
Projet 3, FYS-KJM4480, Fall 2009Projet 3, deadline 12pm Friday November 20This is the last projet. We present a simpli�ed Hamiltonian (whih has many ommon traits with the Lipkin modelof projet 1) onsisting of an unperturbed Hamiltonian and a so-alled pairing interation term. It is a model whih toa large extent mimiks some entral features of atomi nulei, ertain atoms and systems whih exhibit super�uiditityor superondutivity. To study this system, we will use a mix of many-body perturbation theory, Hartree-Fok theoryand the on�guration interation method. The latter will also provide us with the exat answer. When setting up theHamiltonian matrix you will need to solve an eigenvalue problem (as you did for the Lipkin model). This an easilybe done with either otave or Matlab.We de�ne �rst the Hamiltonian, with a de�nition of the model spae and the single-partile basis. Thereafter, wepresent the various exerises. Introdution and HamiltonianThe Hamiltonian ating in the omplete Hilbert spae (usually in�nite dimensional) onsists of an unperturbedone-body part, Ĥ0, and a perturbation V̂ .We limit ourselves to at most two-body interations, our Hamiltonian is then represented by the following operators
Ĥ =

∑

αβ

〈α|h0|β〉a
†
αaβ +

1

4

∑

αβγδ

〈αβ|V |γδ〉a†αa
†
βaδaγ ,where a†α and aα et. are standard fermion reation and annihilation operators, respetively, and αβγδ representall possible single-partile quantum numbers. The full single-partile spae is de�ned by the ompleteness relation

1̂ =
∑∞

α=1
|α〉〈α|. In our alulations we will let the single-partile states |α〉 be eigenfuntions of the one-partileoperator ĥ0.The above Hamiltonian ats in turn on various many-body Slater determinants onstruted from the single-basisde�ned by the one-body operator ĥ0. As an example, the two-partile model spae P is de�ned by an operator

P̂ =

m∑

αβ=1

|αβ〉〈αβ|,where we assume that m = dim(P) and the full spae is de�ned by
P̂ + Q̂ = 1̂,with the projetion operator

Q̂ =

∞∑

αβ=m+1

|αβ〉〈αβ|,being the omplement of P̂ .Our spei� model onsists of N doubly-degenerate and equally spaed single-partile levels labelled by p = 1, 2, . . .and spin σ = ±1. These states are shematially portrayed in Fig. 1. The �rst two single-partile levels de�ne apossible model spae, indiated by the label P . The remaining states span the exluded spae Q.We write the Hamiltonian as
Ĥ = Ĥ0 + V̂ ,where

Ĥ0 = ξ
∑

pσ

(p− 1)a†pσapσ



2and
V̂ = −

1

2
g

∑

pq

a
†
p+a

†
p−aq−aq+.Here, H0 is the unperturbed Hamiltonian with a spaing between suessive single-partile states given by ξ, whihwe will set to a onstant value ξ = 1 without loss of generality. The two-body operator V̂ has one term only. Itrepresents the pairing ontribution and arries a onstant strength g. The indies σ = ± represent the two possiblespin values. The interation an only ouple pairs and exites therefore only two partiles at the time, as indiated bythe rightmost four-partile state in Fig. 1. There one of the pairs is exited to the state with p = 9 and the other tothe state p = 7. The two middle possibilities are not possible with the present model. We label single-partile stateswithin the model spae as hole-states. The single-partile states outside the model spae are then partile states. Themodel is not so di�erent from the Lipkin model studied in projet 1.In our model we have kept both the interation strength and the single-partile level as onstants. In a realistisystem like an atom or the atomi nuleus this is not the ase.Exerises1. Show that the unperturbed Hamiltonian Ĥ0 and V̂ ommute with both the spin projetion Ŝz and the totalspin Ŝ2, given by

Ŝz :=
1

2

∑

pσ

σa†pσapσand
Ŝ2 := Ŝ2

z +
1

2
(Ŝ+Ŝ− + Ŝ−Ŝ+),where

Ŝ± :=
∑

p

a
†
p±ap∓.This is an important feature of our system that allows us to blok-diagonalize the full Hamiltonian. We willfous on total spin S = 0. In this ase, it is onvenient to de�ne the so-alled pair reation and pair annihilationoperators

P̂+
p = a

†
p+a

†
p−,and

P̂−
p = ap−ap+,respetively.Show that you an rewrite the Hamiltonian (with ξ = 1) as

Ĥ =
∑

pσ

(p− 1)a†pσapσ −
1

2
g

∑

pq

P̂+
p P̂

−
q .Show also that Hamiltonian ommutes with the produt of the pair reation and annihilation operators. Thismodel orresponds to a system with no broken pairs. This means that the Hamiltonian an only link two-partilestates in so-alled spin-reversed states.2. Construt thereafter the Hamiltonian matrix for a system with no broken pairs and spin S = 0 for the aseof the four lowest single-partile levels indiated in the Fig. 1. Our system onsists of four partiles only. Oursingle-partile spae onsists of only the four lowest levels p = 1, 2, 3, 4. You need to set up all possible Slaterdeterminants. Find all eigenvalues by diagonalizing the Hamiltonian matrix. Vary your results for values of

g ∈ [−1, 1]. We refer to this as the exat alulation. Comment the behavior of the ground state as funtion of
g.
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FIG. 1: Shemati plot of the possible single-partile levels with double degeneray. The �lled irles indiate oupied partilestates while the empty irles represent vaant partile(hole) states. The spaing between eah level p is onstant in this piture.The �rst two single-partile levels de�ne our possible model spae, indiated by the label P . The remaining states span theexluded spae Q. The �rst state to the left represents a possible ground state representation for a four-fermion system. In theseond state to the left, one pair is broken. This possibility is however not inluded in our interation.3. Instead of setting up all possible Slater determinants, onstrut only an approximation to the ground state(where we assume that the four partiles are in the two lowest single-partile orbits only) whih inludes at mosttwo-partile-two-hole exitations. Diagonalize this matrix and ompare with the exat alulation and ommentyour results. Can you set up whih diagrams this approximation orresponds to?4. Hereafter we will de�ne our model spae to onsist of the single-partile levels p = 1, 2. The remaining levels
p = 3, 4 de�ne our exluded spae. This means that our ground state Slater determinant onsists of four partileswhih an be plaed in the doubly degenerate orbits p = 1 and p = 2.We will now study the system using non-degenerate Rayleigh-Shrödinger perturbation theory to third order inthe interation. If we exlude the �rst order ontribution, all possible diagrams (Hugenholz diagrams where theverties have been opened) are shown in Fig. 2.Based on the form of the interation, whih diagrams ontribute to the binding energy of the ground state?Write down the expressions for the diagrams that ontribute and �nd the ontribution to the ground state
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FIG. 2: Diagrams to third order in the interation. The �rst order term is exluded.energy as funtion g ∈ [−1, 1]. Comment your results. Compare these results with those you obtained in 2) and3).5. The diagrams with only two single partile states as intermediate states (for example diagrams 1 and 4 in Fig. 2)an be summed to in�nite order sine they an be expressed as a geometri series. Find this ontribution andompare the �nal energy with the results from 2) and 3). Comment your results. You an also perform aresummation of diagrams like diagram 5 with hole lines as intermediate states only between various verties.Can you �nd this result as well? Compare now the �nal results with the resummed two-partile and two-holediagrams with the results from 2) and 3).6. We will now set up the Hartree-Fok equations by varying the oe�ients of the single-partile funtions. Thesingle-partile basis funtions are de�ned as
ψp =

∑

λ

Cpλψλ.where in our ase p = 1, 2, 3, 4 and λ = 1, 2, 3, 4, that is the �rst four lowest single-partile orbits of Fig. 1.Set up the Hartree-Fok equations for this system by varying the oe�ients Cpλ and solve them for values of
g ∈ [−1, 1]. Comment your results and ompare with the exat solution. Disuss also whih diagrams in Fig. 2that an be a�eted by a Hartree-Fok basis. Compute the total binding energy using a Hartree-Fok basis andomment your results.7. To fourth order in perturbation theory we an produe diagrams with so-alled four-partile-four-hole exitations.An example is given in Fig. 3. Find the ontribution to the binding energy of the ground state from this type

FIG. 3: An example of a fourth-order diagram with an intermediate state involving four-partile-four-hole exitations.



5of ontributions and ompare with your previous results with and without a Hartree-Fok basis. Disuss inpartiular the onnetion with the results in exerise 2) with the full diagonalization where Slater determinantsinvolving four-partile-four-hole exitations are involved.8. When summing over all intermediate states in diagram 1 or 4 of Fig. 2, we have limited the sum over intermedatepartile states to inlude the states p = 3 and p = 4 only. Compute this sum by taking the limit p = ∞. Commentyour results.
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