−1/2
p = α i−1/2

p r̂i−1/2
p ,   si−1/2

p = λ̂i−1/2
p .
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Approximate Riemann Solvers

Approximate the true Riemann solution by a set of waves consisting of finite 
jumps propagating at constant speeds (as in the linear case).

Use a local linearisation: replace                             by                                 
where 

Then decompose

to obtain the waves                        with speeds  

But how do we chose 

qt + f (q)x = 0 qt + Âi−1/2qx = 0,
Â = Â(ql ,qr ) ≈ ′f (qave ).

ql − qr = α pr̂ p
p=1

m

∑

 W
p = α pr̂ p                     s p = λ̂ p .

Â?
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The Roe solver

The most widely used approximate Riemann solver is the one developed by 
Phil Roe at the Royal Aircraft Establishment. The approach is to solve the 
linearised equation 

where     is an average matrix such that 

and 

The Roe-average matrix can be determined analytically for many important 
nonlinear systems, including the shallow-water equations and the Euler 
equations.  

 

qt + Âqx = 0,

Â

Ârl qr − ql( ) = f qr( )− f ql( ) = s qr − ql( )

Â qr ,ql( ) ≡ Ârl ≈ ′f qave( ).
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Roe’s approximate Riemann solver

Roe suggested these constraints for       :

1.                                                         Cf. Rankine-Hugoniot condition.

2.      is diagonalisable with real eigenvalues.

3.                              smoothly as                    .

A single shock is captured exactly because (1.) is essentially the Rankine-
Hugoniot jump condition. 

                                                implies that             is an eigenvector of      .

It is a good approximation for weak waves, or smooth flow. 

The wave-propagation algorithm is also conservative since 

Â

Ârl (qr − ql ) = f (qr )− f (ql )

Â

Ârl → ′f (q ) ql ,qr → q

 
A−ΔQi−1/2 +A+ΔQi−1/2 = si−1/2

p Wi−1/2p

p
∑ = Â Wi−1/2p .

p
∑

f (qr )− f (ql ) = s(qr − ql ) Âqr − ql
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How to use an approximate Riemann solver

Since we only need the solution at the cell interface, we determine the state 
along              , calling it       . Thus with 

we form the fluctuations as

You can sometimes use

which is conservative if

as is true for the Roe solver. 

x / t = 0 Q*

 
Q* =Qi−1 + Wi−1/2p

p:s p<0
∑   ,  Fi−1/2 = f (Q*),

 A
−ΔQ = Fi−1/2 − f Qi−1( ),   A+ΔQ = f Qi( )− Fi−1/2 .

 
A−ΔQ = s pW p

p:s p<0
∑ ,   A+ΔQ = s pW p

p:s p>0
∑ ,

 A
−ΔQ +A+ΔQ = f Qi( )− f Qi−1( ),
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Example: Roe solver for shallow-water equations

                             = depth

                             = bulk speed, varies only with x

Conservation of mass and momentum gives the system:

which has the Jacobian matrix:

qt + f (q)x =
h
hu

⎡

⎣
⎢

⎤

⎦
⎥
t

+
hu

hu2 + 1
2
gh2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥x

= 0.

′f (q) =
0 1

−u2 + gh 2u
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,     λ=u ± gh.

h = height of wave above bottom

u = speed of bulk water motionρ = water density

h(x,t)
u(x,t)
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Roe solver for Shallow Water

Given                              define                                                                    .

Then if     is defined as the Jacobian matrix evaluated at the special state

we find that:

the Roe conditions are satisfied,

an isolated shock is modelled well,

and the wave propagation algorithm is conservative. 

If we use limited waves, we obtain high-resolution methods as before.

hl ,ul ,hr ,ur , h = hl + hr
2

,    û =
hl ul + hrur
hl + hr

Â
q̂ = (h ,hû),
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Roe solver for Shallow Water

Given                              define                                                                    .

Then if     is defined as the Jacobian matrix evaluated at the special state

we find that:

the Roe conditions are satisfied,

an isolated shock is modelled well,

and the wave propagation algorithm is conservative. 

If we use limited waves, we obtain high-resolution methods as before.

hl ,ul ,hr ,ur , h = hl + hr
2

,    û =
hl ul + hrur
hl + hr

Â
q̂ = (h ,hû),

“Roe average”
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Roe solver for Shallow Water

Given                              define                                                                    .

Then if     is defined as the Jacobian matrix evaluated at the special state

the  eigenvalues of                      are:

and the eigenvectors are:

hl ,ul ,hr ,ur , h = hl + hr
2

,    û =
hl ul + hrur
hl + hr

Â = ′f (q̂)

λ̂1 = û − ĉ,   λ̂2 = û − ĉ,   ĉ = gh ,

r̂1 = 1
û − ĉ

⎡

⎣
⎢

⎤

⎦
⎥,   r̂ 2 = 1

û + ĉ
⎡

⎣
⎢

⎤

⎦
⎥,

Â
q̂ = (h ,hû),
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The Shallow-water Riemann solver in 
Clawpack is a Roe solver

“Roe average”

from: $CLAW/book/chap13/swhump1/rp1sw.f

h = hl + hr
2

,    û =
hl ul + hrur
hl + hr
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Roe solver for the Euler equations
The eigensystem of the Euler equations for a polytropic gas is:

These need to be evaluated at the Roe-averaged state, so we need the Roe 
averages for u, H, c. These are:

λ1 = u − c λ2 = u λ 3 = u + c

r1 =
1

u − c
H − uc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

r2 =
1
u
1
2 u

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

r3 =
1

u + c
H + uc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

û =
ρi−1ui−1 + ρi ui
ρi−1 + ρi

Ĥ =
ρi−1Hi−1 + ρi Hi

ρi−1 + ρi

ĉ = γ −1( ) Ĥ − 1
2
û2⎛

⎝⎜
⎞
⎠⎟
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Roe solver for the Euler equations

Then the wave decomposition between the 
left and right states is

where 
Qi

nQi−1
n

Riemann

Roe

δ ≡Qi −Qi−1 = α
1r̂1 +α 2r̂ 2 +α 3r̂ 3

Qi
nQi−1

n

α 2 = γ −1( )
Ĥ − û2( )δ 1 + ûδ 2 −δ 3

ĉ2

α 3 =
δ 2 + ĉ − û( )δ 1 − ĉα 2

2ĉ
α1 = δ 1 −α 2 −α 3

But note that, while the Riemann solution consists of three waves, one of 
which is a rarefaction fan, the Roe solution only consists of three waves. In 
most cases this does not matter, since the desired solution at x/t=0 will be 
the same intermediate state. In the case of a transonic rarefaction a 
modification (in the form of an entropy fix) is necessary.
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Roe solver for the Euler equations

Then the wave decomposition between the 
left and right states is

where 
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But note that, while the Riemann solution consists of three waves, one of 
which is a rarefaction fan, the Roe solution only consists of three waves. In 
most cases this does not matter, since the desired solution at x/t=0 will be 
the same intermediate state. In the case of a transonic rarefaction a 
modification (in the form of an entropy fix) is necessary.
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Entropy fix for transonic rarefactions

Suppose there is a transonic rarefaction in the k wave:

The method proposed by Harten and Hyman, modified slightly by Leveque, 
and implemented in Clawpack, is the following. Define 

where       is the Roe-averaged eigenvalue for this wave. Then in computing 
the fluctuations 

for the speed of the k wave use 

 
λl
k < 0 < λr

k ,     ql
k =Qi−1 + W p ,    qrk = qlk +

p=1

k−1

∑ W k

λ̂k

β = λk
r − λ̂k

λk
r − λ l

k

 
A−ΔQi−1/2 = si−1/2

p( )−Wi−1/2p

p
∑ ,   A+ΔQi−1/2 = si−1/2

p( )+Wi−1/2p

p
∑

λ̂ k( )− = βλl
k ,    λ̂ k( )+ = 1− β( )λrk
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The Harten-Lax-van Leer (HLL) Solver

This solver uses only 2 waves with 
s1 = minimum characteristic speed
s2 = maximum characteristic speed

Write

where the middle state       is uniquely determined by the conservation 
requirement:

Modifications of this include positivity constraints and the addition of a third 
wave.

 W
1 =Q* − ql ,      W 2 = qr −Q*

Q*

 

s1W1 + s2W 2 = f (qr )− f (ql )

⇒Q* = f (qr )− f (ql )− s
2qr + s

1ql
s1 − s2
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Riemann solvers: exact vs approximate?

Whether to use a Roe solver, or other approximate Riemann solver, as 
opposed to an iterative exact solver is debatable.

Exact solvers are typically costly in time and storage

You don’t need all the information generated

However, if you use a Roe solver:

You don’t get the full structure of the rarefaction wave

In certain circumstances, the approximation may be poor

As computers and methods improve, more people may prefer exact iterative 
solvers.
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How good is the Roe solver?

Example for the Euler equations, comparing 
iterative exact and approximate Roe solvers.

When the left and right states are close 
together, the Roe solver is very good.

0.2900

0.2975

0.3050

0.3125

0.3200

0.490 0.495 0.500 0.505 0.510

u

p

0.2900
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0.3200

0.9900 0.9975 1.0050 1.0125 1.0200

u

rho

Roe solver
Exact Riemann
Roe average

Left State

Right State

Roe Average

Qi
n

xi−1/2
Qi−1

n

ql

ql
* qr

*

qr
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How good is the Roe solver?

When the left and right states are 
connected by a single shock, there are 
no intermediate states, and the Roe 
solver is exact

Left State

Roe Average

Right State

Qi
n

xi−1/2
Qi−1

n

ql qr
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How good is the Roe solver?

For arbitrary right and left states, the Roe 
solver is definitely inaccurate.

If the resolution is sufficiently good, this 
circumstance should not occur in practice.

But in the other two cases, one or two 
iterations in the exact solve may be enough.
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Roe Average

Qi
n
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Qi−1

n

ql

ql
* qr

*

qr
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f-wave approximate Riemann solver

Instead of splitting Q into waves, we might consider splitting the flux f into 
“waves”                   :

It turns out this is useful for spatially varying flux functions, i.e.

with applications, for example, in:

wave propagation in heterogeneous nonlinear media,

flow in heterogeneous porous media,

traffic flow with varying road conditions,

conservation laws on curved manifolds,

and certain kinds of source terms.

 
f (Qi )− f (Qi−1) = Zi−1/2p

p=1

Mw

∑
(Mw ≤ w)

Mw

qt + f (q, x)x = 0,
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Flux-based wave decomposition (f-waves) 

Choose wave forms rp (for example, eigenvectors of the Jacobian on each 
side).

Then decompose the flux difference:

 
fr (qr )− fl (ql ) = β pr p

p=1

m

∑ = Z p
p=1

m

∑

qr

 W
2
 W

3

ql

 W
1

qr
*ql

*

ql + fl (q)x = 0 qr + fr (q)x = 0
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Wave propagation algorithm using waves

In the standard version:

 
Qi

n+1 =Qi
n − Δt

Δx
A−ΔQi+1/2 +A+ΔQi−1/2( )− Δt

Δx
Fi+1/2 − Fi−1/2( )

  

Qi −Qi−1 = Wi−1/2p

p=1

m

∑

A−ΔQi+1/2 = si+1/2
p( )−Wi+1/2p

p
∑

A+ΔQi−1/2 = si−1/2
p( )+Wi−1/2p

p
∑

Fi−1/2 =
1
2

si−1/2
p 1− Δt

Δx
si−1/2
p⎛

⎝⎜
⎞
⎠⎟
Wi−1/2p

p=1

m

∑

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
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Wave propagation algorithm using f-waves

            Using f-waves:

 
Qi

n+1 =Qi
n − Δt

Δx
A−ΔQi+1/2 +A+ΔQi−1/2( )− Δt

Δx
Fi+1/2 − Fi−1/2( )

  

fi (Qi )− fi−1(Qi−1) = Zi−1/2p

p=1

m

∑
A−ΔQi+1/2 = Zi+1/2p

p:si−1/2
p <0
∑
A+ΔQi−1/2 = Zi−1/2p

p:si−1/2
p >0
∑

Fi−1/2 =
1
2

sgn si−1/2
p( ) 1− Δt

Δx
si−1/2
p⎛

⎝⎜
⎞
⎠⎟
Zi−1/2p

p=1

m

∑

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
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f-wave approximate Riemann solver

Let      be any averaged Jacobian matrix, for example:

Use eigenvectors of     to do f-wave splitting.

Then                                                                               , so the method is 
conservative. 

If        is the Roe average, then this is equivalent to the normal Roe Riemann 
solver, and 

Â

Â = ′f ql + qr
2

⎛
⎝⎜

⎞
⎠⎟

 A
−ΔQi+1/2 +A+ΔQi−1/2 = f (Qi )− f (Qi−1)

Â

Â
 Z

p = s pW p .
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Assignment for next time

Read Chapter 14 and Chapter 15.

Write (in Fortran or Python) an approximate Riemann 
solver for the Euler equations using the Roe average. 
Test it on the shock tube problem, or (optionally) on the 
Woodward-Colella blast-wave problem. Use the shallow-
water Riemann solver as a guide.
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