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Where we are today

date Topic

1.Sep 2011 introduction to conservation laws, Clawpack
15.Sep 2011 the Riemann problem, characteristics
22.Sep 2011 finite volume methods for linear systems, high resolution
29.Sep 2011 boundary conditions, accuracy, variable coeff.
6.0ct 2011 nonlinear conservation laws, finite volume methods
13.0ct 2011 nonlinear equations & systems
20.0ct 2011 no lecture
27.0ct 2011 finite volume methods for nonlinear systems
3.Nov 2011 multidimensional systems and source terms, etc.
10.Nov 2011 no lecture
9 17.Nov 2011 waves in elastic media

O b~ WODN =

v

(00

10 24.Nov 2011 unfinished business: capacity functions, source terms, project plans

11 1.Dec 2011 student presentations
8.Dec 2011 no lecture
12 15.Dec 2011 FINAL REPORTS DUE
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Other topics in Gas
Dynamics
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De Laval Nozzle

Invented by the Swedish engineer P
Gustaf de Laval in 1897.

This nozzle is the basis of how jet M<1
engines and rocket engines work.

The converging-diverging profile,

with a sufficient difference in
pressure between the reservoir and
the exhaust, results in a smooth
transition from subsonic to
supersonic flow.
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How does a delaval nozzle work?

Bernoulli’'s equation says that, for steady flow of a gas (ignoring gravity),

2
A (Lj L — constant along a streamline,
2 y—1)p

2 2
Vv C

= 5 + —— for an i1deal gas.

Yy —1

Suppose we have a reservoir at high pressure
connected via a pipe to a medium at much
lower pressure.

_,
)

Then there is a maximum velocity at steady flow given by:

where co and Yo refer to the thermodynamic conditions in the reservoir (where v=0),
and this maximum value is obtained when the gas flows out into a vacuum (p=0).
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How does a delaval nozzle work?

Euler’s equation gives us the relation between v and p along a streamline:
dp

vdy = —.

o,

B

#

=

indicating that the maximum possible mass flux pv obtains when v is equal to the local
sound speed. By continuity, the flux is constant throughout the pipe, including the
narrowest point.

Using dp =c’p, where ¢ is the local sound speed
throughout the system, we get

fm)_f, ¥)

dv C

For the ideal gas, the flux is

» 17y 2y b (y=1)1y
el 2) o (2
Po Ny_l Po
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Velocity increases throughout the nozzle

The maximum discharge rate is
reached, if ever, at the narrowest
point of a nozzle.

0.700

0.525
pv

If the pressure at this point is less
than 0.53 po (in air) or less than 0.6
po (in a nearly isothermal gas), the 0.175
flow speed equals the sound speed
at that point. The nozzle throat is
the transition from subsonic to

supersonic flow. \/
The velocity continues to increase '

through the diverging part of the
nozzle, by continuity:

d(CZV) :p(l_‘c}'—i]’ /\

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011

PoCy 0.350

0 0.25 0.50 0.75 1.00

Wednesday, 26 October 2011



De Laval Nozzle

Invented by the Swedish engineer P
Gustaf de Laval in 1897.

This nozzle is the basis of how jet M<1
engines and rocket engines work.

The converging-diverging profile,

with a sufficient difference in
pressure between the reservoir and
the exhaust, results in a smooth
transition from subsonic to
supersonic flow.

im_f, ¥)

dv C
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Simulation of an

erupting column

using the Sage
multi-material code
600 m ice

3.2 km basalt

Magma column, 98%
basalt, 2% water (by mass)

1500 K, 1 kbar
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Shock waves and Mach
disks (“shock diamonds”)
INn the supersonic nozzle
flow

DelLaval nozzle
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Multifluid problems and other equations of state:
How to do in Clawpack?

The easiest multi-fluid case is when you have two ideal gases with different
values of y. Then you set up the Riemann problem at the interface between

the two fluids with right and left values for y. Things get complicated when
miXing occurs.

Other analytical or tabular equations of state can also be incorporated into a
finite volume conservative scheme. Sage, for example, uses the Sesame
library of tabular equations of state for lots of materials. The Sesame library,
developed at Los Alamos National Laboratory, contains mostly industrial
materials, with a few materials of geological interest.

Leveque gives lots of references to papers in which Riemann solvers are
developed for other equations of state in his section 14.15. Some of these
will be worth looking into for geological applications.
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The Mie-Gruneisen-Lemons Multiphase EOS

This is an equation of state
proposed by Don Lemons based
on Mie-Gruneisen theory for
substances that undergo
relatively simple phase
transitions from solid to liquid to
gas.

In common with the van der
Waals EOS (see Leveque, ch
14.15 and 16.3.2), this EOS
results in loss of hyperbolicity
unless Maxwell constructions
are used.

This EOS has substance-
specific constants n,m,p,,B,I"
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Dusty Gases, Anyone?

c(1) attire O £OGD

7000

Marica Pelanti, a student of Randy
Leveque, developed a code based on
Clawpack for volcanic jets using a dusty
gas model.

E000

5000

See”: Pelanti & Leveque, "High-Resolution
Finite Volume Methods for Dusty Gas Jets
and Plumes", SIAM J. Sci. Comput. 28 (2006)
1335-1360.

4000

sold Their model was multifluid: Euler

equations for the gas, and a pressure-
less fluid for the dust, coupled together
by drag and heat transfer.

Zuud

1000 " 1%¢ Or... we could try a single-fluid dusty gas
.41 €quation of state.
0 * http://www-roc.inria.fr/bang/Pelanti/
) 1009 2009 Jenn
2
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What happens when we add dust to gas?

. . . J
The speed of acoustic waves in a general medium is, ¢, = (ij
isentropic

which for an ideal gasis c, = rp

o,

Assuming the dust remains coupled to the gas (via Stokes drag), for a little
loading the density increases without the pressure changing much.

Thus the speed of sound decreases. In fact, it does so dramatically.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011

Wednesday, 26 October 2011



An equation of state for a dusty gas™

B (1-K)
- (1-2)

One version of a dusty-gas equation of stateis: p PRT,

where K is the mass concentration and Z is the volume fraction of solid particles.
2P,

These are related through K = , Where p. is the particle solid density.

I'p
p(1-2)

The speed of sound is then ¢, :\/

yC,(I-K)+C K
C,1-K)+C K

where the ratio of specific heats for the mixture is T' =

The specific heat of the dust particles is Csp and C is the specific heat at
constant volume of the gas.

*from Vishwakarma, Nath, & Singh (2008), Physica Scripta 78 035402.
http://stacks.iop.org/PhysScr/78/035402
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Density increases more rapidly than pressure as
the dust content increases

1.00 - 10.0
Assumptions:
spherical dust particles
150 u radius, 2.5 g/cc density, specific heat 0.92 J/g K
air at density 1.204e-3 g/cc, temperature 293 K - 7.0
6.0
+5.0
0.10 -
( /P ) 4.0
cC
: P (bar)
-3.0
0.01
- 2.0
density left scale pressure right scaie
0.00 - 1.0

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00
Z (volume fraction of dust)
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Adding 0.1% dust (by volume) to air cuts the speed of sound in
half, and the mixture approaches isothermal

400

300

speed of
sound 1n the
dusty gas 200

(m/s)
100
0
1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00
1.4
1.2
ratio of
specific heats |,
of the mixture
I Assumptions:
0.8 spherical dust particles
150 u inradius, 2.5 g/cc density, specific heat 0.92 J/g K
air at density 1.204e-3 g/cc, temperature 293 K
0.6 t t t t + |
1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00
Volume fraction occupled by dust particles
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Shocks can be stronger in dusty gases

The maximum ratio of upstream to downstream densities across a shock is (see

Landau & Lifshitz, Fluid Dynamics)

p, _y+1
Pa 7V~ 1
L L _ Pu _
For a diatomic gas (like air), Y =1.4, so = 6.
Pa
Pu trar _ Pu _
For adustygas, ¥ =1, so can be arbitrarily large. At ¥ =1.01, =201.
Pa Pa
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The delLaval nozzle in a dusty gas

The maximum discharge rate is
reached, if ever, at the narrowest
point of a nozzle. 0.700

0.525

If the pressure at this point is less pv
than 0.53 po (in air) or less than 0.6 Peco o050
po (in a 2% dusty gas), the flow
speed equals the sound speed at
that point. In the diverging portion, .
It becomes supersonic without

passing through a shock. :

In a dusty gas it is easier to get to \/
supersonic flow both because the

local sound speed is lower and

because the maximum discharge is
reached with a lower pressure
drop.
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Vents, kimberlite pipes, volcanos, and geysers
may be natural delLaval nozzles for a dusty gas

Sediment

Slumping
*
7 “
‘ Fa(ﬂgs unit Il

e &ro.
/ oS na . ,7
(] il 2 p’nm.
“redlle
7 [
I o Zeolite feay
[
200 m =t *°| s , _
| °| = Sediment breccia
Pusl < — i i
5l of © (Facies unit III)
o) Fd B
I 1 g2 — Vent sandstone
I 7| ES .- .| (Facies unit )
-300 m ' o| £T -
50 Zeolite-cemented
° -‘g = ¢ «| sandstone (Facies
100 m . £& unit 1)
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Finite Volume Methods for
Nonlinear Systems
(Chapter 15 in Leveque)

00000000000




Once again, we extend from what we've
learned for linear systems of equations

We intend to solve the nonlinear conservation law ¢, + f(g). =0

using a method that is in conservative form:

At

QnJrl — Q o E( i+1/2 Eil/z)

and yielding a weak solution to this conservation law. To get the correct
weak solution we must use an appropriate entropy condition.
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Recall Godunov’'s method:

Given a set of cell quantities Q,-" at time n:
1. Solve the Riemann problem at x;_,, to obtain Ql.i_l/2 = c]i (0.,,0")

2. Define the flux:  F",, = £(Q},, )

. . n+1 n At n n
3. Apply the flux differencing formula: Q. = Q. — E(Fiﬂ/z — Fi—l/z)
This will work for any general system of conservation laws. Only the
formulation of the Riemann problem itself changes with the system.
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In terms of the REA scheme we have discussed

reconstruct

1. Reconstruct a piece-wise linear function from the cell
averages.
q (x,t )=Q; +0;(x—x;) for x in cell i

with the property that TV(q) < TV(Q) evolve

2. Evolve the hyperbolic equation (approximately) with this
function to obtain a later-time function, by solving
Riemann problems at the interfaces.

average

én (’x9tn+1)
3. Average this function over each grid cell to obtain new
cell averages. 1 1 fxan
n+ HU2 ~p
Q" = EJ g (x,t,,,)dx
Xi-172

The reconstruction step depends on the slope limiter that is chosen, and
should be subject to TVD constraints. The other two steps do not affect TVD.
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Recall what TVD means:

Monotonicity preserving methods:
If a grid function that is initially monotone, i.e.Q; = Q.", for all i at step n

remains monotone at the next time: Q"' >Q"' foralli at stepn+1

then the method is monotonicity preserving.

Total Variation Diminishing (TVD) methods:

Define the total variation of a grid function Q as: TV(Q) = E‘Ql — Qi_l‘
grid

A method is Total Variation Diminishing if TV(Q”+1) <TV(QO")

If O is monotone, then so is 0", and no spurious oscillations are
generated.

This gives a form of stability necessary for proving convergence, also for
nonlinear conservation laws.
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For advection, the REA

We update the advection equation by

26

algorithm gives us:

n+l __ n MAt n n 1 MAt n n
Qi - Qi — E(Qz — Qi—l)_ EE(AX o uAt)(Gi — Gi—l)
where the slope is given by
n Qz":li-l B an n
O = .
=| B
where @ is the flux limiter function.
Choices for the flux limiter are:
upwind: ¢(0)=0 minmod: @(60) = minmod(1,0)
Lax-Wendroff: ¢(0) =1 superbee: @(0) = max(0,min(1,20),min(2,0))
Beam-Warming: ¢(6)=20 MC: ¢(0)=max(0,min((1+0)/2,2,20))

Fromm: ¢(0)= %(1 +60) vanleer: ¢(0)= ((?:“g“))
eln _ an _ Qin_l
Qi’il o Q,-n

FYS-GEO 4500
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Slope limiters and flux limiters

The slope limiter formula for advection is:

uAt 1 uAt

o' =0"'-—(0'-0", |- ——(Ax—uAt)|o! — 0"
The flux limiter formulation for advection is:
At
n+l n

Q — Q — E( i+1/2 E—l/z)
with the flux:

n n 1 n

F~,,=uQ.  + EM(AX —ult)o,
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo

Autumn 2011
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Wave limiters:

Qin—l
) Xi_1/2
Let: W_.,=0' -0/,
. n+1 MAt
Upwind formula: O =0 ——W 1
Ax
Lax-Wendroff formula:
uAt At
0" =0 ——W._ Fip—F
Ax _1/2 Ax( +1/2 1/2)
1 U/t
F_ :z(l_ Ax j‘u‘y\/il/z

~ | A —
Fiyp = _(1_ u_t j‘u‘WiI/Za

where
Wl—1/2 - ¢l—1/2)/\}l—1/2 .
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Extension to linear systems

Approach 1:

Xi_12 Xit1/2

Diagonalise the systemto ¢, + Ag, =0

Apply the scalar algorithm to each component separately.

Approach 2:

Solve the linear Riemann problem to decompose Q," — Q" ,into a number
of waves.

Apply a wave limiter to each wave.
These approaches are equivalent.

But note that it is important to apply the limiters to the waves rather than to
the original variables.
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Wave propagation methods

Xi_1/2 Xit1/2

Solving the Riemann problem between cells [ and 1+1 gives the waves
0, -0, EW
and speeds s; ,, . In the nonlinear case, an approximate solution is used.

These waves update the neighbouring cell averages via fluctuations,
depending on sign of s, .

The waves also give the decomposition of the slopes

Q Qzlz EW

Apply the limiter to each wave to obtain W,-_l/z =0._ ., W_,.

Use the limited waves in the second-order correction terms.
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High-resolution wave-propagation scheme

The fluctuation notation is more useful in the nonlinear case:

At

QnJrl Q - E(A AQ1+1/2 A+AQ1 12 ) - E(Eﬂ/z - E—I/Z)
1 - ~
p=1

ouyi .. . P
W._1» represents the limited version of W. .

This is obtained by comparing W.,, with YW’ , where

i—1ifs’, , >0

i+1ifs’,, <0

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo

Autumn 2011
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Wave limiters for a system

32

W W
i—1/2 [=1/2

W W,
i—1/2 i—1/2

where 0/, =

and [ =+

Q7
Xi—1/2
— vP
Q. —Q,_,is splitintowaves W' , =a/ .1’ ,,
We replace these waves with the limited versions 1/2

i—1ifs” >0

P
Note thatif r” ,=r" , then 67 = %
i—1/2
In the scalar case this reduces to
|- Wz_—pl/z _ 0 -9,
o ifl/z Qi o Qi—l
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo
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The exact Riemann solver for the nonlinear problem is
expensive, and requires an iterative solver...

u:¢l(p):<

u=0,(p)=1

Solving ¢,(p,.)=¢,(p..) vyields (p".u) ,then p, =(

-1
ul+y2€l [1—(19/191)27} if p<p,
2c¢, 1-p/p, :

u, + if p=2p
| \/27(7—1){\/”:31’/191} |
~1
u — 2¢, [1—(p/pr YM} it p<p

'}/_
2c I-p/p :
U, — - it p=p,
\/27(?’—1){\/“[319/%}

(y—1)u, +2(c, +&)

In the rarefaction fan, u (&)= .

FYS-GEO 4500

Yy +1
¥ 1/(y-1)
p(&)= [p—l(u@—é)z]

YP,

p(§)=(ﬁ]p(§)y

p/
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Newton’s Method for finding a root of a function

Newton’s method aims at finding a root by
extrapolating from the function’s slope at the
point where each successive guess is taken.
This is very robust, provided there are no
iIntervening extrema.

First guess

_ o Third guess
Each successive guess is given by

xn+1 — xn o f(x”)
k

where the slope k is chosen from

Second guess

@Q k=f '(xn) tangent method
b) k — f(xn)_ f(xn_1) secant method; more convenient than the tangént method
(b) k= X —x when the derivative is unavailable or difficult to compute.
n n—1
f( X ) — f xm) regula falsi; m is the most recent guess in which the function
(c) k= has the opposite sign. This method always brackets the root

Xn = Xm and is therefore most robust, but generally a bit slower.
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An exact Riemann
solver on a

spreadsheet for the

Euler equations
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The exact Riemann solver for the nonlinear problem is
expensive, and most of it is not necessary!

ul"';flll:l_(p/pl)%l} it p<p,
u:¢l(p):< > 1=/
U, + C { P o } if p>p,
J2r (y=1) [N1+Bp ! p,
ur—;ir [1—(p/pr)y2yl} it p<p
u=9,(p)=1
2c I-p/p :
U, — - if pzp,
\/27(?’—1){\/“[319/%}
. . . «_[1+Bp /p, «_(1+Bp /p
Solvin = =| — , P =] - 1P,
ving @,(p,,)=9,(p,) yields (p".u") , then p, (p /pl+ﬂlpl p (p 5 )P
—1 2
In the rarefaction fan, u (&) = (y=1)m +2(c +§). These are useful for exact

y+1 solutions of certain problems.

U(y-1)
p/ 2
p(&)= (Y_]l)(“(f)—‘g) ] But in simulations we only need
’ the solution at the cell interface!
p(&)= (ﬁ]p(é)y

p/
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The exact Riemann solver for the nonlinear problem is
expensive, and most of it is not necessary!

-1
ul+y2C11|:1_(p/pl)j;—7:| lf pgpl 0.'-. r:\
u:(D,(P):< - 2c, { 1-p/p, } if p>p
- N2r(r=1)[N1+Bp/ P, -
1
y — 25 [1—(p/pr)y”} topsp
y—
u=¢,(p)=1 - 2c, { l-p/p } if p=>p
, \/2},(},_1) J1+Bp/p, o

Solving ¢,(p,.)=¢,(p..) vyields (p".u) ,then p, =(

-1 2
In the rarefaction fan, u (&) = (=1 +2{c+ é:). These are useful for exact
Y+l solutions of certain problems.

U(y-1)
p/ 2
p(&)= (Y_]l)(“(f)— £) ] But in simulations we only need
’ the solution at the cell interface!
p(&)= (ﬁ]p(c’f)y

p/
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37
But we do need to know where the cell interface lies with

respect to the waves, and compute accordingly

Xi_1/2

q,

Qin— 1

Xi1/2
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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\Wave Interactions

Ql’l

Xi_12 Xit1/2

Waves that interact with each other within a cell will not change the cell-
interface values on the next time step provided the Courant number is less
than 1.
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Riemann solvers in CLAWPACK

In CLAWPACK, the hyperbolic problem is specified by providing a Riemann
solver with

Input: the value of g in each grid cell

Output: the solution to the Riemann problem at each cell interface:

The Waves W’ ,p=1,2,...,m fora system of m equations
The Speeds s*,p=1,2,...,m
The Fluctuations AiAQ , for high-resolution corrections

Because the problem is solved entirely using Riemann solvers, you won't
see anything in the code that resembles the original system of partial
differential equations.
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Wave propagation for nonlinear systems

An approximate Riemann solver is typically used to get the wave
decomposition

m
— p
Qi o Qi—l — ZW—I/Z ’
p=1
where the wave if 1, Propagates at a speed S,.p_ 12 -

if we define A, = A(Q",Q") as a linearised approximation to f”(q)
valid in the neighbourhood of (O;, Oi-1),

then we can solve the simpler linear Riemann problem at that cell interface
for the linearised equation:

g, +A_,q9,=0,
to obtain

P _ P AP P _Ap
Wi =0 0 s Sy = ;Li—m'

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Approximate Riemann Solvers

Approximate the true Riemann solution by a set of waves consisting of finite
jumps propagating at constant speeds (as in the linear case).

Use a local linearisation: replace ¢, + f(q), =0 by g, + A_,q. =0,
Where A A(Ql 9qr) f (Qave)

Then decompose — N
— qr — Zap]/‘p
to obtain the waves W’ = a’r” with speeds s’ = A7,

But how do we chose A?

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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The Roe solver

The most widely used approximate Riemann solver is the one developed by
Phil Roe at the Royal Aircraft Establishment. The approach is to solve the
linearised equation

q, +Aqx =0,

N

where Ais an average matrix such that A(qr ,ql) =A, = f’(qave).

and Arl<Qr_ql):f<ql’)_f(ql)zs(q”_ql)

The Roe-average matrix can be determined analytically for many important
nonlinear systems, including the shallow-water equations and the Euler
equations.
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Roe’s approximate Riemann solver

VN

Roe suggested these constraints for A :

1. Aﬂ (g.—q,)=f(q.)— f(q,) Cf. Rankine-Hugoniot condition.

2. /A\ Is diagonalisable with real eigenvalues.

3. Arl — f’(q)  smoothly as q,,9. —q

A single shock is captured exactly because (1.) is essentially the Rankine-
Hugoniot jump condition.

f(qr) — f(q,) = S(q,, — ql) implies that ¢, — ¢, is an eigenvector of A .
It is a good approximation for weak waves, or smooth flow.

The wave-propagation algorithm is also conservative since

AAQ,_,, + A"AQ, ), = Zsip—uz e = AZ Wi
p p

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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How to use an approximate Riemann solver

Since we only need the solution at the cell interface, we determine the state
along x /¢ =0, calling it Q. Thus with

Q" =0+ D W, F_,=fQ)

pst <0

we form the fluctuations as

A AQ=F_,, f(Q,-_l)a ATAQ = f(Q) 172

You can sometimes use A AQ = 2 sPW?, ATAQ = z O 4%

psP <0 psP>0

which is conservative if A4~"AQ+ A"AQ = f(Ql ) — f(Q,-_l ) :

as is true for the Roe solver.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Example: Roe solver for shallow-water equations

A

P = water density u = speed of bulk water motion

h = height of wave above bottom

Y

h(x,t) = depth

u(x,t) = bulk speed, varies only with x

Conservation of mass and momentum gives the system:

- h T hu
+ f(g), = + 1 = 0.
9+ (@), hu hu’ +—gh’
- At 2
which has the Jacobian matrix:
0 1
/4
f(g)= , A=uzx./gh.
—u’+gh 2u
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Roe solver for Shallow Water

Given  h,,u,,h ,u., define h=- byt h, : \/j/ﬁ-l_\/\/:u

Then if A is defined as the Jacobian matrix evaluated at the special state

q = (h,hu),
we find that:
the Roe conditions are satisfied,
an isolated shock is modelled well,

and the wave propagation algorithm is conservative.

If we use limited waves, we obtain high-resolution methods as before.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Roe solver for Shallow Water

Given  h,,u,,h ,u., define h=- byt h, : \/j/ﬁ-l_\/\/:u

Then if A is defined as the Jacobian matrix evaluated at the special state

= (h i),

Va\

the eigenvalues of A= f’(q) are:

Al A A 2 A N A
A=u—c, A =u—c, c=+/gh,

and the eigenvectors are:

Al 1 A2 1
o A A o r — A A b4
u—=c u-+c
FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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The Shallow-water Riemann solver in

Clawpack is a Roe solver
i P hth e

do 38 i=Z2-mbc, mx+mbc- 2 «/ \/

#_ecompute Roe-averaged quantities: -
ubar = {qr{i-1, 2}fdsqrt(qr{|—1 13) + ql{i,2)/dsqrt{ql{i, 123}/
{ dsqrt{qr{l- 1)) + dsqrt{ql{|,1}} }ﬁ
cbar=dsqrt{8.Sde*grav*{qr{i-1,1} + ql{i,1)3)-
C # delta{l )=h{i)~h{i-1) and delta{2)=huli )~hu{i-1)-
delta{1) = ql{i,1) = gr{i-1,1)-
delta{2) = ql{i,2) = gr{i-1,2)

c # compute coeffs in the evector expansion of delta{l )}, deltal{2)-
al = 8.5da*{ delta{2} + {ubar + cbar) * delta{l)})/cbar-
a2 = 8.5do*{ delta{2) - {ubar - cbar) * delta{l})/cbar-

c # finally, compute the waves.-
wavel{i,1,1) = al-

wave{i,2,1) = at*{ubar - cbar) do 188 m=1,2-
s(i,1} = ubar - cbar- do 188 i=2-mbc, mx+mbc-
amdq{i,m} = 8.d8-
wave(|,1 2) = a2 apdqfi,m) = 8.d8-
waveli,2,2) = a2¥{ubar + cbar) do 9@ mw-1,mwavesﬂ
s(i, 2} ubar + cbar- if {s{iymuw) .lt. B8.d8) then-
amdq{i,m} = amdq{i,m} + s{i,mw*waveli,m,mw}-
28 continue- else-
apdqfi,m} = apdq{i,m} + s{i,mw*waveli,m,mw}-
endi f-
= 1% continue-
188 continue-

from: $CLAW/book/chap | 3/swhump | /rp | sw.f
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Roe solver for the Euler equations

The eigensystem of the Euler equations for a polytropic gas is:

M=u—c A =u A=u+c
1 1 1
1 2 3
Fr=| u-c ro=| u rr=| u+c
H —uc 1y’ H + uc

These need to be evaluated at the Roe-averaged state, so we need the Roe

averages for u, H, c. These are:

o+
o+ ﬁ

o APLH L P
Jor,+ f

8=\/(y—1)(ﬁ—%ﬁ2)

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo
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Roe solver for the Euler equations

Riemann
Then the wave decomposition between the

left and right states is
6=0.-0._ =a'r +a’r’+o’r’

Qin—l

where
2 (A -i*)s' +as” - &°
o :(7_1) ~2
¢
o 6 +(c—u)d' —co’

2¢
o' =8 - -o’

But note that, while the Riemann solution consists of three waves, one of
which is a rarefaction fan, the Roe solution only consists of three waves. In
most cases this does not matter, since the desired solution at x/=0 will be
the same intermediate state. In the case of a transonic rarefaction a
modification (in the form of an entropy fix) is necessary.
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where
2 (A -i*)s' +as” - &°
o :(7/_1) ~2
¢
o 6 +(c—u)d' —co’

2¢
o' =8 - -o’

But note that, while the Riemann solution consists of three waves, one of
which is a rarefaction fan, the Roe solution only consists of three waves. In
most cases this does not matter, since the desired solution at x/=0 will be
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modification (in the form of an entropy fix) is necessary.
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Entropy fix for transonic rarefactions

Suppose there is a transonic rarefaction in the k wave:

M<O<A, ¢ =0_,+dW', ¢ =g +W
=1

The method proposed by Harten and Hyman, modified slightly by Leveque,
and implemented in Clawpack, is the foIIowing. Define

~ Ay
ﬁ _ Al
where ;Lk Is the Roe-averaged elgenvalue for this wave. Then in computing
the fluctuations

AAQ, ), = E(Silil/z) W, A'AQ.,, = 2(551/2 )+ Wl

p p
for the speed of the k wave use

() =pat. () =(-p)A

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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The Harten-Lax-van Leer (HLL) Solver

This solver uses only 2 waves with
s! = minimum characteristic speed
s% = maximum characteristic speed

Write

*k

W =0 -q, W=¢-0

where the middle state Q* IS uniquely determined by the conservation
requirement:

sSW +sW?* = f(q,)— f(q,)

o f(%)—f(él]l)—zs g +s'q,
s —s

Modifications of this include positivity constraints and the addition of a third
wave.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011

52

Wednesday, 26 October 2011



53

Riemann solvers: exact vs approximate?

Whether to use a Roe solver, or other approximate Riemann solver, as
opposed to an iterative exact solver is debatable.

Exact solvers are typically costly in time and storage
You don’t need all the information generated
However, if you use a Roe solver:
You don’t get the full structure of the rarefaction wave
In certain circumstances, the approximation may be poor

As computers and methods improve, more people may prefer exact iterative
solvers.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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How good is the Roe solver?
Left St@te

Solved Intermediate States

0.3200 0.3200
0.3125 0.3125 N

® + Roe solver
O Exact Riemann
Roe average

&
= 0.3050 \ = 0.3050 /
Roe Avera(

® je
0.2975 0.2975

0.2900

0.2900
0.490 0.495 0.500 0.?8\ 0.510 0.9900 0.9975 1.0050 1.0125 1.0200
rho

Right State

Example for the Euler equations, comparing
iterative exact and approximate Roe solvers.

When the left and right states are close
together, the Roe solver is very good.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011

Wednesday, 26 October 2011



How good is the Roe solver?

Left State
2.0 2.0
b
1.5 1.5
+ Roe solver
O Exact Riemann
5 1.0 \ = 1.0 / Roe average
Roe Average
0.5 0.5
¢ \ !
2

Right State

When the left and right states are

connected by a single shock, there are q,
no intermediate states, and the Roe

solver is exact

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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How good is the Roe solver?

Left State
Solved Intermediate States

2.0

+
1.5 O 5 O \ O
-+ - + Roe solver
O Exact Riemann
5 40 ® 5 10 * Roe average
— Roe Average —
0.5 0.5
e\ /e
0
0 1 2 3 4 0 0.75 1.50 2.25 3.00
P rho
Right State

For arbitrary right and left states, the Roe
solver is definitely inaccurate.

If the resolution is sufficiently good, this
circumstance should not occur in practice.

But in the other two cases, one or two
iterations in the exact solve may be enough.
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f-wave approximate Riemann solver

Instead of splitting O into waves, we might consider splitting the flux f into M
‘waves” (M < w):

MW
FO) = fQ)= 2.2\,
p=1
It turns out this is useful for spatially varying flux functions, i.e.

q,+ f(q,x), =0,

with applications, for example, in:
wave propagation in heterogeneous nonlinear media,
flow in heterogeneous porous media,
traffic flow with varying road conditions,

conservation laws on curved manifolds,

and certain kinds of source terms.

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Flux-based wave decomposition (f-waves)

Choose wave forms 7” (for example, eigenvectors of the Jacobian on each
side).

Then decompose the flux difference:

fila,) - filg) =Y. B'r" =D 2"

g +£@,=0  q,+f(q),=0

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Wave propagation algorithm using waves

At

Qn+1 — Q - E(-A AQz+1/z A+AQ1 1/2)_ E(Fm/z F—l/z)

In the standard version: <

\

0 -0, EW
A AQ,,,, = Z(S 112 )_ Wiz
P

A+AQ1 12 = Z( i )+ Wi

” _ _ = p
Fiyp = Z‘Sz 1/2‘( Si- 1/2‘)W 1/2

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo
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Wave propagation algorithm using f~-waves

At

Qn+1 — Q - E(-A AQz+1/z T A+AQ1 1/2 ) - E(Fm/z F—l/z)

Using f-waves: <

f(Q )~ £,(0,) = 22%2

A AQ1+1/2 2 Zz{)l—l/2

pist <0

A+AQ1 12 — Z 1/2

DS 1/2>O

. | & A
by = EZSgn(Sipl/z)(l — EI Si- 1/2‘)Zzp1/2
. p=1

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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f-wave approximate Riemann solver

Let A be any averaged Jacobian matrix, for example:

1 / QI_I_q
A= -
5t

Use eigenvectors of A to do f-wave splitting.

Then A AQ,,,,+AAQ. ., =f(Q)— f(Q,._,) , sothe method is

conservative.

If A IS the Roe average, then this is equivalent to the normal Roe Riemann
solver, and ZP = PP

FYS-GEO 4500 Galen Gisler, Physics of Geological Processes, University of Oslo Autumn 2011
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Assignment for next time

Read Chapter 14 and Chapter 15.

Write (in Fortran or Python) an approximate Riemann
solver for the Euler equations using the Roe average.
Test it on the shock tube problem, or (optionally) on the
Woodward-Colella blast-wave problem. Use the shallow-
water Riemann solver as a guide.
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