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Where we are today
date Topic Chapter in 

LeVeque
1
2
3
4
5
6

7
8

9
10
11

12

1.sep. 2011 introduction to conservation laws, Clawpack 1 & 2

15.sep. 2011 the Riemann problem, characteristics 3 & 5

22.sep. 2011 finite volume methods for linear systems, high resolution 4 & 6

29.sep. 2011 boundary conditions, accuracy, variable coeff. 7,8, part 9

6.okt. 2011 nonlinear conservation laws, finite volume methods 11 & 12

13.okt. 2011 nonlinear equations & systems 13 & 14

20.okt. 2011 no lecture

27.okt. 2011 finite volume methods for nonlinear systems 15,16,17

3.nov. 2011 multidimensional systems and source terms, etc. 18, 19, 20, 21

10.nov. 2011 no lecture

17.nov. 2011 waves in elastic media 22

24.nov. 2011 unfinished business: capacity functions, source terms, project plansunfinished business: capacity functions, source terms, project plans

1.des. 2011 student presentations

8.des. 2011 no lecture

15.des. 2011 FINAL REPORTS DUE
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The exact Riemann solver for the nonlinear problem is 
expensive, and most of it is not necessary!

These are useful for exact 
solutions of certain problems.

But in simulations we only need 
the solution at the cell interface!
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The exact Riemann solver for the nonlinear problem is 
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But we do need to know where the cell interface lies with 
respect to the waves, and compute accordingly
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Wave propagation for nonlinear systems

An approximate Riemann solver is typically used to get the wave 
decomposition

where the wave                  propagates at a speed            .

If we define                                  as a linearised approximation to             
valid in the neighbourhood of (Qi, Qi-1 ),

then we can solve the simpler linear Riemann problem at that cell interface 
for the linearised equation:

to obtain

 
Qi −Qi−1 = Wi−1/2

p

p=1

m

∑ , 

 Wi−1/2
p si−1/2

p
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Roe’s approximate Riemann solver

Roe suggested these constraints for       :

1.                                                         Cf. Rankine-Hugoniot condition.

2.      is diagonalisable with real eigenvalues.

3.                              smoothly as                            .

A single shock is captured exactly because (1.) is essentially the Rankine-
Hugoniot jump condition. 

                                                implies that             is an eigenvector of      .

It is a good approximation for weak waves, or smooth flow. 

The wave-propagation algorithm is also conservative since 

Â
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∑ = Â Wi−1/2p .

p
∑

f (qr )− f (ql ) = s(qr − ql ) Âqr − ql
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Roe solver for the Euler equations
The eigensystem of the Euler equations for a polytropic gas is:

These need to be evaluated at the Roe-averaged state, so we need the Roe 
averages for u, H, c. These are:
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Roe solver for the Euler equations

Then the wave decomposition between the 
left and right states is

where 
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nQi−1
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ĉ2
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But note that, while the Riemann solution consists of three waves, one of 
which is a rarefaction fan, the Roe solution only consists of three waves. In 
most cases this does not matter, since the desired solution at x/t=0 will be 
the same intermediate state. In the case of a transonic rarefaction a 
modification (in the form of an entropy fix) is necessary.
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2ĉ
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Entropy fix for transonic rarefactions

Suppose there is a transonic rarefaction in the k wave:

The method proposed by Harten and Hyman, modified slightly by Leveque, 
and implemented in Clawpack, is the following. Define 

where       is the Roe-averaged eigenvalue for this wave. Then in computing 
the fluctuations 

for the speed of the k wave use 
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Ch 16: Nonclassical hyperbolic problems

Chapter 16 covers some situations that may be of interest.

nonconvex flux functions, e.g. oil-reservoir simulations

flow in porous media

nearly singular equations

phase changes, van der Waals gases 

nonconservative transport

This chapter is rich in possibilities for projects, so is worth skimming.
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Source Terms
(Chapter 17 in Leveque)
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Source terms
Many of the situations we will want to study, especially in geophysics, are 
conservation laws with source terms:

Of course this equation arises from the more fundamental integral form:

Examples:
external forces, for example gravity
reacting flow (combustion, dissolution, exsolution)
conductive or radiative heat transfer
drag, viscosity
varying depth in shallow-water equations
varying pipe shape in Euler equations 
systems with symmetries (geometrical source terms, see section 18.9)

A given system may have more than one of these sources!

qt + f (q)x =ψ (q)

∂
∂t

q(x,t)dx
x1

x2

∫ = f q x1,t( )( )− f q x2 ,t( )( ) + ψ q x,t( )( )dx
x1

x2

∫
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Fractional-Step Methods

In the system                                   :

If the homogeneous part                             is hyperbolic, and the source 
term part can be expressed as                                  (that is, without 

derivatives of q), then it is possible to alternate between solving the 
homogeneous hyperbolic equation and the source term equation.

Using the example of an advection-reaction equation, Leveque shows in 
some detail how fractional-step and “unsplit” methods relate to one another. 

Fractional step methods are easier to implement in code, they are generally 
faster than unsplit methods, they do nearly as well, and are readily extended 
to high resolution.

However, there is a splitting error one must be aware of.

qt + f (q)x =ψ (q)

qt + f (q)x = 0
qt =ψ q(x,t), x( )
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Fractional Step Methods

The system                                       is split into two parts:

A-part: Use a high-resolution method to solve 

B-part: Use a high-order method to solve 

There are two popular ways of doing this:

Godunov splitting:      (first-order accurate at best)         method(5)=1
full time step        on the A-part 
full time step        on the B-part

Strang splitting:          (second-order accurate at best)    method(5)=2
time step              on the B-part
time step              on the A-part
time step              on the B-part

Although the order of accuracy suffers, Godunov splitting is often preferred 
because it is usually faster, depending on the complexity of the source term.

qt + f (q)x =ψ (q)

qt + f (q)x = 0
qt =ψ q( )

Δt
Δt

Δt / 2
Δt
Δt / 2
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Fractional Step Methods

The system                                       is split into two parts:

A-part: Use a high-resolution method to solve 

B-part: Use a high-order method to solve 

There are two popular ways of doing this:

Godunov splitting:      (first-order accurate at best)         method(5)=1
full time step        on the A-part 
full time step        on the B-part

Strang splitting:          (second-order accurate at best)    method(5)=2
time step              on the B-part
time step              on the A-part
time step              on the B-part

Although the order of accuracy suffers, Godunov splitting is often preferred 
because it is usually faster, depending on the complexity of the source term.

qt + f (q)x =ψ (q)

qt + f (q)x = 0
qt =ψ q( )

Δt
Δt

Δt / 2
Δt
Δt / 2

in Clawpack
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Operator splitting for a general PDE: how the splitting error arises

A general form for a linear partial differential equation is

(For a conservation law in quasilinear form,                                           )  

Further time derivatives can be computed by

and we can form the Taylor series expansion

which we can write in short-hand (solution operator form) as

Using operator splitting we compute 

The difference between these two, in second order, is  

which is zero only when the differential operators commute.

 qt = A +B( )q.
 A = ʹ′f (q)∂x; B =ψ ( ).

 qtt = A +B( )qt = A +B( )2 q,

  q x,Δt( ) = q x,0( ) + Δt A +B( )q x,0( ) + 1
2 Δt

2 A +B( )2 q x,0( ) +

 q x,Δt( ) = eΔt A+B( )q x,0( ).

  
q x,Δt( ) = eΔtBeΔtAq x,0( ).

  q x,Δt( )− q x,Δt( ) = 1
2 Δt

2 AB −BA( )q x,0( ) +O Δt 3( )
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Multidimensional problems can also use a 
kind of operator splitting

The two-dimensional conservation law

is similar to the one-dimensional conservation law with a source term, and 
can be solved in a similar way. In Clawpack (see $CLAW/2d/lib/claw2.f):

method(3)=-1 dimensional splitting, Godunov style
method(3)=-2 dimensional splitting, Strang style

This is the easiest way to extend good 1-D methods to 2-D and 3-D, and it is 
usually effective and efficient but it misses corner transport (more later). 

Unsplit methods for multidemsions are also available in Clawpack: 

method(3)= 0 no transverse propagation, only normal waves
method(3)=+1 transverse propagation without correction waves
method(3)=+2 transverse propagation with correction waves

qt + f (q)x + g(q)y = 0

16
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The dimensionally split Godunov method
The two steps of a dimensionally-split Godunov method are:

For the linear system,                                  , the fluctuations are 

where                                        and                                         .  

 
Qij
* =Qij

n −
Δt
Δx
A+ΔQi−1/2, j +A−ΔQi+1/2, j( )

 
Qij

n+1 =Qij
* −

Δt
Δy
B+ΔQ*

i, j−1/2 +B−ΔQ*
i, j+1/2( )

qt + Aqx + Bqy = 0

 

A±ΔQi−1/2, j = A
± Qij −Qi−1, j( )
B±ΔQi−1/2, j = B

± Qij −Qi, j−1( )

A± = Rx Λx( )± Rx( )−1
         B± = Ry Λy( )± Ry( )−1
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Multidimensional Hyperbolic 
Problems 

(Chapter 18 in Leveque)
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The world has more than one dimension!

A conservation law in two dimensions:

and in three dimensions:

where f(q), g(q), and h(q) are the fluxes in the x, y, and z directions 
respectively. 

More generally we write:

where            is a vector function representing the flux of  q, and the 
divergence operator is defined as 

qt + f (q)x + g(q)y = 0

qt + f (q)x + g(q)y + h(q)z = 0

 qt +

∇ ⋅

f (q) = 0

 

f (q)

 
for  

f = f ,g,h[ ],     


∇ ⋅

f = ∂f

∂x
+
∂g
∂y

+
∂h
∂z

= fx + gy + hz
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A word about notation

In general we will refer to spatial vectors and their components as:

                position

                velocity

                      flux

vector of matrices

unit normal vector  

x = [x, y, z]
u = u(x, y, z,t),v(x, y, z,t),w(x, y, z,t)[ ]

f (q) = [ f (q),g(q),h(q)]

A = [A,B,C]
n = nx ,ny ,nz⎡⎣ ⎤⎦

20
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Hyperbolicity

The linear system in one dimension,                        , is hyperbolic if the 
matrix A is diagonalisable, with real eigenvalues. 

In two dimensions, we need a stronger condition. For the system

to be hyperbolic, not only must the matrices A and B be diagonalisable, with 
real eigenvalues, but so must every projection of these matrices in all spatial 
directions. 

Defining a unit vector                     , we define 

and require that this combination be diagonalisable, with real eigenvalues for 
any choice of     . Problem 18.3 is an example in which each matrix is 
separately hyperbolic, but the combination is not! For extra credit, do this.

This requirement is easily extended to a three-dimensional system.

qt + Aqx = 0

qt + Aqx + Bqy = 0

 
n = (nx ,ny )

 

A = nxA + nyB

 
n

21
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Coupling among dimensions

We cannot in general decouple a linear multidimensional system into 
separate advection equations as we could in the one-dimensional case. 

We can diagonalise each matrix separately:

but unless BA=AB, performing these operations does not produce 
decoupling. 

The point is that hyperbolic equations in two or more dimensions produce 
waves that can travel in any direction, not just in the x or y directions. Thus 
there is coupling between the x and the y propagation that is unavoidable 
except under special circumstances. 

A = RxΛx (Rx )−1,   B = RyΛy (Ry )−1

Dimensional splitting may not adequately 
deal with the coupling between dimensions. 
Effectively, the order of accuracy is reduced.

22
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Compressible barotropic flow in 2 dimensions

With the velocity vector defined as 

the equations of compressible flow in 2 dimensions are:

We can write these as 

by putting 

ρt + (ρu)x + (ρv)y = 0

ρu( )t + ρu2 + p( )x + (ρuv)y = 0
ρv( )t + (ρuv)x + ρv2 + p( )y = 0

 
u = u,v[ ]

qt + f (q)x + g(q)y = 0

q =
ρ

ρu
ρv

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, f (q) =

ρu
ρu2 + p
ρuv

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,g(q) =

ρu
ρuv

ρv2 + p

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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The Jacobians for 2-d compressible flow

There are now two Jacobian matrices, for the quasilinear form

with the barotropic equation of state                       these are:

ʹ′f (q) =
0 1 0

−u2 + ʹ′P (ρ) 2u 0
−uv v u

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,   ʹ′g (q) =

0 0 1
−uv v u

−v2 + ʹ′P (ρ) 0 2v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

qt + ʹ′f (q)qx + ʹ′g (q)qy = 0

p = P(ρ)
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Shallow-water equations in 2 dimensions 

In two dimensions the shallow-water equations are:

and the flux Jacobians are (similar to barotropic compressible flow):

ht + (hu)x + (hv)y = 0

(hu)t + hu2 + 1
2
gh2⎛

⎝⎜
⎞
⎠⎟ x
+ (huv)y = 0

(hv)t + (huv)x + hv2 + 1
2
gh2⎛

⎝⎜
⎞
⎠⎟ y
= 0

h = height of wave above bottom

u,v = speed of bulk water motionρ = water density

ʹ′f (q) =
0 1 0

−u2 + gh 2u 0
−uv v u

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,   ʹ′g (q) =

0 0 1
−uv v u

−v2 + gh 0 2v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25

torsdag 3. november 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Eigensystem for shallow-water equations

The Jacobian matrix            has these eigenvalues and eigenvectors:

and the other Jacobian matrix            has similar pattern, reversing u and v:

Notice the eigenvectors are different, but in general we have two nonlinear 

fields with the eigenvalues                  and the linearly degenerate field          .  

ʹ′f (q)

   λ x1 = u − c,          λ x2 = u,        λ x3 = u + c,     c = gh

rx1 =
1

u − c
v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,r x2 =
0
−1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,r x3 =
1

u + c
v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ʹ′g (q)

   λ y1 = v − c,          λ y2 = v,        λ y3 = v + c

ry1 =
1
u

v − c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,r y2 =
0
−1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,r y3 =
1
u

v + c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
n ⋅ u ± c  

n ⋅ u
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The Euler equations in 3 dimensions

In 2 dimensions, we have 4 equations, and in 3 dimensions 5 equations:

The energy is                                                                             and this 

system still needs to be supplemented with an equation of state                    . 

Again there will be eigenvalues of the form            and                 , where

There are two nonlinear acoustic fields and one linearly degenerate field.   

qt + f (q)x + g(q)y + h(q)z = 0

q =

ρ

ρu
ρv
ρw
E

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, f (q) =

ρu
ρu2 + p
ρuv
ρuw

(E + p)u

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,g(q) =

ρv
ρuv

ρv2 + p
ρvw

(E + p)v

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,h(q) =

ρw
ρuw
ρvw

ρw2 + p
(E + p)w

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 E = ρe+
1
2 ρ
u ⋅ u = ρe+ 1

2 ρ u2 + v2 + w2( )
e = e(p,ρ)

 
n ⋅ u ± c 

n ⋅ u c = dp
dρ
.
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Multidimensional Numerical 
Methods 

(Chapter 19 in Leveque)
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Finite Volume     vs        Finite Difference

Qij

xi

yjQij Qi+1, jQi−1, j

Qi, j+1

Qi, j−1

xi−1/2 xi+1/2

yj−1/2

yj+1/2

The values are considered to be averages within cells:

The values are considered to be 
evaluated on a grid:

Qij
n ≈

1
ΔxΔy

q(x, y,tn )dxdyxi−1/2

xi+1/2

∫yj−1/2

yj+1/2

∫
Qij

n ≈ q(xi , yj ,tn )
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The finite-difference form is useful for 
developing the Lax-Wendroff formula 
via a Taylor-series expansion

We consider first the linear system, with A and B constant 
(though noncommutative) matrices:

We make a Taylor-series expansion of q at the point             at 
time             in terms of its value at time    :

qt + Aqx + Bqy = 0

q(xi , yj ,tn + Δt) = q + Δtqt +
1
2
Δt 2qtt +…

= q − Δt(Aqx + Bqy )+
1
2
Δt 2 (A2qxx + ABqyx + BAqxy + B

2qyy )+…

(xi , yj )
tn + Δt tn

Qij

xi

yj
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Two-dimensional Lax-Wendroff
The pure double derivatives are approximated as in 
one dimension:

and there are also cross-double-derivative terms:

giving the method:

qxx ≈
1
Δx

⎛
⎝⎜

⎞
⎠⎟

2

Qi−1, j
n − 2Qi, j

n +Qi+1, j
n( )

qyy ≈
1
Δy

⎛

⎝⎜
⎞

⎠⎟

2

Qi, j−1
n − 2Qi, j

n +Qi, j+1
n( )

qxy = qyx ≈
1

4ΔxΔy
Qi+1, j+1

n −Qi−1, j+1
n( )− Qi+1, j−1

n −Qi−1, j−1
n( )⎡⎣ ⎤⎦

Qij
n+1 =Qij

n −
Δt
2Δx

A Qi+1, j
n −Qi−1, j

n( )− Δt
2Δy

B Qi, j+1
n −Qi, j−1

n( )

+
Δt 2

2Δx2
A2 Qi+1, j

n − 2Qij
n +Qi−1, j

n( ) + Δt 2

2Δy2
B2 Qi, j+1

n − 2Qij
n +Qi, j−1

n( )

+
Δt 2

8ΔxΔy
(AB + BA) Qi+1, j+1

n −Qi−1, j+1
n( )− Qi+1, j−1

n −Qi−1, j−1
n( )⎡⎣ ⎤⎦

Qij

xi

yj
Qi+1, jQi−1, j

Qi−1, j+1 Qi, j+1 Qi+1, j+1

Qi−1, j−1 Qi, j−1 Qi+1, j−1

31

torsdag 3. november 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Again, Lax-Wendroff is a good starting 
point, but we need to do better…

In a finite volume approach, using upwind biasing and flux limiting we can 
achieve second-order accuracy and high-resolution in multi-dimensions as 
we did in one dimension.

Note: the Riemann problem at a cell edge is essentially one-dimensional; we 
can do the problem as before, and bring in multidimensional information to 
improve the solution.

You can 

use a full flux-differencing (dimensionally unsplit) approach (better) or

split the problem into a sequence of one-dimensional problems (easier, but 
you have to take care of the corners)
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We update the conserved 
quantity by keeping track of the 
fluxes into and out of each cell 
(and sources and sinks, as 
relevant)

The fully discrete flux 
differencing method to update 
Q for the next time step is:

Qij
n+1 ≈Qij

n −
Δt
Δx

Fi+1/2, j
n − Fi−1/2, j

n( ) − Δt
Δy

Gi, j+1/2
n −Gi, j−1/2

n( )

Qij Qi+1, jQi−1, j

Qi, j+1

Qi, j−1

xi−1/2 xi+1/2

yj−1/2

yj+1/2 Fi−1/2, j Fi+1/2, j

Gi, j+1/2

Gi, j−1/2

For conservation laws, finite volume 
methods are natural
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The fluxes are found by integrating along the edges

With a Taylor expansion we approximate these, to second-order in time, as:

These fluxes can be used to re-interpret the Lax-Wendroff formula as a finite 
volume method. 

Fi−1/2, j
n ≈

1
ΔxΔy

f (q(xi−1/2 , y,t))dydtyj−1/2

yj+1/2

∫tn

tn+1

∫

Gi, j−1/2
n ≈

1
ΔxΔy

g(q(x, yj−1/2 ,t))dxdtxi−1/2

xi+1/2

∫tn

tn+1

∫

Fi−1/2, j ≈ Aq(xi−1/2 , yj ,tn )−
Δt
2
A2qx (xi−1/2 , yj ,tn )−

Δt
2
ABqy (xi−1/2 , yj ,tn )

Gi, j−1/2 ≈ Bq(xi , yj−1/2 ,tn )−
Δt
2
B2qy (xi , yj−1/2 ,tn )−

Δt
2
BAqx (xi , yj−1/2 ,tn )
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The Godunov method is simpler

Here we simply find the Riemann solution that propagates with zero speed 
(straight up the time axis) and evaluate the flux functions at these values:

            is obtained by solving the Riemann problem for                            and

            is obtained by solving the Riemann problem for                           . 

Fi−1/2, j = f (Qi−1/2, j
↓ )

Gi, j−1/2 = f (Qi, j−1/2
↓ )

Qi−1/2, j
↓

qt + f (q)x = 0

qt + g(q)y = 0Qi, j−1/2
↓

xi−1/2tn

tn+1

xi+1/2
Qi

n Qi+1
n

 Wi−1/2
2

 Wi−1/2
3

 Wi+1/2
1

Qi−1
n

 Wi−1/2
1
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We can adopt the fluctuation form

Here the high-resolution corrections in the second line can be omitted for the 
pure Godunov method, or they can be included with appropriate flux limiters 
for high-resolution techniques.

  

Qij
n+1 =Qij

n −
Δt
Δx
A+ΔQi−1/2, j +A−ΔQi+1/2, j( )− Δt

Δy
B+ΔQi, j−1/2 +B−ΔQi, j+1/2( )

              − Δt
Δx
Fi+1/2, j − Fi−1/2, j( )− Δt

Δy
Gi, j+1/2 − Gi, j−1/2( )
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Dimensional Splitting - Godunov Splitting
We can split a multidimensional problem into a sequence of one-dimensional 
steps, for example for the two-dimensional linear problem:

In the x sweeps, we march along in i, 
keeping j fixed, and update 

In the y sweeps, we march along in j, 
keeping i fixed, and update

Alternating the order of the sweeps every 
time step is equivalent to Strang splitting 

Qij
* =Qij

n −
Δt
Δx

Fi+1/2, j
n − Fi, j−1/2

n( )

Qij
n+1 =Qij

* −
Δt
Δy

Gi, j+1/2
* −Gi, j−1/2

*( )

qt + Aqx + Bqy = 0        
x sweeps:  qt + Aqx = 0
y sweeps:  qt + Bqy = 0
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Multidimensional Scalar 
Equations  

(Chapter 20 in Leveque)

torsdag 3. november 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

High-resolution methods for scalar 
hyperbolic equations in two dimensions

Start once again with the constant-velocity advection equation, this time with 
a velocity                   with both x and y components. We consider both 
positive for now.

Then of course the solution is the unchanged original function, simply 
translated with time at the velocity    . But now it’s moving at an angle.

A Taylor series expansion gives us 

qt + uqx + vqy = 0

 
u = u,v[ ]

 
u

q(x, y,tn+1) = q(x, y,tn )− uΔtqx − vΔtqy

            + 1
2

(Δt)2 u2qxx + vuqxy + uvqyx + v
2qyy⎡⎣ ⎤⎦ +…

39

torsdag 3. november 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Donor-cell upwind method

The donor-cell upwind method is simply

with                                                           as before. This can be written in the 
fluctuation form 

with 

and without the corrective limited fluxes, i.e. 

Qij
n+1 =Qij

n −
Δt
Δx

u+ Qi, j
n −Qi−1, j

n( ) + u− Qi+1, j
n −Qi, j

n( )⎡⎣ ⎤⎦

               − Δt
Δy

v+ Qi, j
n −Qi, j−1

n( ) + v− Qi, j+1
n −Qi, j

n( )⎡⎣ ⎤⎦

u+ = max(u,0),   u− = min(u,0)

  

Qij
n+1 =Qij

n −
Δt
Δx
A+ΔQi−1/2, j +A−ΔQi+1/2, j( )− Δt

Δy
B+ΔQi, j−1/2 +B−ΔQi, j+1/2( )

              − Δt
Δx
Fi+1/2, j − Fi−1/2, j( )− Δt

Δy
Gi, j+1/2 − Gi, j−1/2( )

 F = G = 0
 A

+ΔQi−1/2, j = u
± Qij −Qi−1, j( ),    B+ΔQi, j−1/2 = v

± Qi, j −Qi, j−1( )
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The naive donor-cell upwind method 
misses the contribution from the corner

This method will have stability problems. Dimensional splitting (doing an 
intermediate update with a sweep in one direction, followed by a sweep in 
the other direction) may help.

Qij

Qi, j−1

Qi−1, j Qij

Qi, j−1

Qi−1, j

Qi−1, j−1

Qij
n+1 =Qij

n −
Δt
Δx

u+ Qi, j
n −Qi−1, j

n( ) + u− Qi+1, j
n −Qi, j

n( )⎡⎣ ⎤⎦

               − Δt
Δy

v+ Qi, j
n −Qi, j−1

n( ) + v− Qi, j+1
n −Qi, j

n( )⎡⎣ ⎤⎦

The true velocity is at 
an angle to the grid.

 
u
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A better approach is to use the REA technique

The Godunov REA scheme can be easily 
extended to two (or three) dimensions:

1. Reconstruct a piece-wise linear function from 
the cell averages.

2. Evolve the advection equation exactly with 
these data to obtain a later-time function. 

3. Average this function over each grid cell to 
obtain new cell averages.

 q
n (x, y,tn+1)

qn (x, y,tn ) =Qij
n  for x, y in cell i, j

 
Qij

n+1 =
1

ΔxΔy
qn (x,tn+1)xi−1/2

xi+1/2

∫ dxdy
yj−1/2

yj+1/2

∫

 
u
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Colella’s corner-transport upwind method

Following the REA procedure results in:

This expression is rearranged and simplified from 
Leveque’s Eqn 20.10

This is still just first-order accurate, but can be 
improved by introducing limited slopes, just as we did 
for 1-dimension.

Let’s look at it in still a different way.

Qij
n+1 =Qij

n −
uΔt
Δx

Qi, j
n −Qi−1, j

n( )− vΔt
Δy

Qi, j
n −Qi, j−1

n( )

               + uvΔt
2

ΔxΔy
Qi, j

n −Qi−1, j
n −Qi, j−1

n +Qi−1, j−1
n( )

Qi, j−1

QijQi−1, j

Qi−1, j−1
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Wave-propagation implementation of CTU

In a sense, we turn CTU inside out.

Consider transport from the edges (faces), not the 
corners.

From the interface between (i–1,j) and (i, j) a 
wave goes into both (i, j) and (i, j +1): and four 
distinct waves affect (i, j).

You can work out how much each wave 
contributes to each cell from simple geometry. Just 
sum up the areas of the little triangles and 
squares!

j

j +1

j −1

i +1i −1 i
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This interpretation leads to the fluctuation format

with the fluctuations defined as for Lax-Wendroff:

but now with the correction fluxes:

  

Qij
n+1 =Qij

n −
Δt
Δx
A+ΔQi−1/2, j +A−ΔQi+1/2, j( )− Δt

Δy
B+ΔQi, j−1/2 +B−ΔQi, j+1/2( )

              − Δt
Δx
Fi+1/2, j − Fi−1/2, j( )− Δt

Δy
Gi, j+1/2 − Gi, j−1/2( )

 A
±ΔQi−1/2, j = u

± Qij −Qi−1, j( ),    B±ΔQi, j−1/2 = v
± Qi, j −Qi, j−1( )

 

Fi−1/2, j = −
1
2
Δt
Δy

uv(Qi−1, j −Qi−1, j−1),

Fi+1/2, j = −
1
2
Δt
Δy

uv(Qij −Qi, j−1),

Gi, j−1/2 = −
1
2
Δt
Δx

uv(Qi, j−1 −Qi−1, j−1),

Gi, j+1/2 = −
1
2
Δt
Δx

uv(Qij −Qi−1, j ).
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Generalise to variable-velocity advection
The fluctuations generalise easily, using the cell-interface velocities:

But now the fluxes must be rewritten for the transverse velocities, taking into 
account that the velocities may be either negative or positive. The correction 
fluxes are set to zero to start each time step, then built up from consideration 
of the signs of the velocities. There are four possibilities in each direction. 

First set 

Then do an x-sweep to update

 

 A
±ΔQi−1/2, j = ui−1/2, j

± Qij −Qi−1, j( ),    B±ΔQi, j−1/2 = vi, j−1/2
± Qi, j −Qi, j−1( )

    
Fi−1/2, j := 0 and  Gi, j−1/2 := 0      ∀i, j

 

Gi−1, j−1/2 := Gi−1, j−1/2 −
1
2
Δt
Δx

ui−1/2, j
− vi−1, j−1/2

− (Qij −Qi−1, j ),

Gi−1, j+1/2 := Gi−1, j+1/2 −
1
2
Δt
Δx

ui−1/2, j
− vi−1, j+1/2

+ (Qij −Qi−1, j ),

Gi, j−1/2 := Gi, j−1/2 −
1
2
Δt
Δx

ui−1/2, j
+ vi, j−1/2

− (Qij −Qi−1, j ),

Gi, j+1/2 := Gi, j+1/2 −
1
2
Δt
Δx

ui−1/2, j
+ vi, j+1/2

+ (Qij −Qi−1, j ).

j

j +1

j −1

i +1i −1 i
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Transverse fluxes are also needed

A transverse Riemann solver takes the right- and left-going fluctuations

and makes the four transverse fluctuations 

These are then used to update the correction fluxes

Similarly a y-sweep to update the       terms, also including the transverse 
fluxes.

 

 

B−A+ΔQi−1/2, j = vi, j−1/2
− ui−1/2, j

+ Qij −Qi−1, j( )
B+A+ΔQi−1/2, j = vi, j+1/2

+ ui−1/2, j
+ Qij −Qi, j−1( )
B−A−ΔQi−1/2, j = vi, j−1/2

− ui−1/2, j
− Qij −Qi−1, j( )
B+A−ΔQi−1/2, j = vi, j+1/2

+ ui−1/2, j
− Qij −Qi, j−1( )

 A
±ΔQi−1/2, j = ui−1/2, j

± (Qij −Qi−1, j )

 F

 G
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Then to High-Resolution

For the extension to high-resolution, all that is needed now is to add 
additional correction terms to        and        :

Once again,              represents the appropriately slope-limited version of the 
wave.

For the advection equation the waves are simply 

 F  G

  

Fi−1/2, j := Fi−1/2, j +
1
2
ui−1/2, j 1−

Δt
Δx

ui−1/2, j
⎛
⎝⎜

⎞
⎠⎟
Wi−1/2, j

Gi, j−1/2 := Gi, j−1/2 +
1
2
vi, j−1/2 1− Δt

Δy
vi, j−1/2

⎛

⎝⎜
⎞

⎠⎟
Wi, j−1/2

  
Wi, j−1/2

 

Wi−1/2, j =Qij −Qi−1, j

Wi, j−1/2 =Qij −Qi, j−1
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Then to nonlinear conservation laws:
The scheme just developed works for nonlinear conservation laws as well. 
The waves are

  

the speeds are

the fluctuations are 

and the second-order correction terms are

with a similar, but slightly different recipe for the transverse fluxes…

 

Wi−1/2, j =Qij −Qi−1, j

Wi, j−1/2 =Qij −Qi, j−1

si−1/2, j =
f (Qij )− f (Qi−1, j )⎡⎣ ⎤⎦ / (Qij −Qi−1, j )  if Qi−1, j ≠Qij

ʹ′f (Qij )                                          if Qi−1, j =Qij

⎧

⎨
⎪

⎩⎪

si, j−1/2 =
g(Qij )− g(Qi, j−1)⎡⎣ ⎤⎦ / (Qij −Qi, j−1)  if Qi, j−1 ≠Qij

ʹ′g (Qij )                                          if Qi, j−1 =Qij

⎧

⎨
⎪

⎩⎪

 A
±ΔQi−1/2, j = si−1/2, j

± Wi−1/2, j ,    B±ΔQi, j−1/2 = si, j−1/2
± Wi, j−1/2

  

Fi−1/2, j := Fi−1/2, j +
1
2
si−1/2, j 1−

Δt
Δx

si−1/2, j
⎛
⎝⎜

⎞
⎠⎟
Wi−1/2, j

Gi, j−1/2 := Gi, j−1/2 +
1
2
si, j−1/2 1− Δt

Δy
si, j−1/2

⎛

⎝⎜
⎞

⎠⎟
Wi, j−1/2
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Multidimensional Systems of 
Equations  

(Chapter 21 in Leveque)
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Constant coefficient linear system

We look first at the linear system, with A and B constant (though 
noncommutative) matrices: 

and we will adopt the fluctuation form for the update:

so we will need the fluctuations themselves and the correction fluxes.

qt + Aqx + Bqy = 0

  

Qij
n+1 =Qij

n −
Δt
Δx
A+ΔQi−1/2, j +A−ΔQi+1/2, j( )− Δt

Δy
B+ΔQi, j−1/2 +B−ΔQi, j+1/2( )

              − Δt
Δx
Fi+1/2, j − Fi−1/2, j( )− Δt

Δy
Gi, j+1/2 − Gi, j−1/2( )

51

torsdag 3. november 2011



FYS-GEO 4500   Galen Gisler, Physics of Geological Processes, University of Oslo  Autumn 2011

Wave-propagation approach

The algorithm goes as follows:

1. Initialize 

2. Sweep through in x, solving each Riemann problem. Get the waves and 
speeds and compute the fluctuations. For the constant-coefficient linear 
case, the fluctuations are

3. With slope-limited waves, the correction fluxes are updated:

4. As in the scalar case, right-going transverse fluctuations are defined:

    
Fi−1/2, j := 0 and  Gi, j−1/2 := 0      ∀i, j

 
A±ΔQi−1/2, j = si−1/2, j

p( )±
p=1

m

∑ Wi−1/2, jp = A±ΔQi−1/2, j

  
Fi−1/2, j := Fi−1/2, j +

1
2

si−1/2, j
p 1− Δt

Δx
si−1/2, j
p⎛

⎝⎜
⎞
⎠⎟
Wi−1/2, jp

p=1

m

∑

 B
±A+ΔQi−1/2, j = B

±A+ (Qij −Qi−1, j )
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Wave-propagation approach, continued
5. Use the fluctuations                          to update the correction fluxes 

above and below the current cell:  

6. Now left-going transverse fluctuations are defined and used to update 
the correction fluxes above and below the previous cell:

7. Sweep through in y, solving each Riemann problem as in steps 2-6. Get 
the waves and speeds and compute the fluctuations                    . Split 
these waves transversely to modify the      correction fluxes.   

8. Finally, apply the updating formula:

 F

 B
±A+ΔQi−1/2, j

  
Gi, j+1/2 := Gi, j+1/2 −

Δt
2Δx
B+A+ΔQi−1/2, j ,  Gi, j−1/2 := Gi, j−1/2 −

Δt
2Δx
B−A+ΔQi−1/2, j

  
Gi−1, j+1/2 := Gi−1, j+1/2 −

Δt
2Δx
B+A−ΔQi−1/2, j ,  Gi−1, j−1/2 := Gi−1, j−1/2 −

Δt
2Δx
B−A−ΔQi−1/2, j

 B
±ΔQi, j−1/2

  

Qij
n+1 =Qij

n −
Δt
Δx
A+ΔQi−1/2, j +A−ΔQi+1/2, j( )− Δt

Δy
B+ΔQi, j−1/2 +B−ΔQi, j+1/2( )

              − Δt
Δx
Fi+1/2, j − Fi−1/2, j( )− Δt

Δy
Gi, j+1/2 − Gi, j−1/2( )
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Så enkelt er det!

We’re basically done. 

Leveque then goes on to describe how the two-dimensional algorithm is 
implemented in Clawpack, and illustrates examples for the acoustic 
equations (as a linear system) and the shallow-water equations (as a 
nonlinear system). 

There are some examples you can run in the code you have already.

There’s just one small thing more to be concerned with, before we do our 
projects, and that’s some new aspects of boundary conditions that apply in 
multi-dimensional systems.
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Boundary conditions
Boundary conditions are handled in two or more 
dimensions in much the same way as they are in one 
dimension - by using ghost cells in all dimensions. 
Note that the corners need to be taken care of and 
properly filled. 

Periodic: simply copy the data from the other side of 
the grid (doubly periodic maps a torus!). 

For Solid Walls, it is the velocity normal to the wall 
that is negated in the ghost cells (the x velocity along 
the right and left edges and the y velocity along the 
bottom and top edges) while the other quantities are 
copied from the neighboring interior cells. In 
particular, any tangential velocity (free slip) is 
allowed.

These boundary conditions, and simple extrapolation, 
are implemented in clawpack/2d/lib/bc2.f

A two-dimensional grid with a border 
of two ghost cells on all boundaries

Physical 
boundary 
of problem

Ghost cells
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Boundary conditions - Extrapolation

Extrapolation of outgoing waves is also 
included in clawpack/2d/lib/bc2.f, 
and often works fairly well. It works perfectly 
for waves moving normal to the boundaries, 
but may cause spurious reflections for 
waves moving obliquely, especially in the 
corners. See the discussion in Leveque 
section 21.8.5. 

The simplest solution is to make the 
computational box large enough that 
reflections don’t affect the region of interest.

Transmitted 
normal wave 
- OK

Partially reflected 
oblique wave - 
May cause trouble
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Boundary conditions - Extrapolation

Extrapolation of outgoing waves is also 
included in clawpack/2d/lib/bc2.f, 
and often works fairly well. It works perfectly 
for waves moving normal to the boundaries, 
but may cause spurious reflections for 
waves moving obliquely, especially in the 
corners. See the discussion in Leveque 
section 21.8.5. 

The simplest solution is to make the 
computational box large enough that 
reflections don’t affect the region of interest.

Transmitted 
normal wave 
- OK

Partially reflected 
oblique wave - 
May cause trouble

Another possibility is to fill a portion of the interior adjacent to the boundary 
with material of high impedance so that waves passing through are 
attenuated. This is tricky, and may result in loss of hyperbolicity. Also this 
absorbing material will diffuse into the interior and may affect the solution.
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No-Slip Boundaries

Real fluids experience wall friction and form a thin boundary layer next to a 
wall in which the tangential velocity rapidly approaches zero. In this 
boundary layer, viscosity is important, and there is therefore a loss of 
hyperbolicity in this region. You can implement no-slip conditions by negating 
the tangential velocity in the ghost cells, but be careful to watch for non-
physical spreading of the resultant vorticity beyond the boundary layer.

No-slip 
boundaries
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What we’ve accomplished

We started with the one-dimensional advection equation, and developed a 
Godunov-style REA approach tailored to it;

We realised that systems of linear hyperbolic partial differential equations 
could be broken down into independent advection equations;

We learned how Riemann problems can be used to advance the solution of 
such problems from one time step to the next;

We learned that the procedure can be generalised to nonlinear hyperbolic 
equations and systems of equations;

We learned (perhaps) to accept the compromise of approximate Riemann 
solvers for nonlinear systems;

And we’ve extended what we’ve learned in one dimension to (at least) two.

Now a tiny bit more about the practicalities of the code - 
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Project recipe:

Write down all the equations of the problem in conservative form, including 
closure relations (equations of state, for example). You should also prepare 
an entropy equation that will be calculable should transonic conditions (or 
centred rarefactions) arise.

Find the Jacobian of the corresponding quasilinear system, and calculate its 
eigenvalues and eigenvectors. 

For an arbitrary pair of right and left states, solve the Riemann problem, 
either exactly or approximately. Then write down general formulas for the 
waves,             , the wave speeds    , the fluctuations                     and the 
entropy fix for the transonic case.
 Wi−1/2

p
 A

±ΔQi−1/2s±
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Project recipe, continued

Under $CLAW/myclaw, prepare a new directory for the routines you must 
write. Write the Riemann solver (rp1.f or rp2n.f and rp2t.f) in Fortran in this 
directory. Copy over $CLAW/util/(testrp1.f or testrp2n.f), modify it and use it 
to test your Riemann solver. 

Figure out what special work space you need, what boundary conditions, 
source terms, and other things that you want, and what special variables you 
need to input or initialise. Then write (or copy and modify) the appropriate 
routines (driver, setprob, setaux, qinit, bcN, b4stepN, srcN) in the same 
directory. Write (or copy and modify) a Makefile that points to these files, 
and construct setrun.py and setplot.py to fill the data files and make the 
plots. 

Finally: compile, run, and check your results. 
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Examples of potential projects using Clawpack 
Euler equations:

Explosive volcanic eruptions
High-energy meteor impacts

Shallow-water equations:
Tsunami in a fjord system or in a basin of varied bathymetry

Dusty gas equations:
Fluidisation and hydrothermal venting
Geysers
Volcanic jets
Pyroclastic flows
DeLaval nozzle in a dusty gas

Airy-wave equations:
Normal (deep or intermediate) water waves
Pockmarks
Atmospheric dispersal of contaminants
Climate patterns

Elastic equations:
Seismic waves and deformations following impacts or severe earthquakes
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Assignment for next time

Skim Chapter 16, read Chapter 17 through 17.5 (more 
if you’re interested) and read all of Chapters 18 and 
19 (they are short!).

Write a one-paragraph draft description of a project you 
would like to do with Clawpack, including a description of 
the physical circumstances, and how you might 
implement it in code. Indicate the dimensionality of the 
problem, the equations you would like to solve (naming 
the equation set will be sufficient for this draft), whether 
there are source terms, what boundary conditions, etc.

Based on the project drafts, I will prepare some practical 
advice that I can give you.

Come talk to me regarding anything you would 
specifically like me to cover (or review) at the next lecture; 
particularly if you have any doubts about how to proceed 
with your project.
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Next: 
Waves in Elastic Media (Ch 22) 

and project particulars
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