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Preface to the English
edition

The world around us consists of interacting many-particle systems. The aim
of theoretical atomic, molecular, condensed matter and nuclear physics is
to describe the rich variety of phenomena of such systems. Modern many-
particle theory is a common denominator of all these, in detail rather dif-
ferent, disciplines of physics and is the subject of this book.

Perhaps the most important fundamental concept of many-particle the-
ory is based on the idea that an interacting many-particle system can be
described approximately as a system of non-interacting ‘quasi-particles’.
However, if we want to mathematically rigorously demonstrate this intuitive
idea, a rather complicated formalism is necessary. This formalism rests on
three cornerstones. (1) The so-called second quantization, (2) the method of
Green’s functions, and (3) perturbation-theoretical analysis using Feynman
diagrams. These three cornerstones presently form the framework within
which many experiments are formulated and understood. Not in the least
because of the overwhelming technological importance that many-particle
effects in condensed matter physics have attained in recent years, these cor-
nerstones of many-particle physics must be regarded as part of the standard
graduate physics curriculum.

Our aim in writing this book is to present the basics of many-particle
theory in a closed and easily accessible form. The presentation is primarily
aimed at students of theoretical and experimental physics, but should also
be useful to mathematicians interested in applications, and to theoretically
oriented chemists. Only a basic grasp of fundamental quantum mechanics
taught in introductory courses is assumed. On this foundation, the mate-
rial is developed in a systematic and self-contained way. The material in
this book consists of well-known results, and great emphasis is placed on
performing derivations in detail, without skipping intermediate steps. This
makes the material ideal for the use in courses, minimizing the preparations
necessary.

The examples are selected to first of all illustrate the relations between




the mathematical formalism and physically intuitive concepts. A complete
overview of the endless uses of many-particle theory cannot and should not
be given within the scope of this book. It is, however, our goal that this book
will give the reader the necessary fundamental knowledge of many-particle
theory to understand the original literature in condensed matter physics,
nuclear physics and quantum chemistry.

There are many people to whom we owe thanks for the preparation of this
book. An understandable presentation of Feynman diagrams is impossible
without skilled technical artists. Many thanks to Mrs. Buffo for preparing
the original artwork, and to the staff at IOP Publishing for very meticulously
removing the artwork from the original German manuscript and pasting it
into the English manuscript. Many people have helped us with the tedious
task of proof-reading the manuscript, and mercilessly pointed out gross or
subtle errors, and asked pointed questions about ‘what we really mean by’
vague and ill-formulated statements. In particular Elisabeth Runge, Mike
Johnson, Phil Taylor and Jay Shivamoggi have been extremely helpful. We
also thank Leslie McDonald and our editor at IOP Publishing, Lauret Tip-
ping, for helping to transform a strange concoction of German, Swedish and
English into something we hope passes for English.

Eberhard Gross
Erich Runge
Olle Heinonen

vi




Contents

9

Preface A
Fundamentals and Examples 1
Systems of identical particles 3
Second quantization for fermions 17
Second quantization for bosons 31
Unitary transformations and field operators 33

Example: the Hamiltonian of translationally invariant

systems in second quantization 39
Density operators 43
The Hartree—Fock approximation 51

Restricted Hartree-Fock approximation and the symmetry
dilemma 67

Hartree—Fock for translationally invariant systems 73

10 The homogeneous electron gas in the Hartree—Fock

approximation 79
11 Long-range correlations in the electron-gas: plasmons 89
12 Phonons 103

13 Superconductivity 123

Vil




s

/

IT Green’s Functions
14 Pictures
15 The single-particle Green’s function

16 The polarization propagator, the two-particle Green’s
function and the hierarchy of equations of motion

IIT Perturbation Theory
17 Time-independent perturbation theory

18 Time-dependent perturbation theory with adiabatic
turning-on of the interaction

19 Particle and hole operators and Wick’s theorem
20 Feynman diagrams
21 Diagrammatic calculation of the vacuum amplitude

22 An example: the Gell-Mann—Brueckner correlation
energy of a dense electron gas

23 Diagrammatic calculation of the single-particle
Green’s function: Dyson’s equation

24 Diagrammatic analysis of the Green’s function G(k,w)
5
25 Self-consistent perturbation theory, an advanced
perspective on Hartree-Fock theory

26 The quasi-particle concept

27 Diagrammatic calculation of the two-particle Green’s
function and the polarization propagator

28 Effective interaction and dressed verticés, an advanced
perspective on plasmons

29 Perturbation theory at finite temperatures

viil

139
141
153

179

187

189

195
205
219

237
255

275

285

297

305
321

339

349




IV  Fermi Liquid Theory 359

30 Introduction 361
31 Equilibrium properties 365
32 Transport equation and collective modes 377

33 Microscopic derivation of the Landau Fermi liquid

theory 385
34 Application to the Kondo problem 413
References 421
Further reading 425
Index 429







Part 1

Fundamentals and Examples







Chapter 1

Systems of identical particles

Identical particles are particles which have the same masses, charges, sizes
and all other physical properties. In the realm of classical mechanics, iden-
tical particles are distinguishable. For example, consider a collision of two
identical billiard balls — we can follow the trajectory of each individual ball
and thus distinguish them. However, in the physics of microscopic particles
where we must use quantum mechanics, the situation is quite different. We
can distinguish identical particles which are very far apart from each other;
for example, one electron on the moon can be distinguished from one on the
earth. On the other hand, when identical particles interact with one another,
as in a scattering experiment, the trajectory concept of classical mechanics
cannot be applied because of Heisenberg’s uncertainty principle. As a conse-
quence, microscopic particles which interact with each other are completely
indistinguishable — they cannot be distinguished by any measurement.

The measurable quantities of a stationary quantum mechanical system
are the expectation values of operators that represent the observables of the
system. If the system consists of identical particles, these expectation values
must not change when the coordinates of two particles are interchanged in
the wavefunction. (If we could find expectation values which do change
when the coordinates of two particles are interchanged, we would have found
measurable quantities by which we could distinguish the particles.) Thus,

we require that for any possible state ¥ of the system and for all observables
B

/de\Il*(:cl,...,:z:j,...,:ck,...,:L'N)B\If(xl,...,:L'j,...,:ek,...,:vN)

= /de\If*(ml,...,:ck,...,:cj,...,xN)B‘II(;cl,...,:ck,...,:vj,...,xN)
(1.1)

for all pairs (j, k). (We use a caret to denote operators.)

3




4 SYSTEMS OF IDENTICAL PARTICLES

The coordinates 2 = (r, s) contain the space and spin degrees of freedom
of the particles. We use the notation

/dxzzfd% and /dN:czfd:cl/dm.../d:cN.
S

To a certain extent, equation (1.1) above defines a system of identical
particles. By using this equation, we will derive properties of both the wave-
function and of the operators that describe a system of identical particles.
In so doing, we need only require that the expectation values remain un-
changed when we interchange fwo particles, since each possible permutation
of the particles can be expressed as a sequence of two-particle interchanges.
In mathematical terms, each permutation P can be expressed as a product

of transpositions Pjj
P = H ij.

The transpositions P;j are expressed as operators with the action

~

Pir9(zy,...,z5,..., 2%, ...,2N) = U(21,..., 25, ..., 2,..., ZN)

on a many-particle wavefunction. Applying the permutation operator ij
twice restores the original wavefunction. Hence, it follows that

~

ijf)jk =Id= 1, S0 ]Sj_-l = ij.
By means of these transposition operators, equation (1.1) can be written
(T | B|¥) = (P0 | B|P¥) = (V| P]Tkéﬁjk | O)  for all (j, k).

This equation must hold for all state functions in the Hilbert space under
consideration. The equation can then be inserted on the right-hand side of
the identity

(<1>|B|\If}:i—<(<b+\1![B|<I>+\Il)—(<1>—\D[B|<I>—-\II)

—i(<I>+i\Il{B[<I>+z’\II)+i(<I>—i\II[B]@—i\ll})

which yields
(@ B| @)= (2| P BP;y | V)

for all (j, k) and for arbitrary wavefunctions ® and ¥ in the Hilbert space.
This implies the operator identity

B=Pl BPy  forall (j k). (1.2)
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In particular, if we take B to be the identity operator, i.e., B =1, it follows
that '

Multiplication from the right with ﬁjk yields

5. — pt
Pk = Pjy

so that finally we obtain

5=-1 _ p. = pf
Pi = Pjk = Pjy.

Thus, the operators that correspond to transpositions of particles are self-
adjoint and unitary (so long as they operate on the space of state functions
of identical particles).

If we multiply equation (1.2) from the left with f’jk, we obtain

~ ’\-—A /\T A A _ ~ A~

The operators which represent the observables of a system of identical par-
ticles must therefore commute with all permutation operators:

[B,ij} =0 forall (j, k). (1.3)

We will now calculate the eigenvalues of the transposition operators. Let
¥ be an eigenfunction of Pj; with eigenvalue a;zy:

P]k‘I’ = G(Jk)‘I’

It follows that
_ p2 —_ 2 2 —
¥ = ij‘Il = a(jk)\ll, 50 Ay = 1.

Since the operators Pj i are self-adjoint, their eigenvalues are real. Thus
a(jk) = #+1.

In particular, equation (1.3) must hold if B is the Hamiltonian H of the
system under consideration:

[Er,ﬁjk] =0 for all (j,k).
Hence, any solution of the Schrédinger equation with proper symmetries

under particle-interchange must be a simultaneous eigenfunction of H and
of all P;x (and thus of all possible permutation operators P).




6 SYSTEMS OF IDENTICAL PARTICLES

It seems reasonable to expect that if a function ¥ is an eigenfunction of
all Py, the eigenvalues of all P;; must be identical:

~

Pip¥ = aqq)¥  for all (J, k).
Indeed, we can prove this by writing the transposition ij as
Py = Py Py Pia Py P
so that
» _ .2 2 —
ij\p = a(lj)a(2k)a(12)q’ = a(lz)‘I’
for all possible (j, k). We now make the following definitions.

If pjk\I' = +V¥ for all (j, %), we say that ¥ is symmetric.

If ij\]? = -V for all (j, k), we say that ¥ is antisymmetric.

Thus, the state function of a system of identical particles must be either
symmetric or antisymmetric.

If ¥g is symmetric and ¥4 is antisymmetric, it is clear that for any
possible permutation P we have

PUg=+4Tg

and
P\I’A = sgn(P) . \IlA

where sgn(P) = +1 if P contains an even number of transpositions, and
sgn(P) = —1 if P contains an odd number of transpositions. Symmetric
and antisymmetric functions are always orthogonal:

(Wal¥s) = (Pal|Ppp|¥s) = (Va|Pf|¥s)
(Pir¥a|¥s) = —(¥a]|¥s)

50 (‘I’A l \Ifs) = 0.

Up to this point we have implicitly assumed that there exist simultane-
ous eigenfunctions, i.e., symmetric or antisymmetric functions, of all ij.
Because the transposition operators do not commute, it is not clear that
there exists a non-trivial space of functions in which all transposition oper-
ators are simultaneously diagonal. We will construct such functions by an
explicit procedure below. We start by defining a symmetrization operator

S by
-
PeSy




FUNDAMENTALS AND EXAMPLES 7

and an antisymmetrization operator A by

~

A= z sgn(P)P.

PeSy
Each sum runs over all elements P of the permutation group Sy. If
f(z1,...,zN) is an arbitrary function of N variables, we can use the oper-
ation

\I’S(:Bl,...,CEN) = S'f(wl,...,zN)

to construct a symmetric function; and through the operation

Uu(zy,...,zn) = Af(er,...,2N)

we can construct an antisymmetric function, since for any P;; we have

Pus= Y Pub= 3 P=5§
PeSy PeSy
and
p]kfi = Z sgn(P) (P_;,kp)
PeSy
= 3 [-sen (PP)] (P P)
PeN
= > [-sen(P)]P
PeN
= A
and thus
ﬁjk\Ilg = Vg
ij\IlA = Uy

for all (j, k). Using this procedure, we can construct both symmetric and
antisymmetric eigenfunctions of any given many-particle Hamiltonian.

At this point, we introduce a principle of fundamental importance, gen-
erally known as the symmetry postulate:

The Hilbert space of state functions of a system of
identical particles contains either only symmetric or only
antisymmetric functions.

In the first case, the particles are called bosons, and in the second case
fermions. The so-called spin-statistics theorem [1], which we will not prove
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here, states that bosons only have integer spin and that fermions only have
spin equal to half of an odd integer.

To prove the symmetry postulate, we start with an eigenfunction ¥g of
the Hamiltonian with definite symmetry, i.e., ¥g is either symmetric or anti-
symmetric. Any possible state function ¢ of the system can be characterized
by a non-vanishing overlap with at least one state BUq that can be obtained
by operating on ¥q by any possible operator B. With P; ik Yo = p¥o, where
p=+1or p= -1, it follows from equation (1.3) that

(Pjx® | BUo) = (®|BPjp¥o) =p(®|BY)

i.e., we have

pjkq) = pfb

for any function ® which is not in the subspace orthogonal to B ¥g. In other
words, any such function ® must obey the same permutation-symmetry as
Y.

As an example, we consider a system of non-interacting identical parti-
cles, which are acted upon by an external potential. The Hamiltonian for
this system is

R N X N N 72
Hy = Zhi = Z [t + ;) = Z (-—%V? +u(mi)> .
We assume that we have solved the associated one-particle problem

hou(z) = 6,6, ().

(We will always use Greek indices to denote the quantum states which char-
acterize the single-particle orbitals, for example v = (n,!,m).) We can then
construct symmetric and antisymmetric solutions 3(5) and @(4) to the full
problem by simply applying the symmetrization and antisymmetrization
operators .S and A, which were introduced earlier, to a product of single-
particle orbitals:

o5 = ! Sp : (1.4)

= (P11 (21) - Puo (= ) vy (EN))
VNI ni! Pesy 1 : :

q)(A) = Z Sgn ¢V1(1’1)¢u2 (372) ¢VN(23N)]

¢uy(21) -+ du(zw)

%l** ﬁ!

: : (1.5)
Sun(z1) - Sun(zn)
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The prefactors are chosen such that ®(5) and ®(4) are normalized. Here,

each k (< N) in ®(5) denotes a distinct orbital and ny denotes the number

of particles that occupy each state v;. A corresponding additional prefactor

has no effect on ®(4) | since the determinant vanishes for nj > 1 in any case.
The functions defined in this way are eigenfunctions of

F,0(5/4) = £e(S/4)
with eigenvalues

N
E= me-
t=1

We will give a brief proof for the case N = 2. The proof is quite analogous
for arbitrary N.

o/ (21, 29) = %[¢1(-’U1)¢2(1‘2)i¢1($2)¢2(-’81)]
Hod /M (z1,29) = ﬁl%[él(ﬁ)%(%)i¢1(1‘2)¢2($1)]

+}Al2_\_/]:._§ [P1(z1)d2(z2) £ ¢1(x2)P2(1)]

_ % le161(21)a(22) £ €261 (22)pa(z1)

+ ea01(z1)d2(z2) £ €101(x2)d2(x1)]

= (e1+€2) % [#1(21)p2(x2) £ d1(22)d2(21)]

= (61 -+ 62) Q(S/A)(:Bl,xg).

The fermion wavefunctions ®(4) above are called Slater determinants. Upon
inspection, we can deduce the following interesting facts about these func-
tions.

(1) If two particles are the same, v; = v; for some i # j, we have o4 = 0.

(2) If two columns of the determinant are identical, so that x; = x; for
~some i # j, we have ®(4) = 0.

The wavefunction vanishes in both cases; and as a result, the probability of
finding such a state vanishes as well. This has two consequences.

(1) It is impossible to have two fermions in the same state; one state can
be occupied by no more than one particle.

(2) It is impossible to bring two fermions with the same spin projection
to the same point.
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These two statements comprise the Pauli principle. An essential assump-
tion for this principle is that the particles are independent, ¢.e., that they
do not interact with one another, so that the many-particle states can be
characterized by occupied and unocéwﬁliefcl single-particle orbitals. Pauli
originally formulated the principle for atoms, in which case the assumption
that such systems can be realistically regarded as consisting of independent
particles (i.e., that the electron—electron interactions can be reasonably well
described by an effective external potential), is the basis for the principle.
We will justify this assumption in later chapters which discuss the Hartree—
Fock approximation.

It should be emphasized that no such principle exists for bosons. Con-
sequently, we can put an arbitrary number of bosons in one single-particle
state.

The symmetric state ®(5) is completely determined given the single-
particle states that it contains, e.g.

(S) _ 1
(I)(V11/4u4) = 7——1‘513%;3 P ¢, (21)0v, (z2) 0, (23)].-

In contrast, the antisymmetric state ®(4) is only determined to within a
sign by the single-particle states that it contains. For example, we can
define two-particle states from ¢,, and ¢,, by

(I)(A) _ bui (1) Puy (22)

(1ve) = /3 | e (1) buy(z2)

or by
’ ¢u4 1'1 ¢V4(£2)
1/11/4) \/_ b (T1) vy (22)

We can remove this last ambiguity of the fermion wavefunctions by assigning
an arbitrary, but hereafter always the same, enumeration to the v;:

(4

" V9 s
) ! !
¢1(z) ¢2(z) o3(x)

and, according to the same principle, by enumerating the single-particle
orbitals that belong to these quantum numbers. Given an ordered N-tuple
of indices

c=(c1,c2,...,CN)

with ¢; € N, where N is the set of natural numbers, and ¢; < ¢y < ... < ey
the Slater determinant

A
<I>£ )(arl,xg,...,;cN) =

Z sgn(P) - P[pe, (21)dc, (22) - Bey(zN)]

PGSN

=
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is then unambiguously defined; for by giving the sequence, each product of
single-particle orbitals distinguished by increasing indices and consequently
corresponding to identical permutations, is defined by a positive sign. Hence,
the signs of all other permutations are also determined. As a result, the
example above becomes

=(1,4) = o (@,2) == ¥ sgn(P)- Plg1(e1)d4(z2)]

PeSy
[¢1($1)¢4($2)-¢1($2)¢4($1H

¢1(z1) ¢1(z2)
¢4(z1) oa(z2)

¢1(z1)  Balzy)
2| #1(22) Ba(z2)

The value of the determinant is invariant under interchange of all rows and
columns so long as the enumeration is retained. We use

o

i

Sl S-S

P(1,2,..,N)=(P(1), P(2),...,P(N))
to denote symbolically a permutation of N elements. For example
P(1,2,3) = (3,2,1) = P(1) = 3, P(2) =2, P(3) = 1.

Thus, the Slater determinant can be written in either of two ways:

@gA)(xl,...,mN)

\/___ Z sgn(P)e., (-’L‘p(l)) ey (mP(N))

PeSy

1
I Z sgn(P)chP(l)(:cl) < Bepow (zN).

" PeSy

These two possibilities correspond to the row—column interchanges in the

determinant. Both exist for the completely symmetrized wavefunction @ﬁs)
as well. We will also characterize the symmetric functions by ordered N-
tuples of indices, but for symmetric functions the ordering is unimportant.

In the remainder of this chapter will we prove one more important prop-
erty of the many-particle wavefunctions ®(5 5) and ®(4). For each observable
B of a system of identical particles, we have

N! 3
___I__I_\I{_—_Ec_)_'_/de@ZBgﬁcl(m)--~¢cN($N) (
Vili=1 g

/dN;c ®;Bd, = 1.6)
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both for ® = ®(5) and for ® = ®(“) (in the latter case, Hk ) )! = 1).

We will prove this only for the Slater determinant ®(4) — the proof for (5
is similar. By definition

/dN:L'CI)Z‘BCDC =/ ZB ngn P by (z1) .- ey (en)]
' P

Since we have BP PB for observables of the system, this expression

becomes

7 [ e ) P[00 deylen)]

—\/;[:!/de;sgn(P) P (P-lcpg) Béey(21) . .. dey (2N).

As P71@} = sgn(P~1) - ®} = sgn(P)®;, we may write this as

\/_ Z sgn?( /dNa: &} Boe,(21) - .- ey (zN)-

Since the value of the integral remains unchanged if we interchange the
integration variables z; — =z P(i)> We therefore obtain the same value for

each permutation (altogether N! times), and thus arrive at the expression

m/de@g(ml,...,mN)B¢cl(m1)...anCN(:L'N).

With these results, we can prove that the orthonormality of the families of

many-particle functions {<I>£S) } and {<I>£A)} follows from the orthonormality
of the single-particle orbitals {¢,(z)}. Explicitly, we must show that

/de ;D = by .. (1.7)

For ®(4), equation (1.7) with b = ¢ becomes
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/ or0,dVs = VNI / AV e®26e(21) . fen (2n)
= m/de\;—;Sgn(P)¢zp(x)($1)-~-¢:p(N)(1’N)

Nt
X¢¢1(£1)'~¢CN($N)
- ZSgn(P)/dxl(ﬁzp(l)(ml)(ﬁcl(rl)/dwz'-~

P
[ den 62, (an)en(an)

L v
~

=6p(N),N

= 1.

Since we have assumed that the {¢;} are orthogonal, the product of integrals
will be non-zero only for the identity permutation

P(1)=1,P(2)=2,...,P(N)=N

in which case the result is unity because sgn(Id)=1 and because the single-
particle orbitals are normalized. If b # c, there exists at least one index b;,
which is not contained in ¢. It follows that at least one factor in the product
of integrals shown above always vanishes — therefore the entire expression
also vanishes. The proof is similar for symmetric functions (5. If, in this
case, a particular single-particle state is multiply occupied, the sum over
all permutations contains several non-vanishing terms whose contribution is
reduced precisely by a factor Hi{:l ng:c)!.

We conclude this chapter by proving the extremely important complete-
ness theorem:

If the family {¢,(z)} is complete, so too are the

families {CD'(CA)} and {<I>£S)} of many-particle functions in
the corresponding Hilbert spaces of antisymmetric and
symmetric many-particle functions, respectively.

As an example, consider localized spinless particles. The theorem assures
that if {¢,(r)} is complete in LIgA), then {@,(:A)(rl, ...,rN)} is complete in

L (R3 xR x ... xR?)

N times

and {@&S)(rl, ...,rN)} is complete in

£gs)(:1€3x723x...x7€3:)

e

N times
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where ﬁ(ZS/A)(’RB X ... X R3) denote the Hilbert spaces of symmet-

ric/antisymmetric square-integrable functions on R3 x ... x R3 with R3
the three-dimensional Euclidean space.

To prove the theorem, we begin by showing that an arbitrary many-
particle wavefunction can be expanded in products of single-particle func-
tions. We fix the last N — 1 coordinates at a:z(-o)
the wavefunction with respect to the first one:

,1=2,3,..., N, and expand

V(zy, mgg)) R ‘ES\?)) = Z ayy Guy (T1)-

2
The expansion coeflicients are functions of the fixed coordinates:

O 40, ..,20)

Ay, = Qy, (:c2 y T3y

so that
\I’(.’L'l,ZEQ,. .. ):L‘N) = Zalq(l‘?; .. ‘)wN)¢V1(x1)~

If we expand further with respect to the next coordinates

aul(x% e axN);-: Zalq,l/z(w?n e -1:8N)¢V2 (1:2)

v2

and so on, we obtain

Z Z Ay 1 Buy (21)buy (22)

vy V2

= Z aul,...,uN¢V1 (xl) R ¢I/N ((UN)

V1ol N

‘I’(l‘l,l‘Q,...,(L’N)

If the functions ¥ have definite symmetries Isjk\I! = +W¥ with ‘4’ for bosons,
and minus for fermions, we can conclude that the expansion coefficients
Qyy vs,...vy have the same symmetry:

Z iaul,...,Vj,...,uk,...,VN¢U1 (1'1) . e ¢uj (33_7) . -¢uk (l'k) s ¢1/N(73N)

U1yl N
= :i:\I’(CL'l,...,:L'j,...,Z’k,...,l’N)
= pjk‘p(xl,u.,arj,...,xk,...,xN)
= U(ry,..., 2., T5...,ZN)

= Z aul,...,u]',...,Vk,-..uN¢y1(171) ¢VJ(Zk)"'¢Vk(xj)---¢uN(xN)

V1oV N

= N iy (81) o B (@) by (25) - Gun (EN)-

V1,..sUN
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On the last line, the indices were simply renamed, v « v;. If we compare
the last line with the first, it follows from the linear independence of the
product functions that

:talq,...,uj,...,uk,...,uN = Quyye Uiy ly e N = L3RV Vg Wk VN

Thus, it follows that the coefficients belonging to permuted index combina-
tions

(u{,ué,...,u}v) = P(U1,V2,...,VN)

differ at the most by a multiplicative sign, so that

+
a, 1= a
ViyeesVy ( SgIl(P) | BV1yeea VN

with ‘+’ for bosons and sgn(P) for fermions. In the last step of the proof,
we also replace the multiple sums over all indices in

U(zy,...,zN) = Z by (1) - dun (EN) 0,y

VlyosV N
by an (infinite) sum over all ordered combinations ¢ = (v4,...,vy), connect-
ing a (finite) sum over all permutations P(vy,...,vy) of these combinations,
with the result
\I‘(l‘l, e ,m’N)

= Z Z P [aul ,...,VN¢V1 (1?1) v ¢VN(xN)] :

e=(v1,...vN) P(c)=P(v1,....vN)

By using the above result

' +
CP(v1yeevy) = CP(c) = ( sgn(P) ) Gc
it follows finally that

CHENIES S Dl (S | CRCHIRENES)

c PeSy
= ZfC(I)S:S/A)(xl)"')xN)'

We have shown then that we can expand arbitrary symmetric or antisym-

metric functions in <I>£S) and <I>£A), respectively. The coeflicients a. differ
from the coefficients f. due to the normalization of the function ®(5/4),







Chapter 2

Second quantization for
fermions

In this chapter, we will define annihilation and creation operators. These
operators are mappings between the many-particle Hilbert spaces of different
particle numbers:

& H(N) —H{N-1) (2.1)
e . H(N-1)—>H(N) keN (2.2)

For example, for localized systems, we can think of H(N) as

LgA)(ZQE‘xRe’x...x’R,i)

N times

the Hilbert space of square-integrable antisymmetric functions on R3x...x
R3. v

We proved in the previous chapter that the Slater determinants
®c(z1,...,2y) form a basis in the N-fermion Hilbert space. We define
the action of the annihilation operators é; on this basis by

ékq)(cl,...,cN)(zly ceey :L'N) = O, if & ¢ {(31, .. .,CN)

and if k = ¢;, by

eEP(cyyen) (21,0 ZN) = (_1)j‘1‘1>(c1,...,c,~_1 ip1rcn) (®1re - EN-1)
~1)-1

- ( ) 1 Z Sgn(P)P (‘1561 (ml) K -¢cJ'_1 (-’Uj—l)¢cj+1 (iEj+1) . ) .
(N = 1)! PESm_s

(2.3)

17
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The variables x; are only written out for the sake of clarity — the é; are
operators on Hilbert spaces and act on abstract functions. The notation
introduced here is commonly used and its meaning is clear even though the
numbers of the arguments on either side of the equivalence differ.

Essentially what happens when é; acts on a Slater determinant is that
the orbital with index k is crossed out from the determinant. Pictorially
speaking, the particle which occupied this orbital is ‘annihilated’. From the
fixed sign it is important to remember the the Slater determinant is only
unambiguously determined by a given ordered N-tuple ¢ = (¢1,¢9,...,cn),
with ¢; < ¢a... < ¢pn, ¢; € N. The orbital ¢;, which is crossed out by the
action of ¢, thus has a ‘fixed place’ inside the Slater determinant. According
to the definition given in equation (2), the orbital to be crossed out must
first be moved to the top of the determinant, which gives rise to the sign
(=1)~1. The meaning of this sign-convention will be made clear in the
following example. If we assume that k = ¢;, we can illustrate the action of
¢ as follows:

Pey (131) cee Py (.’BN)
1 : :
ck"‘\/ﬁ ‘ch'(l'l) SOCJ'(‘L'N)

pen(@1) . pen(en)

This corresponds to the following operations:

(1) interchange the row with ¢; = k with each row above it until it is at
the top of the determinant, which gives a prefactor (—1)771;

(2) cross out the first row and the last column of the determinant;

(3) normalize the new determinant.

Thus,

!
/
9001(1’1) v Py (xN) /
) 1 . . ;
ckv—jv"' Socj'(ml) ce <PCJ'(Q"N)
(ch(zl) . SOCN((L'N) “/;
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(1!

VIV = 1)

Ly (~1)~1
T JIVN=T)!
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par(e1) .. Pei(EN)

Pea (z1) Pea (mN)
Pcj1 (z1) Pej—1 (zN)
Peita (21) Pejt+1 (zn)

SOCN(:L'l) Pen (zn)

Pcr (xl) Per (zN—-l)
Pej—1 (971) Pcj1 (mN—l)
Pejign (z1) Pejsn (zN-1)

Yen(21) Py (ZN-1)

The operators ¢ are defined as lLinear operators on the Hilbert space
‘H(N). The action of é; on a general many-particle wavefunction ¥ is then
completely determined by the expansion of ¥ in Slater determinants, ¥ =

¥ = ¢ (Z fc<1>c)

Zc fe®e:

1

=) fe ().

We define the creation operator ¢, as the adjoint of ¢;. Hence, the action

1
of ¢

(611;‘I>c | CI’b) =

(®c | ExDp)
{ (—1)77(®; | ®p_gz)) if there is a j with k = b;
0

and from equation (1.7), this is

on a Slater determinant follows from the definition of adjoint operators.
If . € H(N — 1) and &, € H(N), we have

otherwise

{ (—1)j_160’b_{k} if there is a j such that k = b;
0

otherwise

N

— i—1
= 2:(_1)z beybybcaby - bc;_yb;_y Okb; 6cibi+1 by _iby

i=1

0

otherwise

{ ("1)j—165’b if there is a j such that ¢;_) <k <¢;
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where ¢ denotes the N-tuple which is the result of inserting k between c;_1
and c; in ¢. Furthermore, this is equal to

{ (=1)7~1(®; | &) if there is a j for which ¢j—1 < k < ¢;
0 otherwise.

We have thus shown that

@z@c - {(—1)j_1<1>5 if there. isajwith ¢j_1 <k <c¢j
0 otherwise.

This result clearly means (if ¢; < k < czy1)

1 pei(21) . pelzN)
At : :
ck\/m : :
pey(z1) .. pen(EN)
ve(z1) ... er(eNt1)
B 1 Pei(x1) .- Pey(TN+1)
- /(N F D! : :
pey(®1) oo ey(TNt1)
Peq (IU]_) cee P ($N+1)
1| gedn) el
= | wslz1) ... erlenp
t
(N + 1)! SOC[+1(w1)
SOCN(zl) SOCN(mN-I-l)
The action of éz thus ‘creates’ an additional particle in the state ¢;. As

with éj, the action of EL on an arbitrary many-particle state ¥ =3 fo®.

is clear from the linearity of the adjoint operators:

efw =l [Z feo| = fo (elec) -
(o4 C

According to equations (2.1) and (2.2) the creation and annthilation
operators map Hilbert spaces of fized particle numbers onto each other.
However, the formalism of second quantization is especially suited for prob-
lems with variable particle numbers. Therefore, it is more appropriate to
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form the product Hilbert space F = @y~ H(N) from the Hilbert spaces
(H(N),{ | Yn) of antisymmetric wavefunctions of N particles. We define
the scalar product on F to be the natural scalar product

(R v @ en) =D (¢n | on)N-
N=0 N=0 N=0

We can then regard ¢, and cz as operators on the space F, the so-called
Fock-space, instead of as collections of operators which map different Hilbert
spaces H(N) onto one another.

In single-particle quantum mechanics the states are usually represented
by the quantum numbers in the Dirac notation, e.g., the state | ném) with
position representation (r | ném) = ¢,4,,. We can characterize the Slater
determinants in an analogous way by their associated N-tuples of indices:
| ¢) with the position—spin representation {z1,...,zn | ¢) = ®c(21,...,ZN).

Another equivalent possibility is the so-called occupation-number repre-
sentation:

| ¢) =| ny,n9,n3,...)
with n; =0ifi & {c1,...,en}
and n; = 1ifi € {c1,...,cen}-
For example, suppose ¢1, ¢3 and ¢4 are occupied, so ¢ = (1, 3,4). This gives

’ 1,3)4> :| 11’02)13) 14a05a06) . )

We should keep in mind that the position-spin representation of such an ab-
stract state vector is simply a normal Slater determinant, just as before. By
using the occupation-number representation, however, we can write the the
action of the creation and annihilation operators somewhat more compactly:

) | n}
ek | n1,y .oy 1, . = (—l)[23<k ! | n1,...,0p,...)
¢kl n1,..,0k,...) = 0

or, in summary
ér | m1, .. ng, ..y =0gng | ny, ..., 0k, ...)
with

b = (1) [Ticurs],

Likewise, we have

el Iny,.. 0k,

.
T —

bp |y, ...y 1g,..0)
&g, 1) = 0
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and hence

éLlnl,...,nk,...) = 0p(l—ng)|ny,..., 1g,...).

If we act with an annihilation operator ¢; on a ‘determinant’ which
only has the state ¢, occupied, a ‘zero-row’ determinant remains. In this
determinant, there are no longer any occupied states. We define this state
as the vacuum.

ék i 01:--"Ok-111k10k+1:'-') _——:.! V&c) :l 0)
Obviously, we have

¢, 10)=0 forallkin V.

By applying the creation operators to the vacuum state, we can generate
every possible N-particle state. We obtain the basis functions through

oo
|c1,c2,...,cN):cglclz...c}v!0):H(cz) | 0).

k=1
This correspondence between 5;[1 632 ...Ccy | 0) and the determinant con-
taining the elements ¢, (z;) contains minus signs, since the factor (—1)7~1
was not included directly in the definition of the operators éy.
We now arrive at the most important property of the fermion creation
and annihilation operators: their anticommutation relations

{ép,é} = 0
{ehely = o
@le) = 6o (2.4)

The proof of the anticommutation relations runs as follows:

Epée | n1, .. ng, .y mp, ) = Bpmpéy |y, .., ng, ..., 0p,. )
= G0knyny | ny,...,08,...,00...)
Celg |y, ng, .o g, ) = Ogngée | ny, ..., 0k, .. g, )
= 9k§gnkne I nl,...,Ok,...,Og,...).

The factor 8, is just —8,, unless we have n = 0, in which case the entire
expression vanishes. Hence, we can write the last expression as

—6k6£nkn£ I N1, ')Oka cee >O£ﬂ )

Thus, we have (¢xC¢ + é46x) | n1,...,ng,...) = 0 for any arbitrary Slater
determinant, and the first of the anticommutation relations above follows.
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The proof of the remaining relations runs analogously. As an example, we
will also show the proof of the last one for the case £ = k:

ékéz |1,y ngy. ) = E0k(1—ng) | n1,... 1k, .. 0)
0,0r(1 —ng) | ny,...,0k,...)
= (1=ng)|ny,...,0...).

il

ézéklnl,...,nk,...) = 6£9knk|n1,...,0k,...)
= 9k9knk(1—0)lnl,...,lk,...)
= ng|ny,.., k...

Thus,

(azaﬁakaz) TV T

|1,y 1py..) ifng=1
| n1,...,08,...) ifng=

|nq, .. gy )

1.e.
{eha)=1

Because of the property 5£5k | ny,ng,...) = ng | n1,n2,...), we can

introduce the number operator N through
N=Y el (2.5)
From this definition, it follows that

o0
N|ny,ng,...)= (an> | n1,ng2,...) = N |ni,ng,...)

k=1

for Slater determinants.
If we expand an arbitrary many-particle state in Slater determinants (or
completely symmetrized functions in the case of bosons), we obtain:

19y =3 el @0) = el | ) =3 fetler | 20) = 3 fonl? | @),

Thus, the expectation value of the number of particles in the single-particle
state £ in the state | ¥) is

() = (¥ | &eg | 0) = 5" fufeni (@0 | 8e) = 3 | o P ).

c ¢
Since >, |f-|2 = 1, it follows that

0<(ng) <1
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for fermions (nﬁ,c) =0or1).

In the remainder of this chapter, we will express ‘normal’ operators (i.e.,
the operators that we are familiar with from first quantization) in terms of
the creation and annihilation operators. The result is known as the second
quantization representation of the operators. We will show that we have:

(1) for single-particle operators

Ho-Zh (2:) = Z |k 5)ele; (2.6)

1,5=1

with (i|h|j) = [ ¢7(z)h(z)¢;(z)dz; and

(2) for local two-particle operators

=5 E v(m,m,)—é— Z Gilolkoeldlee,  (27)
:.7 =1 't]kf...
¢

with (ij[o[k6) = [ [ ¢1(2)6%(2")o(z, 2" )8 (x)de(e") dz do’.

The action of the operators in second quantization defined by equations
(2.6) and (2.7) is defined only on Slater determinants. Hence, to determine
the action on an arbitrary many-fermion wavefunction, that wavefunction
must first be expanded in Slater determinants. In contrast, the operators
in first quantization act directly on the coordinates of the many-particle
wavefunction. It is important to emphasize that equations (2.6) and (2.7)
imply that the operators in first and second quantization are equal, i.e.,
their actions on an arbitrary many-fermion wavefunction lead to the same
result.

To prove this identity, we must show that the actions of the operators
are identical on the complete set of Slater determinants; z.e.

N 00
STh(z) @) = 3 (i | h|j)ele; | @) for all &

=1 t,g=1

and

1 o0
QZv(w,,:c])Ifb :5 Z zjlvllce czckICI))forall@c.

RE)
=1

To prove these identities, we once again expand the states on the left and on
the right in the complete set {®;} and show that the expansion coefficients
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are identical, 7.e., that the matrix elements satisfy

N o0
S(@y L h(z:) @)= S (1R 5)(@ | Ele; | @)
=1 1,7=1

for all ®,. and ®;; and that

N 00
ST (@ o(oneg) [ B) = S (57 10| kO, | dleledy | 32)
"»',.;‘—;_1 17kf=1

for all ®p and ®.. We begin with the single-particle operator in the first
quantization. From equation (1.6) we have

N

D (@ | h(zy) | @)

=1

N ~
- Zm‘; / ANz & (a1, ..., 2n)h(2:)dey (1), - -, Boy (2N)

C TS s ([ i@tz ) .

=1 PESN

X ... (/ qSZP(‘,)(xi)iz(xi)qﬁci(a:i)dwg) (/ : .dmN) :

The (N — 1)-fold product of integrals in which A(z;) does not appear, con-
tains at least one factor in which the indices of the single-particle orbitals
are interchanged. As a result, this factor vanishes. It follows that the ma-
trix element vanishes if two or more indices in the N-tuples b and ¢ are
interchanged. Thus, there are only two cases to consider:

(H)b=c

N
e o8] = 3 3% sen) ([ #2000 (e0)ten ) .

x ( / qs:,,(,.)(m,-)ﬁ(xz-)qsq(xi)dx,-)

The (N — 1)-fold product of integrals which do not contain (z;) van-
ishes unless

CP(l) =C1, CP(Z) =C2 4.0y CP(i—l) =Ci—-1 , CP(H—I) =Ci41 -
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Hence, we must also have cP(? = ¢;, so that we obtain a non-zero

expression only for the identical permutations:
N -~
(0. | o | @) / Sr(eh(e) dei = Yo [ Rl e (29)
=1
(2) b and c differ in one index; e.g., by & c and ¢; € b, or in detail
bl = O
bp—1 = g1
by
b1 = ¢
by = ¢y
ce
ber1 = e
by = ecn.

In this case we can only obtain a non-zero value when the integral
with h(:cz) contains the two different orbitals ¢., and ¢p,. Thus, the
sum over ¢ only gives one contribution for the case i = ¢, whereas the
sum over all permutations gives a non-zero contribution only for one
particular permutation Py. This permutation is given by

Py(1) =1 Pok—1)=k—1
Po(k)=k+1 P(f—1)=¢
Po(f)=k Pyl+1)=¢+1
P(N=1)=N-1 Py(N)=

In this case we obtain

(@5 | Ho | ®c) = sgn(Po)(by | | co).

We must now show that the second-quantization representation of Hy leads
to the same matrix elements:

oo o0

DGR GN® ele; |y = S (i | h|§)(edy | &)

i,=1 ij=1
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If there are some ¢ = b, and j = ¢4, we have

(&P | EP) =i Pr.. b 1. #s. . eN)

where §, and £ indicate that the states b, and cs have been annihilated.
The matrix element apparently vanishes if b and ¢ differ in more than one
index. We must then further consider the following two cases:

() b=c

) ) 0 fori#j
621590 = { (5, | s | 0 = (o |8 =i for i 2
Thus
~ w N
(®c | Ho | @) =Y mili || i) = {ei | h]ecy).
=1 =1

(2) br & c and cp ¢ b. In this case, we have

. oy J 1l ifi=0bgand j=¢
(€:®p | £;®c) = { otherwise

where the respective signs correspond to the sgn(Pp) above, so that
we obtain

(®5 | Ho | @c) = sgn(Po)(by | h | cq).

Thus, the statement is proven for single-particle operators.
The calculations become rather lengthy for two-particle operators (par-
ticularly in first quantization). In summary, one obtains

) b=c

N

(@, | V| 30 =% S (leic |91 eie) = (eiej |9 | eje))  (29)

1,9=1
(2) by # ci for one k, but by = ¢, for s # k:
X N
(@ [V | ®c) =) ((eibk | 9] cick) — (bres | 9| cicy))
1=1

(3) bk # c and by # cq for one k and one £, but bs = ¢, for s # k, £:

(®o | V| ®c) = ((bibe | 0] crer) — (bebs | 9 | crer)).
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(4) If the Slater determinants ®, and @, differ in three or more indices,
the matrix elements vanish;

(@ | V| ®:) =0.

It should be noted from the cases (2) and (3) that, at most, the over-
all sign changes if the different orbitals are not in the same rows of the
determinants.

The proof that the matrix elements of the two-particle operators are
identical in first and second quantization will not be pursued any further.
The calculations are similar to the case of single-particle operators. As an
example, we will show equation (2.9) above for second quantization, since
we will use this equation later:

(@ | V1@ =5 S (16| ke)(@ | elelersy | @c).
i5ki=1

The second matrix element is only non-zero when we have
! A}C‘eék | @c) = = | D).
From this it follows that we must have either
(1) k=jand £ =1, or
(2) k=iand £=.

In these cases we obtain with the help of the anticommutation relation
equation (2.4):

(1)
clelege | o) = alelee; | @)
= by ele | @) — éleele; | @)
= b;n; | Pc) - nin; | ®c)

dlefeer |00 = elelejer | 00) = —eldlee; | @.)
= —6jele | @) +eleele; | @)

= =bin; | o) +nin; | )
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so, combining the two cases we obtain

(@ 1010 = 23 (9]0 - (i | 910)
1,7=1
N
= 3 Z ((cicj | 9 | cic;) = {cicj | 8] cjeq)) .
inj=1

Thus, we have seen that the so-called second quantization, within the
present framework, is no more than an alternative formulation of quantum
mechanics, and that this formulation is completely equivalent to the usual
one. However, the second quantization provides a tool that permits a de-
scription of processes such as creation and annihilation of particles. Such
processes cannot be discussed from the basis of the Schrodinger equation,
but only from within the framework of quantum field theory.







Chapter 3

Second quantization for bosons

Second quantization for bosons is analogous to second quantization for
fermions: the action of the creation and annihilation operators is defined
on the complete system of symmetrized functions

1
N PES:NP[%] (21)... fen(en)]. (31)

O (z1,...,2N) =

Again, we represent these states by the occupation numbers n; in the Dirac
notation. The occupation numbers declare that the single-particle state ¢
appears n; times in (¢1,...,cN):

|C) =| cl,...,cN) El n1,n2,n3,...)
with the position—spin representation
(z1,...,2§ | n1...) = ®c(z1,...,ZN).

In contrast to the case of the fermion wavefunctions, the occupation
numbers are not restricted to only the values 0 and 1.

We then remind ourselves once more of the definition of the fermion
creation and annihilation operators:

ékl...,nk ...)EaknkI...,(nk—l),...)
R SO+ | .. (np+1),..) ifng=0
ckl...,nk,...).-{o ifng =1

If we remove the prefactor 6 and the restrictions that the occupation num-
bers are less than or equal to unity from these definitions, we obtain almost
immediately the definitions of the boson operators. Explicitly

bel.oonk,..) = Varl..,(ne-1),...)
(;11;]...,71]‘,,...) = Vnpg+1]...,(npg+1),...).

31
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The square roots in these definitions (which are the only additions we had

to make to the action of the fermion operators ¢ and é{) are chosen so that
we can introduce the number operator just as in the case of the fermions

-~ m ~ ~
N=d"bh
k=1

since we then have

IA)}:IAJ,;]..».,nk,...)::,/nki)z|...,(nk——l),...)=nkI...,nk,...).

By applying the creation operators on the vacuum, we can generate all
the basis functions of the type in equation (3.1):

AT Nk
-G
|n13n2yn3)"')—]g \/Hk—[ l )

Furthermore, Ek and B}; are the adjoints of one another, and the following
commutation relations hold:

F?;,;,Bk- = 0

ot 31l —

_bl,bkd = 0

_BZ,B{_ = 8. (3.2)

The representations of single-particle and two-particle operators for
bosons are identical to the representations of the fermion operators:

N o0
Ho=Y"h(zi)= Y (il h]3)bl5; (3.3)
=1 1,7=1
and
1 & tots o
i(ai,2)) = 5 S (ig | 0| k)b blbeby. (3.4)
ijkt=1




Chapter 4

Unitary transformations and
field operators

The considerations up to this point have been based on a a fized orthonormal
basis of single-particle functions {¢(z)}. We will now discuss what happens
when we transform to another orthonormal basis {x.(z)}.

We begin by expanding the old orthonormal basis in terms of the new
one:

pr(z) = Z Dpjix;(z). (4.1)
7 |

We are dealing with an orthonormal basis; hence, the transformation D
must be unitary:

DTD:I-_—DDt

The inverse transformations are

x(z) =3 (D), eil@) ZD,M (4.2)

J

The wavefunction ¢y (z) is the z-representation of the abstract Hilbert space
vector 6£ | 0), so

(@& 10) = ep(z) =Y Dijx;(=)
J

= Zpkj<x|ajlo)=(x120kja}10).
J 7

Thus, if we interpret the new basis functions () as the z-representation

of the Hilbert space vector &;{ | 0), i.e., the operators &} act relative to the

33




34 UNITARY TRANSFORMATIONS...

basis {x;(z)} in the same way as the operators é}: act relative to the basis

{¢k(z)}, the new creation operators must satisfy

el = ZD]ka (4.3)

The corresponding inverse relations are
al = Z Dyél. (4.4)

The transformation to a new single-particle basis thus corresponds to a uni-
tary transformation of the creation operators. Such unitary transformations
will play an extremely important role in later chapters.

If we define the annihilation operators corresponding to &} as the adjoint

t
&J’ = (&;)T

operator of &j
we can immediately derive a relation between these and the annihilation
operators ¢:

(Tlép|®) = (@& |0)” q)[ZDk, ZDkJ Ly | B)
= Y Dp(alw| )= ZD,” (¥ | a; | ®)
J J
= (U|> Dia;j|®).
J
Hence
¢, = Y _ Dié;. (4.5)
J
The inverse transformation of equation (4.5) is
ZDkiék = ZZDH DZj a; = a. (4.6)
k Tk
J
=6ij

From equation (4.6) we see that the transformation between the annihilation
operators ¢ and ¢ is unitary; it is the transpose of the transformation of
creation operators. The fact that the new creation and annihilation oper-
ators obtained by a unitary transformation satisfy the same commutation

relations as the original operators is of crucial importance. For example, it
follows from

[éz, éz] =bpk
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that we also have

[ag,ak] ZZWD [c,, ]} ZDJngk_éek
N~

::5,]

Furthermore, the representations of operators in terms of these sets of cre-
ation and annihilation operators are formally identical; for example

Ho = Y 3 (i|h|j)ele
T
= 2.2 (ilhk1J) ZDikdlzD}‘e&z
T 7 k

= 20D Dalilh ZDelJ ata
k £ 1
S N ,
=(kl =|¢) by equation (4.2)

I
=[]
~[]

—~

o

o>

&y

2>

I~ —+
[= 3

We will now consider a particular example of such a basis transformation:
as our new basis we choose the eigenfunctions of the z-operators in the
z-representation [remember that z = (r,s) = (position, spin)], which are
6-functions:

xk(y) corresponds to é(z —y).

The index k thus corresponds to the continuous variable #. The functions
6(x — y) form a system of single-particle orbitals, which describe particles
that are localized at the position—spin-point . This means that the prob-
ability of finding the particle at any other point y # &« vanishes. Since
the system of §-functions forms a basis, we can expand any possible single-
particle function in é-functions:

fly) = /f(:c)é(:c —y)dz.

Moreover, the é-functions are orthogonal:

/5($ —y)6(z —y)dy = é(z - 2).

However, the é-functions cannot normalized in the usual sense but this will
not cause any problems in the present context.
The transformation of basis introduced earlier

0i(¥) = > Dikxk(y)
P
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then becomes
oi)= [ drp,@5 - )

Again, the variable = takes on the role of the index k.
The corresponding transformation to the new creation operators

t i+
ak = ZD;A’ Cj
2

becomes

D) = 5t
ie) = Y i(0)e] (4.7
J
and for the new annihilation operators we obtain

P(z) = Zgoj(x)ej. (4.8)
J

The operators W(m) and ¢(m) are traditionally called field operators.
It is an important fact that these operators satisfy the same commutation

f ¢; and IA)}., bi, respectively, z.e., for

relations as the original operators ¢;,

fermions

} = S(e—2) (4.9)

and for bosons

[&(z),zﬁ*(x’): = §(z—2'). (4.10)

‘The representation of single-particle and two-particle operators by the
field operators proceeds according to equations for fermions (2.6) and (2.7),
and equations (3.3) and (3.4) for bosons, respectively:

Hy = /daz ﬁf(x)h(z)ﬁ(x) (4.11)

A_l zdz’ DTV (2N v(z. 2V (2N d(z
V=3 [ [te @it @t iE)iE. @1

We end this chapter by discussing a pictorial interpretation of the field
operators. The operator é:-r creates a particle in the state ¢;, which is char-
acterized by the quantum number i. Similarly, the operator ¢T(:v) creates
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a particle which is localized at the point z. Thus, for the formalism to be
consistent, the position-spin representation of the state 91 | 0) must be a
S-function centered at z. We give a brief verification that this is the case:

1 1
which yields
WIt10) = i@y 0n. .. 10, )
t

= D ¢i@wiy) = 8= -v).







Chapter 5

Example: the Hamiltonian of
translationally invariant
systems in second quantization

The Hamiltonian of an interacting many-particle system is in first quanti-
zation

~

H = T+U+V
N 152 N 1 N
= Zé—;ﬁ +§u(ri)+ 3 Z v(r;,r;).

1:1 1,7=1
i#]
For simplicity, we have assumed that the potentials are spin-independent.
For a tranlsationally invariant system, the external potential must be con-
stant

u(r) = u = constant

and the particle—particle interactions can only depend on the relative posi-
tions of the particles
v(r, ') = v(r —1').

Translationally invariant systems are necessarily infinite. This idealization
implies that we are considering systems where we can ignore surface effects.

The first question we encounter when we want to express the Hamiltonian
of a translationally invariant system in second quantization, is the choice of
a suitable single-particle basis. To obtain this, we consider the system of a
large cube with sides L and volume © = L3. At the end of the calculation
we go to the so-called thermodynamic limit N — oo,  — oo while keeping
N/Q constant. To make the calculations translationally invariant, we impose
periodic boundary conditions on the edges of the cube. If we solve the
single-particle Schrédinger equation without an external potential with such

39
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boundary conditions, the eigenfunctions will provide a suitable system of
functions. The eigenfunctions are the plane waves

bro(2) = %efk-rxa(sy (5.1)

These functions are momentum eigenfunctions with the discrete momenta
k = (2r/L) (nxex + nyey + nzez), where ng, ny, n, are any integers and
er, €y, e, are unit vectors in the z-, y- and z-directions. For spin-1/2
fermions, which we will hereafter restrict ourselves to, the xs(s) denote
the usual Pauli-spinors:

(s) = 1 fors=+1/2
X+8=10 for s = —1/2

w@={] mizth 652)

(The representation of x,(s) as functions of the double-valued variable s =
+1/2 is equivalent to the traditional notation in the form of two-vectors

X+ = ((1)) y X— = ((1))-)

'The countably infinite number of functions given by equation (5.1) form
an orthonormal system:

* 1 i(k—k')-r *
R O ) K S MCTOIE

= 6k,k’ boor = 6n$,n_{,6ny,n§6nz,n'z50,a’-

By a theorem from the theory of Fourier series, the system {¢y, } is complete
in the space of square-integrable functions which are periodic with period
2. We will here only be interested in functions that are defined only on the
volume §Q itself, but the completeness will of course apply here.

From equation (2.6), we obtain the second-quantized representation of
the kinetic energy-operator in the single-particle basis equation (5.1):

T ZZ k'c Il 'ka> k' /cka'

,O'k N

Evaluation of the matrix elements yields




FUNDAMENTALS AND EXAMPLES 41

(k'o’ | l ko)
5 [y 52 -ﬁ“

h2k? 1 3 _i(k—k')r
= QmQ/d e )ZX shxa(s

h2k?
= kKO0
Thus, we obtain in all
A A2k ¢
T= v cfwc_k,,. (5.3)
ko

Similarly, we obtain for the external (constant) potential the representation
7= uil b, = ul
= ko ko = '
ko

In order to calculate the interaction term, we expand the particle-particle
potential in a Fourier series

v(r—1') = % Z vqeiq'(r"rl) (5.4)
q

with the components given by

vq:/;zd3rv(r)e_iq'r. (5.5)

We can write the interaction in terms of this Fourler series as

~2 Z v(ri - 1'3)”29 Z” Z et lrim),

1,7=1 t,7=1
i#] t#g

and, by using equation (2.7), the second-quantized representation becomes

v o= QQZUQ S5 3 (kioy kaoy | € (=) | ko3, kyos)

kio1 kooa kaoz kyoy

4t

X ckla'l ck20’2 Ck404 Ck303 ‘

The matrix elements are
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(kio1,kooo | €90) | kyos kyoy)

1 * ir. - iq-(r—r'
- ﬁif/dsrd%lzxol(s))(ag(ﬂe (ka—ki1)iq-(r—1')

!
zr (ks—k2) an Xa4 )

S S / d3rei{(k3+q)—k1}-ré / 13,7 il —a)—ka]

0204 QO

= 6‘710360'2046(k3+q),k1 6(1{4-—([),1(2‘

Finally, when we insert this expression for the matrix elements into the rep-
resentation of the interaction potential and rename the summation indices
according to

) Z Z vqc (k+q)o© (k’ -q)o el 1 Gk (5.6)

k’a'

From equation (5.6), we see that there are two advantages in using the
plane waves as a single-particle basis.

(1) The kinetic energy is diagonal in this representation.

(2) The translational invariance of the interaction potential makes it pos-
sible to use a Fourier transformation with respect to the relative co-
ordinate (r — r’) only, that is, it is not necessary to use two separate
Fourier series with respect to both r and r’. This means that the num-
ber of independent sums in the second quantization representation of
the interaction potential can be reduced by three.

We will use the result equation (5.6) later in the discussion of the homo-
geneous electron gas.




Chapter 6

Density operators

In this chapter we will discuss operators which have expectation values that
correspond to the particle density. Consider first a single particle. The
probability of finding this particle at z in state v is given by

pu(@) = i (@)pu(e) = (v | 2)(z | V).

In this case, we then apparently have two possible ways of defining a density
operator.

(1) p(z) =|z)(x|. The probability density p, () is then just the expec-
tation value of the operator j(z) in the state | v):

(v | b(x) [ v) = (v | 2)(z | v) = pu(2).

(2) n, =|v){v|. According to this second definition of a density opera-
tor we obtain p, as the expectation value of 71, in the &-eigenfunctions

| z): :
(i | 2) = (2 | W)(v | 2) = pu(a).

Even though these two density operators lead to identical expectation
values, the operators themselves are not at all identical. The operator j(z)
is the projector on | ) and 7, is the projector on | v).

For later purposes we will now once again calculate the z-representation
(position—spin representation) of the operator p(z):

(@1 1 p(@) [21) = (a1 ]a)(z | =)
= §(z}) —z)6(z — 1)
= 6(z —21)8(2] — 1)

Thus, in this representation the operator g(z) is a local multiplicative oper-
ator. Just as for local potentials,where we only need to write the diagonal
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elements and can imply a é-function; for example, we write
v = v(zy)
instead of
v = v(z1)d(xy — z29).

Similarly, we will only write

p(z) = b(z — z1)

for the density operator.

We now turn the discussion to many-particle systems. If a system is
in a (symmetric or antisymmetric) state ¥(zq,z9,...,2y), the probability
density of finding one particle at z is given by

pu(z) = N/dN_lz U*(z,29,...,2N)¥(z,29,...,ZN)- (6.1)

In equation (6.1), the density is normalized on the particle number N.
Again, there are two possible ways of defining a density operator.

(1) The natural many-particle generalization of the single-particle density
- operator p discussed above is (in the z-representation)

N

pa) =36 - ;)

=1

so that we have again a local multiplicative operator in the z-
representation. From this definition it follows that

(U] p(z) | )

N
= /dN:c\II*(:cl,...,xN) {25(33—%')
1=1

and because of the assumed symmetry or antisymmetry of ¥, this
expression is

U(zy,...,2N)

N/dN_lic\I’*(xyz% - ,a:N)\I'(:L',a:Q, . .,xN) = Pll'(z)

We also write down the second-quantized representation of this oper-
ator:

N N
pla) =) be—z) =) 6s(x:)
=1 i=1 -
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so that the second-quantized representation can be written
S t
plx)= ) (il 6z ]i)efe
=1
where

(ilozlJ) = /dw?(y)&x(y)%(y)

- / dy o7 (¥)8(z — v)e;(y)
= go}‘(x)cpj(x).

Hence, we arrive at

Ay =Y oi(2)pi(2)ele; = ¥T(2)d (). (6.2)

1,7=1

This result is, perhaps, not too surprising, since we demonstrated in
Chapters 4 and 5 that the operator (é};ék) in general counts the par-
ticles in state k. Because of the unique correspondence between these
creation and annihilation operators and the field operators, the oper-
ator %'(z)9(z) then counts the number of particles in state r, te.,
the number of particles at position x with spin s. We should then
expect that if we integrate  over all z we will obtain the total particle
number operator, equation (2.5), defined earlier:

/ﬁ(x)dm = [ e = S dle; / ¢i(2)e,(e) do

Z’J=1 ~

6i;
oo
= Z éTé- =N
1] '
1,7=1

(2) The second possible way of defining a density operator is through
o]
Ay = Y | k)ng(e|
k,f=1

where ngp = (¥ | ézék | ¥). This definition yields
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(elagle) = Y (z]k)ng(e] =)

k=1

= Y wi(x)er(e)( | el | @)
k,i=1

= (V] 4(2) | ¥) = py(z).

Whereas the v- and z-representations were constructed in a formally
similar way in the single-particle case, the correspondence between p(z)
and nyg is not that obvious in the many-particle problem. In particular,
the operator p(z) is an operator that acts on the many-particle Hilbert
space, whereas ny acts on the single-particle Hilbert space. However, the
trace of Ay is equal to the particle number. This is easily verified in the
z-representation:

Te(ne)= [dse iy 2) = [depa(e)=N.

On the other hand, the numbers ne above are precisely the matrix elements
of the operator 7y in the underlying single-particle basis:

(ilﬁwlj)=k,§£;1wnkzw=mj-

=6k =6y;
Furthermore, the matrix nyy is Hermitian, since
nf, = (¥|éhe | )
= (@l (da) 19
= (V|efe | ) = ny.
It follows that we can find a unitary transformation D which diagonalizes

Ngye:

(D]L n D) e = ngbre.

The matrix elements on the diagonal are obtained from
ng = Z <DT)£k ng; Dje
kj .
= D DieDje(¥ | éley | W)
kj

(w | (; Dyt (; DL ) 1)

f
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If we define

and

1.

the operators @, and @, are adjoint, and we have

ng = (U | ala, | ).

Thus, if we had started with (z | &} | 0) as the underlying single-particle
basis, the matrix ny, would have been diagonal, and the operator 7y would
have had the following form:

Z ng | k) (k| (6.3)

The numbers ny have in this diagonal form a clear meaning: nj is the
occupation number of the orbital | k) in the many-particle state ¥.

We can write the expectation value of an arbitrary single-particle oper-
ator F', given by

o0
F=Y" G| fli)ele
t,j=1

in the many-particle state ¥, in a more compact form as a trace with the
help of the operators ny:

o0

(U F1wy = S| F15) (¥ éle; | v)

=1 =njj

SO G 1A g 1) = Ts (Fg)

1,y=1

‘We conclude this chapter by considering the so-called density matriz.
This quantity is defined by

pulz,z') = N/\Il*(:c',;cz,...,;rN)\II(;v,:vg,...,a:N)dN‘lx. (6.4)

Also in the case of the density matrix, we can define two different operators
which have matrix elements given by equation (6.4):
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(1)  pz,2) = Zf\;l §(z' — x1)6(z — ;). The so-called ‘density matrix
operator’ defined in this way is non-local in the z-representation; ex-
plicitly, this means that

(z...zn | plz, ) | 2], ... zy)

N
25(1’1 —z})6(zq — z5) ..
=1

x ... [6(z" —2l)é(z - z;)] ... 6(zn — 2ly).

We can use this result to show that the density matrix is the expecta-
tion value of the operator p(z,z’) in the many-particle state ¥:

(¥ | p(z,a") | )
= /dN /dN’\Ill.vl,... ")
x(x),...,zN | p(z,2') | z1,. .. :cN)(ml,...,:ch\Il)

= /sz/de'\P*(m'l,...,:va)Z(S(ml—m'l)x...
x...6(2' —zh)o(z — z;) .. .6(1']:,-:—1- ) ¥(1,...,TN)

= g:/dN:c\I'*(zl,...,x',zi“,...,;vN)é(a:-:c,-)
;(_\llll(;vl,...,:ci,...,:cN)

= N/dN_l:L'\Il*(z',wg,...,a:N)\Il(a:,:vg,...,a:N)

= pyle, ).

We also write down the representation of the density matrix in second

quantization:
N N
pa,a) = D 6@ —ah)b(z—=) =) (al| g0 | i)
i=1 1=1
o0
= Y (il o | 4)
=1
where

(16000 15) = / dy / &' G 1) | 6mar | 0) (w1 5)
- /dy/dy /)6 =3z = D)es(w)

= pi(e)p;i(e).
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Thus -
bz, 2y = S elejpr(a)p;(z) = P )i (x). (8.5)
1,7=1

(2) In the second possible representation of the density matrix, we use the
operator iy defined earlier to form a non-diagonal matrix element in
the z-representation:

(z | k)nge(e] )
1

(z|ng|e) =

M3 T

w3 (@) or(2)(¥ | ey | @)
g=1

k
= (¥]p(e,2") | ¥) = py(z, ).

(\

We will now also prove an important statement about the density oper-
ator niy: Let ¥ be a fermion wavefunction. Then

A% =fgy < Uis a Slater determinant.

Proof:
‘=’ We start with a single-particle basis in which the matrix (nyy) is
diagonal. Then

=
@K)

{l
K
WK

ne | €) (€| k)(k | ny

=6k
(R 1= " ng | k) (k
k=1

SO n],zc = ny, which means-that ny is either 0 or 1. This implies that ¥ is a
Slater determinant.
‘' Let | ¥) = élel ...l | 0), so that

Eol
Il
ey
[y
il

1

Il
NE
3

k
It
[y

. 0 ifk+#¢
with
e = 1 k<N
k=10 k>N,
Thus

Z ng | k) kt—Ztk
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and fz;‘}, = fly.
For a Slater determinant, the density matrix then has the form

N

p(z,a) = (z | g |2') =D (x| k)(k]|2)) }:<pk Yer(z).  (6.6)

k=1




Chapter 7

The Hartree—Fock
approximation

The Hartree—Fock approximation (HF) is based on the hope that we can
approximately describe an interacting fermion system in terms of an effective
single-particle problem. The starting point is the idea that each particle
moves in a mean-field potential, which is produced by all other particles
and, in case there is one, by an external potential.

For the sake of simplicity, we will assume that the potential is local in

the z-representation. Thus, the exact Hamiltonian of the system

. 1 X
H:E (t,'+ﬁ,')+§ E Vi;
i#]

becomes in this representation

N 52 1 N
230wl IR 8 A 3
H—zi[Q z+M%ﬂ+22;M%Wﬂ
i#]

Our goal is to approximate this two-particle operator by an effective single-
particle potential

where the effective single-particle potential 9yp, the ‘Hartree~Fock’ poten-
tial, is unknown at the present. The solutions with the correct symmetry of
the corresponding eigenvalue equation

Hyp® = E®
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are then simply Slater determinants

1
® = mdet [goi(mj)} )

The single-particle orbitals in these Slater determinants are formally ob-
tained from the equation

However, so long as we do not know the Hartree-Fock potential, we, of
course, cannot calculate the single-particle orbitals from this equation. To
arrive at a way of determining these we make the ansatz of a Slater determi-
nant of single-particle orbitals for the exact many-body wavefunction. By
Ritz’ variational theorem, there is a rational way to optimize this ansatz
by minimizing the total energy of the system. Minimizing the total energy
with respect to the single-particle orbitals will then yield the Hartree-Fock
equation for these. ‘

Thus, we vary the expectation value of the ezact Hamiltonian in a Slater

determinant of single-particle orbitals: REET TR N

AT
/‘J

6 . IV ~ '
{(‘1’ | H | @) —Zfi/ dyw(y)sof(y)} =0. (7.1)
=1

Sp ()

The Lagrangian multipliers ¢; in equation (7.1) arise from the constraint
that the single-particle orbitals be normalized. For the total energy of the
system to be a minimum with respect to the Slater determinant trial func-
tions, it is necessary that the expression in brackets is stationary, i.e., that
the first variation of this expression with respect to the trial functions van-
ishes. (We should at this point recall that it is possible to vary (Reyp,) and
(Img, ) independently. This possibility can however be rewritten as for-
mally independent variations of p, andg’. From the real-valued functional
equation (7.1) above we then obtain, as usual, pairwise adjoint equations.
It is sufficient to consider only one of these.)

We calculate the expectation value of H in a Slater determinant by
introducing second quantization (cf. equations (2.8) and (2.9)):

T iy WP S S ST I
. ) N R 1 N N
(‘PIHI(P):;(M ]J>+§ 'Zl(wlvlw)—_zl(wlv |7 | . (7.2)
= 1,]: 2,]:

The expectation value of the interaction potential consists of two terms; the
first term is traditionally called the direct term, and the second the ezchange
term.

Explicitly, the variational equation (7.1) becomes




/
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5 / N . [ R2v2
0 = W{Z/dyw (v) [—- o +U(y)] wi(y)

+‘ Z //dydy e )v(y, ')%(J)sog(y)

hi=1
-5 Z // dy dy' o} ()¢5 (V)o(y, ¥') e ()i (y')

=1

v (L,\('Y"ﬁ
3 [ aveiwen) S
=1

9 N
= [‘g;;;vuu(x)} <Pa(w)+%f2/ dy’ @3 (¥)v(2, ¥ )pa(=)p; (1)

1 N
+.2.§ / dy o7 (¥)v(y, 2)ei(v)palz)
N
"% Zl / dy' 5 (" )v(z, ¥)pj(2)pa(y)
J:

32 [ Wel e 2)ea @) - capale)
=1

From this calculation we see that the second and the third, and the fourth
and the fifth terms are equal. We then use the representation given in
equation (6.6) for the density and the density matrix for Slater determinants

p(y) = Z%(y)soz(y) and  p(z,y) = Zw?(y)%(w)

i=1
to finally obtain

[_fiv2+u(w)+ / dyp(y)v(r,@/)} #al(z)

2m
- / (@, )o@ Weal)dy = capale). (13)

Equation (7.3) is the Hartree-Fock equation. The minimization of the to-
tal energy has with this equation provided us with a prescription for the
construction of an optimal effective single-particle potential, yp. This pre-
scription is

bur: = u(2)pi(z) + / dy p(v)v(z, y)pi(x) - / o2, y)o(z, v)pi(y)dy.
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In addition to the external potential u(x) and the classical potential en-
ergy [dyp(y)v(z,y), the Hartree—Fock potential contains a non-local part,
the so-called exchange operator. As we would expect, the Hartree-Fock po-
tential is identical for all single-particle orbitals — this corresponds to our
notion of ‘identical particles’. It is easy to verify that iy is Hermitian. To
do that, we first note that we have p*(z,y) = p(y,z) (c¢f. equation (6.6)).
We then obtain

Flimele) = [£@ [ el v dyis
- [ #@ [ e wrie. o) dydz + 1 i |9
= [[1@ [ sz nre |’
[ [remenrwas] +1al
= [[s@ [ sintentns@dz] +(ola 0y

- U g*(y)/p(w,y)v(y,fv)f(w) dxdy]*
= ((g l UyF l f))*-

Since iyr and hyp are Hermitian operators, the Lagrangian parameter ¢q,
which entered in equation (7.3) as an eigenvalue, must be real, and the
eigenfunctions ¢, must be mutually orthogonal. In retrospect, it is clear
that it was not necessary to enforce the orthogonality of the single-particle
orbitals with an additional term Zf‘\szl eij [ ¢F(z)p;(x)de in the variational
principle.

The direct term and the exchange term both contain the density matrix.
Thus, both terms depend on the single-particle orbitals which we still have to
determine. It is clear that we cannot solve the Hartree-Fock equation like a
normal eigenvalue problem. Instead, we must use a so-called self-consistent
procedure.

We start with
(0) an initial approximation ¢;(z), i=1,...,N
and then calculate the

(1) Hartree-Fock potential 9zp from the density matrix

N
plz,y) =D (y)pi(s)
=1
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with which we solve the eigenvalue equation

(2) ({+ li}HF)‘Pa = €aPa-

In general, this equation has infinitely many solutions. The last step then
consists of

(3) selecting N orbitals gog,new) with the N lowest eigenvalues ¢,.
Using these orbitals, we calculate a new Hartree-Fock potential by repeating
step (1). We can then iterate the scheme above until ‘self-consistency’ is
achieved, that is, until the procedure converges so that the new orbitals
obtained in step (3) are the same as the ones used in previous step (1).

In general, we obtain from the solution of the eigenvalue problem not
only the occupied single-particle orbitals, which are necessary to determine
p(z,y) and Ugr, but, in principle, also an infinite set of unoccupied single-
particle orbitals. All these orbitals together form the basis of the single-
particle Hilbert space.

We now proceed and assume that we have solved the Hartree-Fock equa-
tions for a single-particle problem. We then obtain the Hartree~Fock ap-
proximation of the total energy of the system by inserting the Slater de-
terminant of the occupied orbitals in the expression equation (7.2) that we
derived earlier: '

N N
Bur =3 i+ 810 +5 3 (010 14) = (7 o150
ES 1=

Adding and subtracting the double sum once in this expression yields
N
h2v2
Eyp = ;/dx i (z) [(— 5+ u(z)

N
* ng / dy ¢; (v)v(=, y)S"j(y)) pi(z)

N
-/ dy?}(y)”(fyy)%(y)%(:c)J
j=1

1 N
=5 2 (iF 19 1) = (ij | 9| 5i)).

,j=1

If we insert the Hartree-Fock equation (7.3) in this expression, we obtain

N 1 N
S [ wi@ene -5 3 il lin - (i o1 ).
=1

t,j=1
N R W W
A A
}_:f\ Ay o o
LN . S T
< <\/:\ i‘/ i / / ), T \\ A

! A
A !
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From the normalization of the single-particle orbitals, it finally follows that

N N
Bae = Y=g 3 (i |o]ii)~ (i |91 i)
1=1

t,7=1
- %Z(q+(i|{+a{i)). (7.4)

The last equality is obtained by a completely analogous calculation, but
with the simple sum split in two equal pieces instead of the double sum. We
also write out explicitly the expression

N
o= (ali+ala)+) ((e]d]aj)—(aj]d]ja)) (7.5)
7=1

which we used to derive equation (7.4). Equation (7.5) follows from the
Hartree-Fock equation by multiplying by ¢ (z) and integrating over z.

At this point the question emerges as to why the Hartree-Fock energy
does not equal the sum of the single-particle energies ¢;. If we were to stay
within the initial assumption that we can approximate the exact Hamil-
tonian by an effective single-particle operator (i.e., fIHF), we would have

obtained the sum Zfil €; as an approximation of the total energy. How-
ever, this initial assumption was used later in the derivation as the basis
for the Slater-determinant ansaetz, which we used in the variational prin-
ciple. The total energy obtained from this ansatz should then be better
than ;€. It is easy to show with a perturbation calculation that this is
indeed the case. To do this, we assume that we have solved the Hartree—
Fock equations and thus have determined the self-consistent potential. If we
then abbreviate the interaction term in the Hartree—Fock potential as the
single-particle operator f, we can then write the exact Hamiltonian in the
form

.H = Z(£1+U1+f1)+ %Zﬁu_z‘fi
= l;]#=]1 1=1
= f{Hp +f{,

If we then treat A asa perturbation, we obtain in zeroth order perturbation
theory

N
EO = (3| Ay |0) =) ¢
1=1
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and in first order

N N
EO = (@ H | ®)= (0|5 > u;|0) - (0] 3 4| 0)
."#jl =1
1 N |
= 5 >0 (g loli) = (1o 5)
t,j=1
v
= > (o liy =il
t,7=1

From these expressions we see that
Eqr = EO) + (),

Thus, the energy Fyup which is optimized by using the variational princi-
ple agrees with the energy obtained from first order perturbation theory,
whereas the sum over the single-particle energies ¢; only agrees with zeroth
order perturbation theory. The fact that the entire interaction energy is
subtracted again from the sum of orbital energies in the expression for Eyp
has furthermore a clear interpretation. According to equation (7.5), each
individual ¢; contains

N .

€ = (ilE+ald+) ((i5]0]i)—(ij | o] ji)
=1
N

= (liali+3 (]9 ]4) = (@19 5i)
I

i.€., € contains the energies of the interactions with all other occupied or-
bitals. For example, ¢; contains the interaction with particle 2, particle 3
and so on, up to particle V; €5 contains once again the energy of the inter-
action between particle 2 and particle 1, and so on. Thus, all the interaction
energies will be counted twice in the sum over ¢;:

1 N
5.2 (i | o | g) = (i3 | 9] i) .

L,Jj=1

This double counting is then compensated for in the expression for Eyp,
equation (7.4).

We will here now also give a second derivation of the Hartree-Fock
equations. This derivation will give emphasis to another property of the
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Hartree—Fock operator. We begin this derivation by writing the variation of
the energy functional as

o O+ |H|P

on (e+m|®) |
and restrict ourselves to variations such that

(1) @ + 7@ is, just as @, a Slater determinant, and

(2) only one orbital will be varied:

o1(x1) wa(z2)
Snx = |(pp+ (1) (pp+n)(az)
on (1) on(22)

= det|lpr,...,¢p,... |+ ndetler, ..., P, |

For 1 we will now take the elements of the (yet to be determined) complete
orthonormal family consisting of the occupied orbitals ¢1,...,¢n and the
unoccupied orbitals ¢ 41, .. .. The variation obviously vanishes for the first
ones. We then replace p,, where p < N, with ¢, + 19,4, where ¢ > N. This
means that we consider a state | x) which is in some sense an excitation of
the state | ®):

T . <N
)= elep | 9)=l ) with {5

The variational equation then becomes

O (2| H|2)+ (P | H| )

0 = (®,,|H|®
on (@ | @) +1 (Dgp|®) (®gp| H|®)
=1 =0 n=0
N 1
= (Pgp lZ(ti'*'f‘i) | @) + (Pgp | 5 Z vij | @)
=1 i#]
£ =1.

where we have used the orthonormality of the functions {y;}. The result
we obtain from the variation is

N
0= (qlf +alp) + Y ((gjlolps) — (ajloljp)) forallg>N,p<N.
j=1 v

e .
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The Hartree-Fock equation follows indeed from this expression, for if we
define the Hartree-Fock operator hyp as before, this equation yields

(glhuplp) =0 forallg> N, p <N.

‘Thus, the Hartree-Fock operator has no non-zero matrix elements between
occupied and unoccupied states. Hence, we can diagonalize the Hermitian
operator hyp with a unitary transformatxon D, which has the property that
it only transforms occupied states into occupied ones, and unoccupied states
into unoccupied ones:

€1

EN+1

_ f)}: 0 occupied 0 Dy 0
- 0o D} 0 unoccupied 0 Dy’

It is important to understand that the form of ﬁHF is invariant under this
diagonalization precisely because of this block-form of the transformation
matrix. However, with this form invariance, the matrix equation above
means that

N
&i = (ilhurli) = (ilf + ali) + > ((i41o1id) — (ijlolji))
J=1

in a suitable bases. This is in principle the Hartree-Fock equation.
The property that the matrix elements of H between the Hartree—Fock
wavefunction and the excited state ®4p vanish

(‘I)qplﬁlq’) =0

“is very important in applications of the Hartree~Fock wavefunction and is
frequently referred to as Brillouin’s theorem.
As an example, we will now consider the Hartree—Fock equation for
atomic systems:

e o

22/ plrs, r's') pa(r’s) P = eqipa(rs). (7.6)
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We have set p(r) = 3, p(x) = 3, p(rs) in the direct term. It is impos-
sible to perform an analogous spin-elimination in the exchange term. This
means that the Hartree-Fock potential is spin-dependent, even if the exact
Hamiltonian of the system does not depend on spin.

The direct part of the Hartree-Fock potential is clearly nothing but the
electrostatic potential due to the charge density of all electrons. This fact
seems at first to be nonsensical, since the effective potential that acts on
an orbital should not contain the electrostatic potential of this particular
orbital, but only that of all the other electrons. Fortunately, this ‘self-
interaction’ is canceled by a corresponding expression in the exchange po-
tential: ‘ ‘

capa(s) = (- nVE_Z 62) e +i:; [ o A o

om Ir —r’|

*

N .
_ Z/dzl(p1 ('L' )(102('”) Soa('-vi)
i=1

v —r'|
272 2 N *(&"); (2!

t#a

i *("Ypi(z
-2 / da! L2000 ,(r _)ff/!( ) (e

tfa

(for & < N). We emphasize that this term is canceled only when ¢, (z) is
an occupied orbital. Hence, the unoccupied orbitals formally interact with
N particles.

We will now also briefly discuss to what extent one can treat ionized
states and excited states within the Hartree-Fock approximation. It should
first be emphasized that because of the nature of the approximation, one
cannot attach any exact physical meaning to the orbital energies. However,
in the case of atoms one can approximately relate the orbital energies to the
lonization energies. This is because one can describe a singly ionized atomic
state by a Slater determinant, which contains all ground state orbitals except
for the most weakly bound one. Thus, one starts with the assumption that
the rest of the orbitals do not change when these electrons are removed. The
expectation value of the energy in a determinant that contains all ground
state orbitals except for i is obtained from equation (7.2):
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N

Eas(N = 1x) = > (i|t+i]i)
7
1 N
+5 2. (iloli) = (ijle14i)
i‘;’é]j;i
= Ear(N) = (k|E+alk)

1 N
~5 2 (k| 0| ik) = (ik | 9| ki)
=1

1 N
~5 2 (ki | 0] ki) ~ (ki 2] jk))
j=1

and since (ij | ¥

k€) = (ji | 0| €k), the expression above becomes

N
Eup(N) — | (klf+ alk) + D ((kjlolks) — (kjlo]5k))
j=1
= EHF‘(JV) — €L.

We thus obtain Koopman’s theorem for the ionization energies I}:
Ik = EHF(IV - 1k) - EHF(1V) = —€L. (77)

The ionization energies that are calculated in this way agree rather well
with the experimentally determined values. The same holds for the pho-
toabsorption thresholds for knocking electrons out of deep-lying shells.

The suggestion to describe excited many-particle states by a wavefunc-

tion é,tég[q)o) presents itself. In this wavefunction, a state which is occupied
in the Hartree-Fock ground state is replaced by an unoccupied one:

Eqp(N = 1+ 1) = (¢]ée®o | A | éf2,P0)

N
= D (ilE+a]iy+{k|f+alk)
1 N
+3 2 (19 1i) = (ij | 9] i)
t,7=1
= E514

e o
v

= Y (=00 (eila1e3) ~(edlo158)
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! N
+% i(ﬁk!f)lik)—(iklﬁlki))-kz;((jklaljk)~(kj|f;gjk))
= # 2t |
=Y (31513} (Rilol5%)
N N
= Z<‘ilf+ﬁli>+%Z(@jlﬁlij)—(ijlaui))
=1 i,j=1

N
~(e)E+al =D (el b 1) - (& ]0158)
=1
’ N
+(k !f+ftlk)+§:((kjlﬁlkj)—(kjlﬁ | k)
TRt
= Eur(N)— g + € — ((k€|)k€) — (kL|0|Lk)) .

.

The excitation energy
(AE)U\: = EHF(IV - 1[ + ].k) - EHF(N)

becomes

(AE),, = e — €0 — ((k€]3]ke) — (ke|5]ek)). (7.8)

At this point it should be emphasized that the excitation energies calculated
in this way are not generally any upper bounds to the exact energies, in con-
trast to the Hartree—Fock ground state energy. Furthermore, as we have just
discussed, the unoccupied orbitals of the ground state interact formally with
N particles, and not with N — 1, which would have been correct for excited
states. For very large systems, this difference between (N — 1) particles and
N particles does not make much difference. For atomic systems, however,
this difference has drastic consequences: consider first a neutral atom. An
unoccupied orbital is in this case essentially affected by the total electro-
static potential of the nucleus and the electrons. This potential vanishes
exponentially asymptotically, since the —Z/r-potential of the nucleus and
the contributions from the electrons cancel asymptotically. A true, excited
electron should thus asymptotically feel the potential of the nucleus and of
only N — 1 electrons, which together behave as —1/r. Since the excited
electrons is so to speak outside the atom, pictorially speaking, its energy
is essentially determined by the asymptotic behavior of the potential. It
follows that the unoccupied orbitals determined through the Hartree-Fock
procedure are bound far too weakly. As a result, we cannot expect that
the excitation energies for atoms calculated by this procedure should agree
particularly well with experimental values.
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The formula above is also interesting from another point of view: the
variational principle, which we evoked in the derivation of the Hartree-
Fock equations, only guarantees that Eyp is stationary with respect to small
variations in the single-particle orbitals. Hence, it would be very useful to
find a criterion which would enable us to state whether the solutions we
have found correspond to the minimum energy. A necessary condition for
this is certainly

Eup(N) < Eap(N — 1o+ 1i)

i.e., (AE)y > 0, or
er > co + ((k€]o|kE) — (ke|5|k)), for all {ii%

For systems with extended states we can neglect the matrix elements in
the potential, so that in this case the criterion is reduced to €¢; > €. In
other words, the orbital energies of the occupied states must lie deeper than
the unoccupied ones. We will now give a crude estimate to show that the
matrix elements of the interaction potential is, on the average, a factor of
(1/N) smaller than the single particle energies. (In examples from solid
state theory, N is of the order of 1023.)

We consider only cases without external potentials and restrict ourselves
to interactions which are homogeneous of degree (—1) in the position coordi-
nates. An example of such a potential is the Coulomb potential. The virial
theorem holds under these assumptions. This theorem states the following:
let ® be a solution of a minimization problem of the type

0 = 6(BT + Vins|®)

which can be obtained by free variations of the problem, so that & is not
obtained by just fitting parameters. We then consider the normalized func-
tions :
<I>a(r181, v ,I'NSN) = a3N/2<I>(ar131, Ceey aI'NSN)

which are obtained by a scale transformation of ®. These functions satisfy

0

0 = 5‘&' ’a:i ((Da lT+ ‘;;nt I Qa)
a N ~
= ga| 01718+ (@1 Vi 20)
E) . -
= 5&- - {Cﬂ(éa:l l T l (Da=1) + a<(pa=1 I Vint ' (Da:l)]

= 2(Pa=1| T | (Pa:l) +(®a=1 | Vint | a=1)

so that X )
2A®|T|®) = —(®|Vine|®)
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which is the virial theorem.

The Hartree-Fock solution is not obtained by free variations according to
the Rayleigh-Ritz principle, but by restricting the variations to Slater deter-
minants. However, since the scale transformation maps Slater determinants
back onto Slater determinants, we have again

~

2<T)HF = ‘(v)HF- (7~9)

By using the relation equation (7.4) between the total energy and the single
particle energies, we see that

N
Zei ~(Vier=Eur = (T)+ (V)ur
=1

1
= —§<V)HF‘ + (Vur,

which means that

AN 3.1 '
> i =5(Vhur = 5= > ((ddlalis) — (iilslii)).
=1 7

We introduce average quantities

_ 3 e e
N &= INGGRLG) ~ G,

We have then shown that the difference between the matrix elements is
proportional to é/N.

We will close this section with a brief discussion of the so-called Hartree
approximation, which is the historic predecessor of the Hartree-Fock approx-
imation. In the Hartree approximation, one makes the ansatz of a product
of different single particle orbitals for the wavefunction of the system:

Pu(zy,...,2N) = p1(21) - ... on(2EN).

In this case one also begins with a model of non-interacting particles, but in
the Hartree approximation one does not take into consideration the required
antisymmetry of the wavefunction. If one varies the total energy obtained
from this product-ensatz under the constraint that the single particle orbitals
be normalized, the Hartree-equations are obtained:

272 N
hzrz +u(@)+ ) / dye} (1) (¥)v(2,y) | pa(z) = eapal).

v#a

(7.10)
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The total energy corresponding to a self-consistent solution of this system
of equations is

N 1 N
By =) ez (ijlolij).
t#]

The interaction energies, which are counted twice in the sum over the orbital
energies, are subtracted out, just as in the Hartree-Fock energy (cf. equation
(7.4)).

The effective Hartree potential differs from the Hartree~Fock potential
in that it does not contain the exchange terms. Consequently, the Hartree
potential is a local operator, which significantly facilitates solving equa-
tion (7.10) self-consistently compared to solving the Hartree-Fock equations
(7.3). Moreover, the Hartree potential is different for each state. This prop-
erty 1s not only physically wrong (it contradicts the indistinguishability of
identical microscopic particles), but also complicates numerical solutions,
since one must solve a different eigenvalue equation for each orbital. As a
consequence, one cannot in general choose the Hartree orbitals to be orthog-
onal, since they originate from different eigenvalue problems.

In contrast to ®y, the Hartree-Fock wavefunction satisfies

lim ®yp(z1,...,2...,25,...,25) =0
Ti—T;

since it is a Slater determinant. This is precisely the content of the Pauli
principle, according to which two fermions with equal spin s; = §j cannot
be at the same position r; = r;. Hence, the motions of fermions with equal
spin are correlated in the Hartree-Fock model, in contrast to the Hartree
model. There is certainly no such restriction for two particles with different
spin; their motions are largely uncorrelated. A repulsive particle—particle
interaction, such as the Coulomb interaction, should make it unlikely that
two particles come close to each other (even when they have opposite spin).
On the basis of this fact, and because the Hartree~Fock energies are obtained
from a variational principle they are too high . The difference between the
exact ground state energy and the Hartree-Fock ground state energy has
been given the name correlation energy. An important goal of this book
is to develop systematic ways to calculate the correlation energy. However,
we will first acquaint ourselves with another variation of the Hartree-Fock
approximation, which is important for practical calculations.







Chapter 8

Restricted Hartree—Fock
approximation and the
symmetry dilemma

‘The Hamiltonian of a non-relativistic atom commutes with thé operators
for the square and z-component of both the total angular momentum and
total spin of the system:

[ﬁ,f;z} =[f,1.] =0= [7,5%] = [fzr,éz] .

As a result, the exact solution of the many-particle Schrédinger equation
must be simultaneous eigenfuctions of all these operators. The Hartree-Fock
Hamiltonian, however, does not commute with any of these operators. Con-
sequently, the solutions of the Hartree—Fock equations do not have proper
symmetry.

The unrestricted variation of the Hartree-Fock ansatz led to single-
particle orbitals of the form

eu(2) = S () - x4.(5) + 9§ (0)x—(5) (8.1)

where X, denote the Pauli spinors, equation (5.3). The simplest way to
construct Hartree-Fock wavefunctions with better symmetry properties is

to restrict the form of the single-particle orbitals from the beginning; for
example

P (2) = 301(/+)(r) “X+(s) forv=1,... Ny
‘r”?.ig.}:+u)(m) = 905\7_34.,,(1') ‘Xx-(s) forv=1,...,N_ (8.2)

where Ny + N_ = N is the total number of particles. The orbitals selected

67
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in this way are eigenfunctions of the spin projection operators

U () +§(,OBHF(:U) forv=1,..., Nt
SZ(PU T) =
~BoUBF(z) forv=Ni+1,...,N

so that we have for the corresponding Slater determinants ®VEF

S, ®UHF (2q...xn) = (Ny — N_)Z;-(DUHF(a:l .. TN

If we vary the expectation value (®UHF | H | ®UEF) with respect to the
single particle orbitals equation (8.2), we obtain a simplified self-consistent
procedure. This commonly used, restricted procedure, is often referred to as
the Hartree—Fock approximation. When necessary, the difference between
this and other, further restricted procedures can be emphasized by calling
it the ‘unrestricted Hartree—Fock’ (UHF). This terminology is somewhat
misleading — the ansatz equation (8.2) is in fact already a restriction of the
general Hartree—Fock orbitals in equation (8.1). .

Since the UHF-equations are of such practical importance in calculations,
we will now derive them for the case of spin-independent potentials. From
equation (7.2) we have the expectation value of the energy:

(@0 1700 = 5 [dn o) [F5 4 )] i)

i=1

+— Z //drdx i (2)p] (2 )u(r, r)pi(x)p; ()

t,=1

zl [ [ #sae' pi @)@t es@)eita)

L=
= [ zs;§¢:(m)[ (r)] oi()

/d3 /d‘“[gg% (2)pi(z } v(r,r’) ;ﬁ;%(w)w
—-—/d3 /d3’:[2%(1‘% } v(r,r') Zsog )pj(z)

If we insert the UHF ansatz, equation (8.2), into §y=1 <p;f(a:’)<pj(a:) we ob-
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tain
Zso @) @) (x4 (5)

N_
+ 35 )Xt (5)x - (s).

We define the spin-independent density matrix by

(£ * (£
pPE) r)“Z<P @) e )
with diagonal elements
P () = pH(r,r')
the total density is, in terms of the density matrix,
p(r) = pH (@) + o (x).

If we also use ), xo(8)xs/(8) = 6547, we finally arrive at

) Ny 22
(@UHF!H]@UHF) — E/d3r 50§+)(1‘)* !:__h_v_] 90§+)(1‘)

2m

Jé [ [-EE] o
+/d3rp(r)u(r)+ %/d3r/d3r'p(r)v(r,r')p(r')

—-%/d3r/d3r' [p("')(r, r’)v(r,r')p(+)(r',r)
+ o), r')v(r,r')p(_)(r',r)} : r(8.3)

The structure of equation (8.3) shows that only interactions between parti-
cles with the same spins contribute to the exchange energy. In analogy with
the derivation of the Hartree—Fock equatlons equation (7 3), we vary equa-

tion (8.3) with respect to the functions <p (r) and ‘P, (r) which depend
only on position, to obtain the following coupled equatlons
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J ¥;
[—E;ZQ +U(r)+//?(1") (r,x')d° I] 5"5 ()

- 6(-—)<p§-_)(r), j=1,...,N_. (8.4)

For atomic systems, these equation are explicitly

h2v2 Z
€ /lr /ld3 /} (i)( )

m
p&) (r,r') (i) o +) *(£)

(8.5)
The exchange term can be written formally as an electrostatic potential
(£) (o (&)
_62//’ (r,r') (:i: (23 = —e? pr,y( )d3 / (:i:)(r)
-] * | — x|
which is the result of a fictitious ‘exchange charge density’

pB ey = gi)(r/)P(i)(r, r')
Prd sog-i)(r) |

The form of this exchange charge density depends on the position r of each
electron on which it acts, as well as on the state j and spin of each electron.
The total charge of this exchange charge density is precisely one elementary

charge (assuming that gog-i is an occupied state):

/ B ()ad = / ) (1)) (a2 ) (1) /() () = 1.
1=1<

o

=65

Therefore, each electron is in some sense surrounded by an ‘exchange hole’,
which is an oppositely charged cloud with total charge +e. This exchange
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hole originates from the exchange with the polarization of the medium, :.e.,
the repulsion betweeen electrons with the same spin.

At this point, we should recall equation (8.2), in which we assumed that
the single-particle orbitals are eigenfunctions of the spin projection operator
§,. If we further assume that angular momentum is a good quantum number,

ou(2) = R, (r)Ye, m, (6, 9)X0, (5)

we obtain the so-called ‘restricted Hartree-Fock’ (RHF) procedure. The
solutions in this approximation usually have better symmetry properties.
In our example, we have

ézﬁ"l/(-’v’) = hmyp,(z)

and thus
L,®*F(z1,...,28)=h (Z m,,) OFHF (z4,...,2N).
v

A particular variation is the so-called analytic Hartree-Fock or Hartree-
Fock-Roothaan procedure. One starts with parametrized single-particle
orbitals ¢, (z; agu), e ag\l/})) with known analytic forms. The optimal pa-
rameters are determined by setting the derivative of the energy expectation
value with respect to the parameters equal to zero.

We should now emphasize that the ground state energy calculated with
the restricted Hartree—Fock procedure increases as the restrictions on the
single-particle orbitals becomes stronger. We encounter a fundamental prob-
lem: if the best possible ground state energy is sought, the Hartree-Fock
orbitals should be free to vary; however, the resulting wavefunctions have
poor symmetry properties. If the symmetry is improved by restricting the
variation of the orbitals, the ground state energy increases. This fact is
occasionally referred to as the ‘symmetry dilemma’ of the Hartree-Fock
procedure. Projection methods offer a way out by selecting the solution
which has minimal energy and correct symmetry properties from solutions
of the free-variation Hartree-Fock procedure [2].







Chapter 9

Hartree—Fock for
translationally invariant
systems

We will show in this chapter that the self-consistent problem of the Hartree—
Fock approximation can be solved trivially for translationally invariant sys-
tems. These are systems of infinite extent, where the external potential is
constant and the particle-particle interaction only depends on the relative
distance between the particles. The plane waves discussed in Chapter 5
are solutions of the Hartree-Fock equations (or more precisely, of the UHF
equations) for such systems. We will prove this by showing that the matrix
elements of the UHF operators (cf. equation (8.4))

. R2Vv2
ey = [@reler {0 v ol
+ [@relPwr [ o -r)er oD
- [@refPer [ fO e -l

and the corresponding matrix elements (G | ﬁg}?F | @) for particles with
negative spin, are diagonal in the plane wave representation

___L_zkr
vQ

We first show that the single-particle term is diagonal, and we will then
show that the direct and the exchange terms are diagonal. With k replacing

P (r) =

73
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the index a, and k' the index 3, we have

1 XAV 1
RE: —ik'r | _ | ik-r
Q " \/ﬁe [ 2m u} \/'ﬁe

2).2
_ [Ei-ku] _1_/ B i (k=K T
Q

2m Q
h2k2
= o]

since u(r) = constant. To calculate the direct term, we first evaluate the
density

N; ' N_
o) = 3o et ) + 30 e el ()
v=1 u=1

Lyl NexNo X
- 0 Qa Q
v=1 =1 N

We then insert this result in the direct term, which yields

/d3r _\/%e—ik'-r/%v(r_r/)d:ar:_\/l_éeik.r

and expand the interaction potential in a Fourier series:
1 : /
—r) = = iq-(r—r’)
v(r r)--QEq vq e .

The direct term then becomes

q

= qué\—; dsr,e_iq.r’/dBTei(q‘}'k—k')'r
q

N N
= 2% 50,0 8(qri) K = g Ya=0 dic
q

Here we made use of the assumed translational invariance of the interaction
potential, which allows for a simple Fourier series in (r — r').
We now consider the exchange term. Let Zif denote the sum over all

momenta k which are occupied by particles with positive spins, and Zi the
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corresponding sum over particles with negative spin. With this notation, the
density matrix becomes

o S ) =i
p(+)(r,r') — Z oH @y (r) = 5 Z (r—r')
&

v=1

Again, we expand the interaction potential in a Fourier series and obtain

+ ;
/d3r a3 % L é_ Z eik-(r—r')é_ Z vq ez’q~(r—-r')_\/15 otker! I

q
- X [ k«ur/dsre oot J
_qu,(k—k) =06 q,(k'—-k)
1 + 1 + 1|
- ﬁzé(k—i),(kui)”(k-i):52”(1:—1)51{*' ‘
k k . :

and the proof is complete.
The diagonal elements of the Hartree-Fock operators, which are the
single-particle energiest, are given by

()

22
(:!:)_ k N 1
k 2 +U+qu—-0 QE:vk k)
k

For the total energy

N 1 N
Bue = Y06 li+2]0)+ 3 32 (5 191i5) (i |91 79)
i=1 ir_j=‘1

we obtain analogously

+ 21,2 - 21,2
h<k hk 1. N
k

R 1 o
—ﬁEZv(k — _QZZ”(k—iE)'
LI k ok

tThe function ey is called the dispersion relation. This terminology is borrowed from
optics, where one in general talks about dispersion relations whenever one is concerned
with quantities that depend on wavelength.
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The calculations show that the plane waves always satisfy the Hartree-Fock
equations, completely independently of which momentum states are occu-
pied and how many of the occupied states have negative and positive spins.
This is very important. Since the Hartree-Fock equations only guarantee
that the energy functional is stationary, the question arises for which oc-
cupations and, in particular, for which spin distributions the Hartree-Fock
energy is minimal. A possible distribution can be obtained from the follow-
ing prescription: put all N4 particles with positive spins in the momentum
space sphere |k| = 0,...,k4, and correspondingly all N. particles with

negative spins in the momentum sphere k| = 0,..., k- (see figure 9.1). If
A q
/ - N
[ [/ AN
[ / k k., \ ®
\ /1]
NABED Ay
Allowed N et B
states 1
n/L

Figure 9.1 All positive-spin state with k < ky, and all negative-spin states
with k < k_ are occupied in the Hartree-Fock ground state.

the Fourier transform of the particle-particle interaction depends only on
|q| and is monotonically decreasing, this prescription is certain to produce
the lowest possible Hartree-Fock energy for the given numbers N4 and N_,
since by occupying the states in this way we will simultaneously obtain:

(1) the smallest possible kinetic energy, which is positive definite in Egp;

(2) the largest possible magnitude of the exchange energy, which is nega-
tive definite in Exp. The magnitude of the exchange energy is made as
large as possible since a sphere is certainly the geometrical object for
which the sum of the distances between interior points are the small-
est. In this way, the sum zk,ﬂ Ul-%| is maximized for monotonically

decreasing functions vy.
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For this occupation of the states we have

h2k? N 1
+
% = 5, Tutqgla=0—gq Z )
k=
and
kt L9,9 k= 32,9
hek h<k
Eyp o %-+NU+QNqu=
k=0 k=
| Bk | k= ks
50 Z Z (k-k) ~ 20 Z Z (k—k)
=Y k=0 =Yk=0

For the explicit evaluation of these energies, we substitute the sums by
integrals according to the prescription

5 ’ . K -
N I LI L .
Y 30109 — G [ s,

~~This approximation becomes exact in the thermodynamic limit, ¢.e., for an
infinitely large system. The approximation corresponds to the transition
from Fourier series to Fourier integrals. The volume occupied in momentum
space by each allowed state is precisely a box with sides (27/L) (see figure
9.1). Thus, each volume element d3k in momentum space contains

T elwy

d3k __Q
[(2m) /L)°  (2m)°

a3k

states. This is the origin of the normalization factor of the momentum
integral above.

The number of particles with positive and negative spins, respectively,
are then obtained as

Q [k Q k0 k3
N = 3 = ——7'4 -+ = S 1
+ (%)3/ k=0 ™3 "3z O
Q k3 .
and N = 557;—2 (9.2)

The density of the system is

N Ny N. 1k 143
=4+ ==ty
Q- Q' Q 2322 23r2

7L e C'qj /’1(”/2, c
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For unpolarized systems, i.e., systems for which Ny = N_ = N/2, which
implies that k4 = k- = kg, we obtain the fundamental relation

Nk

— = 9.3

Q  3r2 (9:3)
The momentum kp of the occupied state with the highest energy is called

the Ferm: momentum.
The single-particle energies are obtained as

K2E2 ky 337
(:i:) _ h°k LV_ / d°k 5 4
€1 o +u+ q Va=0 @ YT (9.4)

and the total Hartree-Fock energy becomes

Q/k+ d3k R2E2 /k— d3k K2k? BE L Vs lNNU
— _— u — V=
(27)3 2m + (27)3 2m 27 9=0

B+ ke Bk a3k k- k- a3k %k
““/ / (2m)3 2n)8 "=k / / (2m)3 (27)3 (k=K'

We will now explicitly go to the thermodynamic limit, i.e., we will let the
volume 2 and the particle number N go to infinity in such a way that the
densities (N4 /Q) and (N-/Q) remain constant. The momenta

will then remain constant, and it is clear that all energy contributions to
Eyr diverge in this limit. This is not surprising in view of the fact that the
energy is an extensive quantity. Consequently, we will instead consider the
Hartree-Fock energy per particle (or per unit volume). The kinetic energy
contributions can be evaluated by elementary integration, which yields the
following total contribution to the Hartree-Fock energy per particle:

Eyr h? 1 E .k 1[N
= = k 2= vge
N 10m-27r2(N/Q)(++k")+u+2 Q| "a=0

1 [k k- &k &Sk
~2(N/Q)/ / (2r)3 (2r)3 " (k=k)’ (9.5)




Chapter 10

The homogeneous electron gas
in the Hartree—Fock
approximation

We will in this chapter discuss the interacting homogeneous electron gas,
also known as the free electron gas or the jellium model, as an example of
a translationally invariant system. This particular system can be thought
of as a model for many metals, if we assume that the charge density of
the positive ions of the metal is uniformly smeared out over the volume of
the system so that the electrons can move practically freely through the
material. This drastic assumption can only be expected to hold in some
sense when the electrons which are bound to the ionic cores form closed
shells. The valence electrons are then only weakly bound and are therefore
only weakly localized in the crystal lattice. Hence, the electron gas can be
expected to give some reasonable results for the alkali metals, where the
valence electrons indeed are bound very weakly. In fact, we can describe
the cohesion of alkali metals rather well with the electron gas model in
the Hartree-Fock approximation. (While the cohesive forces of an ionic
crystal, such as NaCl, are the immediate result of the electrostatic attraction
between the ions, the cohesion of an alkali metal cannot be understood so
easily; it originates directly from the delocalization of the electrons, i.e.,
from the fact that binding the valence electrons to ‘many’ ion cores yields a
state of lower energy than the state consisting of separate atoms.)
The complete Hamiltonian for the electron gas is

H=H+H.+ V..

Here Hj is the electrostatic energy of the background ions:

=5 / d°R / R Sl il R)sz ffl’,) - / 3R / BR N/QI);’
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which is a simple constant. H, contains the kinetic energy of the electrons
as well as their mutual Coulomb repulsion:

p?
He—z i +2 Z Irz-rjl

1=1

and Ve—1 is the interaction of the electrons with the background ions. Hence,
1/ .—; corresponds to the external potential U in the previous notation:

Z/“3 Bt

We take the system to be a cube of volume 2. With the imposition of
periodic boundary conditions we can expand the Coulomb potential in a
Fouriler series:

2 , ,
[r_e—”ﬂ = ?12- Y vgeier=r) ) (10.1)
q
with
2 dre? forg#0
Vq :/ d3Re—iq'Rf— = ¢ 2
Q IR| fQ d3R|—eR—[ for ¢ = 0.

Using equation (10.1), we can write U as

T=Vei = }J_V: BR|Y| ZW eid-(ri—R) d3X ¢t
“ei= 2 el |2 B

970
i | _
N11X 4me? 2
- - [3laX |2 [ereemy [ er [ ox g
=1 | g#0 ~ v \_.\,_/
\ =Q5q,0 ) =0
=0 i

= [ ] / Bx l;l (10.2)

The fact that we here obtain a constant potential is a result of the artificially
imposed periodicity of the problem; we have to a certain extent solved the
Poisson equation with periodic boundary conditions.
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If we use equation (9.4) for the Hartree~Fock single-particle energies, the
external potential

U = / :—(N/Q)/ dBX[XI

exactly cancels the direct term (N/Q)vg=g. As a result, the single-particle
energies become

2m

(_4_:) h2E2 /‘k-": A3k 4re?
- R
The constant energy contribution H; from the ionic background must

be included in the calculation of the total energy. Because of the 1mposed
periodicity, we obtaln after the substitution X = R — R/ the result

. o= 3 3pr &
B = 2[9} /Q”/”m-—m
1[N]2 3 5
= iH /Q”/”m
N, e’

- =0 «
1 [N e | |
= -N|=| | X — 10.3

(5] [ & 109
If we now use equation (9.5) for the Hartree-Fock energy per particle, the

constant term u and % (%) vq=0 exactly cancel the contribution from the

positive background, so that we obtain in total:

Efz5/N = Hi/N + Eux/N
h? 1
— k5 k5
10m27r2 (N/Q) (K +42)
ke ke d3k d3k’ 4rre?
Plk-KkKP

k_ k_ d3 d3k,l 471'62
N/Q/ / 3(27)3 [k~ K2

We briefly indicate how to calculate the exchange integrals. We take the
z-axis in the integration over k’ to be parallel to k. Thus

k—-k2=(k-k)  (k—k') = k% + k> - 2kk’ cos§

where 8 is the angle between k’ and k. With this inserted in the exchange
integrals, we obtain
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4me? /ki 3K 1
(2m)° Jo |k - k'|2

Ame? [R5, 2m sin #dfd¢
= k' dk 5 :
(2m)° k2 + k'* — 2kk’ cosf

With the variable substitution z = cos @, this expression becomes

or 4me? / K24 k'/l dz
(27)3 1 k2 + k% - 2kk'z

kit /
= ——/ dk’k

This integral can be evaluated by elementary methods. With the result for
the exchange integral we finally obtain for the single-particle energy:

R2k2 €2 1 ks + k
ef:———-—%{ki-{- (lci—kz)lnl—j—:——-t—].

2m 2k ky — k
In order to calculate the exchange-contribution to the total energy per par-
ticle, we must perform one additional one-dimensional integration over k.
This integral is also an elementary integral. The final result is

+k’
k—k

o h? 1
gas - 5 5
N = {Gmam? %) (k2 +82)

62
—W?N_liﬁ (k2 +82). (10.4)

We obtain a frequently used representation of the Hartree-Fock energy per
particle by expressing the Fermi momenta k4 and k- in terms of the density

and the magnetization, or spin-polarization

Ny — N_

¢= . .

1

An unpolarized system then corresponds to the special case £ = 0, whereas
for £ = £1 we have a totally polarized (‘ferromagnetic’) system. From

N_ =N — Nj,so that £ = -Z—Nﬁ:'—N—, it follows that

Ny = (L+6N/2
N_ = (1-6N/2
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so that from equations (9.1) and (9.2) we obtain

kt = [6%2]\& /Q] 1 [37r2 (%) (1 if)]

If we insert this expression in equation (10.4), we obtain

1/3

= (37r2n)1/3(1 + )13,

R2 3

ey = D3 (g} L 4 - ]
_62% <3ﬂ2n)1/3% {(1 P _5)4/3} '

(10.5)

We obtain another representation of this result if, instead of expressing the
energy per particle as a function of density, we express it as a function of
the so-called Wigner—Seitz radius rs. This quantity is defined as the radius
of the sphere that contains the volume per particle of the system:
Q _ 1 _ 47 1"3
N n 3%
If we use this definition in equation (10.5) and furthermore express all lengths
in units of the Bohr radius a, = #%/(me?), we obtain

(10.6)

62 .
s = {2 [aroP a0
9S8 L iy s 4 (1 g9 } (10.7)

From this general formula we can, among other things, conclude that the
Hartree-Fock energy for the unpolarized electron gas is

e [2.21 0.916
20,0

Egp*®(€=0)/N = (10.8)

r2 rs

and that for the completely polarized electron gas we have
Ege®(€ = 1)/N < Ege®°(€ = 0)/N

when r; is larger than 5.45a,. Hence, we should in this case expect a phase
transition to a ferromagnetic state. Unfortunately, there are no metals with
densities this low, so we cannot expect to observe such a phase transition.
Nevertheless, the electron gas model yields the correct result that the al-
kali metals, for which the model was originally constructed, are not fer-
romagnetic. Ferromagnetism in other, more complex materials, is a very
complicated phenomenon.

If we plot the energy per particle (for an unpolarized system) against rs,
we obtain the picture shown in figure 10.1.
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Figure 10.1 Ground state energy of the homogeneous electron gas in the
Hartree-Fock approximation plotted against rs. *

Since on the one hand the Hartree-Fock energy is less than zero, and
on the other hand is an upper bound for the exact ground state energy, we
have proved that the system is bound. Thus, we have found a model for the
cohesion of alkali metals. The theoretically calculated values

(ERe8% /N)™R = _1.929eV, rMM =4.83q,

§

agrees surprisingly well with experiments, which, for example for sodium
give .
(EgeB°/N)S® = ~1.13eV,  75%P = 3.96a,.

In Chapter 7 we showed that the Hartree—Fock energy corresponds to
first order perturbation theory

Egp = EO + EW = (& | By | @) + (3| B | 3) (10.9)

when the difference between the exact Hamiltonian and the Hartree—Fock
operator is treated as the perturbation:

ﬁO:ﬁHFy and glzﬁ—ﬁHF:V—Zfz
t

In a translationally invariant system in the present sense, equation (10.9)
also holds for the partition
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in which the entire particle-particle interaction is regarded as a perturbatioﬁ‘
Even if this assertion is quite obvious in view of the discussion above, we
will now explicitly go through the calculation for the electron gas. To do
that, we use the representation equation (5.6) of the Hamiltonian in second
quantization with Fourier components of the Coulomb potential given by
equation (10.1):

~

H = E[‘-}—Ve_'-{-f}

k2 +t 1 2
= Ht Vet X 5 e + o (V- V) o
k,o
4 -~
ZZZ e’ (k+q)a (k'—-q) 1%k’ o' Ck,o
q#0 ko k'o’

The contribution from the Fourier component vq=o will be calculated sepa-
rately by using the fermion anti-commutation relations, equation (2.4). The
constant terms Hj, V,_; and N2 / (QQ)vq..o cancel mutually (¢f. equations
(10.1), (10.2) and (10.3)). The remaining constant expression

N N [ 3_¢? .
T9la=0 T QQ/dRﬁ ~

can be neglected in the thermodynamic limit. To show this, we transform
the integral to an integral over the unit cube through the change of scale
given by R"¥ = R4/, The result is

N 2 3 _ CN

where ¢ is a constant which does not depend on Volume. The corresponding
energy contribution per particle will thus vanish as Q~/3 in the thermody-
namic limit.

In all, we are then left with

H Z kcr k,a+‘—

ot A .
it ) (i) 01 0B

bz, a0

(10.10)
We will now use this representation of the Hamiltonian to prove the state-
ment that we made above: the Hartree-Fock energy of the electron gas
corresponds precisely to the zeroth and first order terms in perturbation
theory, if the entire interaction is regarded as a perturbation. Since the ze-
roth order terms immediately give us the kinetic energy of the electron gas,
we only need to show that the first-order matrix elements

1 Age?

1y .4 B SO

g = 50 kE i 7‘@) | ¢ (k+q)a‘ ( /___q),azck’,ock,o' | @)
T q 0

k/ ,o"
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of the ground state Slater determinant | @) precisely yield the exchange
term, which we calculated above, of the Hartree—Fock energy. The occurring
matrix elements can only be non-zero when the created states are the same
as the annihilated ones, i.e., when either

(k+q,0) = (k',¢') and (k' —q,0') = (k,0)

or when

(k+ q,0) = (k,0) and (k'—q,0')= (X', o).

The second possibility is ruled out, since it is equivalent to q = 0 and was
already excluded from the sum. The matrix element is then only non-zero
when q = k’ — k and o = ¢/. We can then write

(@ ] &fierq)0Eli )00 otk | B
= 6q,(k’—k)6a,a’(q’ ‘ &Lr,dé;oék/aék,a | @).

Because q # 0 and k' = k + q, we always have that k' # k, and we can
anti-commute the two operators in the middle to obtain

_6q,(k'-—k)60’,0"(¢ l 6;,7061{1,06{{,051{’0 I CD) = —6q,(kz_k)6a’01nklankd.

Thus, we have the first order energy contribution
1 4re?
1) _
E( ) — _—ﬁ-z Z mnk,o—nklo,.
o kk'

If we now choose the ground state occupation we discussed previously,
namely

S {H(k.;. ~%) for o =4’
ko 0(k— — k) for o ==’

we immediately obtain the previous exchange term

1 Fr b4 4re? 1 ko ko 4rre?
EQD = _ — A o
I P Ip- Y o)
k=0k’'=0 k=0k'=0

which was what we wanted to prove.

At this point the question arises as to whether we can obtain parts of the
correlation energy in the same way by including higher order terms in the
perturbation expansion. The question can indeed in principle be answered
with a yes, but the calculation is anything but simple. It turns out that
every order in perturbation theory beyond the present one diverges. Only
the summation of the entire perturbation series, or at least infinite sub-series,
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which is possible for the limiting case of r; — 0 by diagrammatical methods,
leaves a finite, sensible result. It is possible to overcome these problems, but
only at a great effort until we have had a detailed discussion of Feynman
diagrams. We will first discuss another possible way of considering at least
a part of the correlation energy. This possibility comes from the observation
that the main reason for the divergence of the higher order perturbation
terms originates in the long-range tail of the Coulomb potential. Hence, one
thing that seems natural to do is to divide the total Coulomb interaction into
a short-range and a long-range part. We can then calculate the correlation
energy of the short-range part by, for example, perturbation theory, since
this part should not give rise to divergent expressions. However, a non-
perturbative approach (or infinite order summation) is required to calculate
the long-range correlation energy. The division into a long-range and a
short-range part can be done in the following way:

" 2
ﬁzzg 222‘;”,:2 ’k'(”i‘”f):Z%Jr%th
1

i#j k#0 N
where ) .
- 1 4 Yee(pi—r s
V=533 ;’:2 ek (ri=x)) (10.11)
i#g k>ke
and )
4 el
=g 30 Y et (10.12)
i#] k<kc

Here the limiting momentum k. is a suitably chosen constant. We will return
later to how to determine this constant. The Fourier transform of Vi

47r/Q ok (ri=1;) _ F(kelr; — ;)
k2 i — 1]

k>kc

where

m T

Po)=1-2 [ 8021251y

shows that V;, indeed is a short-range potential: it follows from the proper-
ties of the sine-integral, Si(z), that for large y this function tends to zero in
an oscillatory fashion and that the function value F'(0) is unity. Thus, we
obtain a reasonable screened Coulomb potential in this case.

The long-range part, which is just the difference between the exact
Coulomb potential and the the short-range part Vi, i.e.

. (2/7)Si(kelr; — r;)

b "'rjl
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is finite for r; — r; = 0, where it assumes the value (2/m)k,
We conclude this chapter by stating the result for the short-range corre-
lation energy from second-order perturbation theory. We have to calculate

(sr) —Z!Qnivsrlq)o
corr — E EO

Here ®¢ is the Slater determinant of plane waves in the ground state oc-
cupation and Ej is the corresponding kinetic energy (the expectation value
of ﬁg). The summation runs in principle over the complete system of all
configurations ®,, which can be constructed from plane waves. However,
the matrix element

((I’n ! f/sr [ ‘I’0>

1 4re? .t .t - .

= 502 2 (O oo o e | 20)
BT K> ke

po
vanishes whenever ®,, differs from ®g in more than the configuration of two
orbitals. This reduces drastically the number of terms in the sum. The
remaining terms can be integrated approximately (see Raimes [3]). The
dominant contributions in (k./kp) are

2
ES /N = [;2; (1-1n2) ln(kc/kp)z] -2%— +C. (10.13)
(o]

We give a heuristic estimate due to Raimes [3] for the constant C'

2
C = —0.0095—.

2a,

So long as the value of k. is not determined, this result is not very useful.
The final determination of k. will be carried out in the next chapter, where
we will discuss the long-range correlation in terms of plasma oscillations.




Chapter 11

Long-range correlations in the
electron-gas: plasmons

A gas of charged particles, which move against the background of oppo-
sitely charged particles, is called a neutral plasma. It is known from clas-
sical physics, for example from gas discharge tubes, that such systems can
exhibit collective density oscillations, so-called plasma oscillations. The fun-
damental frequency of such oscillations can easily be derived from classical
considerations: let us assume that we displace a part of the total charge a
distance x. If n is the particle density of these charges, a polarization

P = nex
will arise. This polarization will in its turn give rise to an electric field
E = —47P.

This field acts as a restoring force eE on the displaced charges. Their motion
can then be described by Newton’s equation

m¥ = —4mrne’x.

'This is the equation of a harmonic oscillator with the frequency

4d7e?n

(11.1)

wp = —
which is generally called the plasma frequency.

One would then expect that the electron gas in metals can also display
such plasma oscillations, and there is indeed clear experimental evidence for
this: if the metal is bombarded with electrons of a fixed energy, the energy
loss spectrum, i.e., the fraction N(AE)/N of the electrons which have lost

89



90 LONG-RANGE CORRELATIONS...

an energy AE, will show clear maxima at integer multiples of fiw,. These
electrons have excited one or several quanta of plasma oscillation, which are
called plasmons.

If we use the definition equation (10.6) of the atomic radius rs, we can
write the plasma frequency in terms of this quantity:

For metallic densities, we obtain values of hwy, between 3 and 30 eV. Com-
pared to thermal excitations of electrons at room temperature, which are
approximately of an energy of 0.02 eV, this is a very large value.

Since such plasma oscillations can occur in the electron gas, it is natural
to attempt to transform the Hamiltonian to a form which contains an explicit
harmonic-oscillator part of the form

% (P;{Pk + wZQLQk)

with suitable collective coordinates @y and corresponding momenta Py.
Such a procedure was first suggested by Bohm and Pines [5]. The transfor-
mation of the Hamiltonian consists of several steps: first we find appropriate
collective coordinates

Qk :Qk(i‘lﬁ"'ii.N)

which are written as functions of the electron coordinates. We do not gain
much so long as we merely express a part of the Hamiltonian in these col-
lective coordinates. Rather, the crucial point is to introduce independent
variables QQx, and impose the constraint that

Ox corresponds to Q= Qi (¥;)-

We will see under what conditions we can replace the operators Qk with the
operators Q. In principle, we are looking for a solution of the Schrodinger
equation

H(#;,p;)¥(r;) = EV(x;)
such that ¥(r;) is independent of Qy, t.e.,

0
—V¥ =0.
9Qx
Expressed in terms of the canonical momentum Pk = —ihé%;, this condi-

tion becomes
Py =0. (11.2)
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Under this condition, we can transform the Schrédinger equation by adding
zero to it:

<ﬁ(i‘z‘,f>f) + f?(f’k)) U(r;) = E¥(r;).
We will finally bring this transformed Schrédinger equation to the desired

form by acting on it with a unitary transformation U so that the resulting
equation

ot (a7 + Er) o] [ote] =& [vty] (11.3)
v ) 2
E’H(Qk,Pk,r,‘,pi) ElI}(Qk:ri)

contains a harmonic-oscillator part. The transformed wavefunction depends
explicitly on the collective coordinates. We are, however, interested in a
solution such that it satisfies the transformed condition equation (11.2):

0 = (0'A0) 01 ()

= (mﬁkﬁ) U(r;, Q).
We will solve the problem that we have obtained in this way by psing per-
turbation theory. We will take the oscillator part and the remaining kinetic
energy of the electrons as the unperturbed Hamiltonian Hg. Thus, the ze-
roth order wavefunction will be constructed from the product of a Slater
determinant of plane waves and oscillator wavefunctions in the collective

coordinates. In what now follows, we will discuss the individual steps of the
transformation in detail.

To define the collective coordinates, we first consider the Fourier expan-
sion of the density:
o) = § 2

where
Pk = /p(r)e"ék‘rdsr,

If we interpret the density as matrix elements of the density operator j(r)
introduced earlier (c¢f. Chapter 6)

p(r) = (¥ [ 5(r) | V)

and introduce the operators py by

P = (¥ | px | ¥)

we can also interpret the Fourier expansion as an operator equation:

ZezkrA
)
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Explicitly, the Fourier components are
fk = /p”(r)e-"k'rdg’r

N
= / Zé(r—f’j) e~ kT g3y
j=1
N

— Z e—-ik-i‘j )

j=1
These momentum components correspond to small density packages which
execute oscillations according to the aforementioned classical considerations.

It is then natural to choose these as collective coordinates. For convenience
we will however include a constant and define

Q (i) = iMypy

where

We have

N N

~ vt k£ _ —i(=k)-¥; _

()t =3 "e*=>"e I =p_k
7=1 7=1

which implies that

~
~

Qx = —'é-—k

in agreement with the property of é that it changes the momentum of a
plane wave ¢, (r,) = exp(ik’ -r,,)/\/S_g\ by k:

z'Mke—ik-ry eik'-ry
VQ
Ml 0=

VQ

Grpu(r,) =

Hence, the operators @k are not self-adjoint.

We can then formally rewrite the entire Coulomb interaction as
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H = g::’i 224”6 etk (Fi=15)
~ 2m k20 ©

t,J=1 kA0
=¢J a

_ 4me? . (Fi—p,) N 4re?
= + Z 2 e Y32
1,J=1k#0 k#0

’l_..
al at & 4me?
- z P S3E

Since the plasma oscillations represent the motions of many electrons,
the oscillations are mostly due to the long-range part of the Coulomb in-
teractions. Therefore, it seems reasonable to perform the transformation
to collective coordinates only for this part of the interaction, and to leave
the short-range part as a function of the electron coordinates. With the
partition of the Coulomb potential interaction into a long-range part and a
short-range part that we derived in the previous chapter (equations (10.11)
and (10.12)), we obtain

< 1 2t a N
H = "'“"+§ z (Qka_NM}?)‘FVsr-
=1 0#k<ke

Up to this point we lilave merely rewritten the Hamiltonian. In the next
step we will introduce (Jx as independent coordinates. (In the end, these

will of course replace the @k) We demand that Q) satisfy
Qh = ~Q(-xy
For the canonically conjugated operators, Py, it follows from

[Qk,ﬁkl] = ihék,k'
that ;
oL Bl)] = - @k P = - (inbex)” = inby .
These commutation relations are consistent only if

~

Pl= Py
since then
QB = [0y Bl] = i oy

~

= =it = [Qu (Pw)]
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We should also note that the collective operators Qy of course must commute

with one another just as the Qk-
For the additional term, we choose the operator

EY | R 2t\ - 1.4 4o
H= g S (P{{—mk) A=Y (-inPk-}-szLPk)

k<kc k<kc

which, in a field-theoretical language, describes a free field f?k and the inter-

action of this field with the electron field px. The operator H is self-adjoint,
which one readily confirms from the remarks above and by renaming the

summation indices k — —k (Qy and Py commute, since they act on differ-

ent sets of coordinates). Apparently H gives no contribution when acting
on the solution function that we are looking for (see equation (11.2). For
the transformation U we take

-

U = exp +ihz QLQk
k<kc

1 A R
= exp |—% > QL My py,
k<ke

.

The operator U defined in this way is unitary, since

. ; at .
ot = exp -3 3 Q@
| " k<ke
1 A y o
= e |3 3 () (-Gew) | =07
| k<ke

By using the identity

exp(—S)A exp(+5) = A + [

\.m)
Uy

provided
45,9 =0

we can quickly derive the following relations:

o0 = O
UtQuU = Q
”rf','(}' = I
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g‘:
=y
-t
i
-
+
| 2— |
w2
SRS
O
-l
Qv
.l
e

= Pit+ D - kaMkZh& (—k)e kT

k<kc

= p;+ > kMQle . i
k<kc

= Pi+ Y kMpQyetk T
k<ke

We write these relations once again in an abbreviated form:

‘l

new o new o ~ (new ~ (o 2 (old/new)
Q( )_Q(ld slmew) _ (ld) Pé ):Plgld)_!_Qk

and

k<kc

With the help of these relations we can immediately calculate the trans-
formed Hamiltonian (cf. equation (11.3)):

(old/new)
lSgnew) — 151('01(1) + {Z QkkMkeik'f'}

N 2
~ 13 ~ I
= [Z ot Vsr} FHu+ BO + H(ID,y,  (114)
where
- 1 ~t s At A 4me?
Hy = 3 > [ngk +w2QlQx - N 3G
K
(I M ;
Hé—)pl = Z Z kk — hk) Qge'™ ¥
=1 O<k<kc

. T om
=1 0<k,k’<kc
—~k#k/




96 LONG-RANGE CORRELATIONS...

Thus, we obtain one part which only depends on the electron coordinates
p; and #; and which describes an electron gas with short-range interac-
tions. Furthermore, we have an harmonic-oscillator part in the collective
coordinates, which reproduces the plasma oscillations, and, finally, we have
two terms which contain both particle and collective coordinates and which
consequently describe an electron—plasmon interaction.

To understand the individual contributions better, we go over to second
quantization. To do this, we first define the usual oscillator creation and
annihilation operators (the non-hermiticity of the operators Py and Qg can
easily be taken into account and does not lead to any complications):

1

IA)I: = m (prL - zﬁk)

(wPQk -+ ZPT) .

~

1
bx \/2hwy

For these operators, we have

1

blby = ———
k7 2hwy

(2010 + PP + iwpQL P — iy P
and furthermore, with [Qk,f’k} = th, we have

o4 n 1 At on A4 n At A
by = —— (w208 Qx + B Py + iwp (QLP! — QuBc ) — huwp) .
e = g (w30L@u+ AP+ i (OB - Qi) =)

Analogously, we obtain the relation
bl = T [wgcg;c)k + PPy + iwy (QLPII _ QkPk) + hwp] .
From these relations the commutation relation
Pt —
(b1, 5] =1

follows. Thus, the plasmons are bosons, which is what we would expect of
oscillator quanta.

Furthermore, we have

e 1
>ty (bt 5)
0<k<k,

- v %[w;@;g@km;pkmp (QL2! - @uh)].
O0<k<k,
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In this last expression, we see that the part

sy Y (LA~ QuR)
0<k<ke

vanishes if we insert the relations Q{{ = —Q_y and PII = —P_) and take

into account that for each vector k in the sphere with radius k., the vector
—k is also contained in the sphere:

Y o= Y (0) (P) = Y @ik
O0<k<ke 0<k<ke 0<k<ke

We can then write the part of the Hamiltonian that only contains the plas-
mons in the following form:

. +: 1\ N 2me?
Hy= Y |hwp (bfbe+5 ) — = 2| (11.5)
2) Q&
k<ke
E#0

[ ]

We can now write the operator H (7 ) ol in second quantization with respect
to the electron coordinates. By using

(plal | etr | po) = 60,0’6p',(k+p)

we obtain

i = 2% g (en—n) Qe

i O0<k<ke
k#£0
. Mk 2\ A 2t N
D 5k (2k-p-—hk )ch(kﬂ)’acp,a.
p,0 0<k<k.
E#0

We invert the definition of the plasmon creation and annihilation operators,

O == (bk“bT )

pr

and with this result we obtain

éI)pl = ) Z <2k R hk2>
Do 0ckek, -

~

x (ki pptme = B bl ofpe ) - (11.6)
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This operator describes processes in which the momentum of an electron
increases an amount k by absorbing (annihilating) a plasmon with momen-
tum k (the first term), or by emitting (creating) a plasmon with momentum
—k (the second term).

The second electron—plasmon interaction operator H éilp)l is usually omit-
ted for the reason that it contains the sum over the phase factors

N

Z oi(k'+k)x

i=1

which vanishes for a random distribution of the electron coordinates r;. This
approximation is known as the random phase approzimation (RPA). If we
write this operator in second quantization, we obtain

7D _ hop (kY (K
= Y YR
0<k ki<ke PyO
—k#k/
Pttt e, st 14t ;
x [bibyr + b b — 6T by - O
(11.7)

Thus, when we neglect this part, we neglect all processes where the momen-
tum of an electron increases by an amount (k + k') either by absorbing two
plasmons (with momenta k, k') or by emitting two plasmons (with momenta
~k, —k’), or by absorbing and emitting one plasmons of each momentum
+k and +k’.

In summary, we have cast the original Hamiltonian into a form that con-
tains two different kinds of particles, electrons and plasmons, and where the
electrons interact both with the plasmons as well as with one another. How-
ever, the interactions between the electrons are now only short-ranged. The
question whether the transformation is useful can ultimately be answered
in more detail beyond the simple arguments given so far, if we can show
that the interaction term is small. This is indeed the case. The tedious
calculations will not be carried through in detail here. It suffices to say
that this can be proved by another unitary transformation, after which the
remainder is truly negligible. This transformation changes the up till now
large terms so that the electrons acquires an effective k-dependent mass and
that the plasmons acquire a k-dependent eigenfrequency, so that they both
show dispersion:

m— m*(k) and wp — w(k).

In the following considerations, we will totally ignore these small effects and
calculate the ground state energy in first-order perturbation theory.
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We choose the interaction-free term as Hy:
LA
Ho= Z o+ H.
=1
The wavefunction is then to zeroth order given by

Yo(Qx, z:) = vi(Qr)P(x;)
where the collective part is a product of oscillator ground state functions
p@Qi=C J[ e W/2n/main
o<k<k,

(C is a normalization constant), while the electron part is the usual Slater
determinant of plane waves;

1 Ve
Ba) = o= det [eiTig, ()]

VN! k<kp,o

[ ]

The zeroth-order energy is
(0) /S p? .
E =<‘I’0!Z-27’n—+Hp1|‘I’o)=(‘I’IZﬁl@H‘(wIleW).
? 1

The kinetic energy has already been calculated in the previous section (cf.
equation (10.8)), with the result

~2 2
ik 221 [ e
(@12 g 19 =N [:o,—]
1

For the plasmon contribution, we use the fact that since we are calculating
the ground state energy, we only need the energy of the zero-point motions:

~ hw N 27e?
H = =r _
wiile) = ¥ [ -5
k#oc
Q ke hw, N 2me?
- kede | —B — =2
(%)3/0 o [2 0 k2}
_ Qhwpk?  Nelk.
T 1272 T

With Ic% = 371'% and the definition 8 = k./kp, this expression takes the
form

- 1 1
(o | Hp | p) = 4—th],,53 - ;chkpﬂ.
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We regard the short-range part of the electron-electron interaction as a
perturbation and obtain the first-order correction to the ground state energy.

The operator I;Tg)pl,
changes the plasmon number; thus, any matrix element between states of
equal plasmon number will vanish. In particular, this holds for the expec-

tation value involving | ¥g), so that this part of the Hamiltonian does not
contribute to E).

which we can readily express in second quantization,

EW = (Wg| Vir | To) = (| Var | ®)
Are? 1
Y 2 [k — k|2
kR <kp
k=X'|>kp

2 2 ke kp
.y L / &k / R
Q | (27 k—k'|>kp K=K

This integral can be evaluated by elementary integrations (see, for example,
Raimes [4]. The result is

@

3Ne?k 2 4 1,
g = W (1 £ B0) ek

With hw, = \/3_/7'3/2[62/%], we then obtain in all

221 0.88668°% 0.916 B2 B\ | €2
EO + g =N - (1 o . (11
+ P2 + r?/Q s + 2 48 2a0 (11.8)

S

Thus, we have calculated the energy as a function of the so far unknown
quantity 3, or, equivalently, k.. The following considerations will show that
we may determine § by minimizing the energy E©) 4+ E() with respect to
B. We have

g0 4 EQ) = (p® | Te + ﬁpl + Vir + ﬁg_)pl | @)

S (I
o® | Tot Hy + Ve + HE 4+ B | 00)

o~

(
{

~ ~ - A~ ~ I ~ ~ ~ ~
o® | U0 (Te+ Frp o+ B+ L) + Ve ) U0 | 0)
= (Upd | H+H|Up®)
> (Up® | H|Upd).
After integrating over the plasmon coordinates, the expectation value of the
original Hamiltonian in the electron part of the wavefunction remains. This
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part is not the exact ground state, but only an approximation of it. In
particular, this wavefunction in this approximation depends on k.:

EO 4 BMW 2 (9(k,) | | U(ke)).

By Ritz’ theorem, we will obtain an upper bound for the ground state en-
ergy when we minimize with respect to k.. The very small contribution
proportional to 8 in equation (11.8) will then be negligible (a more careful
consideration will show that this term is of the same order as contributions
already neglected in the present approximation), and we obtain

ke = 0.677r % = 0.3530 T 2
which gives
8 =0.353rL/2.

As an example to illustrate the order of magnitude, we consider sodium,
for which rs & 4a,. This yields 8 = 0.71 and kc_l = 2.95 a,, so that the
remaining short-range forces are indeed limited to only a few neighboring
electrons. .

With 8 fixed in this way, the energy, equation (11.8), is then finally
determined. In this calculation, the constraint equation (11.2) was however
disregarded. One can easily convince oneself that the transformed constraint

0 = (UTAPID) 0ted) (4))
= (B + Gy ) w0 (Qy, ) (11.9)

is not satisfied by the above wavefunction ¥q (Qy, :vj) = p(Qx®(x;). How-
ever, it can be shown [6], that a small change in the wavefunction so that it
satisfies equation (11.9), has a negligible effect on the ground state energy.
However, a corresponding statement does not necessarily hold for other ob-
servables of the system.

It should be emphasized that the energy, equation (11.8), obtained by
this projection contains part of the long-ranged correlation energy due to
the transformation to collective coordinates that was carried through. To
1solate this contribution, we subtract the Hartree-Fock energy, equation
(10.8). Using the value determined above for 3, we obtain per particle

Eiox/N = (E(O)+E(1)“E§Egas> /N

0458 ,  0.866 5  0.019 ) e
= (— B+ =58+ ﬂ‘*)

Ts rf/z Ty 2aq

e?
= -—00190'2—;;4'0(7“3)
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We can now finally give a definite value for the short-ranged correlation
energy, equation (10.13), that was calculated in the end of the previous
chapter. We obtain per particle:

2

¢ + O(rs).
o}

2a

EEL/N = (0.0622In(rs) — 0.139)

If we add the long-range and short-range contributions, we obtain in total
for the correlation energy per particle:

2

Eeore/N = (0.06221n(rs) — 0.158) ~ (11.10)

2ao

We will later derive this approximation for the correlation energy of the free
electron gas by using the perturbation theory of Gell-Mann and Brueckner
(Chapter 22).




Chapter 12

Phonons

We have in the last two chapters approximated the ion lattice in a metal by a
constant charge distribution. This is obviously a very rough approximation
which only leads to semi-reasonable quantitative results for a few simple
metals. A better approximation is obtained by using the Hamiltonian

ﬁ:f?i-{-f]e-i-f/_i

where
/\2 2 N
- ik e A
He = L4 — = T.
¢ 2m+2 Z Ir; — ;] etV
=1 "
P21
f:[ = —J_ — 1 — = i
i Zl 21‘/1_7' + ) - w (R] Rk) Tx +W
= gt
N
Veei = Z Ve—i (rn R])
n=1j=1

This is also an approximation, since we are treating the ions as particles
without inner structure with a fixed interaction potential . We abbreviate
the set of electron coordinates by

r=(ry,...,ry)
and the set of ion coordinates by
_E: (RI)'-"RJ)
so that we can write the Hamiltonian as

H=H(x,R) = Ii(R) + He(r) + Veui(z, R).

103




104 PHONONS

We will search for solutions of the full Schrodinger equation
HU,(r,R) = E,¥,(x,R)

where the lonic motion is coupled to the electronic motions. A partial decou-
pling can be obtained by the so-called Born-Oppenheimer approzimation.
This approximation is based on the large mass difference between the elec-
trons and the ions. Because of this mass difference, the ions move much
more slowly in their oscillations about their equilibrium positions than the
electrons. Consequently, the electrons are approximately in a stationary
state for each instantaneous configuration of the ions. Conversely, for each
instantaneous configuration, the electron cloud will slightly modify the ion—
lon interactions by screening them.
Thus, we first of all solve the electronic Schrodinger equation

He(x) + Veoi(t, B)| ¥m(x,R) = em(R)¥m(x, R) (12.1)
for each fixed set of ion coordinates R. For each fixed R, {¢m(x,R)} is a

complete system in the electron many-particle Hilbert space. For fixed R,
we can then expand the exact many-body wavefunction:

Z m(R)Ym (L, R).

We obtain a set of expansion coefficients xnm for each R. We insert this
completely general representation of ¥, (r, R) in the full Schrodinger equa-
tion to obtain

32 e ) [ B+ WD o (B) + 1 (B2 [(R) s R)|

+ZXnm(R [Te + V+ V—;] Ym (1' R) E, ZYnm R)lpm(r R)

_cm(R)wm(r R)

If we multiply this equation by v (r, R), integrate over the electron coordi-
nates d3Vr, and use the orthogonality of ¥, we arrive at

[+ W(R) + e(B)] Xnk(R) + 3 Xom (R | Ti(R) | )

= ank(_R_)'

Here, the matrix elernents (5 | Ti(R) | wm) are functions of R, since
we integrated only over the electron coordinates. We result is a system of
infinitely many coupled equation. The Born-Oppenheimer approximation
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consists of neglecting the off-diagonal matrix elements (¢, | TH(R) | ¥m).
In this way, we obtain the approximate equation

T+ W(R) + e, (R) + (x| TH(R) | Y1) | Xnk(R) = Enxan(R)  (12.2)

where the electron eigenvalues ¢; and the matrix elements () | 7} | ¥y)
act as potential terms for the ionic motions. We can solve the Schrédinger
equation (12.2) for the ionic motion and the electron Schrédinger equation
(12.1) separately. If the conditions for the validity of the Born-Oppenheimer
approximation, which were described in the beginning of this chapter, are
satisfied, we can assume that the neglected matrix elements are small. This
assumption can be shown to be correct at the end of the calculations.

The electronic Schrédinger equation must in principle be solved for each
set of fixed ion coordinates R. This is of course not possible, but it is
not even necessary for solids. We know from experie~ce that in practice,
only the equilibrium position of the crystal lattice is 1. 1portant. Therefore,
it is natural to expand all the occurring potentials ahout the equilibrium
positions. Before we do this, however, we make a brief digression to discuss
the equilibrium positions themselves, i.e., the crystal lattice.

An ideal crystal lattice is a periodic arrangement of points, which are
invariant under so-called primitive translations

ng) = myay + moaz + mgaz, m; € 2

where Z is the set of integers. The choice of the linearly independent vectors
a; is not unique, which is clear from figure 12.1. The set of these points is

. 'y ' . . o O. O (;O
(o]
. . . . C; o g o O. o
[ ] [ ® [ ]
azl % % . oO=Basis
a, a, a,

Figure 12.1 For this diatomic crystal, the basis contains two atoms. A few
choices for primitive translation vectors are shown.

also known as a Bravais lattice. The individual Bravais lattices are classified
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according to additional point symmetry operations, such as rotations or re-
flections. Because of the simultaneous constraint of translational symmetry,
the number of geometrically different point lattices is severely reduced; for
example, there are five in two dimensions, and in three dimensions there are
14 different Bravais lattices.

If each point in the Bravais lattice is assigned a basis, which can consist
of one or several atoms or ions, we obtain the real crystal. It should be em-
phasized that the point symmetries of the Bravais lattice are not necessarily
point symmetries of the crystal, since the basis can break these symmetries,
if it consists of several atoms. For example, the right-angle Bravais lattice
pictured in figure 12.1 is symmetric under reflection in horizontal and verti-
cal lines cutting the unit cells in half, whereas the crystal with the indicated
basis is not.

The parallelepipedes spanned by the vectors a; form the unit cells of
the lattice. The unit cells completely fill the entire space. However, most
frequently one uses other unit cells, the so-called Wigner-Seitz cells. These
are constructed by drawing all lines which are perpendicular bisectors of the
lines from a particular lattice point to all its nearest neighpors, as shown
in figure 12.2. The unit cells constructed in this way have the advantage

Figure 12.2 Construction of the Wigner-Seitz cell for a hexagonal lattice.

that they are invariant under the point symmetry of the lattice. These
symmetries are clearly seen, as in the hexagonal Bravais lattice illustrated
above.

We now define new basis vectors by

az X ag by = asz X ai b3=

2= .
(a1 -a X ag) (a1 cag X a3)‘ (a1 -ag X a3)

ay X a
blE 1 2

The components of any vector in one or the other basis are called contra
and covariant components, respectively, in vector calculus.
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Given any vectors X = zjaj + zoaz + £3a3 and y = y; by + y2bg + y3bs,
it follows that the scalar product of them is

Xy =2ZTiy1 + LYz + I3y3.
The union of the points
G, =n1(27by) + na(27by) + n3(27xbs) with n; € Z

is called the reciprocal lattice (of the original lattice). The origin of the
name comes from the fact that the basis vectors b; have the dimension of a
(0)

reciprocal length. As is easily verified, the lattices Ry’ and Gy, are mutually
reciprocal, so that the reciprocal lattice of G, is the original (real-space)

lattice Rf,?,).

The Wigner-Seitz cell of the reciprocal lattice G, is called the Brillouin
zone. The scalar product of a lattice vector and a reciprocal lattice vector
follows from the general scalar product above:

RY .G, = 2m (miny + mang +mang) = 27N withN € Z,  (12.3)

We will frequently use this relation.

Let us now consider a macroscopic volume € with sides Liay, Loap and
Lzag, so that the volume contains Ly - Ly - L3 unit cells. For the sake of
simplicity, we will in the remainder of this section consider only monatomic
crystals, in which the unit cell only contains a single atom or ion. The
number of ions, J, is then equal to the number of unit cells:

J =1Ly Ly Ls.

To describe the extensive properties of the crystal, we will apply periodic
boundary conditions in all three directions a; so that we imagine the system
continued periodically in these directions. (We recognize this procedure from
the discussion of translationally invariant systems.) Each group of transla-
tions along a; (¢ = 1,2, 3) then becomes a cyclic group of order L;. Because
each such group then is an abelian group, it has only one-dimensional irre-
ducible representations, i.e., the representations are numbers in the complex
plane. From the fact that each group is cyclic, it follows that these numbers
are the L; roots of unity, i.e., complex numbers whose L;th power is unity.
These numbers lie on the unit circle in the complex plane. The irreducible
representations of each group can then be written exp(ig;b; - a;), where
q; = 2mn;/L; with n; € Z. The irreducible representations of the element

Rg,?) of the full translation group of the crystal, which is a product of the
cyclic groups, are then

©)Y _ iqRY . q = q1by + q2by + ¢3bs
Lq (Rm ) =¢ with qi = 2an; [ L; with n; € Z.
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Since this representation matrix is one-dimensional, it is identical to its
group characters. From the orthogonality of characters we readily obtain
the following two results:

L; ,
R - {J for RY =0
ni=1 0 otherwise
L; ) . .
Z ez’q-R&,‘Z) _ {J for q a reciprocal lattice vector G
; - 0 otherwise.
mi=
In the first of these two equations, the summation over n; = 1,..., L; in-

cludes all g-vectors which lie in the unit cells spanned by the vectors b;.
Instead, we can of course sum over the Brillouin zone (BZ). If we also use

R,(Q) = myaj + moag + maag =0

only if m = (my,my, m3) = (0,0,0), we can use the shorter notation

[

. (0)
D /S (12.4)
q€BZ
. 0)
> GIRY = JAg,. (12.5)
RV eq

In equation (12.5), we have used A to denote a Kronecker-delta modulus
reciprocal lattice vector G.

That concludes the short digression on crystal lattices.

We will now further analyze the Schrédinger equation, equation (12.2),
for the ionic motion. To do so, we begin by collecting all potential energy
terms into one total potential, W(Rq,...,Ry), and for ease of notation we
will not explicitly indicate the dependence of W on the electronic state V-
The Schrédinger equation then becomes

[:f’i + W(B_)} xe(R) = Egxe(R).

Because the ions in a solid body essentially stay at the lattice sites, we can

expand W about these equilibrium positions. With R; = R§0) + u;, we
obtain

o~

W(R]_,...,RJ) = W(R£O))-">Rf[0))
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SD I WRAE)

m,n= lu,u—

J

+§1? Z Z u“uug 7’7‘:’7{\@—{-

“mynd=1 pp,A=1
The coefficients are derived from the ion—-ion potential, for example
2717
Apv _Q_YY__._

The linear term in this expansion vanishes, since each coefficient is precisely
the sum of all forces acting on each ion, and this force must be zero from
the definition of the equilibrium position. Thus, we can approximately write
the Hamiltonian for the ionic motion as

T+ WR)= WERO) + Ay + Hop_ph

where

J L
& . v ‘
Hy, = 2M Z Z Byl ARV (12.6)
i=1 mn—-l pr=1
and
~ hY b
th_ph_ - Z Z ububuy B (12.7)

'mnﬁ—lp,u\ 1

The first term, W(B_(O)), is constant and is not interesting for the discussion
on ionic motion.

We will now examine H, ph @ little more closely. To do so, we will, just
as we did for the plasmons, make a transformation to collectlve osc111ator
coordinates, so-called normal coordinates:

. (0)
77 Z it et 4R’ =193,
R(")(-:Q

Here the sum extends over all lattice points in the system volume . This
definition holds for arbitrary vectors q. From equation (12.3), however, we
see that for any reciprocal lattice vector G

I:Iq+G = qu

so it is customary to discuss the normal coordinates only for vectors q in the
first Brillouin zone. Furthermore, it is convenient to restrict the discussion
to the discrete set of vectors q

q = q1by + q2by + gsbs  with ¢; = ‘zw%, n; € 2.
1
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This set of vectors is quasi-continuous. We can with the help of the theorem
(12.4) derive the inverse relation

1 ~u RGO o, 1 RO _gOy
77 L BT = 5T an g 3 QIR < a

q€BZ R%O)EQ qeBZ

=5m,n

We introduce the operators

- 0
P¥ —th—rp

4 ="50E
which are conjugate to the normal coordinates U(‘; . The momentum operator
p; can then be expressed in terms of —f)c/;

3
3] 0 oUuy o
pt = —ih = —th = —th
m ORY, dub, q%;z; Gum vy
) 0
= —3ih Z Z: l“’ —zqR
qeBZ v=1 8U5
1 (0} ~
= —= Z e~1q-Rm Pq
\/jquZ

The inverse relation can be obtained from equation (12.5) as

A 1 oy p(0)
7T e = g R 3 e

- o~

=44 .4’
_.  pH
= B
For the coordinates defined in this way, we apparently have

~

ﬁz = [j_.q and PL = P_q.

Next, we express the kinetic energy, equation (12.6), in the new coordinates:

1 . . (0) . -
537 2 Pm Pm = 1 > Z At R Py - P
m a4q EBZ m
=Aq/,-q

1 S
= Y Pog-Pq= Pg  Pg.
21\/[ q€EBZ 2M q€BZ
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Instead of summing over all R( ) = = mja; + meag + mgag in {2, we have
here summed over all integer vectors m = (my, my, m3).
An analogous calculation for the potential energy yields

DIPILEATAE S 3D SE R DR T S

m,n g,v m nuv o q',qeBZ

= 5 > Y uhuy= Z (a+a’)} R $ gia (B -Rin) g

- 2 mun:*
qq eBZ BV n

We can simplify this expression by writing
0 0 0
R’S‘L) - Rgn) = n1a; + ngag + ngag — mja; — maaz — Mmzag = R,&lm

for the difference between lattice vectors. To further simplify the expression
for the potential energy, we examine in which way the matrix
277 (R (0) (0) (0) (0
498 _ OWER;...Ry” ... Ry ... Ry

ab —

ORSORY Ra=RY)

Rb—R(O) @

displays the translational invariance of the problem. For a constant vector
C and X;, = Ry, — C we have 8/0R), = 8/8X},, and because of the

translational invariance of the ion—ion potential
W(Ry,...,Ry) = W(Xy,...,Xy)
we also have
2w(x¥.. . X,..x,...x1Y)
0X20X) Xa=X(D)

Xp=x{0)

AP —

ab =

In particular, if we choose C = R,(lo), we obtain

s oW 3
A= ——— = AgY .. (12.8)
0X20X Xq=0
RS ON RO _p(®

b—a
We can then sum the expression
(0) _p9)
Z eQ'(Rn ~-Rm )A;‘n"n
n

over the difference k = n—m for each fixed m by using the periodic boundary
conditions:

. (0) (0) - ql0)
3 Ra R g Y ia Ry Abh = Ag" (12.9)
n k
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With equations (1‘2.8) and (12.9), the potential energy can be written

Z S URTY < Z eila+a) R yuv

qq teBZ wyv P
::A
= 1Y oy
qGBZ v

If we use a matrix notation, this expression can be written
quZ

We now proceed to show that the 3 x 3-matrix Aq is symmetric for each q.
First of all, we have

B _ 4P
Az,b = Aia,-—b (12.10)
since ~ ~ — .,
02w 2w _0tw

OR3OR® ~ B(-Rg)d(~RP)  OR*,0R°,

Furthermore, we can interchange the order in which the two derivatives are
taken, so that

A = Al (12.11)
If we combine equations (12.11), (12.8) and (12.10), we obtain
Apg = Afo = Ao = Ak

so that we finally arrive at
Agu — Zezq R( )Auu Zezq R( ) — Aé’lﬂ
k

The matrix Aq is symmetric, so we can diagonalize it with an orthogonal
transformation Yy :

T Ay, 000
YoAqYd=| 0 A% 0
0 0 A3

We now define new coordinates through

Ql 71
Qg = | v* A%
= 73
g Uq
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In terms of these, the potential energy takes the form

1 ~t o 1 ~ 1 -
q q

1 3
3 2 2 0608

It is easy to confirm that the kinetic energy remains invariant under the
coordinate transformation Yy. For

i

u(new) 4]
Pq 3Qg
we have
sv(ld) 0Qq 0
P = ‘haUV - ”’Zaw 9Q4

3
= _zhzw‘” 0 = 3y ppteen)
0Qq
p=1

q p=1
so that in matrix notation we can write
s(old) (o (new)
Pq =Yy Pq .

Since the scalar product is invariant under the orthogonal transformation
Yq, it follows that

1 st(old) s(old) 1 -~ t(new) - (new)
2M§Pq Pa " = g7 ;Pq Fa

The Hamiltonian for the lattice motion then finally becomes

M st A
=Y 5 [qhe e+ Mg st (12.12)
p=1geBZ
where we have defined
= Ag (12.13)
Wau = M’ )

We have then succeeded in showing that the ionic motion can be approx-
imately transformed to a system of independent oscillators with eigenfre-
quencies wq,,. The quanta of these oscillators are called phonons. The only
approximation that we have done in this, is to omit the higher order terms
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in the Taylor expansion about the equilibrium positions. We will, however,
briefly discuss these terms later.

The eigenvalues satisfy wq,, = w_gq,,. This follows from combining the
definition (12.9) with equation (12.10):

A = Yt = YR g

k k

. 0
= Ze‘zq'R(—r)cAg,”_k = ALY

k
The matrices Aq and A_q are thus identical, hence also (by suitable enu-
meration) the eigenvalues wtgq . It also follows directly from the definition
equation (12.9) of the matrix Aq that wq, = Wq+G,u- Consequently,we
only need to calculate the dispersion relation w(q) in the first Brillouin
zone. The exact calculation of such a dispersion relation is quite tedious,
since the matrix Aq, from which we obtain the eigenvalues wq,u by diago-
nalization, consists of the Fourier transform of the second derivative of the
interaction potential of all ions. In most cases, it suffices to take into ac-
count only nearest neighbors or next nearest neighbors. Typically, one then

obtains the picture shown in figure 12.3.

A w(g)

Opthical

__————””//"/”’_——~—-‘\\\\§\\\\“-~—_

Acoustic

First Brillouin zone

Figure 12.3 The optical and acoustic phonon branches are depicted schemat-
ically.

If the basis consists of only one ion, one obtains a dispersion curve which
is linear in ¢ for small ¢: w(g — 0) = ¢g. Small q means large wavelengths,
so these modes are the usual sound waves in condensed matter. This means
that
_dw

dq g=0
is the sound velocity of the medium. Phonons with a dispersion curve of
this kind are called acoustic phonons.

8
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If the crystal contains several different atoms, optical phonon branches
will appear in the dispersion curve. The quanta are called optical phonons
because they can be excited by photons in the visible region.

We have up to this point not said anything about the polarization, i.e.,
the direction of oscillation of the three different modes W # = 1,2,3.
However, we have already calculated these implicitly. The three vector com-
ponents chl, Qg, Qg of the oscillations with frequencies wq 1, wq,2, Wq,3, are
precisely the projections of the original displacement vectors Ugq of the par-
ticles on the row vectors of the orthogonal matrix Yq:

Y11Q! + Y51Q% + Y518 \ R
U=YTQ={ vQ' +... = Qle; + Q%3 + Q3¢s.
}33Q14-”.

Thus, the column vectors of the matrix YT, which are the row vectors of
the matrix Y, give the polarization directions £, of the three modes wq,,.
The polarization directions depend, of course, on q, just as the frequen-
cies do. Depending on the direction of oscillation &q,u relative to the direc-
tion of propagation q, one distinguishes between transverse and{ongitudinal
phonons:

€0 q = 0 for purely transverse phonons
qu 4= |€q.ul-]a] for purely logitudinal phonons.

We cast I_:[ph in second quantization by introducing creation and annihi-
lation operators (analogously to how we did with the plasmons):

3(!,“ = (QhMcuq,“)“l/2 (M’wq,qu+z'f’(§‘T)
b = (2hMuwqu) ™V (Muq,Qf' - iP4).

It can be shown that these operators satisfy the boson commutation rela-
tions, and that Hpp can be written in the form

3
. P |
Hpp = ) § , g, (btfl,ubq,u‘*‘ '2') : (12.14)

qeBZ =1

This is the Hamiltonian of a system of non-interacting bosons. The an-
harmonic terms, i.e., the higher terms in the Taylor expansion about the
equilibrium positions, which we have neglected up to this point, can also
be interpreted in terms of creation and annihilation operators. In order to
write these terms explicitly, we use the inverse transformation

) o112 . .
B t
Ya.u = [ 2qu,J (bq'“ + b-w) ‘
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This yields

ak = 1 Z eiq-R(rﬁ)Ug
ﬁqEBZ
3
1 . n(0) .
= 7 T Qe
qeBZ a=1
so that
3 1/2
h SN () . .
T —— Q‘Rm N T ¥
U, = Z 2 [QIWJLU ] e’ £q,a (bq,a + b——q,a) . (12.15)
q€BZ a=1 Q.4

Here, £ o denotes the uth component of the polarization vector £q,q-
If we insert these expressions in the third-order term

J 3
- 1 \
R E : E : TRV W oY 124
th-—ph - 3! umunUE anf
m)nl‘g:l ;u)l/yA:].

and also use .
J
Z ez'q~R(,.g)eiq’-R(no)eiqn.}{(to)B;w/\
mné
m,n, =1
=¥ silata'+a”) R S AR -RY) > " (RO-R)
[TR7DN
XBo,(n=m),(e-m)
- A iq R iq" RO LuvA
- (q+q’+q”),02e ) Ze & Bokg
k g
and finally define
I/ . p(0)
TOAREED SPTAIIN SR
THZ k

iq"-R(o) )
X Z € & BD,k,g
g

we obtain for the phonon—-phonon interaction:

1o

i 1[ g J3/2 raxo,
h-ph = 1 ilosxrT

PA~P 3V |12MJ —~ \/wq’awq/’a;wqu,au

q99'q
aa a’!

XA(Q+Q'+Q”),O <Bq,a + bt—q,a) (3(11,0,’ -+ bf_q/,al)

X (3q/l’au + b}_qn’an) .
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When this expression is multiplied out, it yields a sum of three-phonon
processes which are subjected to momentum conservation q +q' + q” = G.
Such processes obviously play an important role when many phonons are
excited, as is the case at high temperatures. They are important for the
description of thermal conductivity and thermal expansion of crystal lattices.

After these remarks on the ionic motion, we now continue with the elec-
tronic problem. The Taylor expansion of the electron-ion potential leads to
first order to

N J
Ve—i (riE.) - Z Z ve—i(rn - R
n=1 _]::1
N J o
SEDIPILICES SePah
n=1j=1
N J o
= >y {ve-i(rnR§ ) —u;- VR, [Ve-i(tn = Rj)] o0 + - }
n=1j=1 7

= Z Zve—i (rn - REO)) + Z Z u; - [vve—i(rj - Rg-o))'-f- .. ] .
nog no g

We then arrive at the following expression for the total Hamiltonian for the
electronic problem, equation (12.1):

ﬁe + V—i = ﬁig()) + ge-—p

where
GO g Ly Sy ©)
e =Te+ 3 Z m+zzve—i(rn‘“Rj )
i,4=1 n=1 =1
t1#L
and
X N
He_ph =) U(rn).
n=1

In this expression, we have only kept the first-order term of the higher-order
terms in the Taylor expansion:

=30 (7o c-n)]

The solution of the ﬁgo)—problem, t.e., the calculation of the electron states
in a fixed potential which is periodic with the lattice, is usually done with
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the so-called pseudo-potential method. The electron—electron potential is
then usually regarded only as a screening of the ion potential. The electron
states calculated in this way are called Bloch states. They are of the form

bro(z) = \/ije*'ws)sak(r),

where
er(r+RY) = ¢y (r)

for all lattice vectors R%O) . In what follows, we will assume that these

single-particle functions are known. If éL , and ¢y, are the creation and
annihilation operators of these one-electron states, we can write the operator
He_pn, which eventually will have the form of electron—phonon interaction,
in second quantization as

f{e—ph = Z Z(‘bk’a ! v I ¢ko’)é£'aéka-
kk'eBZ °© °

Since the Bloch functions satisfy

Yko = Y(k+G)o

it suffices to carry out the double sum over the first Brillouin zone.
To proceed, we expand the electron—ion potential in a Fourier series:

1 .
ve-i(¥) = &5 ) ve-i(a)e’™
q

and

Vyve-i(y) = g D ave—i(q)e'y.
q

This yields

.oJ
~ i e 0]
i) = 5w Y queni(a)e R
=1 q

1 - _: 'R(.o)
= 2 YT (@ | Yue
q J

By using equation (12.15) we obtain
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o (0)
e—zq-RJ

i
=

1/2
> [QMqu J > " b (b + B )

q’'€BL J

) "‘]Xq,q ’
Ry 112
=2 [Qqu a] o (baa+0lqa)
a 1

so, In total
. i AR P L
'U(I‘) = - [———“‘} elq rve—i(q)q ) 6%0 (bq,a + bT_q’a) ’

Here we see that the electron—phonon interaction apparently vanishes for
purely transverse phonons, since for these we have q-& = 0.

It should further be remarked that the sum over q, which 8tems from
the Fourier transform of the electron—ion potential, extends over all vectors
q, and is not restricted only to those in the first Brillouin zone. However,
the phonons created only have momenta which are contained in the first
Brillouin zone, since

~

bae = bigyq)e a1 baa = bgra)a:

This follows immediately from the definition of the normal coordinates [73‘

and 15&' , from which the creation and annihilation operators were formed by
linear combinations.

Since each allowed vector q can be written unambiguously as the sum
of a vector in the first Brillouin zone and a reciprocal lattice vector, we can
split up the sum over q in the following way:

Y of@= D> fla+G).
q

qeBZ G

With
wqya = w(q+G),O’ a'nd é‘q,a = E(q—{-G),a
we then finally obtain

~ 1/2 G
W = 5 =TT ] e O

qeBZ «
X(q + G) 'fq,ot (bq,a + bT_q’a) .
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The only part in this expression that depends on r is the exponential. To
write He_pp in second quantization, we need the matrix elements of the
exponential and the Bloch functions:

(e o | /AP Ty :ZS:XZ(S)xa(s)"}/d3ﬂrei(k+Q+G—k’)-r

=1

X @i (r)ipx(r).
In the calculations of the integrals, we can use the fact that the functions
@k (r) are periodic with the lattice and that the lattice constants are small
compared to the scale with which the exponential functions change appre-
clably. Consequently, it is a very good approximation to substitute the unit
cell average value @y, pk for the product ¢} ¢k in each unit cell (and thus
for the entire volume Q). The matrix element then becomes

e . IV o S
790;'30}: ‘/Q d3rel(k+q+G k')-r — 'j":pklsokék’,k+q+G'

In particular, for the case k! = k + q + G we have the exact result

-1—/d37'ei(k+q+G_k’)'rQ0;/(r)(,’ik(l‘)
JJq

= % /9 r o} L qra@ek(r) = / .

d®r o}y qra@ek(r)
unit cell

= ($0k+q+G I‘Pk),

where the overlap integral is evaluated over one unit cell. Hence, the unit
cell average above is for the case k' = k+q+ G exactly equal to the overlap
integral:

————  (Pktq+G | k)

Pkt+q+G¥k = Q/J

normalized with respect to the unit cell volume.
We then obtain in total

(‘lf)k/a l ez’((H"G)-r ! '!/’ka) = <90k+q+G I ¢k>6k’,k+q+G'

Due to the Kronecker-delta, not only does the sum over k' reduce to a
single term, but the sum over reciprocal lattice vectors G is also reduced.
For k,q € BZ there can only be a single reciprocal lattice vector G(k, q)
such that k’ also lies in the first Brillouin zone. This is clearly 1llustrated in
figure 12.4, We have

Gk, q) = if k + q is in the first BZ
- Co otherwise
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N
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o
N
"K\\\///::;?
-
 J

/ \\ k G,
\ k N
First Bz First sz
k =k +q kI:k +q 4-60

Figure 12.4 If k 4 q is not in the first BZ, we can write k’ = k + q + Go,
where kX’ is in the first BZ, and Gg is a reciprocal lattice vector.

The entire electron-phonon interaction is then

L]

. 3 1/2

- i hJ

B = 5 2 DY ]| tperas lonveita+ @)
Qk,quZ > = 2Mwq o
X(a+G) g (bao + ) trarapoticr  (12.16)

The interaction thus consists of processes in which the momentum of an
electron changes by q+ G, either by absorption of a phonon of momentum q
or by emission of a phonon of momentum (—q). If also G = 0, the process is
called a normal process, and if G = Gy (see figure 12.4), the process is called
an Umklapp process. {Such a distinction between normal and Umklapp
processes can also be made for the case of the phonon-phonon interaction
discussed previously.) The electron-phonon interaction equation (12.16)
plays a role for example in the description of the electrical conductivity.







Chapter 13

Superconductivity

The most striking consequence of the electron-phonon interaction is super-
conductivity: below a certain temperature, the transition temperature, the
electrical resistivity of many materials disappears. We cannot here go into
the phenomenology of superconductivity, and can only address ¢he basic
concepts of the theory of Bardeen, Cooper and Schrieffer (BCS)[7] and of
Bogoliubov [8] and of Valatin [9]. Our goal is just to show how helpful many-
particle theory is to the understanding of superconductivity. Furthermore,
we should get a hint of the importance of symmetry-breaking and anomalous
expectation values. We will in this chapter only discuss phonon-mediated
superconductivity within the weak-coupling BCS theory.

The first clue as to the nature of the phenomenon is offered by the fact
that the transition temperature is different for different isotopes of the same
material. This means that the motion of the nuclei, i.e., the phonons, plays
a role. The system of electrons and phonons will be described as in Chapter
12 by a Hamiltonian of the form

f{ = ﬁéo) + f{e—ph + I;[ph'

Here (0
A9 = el o,
ko
already contains the effect of the rigid, periodic lattice. Hence, we will in
this chapter by ‘electrons’ mean Bloch states. For later use, we introduce

the ground state of Héo) + all states with single-particle energies ¢, below the
Fermi energy ¢g, which depends on the number of electrons, are occupied;
all others are empty (we will assume that € = €_L):

W)= T &, Jvacy= ] (@,’fda{ki) |vac).  (13.1)

p<ep ER<ER
o

123
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The operator
. ks 1
th = Z Wq (bgbq -+ '2")
q€BZ

describes the phonons, which we assume do not interact with one another.
For simplicity, we also restrict ourselves to one polarization. The electron-
phonon interaction, He_pp, results in an effective electron—electron interac-

tion by the exchange of phonons. We write er_ph as

'ﬁle—ph = Z Z Vq (5‘1 + E'1-.-q) éZk+q)aék‘7
k,qeBZ ¢

where we for simplicity have ignored Umklapp processes and have taken the
interaction V, to depend only of the magnitude of q. The operator He_ph
does not commute with the phonon-number operator, Zq B:&iyq, but does

commute with the electron number operator, Y . é;rw&ka- Hence, a state

with a fixed number of phonons cannot be an eigenstate of H. To get some
understanding of how this affects the time-evolution of a ‘single electron
under H, we consider a small time-increment é from an initial time ¢ = 0
and Taylor-expand:

f(to+6) = f(to) + 5%{- lt=to -

At time tg = 0, the initial state is

1ot =0)) = &Iw | vac)

and at ¢t = 8, the state 1s
[st=8) = (1=iH)]|6(1))le=o

= [(1—2'5%)5{“,—iéztfqé!‘_qa{kﬂ)a | vac).
q

This time-evolution shows that the electron will emit a phonon with a cer-
tain probability, and V; gives the corresponding probability amplitude. In
the further time evolution, the possibility of reabsorbing phonons enters in
addition to the possibility of emitting a second phonon. This simple argu-
ment demonstrates that:

(1) the electron is surrounded by a phonon cloud due to the interaction
He-— hs
phs

(2) as a consequence, the properties of the electron, in particular its dis-
persion relation €, will be changed.
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We can treat the electron—phonon interaction as a perturbation and cal-
culate the electron energies using perturbation theory. In second order we
obtain a reduction in the electron energy. We use the standard formula

/_\E (2) — (¢1,0 | ge—ph | ¢neynph) (¢ne,nph | ]-:re—-ph | $1,0)
( ) Z Wl 00— I/Vne,nph

Ne ,nph

The sum runs over all eigenstates | qﬁne,nph) of (ﬁéo) + ffph) with n. elec-
trons and nyp, phonons, respectively. If we set

| 610) =& |vac) Wig=c¢

we obtain

er_ph | 1,0) = Z Va (l;q + Iﬁ_q) &t ép,aéf{ | vac )
q,p,o (p+a)a ——
=6p kbac—& Zpa

and since bq | vac) = 0 = Cpa | vac), we furthermore obtain
g it ot
He ph = Z qu—qc(k+q)a | vac).
q

In the sum

Z I ¢71e sTiph ) (¢neynph

Ne 1 ph

only the state
it At
b~—qc(k+q)a | vac)
with energy
Wi = ehpg +w—g =g+ g

leaves a non-vanishing contribution. The energy shift then becomes

(2) _ 1 7§t oat
(AE)?) = 55: Vaz = e (01,0 | He-pnbloé(y , o, | vac)
= il
€k = (kg +wq)

q

X Z Vq:(vac f éqa (bql -+ bf_q,) égp,_*_q,)a,(:’p/albiqézrk_{_q)a_ ' vac)
q',p'a’

=¥ Yy

q k— (€k+q +wy)
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X Z Vyr(vac | bq/bT_q ékgézp,+q,) ) CP'O"CIk—}- | vac)
q'p'o’ e \...__V..._._./
it « .
=6gs, _q+b_qbq: =6cx’a'5p’,(k+q)—c(fk+q)acplal
VaV—q -
(vac | égs 6y, | vac) .
;fk— fk_*_q +Wq) ka’ —
=1

Finally, we use V_;, = V", which must hold for any potential which is real
in coordinate space, and obtain

@nP =3 ik

q %k~ (€k+q + ""q).

What we obtain is a modified dispersion relation for the electron under
consideration. One says that the electron properties are renormalized.

If one calculates second-order energy-shift of a two-electron state
I{ - AI{, , | vac), a contribution which consists of the exchange of a phonon
with momentum q appears in addition to the energy-shift above for each

electron. The phonon-exchange term is y

|Vql? |Val?
AFE , =
( )k k ; €k = (kg twq)  €xr — (pr—g +wy)

+3 Vgl
q

1
(€k + €xr) = (€pqg + €pr T wy)

1
+
(Ck + fk’) - (fkl_q + €+ wq)}
x (vac | éryCko ¢t (k4q)o ¢l (k/=q)or | Vac)

The matrix element in the last term vanishes unless ¢ = 0 or ¢ = ¢’ and
k' =k +q, ie., unless k = k' — q. Note that the phonon-exchange term
has the form of a contribution in first-order perturbation theory with an
effective electron—electron potential

ff ! -t - A
9 Z Z Ve (k, k)¢ k+q)ac(k’—q)a’ck"f’ck‘7
kl I
where
1 1

-+ 13.2
€k — (€ptq T wq) € — (€hr—g +wy) (13.2)

Ve, k) = |V, [

It is also clear that such a term (among many others) appears if the initial
state in addition to (ko) and (k'c’) contains other electrons and possibly
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other phonons, and that such a term also appears as an intermediate state
in higher order perturbation theory. In these cases, processes for which

€k+q ~ €L RN €L — fkl__q (133)

are particularly important (in the example above, equation (13.3) holds
exactly in second order perturbation theory for the non-vanishing contribu-
tions). Equation (13.2) becomes with the approximation equation (13.3)

g (13.4)

5

Veff ~ IV 2
1 QI (€k+q - Ek)2 — Wy

For the two electrons to affect one another through this indirect scattering
process, the final states (k+q, o) and (k’—q, 0’) must be unoccupied. Right
at the Fermi energy ¢, occupied and unoccupied states lie closely together
and can therefore easily be mixed, and the effective interaction equation
(13.4) becomes relatively large and attractive:

]

: 2
€ky €k'y €kpqs €k —q = €F = quff = —“:)Lq,.
The picture of the superconducting mechanism is hinted at in this attractive
interaction. An electron deforms the crystal lattice in its surrounding, which
implies that the electron emits phonons; the deformation and polarization
acts as an attraction on other electrons.

The elementary calculations above can be more elegantly formulated with
the methods that we will discuss in later chapters. Here, we only wanted
to demonstrate that the electron-phonon coupling can lead to an effective
electron—electron interaction. To understand superconductivity, it is impor-
tant to realize that a weak attractive interaction between two fermions alone
does not necessarily lead to a bound state. We can illustrate this fact by
the following example. If we transform to center-of-mass and relative co-
ordinates for the two particles under consideration, we obtain the problem
of a single particle in an attractive potential. In three-dimensional space,
this potential must have a certain minimum strength to lead to a bound
state. A thorough discussion on the connection between density-of-states,
dimensionality of space and the appearance of bound states can be found
in Economou [10]. As a model, we consider a three-dimensional potential
well with a characteristic length R of the range of the potential, and an
effective depth V. The spatial extent of the wavefunction is characterized
by a length a. The potential energy is approximately

B, = —[%}BVO for R<a
pot =

-W fora< R
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Figure 13.1 A wavefunction of extent a/R in a potential well of depth Vj
and width R.

and the kinetic energy is
K% 1

Eyin = |- —.

kin [a] 2m

The total energy is depicted as a function of @ in figure 13.2,

2k RZVO/(ﬁZ/Zm) =213
- RV, /(h%/2m) =1
Ny PZVO/(ﬁZ/Zm) =3/2
+ -
WL
O \/,
-1 :rLL%[‘rlﬂ!%vLL%lH513!5I§'EL%I!“|:1{1:'H}1%
0 0.5 1.0 1.5 2.0

a/R

Figure 13.2 Total energy as function of a for the simple model above.

With this simple estimate we obtain a bound state, i.e., Epot+Eyin < 0, only
for Vo > h%/(2mR?). In this case the extent of the wavefunction is approx-
imately equal to the extent of the well (R = a). Thus, for Vo < A?/(2mR?)
the reduction in interaction energy does not make up for the increase in
kinetic energy, and it is energetically favorable for the two fermions to move
independently in states with small kinetic energy.

We now consider two electrons on the Fermi surface. They would like to
lower their energy by forming a bound state of a relatively large extent from
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the states available to them. Such states only have momenta at least of the
order of kp, because of the Pauli principle. This is a many-body effect in so
far as the other electrons are necessary to occupy states with lower momenta.
If the effective interaction is attractive even only over small distances, the
two electrons will arrange their spins to be parallel (otherwise, they cannot
come near each other) and form a spin singlet. The understanding of this
so-called Cooper instability of the electron gas by the formation of pairs in
the presence of a weak particle-particle interaction at low temperatures (we
consider here T' = 0 and start out from a sharp Fermi surface at ¢p) will of
course not entirely clarify the question of the nature of the superconducting
state. First of all, we have inadmissibly distinguished the two electrons from
all the others. Secondly, we have extrapolated the concept that ‘every two
electrons form a Cooper pair’ to the paradoxical situation that eventually
no unperturbed electrons will remain within the Fermi surface, i.e., below
the Fermi energy. Therefore, the argument for the pair formation becomes
questionable. However, from this discussion we can understand that the
electrons tend to form singlet pairs in the presence of a weak attractive
interaction. However, in a many-electron system, this picture is complicated
by the fact that we have to consider how electron form pairs in the presence
of other electrons, which also form pairs. Hence, the problem have to be
solved self-consistently, with the electron pairing and the background of the
other electrons determined simultaneously.

It is impossible to calculate the coupled electron—phonon system so pre-
cisely that we can obtain the tiny energy difference between superconducting
and normal states as differences between total energies. (The energy scale
of the transition temperaturex Boltzmann’s constant ~ 5 x 10~ eV, which
sets the scale for the desired energy differences.) We are not interested in
attempting to calculate details such as the dispersion relation ¢ of the Bloch
electrons and the electron-phonon interaction to such an accuracy. Rather,
it is important to understand the difference between the normal-conductor
and the superconductor phases. For this, it suffices to consider the piece of
the Hamiltonian which is responsible for the difference between these two
phases. We investigate the situation which is associated with Cooper pairs
at rest. We imagine that we can cast the phonon degrees of freedom in
the form of an effective electron-electron interaction, and that we in this
interaction only keep the part which contains two Cooper pairs:

Hrea =) epihotps + > qué;rétplé—qléq? (13.5)
po pa

We optimize the wavefunction of Bardeen, Cooper and Schrieffer with re-
spect to this Hamiltonian. This wavefunction is written as

| Upes) = IkI (uk + vké;r{.réf_ki) | vac). (13.6)
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We quickly see something new and surprising in this harmless-looking ansatz.
The particle number is not a good quantum number for the general BCS
function; parts with different particle numbers will be mixed. It should be
remarked that the limiting case

[vgl=1 and wu =0 fore, <ep
v =0 and |ugp]=1 otherwise

leads to the ground state of the unperturbed problem ﬁéo) (¢f. equation

(13.1)).

We can determine the following expectation values by using the anti-
commutation relations for fermions:

(Uncs | ¥nes) = H (upup + vpvp)

(\IIBCSIN[\IIBCS) = Qkavk X H u up+v vp
pFk

(‘I’Bcs l ﬁred l ‘I’Bcs) = Qkavkvk X H ux plp +v v,,)
p#k
+ Z Vik/ U vgugvps X H Uptp + v, vp)
k,k' pP#£k
p#k’

The requirement of a determined particular particle number can only be
satisfied on the average. This is accomplished as usual by the introduction
of a chemical potential x (= ef). To normalize the state, we choose

jugl? + ogl? = 1
and uy, real and positive for all k. This constraint can be satisfied by taking
ug = sin f, vE = e'®* cos 0
in the expression which is to be minimized:
(‘I’Bcs l -F{red - #N l ‘I’Bcs>-

The result is

QZ (€ — pt) cos? @), + = ZZkaI (2sin 6y cos bg)

k ¥’
X (2sin @1 cos i) e (g1 —bx)
= Z (e — 1) (1 + cos(26y)) + Z Vigr sin(26y) sin(26,.1)e i( b1 —bk)

k kkl
(13.7)
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The condition of stationarity can be satisfied by

¢ =« (13.8)
with o an arbitrary constant, independent of %, and
tan 20y = — (e—"aAk) /(e = 1) (13.9)
where
A = - Zkaluzlvkl
kl
- - Z ka'(‘I’BCS I é__kllékIT I \I’BCS)' (1310)
kl

Hence, we have to investigate the equation

—i 1 .
lAkl =¢€ mtAk = —-'2' ngk/ sm(20k,)

]

where we have assumed that Vi < 0. This equation has the form of an
integral equation in the continuum limit of k and k’:

1 ) |Ap|
Akl = -3 E Vig 8D {arctan [—- P #] }
kl

1 1Ak
= ==Y Vi
7 2 Vi VAR (et — )2

kl
1 1A
- __E f—l 13.11
2 kl ka Ekl Y ( )

with the abbreviation Ey = y/|Ag|? + (ex — 1)?. The solution of equation
(13.11) is particularly simple if we take into consideration the fact that the
effective interaction is particularly strong near the Fermi energy (ex 2 p)
and can be modeled by the simple approximation

Vi = {—V/Q if Jeg —'p! <wp and |eg — p| < wp (13.12)
0 otherwise.

Here wp is a cut-off parameter of the order of a typical phonon energy,

a few meV. With this model interaction, the k-dependence of Ay and 6,

simplifies:

_JA forlep— pl<wp :
AL = k 13.1
k {O otherwise ’ (13.13)

Siﬂ(?f}k) — { IA'/EFJ for lfk - ﬁ‘l <wp
0 otherwise
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forep, — p < —wp

[1 - 5%_;&} for e, —pu <wp (13.14)
for e — p > wp.

O o =

ogf? = 5 1L+ cos(26,)] = {

Then A is the solution of a single equation

1

2. Vi = )2+ A7

lex—pl<wp

| = (13.15)

DO b
2 <

The phase factor A/|A| = ei® remains undetermined.

In the so-called weak-coupling limit, which means that the product of
the strength V' of the effective interaction with the density-of-states at the
Fermi energy v(0) = %f%l—y—lczu is small compared to the Fermi energy, and
that the denisty-of-states in the energy range of the integration ¢an be taken
to be v(0), the sum in equation (13.15) can be replaced by an integral which
yields

1 #+wp de
1 = =Vv
2 (0)/“_% V{e- WP +1A7
= Vu(0)sinh~Hwp/|A|)

or
wp ~ S—
Al = —B— = 2upe T, (13.16)
sinh |57 |

The difference in total energy (see equations (13.7), (13.1), and the definition
(13.10)) between the BCS state and the normal state is then

6F = (‘I’Bcs l ffred - #N t WBCS) - (‘I’n f f}red — pN ' \pn)
= 5 [ (14 costonp) - Sein(20) 1el] - 32 2 - )
k exSu

which in weak-coupling limit becomes, with equations (13.10), (13.13),
(13.14) and finally equation (13.16)
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Htwp
L au(0) / (€ = w)de
Q H

#tep —(e—mde A
R R R o

W 2 w 2
= (0w - QU(O)—QP-, Jw? 1A + QV(O)%‘—sinh-l 1—1&% - ’EVL

A2
~ (- %I/(O)IAIZ + v(0)]Al? V(Ol)v - lh{\/l
1

= —§V(0)|A|2. (13.17)

In summary, we conclude that in the formation of the BCS-state
(1) energetically deep-lying states remain occupied,

logl =21 for e < p—|Al

(2) energetically high-lying states remain unoccupied,

vp =0 for € > p+]Al

Thus, the occupations differ appreciably from those of the normal-
conducting state W, (see equation (13.1)) only in a very small region of
order |A|. This leads to a reduction in the total energy of the order of
exp {—2/(v(0)V)}, from equation (13.17) with equation (13.16). This ex-
pression is not analytic in the strength V of the potential and cannot be
obtained from usual perturbation theory, i.e., a power series in V. In view
of this fact we will now make a digression and discuss this fact in some
detail.

If we examine the calculations above in some detail, we will see that they
lead to the following possible interpretation:

For each k, (uy+ vké{:TéT—kL) is optimized with respect to the operator

A

H(k) = ¢ {élfc']‘ékféikié‘kl} -~ éltTéT-klAk —C_k CktAL
and the expectation value

kl

1s determined self-consistently.
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This is analogous to the Hartree-Fock operator (here expressed through field
operators in the shorthand ¥, = ¥(z)):

/ de [ V2+u(;v)] b

+fdar/dyp(y, y)v(y,ﬂr)xﬁlt@x—/dm/dyp(y, )v(y, )9 e

with a self-consistently determined expectation value

ply, z) = (PLy).

Just as the direct Coulomb potential and the so-called exchange field of all
other electrons enter as an effective potential in the Hartree—Fock approxi-
mation, the so-called anomalous ezxpectation values of two creation or anni-
hilation operators, i.e., (¢_k|Ck1), plays the role of an effective mean-field in
the theory of superconductivity . The similarity with the Hartree-Fock ap-
proximation becomes clearer if we form the following effective Hamiltonian
by taking expectation values of the field operators above inethe extremely
short-ranged model interaction

/ / (=V) 8(x = )Pl ()] (') by ()b (£) d%r &

(ordinary expectation values and constant terms will be ignored, since they
are uninteresting). This yields

5 [ aritte) [Z5] et

- [@rawil@ile - [ a@hehe

with the expectation value

Alr) = = (=V) (¢ (x)(r)) (13.18)

to be determined self-consistently. It should be emphasized that the expec-
tation value of Hred in the state Wgcs is not a simple sum of the expectation
values of H(k) The relation between them is shown most quickly by rear-
ranging (momentum- and spin-indices are suppressed):

ctetee = (c"fc“f — (ctety + <c°r£f>) (é¢ — (éé) + (22))
= ctet(ee) + (ct ‘T)ae (M)( &)
-{-(CATCAT cTcJr
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The first two terms are the same as with the operator H(k). The third
term is a real number: it is the ubiquitous term which must be present in
the calculation of the total energy in order to avoid a double-counting of
the interaction energy (cf. the discussion of the Hartree-Fock total energy
in Chapter 7). The expectation value of the fourth term vanishes for the
Wyos-ansatz; this term is bilinear in the difference of the expectation values
and will henceforth be ignored.

We obtain a meaning of A as a ‘gap-function’, i.e., the energy gap in
the excitation spectrum, if we consider the elementary excitations in the
BCS-state. This is most elegantly shown, if one convinces oneself that the
operators defined by

ko = uply — vpely, Ao = upel; - vieg

(13.19)
Y1 = vkéLT + uké—kl ’5'11;1 = v:ékr + uzéikl
so that
e, = wal +ors
kt = UkTVxo T ViK1 .
(13.20)
hey =~k + wrly
satisfy
:IIICOI‘I’BCS) = 0
(13.21)
Yk1l¥scs) = 0

The newly introduced operators satisfy the usual anti-commutation rela-
tions, even though these operators are mixtures of fermion creation- and
annihilation-operators:

{7k0’7k 1} =0= {0, %1}
{‘A’ko’ 7k'1} =0= {‘/kl,‘r;,o} (13.22)

{’71:0, :fllo} = 6k,k' = {‘?kl;ﬁ;/l}

By means of equation (13.21) and equation (13.22), these operators can
then be interpreted as creation and annihilation operators of fermion quasi-
particles on the ground state or on a new ‘vacuum state’, | Upes). Using
the definitions equations (13.5), (13.19) and (13.20), one can easily calculate
the result

ﬁred = Enormal +0F + Z Ey, (i{)tg?ko + ‘%11;1'71(1) :
k
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[The relation is not exact in the absence on the right-hand side of the terms
discussed above bilinear in the fluctuations (éféf - (éféf)) and (é¢ — (éé)),
respectively.] The smallest possible excitation energy is for the simplified
interaction equation (13.12) thus

ming (Ex) = mingy/|A]2 + (e — )? = A

The excitation spectrum of the BCS-state thus exhibits a gap. The Hamil-
tonian which, for example, contains the interaction of one electron with an
electromagnetic field has the structure

. .t .
(electromagnetic field) ¢\ .\ . Cinitial state -

(-At+.4)  (CAt+.A)

Since no quasi-particles are present in the ground state, the factors which
contain at least one § vanish when they act on | ¥pcs), so the mean-field
must then excite two quasi-particles; in experiments on optical absorption
one finds stronger absorption only for photon energies larger than 2|A[. This
absorption lies in the far infrared (10'° — 1012Hz).

‘The spatially homogeneous state | ¥pcs), which we calculated within
the approximation equation (13.12), is characterized by a complex order
parameter, which is the expectation value

A(r) = V(‘I’BCS | "»/A)l(r)?ﬁt(r) | ‘I’Bcs)-

If we insert the transformation to momentum-annihilation operators and use
the adjoint equation of equation (13.20), we obtain furthermore

1 (k' —k)- ..
Alr) = Vﬁzez(k )T (Ppos | é_x1éx1 | ¥nes)

kk’
1 (K T, o
= V—Q— Ze i(k'—k) Pquk/S\PBCS | 'Ykl")'ltll | \I’Bcs)/
kk’ -

=yt

Z %u}:vk =A= e'ialA].
k

Different values of the phase factor e'® are degenerate in energy. It is ob-
vious that we cannot start with a wavefunction for the normal state where
(Y1 1) = 0 (in this state the symmetry of « is not broken) and do a per-
turbation expansion in an operator which is invariant under this symmetry
and then obtain a state in which the symmetry is broken. This means that
the perturbation series cannot converge for an arbitrary . This clarifies
the breakdown of usual perturbation theory when it is used to try to obtain
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the result equation (13.17) for the gain in energy. The problem of particle
number conservation of the BCS wavefunction can be removed by superpos-
ing wavefunctions with fixed phases to obtain a wavefunction with a fixed
particle number:

2T

| U)N fxea = | dae™ N2 | W), fred

o N/2 gt gt
= /0 da e N/ H (Iukl + |vk{e'°‘ckrc_ki) | vac)
k

with |ug] and |vg| given by equation (13.14).

By this argument one does however easily overlook the following point,
which is essential for a deeper understanding of superconductivity. For ex-
ample, we can imagine a piece of copper cut into two pieces and our ex-
perience tells us that both pieces can be described by independent electron
distribution. The number of electrons in one piece is not obtained exactly.
The situation can be described in the grand canonical ensemble, calculated
with a common electrochemical potential. In this way, density, matrices of
different particle numbers add. Correlations between electrons in the dif-
ferent pieces are restricted to at most a small boundary layer. If we apply
an electrostatic potential, charge conservation will enforce a correlation be-
tween the two pieces: the total current through both pieces is the same.
These long-range correlations thus originate in a conservation law, the law
of charge conservation.

In the BCS theory, a new macroscopic variable emerges with the complex
phase A(r). We cannot imagine simply cutting a homogeneous supercon-
ductor with a fixed phase into two independent pieces, since both pieces
have the same phase. Besides conservation laws, breaking of a symmetry
can thus also lead to long-range correlations. The situation is similar to
a ferromagnet, in which a piece with homogeneous magnetization cannot
be thought to be cut into two independent pieces, but in both pieces the
full rotational symmetry is euqally broken by singling out a magnetization
direction. Energetically, states with different magnetization directions are
degenerate in the absence of external fields, just as the functions Wgeg of
different €@ are degenerate in energy.

All the above considerations concern the case associated with Cooper-
pairs ‘at rest’. We will here do without the discussion of ‘moving’ Cooper-
pairs and the connected (rather tedious) proof of the statement that the
BCS wavefunction really is a superconducting state. Another limitation of
the discussion here was the restriction to spatially homogeneous systems. It
is plausible that we can discuss a situation of a spatially inhomogeneous, but
slowly varying, system through a local BCS-picture with a local, spatially
slowly varying complex gap-parameter A(r) and that many phenomena pro-
duce macroscopic equations for A(r). This is preciesly what is done in the
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theory of Ginzburg and Landau [11] and Gorkov [12]. As a representa-
tive example of several other effects, we will discuss here the effects of the
fact that w;(r)z/h)z(r) is closely related to fermion operators, but possesses a
macroscopic expectation value. In the presence of a spatially slowly-varying
vector potential A(r), the wavefunction of the electrons changes to lowest
order only through a space-dependent phase factor:

ie [T
exp [—;{C-/ro A(r)- ds] .

This factor drops out of the density n(r) = ZATM(P)?/;«: (r)), but not from
the order-parameter/gap function A(r) ~ (@l(r)tfq(r)), where it enters
twice. Thus, the order parameter A behaves in many ways like a macroscopic
wavefunction. If we follow the wavefunction and A around a homogeneous
superconducting ring, A can only change by a factor

1 = exp[27if] = exp [—2% ]{ A(s) - ds] with £ € Z,
because of the single-valuedness of the expectation value. Thus, the line
integral § A - ds and also the enclosed magnetic flux [ [ B - dS can only
change by integral numbers of ‘lux quanta’ (2wfc/2e). This is the origin of
the Josephson effect.

We will with this digression of the phenomenology of superconductivity
end this part on the overview of the most important many-body effects and
quasi-particles of solid state physics. Next, we will turn to the development,
of a systematic, and, above all, diagrammatic method of calculation of many-
particle systems.




Part 11

Green’s Functions







Chapter 14

Pictures

The observables of a quantum mechanical system are characterized by linear

operators in a Hilbert space. The fact that these operators themselves do
not represent any measurable quantities is crucial to the definition of the
so-called pictures. One can merely measure the expectation values of the
operators in addition to the square of the absolute value of sums ef transition
amplitudes

#10]9¢).

(For ease of notation, we will hereafter only write operators with the caret
when the context requires an unambiguous distinction.) Let A(¢) be in
general a time-dependent operator, which is unitary at each time ¢:

ATA®) =1 = A@) At (@).
We then have for a general matrix element

(@1019) = (¥1a')AWOAT)AQ) | ¢)
= (A9 | A®)0ANR) | A()9).

Thus, if we transform all wavefunctions and ell operators according to

[$(Ma = AQW)
O(t)yy = A(t)OAlR)

all measurable: quantities will remain unchanged:

(P ]1O|¢)=(va]04]|¢a).

Such a transformation is called a picture transformation. FEach time-
dependent unitary operator defines a particular picture. In each picture,
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the ‘normal’ wavefunctions and operators have what we may call an addi-
tional artificial time-independence. However, the structure of the stationary
Schrodinger equation as an eigenvalue equation is retained in every picture:

H(t)a [ ¥))a=E [ $(@))a.

We now consider a few examples:

(1) The Schrodinger Picture: A(t) = 1.

We denote by the Schrodinger picture the usual quantum mechanical
picture in which the operators and wavefunctions have their ‘natural’ time-
dependence. We will hereafter for the sake of clarity denote by a sub-
script S operators and wavefunctions in the Schrodinger picture. The time-
dependent Schrodinger equation is in this notation

o |W()s = Hs [¥()s. -

We will now discuss the so-called time-evolution operator in the
Schrodinger picture. This operator is defined by the equation

| ¥())s = U(t,t0)s | ¥(to)) (14.1)

for an arbitrary initial function | ¥(¢p)) in the Hilbert space of the problem
in question. Inserting equation (14.1) into the Schrodinger equation yields

ih—g{U(t,to)S | ¥(t0))s = HsU(t,t0)s | ¥(to))s-

Since this holds for any initial function, the operator differential equation

O U, 10)s = HsU L to)s (14.2)

together with the initial condition U(tg,tg) = 1 follows.
We will now prove that the operator U(t,tg)g is unitary. If we use the
defining equation (14.1) twice, we arrive at

| U(t))s =U(t,t')s | V(")) s = U, t)sU t0)s | ¥(to))s-
It follows that
U(t)tO)S = U(tytl)SU(tlatO)S'

For t = {5 we have
1 =U(to,t)sU(t',t0)s.
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Hence
Ut to)s' = Ulto,t)s-

Furthermore, from the operator differential equation (14.2) and its adjoint
equation

U

1

= H
ot 5 HsUs
aut ;

s _ 1.4
5t = 7Usls

it follows that

o4, 1 _ OUL
i (U8Us] = Us + UL

which implies that
UT(t, to)sU(t,tp)s = constant.

Since Uf(tg,tg)s = 1, we have UT(to,tO)S =1, so UT(t,to)SU(t,to)S = 1.
We already have shown that Ug is invertible; hence, the unitarity follows:

Ut(t,t0)s = U™(t, t0)s.

If the Hamiltonian is explicitly time-independent in the Schrodinger picture,
we can readily solve the operator differential equation (14.2). The solution
is

U(t,to)g = exp [—%HS (t - to)] . (14.3)

(2) The Heisenberg picture

This picture is defined by choosing
At) = UM(t,t0)s = Ulto, 1)s.
The wavefunctions are constant in time in the Heisenberg picture:

| () = At) [ ()5 = Ulta,t)s | ¥())s =| ¥(to))s = constant.
' (14.4)
The operators in the Heisenberg picture are given by

O(t) = Ul(t,0)sO()sU(t, to)s. (14.5)

If Hg is explicitly time-independent, we have from equation (14.3) (if we
also fix tg = 0)

Ot)g = et FHstO(f) g~ FHst, (14.6)
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Since the wavefunctions are constant in the Heisenberg picture, the entire
dynamics is contained in the operators. We now derive an equation of motion
for operators in the Heisenberg picture.

d .. d t
ih—O()y = ih (U OSUS)

o}, 905 8Us
= zh( - )05U5+th;< o )U5+zw’f05< = )

If we then use

. 9Ug
lh_é—t— HSUS
and ;
aU
—ih 85 = ULHg
we can write
L d
= —ULHsUsULOsUs +ihU} (%O?*‘i) Us + ULOsUsULHsUs
00g

= —-HHOH—}-OHHH-{-ihU; (W) Us.

001 _ .+ (00g
5, =0 (5 s
we finally obtain the so-called Heisenberg equation of motion:
d , 00
zhgt-O(t)H [Og,Hy)+ih [ 5 J

If we furthermore set

(14.7)

The formulation of quantum mechanics in the Heisenberg picture for-
mally resembles classical mechanics. To realize this, we consider two canon-
ically conjugated variables q and p. For these, we have

[0, k] = ihbj.
It follows that
le;, 28] = g¢ip} - PRa; = (gipr)p} " — PRa;
-1, - -
= prg;py 4 iR6p T — PR
= ...=pLg+ m’ﬁé-jkpz-l — Drd;

, 9
= zhéjk -a—pk'pz .
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Analoguously, we obtain
0
o = —ihéir ——a™.
lpj, gk = —ihbji 53
If an operator has the form of a general Laurent series

O(q,p)= D, apl2ms qiiq3?e5®pi" py?ps>

ningng
mymomg
it follows that p
., 0(q, = th—0(q,
l4j,0(a,p)] 5] (4,p)

and P
[p;,O(a,p)] = —ili=—0(q, ).
q5

In particular, we have in the Heisenberg picture

d s L]0 O
ihzai()m = [¢;()m, H] + ik [aqﬁ(tm] = mOn
=0
so that
dQJ(t)H 0H
& p(n
and, analogously
dpi(t)a _ _OH
dt 0q;()m
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Thus, Hamilton’s equations of motion of classical mechanics hold formally

for canonically conjugate Heisenberg operators.

(3) The interaction picture

Here, we start by partitioning the Hamiltonian according to

Hg =:Ho + Vs Ho# Ho(t)

where we assume that the time-independent problem given by Hy is solved.

We choose the unitary operator

A(t) = exHot
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as the transformation to this picture. This yields
| (1)) = enHot | w(t))g (14.8)

and ‘, ‘,
O(t) = enHotQ(t) ge~ w101, (14.9)

In particular, the operator Hy is the same in both the Schrodinger picture
and the interaction picture:

[Ho]; = enHot [Hplg e~ 710t = [Hy)g = Hy.

The partitioning of the full Hamiltonian into Hg and V is in principle
completely arbitrary (so long as Hp is time-independent). We will, however,
hereafter always let Hy describe a system of independent particles (if nec-
essary in an external potential), and V denote the interactions between the
particles. As an example, we will now transform the creation and annihila-
tion operators to the interaction picture. We assume that we have solved the
problem given by Hg and that c;r and c¢; are the creation and annihilation op-
erators in the Schrodinger picture of the corresponding smgle—partlcle states.
We will show that only a phase-factor is added in the interaction picture:

Cj(t)I = cje” meit
(14.10)

dt)y = cler
For prdof, we use the operator Hg in diagonal form
[e0)
Hy = Z e,'c:-rci
1=1

and then show that the usual representation of the operators in the interac-
tion picture

c;(tyr = e%H"th'e'%Hot
t —  oLHot,t,—%Hot
c;()r = erceTh

on the complete system of Slater determinants

(=)

| o) = ﬁ (cz)ni | 0}, nz(a) =0 orl

1=1

leads to the result equation (14.10).
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First of all, we have
(@)
Hol ¢a) = Wa | ¢o) where W, = Znia €.
: i=1
But ¢; | do) is of course also an eigenfunction of Hy for arbitrary j and a:

o0

Hocj | ¢a) = Zez'c:-rcecg' | $a)-
=1
From
teici = —eleoe: = —6: e ol
C;CiCj = —C;CjC; = —0;;C; + CjC; ¢4
we obtain
Hocj | ¢a) = =—€jc;|da)+cjHo | da)

= (Wa—¢€5)c;| da)

From this the statement to be proved follows:

i) | o) = enFolciemnHot|g )
- e—iWate%Hotcj I¢Ol)
— e—r:;w‘*te};;(wa"ej)tcj |¢a)
= eﬁie’.tcj | dar).
The proof for c;[ runs analogously.
Both the operators as well as the wavefunctions are time-dependent in the
interaction picture. It follows that there are equations of motions for both

quantities. For the operators, this equation is (the derivation is completely
analogous to the derivation of the Heisenberg equation of motion):

iha(-le(t)I = [0(t)1, Ho] + iR [%—?—] ] (14.11)

with

R R
ot |, at |

Next, we will derive the equation of motion for the wavefunction in the
interaction picture. We start with the Schrodinger equation
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Zﬁ— | ¥ ())s

Hs|¥(t))s
> ing e Mot L)) = Ot 1 | ()1 + ib W)
| = Hse™(/MHt | y(1)),
= i | W) = e/WHOt o=V | y(0)); — Holw())y
= [H@)1 — Hol | ¥())1

= b WO = V(| O (14.12)

fl

The second-quantized representation of the particle-particle interaction is,
with equation (14.9)

1 . '
V(1 =5 (i v ] kel @) re] @) ree(t)ren(t)r (14.13)
i3kl
and with equation (14.10), this can be written
V(O =+ Y0 |0 [Re0/ et el el
17k

Equation (14.12) is known as the Tomonaga-Schwinger equation. It is in
its structure similar to the Schrédinger equation. The part due to the Hp-
motion, which is assumed from the outset, is separated out so that only the -
particle-particle interaction is left (hence the name ‘interaction picture’).
Analogous to the Schrodinger picture, we now define a time-evolution oper-
ator in the interaction picture through

| ¥0))r = U, t) [ ()1 (14.14)
Just as for Ug, we can prove the following properties:

Uity = U@,t"uE't)
vttty = UY,t)=UE ).

Furthermore, we have
|U(0)); = en™ot | w(t))s = erFOlU (L, 1) s | U(t))s
eR IOty (2, ) e~ A Ho! | W(t)) .

Consequently, we have the following relation between the time-evolution
operators in the Schrodinger picture and in the interaction picture:

U(t,t') = o6/MHot gy 41y o= (i/MHo | (14.15)
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Here we have to be a little careful — a moment’s thought shows that this
is not a picture transformation, since the time arguments are different in
the two exponential functions. Thus, U(t,#') is not U(t,t')g transformed to
the interaction picture. If Hg is explicitly time-dependent, we obtain from
equation (14.3)

U(t, tl) — e(i/h)Hote—(i/ﬁ)Hs(t—-t')e—-(i/ﬁ)Hot' )

Equation (14.15) yields a simple relation between operators in the inter-
action picture and in the Heisenberg picture: if we use equation (14.5) and
set g = 0 we obtain '

O)r = U(0,1)s0(t)sU(t,0)s |
= U(0,ts)e”/MHoto 1) /Moty 1, 0)
= Ot)g = U(0,t)0@)[U(t,0). (14.16)

We will now further investigate the time-evolution operator. If we insert
the definition equation (14.14) in the Tomonaga-Schwinger equation, we
obtain an equation of motion for U: » .

ih%U(t,t’) = V(t)IU(t,t'). (14.17)

with the initial condition U(¢/,#') = 1. This differential equation with its
initial condition is equivalent to the following integral equation:

: t
Uty =1-1 / V() 1U (41, 1) dty (14.18)
¢! N

which is readily shown by substitution. This/integral equation 1s suitable
for successive approximations:

Uo(t,t') = 1

N 4
Uit,t) = 1—1/ V(ty)ydty
5

fl

; t
(4 .
Ua(t, 1) 1- 5/1:' V(t1)[Ur(ty,t') dty

¥ t i 2 11
1- —/ ,V(tl)l dty + | —— / V(tl)I/ V (tg) dtadty.
h ! h H

t'

Correspondingly, we obtain for the N** approximation

N
Un(tt) =1+ UM(t,t')

n=1
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where

i\" t t1 tn—1
U(n)(t,t’) = (—7{) / dity / dis .. / dt, V(t1)r...V(ta)r-
t/ t! t!

By construction, we always have
<ty <tpo1<... <t <1

If the successive approximations converge, we finally arrive at

Ut =1+ i v, 1. (14.19)

n=1

This series can be interpreted as a perturbation expansion in the potential
V. We will now make an additional simplification of the formula for U (n),
We will show it here in detail for

9 i 2 i1
U@, = (—;;) ./t, dty /t, déaV(t1)1V (t2)r.

The simplification consists of removing the variable integration limit ¢; so
that both integrations will run over the interval [/,¢]. This clearly means
~ that we will replace the triangular integration region shown in figure 14.1
by the entire square. If the V'(¢;); were c-numbers, we could without any
problem evaluate the integral over the square and finally divide the result by
2. However, since we are dealing with functions of operators, the potentials
at different times will in general not commute, i.e.,

V() 1V(t2)r # V() V(t)r

Hence, the evaluation of the integral is somewhat complicated. We start by
setting |

t t
l’ dty /ﬂ dth(tl)IV(tz)I

1 t 131 1 4 t
= 5 dt4 / dth(tl)IV(tg)I + ) / dits / dty V(tl)[V(tz)I.
t! t t! t2

The two expression are identical, as one can see in figure 14.1. In the first
expression, the integration over t; runs from ¢’ to ¢, and for each ¢, t9
runs from ¢’ to the the bisectris (2 = ¢1). In the second expression, on the
other hand, only the sequence of points of the integration is changed. The
integration over ¢2 runs from #’ to ¢ and for each ¢, the integration over 1
runs from the bisectris (t; = ¢3) to ¢t. By renaming the integration variables
in the second expression, the integral can be written

1 t 151 1 t ot
3/, dn [ dave) v+ [ ats [ v,
t! t t! t1 ‘
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Figure 14.1 The integrals in U@ over t1 and t3 can be divided into two
separate integrals; one over ty first, the other over to first. ¢

For further formal simplification we define the time-ordered product of two
operators through

A(t1)B(t2) ifty >t
T[A(t1)B(t2)] = {B((t;))AEtig if t; > ti-

Thus, we finally arrive at

U, t') = :i’_é_’_"lz_ /t’t dt; /t’t dty TV (t1)1V (t2)1).

The time-ordered product is not defined for t; = t,. However, this causes
no problem in our case, since for ; = ¢ both operators are identical and
thus commute with each other.

With an analogous definition of the time-ordered product of n operators
we obtain

. n rt t t
U2, = -(--Z,i / ity [ dty... / dta TV (1)) ... V(tn)1]
v t (14.20)

This is the central equation for perturbation calculations on many-particle
systems. In all, we obtain for the time-evolution operator
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Ut = Z(-Z'ﬁ)" Itdtl.../t,n dtn TV (t1)f ... V(tn)]]

_ TZ( z/h)”/ ,,/t dt, V(t)r... V(ta)r
tl

n=0 ¥
= TZ( ’/h (/ drV(r)I)

We can formally write the expression for U(t,t) as

U(t,t') = Texp [-_h—z /; dTV(T)I} :




Chapter 15

The single-particle Green’s
function

Let | ¥y) denote the ground state in the Heisenberg picture of an interacting
many-particle system. In particular, | ¥p) is then time-independent, and we
have .

H| ¥o) = Eo| ¥o).

Furthermore, let ¥(z, t) iy denote the field operator in the Heisenberg picture.
This operator annihilates a field quantum at space—spin point z at time ¢,
and 1(x,t) is the corresponding creation operator. Occasionally, we will
consider the spin-dependence separately, in which case we write

B = (e

and
¥ie,g = ¥l
The definition of the single-particle Green’s function is
iG(at,at) = ——(Wo | Tlw(e, ) gl («, )l W) (15.1)
(To| Yo) | "

or, if we want to emphasize the spin-dependency

1
(Yol ¥o)

We define the time-ordered product of two creation or annihilation operators

iGyy(rt,'t') = (Wo | T[s(rt) b, (') ]| Wo).

sl = {$000y ik )
153
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with plus-sign for bosons and minus-sign for fermions. This is an exten-
sion of the definition given in equation (14.20). The definition equation
(15.2) contains an additional minus sign for fermions. However, this makes
no difference in equation (14.20), since the interaction potential always is
represented by an even number of creation and annihilation operators (cf.
equation (14.13)).

The definition given here for the single-particle Green’s function holds
both for bosons and fermions. In the following considerations we will how-
ever restrict ourselves to fermions. The single-particle Green’s function is in
this case

o 1 [ (%ol ety gy ()l W) t>¥
ZG(-’L't,x t) - (‘I’OI ‘I’0> (! 4 ’
_(‘I’O l ¢ ((L' b )H¢(m’t)H| ‘IIO) >t
1 ! LAY
= TGl %) [9(t —t')(%o | ¥(z, ) gyT(z’,t) 1| o)
~8(t' ~ 1)(¥o | ¥1(',t) (2, )] Wo)] (15.3)f
where o 1 350
(v) = {0 Y <0

is the standard step-function. .

Up to this point, we have only considered the Green’s function in space— .
spin representation. If we transform to creation and annihilation operators
of momentum eigenfunctions by a basis transformation (cf. equations (4.7)

and (4.8))
1 .
Yalr, )y = —=e ey, (1)
H zk:\/ﬁ k H

1 1
P = S = e (g
k \/_ﬁ .

the Green’s function becomes

iGaﬂ(l‘t,r’t’) = Zbl_ei(k-r—k'.rl)

k,k’
1 + ;
X ol Vo) (Yo | Tlexa(t) ey (1) H]l Yo).
It is then natural to define the momentum Green’s function by the quantity
1
iGog(kt, K't) = ——— f : :
op(kt, k't ol To) (Yo | Tlexa(t)mey5() a1l To) (15.4)
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In general, the Green’s function in any single-particle basis representation

is defined by

iG(Mt, X'¢) = m(wo | Tlex(®)ael, ()&l Yo).

We will now derive a number of properties of the single-particle Green’s
function. First, we will prove that if the Hamiltonian is explicitly time-
independent in the Schrodinger representation, and therefore also in the

Heisenberg representation, the single-particle Green’s function depends only
on the time-difference (¢ — 1), i.e.,

A ? 140y — Y,
Vi CHAHWD = GOLNY) =G -1),N0).

We will prove this only for the spatial Green’s function, since the proof is
quite similar for other representations. First, we transform the Heisenberg
operators with equation (14.6) to the Schrédinger picture

P(at)y = eHiy(z)ge !
Wty = eFiyl(e)ge iHL,

(From here on, we will always use units in which A = 1.) For ¢ % #' we then
have

. i 7t et
(1110 I eth 1/)(1:)36 theth g/)f(:c')se 1Ht I \I’O) )

S———r ‘ N, e’
(\Ilo]e’EO‘ e—iEot"\I,())

Together with the corresponding expression for ¢/ > t we obtain in all for
the Green’s function:

iG(xt, z't")
1

= (Wl ¥o) |60t - )6 B 0=1) (o | y(z)5e=H =y (al)3| W)

~0(t' = )P0 (%o | Yl (o) seH =D y(2)5| Wo) | .

From this expression, we see that the Green’s function depends only on
(t—1t') if H is time-independent. If we use the transformation of the ground
state to the Schrodinger picture, '

| Wo)g = e~ Eot| )

"~ we obtain

iG(zt, z't") |
= (\Ilo|1\p0) [00 — ") (To(t)s | ¥(z)se~ ) pt(z)g | To(t'))s
=0(t' = £)(To(t)s | ¥1(z")se™H ' ~y(a)s | ‘Ifo(t))S]; .
(15.5)
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This form of the Green’s function allows for a clear interpretation: for ¢t > #/,
we add a particle at space—spin point z’ to the ground state | ¥o(¢'))s by
the action of 4T(2')g. The (N + 1)-particle state created this way then
propagates from ¢/ to t under the influence of the Hamiltonian H (cf. equa-
tion (14.3)) and then forms the overlap with the (N + 1) particle state
¥1(2')s | ¥o(t))s. Thus, the Green’s function for t > t’ is precisely the
transition amplitude for the propagation from &’ to z in the time interval
(t —1t') of a test particle added to the many-particle ground state. Similarly,
for ¢/ >t an (N —"1)-15'article‘ks:ta,te propagates. In other words: for ¢/ > ¢
the Green’s function describes a particle propagation and for ¢ > #/ a hole
propagation. The interpretation of a general Green’s function G(At, A\t') is
completely analogous.

Next, we will prove that for systems for which the Hamiltonian commutes
with the total-momentum operator

p=Y" / Br 3L (r) (—iV) Palr)

the Green’s function depends only on the difference (r — r’) between the
space coordinates:

[ﬁ,ﬁ] =0 = Gug(rt,r't)) =G ((r—1')t,01).

The translationally invariant systems discussed in Chapter 5 are examples
of systems of this kind. It is clearly plausible that the Green’s function,
with the interpretation given above as a transition amplitude, should only
depend on the coordinate difference for such systems. The explicit proof
is nevertheless somewhat long. For the proof, we will use the following
commutator identities, which we will also use later:

[A,BC] = ABC - BCA
= ABC + BAC — BAC — BCA
= [A,BC] = {A,B}C-B{A,C} (15.6)
[4,BC] = [A4,B]C - B[C, 4] (15.7)

and, similarly
{4,BC} = {4 ,B}C - B[A,C]. (15.8)

With the use of equation (15.6) and with A = 4(r), B = zb,y(z) and
C = (—iV3) ¥4(2z), we readily obtain
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[alr), P] = D [ 2 [§a®), 3@ (<iV2) b ()]

> [ @ {iate), 310} i%2) 10

ay§(r—2)
_Z / d3z¢§(z){«z»a(r) (—iV32) Py (2 )}

—2Vz{¢a(r) +(2)}=0

Thus
[%(r), f’] = —iVida(r). (15.9)

This equation represents an operator differential equation for 1, (r). It can
be formally integrated with the result

Jal(r) = e~ PP (0)e P (15.10)
This can be proved by inserting

—iVia(r)

Il

—-p e—-z’f’-rvsa(o)eif’-r +e—if’-r¢a(0)eif’-rfy
ba(r) a(r)
- [tﬁa(r), P] :

We now return to the the expression equation (15.5) for the Green’s function.
"To show that it depends only on the coordinate dlﬁ‘erence we write the field
operators in the Schrédinger picture:

iGap(rt, x't")

1
= T
—O(t = t)e~Eolt- ”(\If |¢*(r’)e’H(t‘t')¢a(r)! \I'o)J

t)e o) (wq | (r)e-“"“ ‘W(r’)l o)

Here we insert the completeness relation in Fock space

1= vac)(vac |+ | \1:9))01:9) | +.. +Z 1 o W™ |+ qsa1) L

where | \Il( ) } denote the elgenfunctlons of a system of N partlcles ThlS“ gy g

yields
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—i{ BSNYY_Ey ) (e
iGyp(rt,x't’) = (‘I’oll‘l’o [ t)ze ( 0>(t ?)

x(¥o | Pa(r) | \B%N“’Mw%“’“’ | 91| o)

.(EO_E%N—I)) (t=t")

—0(t' —t) Z e
(o | 95() 1 YD) | ba(o)] o).

The only non-vanishing contribution comes from the states with (N £ 1)
particles, since the Fock space scalar product between wavefunctions with
different particle numbers vanishes. Under the assumption that H and P

commute, we can choose | \II%N:H)) as eigenfunctions of P:

p | (Vi) = p(VED | g(VED)

If we then insert equation (15.10) and also choose the coordinate system so
that P| ¥g) = 0, it finally follows that

iGop(rt, x't’)

1 /
(ol o) t)Ze

X (Yo | $a(0) | w%N“))(wnN*“ |40} wo)

N41)

r—r')

T _p(N=13Y ., 4 ) _
—o —1)Y e O
n

x(¥o | $4(0) | ¥V Dy @D | 4o (0)) %)].

This equation proves the statement that the single-particle Green’s function
only depends on the coordinate difference if [H,P] = 0. We can then form
the Fourier transform with respect to this coordinate difference:

Gap(k,t,t') = / B — r)e~ )G o(xt, 1't)).

The inverse transformation is
d3k
(2)°

Gop(xt,r't') = e* (=G 5(k,¢,t). (15.12)
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We will now show that for translationally invariant systems, the mo-
mentum Green’s function defined earlier in equation (15.4) is diagonal and
that the diagonal elements correspond to the simple Fourier transform of
the space Green’s function:

[1&,1‘3}—_—0 = Gop(kt, K1) = b6 Cap(k,t,t).  (15.13)

To prove this, we insert the explicit Heisenberg transformation into the
definition of the momentum Green’s function

iG o (lct, K'Y = @,II—M@O | Tlexa(®s¢l ()l ¥o)

and insert the completeness relation equation (15.11) of the exact system of
eigenfunctions of H. This yields

iGap(kt, k't')
; (ES,N “’—Eo) (-t

1 | ~1

= — |8t -¢
(‘I’ol‘l’o)[(t DL
x(¥o | cka | w(N‘”)xw‘N“’ | f gl o)

—0¢' )Y e (Bo-E80) =)

x (¥o | efyp | EEN (0T  |e] Wo)]

L)

Since c;r(, ﬁl W) is an eigenfunction of P with eigenvalue k’, and furthermore

(\II%NH)I can be chosen as eigenfunctions of P with eigenvalue PgNH), the
overlap vanishes:

(@ el w) =0 for K #PEVTY.
Correspondingly, we have )
(o eka | U0 V) = (] W0 | €F*Y) =0 for k 4 P(N+1) |

Furthermore, cj, | ¥o) is an eigenfunction of P with elgenvalue -k. Hence
the overlap

N=1 :
(" | exal o)
vanishes for —k # P, (N — 1), and the corresponding overlap

(¥ I Ck/ﬁl‘I’(N 1))
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vanishes for —k/ # P%N*l). Altogether, all the terms for which k # k'
vanish, which yields \

Gop(kt, X't') = S Gap(kt, kt').

It is then only left to show that these diagonal elements correspond pre-
cisely to the above Fourier transform of the spatial Green’s function. This
follows from the construction of the momentum Green’s function by a basis
transformation:

Ga,@(rt, rltl) — __Sli Z 2 ei(k.r—k'.rI)Gaﬁ(kt’ kltl)
k k'
= 'sli YR G (ke Kt).
k

Thus, in the continuum limit
1 / d3k
Q Xk: (27)3

37, . ,
Gaﬂ(rt,r’t') = _il_’%ezk(r-—r )Gaﬁ(kt, kt’).
(27)
In comparison with equation (15.12) and the uniqueness of the Fourier trans-
form, the relation

we obtain

. ) 1
iGap(k,t,t') = iGop(kt, kt') = >(‘I’o | Tleka(t)mel(t)H]l ¥o)

(ol Yo
follows. The procedures which have led us here to the diagonal momentum
Green’s function in a translationally invariant system is typical of the use
of symmetries: one makes an effort to choose a representation in which the
Green’s function is diagonal. Hence, the Green’s function is sometimes in
the literature defined in its symmetric form

GO ) = g (¥o | Tlea Ol ()]l o)

If the Hamiltonian commutes with the total momentum, and is in addi-
tion explicitly time-independent, we have for the spatial Green’s function

Gag(rt,x't') = Gop ((r — ')t = 1'),00) .

In this case, we can form the four-dimensional Fourier transform

Goplkw) = / B -1 / d(t — t")e~ e (r=Feiwlt=t)q (v, 't).
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A formalism which is manifestly covariant can be constructed with this
Green’s function. This formalism has obvious special importance for rela-

tivistic many-particle systems (see Chapter 24). The inverse transformation
is

Gop(rt,x't') = ai—)z/dsk/dw eik'(r'rl)e‘iw(t"tl)Gaﬁ(kw).

The single-particle Green’s function contains a great deal of information
about the system under consideration. We will prove that with the help of
the Green’s function we can calculate

(1) the ground state expectation value of any single-particle operator,
(2) the ground state energy of the system,

(3) the excitation energies of the system.

Thus, given a single-particle Green’s function of a system, we can obtain
the most important physical properties of the system. We will first show
property (1). For the sake of simplicity, we will show this property for
a single-particle operator which is local in the space-coordinates, but non-
diagonal with respect to the spin-coordinates (thus, the most common cases
are included). Such an operator is in second quantization

A= [T vl Agulepale)
Ba
and the ground state expectation value is

_ 1 t
(4)= o / d37’§ﬁ:(‘1’0 | 9} (1) A (1) (1)) o).

If Ag,(r) is a differential operator, it will also act on the space-dependence of
‘the field operators. In order for such a case not to complicate the expectation
value, we use the trick of writing the expectation value as

— 1 d LN
4 = gy | r Jim 3 Aol ol (5] o

where it is understood that A,g(r) acts before we perform the limit. We
then transform the field operators to the Heisenberg picture
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(To | 4 (") a(r)] To)
= lim 7o) wg | wh(r)eH =)y, (x)] wo)

t'—t

= lim (¥o | $L('t) rba(rt) ] Wo)

= — lim (Yo | T[pa(xt) g 6} ('t) ]| o)

= — lim iGag(I‘t,l'lt')<‘I’0l‘I’0>'
t'—t+

Thus, the statement follows:

' —r ittt

(4) = —z'/d3r lim lim l:ZAﬁa(r)Gaﬂ(rt,r't')J
af :

= / & lim Tr (A(r)G(xt,'t1)) . (15.14)
r'—r

In the short-hand notation of the last part, “I¥’ means the trace over the
spin variables, and ¢ implies the limit ¢/ — ¢tT. .
We will now consider a few examples.

(i) The kinetic energy is in first quantization

vi

N
T= -

" m
=1

According to the formula above, we then have

2 .
(T) = —i / &Br lim (—&> Tr (G(xt, 7'tT))
r'—r 2m

(1) The density operator (see Chapter 6) is in first quantization
N
(R) =D (R - xy).
=1

From the formula above, it follows that the ground state density of
the system is

p(R) = (p(R)) = —i/dBr lim 6(R — r)Tr (G(rt,x'tT))

= i [ @rs(R 2T (Glrt ')
= —iTr (G(Rt, Rtt)) .

Similarly, we obtain
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v2
(iii) The kinetic energy density #(R) = E —10(R—-1r;) ( ):

2
7(R) = (Ff(R)) = —i lim (— —QVTn-) (G(Rt,x't)),

r/—r

and

(iv) the spin density #(R) = 2 8(R —r;)o;, where & denotes the vector
whose components are the three Pauli spin matrices:

(F(R)) = —iTr (GG(Rt,Rtt)) .

We conclude this discussion by investigating the relation between the single-
particle Green’s function and the density matrix discussed in Chapter 6. The
general space-spin density matrix is in second quantization (see equation
(6.5)):

p(z,2') = P1(a")h(z) (= = (x,5)).

Thus, the ground state density matrix is obtained by

1

pz,z") = W(‘Folp(m,m')l‘l’d

- | ol gg) o ¥ )(z)| To)

= (¥ Il\If )(‘I’oltb*(w't')H%/)(rt)Hl ¥o)

= —iG(xt,2'tT)

where we have omitted the individual steps in the proof. For Hamiltonians
which in addition are explicitly time independent, so that

G(zt,z't") = G(z0,2'(t' — 1))

the ground state density matrix expresses precisely the Green’s function at
the origin of time:

p(z,2") = —iG(=0,2'0%). | (15.15)

Hence, the Green’s function can be interpreted as a time-dependent exten-
sion of the density matrix. Indeed, this time-dependence contains a great
deal of information, since one cannot calculate the exact ground state energy
from the single-particle density matrix ~ for this, the two-particle density
matrix is required. According to the statement (2) above, which we will
now prove, the ground state energy can nevertheless be calculated from the
single-particle Green’s function. We will carry out: the proof for the case of
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a particle—particle interaction which is local in space, but non-diagonal With
respect to the spin indices, so that it does have a genuine spin-dependence.
The Hamiltonian is then

2
H = T+V=Z/d3r¢l(r) (—2%;-) bo

1 , , o
+5§1 / / & &/ Ll Waar (5,7) 95 (£) Y (5).

Be’
(15.16)

For the kinetic energy contribution, we have

2
[Ya(r),T] = —%wa(r).

The proof runs completely analogously to the proof of equation (15.9). For
the commutator of the field operators with the interaction potential

[Ya(r), V]

*

v

1 f
= _2- g / d3z / d3y 1/)\0;;9’ d)’g(Z):/)ﬂ(y)Vg;: (Z, y)¢ﬁl(y)¢a,(z)
pe! B ~
. _ s

we obtain with equation (15.6)

-;—Z;/dsz/dfsy [\{%(r),@(z)}lc

pB! =6a6(r—2)

~}(5) { o @) WYV (55 (0 )}

1
= - d3 i Vaal s 1 o Z
) [ IO Vs 3 () +

where, with equation (15.8), we furthermore have

7= -;-Z / a3z / 43y (_;b;(z))

B’
X {%(r), 'eb}}(Y)} V;;; (2,5) ¥p:(¥)¥o(2)

=6036(r—y) =—tor (2)¥p (¥)
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+"/)—y(z)¢ﬁ(}')v'ra’ (Z y) [%(I‘) '@Z’,B’(Y)wa'(z)]

=0, by (15.6)

= = Z /d3z Yl (z)V. e (2,7)¥ai(2)¥p(r).

’YQ’,B'

We then rename the summation indices accordmg toz —y,y— B,a «f,
which leads to

Z / Sy (Y)W os (v, D) (7)o (1),
,8,8’(1’

Because of the indistinguishability of the microscopic particles of the system,
we can assume that the potential is symmetric under mterchange of the
coordinates:

_,.,/ (r,r') = Vw (r',r)

58!

(non-symmetric parts leave no contributions to equation (1516)). This
yields

723 3 [@rufo)Vay C)0am)bul)
Iﬁﬁl
The total result for the commutator is thus twice the contribution of the
potential energy

Wale), H] = ~Yooe) + 3 [ &b st (5 )95 (Y Vor ().
Iﬂﬁl
(15.17)
We then insert this result in the Heisenberg equation of motion for the field
operators

sty = Wa(t)m H] = 67 (g (x)s, H] e
2
["l} Yalrt)g

+ %ﬁl/dgy ¢ﬁ yt)HV a’ (r, y)¢ﬁl(yt)H¢a’(rt)H

i

(15.18)

We multiply this equation on the left with zbgg(r’t') g and divide by
(Yo | ¥o) to form the ground state expectation value. This yields
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[zgt_ - (_ ;ﬁ%)] (Yo | ¢L(l‘<'g3)}’{$:>(rt)gl )

3
,ﬁﬁ,/d ‘I’OI‘I’0>
*(¥o [ VL) UL YOV awt (7 9)03 (Y s ()] Yo

We now take the limits ' — r and # — ¢ in this equation, then integrate
over d3r and sum over . From the definition of the single-particle Green’s
function it then follows that

2
/d3r hm lim (zé- + —Y—-) Tr [—iGaﬁ(rt,r’t’)] =2(¥o | V| ¥o).

t' i+ v'—r \ Ot
(15.19)

With the help of this equation can we eliminate the potential energy from
the ground state energy

Eo = (Ug | T| ¥p) + (Tg | V] ¥p)

.

to obtain the final result

A . o V2 vt
Ey = —§/d rtlllin*t rl'lglr (lé-t_ ~ 5 Tr [Gap(rt,x't")] . (15.20)
For translationally invariant, explicitly time-independent systems we obtain
a particularly simple equation if we use the four-dimensional Fourier trans-
form of the Green’s function :

, i Q : k2
Eq = 3k WT . 21
0= 5o lm, [ / dwe (—2m + w) Te[Glk,w)].  (15.21)

Before we can prove statement (3) above, we will first discuss the Green’s
function of a system of free, non-interacting fermions, i.e., Hy = T and
V = 0. In this case, the Heisenberg picture and the interacting picture are
identical, so that we can calculate the Green’s function from

G (et x't) = (@0 | Tla(et) (8} ('t")1] | Bo).

We transform to creation and annihilation operators of the momentum eigen-
functions and use the representation equation (14.10) in the interaction pic-

ture: 1
a(rt)I=Z “Tega(t)r = Z\/— ™ klep,
k

and

'/)ﬁ ('t = Z otk r! zek;t'c’r,ﬁ
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where

This yields

i) ap(rt,x't’) = -é-Zei(k~r—k'-r’)e—i(ekt—ek,t’)
kk’

x |00 = )(@0 | exachsy | o) = 0 = 1)@ [ e goxa | B0)]
Here | ®g) is the ground state wavefunction of Hy = T, i.e., a Slater-
determinant of all plane waves of momentum less than kg. Consequently,

the matrix elements vanish unless the created state (k’3) is identical to the
annihilated state (ko). This yields

iGO(rt, 1) = ‘%ﬂ 3 k-1 )gmica(t=t)

x [0t = ¢')(@0 | ckack, | Bo) — 8 ~ 1)(@o0 | clycxa | o) -

If we now also use

fl

E>k
(@0 | cxacl._ | Do) F } = 0(k - k)

(ck g | cka<I>0) {

1:
0: k<kp
(20 el ea | B0) = (exao |cxa@o)={ oF LS L= gp 1)
ko Cko ko a k> kF
we finally obtain in the continuum limit
3
zGSg(I’t,r't') = aﬁ/(d : etk (r—r') g—ier(t-t)
x [0t = tY0(k — kp) — 0(t' — 1)0(kp — k)] .

(15.22)

By definition, it follows that the momentum Green’s function is

iGO) (K, t — ') = 6,56 %(t=¥) [0(¢ — Y0k — k) — O — )8 (kp — k)] .
(15.23)
For the derivation of the four—d1mens1onal Fourier transform, we will first
show that the step function has the following representation:

oo e~ wT

6(r) = lim - L

. 15.24
n—0t 27 J_o ww+in ( )
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,/ .
Re w
®-in

T>0

Figure 15.1 Integration paths for 7 < 0 and 7 > 0.

The integrand has a simple pole at w = —in and the residue leaves a contri-
bution of
e—in —wT o .
Res — = lim (w+1ip)———=¢e"
W+ w—— m( ) (w+ zn)

If we want to calculate the integral with the help of the theorem of residues,
we have to close the integration path with a semi-circle. To ensure that
the integration over the arc in the limit of an infinitely large radius leaves a
vanishing contribution, we must, because of
e—iw‘r — e—i(Rew)’re(Imw)T

close the arc in the lower half-plane for 7 > 0 and in the upper half-plane
for 7 < 0. Since there are no singularities enclosed by the semi-circle, the
integral over the closed path vanishes according to Cauchy’s theorem. Thus,

for 7 < 0 the integral leaves a null result, which we had to show. For 7 > 0
we obtain, by using the theorem of residues

e~ twT e~ WT
/ dw = fdw -
w +in w1

= —27i X (sum of residues)

= =27 "7,

The minus sign comes from the negative orientation of the integration path.
For 7 > 0 the statement then follows:

1 o0 —wT
€. =1.

m ———

: W ;
n—0t 2w J_ o wHin
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One can analogously show that

1 o) e—-iw'r
6(-7)= lim =+— dw -
n—0t 2mi J_ W — iy

(15.25)

If we insert these into the above expression equation (15.22) for the Green’s
function, we obtain

(0) AN otk (r—r")
G (Tt r't) = i hm 6043/ (271‘)3
y /°° dv —i(entw)-v) [0k —kp) | O(kp - k)]
—oo 2T w+ in w—ing |’
With the substitution w = ¢ + w it finally follows that
a3k dw
G(O) t, Y = lim § / ‘ el
o ChTt) = g 8as | Ty
ik (r=1") g—iw(t—t) [ Ok —kp) | 6(kr —k) }
W—€+1np WwW=—E€p—17

.

so that

(0) L 0(k—kp) | O(kp —k) 15.96
Gaﬁ(kw)—nl—lf&&aﬂ [w—-ek+in+w——€k—-z’n ' (15.26)

This function has for k > kg, i.e., for ¢, = m > -IEF— = ¢, a simple pole at
w =€ —1in,

and for k < kg, i.e., for ¢}, < €, a simple pole at
w =€ + .

It is essential to note that we only obtain discrete poles so long as we
are only considering a finite system. In the continuum limit, the analytical
structure of the Green’s function changes, and we obtain a branch cut along
the real axis.

We will now test the this formalism by using the Green’s function that
we have just determined together with equation (15.21) to calculate the
well-known ground state energy of the free non-interacting electron gas:

By, = _L1_ % /d3k lim [ dwe*'“"f(ek+w)Tr{G(°)(k w)}
2(271')4 70t /oo ) o
i Q [« °
= -3 4/ 4rk?dk lim+ : dwe'™7”
(27(') 0 1’;:8+ -0
€ +w €k +w ]
2 0(k - kp)———+0(kp Tl
[ ( F) 6 + n + ( ) - fk —a 277
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?Imw

Ef

XXXXXXX| -
[ XXX X XX pey

Figure 15.2 The locations of the poles of the Green’s function are just above
the real axis for € < €, and just below the real axis for ¢}, > ¢p.

Since 7 > 0 we choose an integration path I' which closes with a counter-
clockwise semi-circle in the upper half-plane: *

00
‘ / dw:/dw.
—-00 r

The first term (k > kp) of the integrand does not leave any contribution,
since this term has no singularities in the upper half-plane. This leaves only
the contribution from the second term:

9] kg :
Fo = —i—r / smk?dk lim [ dweim —ETE
(27)* Jo r—»gj: r w—€p =11
’7‘%

The calculation of the integral over the closed path yields, with the help of
the residue theorem

= lim (2m) lim [e¥7(e +w)|

-0t ;
;_.84_ w—reg+1n
= lim+ (2mi)eH R HNT (¢ 4 €p +in)
-0
ot

: N
= (2mi)2¢; = (27rz)-7-n—.
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Thus, we obtain the familiar expression

0 ’“Fk2dkk2 Q

Eo = 212 Jq m  10mn2 ¥

for the total energy.

We will now for later purposes write the Green’s function of a non-
interacting Fermi gas in yet another way. To do so, we first consider a
system with (N + 1) particles. The ground state energy of this system is
obtained by adding a particle at the Fermi level to the N-particle system,

so that N
1
E(() + )= Z €+ €p.
k<kp
We obtain an excited state of the (N +1)-particle system by adding a particle
with momentum K such that K > kp to the N-particle system. The energy
of this state is then N
1
Eé{ + )= Z €+ €K -
k<kp

-

Hence the different excitation energies of the (V + 1)-particle system are

wid ) = g _pNTD = o ep > 0.

We obtain the ground state energy of a system with (N — 1) particles by
removing one particle from the Fermi level

ENTY = > e —er.

k<kp

On the other hand, an excited state of the (N —1)-particle system is obtained
by removing any particle with momentum K and energy e¢x < e from
the ground state of the N-particle system. The entire system has then a
momentum —K (since the previously fully occupied Fermi sphere had zero
momentum) and energy

N-1
EE—K ):Z €L — €K
k<kp
Thus, the excitation energies of the (N — 1_)-part‘i‘cle system are given by

lvsfzg_l)‘EE l?ffig_l) — l?éﬁv-‘l) = —eg +ep >0.

We can now write the Green’s function of the non-interacting N-particle
system as a function of the excitation energies of the (N — 1)- and the
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(N + 1)-particle systems:

¢k, w)

[ 6(k - kp) 6(kr — k)
= lim 6aﬁ " .
n—0t U w—ep—(eg—ep)tin)  w—ep+(ep—€)—in
0(k — kp) 0(kp — k)
= b fas |~ (V4D =D _;
n— —€F — Wy + i W—€p+w -1

(15.27)

Thus, the Green’s functions has its poles at the exact excitation energies
relative to the Fermi level of the

(N + 1)-particle system: w=¢€p+ w(N+1) in
and of the
(N — 1)-particle system: w=€p— w( -1 + in.

We will now show that this statement also holds for the exact Green’s func-
tion of an interacting system, which proves statement (3).

For the sake of simplicity, we will restrict ourselves to explicitly time-
independent, translationally invariant systems. It then suffices to consider
the (diagonal) momentum Green’s functions. We will furthermore also re-
strict ourselves to spin-independent interactions, so that we have

Gaplk,t —t') = §,3G(k,t —t')
with

Gkt — 1) = (—‘i’—o-llll’—o)(wo | Tlex () el (t) ] o)

B 1 _1( (N+1) E(N))(t tl)
T (U] Ty [ t)Ze
X (Wo | ey | w%N“’x (v+) | eh| @)
~i( BN _g(N-1) (s _p
—H(t'—t)Ze <EO E} )(t ')
x (%o | cf Y)Y | ey wo)]

We have here performed the transformation of the Heisenberg operators
to the Schrodinger picture and inserted the completeness relation equation
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(15.11). With the representation equations (15.24) and (15.25) of the step
function, we obtain

iG(k,t —t')
(N+1) _ N Y4yt N 2
It W+ 7 (Wol To)
N_p(N=1)\(,_u N— 2
k> (‘“+E° HD)e-0 | @Y | ) )|
w — in) (To| ¥o)
With the substitutions w = w + E‘,(lNH) - E(I)V in the first integral, and
(V-1)

w=w-—Ey, + Eév in the second integral, this expression becomes

2
\Il(N+1) ICTI ‘I’O)l
E(N+1)+EN4+ “7

® dw ' 1
i —-1w(t ~t')
o (o | To) ;

l VY | o ‘1’0)'2

-1
w+ BENY gV -

t 2

We now look a little closer at the denominators that appear in this expres—
sion. In the first term we have

w= BN 4 BY vin=w— (B - V) (B{VY — B ) +in.

The difference N
w7(L +1) = E£N+1) _ E(()N+1) >0

is precisely an excitation energy of the (N + 1)-particle system. Hence

(N)

(57— 5) = 50|

is the change of the ground state energy in addmg one particle, which is
precisely the chemical potential.
The second denominator is

BV — Bo—in=w+ (ESY - ES" V) - (B - E((,N—l)) —in,

The difference N N A N g
wiV D = pN-D _ gN-1) 5
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is this time an excitation energy of the (N — 1)-particle system, and

E(()N) _E(()N“l) N-1)

)
is furthermore the chemical potential. For very large systems, we can set

(However, we have to be careful in the case of systems for which the ground
state energy Ejp is discontinuous as a function of the quasi-continuous vari-
able N, so that there are gaps in the ground state energy, such as the band
gap in isolators. In such cases, p(V) £ uV-1) .) Finally, we take into consid-

eration that the matrix element (\II(N+1) | ckl V¥go) vanishes unless \I'( -1
1s a state with total momentum P, = k, and similarly the matrix element

(\I'%N_l) | cx| ¥o) vanishes unless ‘1,7(1N—1) is a state with total momentum
P, = —k. Hence, we can restrict the sum over the intermediate states
and the final result is the so-called Lehmann representation of the Green’s
function:

M) | o) )|

w— - waNk )+zn

Gk,w) = lim . znjl<

17—->0+ ‘I’O l \IIO

5~ [0 e wo)|’

— (15.28)
no Ww—ptw i

Thus, the Green’s function of an interacting many-particle system has its
poles at the exact excitation energies, relative to the chemical potential, of

an (N + 1)-particle systems: w = pu+ w(N+1) in
and of an (N — 1)-particle systems: w = u — wg\_r_k ) + .

We can also write G(k,w) in the form

D)= Lm o0 ; A(k,¢) B(k,¢)
Glw) = lim, [ d [w_“_,6+in+w_u+e_m] (15.29)
where.
@) (e,
A9 =2 (o) ! b(e—up™)
and | , ) |
(e V(<k) | ek o) o0
Bl = Zn: (Yol ¥o) e )
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The spectral functions defined in this way are by construction real and pos-
itive:

A*(k,e) = A(k,e) > 0

(15.30)
B*(k,¢) = B(k,e) > 0.
Because w,(lNﬂ) > 0, it furthermore follows that
A(k,€) = 0 = B(k,¢) for e < 0. (15.31)
and we obtain the sum rule
fo ~ de (A(k, &) + Bk, ¢)) = 1. (15.32)
To pi‘ove this last equation we simply integrate: |
[ 4060 = 3 iy o o | 9+ @ 1 wo)
(o | ckcy| ¥o) _ (o |1~ clox|¥o) _ -
(Wo| Yo) (To| ¥o)

Similarly, we obtain
/de B(k,¢) = (ng)

and the sum rule is proved.
For the case of non-interacting Fermions it follows from equation (15.27)
that ‘

Ak, ) - B(k — kr)6(e — wl" Y)Y = (1 = (ny)) 6(e — 0V D)
B(k,e) =0(kp—k)s(e—wl ™) = (ny)s(e — ] V).

In this case the sum rule is trivially satisfied.
We can now express the time-dependent Green’s function using the spec-
tral functions: ' ’

iGk,t—t") = 0@t-t) / ” de Ak, e~ eHm =1
0

0 . ,
—0(t' —t) / de B(k, e)e~H#=)(t=t)  (15.33)
0
From this it readily follows that

lim iGk,7) = / deA(k,e) =1—(ny)
r—0t 0

lim Gk, 7) = _/009 de B(k,e) = —(ng). = (15.34)

T—0~
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Hence the Green’s function has a discontinuity at the point 7 = 0:

lim Gk,7)—- lim Gk, 1) =

70t T7—0"

Equation (15.34) is for practical reasons a very important representation
of the momentum distribution (ny). With the help of this representation,
we will prove in Chapter 26 that the function (ny) has a discontinuity at
= kg, i.e., a Fermi edge, also for interacting systems.
We will now conclude this chapter by further investigating the analytical
structure of the Green’s function. From the general formula

1 1
li =P iwd(x — xg),
n_lfél+ z—2z9Ein r—xo F imé(z = 20)

it follows that

Gk, w)
- et )

_ / de ke) / de B(k,w)
Ww—u—ce w—u+e¢€
—irA(k,w — p) +i7B(k,p — w)

Since A and B are real (equation (15.30)), we have

[0,
ReG(k,w):P/ a2tk e) | / de B0 (15.35)
0 w - ue 0 Ww—pn+e

—rAk,w~—p) w>p
+7Bk,p—w) w<p

(15.36)
This last identity, which follows from equation (15.31), shows that
Im G(k,w) changes sign at w = p, since both A and B are positive according
to equation (15.30). We can also re-write equation (15.36) as

ImG(k,w) = —mA(k,w —p)+ 7Bk, p —w) = {

I

Ak, €) —%Im Glk,e+ p)
(15.37)

B(k,w) = +;1r-ImG(k,u—-f)

(for € > 0). If we insert equation (15.37) in equation (15.35), we obtain

) o0 _
Re G(k,w) = —%P/ qeimGlketpy) lp/ e Gk, p— €
0

Ww—pg—c Ww—p+e€
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With the subsitutions €,e = p+€,y4 in the first integral, and €pey = p—e€,14
in the second integral, we finally obtain the dispersion relation

[e2e) H
Re G(k,w) = -——71FP/ e mCGko) | %P/ de G €) g5 59
U -0

W — € W —=¢€

Here we see a possible application of the spectral function. Let us assume
that we have calculated the single-particle Green’s function within some par-
ticular approximation (for example the diagrammatic method which we will
discuss shortly). In this approximation, the Green’s function will in general
not have the correct analytic properties; we could for example see that the
dispersion relation derived above is not satisfied. In this case, we could for
example only use the imaginary part of the approximate Green’s function
and from this then calculate the spectral function by using equation (15.37)
and then finally determine anew the real part of the Green’s function from
equation (15.35). The Green’s function corrected in this way will by con-
struction satisfy the dispersion relation. One can also attempt to introduce
further corrections so that, for example, the sum rule equation (15.32) is
satisfied. ‘

We will close this chapter with a remark on the theory of superconducting
systems. The single-particle Green’s function is the expectation value (1/)“#)
and <¢¢T), respectively. In superconductors, on the other hand, expecta-
tions ‘values of the type (¥T(r't")yt(rt)) and (¥(r't)e(rt)), the so-called
anomalous propagators, are of fundamental importance. The order parame-
ter A is for example an expectation value of this sort. The properties of the
single-particle Green’s function discussed here and in what follows (analytic
structure, equation of motion and diagrammatic expansion) can easily be
carried over to the anomalous propagators.







Chapter 16

The polarization propagator,
the two-particle Green’s
function and the hierarchy of
equations of motion

*

As we have seen, the single-particle Green’s function contains a large amount
of interesting physical information of a system. However, there are quantities
which cannot be calculated from this Green’s function. One example is the
correlation between the observables A and B, which is usually defined by

fap = (A —(A)) (B — (B))) = (AB) — (A)(B).

This quantity gives a measure of the mutual dependence of the fluctuations
of A and B on one another. If the deviation of the quantity A from its mean
value (A) is somehow coupled to the deviation of the quantity B from its
mean value (B), then f4p will have a non-zero value. If, on the other hand,
faB =0, the observables A and B are said to be statistically independent.

If A and B are local operators in the space—spin representation, so that

A = / dz A(z)! (2)(2)
B = / do’ B(z')! () (a")
then their ground state expectation values are given by
= z Az Y2 y(z
W) = vy ) AT W EWE) )
- 1 2 B(z' ‘[‘wl 201 e
(B) = TgTay | 4 B WEE] o).

179
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Hence, the correlation function is

1 J /
faB = m//d:cdx A(z)B(z")

tHe)h(z
(oo [viote) - FelHENE v

(T [pT(2")y(a")| To)
(o | ¥o)

X {W(m')d}(w') - | o).

If we also introduce

o [ (@)e(e)] o) *
(Tg | ¥o) (16.1)

A(z) = plz) — {pl2)) = P (x)(z) - |

the correlation function f4p5 can be written

*

1 / ’ ~t Ny ]
a8 = T [ d [ as' @B 0 33" o).

If we furthermore are only interested in correlations of quantities at different
times, it is natural to define a time-ordered density correlation function in
the following way:

iTI(et, 2't') = m(‘l’o (TT7(at) (2"t )| o)

' t(e T t(plt! Y
o | Yo)
(16.2)

For reasons that will become clear later, II is also known as the polariza-
tion propagator. By using this quantity, we can calculate the ground state
expectation value of a local (in space-spin representation), but otherwise
arbitrary, two-particle potential,

0= 5oy & [ 420 W@ e w(e)] wo).

To show how this is done, we use the fermion anti-commutation relations
and obtain
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(To |9 ()t (") ()¥(z)| To)
(Vo | o)

(Yo |91 (2)y! (=) v () (a")| o)
(To | o)

(o [1(2)9(2)w! (&)(')] o) — 6,0 (o [ (2)(2)] o)
(¥ | Ug)

(Yo |p(2)p(z")] Bo) — 6,5 (To |p(x)] To)
{¥o | ¥o)

(o [3()7(')] o) :
0 o | \I;O> 0 + (p(m))(p(m )) — 53;3'(/)(33))

If we then use the definition of the polarization propagator, we obtain in
total

() =5 [ do [ do'sla,a") (510, 20) + (p(@)) =)  Bagrtol)].
(16.3)

If we want to continue to calculate the correlation between two non-local
observables

A = / dzy / dzg A1, 22)¢! (21)6(x2)
B = / dzs / dzaB(ws, va)! (33)6(z4)
we arrive at

faB =

(AB) — (A)(B)
) /d:c1/da:;;/da:3/dx4A(a;1,z2)B(x3’m4)

{(% 9t (21)9(z2)9 (23)9(24)] Vo)

(Yo | To)

_ (%o [#¥(z1)¢(22)| Vo) (Yo [!(2a)¥(z4)| To)
(To|Wo) (To | W)

Hence, the function II defined earlier is not sufficient to calculate such a
correlation function — a generalization is necessary. This leads us for time-
dependent extensions of II to the definition of the two—partlcle Green s func-
tion, which in space-spin representation is: S
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i2G(z1t1, T2ta, Tats, Tats)

= 1 (U0 [T[y(z1t1) b (ata) g T (eata) oot (zats) gl To).
(Yo | ¥o)
(16.4)

Here, the time-ordered product of several Fermion creation or annihilation
operators is defined as

T[A1(t1)A2(t2) ... An(tn)] = sgn(P)Apq)(tpa))Ar@)(tra) -
- Apm)(tpm))
~ (16.5)

where the permutations P € S,, are chosen such that

tp) >tp(2) > -+ > tp(n)-
From this definition of the time-ordered product we obtain the identity
| G(1234) = —G(2134) = —G(1243) = G(2143). (16.6)
Equation (16.6) is proved by, for example,

]

G(2134) = ~(T[gav1¥ivll) = +H(Trvavlel]) = —G(1234).

For the single-particle Green’s function, we needed to examine only the
two cases t > t' and ¢/ > t. For the two-particle Green’s function there are
24 distinct cases to examine, corresponding to the possible permutations of
the times t1,%2,%3,14. Due to the symmetries given by equation (16.6), this
number is fortunately reduced to six:

(1) t1 >t > t3 > tq : 2G(1234) = (¢1¢2¢§¢};). Because of equation
(16.6), this time ordering includes the cases ,

to > 11 > i3> 14
t1 >ta >4 > 13
ta >t >ty > 13

" [as to the sign, see equation (16.6)]. The basic structure is
G = (vyylyl)
with all possible indices.
(2) ta > tq >t >ta: i%G(1234) = (1&:;1/)11,/)11&2). Here the cases

tg >tz >t > 19
t3 >ty >1ia>1
gy >tz >t >

are included. The basic structure is G = (Wit
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(3) t1 >t3 >ty >ty : G(1234) = (1011/};1/)21#1), and all other indexings
with the structure G = (pptpapt).

We will only give the three basic structures for the remaining 12 possibilities.
Each basic structure includes four cases, just as above.

(4) G = (piyyply)
(5) G = (pTpyyl)
(6) G = (vypTyly).

The polarization propagator, equation (16.2) (without the prefactor and the
additional term {p(z))({p(z"))) is obviously a special case of case (4).

The interpretation of the two-particle Green’s function is analogous to
that of the single-particle Green’s function: In case (1) the two-particle
Green’s function describes the propagation of two additional particles and
gives the transition amplitude for finding the particles at (z1¢1) and (z3t2)
if they were added to the system at (z3t3) and (z4t4). Case (2) similarly
describes the propagation of a hole-pair, whereas cases (3) — (6) treat the
propagation of particle-hole pairs. .

We will here refrain from a thorough discussion of the analytical proper-
ties of the two-particle Green’s function. Instead, we conclude this chapter
by deriving the equation of motion for the single-particle Green’s function,
which will turn out to contain the two-particle Green’s function.

First, we calculate the time derivative of the time-ordered product of two
field operators in the Heisenberg representation:

2 Tly(etyst @)
= % ot - tyu(eypta't) - o(t' - 1)yt (2't')p(at)
= 8t —t")(et)pl(2't) + 6(t' — 1)l (2"t )y (at)
4ot =) 2Dt o) - p(e - yytatey 22
= 8t —tVop +T [a'p(“’t)tpf( " )]

.0 1yt
= zaG(azt,xt)

0 '
5;<T[¢(w)w*(w t)])
= 6t — )by — i(T[i (%mm)) »i('t).

We then use equation (15.18) for a potential which is local in space and spin:

o 2
i b(et) = —5 (e + [ dve, 0w W Y(a).
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This yields
' 2
i%G(xt,:c"t') = 5'(t—t’)6m,r—v (=i)(Tl(et)y!(@'t))
=i [ dy (e, )T PP ).

The ambiguity of the time-ordered product for operators with the same time
argument can in this case be easily overcome. The product T (yt)y(yt)v(xt)
originates from a single operator, namely 0¢(xt)/0t. For this reason, the
product must remain together in this sequence and regarded as one unit.
Hence, the only possible ways of time-ordering are

Wiyt () v(zt)pi(zt)) t>¢

(T {w(ytw(yw(mt)w(z't')]>z{ ﬂ
— (i) (yt)p(yt)p(zt)) ¢ >t

which furthermore can be written as
lim (T g(0)¥! ) ('),
Finally, if we use the anti-commutation relation ¥ (yt)y(zt) = —(at)y(yt)

(which holds only for Heisenberg operators at equal times), it follows that
this expression becomes

- lim (T ()9 wr)p!@'¢)) = Glat, ot utt, o't

We then obtain the equation of motion for the single-particle Green’s func-
tion:

2
[z—g- + Y—] G(zt, 2ty = 6(t — )b g — z/dy v(z,y)G(xt, yt, ytt, z't").

ot
(16.7)
In particular, for a non-interacting system we have
[ gt v; ] GO (at,&'t') = 6(t — t')6 1. (16.8)

In this case, the Green’s function is a true Green’s function in the mathemat-
ical sense, whereas the name is strictly not correct for interacting systems.

The derivation of equations (16.7) and (16.8) assumed a system without
an external potential — only in this case is the use of equation (15.18) valid.
If there is an external potential u(z), the operator on the left hand side of
equations (16.7) and (16.8) must be replaced according to

[i—a— + V—;J - [z’?- + V—ﬂi - u(z)] . (16.9)
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The equation of motion, equation (16.7), contains the two-particle Green’s
- function for interacting systems. Hence, if we wish to calculate the single-
particle Green’s function from this equation, we must first have an expression
for the two-particle Green’s function. This raises the question of an equation
of motion for the two-particle Green’s function, which will in turn contain
a three-particle Green’s function, and so on. We can define an n-particle
Green’s function by

C(D)"Gr(w1te,. . Tatn; 2] .. 2hth)

———'—‘-l !4 14l
(‘I’O l \I’g) (\IIO !T[¢($1t1) s ¢(mntn)¢f($1t1) ce ’(/)f(xntn)]l \IIO)

For each n, these functions contain information about higher order correla-
tions. Analogous to the previous derivation, we then obtain an equation of
motion for the n-particle Green’s function:

.0 V% G o, 1y
z——-—+—r—n— n(Z1t1, ..., Tptn; T1t], . ., Tpty)

Oty 2
n ' .
S ST
Jj=1
Gn-1(zata, ..., zotn;zit), ..., x;_lt;_l,m;_'_lt;-_*_l, e Zhth)

—z'/dyv(a:l,y)Gn+1x1t1,....,xntn,ytl;ytf,m'lt'l,...,:L';zt;)
(16.10)

which always contains the next higher Green’s function. In this way, we
obtain a system of coupled equations for the different Green’s function.
This system is just as impossible to solve exactly as it is to calculate the
exact many-particle wavefunction. However, the advantage of the Green’s
function lies precisely in this partitioning of the full problem into a hierarchy
of simple equations. The exact wavefunction of an interacting many-particle
system is an enormously complicated structure which contains information
on arbitrarily high correlations. Even if this function were given to us, it
would be practically impossible to calculate physically relevant information,
such as the ground state energy, for macroscopic systems (i.e., with 1023
particles). For that reason, it is more favorable to work with quantities
such as the Green’s function, which indeed contain much less information,
but are more intimately related to measurable quantities. If the hierarchy
is broken at any point by assuming an approximate Greens’ function, all
Green’s functions of lower order can in principle be calculated from the
equation of motion equation (16.10).

ey
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Perturbation Theory






Chapter 17

Time-independent
perturbation theory

We begin by separating the complete Hamiltonian
H = Ho+v

into an ‘unperturbed’ part Hy and a ‘perturbation’ v, which in most of the
problems discussed here will represent the particle—particle interactions. We
assume that the eigenvalue problem associated with Hy

Ho | ®n) = Wy | ®p)

has been solved. We separate out a coupling constant from the perturbing
potential
v =gvu _

and interpret the eigenvalues and wavefunctions of the complete problem as
functions of this coupling constant. The basic idea of perturbation theory is
simply to expand each quantity in a power series in g. One expands about
g = 0, i.e., in some sense about the unperturbed problem. If g is small, so
that the potential really is a weak perturbation, one can hope that only a
few terms in the series will be adequate. However, it is often necessary to
sum either the entire series, or at least the dominant terms of the series, to
infinity.

In this chapter, we will briefly review the traditional methods of station-
ary perturbation theory. Our goal is to obtain an expression for the ground
state of the complete problem

H| %) = Ep| ¥p).
First of all \
v| o) = (H - Ho)| ¥o) = (Eq ~ Ho| ¥o)
= (%o | v| ¥o) = (o] Eo— Hol| Yo) = (Eo — Wo)(Po| To).

189
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From this we obtain the general equation

g | v| ¥o)

AE = Eo— Wo = o) (17.1)

We denote the projection operator onto the ground state of the unper-
turbed problem as

P =| 3){P | (17.2)

and the projection operator on the remainder of the Hilbert space as

Q=1-P=) |®)(Pn|—~| B} (@0 |= ) [®n)(®n]|.  (17.3)

n=0 n=1
This operator commutes with Hy:

HoQ = Ho— Ho| 0)(®o |= Ho— Wol| @0)(®o |= Ho - | ®0)(®o | Ho
= @Hp.

L]

Thus, for any number E,  commutes with the operator (E — Hp), and we
can write

(E — Ho) Q| ¥o) = Q(E — Ho)| ¥o) = Q(E — Ep +v)]| ¥o).

Hence
1
QlYo) = F—7-Q(E - Eo+v)|¥o)=|¥o)—|20){®0 | ¥o).
0
(17.4)
If we define v )
1€) = D) (17.5)
equation (17.4) can be written as
1
[§)=1%0) + g7 @(E — Eo+v) [&). (17.6)
If we iterate this equation, we obtain
1) = 1%0)+ =@ (E~Fo+v)| o) +..
1&) = Z [ 1 Q(E - E'o—HJ)} | ®o). (17.7)

n=0
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We have found a general equation from which we can in principle calculate
the solution of the complete problem from the ground state of the unper-
turbed problem. If we insert equation (17.7) into equation (17.1), we obtain
for the energy shift

AFE = (@olv ‘f): Z((DQI’U [E_lHOQ(E——Eo-{-U)]ni@()). (17.8)
n=0

We obtain the Rayleigh-Schréidinger version of stationary perturbation the-
ory by setting E' = Wy. This yields

o0

> [WH{—_I?EQ (Wo — Eo + v)} " | o) (17.9)

n=0
Io's}

AE = Z(‘I)o’u

n=0

f

1)
1 n

— - . 171

ew-an) e, (r0)

Next, we separate out from equation (17.10) all terms of different orders in

the couphng constant g. We do so explicitly for the first term of the energy
shift. The first terms of the series above are

n=0: (Po | v| o) ~ ¢
n=1: (@0|va(v_AE)|¢o)

= (@] v—-l——Qvl Bo)

= (<I>0|v Zlq’n (@n | v] o)
- = (Po | v | Pn){ ‘I’nIUI‘I’D) 2
- Zz: WO"Wn ~9
1
n=2 (‘Polva(v—AE)mQ(U—AE)I%)
= 1
= Zm(%u% HQ(U AE) | @) {(®n | v| Bo)

o = (@0 | V] Bm) (P | v | Br}(®n | v] Bo)
22 (Wo — Wh) (Wo — W)

3 (o [ v®n)(Pn | v] Po)
AE Z e WP
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If we arrange the contributions according to their orders in g, the result is

AE =AEM t AE® L AE®) 4

where
AEM = (]| @)
(17.11)
@) _ = (®o|v|®n)(®n | v Do)
AE?) = :/_::1 T ‘

Initially, the terms in the Rayleigh-Schrédinger series run in parallel to their
orders in g. However, this pattern changes at the n = 2 term, at which point
arbitrarily high orders in g are included. We observe that the terms in the
Rayleigh—-Schrodinger series, with n > 3, are of at least fourth order in g.
Hence, the third-order correction AE(3) 1s obtained from the n = 2 term
above, with AE replaced by AE() = (& | v| $p):

- . @|”|¢m<¢m|vl¢n)(q’nlv|¢0)
AE®) Z Z 0 T T

(®o | v | 0){®Pn | v| Do)
(WO - Wn)2 .

m=1n=1

(17.12)

—(®g | v| o) Z

n=1

As the order in g increases, it becomes correspondingly difficult to sort out
the terms for each order.

The Brillouin-Wigner version of stationary perturbation theory possibly
provides a more systematic approach. In it, we set £ = FEjp in the general
formulas, equations (17.7) and (17.8). This yields

o0

0 = 3 |5=mev] 1o (17.13)

n=0
00

AE = ) (®gu [E HQV} | ®o). (17.14)
n=0

As in the Rayleigh-Schrodinger series, the first term of the Brillouin—-Wigner
series for the energy shift corresponds to the first-order termin g:

AEM = (& | v| Do)

However, the second term of the Brillouin-Wigner series

(®0 | v Qo] 90) = 3 (o0 IE(I:,_)(;)}! | o)

n=1
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already contains terms of arbitrarily high orders in g:

1 1 1
Eo— W,  Wo (Eo~Wo) ~ Wn  Wo— Wy + AE(9)
1 d 1
= +g (—-— ) +..
WO—Wn+AE(g) g=0 dg WO_WN+AE(g) g=0
1 AE®)

WO ~ Wh B (Wo - Wn)z

When we separate the powers of g, we obtain the same result as in the
Rayleigh-Schrodinger expansion:

Ap® =3 (2ol 'V;i“f;? | v] ®0)

.

n=1

The expressions for each order of the energy shift, derived from the Brillouin—
Wigner series, are identical to those from the Rayleigh-Schrodinger series
because the expansion in powers of ¢ is unique. However, separating the
powers of g from the Brillouin—-Wigner series is at least as difficult as in the
Rayleigh—Schrdodinger series.

In conclusion, whereas both the Rayleigh—Schrédinger and the Brillouin—
Wigner methods of stationary perturbation theory formally give exact ex-
pansions of the complete problem, separating the orders in the perturbing
potential (i.e., the powers of g) becomes rather tedious. This limits their
usefulness to the first few of orders in g. If we want to sum the series in g
to infinity, it will be necessary to have a perturbation expansion that will
directly give us the individual orders in g.






Chapter 18

Time-dependent perturbation
theory with adiabatic
turning-on of the interaction

The series derived in Chapter 14 for the time evolution opefator in the
interaction picture (c¢f. equations (14.19) and (14.20)) is a direct expansion
in orders of the potential:

n

U(t,t/)zzo("?n /;dtl /:dtg.../t’tdtnT[u(tl)I...v(tn)l]. (18.1)

In this chapter, we are going to construct a fictitious time-dependent prob-
lem such the wavefunction of the complete problem can be obtained by
applying the time evolution operator to the unperturbed wavefunction

| ¥o) = U(0, —00)] ®p).

The series for U given in equation (18.1) then gives a direct method for
expansion in orders of the potential. We will now discuss in detail how and
under what general conditions such an expansion can be constructed.

We define an explicitly time-dependent Hamiltonian in the Schrédinger
picture by

He(t)s = Ho+e My with e > 0.

This Hamiltonian has the following properties:

He(t — +00) = Hy
H(t—0) = H.

Thus, we will slowly tur‘nv on the pofential at t = oo to the unperturbed
problem Hy, and at ¢ = 0 the potential is completely turned on. The time-

195
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dependent Schrodinger equation

i )5 = HeO)s Welt)s (182

at t = 00 goes over to the asymptotic equation

2 W) = Hol Welt))s:

The required initial conditions for equation (18.2) at ¢ = —oo is that the
interacting ground state evolves from the non-interacting one:

] \I’e(t — ——OO))S = e_iWOtI @0). (18.3)

The equation of motion is in the interaction picture

"'aazl V() = e~ Wlo(t) 1] Te(®)) - (18.4)

Since the right-hand side vanishes for { — +oo e
li 'ﬁl Te(t)h);=0
t—gl:noo zat ¢ r=

the state vector in the interaction picture becomes time-independent in this
limit:
| U (t — Fo00))1 = constant.

For ¢ — —oo we obtain from equation (18.3) the initial condition

lim | e(t)) = lim 0! Ue(t))g = eote™ o] @g) = | @)

t—+too
(18.5)
The formal solution of the equation of motion, equation (18.4), with the
initial condition equation (18.5), is

| We(®)) = Ue(t, —00)| o).

The potential has reached its full strength at the time ¢ = 0. The question
then arises in which sense the state

| ¥e(0)) = Ue(0, —00)| o)
is related to the exact ground state | ¥p). (We will from now on drop the
index I at ¢t = 0, since at this time all pictures are identical). Clearly, | ¥((0))
depends on the magnitude of ¢, i.e., how fast the ‘potential is turned on. If
the potential is turned on sufficiently slowly (‘adiabatically’), we can hope
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that at each point in time, the ground state has adjusted to the potential
strength at that time, and that we obtain the exact ground state from

| Wo) = lim | ¥e(0)). (18.6)

This question is not answered trivially, since we explicitly used ¢ > 0 when
we established the initial condition equation (18.5). The question if and
under what conditions such a limit gives sensible results is answered by the
Gell-Mann-Low theorem [13]:

. : U (0 . :
(1) If the quantity | £) = lime_o g iI’C()O)) exists to all orders in per-

turbation theory (i.e., if in the perturbation expansion

(@ol ‘I' Z &)

the limit lim,_q | £)(") exists for each n), then | £) is an exact eigen-
function H. (The theorem does not guarantee that this state is the
ground state!) *

(2) The limit lim_,o | ¥c(0)) does not exists; in fact
| W(0)) ~ e7HLe

as ¢ — 0 under the conditions in 1.

The infinite phase that appears in (2) will obviously cancel with the denom-
inator in (1).

If we pause for a while to consider the Gell-Mann-Low theorem, we re-
alize that it is a fairly weak theorem. We would rather have a confirmation
that the limit ¢ — 0 indeed exists, or at least know the conditions under
which it does exist. However, the theorem does guarantee the desired fi-
nal result, equation (18.7), if we only can calculate the limit € — 0 using
perturbatlon theory. This guarantee is of course also very valuable.

We now proceed with the proof of the statements of the theorem. We
have

(HO - WO) l ‘1’5(0»
= (H() — WO) UE(O —oo)[ @0)
= [H(),U(O —Oo]l@o

= —z)n / dt, / dtn

e €(|t1'+"'+'t"') [Ho, T (v(t1)r ... v(ta) )] ®0).  (18.7)
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For each fixed n-tuple (¢1,...,t,), we obtain the time ordering in equation
(18.7) by expanding:

[Ho, T (v(t1) ... v(tn)))
= [Ho, ”U(t,')v(tj) e v(tk)]
= Hov(ti)v(t;) ... v(tg) — v(t:)Hov(t;) ... v(tk)
+v(t,')H0v(tj) () - v(ti)v(tj)Ho cv(ty)
+ ... —v(t;)v(t;) ... v(tg) Ho
= [Ho,v(t;)]v(t;) ... v(te) + v(t;) [Ho, v(t;)] .. . v(te) + ...
o o(ti)olty) - [Ho,u(tk)]

where 1 < 7,7,k < n. If we now use the equation of motion, equation
(14.11), for the interaction potential

0
-7 = [Hp, v(t
i-ol(t)1 = [Ho, o(t)1]
(the contribution from the explicit time dependence 1s omitted, since
v(t); denotes the interaction representation of the potentlal which is time
independent in the Schrodinger picture; the time dependent prefactor e —eft]
will be negligible in equation (18.7)), we obtain

[Ho, T (v(t1) ... v(tn))]
0 0 0

= it bt e ) W) v(t)

—i [Z a—‘zf} T (v(t1) ... v(tn)).
j=1""

This identity is independent of the particular sequence in which the opera-
tors v(t1)...v(tn) are ordered with respect to time. The following integrals
in equation (18.7) then remain to be performed:

0 0 n
, 0
/—oo dty ... [‘oo dty e~ clliabtlinl) () Z—: %T(v(h) o o(tn))

- _ZZ / dh .. / dtn e=elltbt- +ltnl>——T(v(t1) o(t)n))

0
— in / dty ... / dt, e=<ltl+e +|t"|)-8-——T(v(t1) (tn)) -

-0

But
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0 +et 0
/_Oo dtie 1‘a—t-;T(v(t1)...v(tn))
= B0 wt)] e [ et T () o)
0
= W(O)T (v(ts) ... v(tn)) — € /_ dty e~ 11T (u(ty) .. v(tn))-

It follows that

(Ho—Wo)! ¥ (0))
i n+1
= Z (n z 1)!
X [vs / dty ... /0 dt, e~ cUteltetlin) T (y(85) . u(t,))
ce [t [ ate et o) ofaa))] 2o
© (_n-1 [0 0 e
- —vSI\IIC(O))—I-e;:%((n_)_l)! /_oodtl.../_oodtn

e-c(ltalttal T (y(ty) .. v(tn)) | o).

Each factor v(t) contains one factor g; thus

T (v(t1)...v(tn)) ~ g"

e (i (=)
—3) 9 (=)™
(n—-l)'g ‘qé)g n! 4

We then finally arrive at

(Ho — Wo) | We(0)) = —us| Te(0)) + ieg%l T.(0))
= (H - Wy) | U (0)) = zeg—] U (0)).

Hence
R ARL 2
(H o ”ag) @o] T.(0))
— ..___._..1___._ — 26 —_—
= @l \1&(0»\(” Wo —ies "I’(O”),

=0
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| ¥e(0)) . 0
(o | ieg | ¥e(0))
<(I’Ol \I’e(o))z _ ag
| ¥e(0)) (@0 | H — Wo| ¥e(0))
, (®o] Te(0))  (Do| ¥e(0))
The terms on the right-hand and left-hand sides with prefactor Wy are
identical, which leaves

0\ _[9(0) _ | Te(0)) [ %e(0))
(- e035 ) ety = (%0 o Sy ol 307
By assumption, the quantity | ¥.(0))/(®o| ¥(0)) exists to all orders in per-
turbation theory in the limit ¢ — 0. The contribution from iega% then
vanishes as ¢ — 0, and what remains is

H1&) =(Po | H|E)]E)

Thus, statement (1) of the Gell-Mann-Low theorem is proved.
To prove statement (2), we consider the quantity

.. 0
lim icg - In (o] ¥e(0)

X 1 .0
= lim m(% | 169551 U(0))
e—0 (@01 \115(0»

_ i (20 0] 90)) _ =
- eh—I}(l) (?Dol ‘I’e(o» - eh_l;% ((DO l v Ié') - AE(Q)

Here we have used hypothesis (1) and the general formula equation (17.1)
for the energy shift. It follows that

: 0 AE(9) 1
lim,_¢ 3y In (@] T (0)) ~ —i P
,.Clo)

= lime_oln ((I)OI \Ilg(O)) ~ —1

€

= lime_,q (Bo| T (0)) ~ e~iC(o)/e,

This proves statement (2).
We will now derive a formula for the energy shift AE. To do so, we first
consider the quantity

.0
zgt-ln (®o|Ue(t, —00)| ®p)
t=0

and use the equation of motion equation (14.17):



PERTURBATION THEORY 201

.0
z—é—t—ln <(D() l Ue(t, —-OO)] @0)

t=0

(B0 | e=<Itlu(t) UL (t, —00)| Bo)
(@o | Ue(t, —o0)| @)

t=0

(20 v(0)1Ue(0,=00)| Qo) _ g 1 | ¥e(0)
(®0 | Ue(0, —00)] o) 0175 T @] W (0))

Under the assumptions of the Gell-Mann-Low theorem we obtain for ¢ — 0:

={(®o|vs &) =AE.  (18.8)

lim z'?-ln (®o | Ue(t, —o0)| o)
e—0 +=0

ot
Hence, we have arrived at our goal, at least as far as the energy shift is
concerned. We have found a formula, which together with the series expan-
sion for the time-evolution operator, make possible a direct perturbation
expansion in the coupling constant g. In addition, this formula allows for
a diagrammatic analysis with Feynman diagrams, which we will discuss in
later chapters. If we are interested in properties other than the ground state
energy of the system, we express these in terms of single-parti¢le Green’s
functions through the time-evolution operator. To do so, we first show the
identity

(Yo | O(t) | To)

(¥o| ¥o)
_ . 1 ks ('—i)v ° d * d
et g}%*m(@OISEl@O)(@DII;)——_—U' [-w tl...[_oo tu
se~ellal+ttDp (01, . v(t,)10() 1) | ®o), (18.9)

with the abbreviation S, = U(co,~o0). To prove this identity, we first
use the fact that the Gell-Mann—Low theorem can be proved also for the
quantity
e—0 <(I>0 I UC(O, +OO)! @0)

i.e., for a state which develops backwards from | ®g) at infinitely large
positive times. If | ®p) is non-degenerate, the state developed in this
way can only differ from the one developed forward in time by an over-
all phase, which is in any case eliminated by the common normalization

(Do &) =1= (Do |¢). N

If we now substitute the backward developed state (¢ | for all bra-vectors
(¥ |, and the forward developed state | £) for all ket-vectors | ¥o) in equa-
- tion (18.9), we obtain

(¥0 | O()s] ¥o) _ | (B0 | Uu(20,0)0()Ui(0,00)] o)
(ol Wo) e—0 (®g | Ue(o0, 0)U(0, ~00)| ®9) '
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It should be emphasized that neither the numerator nor the denominator
exists in the limit ¢ — 0; only for the ratio of them will the infinite phases

cancel out simultaneously.
We use (cf. equation (14.16))

O@)g = Ue(0,8)0(t)1Ue(t,0)
together with the property
U, thu@',t"y = U(t,t")

to obtain

(o | O()u| Wo) _ . (@0 | Ue(o0,)O() U (2, ~00)| Bo)
(Wol \I’0> e—0 (@0 | Sel (I)o) '

It remains to be shown that

> (-;z")v /Oo dtl..-/oo dty e~ Ukt HDT [o(t1)7.. . o(t) 10(0)1]
v=0 ) e % ’ |

= Ue(oo,)O(t)1Uc(t, —0).

To show this, we split up the v-dimensional integration in distinct pieces,
the boundaries of which form the surfaces t; = ¢. In each piece, there are
a certain number of variables with ¢; > t and a number with ¢; < t. The
situation in two dimensions, for example, is depicted in figure 18.1. For each
piece, we introduce the notations

for each t; with#; >t: m...m
and for each ¢; with t; <t: o7...00—_n.

'The number n depends on the particular piece.
Within a single piece, it holds that

T[U(tl)j...v(tV)IO(t)I] = Tlu(r)r...v(m)]]
XO(t)IT [U(O’l)I o .U(O'u—n)I] 3

and the contribution of this piece to the integral above is

/ dr / dry, e“C(I”H‘"HT"DT[v(rl)_r...v(Tn)I]O(t)I
t t
t ¢
x/ doy / doy—n e"‘(l”lH“'H""—"!)T[v(al),—...v(ay_n)I].

The entire integral is obtained by summing over the 2" pieces. It is not
necessary to consider each piece individually since most of the integrals give
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Figure 18.1 Integration areas for v = 2.

the same value: only the number n plays a role. For fixed n, which of the
original ¢; are transformed to 7 and which are transformed to o is completely
irrelevant, since they are only dummy integration variables. Given v and n,

there are
(V) _ vl
n/  nl(v—n)!

possibilites to select n times ¢; such that ¢; > t. All corresponding pieces give
the same contribution. Hence, it is necessary only to sum over all possible
values of n fromn =0 ton = v:

[o'e} fo%) t t
Z/ d'rl.../ drn/ dol.../ doy—pn ...
t t -0 -0

pieces
o ! oo oo t t
= Z—-'—————'/ dTl.../ dTn/ dal.../ doy—n ...
=0 n'(y_ n) t t — 00 —00
o ! 00 0 t t
= XY tuminm [ dne [T dn [ an [ dom
=0 =0 n.m. Ji t -0 —00

The desired result follows:
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i(_iv)l//; dts .. / dt, el HDT [h(11); . v(t,)0() 1]

14
v=0

xO(t)] Z z)m / doy .. / dom

m=0

/ dry .. / dr,e” e(lml+-. +IT"|)T[(T1) ()]

xe—c(lalH‘”H""‘l)T [v(oy)r ... v(om)]]
= Ue(o0,)O(t)1Ue(t, —00),

which concludes the proof of equation (18.9) Another interesting conclusion
we can make i1s that

(o | T [Ot)gO(t") 1) | ¥o)

(Tol ¥o)
= lim o—cllts 4]
= iy T ey ‘I""Z E e [
T () 1(0) 100708 B0, (18.10)

Just as in the preceding proof, for ¢ > ¢/ we can write:

(Yo | T [O(@)gO({" )] | o)
(Yo [¥o)
1 ' ! '
= lm W<q)o | Ue(00,8)0(8) [Uc(t,)O(t) 1Ue(t', —o0)| @o).

The identity for the numerator can then be proved by spitting up the cal-
culation of the v-dimensional ¢-integrals in single pieces with boundary sur-
faces t; = t and t; = t' and then calculate their contributions by a similar
summation.

With the identity equation (18.10) we finally obtain the following impor-
tant representation of the single-particle Green’s function:

iGop(rt,x't)

N eh—%[(cbofsel@o Z( Z)n/ dty .. / dtn

—c(ltal+-HltaD g | T [v(tl)l . .u(tn)lz/;a(rt)fwg(r’t’);] | <I>o)].
(18.11)

This is the form of the Green’s function that we will use in the diagrammatic
analysis. Corresponding equations can be obtained for the momentum-
Green’s function or any other choice of representation.




Chapter 19

Particle and hole operators and
Wick’s theorem

Most of the work in the calculation of the energy shift and the Green’s
function according to equations (18.8) and (18.11) is the evaluation of the
matrix elements relative to | ®g) of time-ordered products of the potential
in the interaction representation. If this potential is represented in second
quantization, a time-ordered product of creation and annihilation operators
in the interaction representation is obtained. Wick’s theorem [14] provides a
method to calculate the | ®g)-expectation value of such time-ordered prod-
ucts. In this chapter we will prove Wick’s theorem.

We first define particle and hole operators. We assume that the eigen-
value problem given by

N
Hy =Y (i)
1=1
is solved by the single-particle orbitals

hoy = €,0,.

In the ground state, the orbitals with single-particle energies up to e¢x are
occupled. Furthermore, let c:-r and c¢; denote the creation and annihilation
operators of the single-particle orbital ;. We then define the following
operators for particles and holes, respectively. For particles:

creation operator a:-r = c:r f

s ore; > € 19.1
annihilation operator a; =¢; % > €F (19.1)

and for holes:

creation operator bl =

- 'p 77 ) fore < ep. (19.2)
annihilation operator b; = el -

|

205
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Clearly, the annihilation of a real particle with energy less than e¢x corre-
sponds to the creation of a hole with the same single-particle energy. We
obtain in the interaction picture

aj(t)I = aje_iejt
1 — T 4ie,t
aj(t)I = a;e""
bi(t)r = bjetie!
t 3t —tejt
bJ(t)I — bJe J .

Since {cZT, ¢k} = 8;; we have furthermore

{af,ar} = 6 and {b],b;} =8 (19.3)

Moreover, any possible particle operator anticommutes with any possible
hole operator, since they act on different states. The operators defined in
this way satisfy

a; | @) =0 and b; | @) =0 (19.4)

1.e., the ground state of the Hy-problem contains neither particles nor holes.
Thus, we will call | ®g) the vacuum state (relative to the particle-hole rep-
resentation).

We can now express the operator Hy in terms of the particle and hole

operators:
Hy = Zeic:-rciz Z ficzci"' Z e,'c:-rc,*
7 €ilep Ei>€ER

= Z qb,-bz—}- Z qazai

ei<ep €i>€F

= Y a— Y eblbi+ > eala;
€ <efR €;<ep € >€R
= Wg——ZGH’nH-l-prnp (19.5)
H P
where ng and np arethe number operators for holes and particles, respec-
tively. From this representation of Hy we see that the energy of an arbitrary
eigenstate of Hy is obtained as the ground state energy plus the sum of the
particle energies minus the sum of the hole energies.

Next, we express the field operators in terms of particle and hole opera-
tors.

v = Y pi@ei+ Y pile)e

e <ep €i>€FR

= Y pi(2)b] + > pi(x)a; = Py (z) + ¥ (2).

€iSep €i>ER
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We can apparently separate i(z) into a hole-creation part ¥4 (x) and a
particle-annihilation part ¢_(z). Similarly, we can separate ¢T(m) into a
particle-creation part and a hole-annihilation part:

i) = Y @+ Y i)

& <er €>€R
= X et@hi+ 3 ei@al = (v)_@)+ (47), @)
ei<er €i>ER

The minus-index always denotes the annihilation part (for both particles
and holes), and the plus-index denotes the creation part. From equation
(19.4), we have the important equation

¥-120) = 0= (4F) |a0). (19.6)

The separation of creation and annihilation parts is invariant under trans-
formations to other pictures. For example, we have

P(zt)- = Yy(at)y +v-(zt)r ‘
with yy(at)y = S (=)0

€; <ep

The normal order N of a product of particle and hole operators is defined
by rearranging the product in such a way that all annihilation operators
are to the right, multiplied with the sign of the permutations necessary to
achieve this. In other words, the normal-ordered product is obtained by
bringing all annihilation operators to the right, and in doing so, treating all
operators as if they anticommute. For example

Nleitr)ej(t2)c) (t3)]
= Nla;(t1)bl(ta)a(ts)]
= (-1l (ta)al(ts)ai(ts)
= +ejte)el (ta)eilt),

for €, ¢, > €p, €5 < €.

The time dependence of the operators in the interaction picture does
not matter for the normal order. It is very important to recognize that
the definition of a normal-ordered product is unique. Indeed, one could
commute operators within the product of creation operators or within the
product of annihilation operators and, for example, write

(=1)%al (ts)b}(t2)ai(t1)
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for the example above. However, all expressions obtained in this way are
identical, since the creation operators anticommute (and smularly, the an-
nihilation operators anticommute).

We now generalize our definition to include linear combinations

N(aA + BB) = aN(A) + §N(B)

where A and B are products of particle and hole operators and «, 3 are
complex numbers. It follows that

N[A(B +C)] = N(AB + AC) = N(AB) + N(AC)

or, in general

N (Z a;A; Z ﬁij)‘ = Z a;B; N(4;B;).
As an example, we c;lculate J ’
N [wt@ew)] = ¥ { [N+ @) + 0H-0)] @) +v- o)1)
= ¥ [(#), @] + ¥ [(#), @-0)
+N (D= @s )] + ¥ [0 -(@)y- )]
= (v), @@+ (), @v-o)
@) (v1)_ @+ (¢1) @9-).
In the last line, we have used the previous representation of the field oper-

ators in terms of particle and hole operators; the third term, for example,
is

N [(«N)_mm(y)] = N[Z G @b Y o]

€i<eER €;<ep
= Y el @ei) N (b))
ij ——
~blb;

=~ (v) (@

Next, we define the so-called pairing of two arbitrary particle or hole oper-
ators A and B as
/'1JB = AB — N(AB). (19.7)
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From the rule we established earlier for the normal order of linear combi-
nations of operators we readily obtain the generalization of the pairing to
linear combinations:

(Z CviAi) (Z ﬁij)
= (Z az‘Ai) (Zﬁij) ~-N (Z aiA"Zﬂij)
= ZaiﬁinBj - Z ;B N (AiBj)
= > B (A4iB; — N (A:iB;))

= Z a;0; A;B; .
L
It should be emphasized, that the pairing is not defined for the case when

both A and B themselves are products of particle and hole operators.
Let us consider some examples:

ai(f)al(t) = ai®)af(t)— N [ait)al@)]
S

= a;(t)al(t') +al(t)a;(1)
= eilet'-ai) (aia; + a}ai)

= eiej(tl"t)éij’
and, analogously

- bi(t)b;(t’) — ez'e_,' (vt—tl)éij.
!

For all other possible combinations of two particle and hole operators, the
pairing vanishes, since the pairing always vanishes for two anticommuting
operators: ‘ 5

{A,B}=0 = AB=0.
W

Proof: AB
AB:AB—N(AB):AB—{ }:0.
W] —-BA

The statement holds also for linear combinations A = YA, B =

Zj B; B;, if all components anticommute, (i.e., {Ai, Bj} =0):

(Za,-A,-) (Z@Bj) =Y ;B8 A;B; = 0.
i \ j ij (|
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Most pairings are also zero. However, if they do not vanish, the result is
always a c-number. At this point we can begin to see the purpose of the
definition: with it, we can very simply calculate the vacuum expectation
value of two linear combinations A, B of particle and hole operators:

(o | AB | @o) = (@0 | N(AB)'*'AUB | @o).

Since the vacuum expectation value of a normal ordered product always
vanishes, this expression is

(B9 | AB | &) = AB.
U U

Thus, in the end we only have to calculate the pairings tq determine the
vacuum expectation value. We will now calculate another pairing as an
exercise:

(¥")_Gowrt) = | X ei@u®)| | 3 eiple)

L | €;<ef €;<ep
| ]

Yo i) i)l

l

; €65 <€EF I

s (4

= Y pl)e;(y)et)
eJ<er

and, analogously

v-(at) (¥1), 1) = T ei@es e,
L I €5>€p

All other 14 pairings which can be formed from the operators ¥4+ and (1/JT) N

vanish, since the operators either anticommute or are already normal-
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ordered: 0 - dﬂf’ 0 = tﬁr
= -y = o
= (0) = (),
_ M = L@
_ w = @l

From this we obtain the pairings for the field operator themselves:*

2 \ T — T (z 1 ! t !
Rl = oot oo [(#), w2+ (v )_(yt)l]

= hy(zt) (W) +(yi’) + Py (xt) (W) (vt

I  —
=0 =0

+9-(at) (), ) +v-(at) (v7)_(0)
— ] |
=0
= Y pi(z)pl(yeist-9,

E>ep

and, analogously,

¢T(mt)¢(ytl) = Z @;(x)tpj(y)eici(t-tl)

— €jSer
ie)plwt) = 0= w(at)y(yt).
| I | [

Finally, we also define the normal order products of operators which contain
pairings: : : '

N(ABCDE...XYZ)= (=) AD CY N(BE...XZ2).
] , T
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Here ¢ is the number of commutations necessary to bring the paired opera-
tors to the left of the product, i.e., in this example the number of pairwise

commutations needed to get from ABCD ... XYZ to ADCYBE ... XZ.
Wick’s theorem for normal products states that

AtAs...An = N(A1...A7)
+N(A1A2 As... An) + N(A1A2A3 .. )
Ll | I—

+ ... all other terms with one pairing

+N(A1A2 . An)
L u

+ ... all other terms with two pairings

+

+ all completely paired terms

(they appear only for even n).

For a proof, we first show the following lemma: '

n
N(A1Az...Ag)B=> N(A1Az...Ar...AnB) + N(414;... AnB).

In the case that B is an annihilation operator, all pairings A,B vanish,
LJ

and the lemma is trivially satisfied. If B is a creation operator, all pairings
A, B where A, also is a creation operator vanish. Hence, it suffices to prove
LJ

the lemma for the case where all A; are annihilation operators. All cases
with an additional creation operator A; can then readily be constructed by
multiplying the equation without the creation operator A; on the left by
Aj. The normal order is then satisfied and additional pairings do not arise.

Thus, for annihilation operators Aj ... Ay 1t remains to be shown that

n
Ar.. AgB=) (1YY" AB Ay... 4. . An+(~1)"BA;... An.
‘_I .

r=1

(The slashed operator A, means that this operator is omitted.) The prefac-
tor (—1)"*" comes from (r — 1) commutations of A, and (n — 1) commuta-
tions of B. We prove the statement by induction. For n = 1, we have from
the definition of the pairing

A1B = A1B~BA;.
L .
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We assume that the statement is true for n. By multiplication from the left
by an annihilation operator 4g, we have

AOAI P AnB
n
= Y (-)™"A,BAgAr... fAr... Ap +(=1)"AoBA; ... An
r=1 L

n
= > (=1 A, BAoA1...Ar... An+(=1)" AgB Ay ... An
r=1 L—l L

+H(=1)"t1BAgA; ... Ay,

where we have used AgB = —BAg + AgB. This is the statement for (n+1)
.

and the proof of the lemma is complete. With the help of this lemma we will

now prove Wick’s theorem in a similar way by induction. For n = 1,2 the

statement is trivially satisfied by the definition of the pairing. Assume that

~the statement is true for n. By multiplying from the right by an operator

Ap 41 we obtain

Al “ e AnAn+1 == N(A]_ [P An)An+1
+N(A1A2 .. .)An+1 +...
L

By the lemma, we obtain for the first term

N(Ar... An)Ani1 = N(A1 . ApAng1) + ) N(A1 ... Ar .. AnAng)
T l—-——-—l

— o~
~

and, for the second term

Z N(Al...Ag;...Ay...An)An+1
1<z<y<n —_

= > (£)AsAYN(Ar.. o Ay An)Anis
1<z<y<n | —

Yoo () As4, [N(Al o Ay AnAng)
1<z<y<n J

+ ) N(Av.. fo Ar ooy An Ay
r#ETy L J

= > N(A1...Agz...Ay...AnANy1)
1<z<y<n e

"

o
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+ Y Y N(Ar . Ap A Ay An A ).
1<z<y<nr#zy L | !

| —

The underlined expression is the first term of Wick’s theorem for (n + 1).
The two expression marked by underbraces yield all terms with one pairing,
and so on. Repeated application of the lemma will eventually lead to all
terms for Wick’s theorem for (n + 1).

Due to the linearity of normal-ordered products (and of the pairings),
Wick’s theorem also holds for linear combinations of particle and hole oper-
ators, and consequently also for the field operators themselves.

We have now come to the last crucial step: the calculation of vacuum
expectation values of time-ordered products. For two linear combinations

AW =Y aiilt), BE) =X, 8,55t

of particle and hole operators A;, B;, we define the so-called coniraction by

1
A)B(t") = T (A(®)B(t)) = N (A@®)B(')). (19.8)

From the properties of normal-ordered and time-ordered products it follows
that

1
—AWB() = -T(A®)B())+ N(A@®)B(Y))
= T(B(")A(%)) - N(B(")A(t))
1
= B(tA(®®). (19.9)

With the help of the definition of time-ordered products we can readily

calculate the contraction A(¢)B(t'):

, A@R®)B( ift>¢
T(A(t)B(t))={ _53)@')(,420 o

A@)B(t') = N(AQ@)B())+ A@t)B()

L
—B(t)A{t) = -N(B(t')A(t)) - B(t)A()
L
= N(AQ@)B(t")) — B(t)A(%).
L

Hence
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1
AMB() = T(A()B(") - N(A()B()
A@)B@EY ift>t
L
- B(t"YA(@t) ift >t.
-

Thus, contractions correspond to two different pairings, depending on the
time-order. In particular, contractions are always c-numbers, so that

M
(Po | T(A(®)B(t')) | ®o) = A(t)B(t').

From the corresponding property of pairings, it follows that

[—— M n
N(ABCDE...XY Z) = (-1)YAD BY N(CE...XZ).

With this result, we can now state Wick’s theorem for time-ordered products:

¢

T(A14z...Ay) = N(A143...4,)

M
+N(A1Ay ... An) +

+ ... all other terms with one contraction

ﬁ n
+N(A 45 10 An)+...
+ ... all other terms with two contractions
+

+ all completely contracted terms
(they appear only for even n)

The proof follows directly from the theorem for usual products:

T(A145 ... Ay)
= sgn(P)Ap(l)Ap(z) .. 'AP(n)

N(AP(I)AP(Z)...)+ZN(U)+ZN (u u) +}

where tp(y) > ¢ P(2) > ... and we have indicated sums over all terms with
one pairing, two pairings and so on. Since the times are ordered, the pairings
are precisely equal to the contractions:

= sgn(P)
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T(A14z... Ay) |
= sgn(P) [N (A(pl)AP(2)...) +> N (” ) +3°N (” n ) +}

N(A1Az... Ap)+ > N | A1Ag. . Ag.. Ay . Ay | +..

Ty

and the proof is complete. We conclude this chapter by calculating a few
additional contractions. First, we consider the creation and annihilation
operators of the Hy-problem:

cj(t)ei(t)
¢ a; (t)a};(t’) fort >t
(I
for ¢j,¢, > ep 1 a;(t)a) =
Oor €4,€k ¢F ‘_1.7( )ak . ai(t')aj(t) =0 fort' >t
| —
— b}(t)bk(t) =0 fort>t
1
for €;,6, < e bI(1)be(t)) =
Or €j,€; < € J( )bk (2) -—bk(t')b;(i) for t/ >t
I
_ otherwise : 0

6jke_iej(t_t,) € > €p, t> t/
= —5jke_“j(t“t') €; < €F, t' >t
0 otherwise

= Se U [0t —1)0(e; — ep) — O( — 1)0(er — ;)] .
(19.10)

This expression is reminiscent of the momentum Green’s function for trans-
lationally invariant systems discussed earlier (cf. equation (15.23):

iGUO) (ket, k't')
= Bapbigere” ) [0t = t)0(k — kp) — 0(t' — 1)8(kp — k)] .

In fact, the contraction c; (t)c,t(t’ ) is in general the Green’s function for the
free Hp-propagator:

iGO(jt, k') = (@0 | T [e; (el (t)ar] | o)
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so for H = Hpy we have

1
iGOGt, kt") = (B |T [Cj(t)lcz(t,)l} | Bo) = cj(t)ref (¢)r-
(19.11)

For the remaining contractions that can be formed from the Hy creation
and annihilation operators, we have

1 (|
c}:(t')Cj it = - Cj(t)cl(t,)
and
1 |

ciep() = 0 =cl()el(t).

from the general proof above. The last equations follow directly from the
earlier calculated pairings. .
In an analogous manner, we obtain for the field operators

— o
at)plyt) = —plyt)y(at)
= (@0 | T (4(at)pl(ut)) | @)
= iGO(zt, yt)) (19.12)
and
e 1

Plet)p(yt) = 0 = ¢i(t)pl(yt).

"Thus, all contractions that can be formed from field operators or from the
creation and annihilation operators of the Hy problem either vanish or cor-
respond to free Hy-propagators.






Chapter 20

Feynman diagrams

We have now arrived at the diagrammatic calculation of the energy shift
AE and the single-particle Green’s function. By using the procedure of
‘adiabatic turning-on’, we derived the following perturbation series in the
coupling constant g (cf. equations (18.1), (18.8) and (18.11)) for the energy

shift and the Green’s function: .
AE = hm Z-Q-ln(Qo | Ue(t, —00) | @p)
6t t=0
¢ v
- hmz In / 3 / dt, e~ et Hrtltnl)
e—0 Ot ! oo

x (@0 | Tfo(t2)r .. o(tn)1]| <I>o>} |

=0
and

iGaﬂ(rt, r't/)
o 1 o
- el->0 (®g | Ue(00, —00) | q)o) Z / dty .. / dtn

xe=c(Ital++tal) (g | T [v(tl) 1---0(tn) %a(rt) Iz/)ﬂ(r't') I] | ®o).

If we now use the second-quantized representation of the potential, either
through the Hy-creation and annihilation operators

o(0)1 = 3 S (islo kel (0 re ) reatt) ren(t)r

i3kl

or through the field operators
1 : / n..t 7.1 /
v()r =5 [ dz [ de'v(e, &) (at) 19" (2") 1(2"t) 1Y (at) 1

219
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we will obtain terms of the form
(i | v | kOGS |v] k2 ...
x(®o | T [cl(tr)el (tr)ealtn)en(tr)el ()l ta)ew (t)en (t2) - | | @)

and

v(zyz))v(zizh). ..

x(®o | T [p1 (2t 0t (h 1) w(eh ) w(z1ts)
x(wata)e! (25t2) 0 (hta) Y(at) .| | Bo)

respectively. Apart from the matrix elements (ij | v | k€) in the Hp-
representation, or v(z,z’) in the space-spin representation, which we as
usual assume known, we only have to calculate vacuum expectation values
of time-ordered products of creation and annihilation operators. Accord-
ing to Wick’s theorem, the result is the sum over all completely contracted
combinations of these creation and annihilation operators. Depending on
each separate contraction, the terms either identically vanish or consist of
a product of free propagators G(0). Hence, all that appears in the pertur-
bation expansion are matrix elements of the potential and free propagators
G©). The general form of the nth order term in the perturbation series is
then

(—'l): y gr:"j“'” /dnte—e(|t1|...)
ni2 [dey [de)...
x Y () )...(v) (GD)...(G).

n fa:tors 2n facto;; for AFE
(2n 4+ 1) factors for G

The product of the matrix elements of the potential is the same in all terms
of nth order; hence, we only have to find all possible products of free propa-
gators with the corresponding arguments. A diagrammatic method for the
investigation of the terms that arise uses the famous Feynman diagrams.
In this method, each occurring term is assigned a diagrammatic representa-
tion through a unique translation recipe. The translation recipe is usually
summarized in a number of rules, the so-called Feynman rules:

(1) We imagine a time-axis with time increasing from below to above.

(2) The Green’s function G(O)(/\t, M't’), which in any representation A de-
scribe the ‘free’ propagation, i.e., the Hop-propagation of particles (for
t > t'), and holes (for t < '), respectively, from state A to state A/,
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is represented by a continuous line from (At) to (Mt'). According to
the propagation from A’ to A, we draw an arrow, which points from
the second to the first argument, on the line. The endpoints of the
line must be ordered according to the imagined time-axis (see figure
20.1). The length, curvature or tilt of the lines do not matter; the

G aEN ) At A
/ o M
') or
A'H A Mt A A

for #>t' for /> for #'= #

Figure 20.1 The propagator is represented by a line, with the direction of

propagation indicated by arrows. .{\z\
only important thing is the order of the endpoints with respect to
the imagined time-axis. Thus, a line with the arrow pointing up de-
scribes the propagation of a particle, and a line with the arrow pointing
down describes the propagation of a hole. We will later discuss how
to calculate and interpret the propagator for ¢ = ¢/. Furthermore, it
should be remarked that we cannot use these rules to represent the
four-dimensional Fourier transform G(k,w), since this one does not
contain any time argument. We will treat the diagrammatic represen-
tation of this Green’s function in Chapter 24. :

The simplest example that we know is the spatial Green’s function
GO)(xt,r't"), or, with spin-indices labeled, Gap(rt,r't’) = 6,5GO) (xt,'t)).
These Green’s functions are depicted diagrammatically in figure 20.2.
Another example is the momentum Green’s function. This one is diago-

rt

Gm(rf, rty:
(t>t")
l'lf, .

art rt
Gort r't) 26,56 (et et or
Br't! FdC

Figure 20.2 Diagrammatic representations of the Green’s functions
GO (rt,r't") and Gop(rt, r't').
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nal for Ho = 3y , k° /(2m)cLack’a: Gop(kt, k't") = 60361 GO (k, t — 1)
(see figure 20.3).

akt t

k

Gup Kt k't )= 8ap64 G LR E- 1) { o o
f’

Figure 20.3 Diagrammatic representation of the momentum Green’s function

GOt K1) = b8y 0 GO (1, t — 1),

(3) The matrix elements of the interaction are represented by a wiggly
line with the endpoints labeled according to figure 20.4. The point

/ J
Ciilvkd): >\IJ’\.ﬁN\f\f\F\<
k £

Figure 20.4 Diagrammatic representation of the interaction matrix element
(ij | v | j€). The connection points between the interaction line and the
propagator are called internal vertices.

where the interaction lines are connected to propagators are called
internal vertices. They are start or endpoints for each G(9)-line which
is the result of a contraction of four operators belonging to this matrix
element:

(i7 | v | k&)l (@)el (t)ea(t)er(®). o (20)

The direction of the arrow on the particle lines relative to the imagined
time-axis is not fixed. For example, the lines of the G(O)—propagator
in the matrix element equation (20.1) can be represented as either of
the diagrams in figure 20.5. The crucial point is that at each internal
vertex, there is one line with the arrow pointing toward the interaction
line, and one line with the arrow pointing away. The indices of the two
arrows that point away correspond to the creation operators c}\
cT-; the indices of the arrows that point in to the vertex correspond to
tfxe annihilation operators cg and cy.

and

Within the framework of the non-relativistic theory, which we are con-
sidering here, the Coulomb interaction between electrons is instantaneous;
hence, the interaction lines run horizontally. (Other interactions, such as
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\Z“M?\ o N

Figure 20.5 Possible diagrammatic representations of the propagator lines
belonging to the matrix element in equation (20.1).

electron—phonon interactions, are retarded even in non-relativistic theories.
Hence, interaction lines for such interactions begin and end at different
times.) This means that the left and right endpoints of these (as later
starting points or endpoints of the Green’s function lines) belong to the
same time-point of the imagined vertical time axis. This time-point is com-
mon for all four operators which are connected by this matrix element. In
relativistic theories, in which the Coulomb interaction has a finite velocity
of propagation, the requirement that the interaction lines are horizontal will
be dropped (see Chapter 24).

A potential which is local in the space-representation and diagonal with
respect to spin-coordinates, i.e., v(z, 2') = v(rs,rs’), will be represented as
shown in figure 20.6. If the potential is local in space, but non-diagonal in the

vix,x') z=virs,es’) X>ANW\<X,

Figure 20.6 For potentials which are local in space, only one index is needed
at each internal vertex.

spin coordinates, the diagrammatical representation is as depicted in figure
20.7. For the translationally invariant interaction discussed in Chapter 5,
the momentum representation is particularly simple:

=L t t
V —_— ‘2'—(3 ; kZd vqa(k+q)aa(k1_q)a_,akla,laka.

k'o’

In this case, the matrix element depends only on one index, q. The creation
and annihilation operators that belong to the incoming and outgoing particle



224 FEYNMAN DIAGRAMS

!
Vual (r,r): r r

BBI o’ ﬁl

Figure 20.7 The representation of a potential which is local in space, but
non-diagonal in spin.

lines at a vertex tell us how to label these lines (see figure 20.8). Apparently,
conservation of momentum holds at the internal vertices. Thus, the matrix
elements of the interaction can be interpreted as a propagator for a particle
with momentum q.

kd ka

Figure 20.8 Interaction line for a translationally invariant potential in mo-
mentum representation.

With the three above rules, we will now draw a few Feynman dia-
grams. We begin with the representation of the so-called vacuum amplitude
(®o | Ue | ®o), which is necessary for the calculation of the energy shift AE,
and which also appears in the denominator of the single-particle Green’s
function. The quantity has acquired this name, since it is the probability
amplitude for the transition from the vacuum state | ®p) back to | $g). In
the vacuum amplitude, all the contractions that appear have indices which
are also found on the interaction matrix elements, ¢.e., all G(9)_lines begin
and end on the endpoints of interaction lines. In first order, ¢.e., one inter-
action line, there are only two different diagrams. We draw them in figure
20.9 for the case of a potential which is local in space, but non-diagonal in
spin-indices. In contrast to the vacuum amplitude, all G(%)-lines in the dia-
grammatical representation of the numerator of the single-particle Green’s
function do not start and end on endpoints of interaction lines. Furthermore,

the two operators ¥,(r,t) and 1/)};(1" t'), which correspond to the arguments

of the exact Green’s function, define two additional endpoints. In first order,
we obtain the six diagrams shown in figure 20.10. Since only the starting
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Figure 20.9 The two first-order vacuum amplitude diagrams.

art arte

L

Br't Brit'e

art art

Brt @

Figure 20.10 The six possible first-order diagrams in the numerator of the
Green’s function.
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Figure 20.11 The last of the diagrams in figure 20.10 can, for example, be
drawn in either of these two ways.

point and endpoint are important for the G(©)_line, the last two diagrams
can for example be drawn as shown in figure 20.11. All Green’s functions
diagrams drawn here are for particle propagation (¢ > ¢/). The correspond-
ing diagrams for hole-propagation are obtained by exchanging the indices
and by changing the direction of all arrows.

In all depicted diagrams for the vacuum amplitude, ¢(0)_functions with
two equal time-arguments appear. To determine these particular ones, we
once again return to the original formula for the first-order vacuum ampli-
tude:

(@0 |0 | 80) = —i3 [ane I Y [a¥n [ o vas ea,2) e
Ap pu!
A/y.’

where we use Wick’s theorem for normal products to calculate the matrix
element M:

M = (%] ¢:{(1‘1t1)¢L(I"ﬂl)T/Jp'(ritl)lb,\'(rltl) | o)
= ¢l (ratn) i (eats) ¥f (et )9 (X 1)

| I | | I
- ¢I\(r1t1)¢u:(r'1t1) Yl (it va(eity).
— | I

Only pairings of the form ¢T¢ appear, since the sequence of creation and
Ll
annihilation operators is already determined by the representation of the

potential v(t); in second quantization. Furthermore, we have
WHatp(t) = Jim (@ | T [w(ut)s!(D)] | 20)
l | t—tt
= —iG(O)(yt,a:t+).
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Since the Green’s functions with equal time-arguments, also in higher or-
der, always arise from pairings within a v(t)y, we can formulate the fourth
Feynman rule:

(4) Green’s functions with equal time-arguments of the form shown in
figure 20.12 shall be interpreted as G(O(A¢, Mt ).

/)\ )\I
or t

At At A

Figure 20.12 Equal-time Green’s functions.

In all, we obtain for the first order vacuum amplitude:

.

(@0 | UM | @)
i _ 0
= §/dtle eftal Z /d3T1/d37'ivw (rlxril)GE\,\)/(rltlyrltiF)
A pp!
AI“I

0) /.
XGWZ,(rltl, rjth)
] - 0
—E/dtle elt:] E /d3r1/d?’riv,u:(r1,r’1)Gf‘,))‘(r’1t1,r1t'1*')
W wy!
My

0
XGE\'L(rltl’ I"lti*.).

The two expressions clearly correspond to the two diagrams depicted in
figure 20.9. At this point, it is clear that to evaluate the diagrams, we need
the following additional rule:

(6) All indices and coordinates attached to an internal vertex should be
summed and integrated over, respectively. The adiabatic switching
factor e~/*l shall be added to the time-integrations.

We must now determine the overall sign and the prefactor. The rule which
determines the sign is known as the ‘loop theorem’:

(6) The sign of a term of arbitrary order is (—1)¢, where £ is the number
of closed loops formed by GO)_lines.

For example, the third-order term in figure 20.13 has three loops which result
in a negative sign.
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Figure 20.13 A third-order diagram with three loops.

To prove this theorem, we consider an arbitrary fully contracted term
which contributes to the vacuum amplitude:

] |
*
cz c;[cm Cn c;: c;cr Cs .. .c;r chv Co -
N’ S—— e

N 7 o’ - -

Such a term consists of distinct groups of four operators of the form ctetee.
We can say with certainty that if the first and last operator in such a four-
group belong to the same loop, then they belong to the same internal vertex
and are consequently connected diagrammatically (see Fig 20.14). The same

Figure 20.14 If, for example, the indices k and n belong to the same loop,
they must be connected diagrammatically.

holds for the two middle operators of each four-group. To indicate this fact,
we have connected the corresponding operators in the expression above with
vertex ‘bows’. By rearranging, we obtain

| !
tete e desclen . etey el

Cn CpCm CCs CuCyp .. .C1Cy C Cy .
k J\Z J\p J\q J \t J‘u 4
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The sign of this expression is obtained from the fact that in this rearrange-
ment, {wo operators per four-group have been commuted.

A single loop apparently consists of a group of operators which are con-
nected by a closed chain of alternating contraction brackets and vertex bows
within a contraction. We now separate the general term above in single fac-
tors, each of which corresponds to a single loop:

(loop) (loop)
| 1 | !

By this rearrangement we also obtain the overall sign of the expression, since
by factorizing a particular loop we can determine if each pair ¢fe¢ belongs to
the loop or not. By rearranging, each pair is thus shifted as a unit, which
gives the sign. For example

==ul =l Al

tesel e cte, el te,el o |

CLCpCL CpClCq CLC = Jec,ecpe), cle, cn cle

klm’npq'rs kempqn'rs
Nerm—————

'm’ I/l

= + czcl c;gcq X c;fncn clcs
g —— !

It then only remains to show that each loop-factor can be written in the
form

nnn n
—cclectect .. cet. (20.2)

n

Since ccf = z'G(O), the contribution from the complete expression is then
()¢ (iG(O)) (iG(O)) ..., where £ is the total number of loops, as we stated.
To show equation (20.2), we must factor out the single contractions:

E— 1
|
.I.
g_g...clcﬂ...cfca...dgcicg
| -
f 1 M1

= —i—cTc...Cﬂ...cfcg...cchichg
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| |
| 1 M1
= —-cTc...clg...cTcU...cchI csch . (20.3)

M
If the remaining term to the left only contains the contraction cacl (which
is the case if ¢, = cg), we have precisely equation (20.2). If there are other
contractions, we bring cg to the right, with the result

| 1
1 1
+cfe...ctey ... clect g csel . (20.4)

As far as the left factor is concerned, we are now at the beginning of the
expressions equation (20.3) or equation (20.4), and can factor out the con-
traction that belongs to cg, as shown in equation (20.3)—(20.3), and so on.
In this way, we go from vertex to vertex in a closed chain, so long as we
come back to the starting point: this is done in the last step in equation
M
(20.3), where the the contraction c,gcl is moved through in the remaining
term on the left, which closes the circle, and the proof of the loop theorem
for the vacuum amplitude is complete.

We now consider a completely contracted contribution to the numerator
of the single-particle Green’s function:

| 1
cfefecetetec. .. cTcchcch/ .
Apart from the groups of four operators, this term also contains two ad-
ditional operators, which represent the external fixed points z and y. A
G©)_line either belongs to a loop, or it is a part of the continuous chain
which connects the two external points z and y. Therefore, if we factorize
the loops as we did with the vacuum amplitude, we also obtain a contribu-
tion from the continuous line:

loop loop line
I i 1 1

| {
CTC...CfCCTC...CTC...CTC...CTCC‘T;CT.
— N’ N’ N’ N N’ Yy

Each loop gives a factor of (—1), as above. Hence, it remains to be shown
that the part coming from the line does not contribute a minus sign. To do
so, we factor out the single contractions:
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| 1

I | | 1 M1
cTc...cL cﬁ...cchxc;f, = —cTc...cL...cchxcﬁcz
f 1 M1
= —cle.. .CTCCLC;,; cﬁcz .

The first one of these two factors gives rise to a minus sign, just as a loop,
so the term will have an overall positive sign:

nn n
+ccchT...ccT.

It now only remains to determine the prefactors of the translation recipe.
First, each term of nth order has a prefactor (—i)”/(n!2"). In the vacuum
amplitude we have furthermore (2n) contractions of the form iG(®). Thus,
we obtain in all a prefactor (i)2"(—4)"/(n!2") = (§)"/(n!2"). In the numer-
ator of the Green’s function we have in the nth order (2n+1) contractions of
the form iG(®), Finally, since the expansion for the Green’s function really
is an expansion for iG, the diagrams for the Green’s function acquire an ad-
ditional factor (—). Thus, the prefactor is in all (=3)(s)2*+1(—i)"/(nl2") =
(9)"/(n!2™). The recipe is then complete with the following additional rule:

(7) The prefactor of each term of nth order is

O

ni2n |’
This holds both for the vacuum amplitude and the numerator of the
single-particle Green’s function.

As an exercise, we will now show all second-order diagrams which con-
tribute to the vacuum amplitude. To construct these diagrams, we first draw
the two interaction lines at the times ¢y and #5 and find all ways to con-
nect them with G(©)-lines. We obtain the diagrams shown in figure 20.15.
The question arises as to how many distinct diagrams there are of a cer-
tain order. The answer is quite simple: assume that we have drawn the n
interaction lines of the vacuum amplitude. We then have to place the 2n

arrows at the vertices of the diagram. There are 2n pGssible ways of placing
the first arrow. On the other hand, there are only (2a =1) possible ways
of placing the second arrow, corresponding to (2n,— 1) contractions, and

so on. This gives (2n)! different diagrams for the vacuum amplitude. For
the numerator of the Green’s function, there are the additional two external ,
points. Correspondingly, there are (2n + 1)! different diagrams for particle
propagation (¢ > t') and hole-propagation (¢ < t'). Moreover, the contribu-
tions from visually different diagrams which give the same contributions to
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Figure 20.15 All possible second-order vacuum amplitude diagrams.
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the perturbation expansion are included in the prefactors. This is clear for
the first two and the last two diagrams of the second row in figure 20.15.
These diagrams can be obtained from one another by permuting the internal
vertices on a single interaction line. Their contributions are identical, since
we sum over all indices. We will discuss this kind of ‘degeneracy’ in detail
in the next chapter. :

We will now translate two examples of the Feynman diagrams depicted
above to mathematical language by using the Feynman rules. The first
example is the diagram shown in figure 20.16. According to the rules, this

Figure 20.16 Second-order vacuum amplitude diagram.

diagram gives a contribution

.2 -
g O [ [ane i
" pars jkmn

x(pq | v|rs)(jk|v| mn)G(O)(mt1;ptg)G(O)(stg,jtl)
GO(nty, gt)GO(rty, kty).

Since, up to this point, we have assumed that t; > t3, the expression we
obtain is strictly only valid in the domain of integration where t1 > t5. We
obtain a family of equivalent diagrams if we assume that to > ¢1. We will
further consider this kind of degeneracy in the next chapter by performing
the time integrations.

As a second example, we translate the two disconnected diagrams shown
in figure 20.17 by using the Feynman rules.
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Figure 20.17 These two disconnected first-order diagrams are included in
the set of all second-order vacuum amplitude diagrams.

(=il 2'22 Z S / dty / dty e—<(ital+le2D

7kmmn pgrs
x(jk | v | mn)(pg | v | rs)GO)(mty, jt7)GO (nty, kt])
GO (sty, ptF)G O (rt, gtF) -
= 5| X [aneiligE o | mn) 6O, GO (ntr, k)
| Jkmn
x> f dtze™l2l(pg | v | rs) GO (sty, pt)GO (rta, qt]) | .
Lpgrs

This example illustrates a very important fact: the contribution from a
disconnected diagram is factorized into parts which belong to connected
diagrams of lower order.
If the interaction conserves momentum, most of the depicted diagrams
[ vanish. For example, in the diagram shown in figure 20.18, we must have
1*q = 0. Hence, both the vertical and diagonal G(9).lines have momentum
k, which cannot happen, since the vertical one is a particle line (k > kFr)
and the diagonal one a hole-line (k < kp). Consequently, this diagram must
vanish. This may be shown explicitly by using the occurring é-functions.
We have learnt that both in the vacuum amplitude and the numerator of
the single-particle Green’s function, there are connected and disconnected
diagrams. In the next chapter, we will show that we only need to consider the
connected diagrams: in the case of the Green’s function, the disconnected
diagrams are canceled by the denominator; in the vacuum amplitude, the
disconnected diagrams can be summed analytically. At that point, we will
make a discourse to calculate the correlation energy of a dense electron gas
(Chapter 22). After that, we will continue the calculation of the single-
particle Green’s function.
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Figure 20.18 A second-order diagram in momentum representation.






Chapter 21

Diagrammatic calculation of
the vacuum amplitude

In this chapter, we will sum all disconnected diagrams which contribute
to the perturbation expansion of the vacuum amplitude. The goal is to
show that only connected diagrams appear in the remaining expression of
the vacuum amplitude. The final result of this summation is the so-called
Linked-Cluster Theorem by Goldstone [15], which states that

(@0 | U | ®) = exp[(® | U | @0)z]. (21.1)
The notation (®¢ | U | ®g), means that only connected diagrams are in-

cluded in the sum. For example, the expansion for the case of interac-
tions which conserve momentum is shown in figure 21.1. According to the

cttoros o + )
oo e et [0 -8 1 -8

Figure 21.1 Diagrams for the perturbation expansion of the vacuum ampli-
tude for momentum conserving interactions.

linked-cluster theorem, only the connected diagrams shown in figure 21.2
contribute. As a corollary of Goldstone’s theorem, we obtain a very simple

237
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@OIU’@WL:[M * }“[m ' % ! % ’ %}L

Figure 21.2 The connected diagrams for the vacuum amplitude in ﬁgurek
21.1.

formula for the energy shift:

AF = lim Z-Q- hl(@o | Ue(t, —o0) | ®0)
e—0 Ot

t=0

0
= hm i—(®o | Ue(t,—o0) | ®o)L,

5 (21.2)

t=0

To prove the theorem, we first consider two arbitrary diagrams, +(™) and

7)7(;{), of order n and n. These diagrams may be connected or disconnected.
In the expansion of the vacuum amplitude, there will also be a disconnected

diagram T("+7) of order (n + 7n), which is constructed from the first two
diagrams: _ _
rntn) (7(n) X 7(”)) .

From the fact discussed earlier, that disconnected diagrams may be factor-
ized into contributions from their sub-diagrams, and from Feynman rule (7)
for the prefactors, we obtain the following important equation:

n+n n'n! n) o &

With the help of this equation, we can factorize an arbitrary disconnected
diagram which contributes to (®g | U | ®p) in a product of connected dia-
grams with given prefactors. There are in general also many other diagrams,
which give the same contribution to the perturbation expansion. These are
the diagrams which consist of the same sub-diagrams and which all can be
factorized into the same product, equation (21.3). As an example, we con-
sider all diagrams of fifth order, which can be constructed from the three
‘ﬂgst—qrder sub-diagrams shown in figure 21.3. All such fifth-order diagrams
are shown in figure 21.4. These diagrams are obtained from one another
by permuting two single interaction lines, i.e., the indices of the interaction
lines are interchanged. However, it is clear that all 5! possible permutations
of the interaction lines will not lead to distinct diagrams. For example, per-
muting the interaction lines within a particular connected sub-diagram will
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(1)
g
d 2) {2)
9(2 95

Figure 21.3 Three connected diagrams. The first one, g((il), is distinct from

the other two ones, which are the same diagram ggz).
P e NI N

0 L oo
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(5 BB T By
- [B. el Er (e

Figure 21.4 All fifth-order diagrams that can be constructed from the dia-
grams in figure 21.3.
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not lead to a new diagram. If we want to calculate the number of distinct
diagrams which can be constructed from the three sub-diagrams, we must
divide 5! by the number of permutations of the sub-diagrams, which is two
times 2!. Furthermore, we note that permuting identical sub-diagrams does
not lead to distinct diagrams. Since in this example we have two identi-
cal sub-diagrams, we must also divide by another factor of 2!. This leaves
51/(2!212!) = 15 distinct diagrams, which is in agreement with figure 21.4.
The contribution of all diagrams in figure 21.3 to the perturbation expansion
is obtained by applying equation (21.3) twice:

5t 2121 @) 0 1@}, O
201 (2+2+ 1) (g2>xgd 2'( ) X 94

After this example, we will now prove the theorem. We start by enumer-
ating all connected diagrams of the perturbation series and denoting them
by

g™, 6§ o)

where the superscript denotes the order. An arbitrary diagram of the per-

(n (n2)

turbation series can be constructed by k; diagrams g; 1),,k2 diagrams g5

(n3)

k3 diagrams g4 °’, and so on. By repeated use of equation (21.3), we obtain
the following contnbution from this diagram:

( (nl)

%nl)
ky o $ gl
{ g(nl)
( (nz)
__(m)F(ngh)ee .. k1o Nk
%n2) - (klnl + kong + )|(91) 1(92) oo (21'4)
ky <
\ ggnZ)
(n3)
ks {93

As we have seen, there is in general a whole series of different diagrams,
which all give the same contribution to the perturbation expansion. All these
degenerate diagrams can be obtained by suitable permutations of interaction
lines. If we want to determine the number of these different diagrams, we
must divide the number (kyny +kong+...)! of all permutations by the num-
ber of permutations which lead to degenerate diagrams. First of all, identical
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diagrams are obtained if interaction lines within connected sub-diagrams are
permuted. In each sub-diagram gz.(n‘), there are (n;!) such permutations pos-

sible, so in total we must divide by (ny1!)** ... (n;!)% .... Secondly, we also
obtain identical diagrams when entire identical sub-diagrams are permuted

with one another. In each class ggn") of sub-diagrams, there are (k;!) such
permutations, so that we must divide by another factor of (k1lka!. . K;t.. ).
In all, we obtain

| (k1n1+...+k£ni+...)!
(nlf)kl .. (n,'!)k*' (kD). (ksD)...
different diagrams, which contain k; x g1, kg X g2,-.., and which all give

the same contribution , equation (21.4), to the perturbation expansion. If
we sum over all these contributions, we obtain

1 k
~ — 1 ki
> = e )™ ()
all distinct diagrams which contain 1rooeRgeeen
kl Xgl,k2x92,...

All diagrams of the vacuum amplitude are then obtained by summing over
all k1,k,... from zero to infinity: ¢

oo o0 1
(QOIUI(DO) = Z . Z .W—(gl)kl(gz)k:
LY 3 I

k1=0 ki=0
= explgr+g2+...4+gi+..]=exp[(®o | U | Bo)z].

This concludes the proof of the linked-cluster theorem.

We also need to examine the connected diagrams. In these, too, we can
factor out degenerate ones, just as we have seen earlier. For example, two of
the diagrams shown in figure 21.5 leave identical contributions, since they
can be obtained from one another by interchanging fﬁé‘internal vertices of

(2) ~(2)
9, g,

Figure 21.5 Two connected diagrams, _qg?) and §é2), of second order. The
diagrams give identical contributions to the vacuum amplitude. '

an interaction line. Since the matrix elements always satisfy the symmetry
relation '

(jk | v | mn) = (kj | v | nm)
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.

Figure 21.6 Third-order ring-diagrams. The ones depicted here are asym-
metric under reflection in a vertical line through the middle of the diagrams.

and since all indices will be summed over, the contributions are identical.
Such diagrams are usually called topologically equivalent. At this point, the
question arises of how many topologically equivalent diagrams there are to
a certain diagram of order n. The answer is simple. If we fix the lowest in-
teraction line, there are two permutations possible for each of the remaining
(n — 1) interaction lines, so there are in total 2~ ! different topologically
equivalent diagrams. If the diagrams are symmetric under reflection in a

vertical line through the middle of the diagram, we do not obtain any new
diagrams by interchanging the vertices of the lowest interaction line. In this
case the family then contains 27! topologically equivalent diagrams. If the
diagrams are asymmetric under reflection in such a line, we obtain twice as
many, t.e., 2" different diagrams in a family of topologically equivalent ones.
The so-called ring-diagrams of third order shown in figure 21.6 are examples
of asymmetric diagrams.

All diagrams that we have considered so far correspond to a fixed order
of the times ¢3,%9,...,t,, as we have mentioned, with which the individual
interaction lines are labeled. For each of the (n!) other orders of the time
arguments, we obtain a diagram which looks identical and which differs from
the first only with respect to the order of the times. This form of degeneracy
can be taken into consideration quite simply: if we consider the equation
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proven in Chapter 14

(®o | UM (t,—o0) | Bo)

-\ rt 1

) [ an. [ dtal@0 I T - vt | )

n!
= 1)”/ dt1/ dt2 /t"‘l dtn<®0 IT[v(tl)I . “v(tn)l] I @0)7

it is sufficient to consider the family of diagrams with ¢ > £, > ... > t,,.
The only thing that we have to do now, is to explicitly perform the time-
integration. We first investigate an example of low order, the first-order

connected diagram g((il) of figure 21.7 (a):

J k
Oy «
{a) (b)

-

Figure 21.7 The first-order connected diagrams (a) g( ) and (b) g(l).

o = (-)2’ / dty e~V (jk | v | mn)

]kmn -

xGO(mty, jt1)GO) (nty, kt+).
If we insert the free Green’s functions (cf. equations (19.10) and (19.11))
iGONjt, kt') = ;375 =) [(8(¢ — £)8(e; — ep) — 0(¢' — £)8(epr — &;)]

and use t; <t <0, the diagram is

5> / dty e (jk | v | mn) [~(=i)6m 0(er = )] [~(~)8ni0(ep - ;)]

]kmn -
Z (Jklvle)/ dty et

i€ <cF
k: €k>€F

This expression gives the direct term of the energy shift:

(AE)Y = lim [z atgy)] Z Gklv]jk).  (21.5)
BejLep

k: €k<€F
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Analogously, we obtain the exchange energy from the diagram g (1) (figure
21.7 (b)):

1

(AR = lin [’atg“(”l)] == Y (klvlki). (21.6)
t=0 j:ej<€F
kiep <ep

We now consider a term of second order; the diagram g( ) of figure 21.3
gives a contribution

g XX [ an [ ate e o )

jkmnpqrs
! <pq | v | rs) GO (rty, jt;1)GO (mtq, pt) GO (sty, kt1) GO (nty, qt5)

31
= Z Z jk | v | mn pq | v I rs / dtl/ dts e+c(t1+t2)

kan pqrs
X [_ _i)arje—icj-(tz—tl)o(fF - ej)] {(_z‘)é‘mpe—iﬁm(tl ——tz)g(em — CF)]
x [~(=)gee™ 20 (e — )] [(=i)nge =172 (er — ep)]

\2
=1 . .
= CF S (kv mny(mn [ | k)
Cj:€k<€F
€m,En>€p

t 11 . . R
% / dt, / dt, ee(tl+t2)e—z(c,-+ek—'cm-—cn)t2ez(61‘+ck—cm—cn)t1
-0 -0

where we used the fact that each hole-line gives an additional minus sign
to arrive at the last expression. At this pomt we calculate the general limit
needed for the energy shift: ‘

t n— )
lim [z— / dt, / ' dts .. / dt,, eletiBitig(etiBe)ts  o(e+iBn)tn
e—0

evaluated at ¢ = 0. From

/tn-1 dtn e(€+iﬂn)tn — w
— €+ ifn

1t follows that
th—2 tn—1 . ]
/ dtn-—l/ dt,, eletiBn-1)tn—1(e+ibn)tn

— o0 o0

tn-2 4 el2e+i(Bn—1+08n)ltn-2

~/—oo tn_l 6_+ Zﬂn
el2e+i(Bn—1+Pn)ltn-1

[e + iBn][2¢ + i(Bn—1 + Bn)]’
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and by induction we arrive at
hm l— / dtq .. / dt, e(€+u@1 )t1 ) e(c+iﬁn)tn
e—0 =0

o
elne+i(Bi+...4+8n )]t
e BalRe+ s T B T = D F i+ - T B]

o 1
= flgr(l)’[f +iBn] [26 + i(Bn-1+ Bn)] ... [(n = Ve +i(Ba + ... + Bn)]
_ (i)

B ﬁn(ﬁn—l + ﬁn) cen (,32 + ...+ ﬁn) (21.7)

= lim['

e—0

ot

This gives the result for the second-order diagram g( ) above:

: (2)
eh_rf(‘)[at ]

1 k| v|mnY(mnlv}ik)*
L Gk Lo mn)nn Lo

—(Cj + € — € — En)

t=0 ‘j€k<€F

Sm,En>ep

The family of the two topologically equivalent diagrams in figure 21.5 then
contributes

. .0 ~
(AE)gZ) = lim {Zé— [952) +g§2)]}

c—0

t=0
_ . (2)
= 2 (i ]}
_ 1 (% | v | mn)[? |
= 3 Z ( +€k_€m_€) (21.8)

Jrk<eF
cm,en>eF

For the so-called second—order exchange dlagrams (see ﬁgure 21.8) we obtain
in an analogous manner

(AE)D) = 1@ {z_[(z) (22)]}

6t t=0

1 klv|mnY(nm|v]| ik
Loy Gt lmam o]

B (6 +€x —€m — €n)

(21.9)
‘j’€k<5F
em,en,:>eF
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(2) (2)

Figure 21.8 The second-order exchange dzagrams 9,7 and g5

We now finally consider an arbitrary connected diagram of nth order:

/= (_)f;_: S Y (kv mn).. ey | v | we)

jkmn Tywz

t t tn—
X / dty ' dis .. / ' dt, e—c(ltal+...+tnl)

—00 / — 00 - 00

x J] 6ata,Bty).

all G(O)- lines

The diagram contains h hole-lines and consequently 2n — h particle-lines.
Here, G(0)-lines with two equal-time arguments must be interpreted as hole-
lines, on the basis of the limit-prescription rule (4). All summation indices
that appear belong to either particle-lines or hole-lines. If we now use

iGO) (at,, Bty) = 6aﬁe—i‘“(t“—tb)6(ea — ) for particles

and
zG(O)(ata,,Btb) = _16°(t“—tb)9(ep — €y) for holes

so are the sums over the particle-indices and the sums over hole-indices to be
performed above and below ¢, respectively, because of the step-functions.
Each G(9)-line givec rise to a factor (—i), and from each hole-line we obtain
an additional factor of (—1):

o = EEE O S Gk ma) ey v | we)

particle energies > &p
hole energies < e¢p

tn—
/ ity .. / 1dtnee(t1+t2+...+tn) H 6aﬁe'5°(t“‘tb).

all G(%).lines

We rearrange the integrand to perform the time-integration. Consider a
particular time ¢;. Only four G0 lines give a contribution to this time —
the ones that are attached to the endpoints of the jth interaction line. For
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the line with index, say, k pointing away from the interaction line at ¢ ;» the
t;-dependent contribution is exp(iext;), independent of whether the line is
a particle line or a hole-line, since

ti-1 [# .
= GOR'tj_y,kt;) = (—i)bppre xtim17t)g(¢, — )
tj k
~ exp (+i6ktj)
and
t; k .
= GO(k't;41,kt;) = —(=i)bppe™ * 1=t g - ;)
tivi 4 ¥

~ exp(+iext;).
The t;-dependent contribution from the line with index m pointing away

from the interaction line is exp(—iemt;). If we index the jth interaction line
according to figure 21.9, the ¢;-dependent factor in the integrand is*

exp [—i (emj + €n; — € — qj) tj] .

; ¥
H >\r\fu-uwm<
mj- nj

Figure 21.9 Indexing of the jth interaction line at time t;.

If we set

Aj=em; +enj— €; —€; forj=1,...,n (21.10)
we can write the entire integrand as
e(E—iAl )tle(c—-iAz)tz L e(e—iAn)tn.

By using the general formula equation (21.7), we can-then write the contri-
bution to the energy shift from the diagrams g(") as :
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— (n)]
lii | 2

()
2n

t=0

(=i)"(=i)~

Z (jklv|mn).. (zy|v|wz)[[éap
particles above ep (—)n—lAn(An + A;'-—'l) s (An + A'n,—l + ... + AZ)
holes below e¢p

If we also use the fact that 2™ and 2" ~! diagrams, respectively, leave identical
contributions, we obtain for the entire family:

L]

. |.0 (n)ﬁ : : . |
(AE) om = 21_1’% [z En (g '+ topqloglgal1y equivalent dlagrams) o
_ (—)tHh Z (G |v|mn).. (zy|v|we) ], 50)sines Oap
28 Apn(An+Ap—1) ... (An+Ap_1+ ...+ Ag)

particles above ¢p
holes below e¢p

(21.11)

This is the main result of the present chapter. With it, it is very simple to
calculate the contribution to the energy shift from a family of topologically
equivalent diagrams. If the family is symmetric under reflection in a vertical
line in the middle, s = 1. If the diagrams are asymmetric, s = 0. The
Kroenecker-6 that appears can be read off by inspection of a representative of
the family, and the reduction of indices can then be performed. Furthermore,
there is an additional trick that can be used to determine the individual
factors of the denominator (see figure 21.10). Imagine (n—1) horizontal lines
between the n interaction lines. Each of these lines leaves a factor to the
denominator, by adding the energies of the hole-lines and then subtracting
the energies of the particle-lines that are cut by this horizontal line. So long
as no contractions appear (see figure 21.11 (a)), this is easy to see since the
four endpoints of each layer of interaction lines just contributes one term
to the sum (Ap + A,_1 4 ...). If a contraction appears, as in figure 21.11
(b), one particle line and one hole line has to be omitted per contraction. In
this case, the corresponding particle and hole energies cancel out in the sum
(An+Ap_1+...), since they are of equal magnitude but of opposite sign.
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LA X ]

Figure 21.10 Horizontal lines are inserted between the interaction lines.

L]

Ly \ail || | ]
Voot

{a) {b)

Figure 21.11 In example (a), no contractions appear which directly connect
the two interaction lines, whereas the result of the contractions in (b) is to
eliminate one particle and one hole line.

As an example, we will now calculate the contribution of the family of
ring diagrams of third order shown in figure 21.5. As a representative of the
family we choose the diagram in figure 21.12, for which

: (Ag + A2) =€+ €~ €y — €
Az =¢;+€p— € — €.
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Figure 21.12 We choose the following indexing for our representative third-
order ring diagram.

The energy shift from this diagram is

3
(AE)E‘iI)lg
_ ey G Imnbalolrey o] wa
manqrye>ep AB(A3 + Az.)
Jwkspzieep
X5jw6mz6p26ry6k36nq

= ¥ (jk | v | mn)(pn | v | rk)(mr | v ]| jp)
mnrie>ep (EJ + € — €m — Cn)(fj + €p — fmfr)
rkpielep

With the help of the above representation of the denominator, it is easy to
see that none of these factors can vanish: since all hole energies €}, satisfy
€y, < €p, and all particle energies €, satisfy ¢, > er, we must have )¢ —
> €p # 0. The value zero can be obtained at the most for disconnected
diagrams, as shown in figure 21.13. But the disconnected diagrams were
already summed out by the linked-cluster theorem.

The factors that appear in the denominators can clearly be interpreted
as excitation energies of intermediate states, e.g.,

Ap =€, +€p, —€py — €, = Wo—- W
where the W; are energies of the unperturbed system. Wy corresponds to
the ground state, whereas the intermediate state with energy W is obtained
by occupying the levels p; and p; with energies above ¢r instead of the levels

hy and hg, which are occupied in the ground state:

Wi = Wo—-ehl — €p, + €py + €p;.
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Figure 21.13 The contribution to the energy shift can be zero only for dis-
connected diagrams.

Similarly, we obtain for the other factors

At By 4.4 Bpjpr =3 e =S e = wy - w;

h P
where , .
Wi=Wo-Y &) +3 P (21.12)
h P

Since none of the factors is zero, the ground state itself can never appear
as an intermediate state. The energy shift from a family of topologically
equivalent diagrams g can then be written as

)£+h

(AE)™ = 3 W (v) - (v) [18ap . (21.13)

W1)(Wo — Wa) ... (Wo — Wn—1)

To further interpret this formula, we derive yet another equation for the
energy shift. We start with the representation

AE = lirr(l) ig—(‘l’o | Ue(t, —00) | o)L,

t=0

thz <I>0|U ( —o0) | Bo)rL

n=0

t

t=0
Furthermore, we use

(@0 | UM (t,—00) | o)1,

_ ((Dgl(—i)”/_oodtljj;. .

tn-1
x/ dtn e~y (ty) ) v(tn)r | Bo)L.

-0
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Since 0 >t >t > ...>t,, we have

e—€(lta [+ +]tn]) — ec(t1+...+tn)‘

so that we can write

(@0 | UL (t,—o0) | Bo)

t 131
== (@0 I (——i)n / dtl eet1 v(tl)I/ dtg eetzv(tz)I SN
-0 — o0

tn—l .
y / dtr e u(tn)1 | o)L

-0

In contrast to our earlier derivation, we will now perform the time integration
at the operator level. For the last factor, we obtain

L
/ dt e u(tn)1 | Bo)

- .

tn—1 i Hy)t i Hot
= / dt, e(E-H 0) "vg e tHtolin I (I)O)
e’

had e ¢
e—iWo tn '@0)

tn;l ..
- / "t el Ho=Wo)ltn o | )
-0
eleti(Ho—Wo)]tn—1

= :
g ARCRRL)

ele+i(Ho—Wo)ltn-1

= ¢ — i(Wo — Ho) vs | o).

If we add the next factor to this, we obtain

typ—2 th—1
/ dtn_1 en 1 u(tn_1); / At e u(ty) | Bo)

-0 hade o]

tn—2 ) . (e+iHo—iWp)tn_1
— dt. 1 eletiHo)tno1,, o—iHotn_1 € b
/_oo n-1¢ ’5° T iWe— gy 'S 1 %)
tn—2 R ]_
— dt. 2e+i(Ho-Wo)ltn—1
/_oo n-1® U W = Hg)S | 2V
— [2€+i(Ho—Wo )]tn_z 1 1
© % — i(Wo — Ho) ¢ —i(Wo— Ho) > | ®o)-

The (n — 1)-fold repetition of this procedure finally leads to
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. 0 (n)
iz (%0 | U (t,—o00) | Go)z|
0 t2
= (=) @0 | [ dtaeolta)r [ dts..
N=~~"J -0 —-oo
='US
tp—1
X / di, ect"v(tn)I | ®o)r,
1
—_ An—1
(=) (%o | U (T D) — (W~ Ho) 'S
1 1

B
S e —i(Wo — Ho) S¢ —i(Wo - Ho) 'S | Pl

The limit € — 0 can then be performed with the result

1 n—1
<¢0 I vs (mvs) l (DQ)L.

If we now insert the completeness relation of the unperturbed eigenfunctions

1= 31 0;)(8; |
J

L]

between the potential operator vg and the factors

1
(Wo - Hovs)

a comparison with equation (21.13) shows that the energies W; belong to the
intermediate states. If we compare the result with the Rayleigh-Schrodinger
formula

o0 1 n
AE = 7;)(‘1’0 | vs (m@(vs - AE)) | @o)

the restriction to connected diagrams has the same effect as the projection
operator () = 1— | ®g)(®Pg |, namely, to prevent | Bg) from appearing as an
intermediate state, which would result in a zero denominator.

G R e e sk i







Chapter 22

An example: the
Gell-Mann—Brueckner

correlation energy of a dense
electron gas

We will in this chapter use the methods discussed in the previous chapters in
an important example: the calculation of the correlation energy of an elec-
tron gas in the limit of high density, according to Gell-Mann and Brueckner
[16]. The interacting électron gas is, according to equation (10.10), descnbed
by the Hamiltonian

22 |

H = 57— Cko Cko
ko
4me? RS
t3 ZZ [rd (k+q o (k' ~q)o K'o' ko
klfdl q¢0 '

It is important that the the contribution from q = 0 is explicitly removed
from the sum over q, since this Fourier component of the interaction po-
tential is canceled out by the energy contribution from the uniform positive
background charge density.

The matrix elements of the interaction have the form shown in figure
22.1, which is

4re?

((k + q)o, (k' — q)o’ | v | ko, k'o’) = R

This diagram can be interpreted as a momentum-transfer process: the first
electron with momentum k’ loses a momentum q, which is transferred to a

*

255




256 ELECTRON GAS CORRELATION ENERGY

(k+g)0 k'-gr0’

kg ka

Figure 22.1 Interaction diagram for the electron gas.

second electron by the interaction. From this, it follows immediately that
the diagrams which contain the part shown in figure 22.2 vanish, since they
require q = 0, and this term was omitted from the sum. In consequence,

Figure 22.2 Any diagram, which contains the so-called tadpole diagram,
vanishes. 4 '

the direct term in the Hartree-Fock energy, which was discussed earlier,
vanishes:

anP =0 (22.1)

In first-order perturbation theory, only the exchange terms represented in
figure 22.3 remain. The energy contribution from these is

Ko

>~
+
0
Qa
D
‘s
x
Q
I
»

ko (k'-q)g’ P

Figure 22.3 The exchange diagrams of the electron gas.
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@y
(—)1+? | 4me?
= o 22 2 g Sty koot (i-a)bos
——  qf0 ke wWe T — -
symmmetric diagram k<kp k'<kp ‘Sq,(k’—k)so’,a"
1 Ame? ;
= _52 > WP | (22.2)
o kK
e
= exchange energy as in Chapter 10. (22.3)

Here, both propagator lines are equal-time lines. i.e., hole lines with k, ¥’ <
kg, according to Feynman rule (4). o

All higher-order diagrams which contain the elements in figure 22.4 also
vanish, because 6(k+q),k’ = 5q,(k'—k) in the G(9)-line above, from which we

(k+g)O kg

ko k' -q1a’

Figure 22.4 Diagrams which contain these parts as factors'ajso vanisb. '

obtain the indices shown in figure 22.5. However, this cannot occur since
one of the free lines corresponds to a hole (sum over k¥ < kp), and the

. k,—k and k k
ko kg |

Figure 22.5 Labeling of the G(0)_lines in figure 22.4.

other to a particle (sum over k > kF), i.e., their momenta cannot be equal.
Therefore, the diagrams vanish. However, diagrams which contain the fac-
tors shown in figure 22.6 can appear. We have already encountered such
diagrams as first-order contributions to the single-particle Green’s function.
In a connected diagram of second order for the vacuum amplitude of: the
electron gas, the bottom and top parts can only look like figure 22.7. When
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or

Figure 22.6 Diagrams with these factors may give non-vanishing contribu-
tions.

NAPPY, AN

Figure 22.7 Connected second-order diagrams for the vacuum amplitude can
only have these bottom and top parts.

these two are taken into account, of the 24 diagrams of second order, which
were constructed in Chapter 20, only the four connected diagrams shown
in figure 22.8 remain, and of these, only two are topologically distinct. We
now label these according to figure 22.9, taking into account the momentum
conservation. We eliminate ki, ki and q by considering the unperturbed
single-particle Green’s functions labeled by the numbers 1 through 4:

0,1

ki1i—qYsi0;

k’lzkl-—q

qd=k]i—-ky=ki—ky—q
ki=ki—-d=ki-ki+ks+q=ks+q
k!, =k, + q consistent with 3
01=0]=03=04=0

{a) (B) {c) (d)

Figure 22.8 The only connected second-order diagrams for the vacuum am-
plitude. The diagrams (a) and (b), and (c) and (d) are topologically equiv-
alent.

b
5k2,k' —a'b0y0!
Oky k4 +q'001 07
6k'2 ko +q6crza£

sewT
LV
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Figure 22.9 Labeling of the diagrams in figure 22.8.

Thus, we obtain indexing shown in figure 22.10. We also obtain

Ag

1

%{k%+k%—(k1 —q)z—(k2+<1)2} .
1

= 5;;{kf—kf+k%—-k§+2q-(k1—k2+q)}
1

= —q-(ki-kz—q).

This is a ‘safe method’, where the momentum conservation at each vertex

Figure 22.10 Momentum conservation simplifies the indexing of figure 22.9.

1s taken into consideration. This method should be used for complicated
diagrams and, in particular, in doubtful cases where it is not immediately
clear if momentum conservation can be satisfied. In the case of simpler
diagrams, the correct labeling can be found by inspection; see, for example,
figure 22.11. In this figure
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1
Ay = %{k%‘{'k%_(kl +Q)2—(k2—Q)2}

(k1+q) 04

Figure 22.11 In a diagram such as this one, it is straightforward to label the
lines. g

We will now as an exercise label the ring diagram of third order in figure
22.12. A ring diagram is a diagram which is an uninterrupted sequence
of interaction lines and particle-hole ‘bubbles’. This example illustrates
an 1mportant property of ring diagrams: the same momentum transfer q
appears in all interaction lines.

(k1+ﬂ)01
(I|'3-¢1)(.‘I3

Figure 22.12 A ring diagram only contains interaction lines and particle—hole

‘bubb]es’.»

Let us now calculate the energy contribution of the two topologically
equivalent diagrams figure 22.8 (c) and 22.8 (d), according to equation
(21.11):
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(AE)&)
1
SREEL )
N 9 _q#0
=-1
4#62) 1 1 m
X = .
kl:k22<kp ( Q q? |ky —kz—ql>q- (k1 —kz — q)

k1 —ql, lkz+al>kp

We go to the continuum limit

1 1
5; - @ / a3k

with the result

(AB)g

= —167%¢*m o )9/d3 /d3k1/d3k2 | ’

X
k1 — ko — q|?¢? [q (k1 — kg — q)]
and scale the variables by kg

1d Id 1d
o ko k(z)

new q new __ new ...
-k Knev =

EkF U =% 2 T

which yields for (AE)g)) :

. |
—Qs M3 /d3 /d3k /d3k .
3057 F ! ki —k; — al%¢%[a - (k1 — k3 — q)]

The integrations are to be performed over the regions

kil k2| <1 |ks —q| ke +q|> 1.

' N
371'2 (—('2-) = k%

and also make the substitutions

If we use

9—-q ky— -k
and take into consideration that (with h= 1)

' -2]1e4m— 1Ry
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we obtain
2
(AE)EC))
3N d3q/ . / 5 1 1
_ T B, [ 3k R
65 | 2 S ko tafa kit ket q) 2

(22.4)

where |kq[, ka] < 1 < |k + q|, k2 + q|. The resulting expression can be
integrated analytically [17], with the result

(AE)% - [3 In2— ——(;(3)] N Ry
= 0.0484N Ry. (22.5)

Here, ((3) is the Riemann zeta-function
1 [ t2dt
C(S) - 5'/0 et _ 1'

The important conclusion is that this energy contributien does not depend
on kr. Hence, it does not depend on the ‘average atomic radius’ r intro-
duced earlier (cf. equation (10.6)):

— === =|=5zmr3| =|—| r,. (22.6)
kg 32 \ N 323 Or
We now calculate the other second-order energy contribution (the diagrams
figure 22.8 (a) and (b)):

(AE)(a)

[471’6 ] 1 m

— — —
o1 02 q#0 ky,kg <kp Q *q-(k2—ki—q)
~ ~ - ki +allky—q|>kp

By going to the continuum limit and by making the substitutions
qnew — __qold/kF k?ew — _kti»ld/kF kr21ew — kgld/kp

we obtain, analogously with (AE)%C)

3N [ d3q 1
AE (2) _ _ o8V _/ 3 / 3 . .
( )a) e 7 d°ky [ d kzq-(k1+k2+q) Ry (22.7)

Here, the integrals are performed over the region ky, k2 < kp; [kq +q], [ko +
q| > kp. This term, too, is independent of rs. We will now proceed to
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show that the resulting integral diverges. Thus, we will prove the statement
made in Chapter 10, that second-order perturbation theory diverges for the
electron gas.

We consider the integral for ¢ — 0 and introduce the notation

z; = cosé(k;,q) = k; - q/(kiq) i=1,2.

The integration region |k;| < 1 < |k; + q| of the k-integrations becomes
1-gqz; < k; < 1 for small ¢, since

k+q| = \/k2+2kqx+q2:k\/1+2qz/k+q2/k2
= k[1+ - + O(q )]zk+qx.

In the integral

1
I :/d“”k /d3k ,
() ! 4 (ki +kz +q)

we take the z-axis parallel to q, which leads to

1 1 1 1 1
I :.-/ Qde/ k2 dk / 27rd:c/ k3 dk _
@ 0 ' 1-qzy L 0 2 1-qz2 2 2<1k13131-i-t.l'kz:l:z-i-qz

and, finally, by usmg the estimate above that k; = 1+ O(q) and neglecting
terms of order q , We arrive at

k2k2
I=47r/d:c/dz/ dk/ dk
(q) ! ? 1—gz; ! 1—qz> 2Q(£1+m2)

_ (1= (1= g20)%) [1 = (1 = g22)°]
= 9 A d 1/0 da:g

q9(z1 + z2)

_ / dzl/ dm{ [jl”fz]w(qqs)}
_ 8_“_(1 In2) ¢ + O(g%).

It remains to perform the q-integration:

@ _ 3N [CI(q), 5, _ 4N [*d
(a) = 875 Jo gt dmg®dg ~ - 72 0 g

(AE) (22.8)
This integral diverges at the lower limit.

At the upper limit of the integration, ¢.e., for ¢ — oo, our estimate does
not hold. However, a glance at the term ¢* in the denominator of the original
integral shows that no problem arises at the upper limit.
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Let us look at what happens in third-order perturbation theory. Consider
the third-order ring diagram shown in figure 22.13, with

1
Az+ Ay = —”—Lq'(kz—kl—Q)

1
By = o= [ +E - o+ 92— (k- a)?
1

= —q-(ks—kq —q).
mq(s 1—q)

Figure 22.13 A third-order ring diagram.

The energy contribution is
3

(AE )rin)g
(_)3+3

= XXX

g1 02 03
o

.

-8
X Z (4me? /Q)* m m
6 -(k - k1 —q) -(k -k - )'
k1 l<kp<iky+ql 1 q 2 1794 3 1—q

|ko|<kp<|ky—q|
|k3l<kp <lk3 —q]

By now, it is clear how to proceed from here: we go over to the continuum
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limit, scale the wavevectors by kg, change the signs of k; and q to obtain

3
AE))
: 3N
e —47r7ka Ry (229)
d3q 3, 13, 13 1
—_ d°k1d°k.d"k :
x/ ¢® i// i S[Q'(k1+k2+Q)][q'(k1+k3+Q)L
Eﬂq)
(22.10)

with the usual integration limits
kil <1< |k;+q| i=1,2,3.
We can establish the following important facts:

(1) The total expression is proportional to r,, due to the factor of 1/kp
(cf. equation (22. 6)) 7 .

(2) It is easy to establish that I(q) goes linearly to zero as ¢ — 0, by

using the scheme above. This means that the third-order ring dlagram
- diverges strongly at the lower limit:

3
(AE)Sm)g ~ A q3

In complete analogy, we obtain
dg
(AE)SQL /0 e (22.11)

The rs-dependence is easy to determine for an arbitrary energy contribu-
tion, irrespectively whether or not it is a ring diagram. We have already
established that all contributions of second order are independent of rs. For
each additional order, we obtain

- a matrix element { | v | ) = 47762’/(91&'2), i.e., a factor of k5?;

-a factor (A+...4+ A) ~ k? in the denominator, i.e., another factor of
k—

- asum )y, which after the replacement % Zk — [d3k and scaling
by kp, k™Y = k°1d/ kp, gives a factor of k3
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Thus, an additional factor of k;l, or rather a factor r;H, appears for each
order:

(AE)) ~ 32, (22.12)
Our goal is to calculate the energy for hlgh densities, i.e., for rs — 0. If the
individual energy terms (AE)(") did not diverge, this would be straightfor-
ward (provided the perturbation theory would converge); we would simply
take the constant second-order term and eventually also include a higher-
order correction. However, we must consider the divergence in detail: since
the total correlation energy must be finite, we can assume that by summing
up all terms, the divergence will be removed. Thus, the task will be to
obtain a sensible limit value of such a series of divergent terms. It is clear
what happens physically: the electrons screen themselves, so that the long
range of the interaction, i.e., the ¢ — 0-contribution, is eliminated. The ring
diagrams have the strongest divergences in each order. It is then natural to
sum these dominant contributions in each order:

AE™ (AE)SEL = L qziq_S I.1(g) where (}i_{)r(x) I, 1(q) = constant.
This procedure seems plausible. However, we must be awarg that there are
divergent diagrams other than the ring diagrams, for example the third-order
diagram shown in figure 22.14. Because of the two identical momentum
transfers, this diagram is as divergent as the second-order ring diagram,
and it is not at all obvious that this diagram can be omitted, but that the
diagram figure 22.10 (&) must be included.

k2+q
Figure 22.14 A third-order ring diagram which is not maximally divergent.

In total, the perturbation series can be written in the following way:

d
AE®) = /0-?!212,1(q)+/q12,2(Q)dq

d
AE®) = [/0 q—§I3,1(q) /—132 +/(;QI33 Q)dQ] Ts

dq
AE® = [/0—141((1)+ -+ qI44 Q)]T
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where limg_,0 I, ;n(¢) = constant.

We will now argue why it is necessary only to consider the ring diagrams.
The reason why the divergences appear is the long range of the Coulomb
potential. However, we may expect that an effective screening-effect appears
in the electron gas, so that the Fourier components are only important to a
minimal value k.. Provided k. is small, this results in

d
/ Arm(@) ~ Inke
ke 4

d
| Bl ~ 1782
d
A;g‘ln,m(q) ~ l/kg

and so on. If we recall from our discussion of plasmon theory, that the
effective screening comes into effect at

1/2
k~r3/ .

the expressions that we have already calculated are proportional to In(rs),
1/rs, and 1/r2%) respectively. If we insert these into the individual energy
contributions, we obtain, together with the explicit ry-dependences:

(AE)(?) ~ Inr,

ring
(AE)) < constant (22.13)
(AE)g)) ~ constant

All other contributions go to zero at least as (rslnrs) as rg — 0. Therefore,
it should be reasonable to put the correlation energy in the following form
for high densities:

Eeor = ) (AE) i+ (AE)D).
n=2

We will now start with the summation of all ring diagrams. We first make
the following representation of the contnbutwns from the ring diagrams
plausible:

3N rargin-2 [ J.
~\ntl s n 43
(AE)rmg - ( ) 871’5 [ 2 } \/_——and q Ry (2214)

with , _
a = (4/97)/2

e
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and

+ oo +oo
/ dts /

andf

J2
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+00
./ dtnFq(tl)' .

Fy(tn)8(ty + ... + tn)

falh) = v/!p|<1<lp+q! [ i ( 30 4 p)] e

The statement holds for n = 2:

1 400 + o0
= §/ dtq / dts Fq(tl)Fq(tg)é(tl + t2)
—00 —00

+ o0

i

[e @)

dty Fy(t1) Fy(—t1) = /0 ¥ Ryt F,(—t)dt

- / p1 / s / % e t@Py)+02/2) g~ Py+a?/2)

= / d°py / d°py [—
= / d°py / d®pq

e—ta-(P1+P2+q)

(p1 +pP2+49)
1

q-(py+pP2+49)

(cf. equation (22.7)), and for n = 3:

Jz =

1 [ 0o o0

5/ dt1/ dtg/ dis Fq(tl)Fq(t2)Fq(t3)6(t]_ + 1o + t3)
—-00 -0 -0

1 [ o0

3 [_ dtq /;oo dito Fq(tl)Fq(tg)Fq(—tl —13)

1 [o 0] o0 ’
! / &, / 43p; / &y / dt, / dts
3 -0 -0

we~lt1l(a-pP1+42/2) o= lt2l(a-P2+9°/2) o~ [t1 +t2(a-P3 +47/2)

To evaluate this expression, we partition the integration regions in six pieces:

1)
2)
3)
4)
5)
6)

|t1| :tI)
Itll :tI)
ltll :tl)
ft1] = —ty,
t1] = —t1,
[t1] = =14,

|t2| :t23
|t2l = _t2)
t2] = ~t2,
[t2| = —tq,
It2| :t2)
lta| = ta,

[t +t2] =t + o

|t1 +t2] = t1 +12 t.e., t1 > [to]
[ty +t2!:—t1——t2 e, t1 < |t2|
[t1 +ta| = —t1 — 1o

[t1 +t2| = —t1 =tz e, ty < [ty
|t1 +t2]=t1 +t2 z'.e., t2'> Itll

qu(it) corresponds to the zero-order polarization propagator I1(%) (q,t), which will
be discussed in detail in Chapter 27.
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By making the substitutions t; — —#;, t3 — —tq, we see that the contribu-
tions 1) and 4), the contributions 2) and 5), as well as the contributions 3)
and 6) are pairwise identical. Furthermore, we can calculate that, with the
abbreviation D; = (q - p; + ¢%/2), we have

oo [e e}
contribution 1) = / dtl/ dt, e—t1D1,—t2 D7 o(~t1~12)Ds
0 0

/ "ty / ™ dty e~t1(D1+Ds)~t2(Da+Ds)

contribution 2) = / dt, / dty e~t1D1g+t2D2 o —(t1—12) Dy
(2
(tx21ew = _tcz)ld tixew = tc{ld + told tnew + tleew — ttl)ld)
00 o0
= / dt2/ dt; e(—t1—t2)D1 ~t2D; ,~t1 D3
0 0

/00 at, /oo dt, e~ (D1+D3)e-—t2 (D2 +D3).
0 0

If we also interchange p; < pj3, so that we interchange D; «— B3, we see
that
contribution 1) = contribution 2).

A completely analogous calculations shows that
“contribution 3) = contribution 1).

Thus, the contributions from the six different integrations are equal, and we
obtain for J3 (with the notation of the calculation for contribution 2)):

65 / d*py / d®py / d3ps / dty / dtg e~ (P1+Ds)t2(D1+D2)
0 0
= 2 [ [ [ @

/ dtie” t1q- (P1+P3+‘I)/ dtoe™ t2q- (P1+P2+Q)

_ -
B //ﬁptl<1<|p'+q| Pld p2d°p3

forz 1,2,3
1

q-(p1+pz+q)q'(p1+pz+q)

J3

in agreement with the expression equation (22.10) that we obtained earlier
for (AE)) .

ring*

We will not here further pursue the proof of equation (22.14) for ar-
bitrary n. The correctness of the hypothesis is fairly clear, on the basis
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of the analogy between the function Fy(t) and the Feynman propagator of
quantum field theory (see [16]). However, we should note that in the fourth
order, different topologically non-equivalent types of ring diagrams start to
appear. These lead to new energy denominators. In fourth order, we have
for example a contribution from the diagrams shown in figure 22.15:

Figure 22.15 In fourth order, there are topologically non-equivalent dia-
grams.

(4)
(AE)nng
_ ars d3q 3, 13 13
B 47"5 2 ./ ///ﬁpz|<1_<lp.+q! p1d p2d7psd”py
[ 1
X
q~(p1+pz+q)q-(p1 +p3+q)q-(p1 +ps+q)

1 1 1
q-(p1+pP2t+a)a-(pr+pr3t+a)q (p3s+ps+q)

1 1 1
+ ]
q-(pr+pr2+a)q-(pr+p2+pP3+pPs+29)q:-(P;+P3+4q)

We will hereafter assume that the hypothesis equation (22.14) is correct.
We insert the representation

6(z) = _}_/00 duet™® = i/oo‘dueiq“x
27 J oo 27 J -

in the definition of J,,. This yields

+00 +oo +00 .
IJn = — du/ d¢y .. / dt, Fq(tl) e Fq(tn)e1qu(tl+"'t")

27rn —00

= L [ du[Quw)”

2mn J_

where
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+o0 .
Qulu) = / dt Fy(t)ei™
—oo
/ &p / T dt gttt tat/2)
Ipl<1<|p+q| —o0
1+ 1g)% + 42
2o 1+_}_(1_}_q2+u2)1n ( +2‘1)2+u
2q 4 (1-12q)" +u?
1+ 1 1-1
~u arctan [ qu} — uarctan [ u2q] } . (22.15)

The total contribution from the ring diagrams is then

AByng = E(AE)Sﬁi

_ i ( ) Qq(u)ar, ™

- 16“6 [C”'s] /dsqq/ [ q7r2q2 ]
3N (R #oo Qu(war,] _ Qq(u)ar,

- s o] / d"’“/.m-d“{‘“[” |- )

Strictly speaking, the series in the integrand converges only for

QQ(;‘)CW <1.
m2q?

The small g-values are interesting. We calculate the value of QRq(u) for
q — 0. With :

N e
n
1——qy+9;:—-!-u2

| g+4¢%/4 g —¢*/4
1 LAY R N S Y
n[1+ Tz In |1 T

q q 2q

~ ——

1+u2+1+u2 T 14wl

as ¢ — 0, we obtain from equation (22.15)
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144?240 2

1
Qo(u) = z}l—rﬂ) Qq(u) (}13(1) 27 [1 + o T o 2u arctan (u)]

= A4r [1 — yarctan <l>} .
] u

It is clear that we may end up outside the convergence radius of the logarithm
for small ¢q. Nevertheless, we will

(1) further use the logarithm-function, and

(2) approximate Q4 by Qo since the small g-values dominate the contri-
bution to the integral.

In this approximation, we obtain

2

AEng = [ (1 =1In2)In(rs) — 0.142+ O (rsIn(rs))| N Ry  (22.16)
™

for the resulting multi-dimensional integral. Together with the earlier result
(AE)gz)) ~ 0.048N Ry .
we obtain
Ecorr/N = {0.0622In(r;) — 0.094 + O (75 In(rs))} Ry. (22.17)

This is the final result of the long calculation.

Gell-Mann and Brueckner [16] provided the correction to the approxima-
tion (2) for the second-order term in figure 22.8 (a), which can be calculated
exactly. The result is a small correction term which is independent of rg,
and which has been incorporated in the value 0.142 in equation (22.16). Fur-
ther corrections correspond to powers of rg, which have been consistently
neglected here. The ‘approximation’ and the procedure (1) can be shown to
hold exactly. This is done with the so-called Sawada method [18], which we
will now briefly indicate. The idea is the following: Once it is known that
the ring diagrams dominate in the limiting case of high density, one can try
to construct a Hamiltonian, for which the perturbation expansion from the
outset only contains the ring diagrams, or a related class of diagrams. The
complete fermion interaction potential is (with conservation of momentum
taken into account):

! bt
v= 9 Z E E v(q)ak;a1ak£agak2‘72ak10’1 :
q;!:O k; ~k=q 01,02
kz—kézq

We obtain a drastic reduction if we instead of all momentum-conserving
processes, as shown in figure 22.16, only include the following:
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Figure 22.16 A general diagram for the complete Coulomb interaction.

o~ 1 : ,
vo= 5 E ' E E + E + E + E
' T a#00102 | B K <kp Kl ky<kp Kk <kp k1 kg <kp
kikaSkpo kLR Skp k2 ki >kp kyka>kp

o t t
X’U(q)akia‘l akéaZanggak]dl .

This operator can be illustrated diagrammatically as shown in figure 22.17
(where the direction relative to the imagined time axis is of importance, in
contrast to earlier). The perturbation expansion of these operators contains
diagrams other than the ring diagrams, e.g., the diagram shown in figure
22.18. However, the contribution of these diagrams vanishes in the limit

rg — 0.

AT

Figure 22.17 The effective Sawada interaction contains only theses diagrams.

The pictorial representation lets us assume that the Sawada potential
can be expressed in terms of an electron-hole pair creation operator

dq(k,0) = ali,adk+q,cr‘
We then obtain
~ 1 :
=520 Y [dalk0) +al (<K, o)] [d-q(-K',0") + dh(K', )]
q¢0 ksd k,,O” 7 .

The Hamiltonian with this interaction can then be treated ezactly. In all
fairness, it must be said that in spite of the elegance of the idea of the
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Figure 22.18 In addition to all ring diagrams, the Sawada interaction also
gives rise to diagrams such as this one.

exact treatment of this Hamiltonian, the important application is in the
Gell-Mann—-Brueckner summation. However, the exact treatment of v does
give additional information on the excited states. In the case of the ground
state, the Sawada-method confirms the correctness of replacing the series by
the logarithm (as done by Gell-Mann and Brueckner).

We close this chapter by comparing the result equation (22.17) with the
result from plasmon theory, equation (11.10):

Ecorr/N = [0.06221n(r,) — 0.158] Ry.

The coefficient of the logarithm is identical in both expressions. This is
not surprising, since this term comes from the short-range part in the sec-
ond order, which is treated correctly by both methods. The rs;-dependent
term differs clearly. Even though the Gell-Mann—Brueckner calculation is
doubtlessly correct for rs — 0, it does give worse values for the correlation
energy for real metallic densities than the plasmon theory.



Chapter 23

Diagrammatic calculation of
the single-particle Green’s
function: Dyson’s equation

The representation

iGop(rt, r't’)

1 Noud (_i)n 00 o0
= lim dt / dt
=0 (®g | Ue(—00,00) | Bg) nz=:0 n! _/;oo ! oo

we—€(ita |+...+|tn|)(<p0 | T [v(tl)[. .. v(tn)nba(rt)p/);(r't')[] | ®o)

which we proved in Chapter 18, provides the basis for the diagrammatic anal-
ysis of the single-particle Green’s function. If we replace the underlined field
operators by other creation and annihilation operators, for example ¢y, (¢

and c;rc, ﬁ(t’ )1, we obtain the representations for other Green’s functions, in

this example Gop(kt, k’t"). The denominator in this representation of the
Green’s functions corresponds to the vacuum amplitude, the diagrammatic
calculation of which was discussed in Chapter 21. If the second-quantized
representation of the interaction v(¢;); is inserted and Wick’s theorem is
used, the numerator can also be represented diagrammatically with the
Feynman rules of Chapter 20. In first order, we obtain the six diagrams
of figure 23.1. The two arguments of the Green’s function appear as exter-
nal endpoints of the diagrams. We have here only depicted the diagrams
for particle propagation. The corresponding diagrams for hole propagation
are obtained by interchanging the endpoint indices and changing the direc-
tions of all arrows. The diagrams (3) and (4), as well as the diagrams (5)
and (6) in figure 23.1 are topologically equivalent, in the sense of our earlier
definition, 1.e., they can be obtained from one another by interchanging the

275
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Figure 23.1 The first-order diagrams of the numerator of the Green’s func-
tion.

indices on the vertices of one interaction line. The diagrams (1) and (2)
are disconnected. It is clear, after translation to formal language, that such
diagrams factorize into contributions from connected sub-diagrams. In what
follows, we will prove that all terms in the numerator of the single-particle
Green’s function are obtained from the product of all connected digrams
which connect the two external endpoints with all diagrams of the vacuum
amplitude (see figure 23.2). All there is to do is simply to combine all di-
agrams which are connected between the two external endpoints with all
other loose pieces, the sum total of which is the vacuum amplitude. In this

all other diagrams
+ + + 4 connecting both
external end points

. . all other diagrams
* 1+ O\J\J‘O'F@"rmﬂ@"' of the vacuum

amplitude

Figure 23.2 Diagrammatic representation of the numerator of the Green’s
function.
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Figure 23.3 Six diagrams of the numerator of the Green’s function.

way, we obtain all topologically distinct diagrams. However, it also remains
to be shown that the prefactors agree. As an example, we first consider
the six diagrams in figure 23.3, which all contribute to the perturbation ex-
pansion of the numerator. These diagrams all give the same coptnbutlon,
namely (in a transparent notatlon)

(4')24" [ZG(O)vG(O)] [ZG(O)vG(O)]gd

[ZG(O’U JGOGOLGO GO, tl)] -

On the other hand, the product of g( ), and g( ) and g(gl) (figure 23.4) is

{(-)2 : [Z G<°>(t WGOGOGOGO), t) m}

l/'bi- 2122
Ty [z 6960 [ G(O)”G(O)]gf:)}

-.]gg_l) [ ]gy) [ ]ggz)

:3’

]g‘,l) [ ]ggl) [ ]gg) :

- Thus, we obtain the sum of the diagrams in figure 23.3. We now have to
generalize this calculation to diagrams of arbitrary order. Once we have
- succeeded with that task, the statement is proved. '

s
4t
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. 1)
gx

LY

N 4 L .
g ()
9+ 94

Figure 23.4 All diagrams of figure 23.3 can be produced by the connected

diagrams g( ), gg, ) and g(l)

We consider a genéral term of order v in the numerator of G. This term
will consist of a uniquely determined connected piece G(Ln) of nth order,

which connects both endpoints, and furthermore of a loose piece g(" ~n) of
order (¥ — n). This latter piece is also uniquely determined. This one may
be partitioned into connected sub-diagrams, as in the example above; this
is however meaningless for the present proof. There are precisely ( ) possi-
bilities to choose n interaction lines out of the v ones connected to the times
t1,...t, in order to construct the connected diagrams Gy, ). The remain-
ing (v — n) interaction lines result in the disconnected vacuum amplitude
diagrams g(" n). Each possible combination apparently corresponds to a
diagram which contributes to the numerator of the Green’s function. All
these (;) diagrams give the same contribution. Thus, the sum of them
contributes

R ¥
n!(VV-!- n)! { (V!)2: [Z .. ] ™ [Z .. ] g(V-n)}
= (=) nz;; [Z ¢Ov.. ] &)

NG
X (- )(e zl)(“—n—),gy—:—[ZG(o)v ]g(y_n)

= (67) < (o).

We have here used the easily shown fact, that the number of fermion hole
lines (denoted by ¢, ¢; and £ — ¢1) is additive. The hypothesis is then
proved. We can cancel the denominator of the Green’s function with the
vacuum amplitude factor of the numerator and obtain the important result
(see figure 23.5)




PERTURBATION THEORY 279

Gap(rt, r’t')
(e} N +00 +00
= lim(_i)z( ") / dtl.../ dt, e~ c(ltrl++ltn])
n=0

e—0 n: —c0 —-00

x(® | T [v(tl) 1+ v(tn) e (et) 9} (e'Y) ,] | Bo)z.  (23.1)

o rt o g It oo rt
Pt
Gaﬁ(rf, rt')= . . .
L X1}
Ber't’ p® ey B® rFt!

Figure 23.5 In the series expansion for the Green’s function, only diagrams
connecting the external endpoints need to be included.

+

The index L means that only the connected diagrams are to be summed
over. Equation (23.1) is, if we wish, the ‘linked-cluster theorem’ for the
single-particle Green’s function.

In the remaining terms of the perturbation expansion, many degeneracies
in the diagrams appear

(1) through the interchange of entire interaction lines (figure 23.6). This
gives in all n! permutation possibilities for nth order diagrams.

(2) By topological degeneracy (figure 23.7). There are two such possibil-
ities per interaction line. This means an additional degeneracy factor
of 2™ for nth order diagrams. In contrast to the vacuum amplitude,
there are in the present case only asymmetric diagrams, so that we do
not count any diagrams twice.

2 2 1 1/

il

1 T 2 2’

Figure 23.6 Diagrams which can be obtained from one another by inter-
changing entire interaction lines leave identical contributions.
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niE -

Figure 23.7 These diagrams are topologically equivalent and give identical
contributions.

At this point, we agree to represent the entire family of (n!2") degenerate
diagrams by a single diagram without indices. At the same time, we establish
a new Feynman rule.

Feynman rule (7) for the prefactor of the unindexed connected Green’s

function diagrams:
prefactor = ™.

The degeneracy factor (n!2™) cancels out with the denominator of the earlier
shown prefactors of the indexed diagrams.

All connected second-order diagrams for the Green’s function are shown
in figure 23.8. Each of these unindexed diagrams represents a family of
222! diagrams. Some of these unindexed diagrams clearly vanish in the
momentum representation of a translationally invariant system.

T
UpR i

Figure 23.8 All second-order connected diagrams for the Green’s function.

We now have a rough idea of what the perturbation expansion of the
single-particle Green’s function looks like. As the illustration of the second-
order diagrams in figure 23.8 shows, many diagrams are constructed from a
few simple ‘building blocks’. This is the basis for what is maybe the most
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important equation in the entire perturbation theory: Dyson’s equation.
We will now derive this equation. If the full Green’s function is depicted
by a thick line, the perturbation series can be summarized by figure 23.9.

At At At
Aty
= + <———— Self -energy M()\,;‘1 A f,)
Ay f
Nt At )\'f'

Figure 23.9 The self-energy M allows for a compact representation of the
perturbation series for G.

The self-energy M denotes the sum of all self-energy insertions (figure
23.10). These are any part of a diagram which is connected to the rest

R

Figure 23.10 The self-energy is obtained by summing all self-energy inser-
tions, as shown here.

of the diagram only by one incoming and one outgoing G(9)-line. Further-
more, we classify self-energy insertions as reducible if they can be partitioned
into lower-order self-energy insertions by cutting a single G(9)_line. For ex-
ample, the diagrams on the top row in figure 23.11 are irreducible, whereas
the diagrams on the bottom row are reducible. The sum of of all irreducible
self-energy insertions is called the proper self-energy, and is denoted by M
(without a ™). It is clear that we obtain the total self-energy from the sum
of all possible repetitions of the proper self-energy connected with Green’s
function line, as shown diagrammatically in figure 23.12. Formally, figure
23.12 can be written

ﬁ(Altl,Allt’l) = M(/\ltl,/\ltl)+/dt2/dt/ Z M(/\ltl,/\g,tg)
A2}

x GO (Aaty, Nyth) M (Nyth, Aith) + ..

Convergence factors eIl which may possibly appear have been omitted
from these definitions of M and M, respectively.
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oy Y w , m , /&} frreducible
nd

Reducible

282

a

Figure 23.11 Examples of irreducible and reducible self-energy insertions.
The reducible ones can be cut into lower-order diagrams by cutting a single

G©)_line as indicated by the dashed line.

Aty
Ayt Aty
. Ayt
M = = + 272 + +
1 ! (XY}
Naty
A ) !
Aty Aty
I |
Nty

Figure 23.12 The self-energy M is obtained as a series in the proper self-

energy.
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The equation for the Green’s function can then be represented as shown
in figure 23.13.

A A At %) A
X1 f1 )\1 f1 )\1 f’
! Ve N Nyt Nity
R S O N
NZY: M Aty
At MO
Ah RN N
= —+ I ~ g Nt)‘l 1
)\Ifl )\q f1 \\ )\lf_l 4
A’f’
Figure 23.13 Dyson’s equation for the Green’s function. 3
This is Dyson’s equation. Formally, it is written g
G(AtN't)

= GO, Nt .
+>°N / dt; / dty GOV (e, A1) M (Arty, Mt )G(N 8y, M't)).
MM

(23.2)

At first sight this equation seems astonishing, since we have seen earlier
that the single-particle Green’s function is calculated from the two-particle
Green’s function, and so on, and here it appears that we obtain the single-
particle Green’s function from an integral equation in which there is a seem-
ingly independent quantity, the self-energy. However, we could have shown
before that the single-particle Green’s function satisfies such an equation.
In Chapter 16, we found the equation of motion for the Green’s functions:

.
[i-(?- + ;%] GOV (xt,xt') = 8(t — t')6(r — 1)

ot
and
.9 Vi 1yt
[18t+2_r;] G(rt,r't") i

= §(t—t"e(r—1')—i / Byo(r,y)Cylxt, yt, yt+,'t).
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In this approach, M is introduced by
—i/d3yv(r,y)G2(rt,yt,yt+,r't')

= /dr'/dSy' M(rt,y' " \G(y'r' ,x't). (23.3)
This equation shows the relation between M and G3. We must now identify

the M introduced in this way as the proper self-energy. We can do this by
convincing ourselves that the equation of motion

is satisfied by the solution of Dyson’s equation

G(rt,r't") .
— G(O)(rt,r't')+/dr,/dSyI/dT/dSyG(O)(rt,YT)

xM(yr,y'TG(y'r, 't).



Chapter 24

Diagrammatic analysis of the
Green’s function G(k,w)

We start by re-writing the perturbation expansion of the Green’s,function in
the space-representation in a manifestly covariant notation. As is customary
in relativistic problems, we define

z=(r,t) dz=d3rdt
k=(kw) dYk=d3kdw

and use the ‘Minkowski scalar product’
k-z=k -r—wt.

The use of the single letter k for (k,w) should not lead to any confusion.
However, as a precaution we will only abbreviate |k| with % in unambiguous
cases, such as in combination with d3k.

Up to this point, we had established that each interaction line gives a
contribution (see figure 24.1)

/dte""tl/dSr /dBr'v(r, r').

If we now set

285
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r>v‘\r\f\r\./\l\/'<'f

Figure 24.1 A general interaction line with its vertices.

u(z,z') = v(r, r')6(t - t')

the diagrammatic representation in figure 24.2 becomes

/dx/dz' u(z, z')

by modifying Feynman rule (5) (which says that all indices must be inte-
grated over). This agrees of course with our earlier expression,

/dz/d:x;'u(z,z') = /dt/d3r/dt'/d3;'v(r,r')6(t——t')
= /dt/d3r/d3r'v(r,r').

The convergence fator e~ €Il will hereafter be omitted for ease of notation;
it must of course be reinserted when any expression is actually calculated
explicitly.

Figure 24.2 The vertices rt and r't’ of an interaction line are relabeled in
the covariant notation.

It is evident that this notation makes a covariant formulation for rela-
tivistic systems possible, where the interaction has a finite speed of propa-
gation and is no longer described merely by a delta-function in time. In this
context, the time does not play a special role any longer; we can omit Feyn-
man rule (1) as well as the requirement that the interaction lines must be
horizontal. The diagrams that we have studied so far are frequently drawn
in a different way; some examples are shown in figure 24.3. From here on,
we will make use of both representations.



S
oo ol )
9-¢o -

Figure 24.3 When Feynamn rule (1) can be omitted, time loses its special

meaning and many diagrams can be drawn differently by allowing for the
interaction line not to be horizontal.

In what folloes, we will restrict ourselves to translationally invariant
systems, which do not explicitly depend on time. We said in Chapter 15
that in this case, the single-particle Green’s function only depends on the
difference between the space and time coordinates, and that we can use
four-dimensional Fourier transforms given by

Gas(2:9) = 757 )4fd4ket(a: DEG,5(k)

and '
Gap(k) = / &4z — g) e~ E=VkQ 4z, ).

We Fourier transform the interaction potential in the same way:

u(z — z') ke~ tk(z-z )u( k)

where the Fourier transform
u(k) = /d4(:c e~ ik(z-z )u(z - 2)

for non-relativistic systems becomes
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u(k) = / B(r = ) =)y _ 1) / d(t——t')é(t )

o

-

=1
= (k).

In order to derive the Feynman rules for the Green’s function G,g(k),
we must first Fourier transform the diagrams which appear in the space-
representation. We do that in the example shown in figure 24.4. The con-
tribution from this diagram is

1|21 Z/d4 /d4x Ggo/z(w,xl)

«\,\’

t-—>

- Ao e

z\A'

xu(:vl,x’l),w [ hm G (:c ml)] G( (x'l,y)

diq | ,
X/'(Qﬂ_‘)'; 1‘1(2:1—1:1)u(q) MI/(2 )4GE\(')) (p)w

X L lim e—pr“l—ti)] / (_ﬁ!’;qeip’(xi-y)aﬁ%(p’).

1—1

Figure 24.4 A first-order diagram for the Green’s function.

We replace the time limit by

. . i . .
lim e~ #wr(t1i=t) = |j;m eiwe”
t\ -t} n—0t

where we agree to take the limit 7 — 0% at the end of the calculation.
After this manipulation we can, for esthetic reasons, insert a new additional
factor exp [-—z'wp(tl - ti)], since this factor is unity anyhow, due to the delta
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function 6(ty — t]) contained in u(zy,z}). This transforms the underlined
usual scalar product to a Minkowski scalar product, and we can then write
for the whole expression

4 4.1 oi(kz—p'y) (0)
n-+0+2(27r (2m)18 E/d4 /d4 /d /d HrGash

/\A’
xu(g) e [e“P7G ) (p,wp)] GOL ()
My

/d%lez(q k+p)x1/d4 ei(—a-p+p')z]

I N

-

(27f)“5(‘*)(q-k+p) (2m)46(4) (p' —q—p)

Thus, we obtain a four-momentum delta-function at each of the two vertices
at z1 and z}. This results in *

: zk (z—y) ,
m, 2 Z/ (2m)* (27r DG k)l - p)“,
X [e"”“"’G(ﬁL(p,wp)] GOk,

Since the full Green’s function is obtained from the Fourier transform

dk ik (z—
Gag(x,y)zf(Qw)4ek( y)Gaﬁ(k)

we can interpret the expression

: 1 d4p :
lim - 2/ ()" Gg?/\)( )U(k—P);}z; [eznprf\(,)L(p,wp)] G;(B)ﬁ(k) (24.1)

as the diagram in figure 24.5, which contributes to G,g(k).
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Figure 24.5 After Fourier transforming the contribution from the diagram in
figure 24.4, the contribution can be represented by this diagram for G ,5(k).

This example lets us deduce the contribution of a general diagram to the
Green'’s function:

(1) For each u(z,z’), there is a u(q).

(2) Each GO (z,y) gives a GO(k).

L]

(3) The prefactors and signs arising from the topological structure and the
number of interaction lines remain unchanged by the Fourier trans-
form.

(4) In the example, we momentum was conserved at the internal vertices.
It is easy to prove the assumption that this holds for general diagrams.
For example, the diagram in figure 24.6 gives

GO, z)u(z, c)GO(z, a)
1 . .
= o= / d*z / dik e (t=2) GO (k) / dtqe'? (==)u(q)
X/d4peip'(x_a)G(O)(p).

b

Figure 24.6 A general vertex of an interaction line.

The integration variable z does not appear in any Green’s function,
and the integral over z can be performed with the result
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e [ 4% [ at [atpeli=er GO (o) GO )

X (21)4 /d4x et(=k+atp)z
v

=6(4)(g~k+p)

vl

All integrations [ d*z which belong to internal vertices can then be
performed explicitly, and leave a momentum- and energy-conserving
delta function 6() at the corresponding vertices. We note that pre-
cisely the exponential factors that are necessary for the corresponding
calculation of the adjacent vertices remain in this equation.

(5) Because of the §-functions, several of the momentum integrals which
arise from the Fourier transforms can be performed. A few integrals
which are independent from one another, for example integrals over

momentum running through particle loops, remain and yield each a
factor of (27)~4.

(6) In each diagram, there is a sequence of G(%)-lines which connect the
external endpoints with one another. Since all vertices inbetween con-
serve momentum, performing the integrations over the §-functions at
the endpoints results in the same momentum on the external legs.
The two remaining exponential factors can then be combined. Hence,
all diagrams that contribute to the Green’s function have a common

factor of )
4 ik-(z—vy)
(4ﬂ_)4 /d ke ..

(This also holds for the diagram that consists of a single G(O)-line.)
Since the sum of all these diagrams yields the full Green’s function

1
(2m)*

we obtain by comparison with the Fourier components the sought-for
perturbation expansion of G(k,w).

G(z,y) = / dtk eF (2-9 Gk, w)

After these considerations, we can formulate the Feynman rules for G(k,w):

(1) The Green’s function Ggg(k) is represented by a line labeled by the
momentum k and with the spin-indices a and 3 labeling the end-points
(figure 24.7). Each such line gives a factor

(k| = k) | 8kr ~ [K]

G(O) k = lim 60,
ap(F) = Jim, 8ap w—e) +ig w—e) it
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where, for example

e = |k[?/2m.

Figure 24.7 The Green'’s function G(aog(k).

(2) An interaction line is labeled by the momentum ¢ transferred by the
interaction, and the vertices are labeled by spin-indices a,a’ (first
vertex) and 3,3’ (second vertex) (see figure 24.8). Each interaction

line contributes a factor u(q) aa -
Bs!

Figure 24.8 Labeling of an interaction line and its vertices.

(3) G(©)-lines which begin and end on the same interaction line are inter-
preted as e7G(0)(k,w), where the limit 7 — 0% is taken at the end
of the calculation (figure 24.9).

Figure 24.9 Examples of diagrams in which the Green’s function has its
endpoints on the same Interaction line.

(4) Momentum is conserved at each vertex. This is illustrated in figure
24.10.
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k+p

k

Figure 24.10 A momentum q is transferred by the interaction to the Green’s
function connected at one vertex.

(6) All four-momenta that appear (after satisfying momentum conserva-
tion) are integrated over. When the integrals are performed, each is
multiplied by a phase-space factor:

(2m)~* / d*p.

(The four-momentum k, which enters with the Green’s function G(k)
at one endpoint and leaves at the other, is of course not integrated
over.)

*

(6) The sign of the diagram is given by (— )e where £ is the number of
closed G(0)- loops.

(7) The prefactor of a diagram of order n is

O
2nn!

for an indexed diagram of order n

()™ for an unindexed diagram of order n

With these rules, we can easily translate the connected Green’s function
diagram of first order shown in figure 24.11. The result is

(-5 2(2 )4/d4k1 U(O)zlf):

z\)\'

(")(k)G(ﬁ},(k) lim, 1m0 (ky).

Because of momentum conservation, only the ¢ = 0 Fourier component of
the interaction potential appears. (In the case of the electron gas, this
one is explicitly omitted, since it is canceled by the positive ionic back-
ground.) We also note that the two G(0)(k)-factors only couple to the third
one through the spin-indices. Hence, the Green’s functions factor out for
spin-independent interactions.
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Figure 24.11 The so-called tadpole diagram of the Green’s function.

Next, we consider Dyson’s equation for translationally invariant systems.
In the space-representation, this equation is

Gaﬁ(z - y)
= Gl=—v)
+Z/d4“‘1/d4 (@ — 21) My, (21 - 24)G ua(e] - v)-

(24.2)

We emphasize through the notation G(z — y) efc., that for such systems,

G(O) and consequently also M, only depend on the difference between
the arguments. A simple direct calculation, or the convolution theorem for
Fourier transforms, show that by Fourier transforming, the (convolution)
integrals become ordinary products:

Gag(k) = GO (k) + Z ZG(O)(k)M,\u(k) G,u5(k) (24.3)
where M), (k) is the four-dimensional Fourier transform of M) ,(z — y).
If the interaction is spin-independent, G, G(®) and M have the form
0
Gop(k) = 5apG(k) GLP(k) = 62pGO(K) Mos(k) = o5 M(R).
In this case, Dyson’s equation has the simple form
G(k) = GO(k) + GO (k) M (k)G (k) (24.4)
from which we can solve directly for G:

G(k) = GO (k) 1
1= GOWM®E) ~ [¢O®)] " - M)

The function G(©® is given by

(k| kr) , O(kr = [K])

(0)
G\ (k) = 5—>0+ w_€£0)+2.€ w—c@ i

The inverse is
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[G(O)(k,w)] -1 =w - cg)) where, for example fg)) = [k[?/2m

irrespectively of whether |k| > kp or |k| < kz. We then obtain the impor-
tant representation

1
W — e,(co) —-M(k,w).

This is an exact representation of the full Green’s function for translation-
ally invariant, spin-independent and not explicitly time-dependent systems.
Since we know that the poles of the Green’s function give the exact exci-
tation energies of the system, the problem of finding these is reduced to
solving the equation

(24.5)

Gk,w) =

w — efco) - M(k,w) =0.
It is important to emphasize that any approximation that is used for the
self-energy means a summation of infinitely many diagrams for the Green’s
function. If we for example take only the first-order diagrams gt(l) and ggl)

in the proper self-energy, M ~ M (1), we obtain the approximation for the
Green’s function shown in figure 24.12. ’

{ p r

n+M+$+ M/s-}-#ﬁ-:ﬁ-
| !

;} + + I + £ + +
Figure 24.12 Even the simplest first-order approximation for the self-energy
means that an infinity of diagrams are included in the Green’s function.

—>
I

!
= O
J

Finally, we will also express the total energy of an interacting system
through the self-energy. In Chapter 15, we derived the equation

i Q. wr | k|2
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With Dyson’s equation and Tr {G,g(k)} = Tr{6,5G(k)} = 2G(k), this

equation becomes

2
%W

Eg = .
w— % - M(k,w)

{2 lim [ &3k / dw '™

_,'W lim, (24.6)



Chapter 25

Self-consistent perturbation
theory, an advanced
perspective on Hartree—Fock
theory

In what follows, a self-energy diagram that does not contain any self-energy
insertions other than itself will be called a skeleton. Examples of skeletons
and diagrams that are not skeletons are given in figure 25.1. These skeletons
are ‘dressed’ by inserting all possible self-energy insertions in each G(%)-line
and summing (see figure 25.2). Finally, by the summation all G(%)-lines are
replaced by full G-lines. One can easily convince oneself that the sum of all

Skeleton D A ,< ), [:O X
/ ) } ] e
Not skeleton @ M\/@O
’ / LR N}

Figure 25.1 The diagrams in the top row are skeleton diagrams. The dia-
grams in the bottom row consist of several self-energy insertions and are not
skeletons.

207
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such dressed skeletons produces the full irreducible self-energy:

M = S e +D+[D . X - (25.1)

all dressed skeletons

e T+
3008 o~

+

Figure 25.2 The skeletons are dressed by inserting all possible self-energy
insertions at all G(®-lines.

If the sum is truncated after a finite number of dressed skeletons, for exam-
ple after the two first-order dressed skeletons, we obtain through Dyson’s
equation an integral equation for the Green’s function:

Joblbob

This equation must then be solved self-consistently; such approximations
are called ‘self-consistent perturbation theory’.
In what follows, we let

2
Hy = /dr vi(z) [-% + u(r)] ()
Vo= %/dx/d::'wf(r)wf(;r’)v(x,r')w(r')w(x).
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(Here z denotes both space and spin variables as before; £ = (r,s).) The
Hamiltonian H = Hg+ V does not depend on time. Therefore, it is suitable
to go over to a Fourier representation with respect to (t — ¢'):

G(zt, 't) = /d—c‘ie"iw(t—tl)G(x,x',w)

27
G(O)(:L‘t, x't') — /%ﬁe_iw(t—t’)G(O)(z, zl’w)
™
NI(a:t,:c't’) — /g—:e—iw(t"t')ﬂf(r,x’,w).

If these expressions are inserted in the space-spin representation of Dyson’s
equation, we obtain a corresponding Dyson’s equation for the Fourier com-

ponents:
G(z,z',w)

= GO, ,w)+ / dy/ / dy GO (z,y,w)M(Y,y,w)G(y, 2, w)
) (25.3)

We will now prove that Dyson’s equation in this approximation, equation
(25.3), is equivalent to the Hartree-Fock procedure derived in Chapter 7.
The approximation for the self-energy can be represented as shown in figure
25.3. These diagrams are equivalent to the equation

M(zt,z't")
= ()b(t - t)5(z — ) / doy / dty G(erty, 21tF Yo (z, 21)8(t — 1)
+(=)0%v(z, z")6(t — t")G(xt, 2't")
= §(t—-t") [—i&(:c - x')/dx1 G(z1t, z1t)v(z, 1)

+iv(z, 2")G(xt, :c't’*')] .

If we use G(¢,t*) = G(0,(tt —t)) = G(0,0%), and perform the trivial
Fourier transform with respect to (t—t), we obtain the following expression
for the irreducible self-energy:

M(z,2') = 6(z— a:’)/dz:l [-iG(210,2,0%)] v(z, 21)
—v(z, 2') [-iG(20,2'0)]

which is frequency-independent Furthermore, from the relation equation
(15.15) between the Green’s function and the density matrix we obtain

M(z,z') = 6(z - ,z:')/d;nl plzy)v(z, 21) — v(z, 2" )p(z, 2'). (25.4)
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In this approximation, the irreducible self-energy corresponds precisely to
the Hartree-Fock potential, equation (7.3) (disregarding the external part

u(z)).
xt
xt 3
P +
X f x1f1 Ifl
b%

Figure 25.3 Self-consistent first-order approximation for the self-energy.

With the operator
2

ho(z) = -—-§v7n— + u(z)

the Green’s function G(O)(zt, z't') satisfies the equation of motion (cf. equa-
tions (16.8) and (16.9)):

[i—% - ho(x)] GO (zt, 2't!) = §(z — 2')5(t — t').

By Fourier transforming with respect to (¢ — t’) it follows that
w — ho(2)] GOz, 2\ w) = b(z — /). . (25.5)

If we operate with (w — ho(z)) on Dyson’s equation equation (25.3) and use
equation (25.5), we obtain

[w— ho(2)] G(z, 2’ ,w) - /dy M(z,y,w)G(y,z’',w) = §(z — 2’). (25.6)

If we insert the approximation equation (25.4) in this equation, we obtain
[w—-hyr]G=1. (25.7)

This is the equation of motion for the Green’s function for a system of in-
dependent particles, which move in an effective, self-consistently determined
potential, which is precisely the Hartree—Fock potential. Thus, the state-
ment is proved. For the sake of completeness, we will now also express the
Greens’ functions obtained from equation (25.7), which we will denote by
Gyr, in terms of the Hartree—Fock single-particle orbitals. We have

harej(z) = €;pi(z).

If we denote by ¢! and c; the creation and annihilation operators for these
single-particle oréitals, we can express the field operators through these

orbitals:
W(2) = 3 _es(2)e; and $H(@) = 375 (x)el.

J J
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In the Heisenberg picture, which is identical to the interaction picture for
independent particles, we then have

Ylat)g = Y(et)r = ) piz)ei(t)r = Z@j(r)e"i‘f‘Cj,
J

J
and, correspondingly,

Wity Zso (z)etiertc].

The Green’s function is then
iGyr(xt, z't'
= (2| T [p(=t)uv! ('] | 20)
D e g (@)pi (')
ik

x |10t~ (<I>0 | chk | <I>0) —0(t' —t) (<I>0 | ckcJ | <I>o)

=§; kﬂ(e,—e;-) =6, kﬂ(e;:-—-e_,)

Thus, if the orbitals in the ground-state Slater determinants are occupied up
to the maximum single-particle energy ¢r, we obtain for the Hartree-Fock
Green’s function:

iGyp(zt, 2't')
D_¢i(2)gj(a)e 1)
j
x [0(t —t')0(e; — ep) — O(t' — )8(ep — ¢;)] - (25.8)

Finally, we obtain by Fourier transforming

Gyr(z,z'w) = hm Z(p] 1:):,01(2:') [ e = +P;37 + j(jp;]———ejzz}] . (25.9)

[t can be verified by direct substitution that this Green’s function satis-
fies the equation of motion equation (25.7). The only thing needed is the
completeness of the Hartree~Fock single-particle basis.
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The expansion of M in a series of dressed skeletons presents an interesting
possibility for generalizing the usual Hartree-Fock procedure by including
higher orders, for example as shown in figure 25.4. This diagram corresponds

to

(—)1i2G(:ct,;z:'t')/dy/dy'v(;c,y)v(:v',y')G(yt,yltl)G(y’tl:yt)o

xt yt

1,4 P!

xt yt

Figure 25.4 This second-order diagram can be included in the equation for
M to yield a higher-order Hartree—Fock approximation.

In this case, M does really depend on the time difference (t — t'), i.e.,
the Fourier transform will, in contrast to the Hartree—Fock approximation
equation (25.4), depend on the frequency w. It should be noted, that by such
an approximation the integral operator [ M(z,y,w)__dy in general is not
hermitian, so that the corresponding term in equation (25.6) cannot readily
be interpreted as an effective non-local single-particle potential. In spite of
this, we can also in this case obtain a representation of the Green’s function
analogous to equation (25.9). To obtain this, the eigenvalue problems

[en(w) — ho(z)] fn(z‘,w‘) - /dy M(z,y,w)fn(y,w) =0 (25.10)
and
[en(w) — hg(z)]]?;b(z,w) - /dy M(y,z,w)*ﬁl(y,w) = 0. (25.11)

are first solved for arbitrary w. A simple calculation [19], shows that

n(w) = e(w) (25.12)
JWh@a o) = b (25.13)
Yol wh(yw) = 6y—y) (25.14)

In contrast to the eigenvalues (cf equation (25.12)), the left and right
eigenvectors in general are not complex conjugate:

faly,w) # fuly,w)".
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The Green’s function then has the representation

Glz,e'w) =Y fn(2,w)fn (@', @) (25.15)

w — en(w)

which is readily demonstrated by substitution in equation (25.6) and using
equations (25.10) and (25.14). If the equation

w—én(w)=0 (25.16)

has solutions wy,, for fixed n, the Green’s function has, according to equa-
tion (25.15), poles at wp,. These poles are in general complex. In the
next chapter we will thoroughly discuss under which conditions the real and
imaginary parts of these poles can be interpreted as excitation energies and
inverse life-times of quasi-particles.

The equation (25.15) is an ezact representation of the Green’s function if
the ezact irreducible self-energy is inserted in equations(25.10) and (25.11).
In this case, we can compare with the (also exact) Lehmann-gepresentation
of the Green’s function, which was derived in Chapter 15 for translationally
invariant systems (cf. equation (15.28)):

G(z, 2’ ,w)
= i |3 (0 | () | ORFI(ENH | gi(’) | 95
n—0+ | 4 w—p— (BN - EN¥Y 1 ip

(g [ 9h() |11 | ¥(=) | ¥Y)
+; w_/‘+(Ef,Y_1 --Eév_l)—-iq . (25.17)

Since the poles in equations (25.17) and (25.15) agree, the values wy, =
€én(Wny) = €m obtained from equation (25.16) must correspond to the exact
excitation energies, reckoned from the chemical potential, for the (N + 1)-

particle system

em = p+ (ENTL_ gV+1y _p (25.18)
or for the (\V — 1)-particle system
em = p— (EN"V—EN-Y 4 ip. (25.19)
S~imilarly, for the corresponding eigenvectors fn(z,wny) = ¢m(z) and
fn(z,wny) = Fm(z), we must have
pm(z) = (¥ | ¥(z) | )

} forem >u (25.20)
P(z) = (U ph() | 00) = o1 (2)
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and
om(z) = (EN-1|y(x) | ¥))

Fm(z) = (V) | yl(z) | UN"Y) = op,

We then obtain the following representation for the Green’s function:

} for e <y (25.21)
(=)

Glz,o" W)= om(2)m (&) (25.22)

W — €m

If we consider equation (25.10) at the frequencies w = €, (= wn, ), we obtain

ho(z)pm(z) + / dyM(z,y,em)em(y) = empm(z). (25.23)

This ‘non-linear eigenvalue problem’ gives an important re-formulation of
Dyson’s equation. It was first obtained by Schwinger [20].

L]



Chapter 26

The quasi-particle concept

We recall that in Part I the first part of this book, which was concerned

with the foundations of many-particle physics, we several times used various

mathematical tricks to go from an interacting many-particle system to a

system of non-interacting ‘quasi-particles’. At this point it is ndw possible for

us to introduce these in a systematic way and to understand them correctly.
'The Green’s function for free particles is (cf. equation (15.23))

iGO(k,t) = 4(t) [e—ifkte(m — kp)| (particle contribution)
—0(—t) [e“ickte(kp — ]kl)] (hole contribution).

This Green’s function consists essentially of a time-dependent exponential
function exp(—iegt), which says that a particle, or a hole, with a well-defined
energy € propagates in time. If a particle which has been added to the
ground state of a many-particle system interacts with all other particles,
the Green’s function will in general be very complicated. However, we may
ask under what conditions the time development of such a system can be
interpreted as the propagation of a ‘particle’ with a reasonably well defined
energy and a sufficiently long life-time. In other words, we ask under what
conditions the propagator has the form

G(k, t) ~ é—ie(k)te—f‘(k)t.

"The dispersion relation ¢(k) and the life-time 1/T'(k) then reflect the inter-
actions with the other particles; the effect of these interactions can be called
the polarization of the medium. The initially ‘bare’ particle to a certain
extent drags a polarization cloud with it and so becomes a ‘dressed’ particle
with a different dispersion relation and life-time. We have already learnt
about one such quasi-particle: the Hartree-Fock electron, which drags with
it the exchange hole and consequently has a modified dispersion relation

e(k).

305
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To answer the question whether the Green’s function of an interacting
system can be interpreted as a quasi-particle propagator, we must backtrack
a little. We consider once again the Lehmann-representation of the Green’s
function for translationally invariant systems (cf. equation (15.28)):

2
<w£”+”<k> e L e3)| /| )

Gkk,w) = lim l
n—0+ ; — - wfl k+1)+“7

<w$3"‘”(—k) e 1 €3] 7w | wd)

w — y+w(N_k1) in

+2

Here
(1’\2&1) = p(VE) 1K) — E(Nﬂ) S 0.

The first term in the expression for G has a pole at

w=p+ w(NH) in
and the second term has a pole at
N-
w=p- wfl kl) + .

A

xxxxxﬂ
Vxxxx

Figure 26.1 Location of the poles of the Green’s function in the complex
w-plane.

We introduce the retarded and advanced Green’s functions:

(Yo | {w(rt)H,wf(r’i')H} | o)
1 R rt,r'ty = —t
GR(rt,t't) = o(t -t AL (26.1)

(o | {w(xt)rr, wH ('t } | o)
(Wo | Wo)

iGA (et 'ty = —8(t 1) (26.2)
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where the curly brackets denote the anti-commutator of the field operators,
as usual. The Lehmann representation of G and GR/4 only differ in the
sign of the small imaginary part in the denominator:

N+1) N NigN
, OICIR WA AR 7S
GR(k,w) = lim Zl i (N+1,)

n—0+ w=p—w, " +in

(7D Loy o))" jedy | wd)

w=prup +in

+2.
n
with poles at

and
— (N-1) _ ..
w—l,‘—"wn'_k "‘117,
2
(V00 | o] 19| /w1 o)

GAk,w) = lim
n—0+ Xn: W—p— ng\iﬂ) —in

(W) o L8| /(8 | )

n w-—p+wn,_; —in
with poles at

N+1 .
w =u+w7(z,k+ )+m

and
w=pu- w( -)+zn

In contrast to G, the Green’s functlons GER and G4 are analytic in the
upper and lower w-plane, respectively. We note that

GR(k,w)* = GA(k,w) forweR. (26.3)

For 4 # w and g € R we can in each case calculate the limit n — 0 with the
result

p<w : Gkw)=GRkw) penr (26.4)
p>w : Glkw)=0%kw) peRr. (26.5)

We insert these relations in

40
G(k, t) :/ gw ”zth(k w)

oo 2T
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\ © \ ©

!

- xxxxxxrxxxx\
xxxxﬁxxxxxx’ i ~

Figure 26.2 Location of the poles of the retarded and advanced Green’s
function.

which yields

T . +o0 g : .
CKkJ):u/ gge—w”GAﬂgw)+:/ HemwtGR(k,w). T (26.6)
—oo 2T 4 27 )
We use the integration path in the complex w-plane shown in figure 26.3 to
further evaluate these integrals.

A ©

e —n —— >

g ¥,

Figure 26.3 Integration path for equation (26.6). The integration path is
divided into two pieces Cy and Cy with circular arcs ¥y and 73, respectively.

We have
dw it~
Ll -2—7;6 G (k,(.d)
p : p=100 :
= / gcie““”tGA(k,w)+/ iLie'"""’tGA(k,w)
oo 2T L 2

+/‘ﬂﬁa%“0%kw)=o
Y

I271'

since G(k, w) has no poles below the real axis. The exponential makes the
integral over the circular arc go to zero in the limit of infinite radius so that
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the first term for G(k,t) becomes
Podw it a /“ dw _iweqa
—e Gk, w) = —e Gk, w).
»/;oo 27 ( ) p—100 27 ( )

We rewrite the second term of G(k,t) in equation (26.6) in a corresponding
way, but now we have to take into account the fact that G® may have poles
at w, with residues z, in the enclosed area:

/ fi_‘ﬁe—ithR(k,w)
Cs 2

o0 X .
— / gﬂe-—tthR(k,w)_'_/ d_we—zthR(k’w)
u 2w In 27 |
=0

u .
+/ gie—-zthR(k’w)
m

—ico 2T

—f E :zue—zwnut. R
v

Il

Thus,

0 dw s s —i H dw _;w
/ 5. ° wiGR(k,w) = -—zZz,,e """t—/ 3¢ wiGR(k,w).
p v p—ico

From these expressions, we obtain the following result for the Green’s func-

tion G(k,w) after separating w, in real and imaginary parts w, = ¢, — ily:
- T | .

Gk, t) = =i} zeiovteTut 4 et G (ke w) - GP(k,w)] .

y U—100 2

Suppose now that the pole at wg = g — ilg is closest to the real axis of all
poles, i.e., g < T, for v # 0. For sufficiently large times, we can then write

_iz zye—“”te_r"t ~ -—izoe_"fote_rot.
7

Of course, we cannot wait so long that the contribution from this pole dies
out; thus, we consider times of the order

(26.7)

For such times, the Green’s function G(k,t) is

. I ,
G(k,t)z~izoe“’f°te“F°t+/ %“ie‘*wt [GA(k,w)——GR(k,w) ‘

p—tioo <7
(26.8)
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All that remains Is to investigate under what conditions the integral may be
neglected.

The quantity (eg — ) > 0, i.e., the distance from the Fermi energy
to the quasi-particle energy, is a measure of the energy and hence of the
deviation from the ground state to which the quasi-particle is related. In
order to guarantee a reasonably well-defined energy, the quasi-particle must
propagate at least for a time ¢ > 1/(¢o — p), according to the energy-time
uncertainty principle. We will now show that this condition together with
equation (26.7), i.e.,

1 1

LtL — 26.9
€0 — M Io (26.9)

are sufficent conditions to let us neglect the integral term. The condition
g €« € — p is contained implicitly in this inequality, i.e., the life-time of
the quasi-particle must be large enough for an accurate measurement of the
quasi-particle to be at all possible. Hence, the pole must be very close to
the real axis.

The integrand vanishes for large imaginary parts ofw. Hence, only the
contributions close to the real axis play any role. For an estimate of the
integrand, we can then take w to be real

GR/A(k,w) m GRIA (K, w,eq).

Under the assumption discussed above, i.e., that the pole is very close to
the real axis, the poles dominate the integrals for real values of w, so we

have
20

R ~—20
G (k’w)~w—eo+ifo

and by using equation (26.3):

A _ [~R Y 0
GAk,w) = [G (k,w)] S rpeaoe

Hence, the integral in equation (26.8) is approximately

p :
I = / i(:)-e‘""t [G’i(k,w) - GRk,w)
n

—ino 2T
m d —twt
~ 2iz0r0/ L ¢© -
p—ico 27 (w —€)? + I'}

and with the substitution y = i(w — p), w = p — iy, dw = —i dy the integral
I becomes

ol _; >0 —yt
= 0 Oe—tut / dy 3 € ’ ’
m Joo LG+ (o — g+ iy)?
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If now ¢t > 1/(eq — p), then exp(—yt) is different from zero essentially only
if y K €9 — p. However, in this region the denominator is

g+ (co — p+iy)* » T + (0 — 1) = (0 — p)?

so that
I~ _zoroe—-iyt /oo dy e—yt _ _zOFO e—t#t
™ 0 (€0 — p)? 7 tleo — p)?
N et g — i)
7[' - -~ —
<1

for t ~ 1/Tg. Thus, the integral is much smaller than |zg| under the given as-

sumptions, whereas exp(—TIgt) & 1 in the time interval under consideration,
so that _

-—iZQe—tcote—Fot ~ IZOI.
The contribution from the integral in equation (26.8) can then be neglected.
Only the contributions from the poles next to the real axis remain:

G(k,t) ~ —iz(k)e i c(Rie=T (k) gor 4 5 .

In this equation, the dependence of the position and residue of the pole on
k are emphasized by a transparent change in notation.

In the considerations above, it was assumed that ¢ > 0. For ¢ < 0, one
obtains a completely analogous expression for the propagation of ‘quasi-
holes’. In the derivation, the integration path must in this case close in the
upper complex w-plane. In all, the final result is

G(k,t) = —iz(k) [9(t)9(c(k)—,u)e—"‘(k)te—l’(k)t
— 0(—=t)0(p — 5(k))e—i€’(k)te—f‘(k)t] + I(k,t)k (26.10)

where all terms discussed which are negligible under the condition equation
(26.9) are included in I(k,¢).

Any approximation for the irreducible self-energy gives an approximation
for the Green’s function. From the representation given in equation (24.5)

Glk,w) = L (26.11)

the pole, and consequently the dispersion relation and the life-time of the
resulting quasi-particle, can be read off immediately. We will now investigate

the approximation
M~ MY (26.12)
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(1)
X

Figure 26.4 The self-energy diagrams gt(l) and g( ) in the Hartree—Fock
approximation for M.

where M (1) is the self-energy in the Hartree-Fock approximation (see figure
26.4), in detail. Since the Hartree-Fock equation for translationally invariant
systems is satisfied by plane waves, it is clear from the considerations in
the previous chapters that the approximation equation (26.12) will give the
dispersion relation and life-time for the Hartree-Fock quasi-particles. In
what follows, we will explicitly prove this.

The first diagram, gt(l) , only gives a contribution for the ¢ = 0 Fourier
component, because of momentum conservation:

o = (1) znl_l»rclr)l (27r)3

= —iv(q = O)/ (qu)s G(O)(q’,t = 0+)

.

5-u(g = 0)e™G ©)(q’,w)

d3q /
= — : eta’(r—r') ~(0) -0t
iv(g O)(,_li.rrr)lqo/(Qw) G(d',t=07)

-

=G(0)(l‘,l",t=0+)

= v(g=0) [—z’G(O)(r,r,t = 0+)]
- wa=0 5]

where in the last step we used the relation between the Green’s function and
the particle density, which we proved in Chapter 15.

The second diagram, ga(,l), yields (for instantaneous, i.e., frequency-
independent, interactions)

gtV

0.
= lim
=) zn—>l o+t (27')3

/ & 1G()(q,w)u(k - q).

Insertion of the explicit expression equation (15.26) for G(9) in this equation
yields

i [P [ on i { ol = ke) | Oke—la) |\ _ o

e
n—0+ (QTF)S 2 E—0+ W — 65,0) + l£ w — ( lf
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By making the substitution wnew) = ego) — (old) together with the repre-
sentation equation (15.24) of the step-function we finally obtain

3 —iwn
(1) _ _d_q. ine® . fl_“i €
gl? - t (27!')3 e(lql kF) l—lyr(l’)l“" = 1 {I_%]:’_ 27‘, —w + 25
I =—if(—n)=0
. d —twn
~ O(kr ~ lal) lim, ened) fim [ S ° o(k — q).
n—0

gm0t | 21 4w+ i€

——ib(dn)=—i ]

We obtain in total

N d3q
MWk, w) = MY (k) = (g = 0) [5] / Gyt tkr = labo(k - ).
(26.13)
Thus, the pole of the Greens’ function equation (26.11) is at
0
w= o + MY (k)
t.e., we have a quasi-particle with
- a dispersion relation
d3
)= g+ ola=0) [5] - [ csotbe - laute - a)

This is precisely the dispersion relation equation (9.4) (for k4 = k_ =
kr) that we derived for translationally invariant system in the Hartree-

Fock approximation;

- an imaginary part ['(k) = 0, i.e., the life-time of the Hartree—Fock
quasi-particle is infinite.

We end this example by quoting from Chapter 10 the value of the integral
in equation (26.13) for the electron gas:

2 k2 _k2
L o PO
T Qkkp

MO (k) = - n|FE k” . (26.14)

kp— k

Up to this point, we have been able to say that we can, under certain
conditions, interpret the full Green’s function as a quasi-particle propagator.
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The example of the Hartree-Fock electron showed that such quasi-particles
can indeed appear. The question now arises if such quasi-particles can ap-
pear in any system, or if they are very singular phenomena. The answer

18:

In any many-particle system for which perturbation theory
converges, there are quasi-particles in the vicinity of the
chemical potential pu.

To prove this statement, we use tle following fact:

lim Im[M (k,w)] = sgn(p — w)e(k)(w — p)? (26.15)

w—

where c(k) > 0; ¢(k) € R. We will now outline the proof (for details, see
[21]). In the first step of the proof, one shows that

(1) limy—, Im[A/I;(i))] =sgn(p — w)(w — p)2.

In the next step, one shows that the contribution from the corresponding
dressed diagram behaves in the same way:

(2) limy— Tm[Moi)] = sgn(p — w)(w — ).

{2) =~ (2]
g( g[

Figure 26.5 The lowest-order contribution to the life-time of a quasi-particle

(2)

comes from the skeleton diagram g;*’. The corresponding diagram with the

<2

dressed Green’s function is §}

To do this, one uses the representation equation (15.29) for the Green’s
function:

G(k,w) = lim

0 df[ Alk, ¢) B(k, ¢ }
£-0t Jg w — ‘

p—e+if w—p+e—1i€

The dependence of the integrand on w corresponds to the frequency depen-
dence of G(O)(k,w), which allows for using the estimate (1) in (2).
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Finally, in the last step one shows that as w — u, the imaginary part of
an arbitrary dressed skeleton either behaves as (2) or vanishes faster than
(w—p)%. According to equation (25.1) the irreducible self-energy is obtained
from the sum of all dressed skeletons, from which equation (26.14) follows
for any system for which perturbation theory converges.

The poles

w(k) = e(k) —I'(k)

of the Green’s function are determined by the equation
w — el — Re[M(k,w)] — ilm[M (k,w)] = 0. (26.16)

On the basis of equation (26.15), we will now show that for excitation en-
ergies close to the Fermi surface (i.e., for e(k) = u), the existence condition
for quasi-particles, I'(k) < e(k) — p, must be satisfied.

To obtain an estimate for I'(k) (for the case e(k) ~ u), we expand
equation (26.16) about the exact real part of e(k):

0 = w —-cio) - M(k,w)

~ e(k) - ? — Re {M(k, e(k))} — i Im {M(k, e(k))}
+ [1 - 3%7 Re {M(k,w')leze(k)J [w—e(k)].

In the expansion of the imagainary part of M, only the lowest-order con-
tributions will be considered, since the imaginary part is in any case very
small in the vicinity of w & u = e¢(k). We obtain the following estimate for
I'(k):

Im {M(k, e(k))}

11— 2 Re {M(k,w")}

I'(k)
w'=¢(k)

_sgn[p — e(k)] e(k) [e(k) — ] .
1— 52;Re {M(k,w')}

w’'=¢(k)

For quasi-particles, i.e., for e(k) > p, T is positive and is near the Fermi
surface negligibly small compared to e(k) — s, due to the factor (e(k) — p)2.
This is precisely what we wanted to show.

For quasi-holes, T is negative, which in view of the form e~T(®¥)t for ¢ < 0
is quite sensible. Thus, we conclude that I'(k) changes sign at the Fermi
surface (k) = p. Near the Fermi surface we also have for ¢(k) < u:

IT(k)| < le(k) — pl.-

For calculations and to gain physical insight, it is often useful to assign
an effective mass to quasi-particles (and quasi-holes). To do so, essentially
two different possible definitions are used:
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(1) For non-interacting systems, we have

5— S0 O, 0k €L

2
o) _ k o _ 1.
‘% T om méu’

It is then natural to define an effective-mass tensor at a wavevector kg

for an arbitrary dispersion relation ¢(k) by

[L] g OniOk; ()| o (26.17)

m*

(2) If we are interested in a dispersion relation ¢(k) in the neighborhood of
a particular point kg (for example a ‘band edge’ in solid state physics),
we can expand e(k) about kg to first order

e(k) = e(ko) + [Ve(k)]y, - (k — ko)
and compare this with the corresponding expansion for a free particle

k2~ko 1 )

(k) = =~ 50+ —ko - (k— ko) = ¢} —-ko (k — ko)
and demand that
3 1 : :
> [m] k) = (Ve(k))my, -
j=1 L¥)
The simplest choice is
1 Ve(k
[—-—] -———( ®) =k, 5ij (26.18)
m ij kt

For the quasi-particles and quasi-holes discussed here, the effective mass is
closely related to the irreducible self-energy. This relation is worth remem-
bering.

We have now come to an application of the quasi-particle concept: The
definition of the effective mass -T;}—; gives us the possibility of considering
an ‘effective Newton’s equation of motion’ for the quasi-particles. To this
end, we construct a wavepacket of quasi-particles, which moves with a group
velocity vgr = Vye(k). The work Ae done by an external force F on the
quasi-particle in a time At is Ae = F - v At. We also have Ae = Vye(k) -
Ak = vgr - Ak. By combining these expression we obtain (as At — 0):

im v Ak—" die _ F 26.19
Atmo & Ay Ve T Ve b (26.19)
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This is a ‘quasi-Newtonian equation’: if vg could be canceled out, we would

obtain dk/d¢t =
We obtain for the ith component of the acceleration of the quasi-particles:

a; = %[vp]‘ ‘(?t (k) = O, [dk ch(k)}

= 04, [F - Viee(l)] = 0, 3 [Oh,e()] F

J
= Z [Bkiakje(k)] F; = Z [‘r-n—l:] - F;.
J J '

With this expression, the motion of quasi-particles can in principle be cal-
culated. This is particularly instructive for the case of so-called crystal-
electrons, the dispersion relation of which contains the interaction with the
crystal lattice. This dispersion relation has roughly the structure shown in
figure 26.6: At the edge of the Brillouin zone, the curvature and hence the
effective mass for several bands are negative. This is a reflectidn of the fact
that the crystal-electrons experience Bragg-reflections at this point.

+

\s(k)

T

i
}

v

First BZ edge

Figure 26.6 Schematic graph of the electron energies in a crystal. The elec-
tron states at the edge of the Brillouin zone undergo Bragg scattering, which

opens up an energy gap.

We obtain another interesting application if we also derive the ‘Newton’s
equation for quasi-particles’ for the case of a (velocity-dependent) Lorentz
force. The cyclotron resonance frequency

eB

m*

We =

can be determined very accurately experimentally. In this way, one obtains
information about the dispersion relation e(k) close to the Fermi surface,
since only crystal-electrons near the Fermi surface take part in cyclotron

resonance.
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{a)
A Non-interacting system

(nikld
1
||
Ke
(b) (e}
A Normal systems A Superconductor
(nlkld nlk))
1 1
L |kl 1 |k
ke ke

Figure 26.7 In the non-interacting system (a), the momentum distribution
function drops discontinuously to zero at the Fermi surface. A finite amount
of this discontinuity remains in the interacting system (b). For a supercon-
ductor (c), for which conventional perturbation theory does not converge,
the momentum distribution function goes continuously to zero.

In the discussions above, we have termed the surface e(k) = u the Fermi
surface of interacting systems, and have learnt of a few properties, for ex-
ample the change of sign of T', of this surface. In the remaining part of this
chapter, we will show that this surface also possesses the property which is
primarily connected with the concept ‘Fermi edge’, namely, a sharp drop in
the distribution function. In non-interacting systems the momentum distri-
bution function

(n(k)) = {®o | cfex | ®o)

has a sharp edge, as shown in figure 26.7(a). Since the exact interacting
ground state can be represented as superpositions of non-interacting config-
urations, we expect that the distribution function will be somewhat smeared
out for interacting systems. We will show that for ‘normal’ systems, for
which usual perturbation theory converges (in contrast to, for example, su-
perconductors), this distribution exhibits a finite, non-zero discontinuity as
depicted in figure 26.7(8). To nrove this, we insert the expression equation
(26.10) fort < 0

G(k,t) = iz(k)f(p — e(k))e~ Ve TRt 4 1k 1)
derived previously, into equation (15.34):

(n(k)) = ~i lim G(k, t)

t<0
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and consider two sequences (k*), and (k™), of vectors which converge to a
vector kg on the Fermi surface from the outside and the inside, respectively,
t.e., we have

e(k;) < p = e(ko) < e(k;f).
It follows that

G(ky,t) = iz(ky)e (k)te=T(D) 4 [(k>,t) (for t < 0),
Jim GO, ) = ia(ky) + I(ky,07)
Gk},t) = I(k},t) (for t < 0)

Jim Gk}, t) I(k},07).

{l

We make the plausible assumption that I is continuous as a function of k,

at least near the Fermi surface . (If this assumption is incorrect, there will

be an additional contribution [I(k“" —ko,07) - I(k™ — ko,O")] i in the

result below. Since I is small, this would be a small correction to z(ko) ~ 1

and only slightly affects the size of the discontinuity.) .
Altogether, we obtain

Jim (1)) - (n(37)] = 2(ko).

We have then shown that the momentum distribution has a discontinuity of
(approximate) magnitude 2(kg) at each point ko on the Fermi surface, and
in fact it then looks approximately as we sketched in figure 26.7.






Chapter 27

Diagrammatic calculation of
the two-particle Green’s
function and the polarization
propagator

Let us begin by reminding ourselves of the definition of the two-particle
Green’s function:
iG(rata,rBtp, rotc, rptp)
(W |T %b(rAtA)Hlp(rBtB)H'/)T(rCtC)HlﬁT(rDtD)H]i‘ | o)
B - (Yo | ¥o) '
(We will in this chapter omit the spin indices for ease of notation.) The
first step in the diagrammatic calculation is again the adiabatic switching

procedure. Analogously to the case of the single-particle Green’s function,
it can be shown that (¢f. equation (18.11)

3

i2G(rata,rBtp, roto, rptp) = li -
1“G(rqt4,rBtB; roto, TDID) el—rf(l) (@0 | Ue(—00, 00) | Po)

o (—i)"
« z = /dtl.../’dtn e:-e(lt1|+‘..+ltn|)
n=0 ,

< (@0 | T V(1)1 V(ta)(eata) 16(e5t5) 11 (rote) r¥! (eptp)1] | Bo).

This representation allows for a diagrammatic analysis with essentially the
same Feynman-rules as those we derived in Chapter 20. We draw the
full two-particle Green’s function as a structure with four legs. The ex-
ternallendpoihts correspond to the four arguments of the Green’s func-
tion. Thus, as the single-particle Green’s function G(r4t4,rptg) for each

321
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possible time-ordering represented either particle-propagation ({4 > tg)
or hole-propagation (tg > t4), there are three possibilities with the two-
particle Green’s function: particle-pair propagation, hole-pair propagation
and particle-hole propagation. These may be represented as shown in figure
27.1. Again, Feynman rule (1) with the imagined time-axis is used when the

L 4 *
A B J'A B
tD E ® D ( ®
[ [
{a) (6}
[ ] V
\ A B} 14 8

Figure 27.1 Possible diagrammatic representations for particle-pair propa-
gation. In (a), t4 > tg > tc > tp, in (b) tg > t4 > t¢ > tp, in (c)
tay>tg >tp >to,andin (d)tg >tq >t > tc.

end-points are drawn. We also agree to put arrows pointing away from the
endpoint if the endpoint corresponds to a creation operator, whereas the ar-
row points toward the endpoint if it corresponds to an annihilation operator.
Accordingly, we obtain the diagrams in figure 27.2(a) and (b) for hole-pair
propagation and particle-hole propagation, respectively. As an example, we
consider the first few terms in the numerator of the particle-pair propagator.
The corresponding diagrams are shown in figure 27.3. The corresponding
diagrams for the hole-pair propagator are obtained simply by reversing the
directions of all arrows, as shown in figure 27.4. On the other hand, new
diagrams appear in the particle-hole propagator, for example the diagrams
in figure 27.5.
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-“<—
[}
~
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p-S
=~

T

o
(-]
@

Figure 27.2 In (a), a diagram for hole-pair propagation for to,tp > t4,tR
is shown. There are three more such diagrams, corresponding to three other
possible time-orderings for hole-pair propagation. In (b), a diagram for
particle=hole propagation corresponding to t4,tc > tg,tp is drawn. There
are three more such diagrams. In addition, there are four more diagrams
each for particle-hole propagation for the time-orderings tg,tc > ta,tp,
ta,tp > tp,tc, and tg,tp > t4,tc, respectively.

He X bl bl
fool BB
s

Figure 27.3 The first few diagrams from the numerator of the particle-pair
propagator.
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D C ) C

A B A B

Figure 27.4 The diagrams of the numerator of the hole-pair propagator are
obtained from the diagrams in figure 27.3 simply by changing the directions
of all arrows.

+ +

ff A\[ A c
5 8 D‘/.B‘D ;

Figure 27.5 A few particle-hole diagrams.

The next step is the linked-cluster theorem, which says, just as for the
single-particle Green’s function, that the disconnected sub-diagrams of the
vacuum amplitude are canceled with the denominator:

(e8] Y
i’G(rata,rBtB, rotc, rptp) = Z( z,) /dtl -'~/dtn e~ c(lal+-+ltn])
n=0 )

x (®o|T [V(tl)l . V(tn)Ilp(rAtA)Ilb(rBtB)I¢T(rCtC)I¢T(rDtD)I} | @0)L-

It should be emphasized that only diagrams which contain pieces that are
not connected to any external point are omitted. Thus, diagrams such as
those shown in figure 27.6 are ‘linked clusters’, in this sense, and are to be
included.

Figure 27.6 These lowest-order diagrams are to be treated as connected
diagrams.
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Before we start to evaluate the perturbation series, we must add a supple-
ment to the Feynman rules for the two-particle Green’s function: The trans-
lation of G(0) (A,B,C, D), represented by the diagrams in figure 27.7(a), is

surely not
°(=)° [6O(4, D)GO(B,C) + 6O (4,0)6) (B, D)] (27.1)

since we can read directly from the definition of the two-particle Green’s
function that
-GO)(4,B,¢,D) =GB, 4,C, D)

(see figure 27.7 (b)) which is
°(-)° |6©)(4,0)6)(B,D) + ¢O(B,C)GO (4, D)|
t.e., the same expression which we already attempted to write as

A B A B B ¢A Be A4

o ec pé LLD(‘

{a) {5)

Figure 27.7 The two diagram in (a) contribute to GO (A, B,C, D), whereas
the two diagrams in (b) contribute to G(O)(B,A,C’,D).

+G0)4, B, C, D). This uncertainty of sign can easily be clarified if we
go back to the Wick-expansion:

2G4, B, C, D)
= (@ |T [p(4)9(B)H(C)sT(D)] | Bo)
[ ) ,__ -
N 1T 1
= (A (BN (CIWI(D) + v(4) v(B)wH(C)yt(D)
i | - i i 1 | 1
= (A (D) ¥(B)W!(C) - w(A)wt(C) y(B)wH(D)
= [iG(O)(A,D)] [iG(O)(B,C’)] - [icO)(4, o) [iG(O)(B,D)] .

The minus-sign in the last line of this equation must then replace the plus-
sign in equation (27.1). (The factors i% on both sides of the equation cancel
out.) Thus, the paradox is resolved. We see that we must add a Feynamn
rule concerning the overall sign of the diagram. This rule must, for example,

correctly give the sign of the diagrams in figure 27.8. We state Feynman
rule (6)A: :
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{a) {s) (c)

Figure 27.8 If the reference diagram (a) has a plus-sign, then the two dia-
grams (b) and (c) must have a minus sign.

Two diagrams, which differ by the interchange of two incoming or
outgoing fermion lines, differ by a minus sign.

Diagrams which contribute to G(A, B, C, D) and which have fermion lines
running from D to A (and thus also from C to B), then have a plus sign
(in addition to all other pre-factors according to the other Feynman rules).
The notation ‘rule (6)A’ is to emphasize the close relationship with the
loop-theorem, which we will now treat briefly. The diagrams in figure 27.9
can be interpreted as the contributions to the single-particle Green’s func-

S D

Figure 27.9 These two diagrams of the two-particle Green’s functions can
be interpreted as single-particle Green’s function diagrams by closing the
propagator lines at the dashed lines.

tion G(A, D) shown in figure 27.10. These two diagrams differ by a minus
sign, according to the loop-theorem (rule (6)). However, they can also be

A | | 4 A
ffv‘O -+ N
0 0
Figure 27.‘10 Single-particle Green’s function diagrams corresponding to the
two-particle Green’s function diagrams in figure 27.9.
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interpreted as contributions to
//G(A,B,C, D)G(C,B)dCdB

(see figure 27.11). As such, they acquire a relative minus sign, according to
the complementary rule (6)A.

A B8 A B| & B
_ M+
D c 0 - &

Figure 27.11 The endpoints B and C of the diagrams in figure 27.9 can
be closed with a single-particle Green’s function to yield diagrams for the
Green’s function G(A, D). V '

- One particular possible way of summing up the perturbation series is
again by ‘dressing the skeletons’ by successively inserting self-gnergy inser-
tions. We will now show that the approximation to the two-particle Green’s
function consisting of the sum of the two lowest-order dressed skeletons

IS W | /
/‘: +X
I

corresponds precisely to the Hartree—-Fock approximation. With the ma-
chinery that we have at our disposal at this point, the proof is quite simple.
We use the relation discussed earlier between the irreducible self-energy and
the two-particle Green’s function:

N\

(27.2)

/drfd:;yM(rt,yer’(yr, r't’)

= -—i/dSyv(r,y) Ga(rt,yt,ytt,r't").

If this relation is inserted in Dyson’s equation, we obtain an integral equation
which corresponds to the differential equation of motion, equation (16.7):

G(rt,r't) = vG(O)(rt,r't’)—i/d3y'/d3y/dr _

xGO(xt,y'r)u(y,y)Ga(y'r,y, r,yrt, F't') (27.3)
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with the diagrammatical representation

rt rt rt rt

T yT

r't' ' £ 't i

rt rt r'’ Y r't (274)
In the interpretation of the diagrammatic representation in equation (27.4),
it should be borne in mind that each interaction line in a diagram of the
single-particle Green’s function leaves a factor of i, according to Feynman
rule (7) (disregarding additional degeneracy factors, which are in any case
omitted In non-indexed diagrams, i.e., sums over degenerate diagrams).
Consequently, the single interaction line in equation (27.4) must also con-
tribute a factor of . Furthermore, a factor (—1) must be added in the
translation. This factor takes into account that for each diagram of the
two-particle Green’s function, which acquires a plus-sign according to the
rule (6)A, becomes a loop, which must have a factor of ( 1), by connect-
ing the two legs on the right-hand side. No loop, which acquires a minus
sign according to rule (6)A and compensates the minus sign, is contained
in the other diagrams. The two following illustrations will demonstrate this
process for the lowest-order diagrams. These statements are easily verified
using the formulation of rule (6)A. This rule demands a plus sign precisely
when the two legs on the right-hand side within the two-particle Green’s
function are connected with fermion lines; by connecting these legs a loop
thus emerges.

If we insert the approximation equation (27.2) in equation (27.4), we ob-
tain figure 27.12. This is precisely Dyson’s equation shown in figure 27.13.
This approximation for M corresponds precisely to the Hartree-Fock ap-
proximation, as we showed in Chapter 25.

S +w+y
_ +¥MQ+%

Figure 27.12 Approximation for the dressed Green’s function.
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WG U ¢

{a) ¥:3]

Figure 27.13 The diagrams in figure 27.12 are Dyson’s equation (a) with the
self-energy M approximated by (b).

We will not here further pursue the diagrammatic analysis of the general
two-particle Green’s function. Instead, we consider a special case, which
in practice is extremely important, namely, the already earlier introduced
polarization propagator. It is defined as

1

iH(rt,r't') = m

(Yo | T [p(xt)up(x't) ] | o)

where

o | ¢1(r)¥(r) | ¥o)

5(r)s = T (R)v(r) - & = p() = (p(x)).  (27.5)

(Yo | Yo) A
Apparently, we have
ill(xt,x't’)
( f .
L | o 19T ety (et) gyt () o (x't) g | Wo) for 8> o

= .
(Yo | o) (To | W (") gyt got(ct) go(xt) g | Wo) for ¢! >t
—{p(x) o (x"))

= +G(xt, vt rtt,r/(¢)F) = (p(x)) (p(x')),

where the correct order of the field operators is ensured by the infinitesimally
larger times t* > ¢ and (#)* > ¢/

The polarization propagator describes, as the name implies, the spread-
ing of a particle-hole pair. We will now see which diagrams contribute to it.

In zeroth order, we obtain for the perturbation expansion of the first term
with the help of Wick’s theorem (z stands for (rt)):
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G(O)(a:, oz z')
= (@0 | T [vH@) @)t )eE)] | 20)

I 1
| 1 I 1 [ |

= ¢H@)v(2) vl ) (@) + T (z) v(=)¥ " (=)¥(z)
I 1 I ] i i | 1
= P(@)vl () v )t () — ¥ (2) v(z) P! (")
= [iG(O)(m,x)] [iG(O)(x',z’)] - [iG(O)(r',z)] [iG(O)(r,z’)}

= GO, :c)G(O)(z", z') + GO (2, x)G(O)(:c, z').

These two terms have the diagrammatical representation
O
N LR
x' b

With the help of the relation which we proved in Chapter 15 between density
and the single-particle Green’s function, we have

(27.6)

GO (2,2’ z,2") = + (O @) (pO (")) + GO, 2)GO(z, 2').

We have derived the diagrams (27.6) by hand, i.e., with Wick’s theorem,
to emphasize an important point which can easily lead to translation errors.
The two-particle Green’s function considered always has two (fixed) equal
arguments and, accordingly, two legs with identical indices. These legs are
terminated at the same points in the diagrams. Hence, to zeroth order, we
obtain this special two-particle Green’s function from the diagrams:

X

= 0 Type I (27.7)
0
D:X' B:X’

and

Type 11 (278)
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So long as no interaction lines end on the external endpoints, these are
not vertices; in particular, there are then no loops which have been closed
in the sense of the loop theorem. Instead, the rule (6)A must be used for
the diagrams of this special two-particle Green’s function. Consequently,
the upper graph, (27.7), acquires a minus sign (note that the endpoints A-
C and D-B are connected), in agreement with the result equation (27.6)
obtained by hand. The following point of view, which is easily verified for
the diagrams above and also for the general diagrams below, is equivalent.
The two endpoints with the same index close one or two loops, and, in par-
ticular, precisely one loop if and only if rule (6) A requires a plus sign for the
corresponding two-particle Green’s function diagram. Between interaction
lines, the diagrams for iII yield, according to the loop theorem, the factor
—1II.

We now consider an additional example: the diagram

Xy Type II (27'9)

acquires a minus sign as a diagram of the two-particle Green’s function,
according to rule (6)A. As a sub-diagram between two interaction lines, it
acquires a plus sign, according to the loop theorem. It is clear that the
entire expansion of G(z, 2/, z,z’) can be divided into two types of diagrams,
those in which the line starting at z is connected in any way (including by
interaction lines) to the line starting at «’ (type II), and those for which
this is not the case (type I). It is also clear, that line starting at « in the
diagrams of type I must come back to z. Hence, all these diagrams acquire
a minus sign according to rule (6)A. Thus, if we interpret all the parts which
are attached to & and 2/, respectively, as diagrams of the full single-particle
Green’s functions G(z, z) and G(z’,z'), we must insert by hand an overall
minus sign in front of the corresponding product, as illustrated in figure
27.16. The first term in figure 27.14

[~iG(z,2)] [-iG(2',2")] = (p(x))(p(x"))

cancels out accbrding to the definition of iII, so that we obtain
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Gix x/xx"

— &
e
>

Figure 27.14 The two-particle Green’s function G(z,z',z,2') can be ex-
panded as a sum of type I and type II diagrams.

X
ill(z,z') = @ = the sum of all type II diagrams in G(z,z’,z,z').
. (27.10)

X
Hereafter, we denote ill(z, z’) by %
X/

The contributions to the polarization propagator are then in zeroth order
iH(O)(:e,x_') = 6O(z, GO z) =

in first order, we obtain the diagrams in figure 27.15, and in second order
we have, for example the diagrams in figure 27.16. Just as we did with the
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self-energy, we now define the so-called irreducible polarization insertions
as those diagrams which cannot be separated into polarization insertions of
lower order by cutting a single interaction line. Of the diagrams of second
order depicted in figure 27.16, for example, the first three are reducible,
whereas the rest are irreducible.

-‘n“)(X'XI) _ 69"- + 0'0+ + +

Figure 27.15 First-order diagrams for the polarization propagator.

5"+ (Fo
(o - o b

Figure 27.16 Some second-order diagrams for the polarization propagator.
If we define

X

iQ(z,2') = % = the sum of all irreducible
X'

polarization insertions

the polarization propagator can be represented as shown in figure 27.18.
This is Dyson’s equation for the polarization propagator. When we trans-
late the diagrams into mathematical expressions, we note that by cutting
the interaction lines for all terms except for the second loop they become
identically indexed legs of a two-particle Green’s function. The question of
the sign associated with this is easily answered if we, as discussed in detail
above, consider —iII and correspondingly —i(QQ as insertions in an interaction
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% + / j% + éﬂé + ...
J @ﬁ

Figure 27.17 Dyson’s equation for the polarization propagator.
g

il

line. The number of loops is not changed if we cut the interaction line, so
that rule (6)A does not come into effect from this point of view. We can
then write

[—ill(z, 2")]
= [-iQ(z,2")] +1' / d*y / d*y' [-iQ(z,y)] u(ysy') [y, z")] -

We cancel out the factor (—7) and obtain

(z,z') = Q(x,w')+/d4y/d“y’Q(x,y)U(y,y’)H(y’,x’)- (27.11)

For translationally invariant systems with instantaneous spin-independent
interactions, this equation becomes particularly simple:

I(q,w) = Q(q,w) + Q(q,w)u(q)Il(q,w) (27.12)

with the solution

Q(q,w)
1 - u(q)Q(q,w)
The use of the polarization propagator has an important application in
the theory of linear response. To see this, we consider an interacting system,

which for ¢ < 0 is in the ground state | W) of the Hamiltonian H = Ho+ V.
At t = 0 we apply a perturbation

I(q,w) = (27.13)

Heogi(t) = / Br vee ()T (1) (x). (27.14)

We want the linear response for an arbitrary observable

A= / Br o)t (@) v(r) | (27.15)
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of the system, i.e., the part of the deviation of the expectation value
6{A)(t) = (¥(t) | A | ¥(£)) — (Yo | A | ¥o) (27.16)

that is linear in the perturbation Hey¢. Here, | ¥(¢)) is the solution of the
full time-dependent Schrédinger equation

i0 | U(1)) = [H + Hexe(1)] | ¥ (2))-

To calculate the linear response, we go over to the interaction picture relative
to (H + Hext(t)), i.e., to the Heisenberg picture relative to H (thus, we use
the subscript H). In this picture, the wavefunction is

| () = eTHE | 0(2)) (27.17)
and it satisfies the equation of motion (cf. (14.12))
0
i | W) i = How O | ¥(D) 1 (27.18)

with _ '
Hext(t)H = CZHtHext(t)e—ZHt- *

The solution up to terms linear in Hey;, of equation (27.18) is

t
| () g = o) — i /0 dt’ Hexs(t') 11 | ¥o)

so that, together with equation (27.17), we obtain

_ t
| U(t)) = e *H? [1 - i/ dt’ Hext(t’)H] | ¥o) + O(ngt).
0
From this, it follows that
(W) | A|¥())

t . .
= (\I’o | [1 +/ dt/ Hext (t,)H] e+'HtAe“’Ht
0 N e’

=A()y

t
X [1 — z[) dt’Hext(t,)H] l ‘I’o) + O(ng't) |
t )
= (W | A(t)gr | W) — i /0 at' (W | [AO) 51, Hexe(t) 1] | ¥o)
+O(He2xt)'

The linear response equation (27.16) for the observable A is then:

. 1 ,
§(AY(t) = —i /0 dt' (%o | [A() g1, Hext(t)1t] | o). (27.19)
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We then insert equations (27.14), (27.15) and the definition of the density-
fluctuation operator, equation (27.5), to obtain

t
§(AMt) = —i/o dt’/dBr/d3r'a(r)vext(r't')
x(Wo | [p(rt)pr, P(x't" 1] | Wo)

If we introduce a retarded polarization propagator (analogous to the retarder
Green’s function, cf. equation (26.1))

(o | [p(rt)m, p(x't")E] | Wo)

B (et 't = 0t — ¢/
( ) =06(t—1) o [ Vo)

(27.20)

we have
8(A)(t) = /oo dt’/d3r/d3r'a(r)vext(r't')HR(rt,r't'). (27.21)
0

In particular, we obtain for the linear response of the depsity:

§{p(r))(t) = /000 dt'/d3r' Vext (Xt (xt, x't). (27.22)

Hence, the retarded polarization propagator is identical to the so-called
‘density-density response function’, i.e., the function which describes the
linear response of the density to a perturbation which couples to the den-
sity (¢f. (27.14)). For initially homogeneous systems (systems which are
homogeneous for ¢ < 0), we obtain by Fourier transforming

8p(q,w) = M8 (q,w)vext(q,w). (27.23)

A direct diagrammatic analysis of T2 is not possible, since Wick’s theorem
can only be applied to time-ordered products. Fortunately, one can, as with
the retarded Green’s function (see equation (26.4), as well as equations (26.5)
and (26.3)), by using the corresponding Lehmann representation, derive a
relation between II and IT1E. We have

forw € R: Re[llf(q,w)] = Re[ll(q,w)]
‘ R (27.24)
Im[I®(q,w)] = sgn(w)Im[ll(q,w)].

We close this chapter by stating the response function for an, in practice,
particularly important example of a response function: the so-called Lind-
hard function. This is the response function of a homogeneous system of
non-interacting particles. It is obtained from the polarization propagator
with u(z,z') = 0, i.e., from the zeroth-order diagram
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iH(O)(q,w),
(q,w)
= (k,w),o [(k, w) + (q,w)], 0
(q,w)
3 w
= 2 (—;1}-)’% ;—TG(O)(k,w)G(O)(k-i-q,w-i-w).

The evaluation of this four-dimensional integral is possible, but tedious,
using elementary methods (see, for example, Fetter and Walecka [22]. The
results are, with the abbreviations

q = |q|/kF '
and
v= nd
(k%./m)

Re[l(%) (g,w)]

mkp 1 v q\?
2«2{ 1+2q [1—(;—5)]1n

1+ (v/q—q/2)

1-(v/qg—4q/2)
_1 [1_ <Z+2>2} In Lﬂ‘?_t?l (27.25)
b A - (5 ) |
Im{I1(®) (g, w)]
( 0 for v> 923+q

2 2
oo vl s

2
-% for y<l92—-—ql and q < 2

0 for v< '%i—ql and ¢ > 2.
(27.26)
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We will learn an application of this result in the next chapter when we
discuss the effective interaction in the electron gas.




Chapter 28

Effective interaction and
dressed vertices, an advanced
perspective on plasmons

The polarization propagator has an important application in the calculation
of the so-called effective, or dressed, interaction. One automatically comes
to this definition if one tries to partially sum the perturbation expansion for
the Green’s function by successive insertions of polarization insertions in the
interaction lines (see figure 28.1). The summation of all polarization inser-

D10+ [h-

Figure 28.1 Summation of all polarization insertions yields an effective In-
teraction.

tions gives, by definition, the full polarization propagator, so the effective
interaction is given by

iue(z, 2') = iu(z, x')+i2/d4y/d4y' u(z, y) [~ill(y,y")] u(y’, ")

as illustrated in figure 28.2. In this definition, a dressed interaction line, as
well as a usual bare one, contribute a factor ¢ in the translation to formal
language. We obtain

(2, 2') = u(z, ) + / d*y / d*y u(e, ) M(y, v )u(y’,2).  (28.1)

339
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s+ RN

Figure 28.2 Diagrammatic representation of the effective interaction.

With the definition of the irreducible polarization propagator (), we can
derive Dyson’s equation for the effective interaction:

wee(e,2') = u(e,2) + [ 4y [ 4 @ 0)Q e ). (282

as illustrated in figure 28.3. This equation too is particularly simple for

W:mmn-’ruw@vv\f\

AN~ F ANEAANNN

I

Figure 28.3 Dyson’s equation for the effective interaction.

translationally invariant systems with spin-independent instantaneous in-
teractions:
uef(q,w) = u(q) + u(q)Q(q, w)uef(q, ). (28.3)

We solve this equation for the effective interaction and define the (in general
frequency and momentum-dependent) dielectric function e(q,w):

_ u(q) _ u(q)
uef(%%) = Tg0la ) = daw) (28.4)

Thus, in contrast to the bare particle-particle interaction, the effective in-
teraction takes into account the polarization of the medium in the sense of
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a linear response theory. The frequency dependence means, after Fourier

back-transforming, that we now have a time-dependent interaction. This

can clearly be understood as a certain inertia of the polarization cloud.
From equation (28.4), we obtain the following equation:

€(q,w) =1-u(q)Q(q,w) (28.5)

which together with equation (27.13) yields a relation between the full po-
larization propagator and the dielectric function

1
(0.2) = 1+ u(q)Il(q,w). (28.6)

We will now discuss an example for Coulomb systems (u(q) = 47e?/q?):
the so-called random-phase approzimation (RPA). This is basically nothing
but the summation of ring diagrams just as in the Gell-Mann-Brueckner
theory. We approximate the Green’s function by the diagrams shown in
figure 28.4. As a consequence, the approximation for the effective interaction

REYR-Hr

Figure 28.4 Random-phase approximation for the Green’s function.

is as shown in figure 28.5. We can interpret this approximation in the
following way. In the perturbation expansion of the effective interaction, the
zeroth-order polarization propagator is inserted instead of the full irreducible

polarization:
RPA: Q~ IO e, @ ~ O

M = A anan V\AGJV\“” VVG/WGV:'
RPA ces

Figure 28.5 Random-phase approximation for the effective interaction.
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This yields

UBPA (0 L) = U(Q)
(49 = T O (q0) 50

and
€FPN)(q,w) = 1 — u(q)1V(q,w) (28.8)

respectively. The name RPA was originally coined within the framework
of plasmon theory, where, under the assumption of randomly distributed
phase-factors, one can neglect a part of the electron—electron interaction.
As we have seen, the plasmon theory gives a result similar to the ring-
diagram approximation by Gell-Mann and Brueckner. Thus, the term RPA
las come to be applied also for the latter theory. In this context, the physical
reason for the name is however not quite clear, nor is the ring-diagram
approximation in its original sense identical to the RPA.

From the explicit representation, equations (27.25) and (27.26), of the
Lindhard function, we obtain following limits:

lim €*F4)(q,w)

g—0
, Imelkp 1 kp 1 ( q )2 ‘kp+q/2|
= lim{l+—E 14+ 1->( =) |In|--—F
q—)O{ s q2{ q { 4 \ kp kg —q/2
dme?kp 1
= 1+TE2' (28.9)
and
wp
FFNO0,w) = 1- —5- (28.10)

Equation (28.9) yields the following result for the effective interaction in the
limit of ¢/kr < 1

4me? 6m(N/Q)e?

(RPA) =0)~ ———— where \2 = — /" 28.11
Uog (9w =0) Z 10 where - (28.11)
which, after Fourier back-transforming, gives the following form for the static
effective interaction for rkp > 1:

2

B (r) & %e_M. (28.12)

Equation (28.12) is a screened Coulomb potential. This is in accordance
with the physical picture that we have already made: the bare electron
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repels other electrons because of the Coulomb repulsion and the exchange
interaction, which reduces the probability of finding other electrons in its
immediate vicinity. Thus, the electron drags a ‘hole cloud’ with it and
hence becomes a quasi-electron with an altered dispersion relation. This
can of course be calculated from the corresponding RPA for the self-energy
M. Due to the screening, the full Coulomb interaction between the bare
electrons becomes an effective interaction between quasi-electrons, which
here is obtained approximately as a Yukawa-potential. (For a closer loook
at the idea that the effective interaction is an interaction between quasi-
particles, see Falicov [23].) '

Equation (28.10) implies that the dielectric function ¢®?4)(0, w) vanishes
as w approaches the plasma frequency w,. Consequently, it follows from
equation (28.6) that the response function II(®FA) of the electron gas in
this case becomes infinite in this limit. This means that an infinitesimal
perturbation will result in a finite change in the electron density. This
concept 1s connected with an eigenmode of the system, in this case a plasma
oscillation. At this point, we have the opportunity to elegantly calculate the
dispersion relation w(q) of the plasmons. We set

eFF)(qw(q)) = 0

This yields, for small q,

2
3 (kr/m)%q’
1 2 w2 LAl S B ’
ql_i%w(q) A wy [1 + 3 2 (28.13)

We close this chapter with a discussion of yet another way of partially
summing the perturbation expansion: the dressing of vertices. We discussed
in Chapter 25 how the G(%)-line can be dressed by successive insertions of
self-energy insertions. The corresponding approximations for the self-energy,
for example the one shown in figure 28.6, then yields an equation to be solved
self-consistently. We can use this idea to simultaneously dress the interaction
lines with polarization insertions; for example, from figure 28.6, we obtain
figure 28.7. Note that dressing the interaction line in the direct term would
be incorrect, since it would lead to double-counting. Since the effective
interaction in general is time-dependent, this results in a time-dependent
equation to be solved self-consistently.
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{:;HMO

Figure 28.6 Self-consistent Hartree—-Fock approximation for the self-energy

Figure 28.7 In the Hartree—Fock approximation for M, the interaction line of
the exchange term can also be dressed, in addition to the Green’s functions.

It 1s easy to erroneously believe that the approximation for M depicted
in figure 28.7 yields the exact self-energy if all possible self-energy insertions
and all possible polarization insertions on the interaction line are included.
However, the diagrams in figure 28.8, for example, are not obtained in this
way. Such diagrams can also by summed formally. We first define the so-

(a) (b) (c)

Figure 28.8 Diagrams (a), (b) and (c) cannot be obtained only by dressing
interaction lines and Green’s functions.

called verter insertion as a diagram with two G(O)-legs and on interaction
leg. Such diagrams can clearly be placed at a normal vertex and in this way
‘dress the vertex’. Examples are shown in figure 28.9. It is clear that, for
example, the diagram figure 28.8(a) can be obtained by the following replace-
ment shown in figure 28.10. We now define an irreducible vertex insertion as
a vertex insertion which has no self-energy insertions on the incoming and
outgoing G (0)_lines and no polarization insertion on the incoming and outgo-
ing interaction lines. Correspondingly (written for translationally invariant
systems)
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P B S o
P P P

Figure 28.9 Examples of diagrams which can be included in the dressed

vertex.
7 TN
N /
\ \ —
[ ]

Figure 28.10 The diagram figure 28.8(a) can be constructed by a vertex-
insertion into a first-order Green’s function diagram.

l

irreducible vertex function = A(k,q)

the sum of all irreducible

vertex insertions with the corresponding

indices on the external legs

(see figure 28.11). Since each vertex insertion has two G(%)-legs and one
k+q

k ,
Figure 28.11 The irreducible vertex function A(k, q).

interaction leg, we can sometimes combine all vertex insertions which dif-
fer only in the self-energy and polarization insertions, respectively, on the
external lines by dressing the Green’s functions and the interaction lines:

sum over all vertex insertions =
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In particular, we have the exact equations

= o)+ ?} 2810

and

Q= % (28.15)

Even though these two equations look unappealingly asymmetric, it is clear
from their derivations that the vertex function A can only be at one end;
otherwise, some diagrams will be counted twice (see figures 28.12 and 28.13).

RAR

(d)

Figure 28.12 The diagram (a) is included in the diagram (b), but also in
diagram (c) in the form shown in (d).

{a) (5]

Figure 28.13 The diagram (a) must not be included in the direct term (b),
since vertex diagrams are included, as shown in (c).

Of course, the irreducible vertex diagrams can also be reduced to a few
skeleton diagrams; examples are shown in figure 28.14. Again, self-consistent
approximation can be derived through approximations such as the one shown
in figure 28.15.We realize what an enormous number of diagrams we obtain

if we on the right-hand side insert only the lowest-order approximations for
ueff, G and A.
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belongs to

Figure 28.14 Examples of skeleton diagrams of the irreducible diagram.

:m,<_

Figure 28.15 Self-consistent approximation for the irreducible vertex

In many problems, the so-called ladder diagrams (see figure .28.16) give
the dominant contribution. These diagrams can then be summed.

Figure 28.16 A vertex ladder diagram.

We have now learnt several different ways of partial summation. Which
way 1is best depends on the particular problem, especially on the nature of
the interaction.






Chapter 29

Perturbation theory at finite
temperatures

We will in this final chapter of Part III briefly indicate how the formalism
discussed up to this point has to be generalized in order to be applied to
temperature-dependent systems. The starting point is the so-called ensem-
ble average to calculate equilibrium expectation values of observables of the
system under consideration. Let | ¥;) be the exact states of the system,
with energies F; '

H i) = E; | 1)
and particle numbers N;

N [¥;) = N; | ¥;).

Let P; be the probability of finding the system in the state | ¥;). The expec-
tation value of an arbitrary operator A is then obtained from the ensemble

average
(A) =D PU; | A| W),
i

If the system under consideration can exchange energy in the form of heat
as well as particles with its environment, one uses the grand canonical en-
semble. In this case, the probability P, depends on the temperature T and
the chemical potential s of the system, and is obtained from the following
well-known expression:

e~ B(Ei—uN;) 1

-P'i = Pl(T7 :u') = Zn e—ﬁ(En—ﬂNn) /6 = kBT

where kg is Boltzmann’s constant.
We now define the so-called Bloch density operator as

pg = e BH-uN) (29.1)

349
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The index G stands for ‘grand canonical’. We have

e PEHNI (g, | A| W)
z —ﬁ(En IJan)

(4) =

hence

S oA W) Tr[pgA]
A = S N Tra 1 9n) ~ T [og] (26.2)

with the trace taken over any complete basis. The denominator has a special
name; it is called the grand canonical partition function:

Zg ="Tr[pg] - (29.3)

We denote ensemble average of the non-interacting system with the Hamil-
tonian H = Hg by the subscript 0:

Tr [pg))A] Tr [e“ﬁ(Ho‘“N)A]
o= 18]~ e ®Y

As an example, we calculate the number of particles with momentum k,
i.e., the momentum distribution function, for a system of non-interacting
free fermions. The eigenfunctions of Hg are Slater determinants | ®;) of
plane waves with

n(k) | ;) = ni(k)

_ 0 if the momentum state k is unoccupied in | ®;)
- 1 if the momentum state k is occupied in | ®;).

We have
i)y = BP0 [2) | Zimi9@:leg) 189 g
Ti(@i 105 | 9) Ti(@i | oG | @)
We calculate the individual terms in this expression:
(@165 1@) = (@] PN [a)

= (®;|exp -—-ﬁ; (% - #) Cgcq} | i)
- 9
= (®;|exp h—ﬂ; (-2% - u) "i(Q)] | @)
= exp [ ﬁz ( ) Q)]
= Hexp [",B (fq - #) nz’(‘l)] :
q
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The sum over all configurations | ®;) can, by an arbitrary but fixed renu-
meration of the momentum, be written as

1 1
o=y YT
[@:)=|ni(1),n:(2),...)  ni(1)=0n;(2)=0 -

We then obtain for the denominator of equation (29.5)

z® = ZHe-MeSf’-u)n.-(q)
Z Z =B ~m)ni(1) =B~ p)mi(2)

ni(1)=0n;(2)=0

1o

q

f

The numerator of equation (29.5) becomes

Zn, k) (®; |p(0) | ®;) = Z (k)Hexp{ ((0)—u) i'(Q)]

= an (k)e~ B — i (k) H —B(e - w)ni(q)
q#k

>y

n;(1)=0n;(2)=1

R Ch | [1 +e—ﬁ<e2°>—u>} |
k#q

We combine these two expressions to arrive at

e—B(e =) [Hq 4k (1 + e-ﬁ(eff)—u))]

1, ()]
o—Blei —1)

(n(k)o =

- 1+e"’9(ek ')

1
= . 20.6
1+ B -n) -9

This 1s the well-known Fermi distribution function. We will hereafter ab-
breviate it as

(n(k))o = fk-
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The decisive observation for the perturbation expansion at finite temper-
atures, which we will arrive at later, is that pg satisfies a Schrodinger-type
of equation, namely the Bloch equation

0
S =(H - uN . 297
557 (H - uN)pc (29.7)
If we make the substitutions
pc — V¥
H-—uN o H
g — 1

we obtain the usual Schrodinger equation. This similarity makes the con-
struction of the formalism possible in parallel with the zero-temperature
theory. First, we define a ‘Heisenberg picture’ by

O(T)H = e(H—HN)TOSe’"(H‘/‘N)T forteR. (298)

The two operators transformed in this way are in general not unitary. They
are, however, each others’ inverse, so that the transformation of a product is
the product of transformations. The fact that the transformation operators
in general are not unitary has as a consequence that a transformed creation
operator

vher)g = eH-#NTy! (r)e~ (H-sN)T

in general is not the adjoint of the transformed annihilation operator
ba(rr)g = H Ny (r)e™ (H-#N)T,

It is important to keep in mind that (¥!)y and not (¥x)! satisfies the
canonical anti-commutation relation with the annihilation operator ¥y .

We now define the temperature-dependent single-particle Green’s func-
tion for fermions through the ensemble-average:

Ga,y(r'r,r"r') = (T [¢a(rr)H¢jY(r"r')H])

T {pT [balrr)m}(')u | }
) Tr () |

The operator T is defined as before; it orders the field operators according

to increasing r and multiplies with the sign of the necessary permutation.

In this definition, as also in the Bloch-equation, no factor of ¢ appears.
From the Green’s function defined in this way, we can calculate

(29.9)

(1) the (ensemble) expectation value of any single-particle operator, and
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(2) the internal energy E(T,u) = (H) of the system, and thus also the
expectation value of the two-particle interaction.

An interaction picture can also be introduced by separating Ho — yN from
H - uN:
K=H-puN=(Hog—pN)+V =Ko+ V (29.10)

and defining
O(7)1 = fom O geKran, (29.11)

The Heisenberg picture and the interaction picture are related by

O(r)g = eKTOSe"KT = eKTe_KOTO(T)Ie+K°Te“KT
= U(0,7)0(r)U(r,0)

where
Ui, m) = etKom o—K(m1—72)—Kom2 (29.12)

The operator U defined in equation (29.12) is not in general unitary, but we
have as before

*

U(r,m)U(rg,m3) = U(n,s)
U(Tl,Tl) = 1.

One can easily show that U satisfies the following equation of motion (we
will not perform the details of this calculation; it runs entirely parallel with
the discussions in Chapters 14 and 15): '

LU(r,7") = ~V()U(r,7) (29.13)

with the formal solution
o (_)n T T
U(r, ) = Z T/ dry / dr, T[V(r)r...V(m)1}.  (29.14)
n=0 H TI ,rl

The representation given by equation (29.14) is the basis for the perturbation
expansion for temperatures 7' > 0. For example, from this equation we
obtain for the partition function

Zg = Tr {e—'@(H—’“N)} =Tr {e—'ﬂKo U(ps, 0)}

= i (;r /Oﬁdrl.../Oﬁdrn'f[‘r{e”ﬁ(HO“‘N)T[V(n)I...V(Tn)I]}.
n=0

(29.15)




354 FINITE TEMPERATURES

The trace can be elegantly evaluated in the complete basis of eigenfunctions
of the unperturbed system with the result

(=) [P s
ZG = Z(n% dTl.../(; dTn

n=0 ) Y
340 (@ | TV () (1)) 90

(29.16)

Thus, the partition function Zg corresponds to the vacuum amplitude of the
T = O—formahsm just as the vacuum amplitude, Zg stands in the denomi-
nator of the Green’s function, and gives rise to disconnected diagrams which
cancel out with the disconnected parts of the diagrams in the numerator. A
direct evaluation of the numerator of the Green’s function yields

Ga(rr, ')

1 (=)
= —— d d
ZGE;O!/OTI/M .

xTr {e"ﬁ(Ho“"“N)T [V(rl)I . V(Tn)n/)a(rr)n/)jy(r"r’) [] } .

We note that the integration intervals here, as well as in equation (29.16),
are [0, 3].

In contrast to the usual (temperature-independent) Green’s function, we
have to determine not a matrix element of ‘time’-ordered products in each
term, but, as we see in the representation equation (29.16) of the denom-
inator, we have to determine a trace, i.e., an infinite sum of such matrix
elements. Wick’s theorem in the form that we know it will not help us in the
evaluation of these matrix elements, since the normal-order products only
vanish when they act on the ground state | ®g); in the trace, all states | ®;)
appear. We can, however, find a generalization of Wick’s theorem which
will help us. The idea is to interpret Zg and the numerator and denomi-
nator of the of the Green’s function individually as ensemble-averages with
respect to p(C(})) = exp[—B(Hp — pN)]. To do this, we expand I/Zg)) and
obtain

Gary(rr,x'7')

T GF [P dm . f§ dr(T [V(r)1- - V() 1va(er) 18 (7)1 o
5o O (Bar  fE an(T V(). V(m) 1o '

(29.17)
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In Chapter 19, the normal-order and contraction of operators were intro-
duced to evaluate the matrix elements. The contractions became c-numbers;
in particular we had that the expectation value of normal-ordered products
vanishes (here written for translationally invariant systems):

— 1
ck(ep(t) = (Bo| T [ex(t)eyr ()] = N [ex(t)eyr(t)] | Bo)

= (8| T [ex(t)eyr ()] | ®o) = GOkt K't").

We use this property as a model for defining the contraction in the finite-
temperature theory:

—
a(Irel, (M) = (T [l (7))o

= GO(kr k7" (29.18)
—
ck(Drew(™)r = 0 (29.19)
— ‘
CL(T)ICL(T')I = 0. (29.20)

These definitions are extended linearly. For example, we set

[ | ] 1
(1Y avel ()= avepl. e (1

Furthermore, we have

—

ex(0H)rel (01 = (exel)o = by (1= fi) (29.21)
—

x(Orefi(0r = (~chie)o = =8 . (20.22)

These ensemble averages are obtained, as was the example of the momentum
distribution function, directly from the definition equation (29.4) of { )¢ as

weighted averages of expectation values relative to Slater determinants.
As in Chapter 14, we find that

k() =e~@-0Te (1) = e (6 1), (29.23)

e°
() =et@-wrd(o) = e+(5§‘°)_,,)¢c£. (20.24)

We can then calculate the contraction defined in equation (29.18):
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— 1

ek(T)1eh (P
= 6(r = )ew(M el () 1o = 87" = Dy (Frex (Do
= @0 [o(r - ) {erel)o — 0 = 7)(efiewdo)

and from equations (29.21) and (29.22) it finally follows that

1

ex(r)reh (7)1
= GOk K1)
= S e =) [6(r — ) (1 - fio) = 0(' = T)fie]

(29.25)

This is the temperature-dependent analog of the momentum Green’s func-
tion equation (15.23). Correspondingly, we have for the space-dependent

Green’s function .
G&%’(n, 'ty = (T [¢a(”)I¢L(r’T’)I] Yo
— 1
= Yo (er) il (r'r)r. (29.26)

We cannot prove a Wick’s theorem as an operator identity for temperature-
dependent systems with these results, but we have nevertheless the following
statement for the ensemble average {24, 25]:

(T [ AN 0 c;r(,(.) ...|)o = sum of all completely contracted terms.

This statement is sufficient to construct a diagrammatic perturbation ex-
pansion with the same diagrams and almost the same translation rules as
before. Only the prefactors change, since no factors of ¢ appear.

We find an interesting difference in the evaluation of the diagrams: For
temperatures T > 0 each state | k) is occupied with a certain probability
fx and unoccupied with a certain probability (1 — fi). A principal divi-
sion in particle and hole states is no longer possible, since each state to a
certain extent is both. For this reason diagrams which vanish at zero tem-
peratures (in translationally invariant systems) give non-zero contributions;
see, for example, figure 29.1. Such diagrams are frequently called anomalous
diagrams.

All questions that were discussed in the zero-temperature formalism can
also be investigated for systems at finite temperatures. Additional interest-
ing applications include
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Figure 29.1 The following diagrams do not contribute to the ground state
energy, but they do contribute to the grand canonical potential at non-zero
temperaiures.

- the summation of the ring-diagram contribution to Zg = Zg(T, n).
One obtains an (approximately valid) equation of state
pf2

—— =1nZ
kgT ~ "G

for a dense electron gas;

- the derivation of the Hartree—Fock equations for systems at finite tem-
- peratures through the approximation

M(T,p) =~ EE + vvmo ;

- calculation of transition temperatures, such as the temperature of the
phase transition into a superconducting state:

- the general question of finite-temperature corrections to the zero-
temperature results.

We will not here further pursue the possible uses of the finite-temperature
formalism, but only address one remarkable point, which puts the usual
perturbation theory for T'= 0 in a somewhat different light. In many cases,
the contributions of the anomalous diagrams do not go to zero, as one would
expect, in the limit 7'~ 0. The question then arises of which result gives
the correct result for the ground state energy of the system: the earlier zero-
temperature result or the limit T — 0 of a finite-temperature calculation.
The answer is relatively simple. The original zero-temperature theory is
marred by a particular uncertainty. In the proof of the Gell-Mann—Low
theorem, we could not show that the adiabatically generated state is the
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1 e
1 -
9

0( = Hg) 1M{=H)

Figure 29.2 The ground state energy at zero temperature may not evolve
adiabatically to the ground state of the interacting system.

ground state of the full Hamiltonian; it was only guaranteed, that it is an
eigenstate. Hence, if the spectrum of eigenvalues is exhibited as a function
of the coupling constant, one cannot expect that the ground state of the full
problem is obtained by turning on the interactions adiabatically; instead,
one may end up in an excited state (see figure 29.2). With the help of
examples (see for example [26]) one can show that in such cases the T — 0
limit of the temperature-dependent theory gives a state with lower energy.
Thus, the temperature-dependent theory is really the correct one, since it
does not involve any adiabatic turning-on. The integrals that appear in
this theory have the structure of exp(—...), i.e., they are, in contrast to
the earlier integrals with the structure exp(—:...), convergent without any
additional convergence factors. However, in quite a few cases, for example
in systems with spherical Fermi surfaces, the results from the two different
theories do not differ.



Part IV

Fermi Liquid Theory






Chapter 30

Introduction

The ground state of a homogeneous, translationally invariant system of
fermions has a well-defined Fermi surface at chemical potential u. It is
useful to define a Fermi temperature T by

1
TF = — lim p. . 30.1
L (30.1)
This temperature sets a scale for the excitations in the system. For a homo-
geneous non-interacting system of density n in three dimensions, the Fermi
temperature is given by

(371'2n)2/3

Ty (30.2)

Tp =cp/kp =

where e is the Fermi energy, ep = klz;. /(2m). Some physical systems consist
of fermions at temperatures much lower than the Fermi temperature. Such
systems are said to be degenerate. One example of such a system is 3He at
temperatures well below its condensation temperature, but well above the
temperature at which 3He becomes a superfluid. Another example is given
by the conduction electrons in a metal at room temperature. These form a
degenerate fermion system because the Fermi temperature is very high, of
the order of 10% K.

The physical properties of a degenerate non-interacting Fermi system are
usually treated in graduate-level textbooks in statistical mechanics. These
properties are essentially determined by the statistics of the particles — the
Pauli exclusion principle prohibits occupation of any single-particle state by
more than one particle.

In real degenerate fermion systems, there are very strong particle inter-
actions, frequently of the order of kgTr. Therefore, one may expect that the
properties of a real degenerate fermion system will differ considerably from
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those of an ideal non-interacting degenerate fermion system. It 1s, however,
a remarkable fact that the properties of real degenerate systems are quali-
tatively very similar to those of non-interacting ones. The reason for this is
that in both interacting and non-interacting systems, the physical properties
are determined by low-lying excitations, and at low temperatures there are
only a few such excitations present. This is due to the severe restrictions
imposed by the Pauli exclusion principle on the available phase-space for
low-lying excitations. Hence, there is a strong correspondence between the
nature of the low-lying excitations in interacting and non-interacting degen-
erate fermion systems. In the interacting system, however, many properties
of low-lying single-particle excitations, such as mass, are typically different
from those of the non-interacting system. This effect, which is due to the
strength of the interactions, is called renormalization. There is also a resid-
ual interaction between these excitations in an interacting system, but this
residual interaction only quantitatively modifies the values of macroscopic
properties even though it may in fact be very strong.

Degenerate Fermi systems are well understood in terms of a theory put
forward by Landau in 1950 [27]. This theory applies to normal Fermi lig-
uids. These are interacting translationally invariant isqtropic fermion sys-
tems, such as liquid 3He in the temperature range discussed above. The
theory may also be applied with minor modifications to the conduction elec-
trons in a metal. The modifications account for the fact that the conduction
electrons in a metal do not constitute an isotropic translationally invariant
system, due to the crystal lattice of discrete ions. The theory is a semi-
phenomenological one, in the sense that all properties are determined in
terms of a few parameters. These parameters can be determined from a few
experiments and then used to make new independent predictions. This is
the course followed by Landau when he introduced the theory and shortly
thereafter used it to predict the existence of zero sound in 3He. The theoreti-
cal basis for the Landau Fermi liquid theory was rigorously demonstrated by
Luttinger and Noziéres in 1962 [28, 29], when they verified the theory using
infinite order perturbation theory. In other words, the theory is valid in any
system where perturbation theory converges. The microscopic derivation
by Luttinger and Noziéres also showed how the parameters in the theory
can be calculated directly from first principles. Such calculations have been
performed for, for example, simple metals. One of the most extensive cal-
culations to this date of Fermi liquid parameters for various metals was
performed by Rice in 1965 [30] .

Through the years since the introduction of Landau’s Fermi liquid the-
ory, the fundamental concepts of the theory, such as the existence of a Fermi
surface and quasi-particles, have become cornerstones in condensed matter
physics for the understanding of Fermi systems. Recent developments in con--
densed matter physics have again shown the importance of these concepts.
One such development is the so-called Kondo effect, in which a minimum in
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the resistivity of metals with a small concentration of magnetic impurities is
observed at low temperatures. A complete theoretical understanding of the
Kondo effect did not emerge until after the development of renormalization
group theory. Nevertheless, the low temperature behavior of the Kondo ef-
fect could be understood by the application of Fermi liquid theory [31]. We
will discuss the application of Fermi liquid theory to the Kondo problem in
a later chapter.

Another more recent area is the physics of high-T; superconductors. The
materials that exhibit high-T¢ superconductivity all contain planes of copper
oxide, and these planes are separated by, for example, rare earth atoms. At
the present, the consensus has emerged that all the interesting physics hap-
pens in the essentially two-dimensional layers of copper oxide. The model
that is frequently used to describe this system is the so-called Hubbard
Hamiltonian. Not even the normal properties of this Hamiltonian are com-
pletely understood at the present time. However, there have been some very
interesting developments in the theory of the normal properties of these ma-
terials, which may be a first steps towards a complete theory of high-T,
superconductivity. In these developments, attempts are made to investi-
gate to what extent the normal state of the system can be dgscribed as a
Fermi liquid. It is argued by some researchers that this state of the Hub-
bard Hamiltonian is a somewhat exotic variation of a Fermi liquid, termed a
marginal Fermi liquid. The essential point for our illustrative purposes here,
however, is that it is the concepts from the Landau Fermi liquid theory that
play a major role in these developments [32].






Chapter 31

Equilibrium properties

We consider first a translationally invariant system of N non-interacting
fermions in a unit volume. For a translationally invariant system, momen-
tum k and spin ¢ = i% are good quantum numbers. The many-body
wavefunction of the system is a Slater-determinant of single-particle states

¥k, With energies cfco) = k?/2m, where m is the mass of the particles. Any
eigenstate of the system may then be completely described by a distribution
function ny ,, which gives the occupancies of the single-particle states. In

the ground state, this distribution function is n,(co) , given by
© _J 1 if 9 < €F
N = 0 if fO)
e >ep
and the ground state energy of this N -particle system is

V- 3
. k<kFyU

Let us add one particle to the system. The ground state of this (N +1)-
particle system is obtained by placing the additional particle in a momentum
state of momentum |k| = kp. The difference between the ground state

energy E(gNH) and E'(gN) 18

(V)
N (N) _ OF
B¢ - B ):“_a?v =p

where (1 is the chemical potential of the system. Since the additional particle
was added on the Fermi surface, we have '

B =€p.
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The value of s depends on the temperature, but for degenerate systems the
deviation of p from ez is of order (T/TF)?, which we will ignore.

The elementary excitations of the non-interacting system are particles
and holes. These excitations are obtained by adding a particle with k > kg
or removing a particle with k¥ < kp. The thermodynamic properties of the
system are determined by these elementary excitations, so it is convenient
to have a measure of the departure of a state of the system from its ground
state. Such a measure is given by the quantity ény ,, defined by

6Nk o = Nge — ng)).
This quantity measures the difference in the occupation numbers of the
single-particle states from their values in the ground state and thus describes
the excited states of the system. For example, éng, = 6k’k,60’a; with
k > kp corresponds to the excitation of a particle, and ény , = —b /65 o
with k < kg corresponds to the excitation of a hole. The internal energy of
an excitation is then readily expressed in terms of ényg, and is

E—-Fy= E eio)énk,a.
k,o

L]

It is clear that at non-zero but low enough temperatures, such that
kgT < p, only particles and holes near the Fermi energy will be excited
thermally, so éni , is of order unity only in a narrow region with thickness
of order kgT'/p near the Fermi surface and zero otherwise. It is then conve-
nient to measure the energies relative to the chemical potential, which can
be done by using the free energy F. This is the appropriate thermodynamic
potential of a system in contact with a particle reservoir, so that the number
of particles is allowed to fluctuate, but with the restriction that the average
number of particles be fixed at N. This free energy is defined as

F:E—pN

and the free energy of an excitation is.thus

F-Fo=Y (efj’) — ,1) 6nk.q-
k,o

We now turn to a real, interacting system. We assume that the sys-
tem is isotropic and translationally invariant. These assumptions are made
for convenience — the theory can be formulated for anisotropic and non-
translationally invariant systems (see [33, 34]). As a consequence of the
first assumption, the Fermi surface of the interacting system is spherical
for reasons of symmetry. By a theorem due to Luttinger [35], the Fermi
surface of the interacting system must enclose the same volume as a cor-
responding non-interacting system with the same particle density so that
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the values of kr and p do not change as the interactions are turned on.
As a consequence of the second assumption, momentum k and spin ¢ are
good quantum numbers and can be used to label excited states of the in-
teracting system, precisely as was the case with the non-interacting system.
This enables us to generate quasi-particle states of the interacting system
from those of the non-interacting system. The mechanism that allows us
to do so is the adiabatic generation of the interacting eigenstates ¢, from
the non-interacting ones. We imagine that the coupling constant for the
particle-particle interactions can be tuned continuously from' zero to its
final, real strength. We then assume that there is a one-to-one correspon-
- dence between the excited states of the non-interacting system and those
of the interacting system in the following way. We start with a particular
quasi-particle state ny , of the non-interacting system. We then slowly (in
a sense which will be made more precise later) turn on the interactions.
In this way we will then generate a quasi-particle state of the interacting
system. For example, a non-interacting state with a single-particle excita-
tion ny , = nfco) + Oy 050+ Will in this way generate a single quasi-particle
excitation of momentum k’ and spin o’ of the interacting state. In this
way, we have a one-to-one correspondence between the excited states of
non-interacting and of the interacting systems, and from a state of the non-
interacting system containing ény , quasi-particles we generate a state of
the interacting system containing én , quasi-particles. These are precisely
the quasi-particles discussed in Chapter 26.

For this adiabatic generation of the excited states to be valid, we must as-
sume that all eigenstates of elementary excitations of the interacting system
can be reached in this way. This holds for the ground state of the inter-
acting system, provided the requirements of the Gell-Mann-Low theorem in
Chapter 18 are satisfied and if, for example, the Fermi surface is spherical.
An example of when all eigenstates of the interacting system may not be
generated adiabatically is provided by a system with attractive interactions.
In this case the interacting ground state can be a superfluid liquid. Also,
the adiabatic generation of excited states can only be valid for low-lying
excitations near the Fermi-surface. The reason for this is that the adiabatic
procedure must obviously take place in a time shorter than the life-time of
the excitations — otherwise we would not end up in a well-defined excited
state. But we have already seen that the life-time of an excited state of mo-
mentum k goes as [(k — kg)/kp]™2, so if the momentum of the excitation
in the non-interacting is too far from the Fermi surface, we may not be able
to generate the corresponding interacting excited state adiabatically. This
limits the validity of the Fermi liquid theory to excitations in the immediate
vicinity of the Fermi surface.

The free energy of the interacting system can be expressed in terms of
nk,,. In particular, it can be expressed in the deviation ény , from the
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(0)

ground state quasi-particle distribution function n;”:
F = Flény 5]

If the deviation is small, in a sense which will be made more precise shortly,
we can expand the free energy in a power series in ény ,. To second order
in the deviation, we obtain

1
F - Fo :“Z(Ek —_ ,u)&nk,d + —2- E fko.’kla./(snk,olsnkl’dl (31.1)
' k,o ko,k'o’

In the first summation on the right-hand side of equation (31.1), € — p
is the free energy of a single quasi-particle of momentum k and spin o. In
the presence of other quasi-particles the interactions between quasi-particles
change this free energy to

gk — 4 = €k + Z fka,k’a,énkr,al — M. (312)
k'o’

It follows immediately from the adiabatic generation that only one quasi-
particle can occupy each available quasi-particle state. By applying statis-
tical mechanics to a gas of quasi-particles, we can then calculate the prob-
ability f(e) that there is a quasi-particle with energy ¢ in the system. This
probability is .

9= Fenyn

where 8 = 1/kgT. As T — 0, this expression tends to a step function at ¢ =
i. At finite temperatures, the energy € will depend on the temperature since
thermally excited quasi-particles will affect the energy e through equation
(31.2), and f(¢) becomes a very complicated function. Note that, as a
consequence of the fact that each quasi-particle state can be occupied by
only one quasi-particle, the quasi-particles are distributed according to the
Fermi—Dirac distribution function, and we can treat them as fermions. It is
not at all trivial to actually prove that the quasi-particles are fermions and
this may not even be the case. However, for our purposes here, it suffices to
know that we can treat them as fermions. |

The quasi-particles are close to the Fermi surface because of the restric-
tion on k—kp. We may then expand the energies €, about the Fermi surface.
To lowest order in (k — k), the expansion can be written

€ — p = i (k — kp) (31.3)

m*

where the effective mass m* of a quasi-particle is defined as

, (31.4)
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with the gradient evaluated at the Fermi surface. This definition is the
same as equation (26.18) for m**. We will here follow convention and use
the notation m*.

The free energy given in equation (31.1) has the form of the free energy of
a gas of interacting particles, the quasi-particles, where the particle interac-
tion is given by the function fxo, K'o! , usually called the Landau f-function.
The expansion of the free energy is an expansion in the ratio of the number
ény , of these particles to the total number N of particles in the system.
Thus, the expansion is valid for 2 ko |ény ,| < N. This condition holds for
temperatures T' much less than the chemical potential of the system. Note
that there is no particular restriction on the strength of the quasi-particle
interactions.

For systems invariant under space-inversion and time-reversal (which
1s the case in the absence of magnetic fields) the Landau f-function must
satisfy

fka,k'a’ = f—k—a,——k'—a’
fka,k'a" = fl(—a,k'-—a"

Furthermore, we will always take |k| = kg since the excitations are very close
to the Fermi surface. The f-function is then a function only of the relative
orientations of k and k’ and of o and ¢’. Thus, the spin-component depends
only on if 0 and ¢’ are parallel or anti- parallel. It is convenient to separate
these two independent spin-components f k! and f&, into spin-symmetric
and anti-symmetric parts:

Al = e+ fae

fw = B Fae

Because of the isotropy, the spin-symmetric and anti-symmetric parts only
depend on the angle £ between k and k’, so we can expand these components
in a series of Legendre polynomials

29 = Zf;‘ 'P(cos ).

Usually, the coefficients fs(a) are expressed in a dimensionless form Fe( %)
by multiplying them by the den51ty-of—states at the Fermi surface, v(0) (see
below), so that

*k
v(0) 2@ = mwzF £ = Fp@, (3L.5)
The coeflicients F; ; @) then measure the interaction strength relative to the

kinetic energy of the quasi-particles and completely determine the interac-
tion between them. The great usefulness of the theory lies in the fact that
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in practical applications, only a few of the parameters F;(a) and m* need
to be included. They can then be determined from a few experiments, and
new independent predictions can then be made using these values of the
parameters.

As we have argued before, the physical properties at low energies depend
crucially on the number of states available for low-energy excitations. This
number is given by the density-of-states at the Fermi surface, v(0). Let
us calculate v(0) for a Fermi liquid. We know how to convert a sum over
quasi-particle states k, o to an integral:

1 2
2oB=2. e [ 10 =

where g(k) is some function of k| only. (Remember that the system has
unit volume.) Instead of summing over particle states (k, o), we can sum
over energy levels. To do so, we introduce the density-of-states v(¢), which
is the number of states per unit volume and unit energy. Thus,

S g(k) = %%% /O ” g(k)kRdk = / J(Ou()de.
k,o

/ g(k)d3k

For quasi-particles, ¢x, = k2/(2m*), so that dk = m*de/k =
m*de/+/2m*e. By changing integration variable, we obtain
1 [, *
— k“g(k)dk = [ g(e)m*v2m*ede.
™ Jo
Hence,

v(e) = m*v2m*e.

With ez = k2/(2m*), we obtain for the density-of-states at the Fermi sur-
face: “k
v(0) = il

(31.6)

2
T
We will now calculate the specific heat of a Fermi liquid. The specific heat
is given by the increase in internal energy due to an infinitesimal increase
0T in temperature:

OFE = C,6T.

To lowest order in (T'/TF), the increase in internal energy is given by

(5E = Z fk’atsnk,o.
k,r

increasing the temperature leads to an increase in the number of quasi-
particles, éng ,. There is also an increase in the internal energy due to
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the quasi-particle interactions, but this term is of order (T/T%)3 and can
be ignored here. Hence, the specific heat is that of a non-interacting gas
of quasi-particles. The increase in internal energy is then given by the the
number of quasi-particles within an energy kg7 of the Fermi surface. This
number is given by the product of the number of the density-of-states at
the Fermi surface, ¥(0), and kgT. The energy of excitation is of the order
of kpT, which gives the standard result that C, o v(0)k4T. An exact
calculation is straightforward and completely analogous to the calculation
of Cy for a free elctron gas. The result is

71.2
Cy = —3—V(O)Ic]23T.

The only change in C, in the interacting Fermi liquid from that of the
non-interacting Fermi liquid is due to the change in the density-of-states at
the Fermi surface. With the density-of-states given by equation (31.6), we
obtain .

C, = mng E4T. (31.7)
The effective mass m* can thus be obtained directly from mea:surements of
the heat capacity of the Fermi liquid. _

Next, we turn to the propagation of ordinary sound in a Fermi liquid, for
example the propagation of sound in liquid 3He. These sound waves are due
to vibrations of the quasi-particles, where the restoring force is provided by
frequent collisions between them. The speed of sound v, is obtained from
thermodynamics and is given by

2= L0P

m on

where P is the pressure. Using thermodynamic Maxwell relations, it is easy
to show that

oP  Op
o - Van
so that
N ou
2_ e
vy = — AN (31.8)

We will evaluate equation (31.8) by calculating the inverse %% of g—ﬁ using
Fermi liquid theory. We begin by considering the change dN in N due to a
change dy in the chemical potential. If the chemical potential increases an
amount dy, the Fermi wavenumber increases an amount

Okp

dkp = 5!

du.
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Quasiparticles on the new Fermi surface must have an energy e(u + du)
which satisfies

e(p+ dp) — e(p) = dp.

This increase in quasi-particle energy to e¢(u + du) has two contributions.
The first one comes from the fact that kg increases due to the increase
in N, and this contribution is vpdkp. As a result of increasing the Fermi
surface, new quasi-particles are added at kg + dkp. The second contribu-
tion comes from the interactions involving these new quasi-particles and is
Y Ko fko x'o16ng1 51 Collecting these two terms we obtain

vpdkF + Y fio ko160 = di.
k'’
Since the quasi-particles are on the Fermi surface, we can write

dng, ) afk
dfk 8’6

dnke = — ——dkp = 8(ex — er)vkdkr

SO *

Bk'
5(€kl —-p) =1 (31.9)

kl
This equation then gives the change in kg if the chemical potential increases.

The increase dN in the number of particles within the expanded Fermm
surface is just

AN =) g =Y 6(cx — p)vidkp

ko ko
so that

il = 8—1\-/- = Zé(ék - akak. (31.10)
op

In an isotropic system, the Fermi surface is spherical and so %’ﬁf is indepen-

dent of direction. We perform the integral over k’ in equation (31.9) over
the Fermi surface:

3k'
> fka k'a'Uk'75(fk' )

k! 0!

1 ok’
- 271’)3 Z / fkd,k'a’vk’gié(le — 'u)kﬂ cos & dk,dfdgol

*

Ok m* o
= (Qﬂ)sz/fkdk'd'vk' E 5k —kF)Ek, cos & dk'd¢
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= al—zm*kak /fka k'’ €08§ d§

= TS [f L+ 1L cosg de

= %ﬂvk%@2/f§k, cos € d¢

- ";;f;F kaakf / Z F3Py(cos€) cos ¢ d¢
m*kp  Okp

Here, we used the fact that k also is on the Fermi surface, and in the last line
we used equation (31.5). The result of this integration in equation (31.9)
yields
Okp 1
VE = .
Ou 1+ F§

With this result inserted in equation (31.10) we obtain

N ON 1
=——= 6~ p)
ko

mv?2  Opu 1+ F§

Integrating over k and summing over o, we obtain

N v(0)
mv? 1+ F§

or N
2 s
= 1+ Fj].
Vs mV(O) [ + O]
If we insert the expression equation (31.6) for »(0), and also use the relation
between the density N (remember that the system has unit volume) and

kp, N = IcF/(37r2) we finally obtain

k2

v = s [L+ Fg). (31.11)
The interactions thus enter into the speed of sound in two places. First, the
density-of-states at the Fermi surface, v(0), is modified by the effective mass
m*, and second, the interactions enter in the parameter F§. For example, if
the quasi-particle interaction is repulsive, the speed of sound increases due
to the positive Fj.

The parameter m* can be obtained from specific heat measurements, so
measurement of the speed of sound will yield F{§. For example, for liquid
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3He at temperatures where the Fermi liquid theory applies, Fg = 10.8 at a
pressure of 0.28 atm.

Note that if F§ < —1, the system is unstable, because density fluctua-
tions will build up exponentially.

Finally, we will calculate the Pauli spin susceptibility xp of a Fermi
liquid. In the presence of a uniform external magnetic field H, the quasi-
particles acquire an additional energy —gupo H, where g is the Landé factor,
which we take to be 2, g is the Bohr magneton and o = :I:%. In equilibrium
the system must have a single chemical potential . As a consequence, the
quasi-particles with spin —% (which have their energies increased) must have
their Fermi surface reduced by an amount §kg, whereas the Fermi surface
of the spin +% quasi-particles must increase an amount §kg. This will
modify the distribution ny ,of the quasi-particles. The change ény , in the
quasi-particle distribution function is

ng, =+1 for o =+4 and kp < k < kp + bkp
(31.12)
bnge =—1 foro= -—% and kg — 6kp <k <kp

In turn, these changes in the quasi-particle distribution will modify the
quasi-particle energies through the quasi-particle interactions. The relation
between 6ng , and the change d¢y, of the quasi-particles 1s

beko = —gUBOH + D frgilor®Mior- (31.13)
ko k/a!

We look for a solution for éey , of the form
bexoe = —noH. (31.14)

With this ansatz, the change ékp in the Fermi surface 1s

ok Oeg, -1 m* nH
Skp = |—|lber| = | == = — . .
p= |5 ool = 55| el = T (31.15)
Using equation (31.12), we can write equation (31.13) as
Seky = —9gUBOH +D  froxio®ny s + > fko k' -0k —o
kl kl

— 1 2 !
= gupoH + (27r)3 kF‘SkF(QU) /d7 [fkor,k’a - fka,k'—-—o]

(31.16)

where k and k’ are on the Fermi surface kg and dvy’ is the element of solid
angle. If we now insert equation (31.15) and also use equation (31.5), we
obtain
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bexy = -guBcrH-{-( ﬂ_)skpékpflo/d'y frk!
40 - 27 a
= —gugoH + —— P kL 6kp EfZPe(cosf)cosfdﬁ
20
= —ngaH—{— kFékaO
= —-ngaH+aHF0n. (31.17)

Inserting the ansatz equation (31.14) in equation (31.17) yields for 5
—-noH = —gugoH + cHF§n,

or

JiB
= . 31.18
14 161 ( )

The magnetization M of the system is

m*k
472

M =xpH = Zgusoénka—gus 0 H. . (3L19)

ko

The Pauli spin susceptibility xp is then

M _ m*kp (gup)® _ m*kp ph
= = = . 31.20
XPEH T o 14 Fg T w14 F¢ (31.20)

The effect of the interactions is again a renormalization of the response
of the system, here by a factor (1 + Fg)_:l (apart from the change in the
density-of-states at the Fermi surface). Moreover, we note that if F§ < —1
the susceptibility becomes infinite, which signals an instability of the spin
system; for example, the system may become ferromagnetic.






Chapter 32

Transport equation and
collective modes

We will now turn our attention to the case where the system is non-uniform.
This would be the case, for example, if an external field which varies in
space is applied or if there are internal long-range ﬂuctuations'. We restrict
ourselves to the case where the system is only weakly non-uniform. The
idea is then to imagine that the system is divided into small sub-units, each
of which is in local equilibrium. In each sub-unit, we can then define a
quasi-particle distribution function ny ,(r,t), where r is the position vector
of the sub-unit. Of course, for this to make sense, the spatial variation of the
system must be on a length scale much larger than the size of each sub-unit.
We are only interested in linear response and write

ng o(r,t) = ngo) + éng ,(r,t).

We can simplify further by Fourier transforming. Since we are only inter-
ested in linear response, we can then study the response of each Fourier
component q separately, and write

ng o (r,t) = n( ) + énk »(q,w)e i(qr-wt)

It is tempting to interpret the quantity 6ny ,(r,t) as the probability of find-
ing a quasi-particle (k, o) at position r at time t. However, this interpre-
tation is not quite correct. Indeed, attempts to interpret the quasi-particle
distribution function in terms of localized wave-packets of quasi-particles will
lead to unexpected effects (see [36]). We shall find later that énk »(q,w) can
be interpreted as the probability amplitude of finding a quasi-particle-quasi-
hole pair of total momentum q. This will become apparent when we derive
the Landau theory from infinite-order perturbation theory. We shall then
also find that the precise limits of validity on the theory are

Qo &L p
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v € op (32.1)

These conditions then say what one would intuitively expect — that the
wavelengths of the disturbances of the system must be much larger than the
Fermi wavelength, and that their energies must be much smaller than the
Fermi energy. These conditions will ensure that only quasi-particles in the
immediate vicinity of the Fermi surface will be involved in the excitations.

With these preliminaries behind us, we can then proceed to expand the
total free energy of the system. This expansion now has the form

Fo= Rty [@rlat - mén )
k,o

1
+§ E //d3Td37"fko,k’a,(r,r')6nka(r)5nkra,(r’),

ko k'o’

Again, we will restrict ourselves to translationally invariant systems. In this
case, the quasi-particle energy does not depend on r and is simply ¢, and
the interaction function fkd,klal(r,r' ) depends on r and r’ only through
(r—r'). Moreover, the interaction function represents the short-range forces
between the quasi-particles. If we are considering neutral systems, this is ob-
viously true. It is not clear if we are considering charged systems, such as the
conduction electrons in a solid. However, in such systems, the trick is to sep-
arate out the long-range part of the Coulomb interaction between the quasi-
particles, which leads to a term in the energy, which is treated separately .
This part is the direct Hartree interaction (not shown here). The remain-
der of the Coulomb interaction are then short-ranged exchange-correlation
interactions, which are described by an interaction function fy, y/,. Soin
either case, fka,k'a’(r — r’) is short-ranged, with a range of the order of
an atomic length. We can then replace this by fy, y/,/0(r — r’) inside the
integral. With all these simplifications, the total free energy is then

Fo= Rt Y [ (- mn()
k,o

1
'+"2- Z /d31° fko’k;U,(SnkU(r)6nk;U,(r).
ko k'o!

From this we see that a quasi-particle (k, o) at a point r has an energy
ko (¥) = €k + D fug k't (1).
k's!

This energy now varies both with momentum k and with respect to position
r, 50 Viegq (r) and Vyey, (r) are both non-zero. The first of these gradients,
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Vkeko (r) is just the local velocity of the quasi-particle. The spatial gradient,
however, represents a diffusion force, which tends to push the quasi-particle
to a region of low energy. '

Landau derived the transport equation for quasi-particles by treating
them as independent particles described by a classical Hamiltonian €y, (r).
The time-development of the distribution function is then given by the ex-
plicit time-derivative plus the Poisson bracket of the distribution function
with the classical Hamiltonian:

8nka(r)t) ank,a(r”t) Ok o (r) ank,a(r’t) afka(r)} _
5t +Z{ e Okw | Ok Ory J -0 (822)

where o = z,y, z denotes Cartesian components. In this expression, how-
ever, we have ignored the rate of change of ny ,(r,t) due to collisiens between
the quasi-particles. By a procedure which is well-known in the theory of the
Boltzmann equation (see, for example [37]), we can insert such a term by
hand, so equation (32.2) becomes

6"1:3(1‘1 t) + Z { ank,a(?’ t) dexq (1) _ 6"1{,0(") t) 8€ka(r)} = I(n).
t Ora Okq Okq Ora

(32.3)
Here I(n) is a collision integral, which is a functional of the quasi-particle
distribution function. The collision integral measures the rate of change of
nk (r,t) due to collisions. Quasi-particle collisions are not important for
frequencies w larger than the typical quasi-particle collision frequency v and
I(n) can be dropped in these cases. The collision frequency is proportional
to the square of the number of quasi-particles, which is proportional to

(T/Tg)? for low temperatures.

The quasi-particle distribution ny , is meaningless other than on the
Fermi surface. Therefore, we want the transport equation in terms of the
physically sensible quantity éng o(r,t). The assumption that the distribu-
tion function deviates very little from its homogeneous equilibrium value
nfco) allows us to cast the transport equation in terms of the equilibrium
value of the distribution function plus corrections linear in the deviation

from equilibrium. This gives an equation linear in énk o (r,t). The result is
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dbny ,(r,1)
I(n) = —aft—————
0bny ,(r,t 0énys i (x,t
+’Z Uk, k ( )+Uka6(€k_“)2fkak' '—ka—,rL_—-)_
k'o’ *
(32.4)

Our first application of the transport equation (32.4) is to calculate the
particle current density jj in a state containing a quasi-particle ény ,. Since
the total number of particles is conserved, the continuity equation

—4+V.J=0 (32.5)

must hold, with J the total (particle) current density. We can obtain this
equation by summing the transport equation (32.4) over k and o. The result
is

Obny ,(r,t
?Eg;—t) + Z f———g%)- Vg, T Z fkd,klalvk’aa(gk/ - 1) :: 0.
ko k'o’
(32.6)
The right side of equation (32.6) vanishes since the collisions conserve the
number of particles. Comparing equation (32.6) with the continuity equation
(32.5), we see that

jka = vk + E fka,k'a"s(fk' - u)Vk/ (327)
k'c’

is the current density carried by a system containing a quasi-particle (k, o).
Similar expressions can be obtained for the energy current Q and the mo-
mentum current density II,3 by multiplying equation (32.4) by ¢ or k and
integrating while making use of energy or momentum conservation.

The equation (32.7) enables us to derive a relation between the effective
mass m* and the f-function for translationally invariant systems. Consider
a non-interacting system in a state containing one quasi-particle with mo-
mentum k. The current carried by this state is then

k
e = —. 32.8
Jk = (32.8)
Now turn on the interactions adiabatically. This takes the non-interacting
state to an interacting state containing one quasi-particle with momentum
k. Since the system is translationally invariant, the momentum is conserved.

The current carried in the interacting state is then also X -- Comparing this
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with equation (32.7) we obtain

k k on{9)
.n-:’: = 7—7-1—’.‘- — Z fka' ko’ 56121 Vk/. (329)
k'o!

We may, without loss of generality, take k parallel to z. It is then simple to
carry out the integrations in equation (32.9):

Bnio)
o Z fkd,k'd'a_fk_vk’,z Z fka k'0:5(6k: — p)vk:
k'o!
- (27r)3 Z/fka Ko! L1 ‘5(" — kp)vp cos € cos €% dk'dé

= 2m kF”k/fkk’ cos? £ d¢

= ";W];ka/Zf;Pg(cosf)Pl(cosf) cos¢& d€
m*kp F} .

- Topz kfl 3= Uk?

This result inserted in equation (32.9) together with vy = k/m* yield the
relation . Fy

m _

= 1+ 3 (32.10)
Equation (32.10) give important additional information about the quasi-
particle interactions. If the effective mass m* is known, for example from
specific heat measurements, the parameter F} can be calculated.

The first application of the transport equation (32.4) was made by Lan-
dau when he predicted the existence of a new collective mode in liquid 3He.
This mode was detected a few years after Landau’s prediction. The mode
1s a collective oscillation of the quasi-particle gas where the restoring force
comes from the interaction fka k’s Detween the quasi-particles, and has a.
dispersion similar to ordinary sound waves in that the energy of the mode is
proportional to the wavelength of the mode. Therefore, the mode was named
‘zero sound’. In an ordinary sound wave, ou the other hand, the restoring
force is provided by frequent adiabatic collision between the quasi-particles,
and these collisions restore local equilibrium. Hence, for the ordinary sound
waves to propagate, the frequency w of the mode must be much less than
the collision frequency v. In contrast, the collision frequency must be much
less than w for the zero-sound modes, so that collisions do not affect the os-
cillation. Since the collision frequency goes as (T//Tr)? at low temperatures;
this is always the case for sufficiently low temperatures. ,
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To analyze the transport equation for collective modes, we first set
6nk,a(r,t) = 6nk’aei(q-r—wt).

With this form of ény ,(r,t), the transport equation (32.4) becomes

3n§c0)
(q vk —w)dénk, —q- vk Ber

Z fka,k'alénkrd, = 0. (3211)
k'o’

We simplify this equation by introducing polar and azimuthal angles (8, ¢)
relative to q and by introducing a dimensionless quantity s defined by

W wm*

§= =

qup  qkp

The collective mode is an oscillation of the Fermi surface. Hence, we in-
troduce the displacement u(ko) of the Fermi surface at the point k on the
Fermi surface; in terms of u(ka), we have ény, = 8(ex — p)vpu(ko), so the
transport equation then becomes

L]

(cosd — s)u(8,p,0) + cos b Z / dy'F(€, 0,0 )u(0, ¢’ 0"y =0 (32.12)
a.l

where dv’ is the element of solid angle, ¢ is the angle between k and k', and
F is the reduced interaction function
*

Fko X0y = " 0E fy i = v(O) it

Equation (32.12) is a homogeneous linear integral equation for the dis-
placement u(ke) of the Fermi surface due to the collective modes. The
equation is an eigenvalue equation, and it can be shown that the eigenvalue
s may only take discrete values. It follows that the energy w = squp of a
mode is linear in ¢q. This is a consequence of the short range of the quasi-
particle interactions. For long-range interactions, such as the Coulomb in-
teraction, the frequency is ‘lifted’ and is non-zero at infinite wavelengths.
The reason for this is that a local variation in the quasi-particle density, due
to the zero-sound mode, will result in a local accumulation of charge and
macroscopic electric fields. This is the case for the plasma oscillations of
an electron gas, which are precisely the zero-sound mode of the interacting
electron gas, discussed in Chapter 11. The frequency of plasma oscillations
becomes wy, = 4mne?/m* as ¢ — 0. '

Equation (32.12) has many different solutions. Distinction is usually
made between two main categories, those modes for which the different spin
orientations oscillate in phase, and those for which the spin orientations are
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out of phase. The latter are called spin waves. The zero-sound mode is
the simplest in-phase mode. In this case, only the symmetric interactions
F? matter. We make a further simplification by assuming that only the
constant term F§ need be included. With these simplifications, equation
(32.12) becomes

s s 1, NIO!
- = . 2.
Q%H 1) u(6, ¢) ﬂ%/ﬁw,wmg (32.13)
'The right hand side of equation (32.13) does not depend on the angles (8, ¢),
so the solution for u(#, ) must be of the form

cosf

u(f,p) x (32.14)

s—cosf’
Inserting this in (32.13) and integrating over solid angle we obtain the dis-
persion relation. The result is

s s+1 1

5m8_1—1—F8 (32.15)

+

From equation (32.14) we see that the Fermi surface has an egg-shaped
deformation for a zero-sound mode. The deformation becomes smaller and
smaller as F§ vanishes. In this so-called weak-coupling limit we have s = 1
with v = vp, to be contrasted with the sound velocity v; = vg/+/3. On
the other hand, as the coupling F§ grows, the strong-coupling limit of s
1s s = y/F3/3. We also see from equation (32.15) that the solutions for s
are purely imaginary for F§ < —1 — if the interactions are attractive and
strong enough, the system is unstable.

The zero-sound modes in liquid He® were discovered by Abel, Anderson
and Wheatley in 1966 [38]. The technique used in the experiment was to
monitor the absorption of sound waves at a fixed temperature, which means
that the collision frequency v is fixed. At high frequencies w 3> v, zero-sound
waves can propagate, and the damping due to collisions is proportional to
T?. As the frequency w is reduced, however, there will eventually be a
crossover to normal (first) sound, for which the damping goes as w?/T?
(a fact not proven here). By detectlng the cross- over in the damping at
fixed temperature from being constant to varying as w? the existence of the
zero-sound mode could be established.

Finally, there are, as we have said, many other different modes possi-
ble. It is a good exercise to solve the transport equation for transverse
waves, for which u(f, ¢) x ', These mode can be supported if the term
Fy cos 0e* is included. Similarly, there are the spin (antxsyrnmetnc) waves
where u(8,¢,0) = u(8, )o.






Chapter 33

Microscopic derivation of the
Landau Fermi liquid theory

In this chapter, we will derive the Landau Fermi liquid theory using ordinary
perturbation theory to infinite order. We will thus verify the theory for any
system in which the perturbation theory converges. Any such system is then
a normal Fermi liquid, but there may of course exist normal Fermi liquids
for which the Landau theory holds, but for which perturbation theory does
not converge. Moreover, we will exclude systems with attractive interactions
between the particles. Attractive interactions may cause a phase-transition
to occur, such as the superfluid transition in *He or the superconducting
transition in certain metals, in which case the structure of the ground state
changes and the system is not normal. In this case, ordinary perturbation
theory, in which we expand about the non-interacting ground state, does not
converge. It is possible, however, to construct other perturbation theories
for such systems but we will not further discuss that here. We will also
restrict the derivation to systems with short-range interactions. It is fairly
straightforward to extend the derivation to long-range interactions, such as
the Coulomb interaction, but a bit tedious. For a derivation which includes
long-range interactions, see Noziéres [34]. Finally, we will also assume that
the system is isotropic and translationally invariant. These assumptions are
not restrictive, but simplify the notation.

Specifically, we will verify the following hypothesis and propertles of the
Landau Fermi liquid theory.

(1) The elementary excitations of the system are quasi-particles and quasi-
holes, separated by a Fermi surface Sp. The energy ¢; of a quasi-
particle is a continuous function when k crosses Sp, as is the gradient
Vké€r = Vk.

385
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(2) The current carried by a quasi-particle is given by equation (32.7),

ol
Jk = VK — Z fko -y

ko’

afkl kl

(3) When the system is compressed, the distortion 9kg/0p of the Fermi
surface is given by equation (31.9):

Ok 3%‘
=1- ¢ v ——86(€rr — ).
L g;’fkaka K 5, (exr — 1)

(4) The collisionless transport equation for the quasi-particles is given by
equation (32.11):

(0)
(q- vk —w)éng,(q,w) —q- Vig Ba Y Fokor6nKiq(2,w) = 0.
k'o!
In the course of verifying (1)—(4), we will also obtain a microscopic expres-
sions for the interaction function fy, y,s and the quasi-particle distribution
function ény,(q,w).

The original derivation was given by Noziéres and Luttinger [28, 29],
and is also presented in Noziéres [34]. This derivation is based on the so-
called Ward identities, which are relations between self-energies and vertex
functions. Here, we will closely follow the derivation given by Nozieéres.
Rickayzen [39] has given a somewhat shorter derivation of the transport
equation. His derivation does not explicitly use the Ward identities.

The verification will proceed in the following way. We will first briefly
review the discussion about quasi-particles in Chapter 26, from which the
hypothesis (1) follows immediately. Once we have firmly established the
existence of the quasi-particles, we will proceed by defining quasi-particle
creation and annihilation operators. These operators later be used to form a
microscopic expression for the quasi-particle distribution function. Next, we
will turn to a rather lengthy and formal discussion of correlation functions,
which describe the response of the system to an external perturbation. It
is these correlation functions that we will cast in a form from which we can
identify the properties (2)—(4) of the Landau Fermi liquid theory. This will
be done by examining the correlation functions on the Fermi surface and
using the Ward identities.

For simplicity, we will ignore the spin of the particles. This is just to
make the notation a little bit more comprehensible. ( .

In Chapter 26, we discussed the form of the Green’s function near the
Fermi surface. We found that the low-lying excitations of the system, the



FERMI LIQUID THEORY 387

energies of which are given by the locations of the poles of the Green’s
function, behave essentially as particles — as we approach the Fermi surface,
the lifetime of the excitations diverges and the width of the spectral density
at the poles of the Green’s function goes to zero. Because of the particle-
like properties of the excitations, we call them quasi-particles or quasi-holes,
depending on whether the real part of the location of the pole is above or
below the Fermi surface. The energy of the excitations, however, is a smooth
function of frequency as we pass through the Fermi surface. This establishes
the hypothesis (1). We establish this hypothesis formally by examining the
Green’s function near the Fermi surface. According to Chapter 26, the
Green’s function G(k,w) is

1

Gk,w) =
() w-—eg))—M(k,w)

(33.1)

where 6500) = k?/2m and M(k,w) is the self-energy. The self-energy is a
smooth function at the Fermi surface, where the imaginary part of M(k,w)
vanishes. The Fermi surface is determined by

p~ep—Mkp,p)=0. ‘ (33.2)

To examine the low-lying excitations, it is convenient to change frequency
variable w — 4 — & and to expand the denominator of G(k,&) about & = 0
and k = kg with the result

& - () + M(k,5) - ) (33.3)
s kp  OM(k,5
- o-femfi o2l
=kFp
_ OM(k,3)
tE e+ } (33.4)

The elementary excitations are at the energies at which the Green’s func-
tion G(k,&) has poles. We may separate the contribution to the Green’s
functions from these poles from contributions due to multi-particle excita-
tions. We have shown in Chapter 26 that the imaginary part of M (k,&) is
quadratic in (k — k) and &. All terms in equation (33.4) to first order in
(k—kF) and & are thus real. Neglecting quadratic terms, we can then write

~ zj,
Gk,0) = ———— 33.5
R 339
where zj is the residue of G(k,&) at kp and & = 0,
1
2p = (336)

1 OM(kD)

ow w=0
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and
(k—kF)

m*

€ = kp + u. (33.7)

Here the effective mass m™* is given by

. _ Zk
mt = e . (33.8)
m T kp

k=kp

If we add the quadratic terms to equation (33.5), we can write the Green’s
function near the Fermi surface as

~ 2L
Gl,5) = Gine + 5= (33.9)
where the pole near the Fermi surface has been separated out. This pole is
due to a quasi-particle excitation. The part Gj,c is a slowly varying function
which is regular on the Fermi surface. This part is the incoherent part of
the Green’s function. It arises from configurations of several elementary
excitations and is of order &% as @ — 0.

With this review, which clearly establishes the existence of the quasi-
particles and quasi-holes, we may define a quasi-particle annihilation oper-
ator C g in the Heisenberg picture by (see [29])

Nk 0 net! ' text! 141
Cx(t=0pg = N e e o (') get dt
—00

0
. ' R ;-
. Nk e‘lHt +7'}ktlckae—‘th e‘lEktldt/. (33.10)

V4 J—co

Here n; is an infinitesimal frequency such that n < p and g > Ty,
where F;l is the lifetime of a quasi-particle (k, ). The operator Cx g and

its Hermitian conjugate C';i g are quasi-particle annihilation and creation

operators. As |k| approaches the Fermi surface, C’l(t)H | ¥o) behaves for
longer and longer times as an exact normalized eigenstate of the Hamiltonian
H with an additional quasi-particle (k, ). Intuitively, this happens because
exp(—iext’ + nkt')cLa(t’)H on | ¥o) gives a distribution of single-particle
states with momentum k. If the excitation energy of such a state is €, the
integrand will oscillate with a frequency (€, — €x). The only contribution
from the integral will then be from the state with €, = ¢, provided the
lifetime of this excited state is much longer than time of averaging of the
integrand.

Let us now formally demonstrate that Cl]: g7 has the properties of a quasi-
particle operator by showing that the thermal equilibrium value (C’lt gCx,H)
is precisely the equilibrium quasi-particle distribution function f(eg). Let
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¢,(LN) be the exact eigenstates in the N-particle space of the Hamiltonian
with energies E,(LN). By equation (33.10), the matrix elements of CI, g and
Ck, g in this basis are

] (Cz)nn’
Vo | CL g | ¥n) = (Chw = -2
(¥n | Cp gy | ) K VE e+ (BN 5Oy i,
(33.11)
Yn|C Yt = (Ck)an = Tk (ck)"’""
(Vn|Chmltn) = (Cy) V& ), + ing, — (BN _ gV
(33.12)

with the obvious definitions of the matrix elements (c;)nn/ and (cg)pn-
Using equations (33.11) and (33.12) we can study the thermal equilibrium

distribution function (C’lt gCx H):

1 _
<Clt,HCk,H> =5 Z(¢£¢N) ’ e‘ﬁ(H “N)C{’Hck,y ' l,b,gN)) .

ZG -
1 — pu—
= Z 'Z—C,Tw’(‘N) Ie—ﬁ(H—uN)Clt’H | l/)g’v ”)(zbff,v 1) | Ciert | ¢T(LN))
- le pn(clt)nn’(ck)n’n
% ot (e +ing+ B = B (e — img + ESD — BV

2% Jooo (e — € — ing)(ex — € + ing)

X Epné(f + Ey(l]'v—l) - ET(LN))(C};)nn’(ck)n’m

nn'

(33.13)

where 1/),(LN) and 1/)55,\]“1) are eigenstates with N and (N — 1) particles, re-
spectively, and

e=BET) —uN)

_ 1 (N) (N)

with Zg the partition function. We can cast equation (33.13) in a more
transparent form. To do so, we consider the finite-temperature spectral
representation of the exact real-time single-particle Green’s function in the
same basis 1y,:
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G(k,w)
1 on e PESTV -1 BB -uN) (e} )nmr(ck)
- Ciinn'\Ck)n'n
26~y _(EM —yN —EWD ppuv—1)) "
(N . (N-1) _
_ L e~ B(Ex —uN)N ﬁ(f]n.l w(N-1)) (D)ot
ZG nn' - (E( ) ET(L' - )_“)
BB BN
_ 1§ sEM -y _1te ( . Y (e} )t (€k)nim
Ze 1 w— (BN - BN Y - )
= [ deeE” - (L )
~ w=(§—n
x6(¢ + S = BUY) (e nni (k)i
o0 A
= / ¢ w——TkE(?_m (33.14)
where the finite-temperature spectral function Ek(f ) is defined by
Zk(&) - an [1 + e.@(f“ﬂ)] (cz)nn’(ck)n’n‘s(g - EgLN) + ES,,]IV_I))

nn'

(33.15)

From equation (33.15), we see that
N-1 N Y
S pns(€ + ESTY — BV () nwr(cr)nin = Ar(©)F()  (33.16)
nn’
where f(&) is the Fermi distribution function

1
1) = Femm

Equation (33.16) in equation (33.13) then yields

t _1 /°° " e
(Cx,1Cx,H) ) £ Ak()F(¢) G i m (33.17)
Near the Fermi surface, we have
G(k,w) = Ginc S ~ d _.._..f.l}ig_)___
(o) +w—(fk—#) /_oo €w—(£—u)

so here the spectral function Zk(ﬁ ) can be written as a sum of a singular
term due to the quasi-particle and a smooth incoherent term:

Ar(€) = Ak inc() + 2£6(6 — €). (33.18)
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With equation (33.18) inserted in (33.17), we obtain

i L[ 4 i g
(OF Cuer) = Fe)+ - [ 46 Ainel1(9) (33.19)

~00 (fk "'6)2'*‘77]2:.

The last term in equation (33.19) vanishes as we move onto the Fermi surface
because Ay inc(€) is smooth, f(€) is bounded and n?/[(e; — &) +1?2] vanishes
as 1 when 7 — 0. Hence, we conclude that

1

N EeEmry (33.20)

(Cf:, Ok H) =
which is precisely the quasi-particle equilibrium distribution function.

We will now turn to the verification of the properties (2) to (4) of the
Landau Fermi liquid theory. These properties are all related to how the
system responds to an external perturbation. It is then natural that our
starting point is to discuss this response. Once we have done so, we will
examine this expression in the limit of long wavelengths and low energies
of the perturbation, from which we can verify the properties of the Landau
Fermi liquid theory.

In Chapter 27, we derived an expression for the linear re’sponse of an
observable A(t) due to an external perturbation Heyt(t')y turned on at
time t = tg. The response is

§(AVE) =i /t t dt' (Vo | [Hext(t)mr, A(t)n] | To) (33.21)

where ¥q is the interacting ground state. (We assume in this chapter that
all states are normalized.) In terms of the retarded correlation function

iDF(t,t) = 0(t — t')(o | [A(t) 5, Hext ()] | o) (33.22)
we can write §(A)(t) as
t
§(ANt) = / dt’ DR(¢,1"). (33.23)
to

In most cases, DR(t,t’ ) depends only on the difference t — ¢/, in which case
we can set t' = 0 in equation (33.22) and write

iDR(t) = 6(t)(¥o | [A()m, Hext(0) 1] | Yo)- (33.24)

The function DF(t) defined by equation (33.24) is called a retarded correla-
tion function, since it describes an after-effect. In analogy to this function,
we may define an advanced correlation function DA(t) by

iD4(t) = 8(=t){¥o | [A(), Hext(0) ] | Wo). (33.25)
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We will see later in this section that the retarded and the advanced corre-
lation functions are intimately related to the real-time correlation function,
which is defined by

iD(t) = (¥o | T {A(t)r Hext(0)5r} | ¥o). (33.26)

In fact, one may show that the real-time correlation function completely
determines the retarded and advanced correlation functions (see, for exam-
ple, Fetter and Walecka [22]). The real-time correlation function is usually
more convenient to use in zero-temperature calculations than the retarded
correlation function. The reason for this is clear if we remind ourselves of
the definition of the Green’s function G(r,t):

iG(x,t) = (Yo | T{v(r, )m}(0,0)m } | ¥o).

The structure of the real-time correlation function is then similar to that of
the Green’s function. In the cases of interest to us, the real-time correlation
functions will be proportional to the two-particle Green’s function. This
means that all the techniques for calculating the Green’s functions, such
as Feynman diagrams, can be applied to the calculation of the real-time
correlation functions. Once the real-time correlation has been calculated, 1t
is easy to obtain the retarded correlation function.

If we consider the response of the density to a perturbation which cou-
ples to the density we are thus led to study the real-time density—density
correlation function

iDa(a,1) = (Yo | T {pa()rrp-a(0)r} | ¥o). (33.27)

The density operator pq(t)p is in the plane-wave representation
— t

If, on the other hand, we want to calculate the response of the density to a
perturbation which couples to the current density, we are led to study the
correlation function

iDa(a,t) = (Yo | T {pa( i -aa(®n} | %)  (33.28)

where o = 1,2,3 denotes the three Cartesian components. The current
operator is in the plane-wave representation

ko
Jaa®n =3 20 1 (Onex_ 14O
k

With these density and current operators in equations (33.27) and (33.28)
we see that these correlation functions are proportional to sums over two-
particle Green’s functions.
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We will use the Fourier-transforms of the correlation functions (33.27)
and (33.28) with respect to time:

w .
Du(q,w) = / D,(q,t)e™! dt. (33.29)
—00

For convenience, we have here introduced the notation g = 1,2,3,4. At
this point, it is also convenient to introduce a four-vector notation. We will
denote (k,w) by k, where k and & are particle wavevectors and energies,
respectively, and we will denote the wavevector q and frequency w of the
external perturbation by ¢q. We also introduce a four-vector vz defined by

1 ifu=4
vﬂ___ 6€k .
k — ifu=123.

ak“ 1# 3~y

The diagrammatic representation of D, (q,w) is given in figure 33.1.

Figure 33.1 The correlation function D,(q,w) is obtained by summing all
these polarization diagrams over k.

With the four-vector notation introduced above, D,(q,w) is given by the
equation

iDu(q,w) = Y Gk +¢/2)G(k — ¢/2)Au(k; ) (33.30)
k

where
Z - Z / da.
k k

In equation (33.30), A,(k;q) is the so-called vertex function. This function
has the diagrammatic representation given in figure 33.2, which yields the
equation

Au(k;q) = v + Z v D(k, k'; )Gk + ¢/2)G(K — q/Q) (33.31)
kl

Here, I'(k,k’; q) is the scattering function, which is the collection of all the



394 MICROSCOPIC DERIVATION

oD

Figure 33.2 Diagrammatic representation of the vertex function A(k;q) in
equation (33.29).

connected diagrams shown in figure 33.3. This function is the sum of all

SR

Figure 33.3 The scattering function T'(k,k’;q) consists of all possible ways
a particle—hole pair of momentum q can scatter.

possible scattering events between a particle and a hole. The scattering
function may be decomposed into irreducible parts I(k,k’;q) and products
of particle and hole propagators. The irreducible parts are represented by
diagrams which cannot be separated by cutting one particle and one hole
line only. From figure 33.4, we see that T'(k,k’;¢) satisfies

4*— I :1
- f [

Figure 33.4 The scattering function can be separated into irreducible parts
and products of particle and hole propagators.
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L(k, k' q)
= I(k) k’; Q) + Z I(k) k”; Q)G(k” + q/Q)G(k” - q/Q)I(k”: k,; Q) +--
k!
or
T'(k,k';q)
= I(k,k59) + D I(k, k" )G(K" + ¢/2)G(K" — ¢/2)T(K", k'; ).
kt

(33.32)

Using equation (33.32), we can then write the following integral equation
for the vertex function:

Auk,q) = v + Y I(k, K )G(K + ¢/2)G(K — ¢/2)Au(F,q).  (33.33)
k/

In the equation for the correlation function, equation (33.30), and in equa-
tions (33.33) and (33.32) we see that the quantity

G(k + q/2)G(k — q/2) *(33.34)

enters. This quantity describes the propagation of a dressed particle—hole
pair. As we are interested in perturbations with long wavelengths and low
energles, which has as a consequence that the excitations of the system will
be on the Fermi surface, we will ultimately take the limit lql — 0 and
w — 0 of the correlation function. To do so, we must know how the product
equation (33.34) behaves in this limit. Near the Fermi surface, we can write

Zk+q/2
Gk + 2) = Ginc k + 2 + = .
(£ +4/2) (k+4/2) W = (€ppqa —w/2— p) +in

“k
. G _ 33.35

where ¢, can be taken to be real, since the damping of the propagator
vanishes as we approach the Fermi surface. Here, n > 0if e, /2 > M
which corresponds to a particle, and 7 < 0 if €x—q/2 < M, which corresponds
to the propagation of a hole. In the equations involving the product equation
(33.34), we have to integrate the particle~hole propagator multiplied by some
other function, such as I(k,k’;q) or A,(k',q), over particle frequencies &.
In general the integral over & can then be written

|~ @G+ a6 - /2P 0),

where the function F(k,q) is regular as |q|,w — 0. If we insert equation
(33.35) and the corresponding expression for G(k — ¢/2) in this integral,
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we obtain four terms. Three of these terms contain at least one factor of
the incoherent part of the Green’s function. These terms have well-defined
limits as ¢ — 0. The fourth term is

/oo 4 Chta/2
-0 w — (€k+q/2 ~w/2— p)+ iy

X = “kq/2 4 P(k,q). (33.36)
&=~ (€p_g/atw/2—p)+in

The structure of this term is complicated due to the fact that the two sep-
arate poles of each factor merge on the real axis as |q|,w — 0. In the limit
of ¢ — 0, we can write this integral as

O
/ da{ il
—oo O—(ex+q vi/2—w/2—p)+in

2k
3 — ¢t F(k,q). (33.37
w—(fk—-q.vk/2+w/2_u)+mu} ( Q) ( )

Consider the case where G(k + ¢q/2) corresponds to the ‘propagation of a
particle. Then ' > 0, and G(k — ¢/2) corresponds to the propagation of a
hole, so " < 0. By using the identity

1 - :Pl —1ri5(:c)
T+ 1 x

where P denotes principal value, we can write

2k
&~ (e +a-vp/2—w/2—p)+iln|

_ “k
- {5—(€k+q-Vk/2—w/2—#)—i177’l
~2miz [0 — (ex +q - vE/2—w/2— ﬂ)]}9(€k+q/2 — 4.
(33.38)

where the step-function ensures that k + q/2 is outside the Fermi surface.
The integral equation (33.37) then becomes

9mi 2 oo 2
Tizj, ' +/ & [~ 2k ' }
w=—q-vp—in J_ W~ (e — p) — 1
X0(exyq/2 — ) F(kp,q=0). (33.39)

Consider now the case where G(k — ¢/2) corresponds to the propagation of
a particle. Going through the same algebra that led to equation (33.39), we
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arrive at

Imizl o0 2
_ mizp +/ & [~ 2k . ]
et =il N ey oy
X0(ex_q/2 — B)F(kp,q = 0). (33.40)

In these two equations, the function F(k,q) can be evaluated at the Fermi
surface, since this function is regular. Combining equations (33.39) and
(33.40) and using

[9(€k+q/2 — 1) = 0(ex—g/2 — H)] =q vib(ex — 1)

as |q| — 0, we can finally write

/— 7 ABG(k + ¢/2)G(k - a/2)F (k. q)
- / K= [Gz(k) 4 27k vible = 193(E)
Ww—q-Vg—1in

F(kp,0).

—00

¢ (3341)

Here G?(k) is the term obtained by first taking the limit ¢ — 0 separately
in the Green’s functions, and then squaring:

G*(k) = Ln_r%G(k + q/2)] Lh_% G(k — q/Q)] ,

This term contains the second-order poles in equations (33.39) and (33.40),
which are well-defined as ¢ — 0. Thus

qli_% G(k+q/2)G(k — ¢/2) = G*(k) + R(k;w) (33.42)

where the singular part R(k;w) is

kw) = 2miz— 1" Vk 3)6(ex — ). 4
R(k;w) mizg— p— iﬂé(u)&(ek @) (33.43)
The singular part R(k;w) enters only on the Fermi surface because of the
two é-functions. It is clear that this singular part has a limit ¢ — 0 which
1s not unique but depends on r = q/w. We will distinguish three limiting
cases: |r| constant, so that |q| and w go to zero simultaneously; Ir] = 0, and
|r| = co. These limits will be denoted by superscripts. Thus
| opr — . 2 r-vg ~ _
R"(k) = 2mzk1 — iné(w)é(ek i) (33.44)
R(k) = 0 (33.45)
R®(k) = —2miz26(@)6(ex — p). (33.46)
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We now examine the limit |q] — 0, w — 0 of the scattering function
I'. From equation (33.32) we see that the singularities that arise in I' are
due to the product G(k +¢/2)G(k — ¢/2). Combining equations (33.32) and
(33.43), we can write

I™(k,K) = I(k, k) + 3 1(k,K") {G2(k") + RT(K")} T7(K", k). (33.47)
kll
In the case » = 0, we have
TO(k, k') = I(k, k") + ) I(k,E")G*(K")TO(K", k). (33.48)
kll
We manipulate these two equations. Equation (33.47) leads to

S [Bipr = 1k, E")GA(E")| T (k" K')

kll
= I(k,k"Y+ Y I(k,K")R (k)T (K", k).
kll

We multiply this expression from the left with the inverse of
Op k — I(k, k)G2(k)], and sum over k. The result is

IR = Y [0, - IR RGE)|

k

x [I(k,k') +5 :I(k,k")R’(k”)I"'(k”,k’)] .
klI
(33.49)

From equation (33.48) we obtain

5 [ — 10, E7)G2 ()] TOK ) = I(k, K.
kll

- -1
We multiply this equation on the left with [67: . — Ik, k)G2(k)] and sum
over k, which yields

TO(k, k) = [5 1(k k)GZ(k)] I(k, k). (33.50)
We insert equation (33. 50) in equation (33.49) and relabel dummy indices
k — k, k — k” to obtain

I7(k, k') = Tk, k') + > Tk, k”)RT(k”)I"'(k” ). (33.51)
kll
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Similarly, it is easy to verify that

Fr(k,k/) — rw(k,kl) + Zrm(k’ kll) [Rr(kll) _ Rm(kll)] Fr(k”, kl)

k.ll
(33.52)
On the Fermi surface, it is convenient to introduce
f(kk) = 2mizpzpT%k, k') (33.53)
fr(k, k,) = QWiszk/FT(k, kl) (3354)

with k,%’ on the Fermi surface. In terms of these functions, we can then
write (33.51) as

f7(k, k')
= F(k,E)+D f(k k") -

k/l

r- an

7y 0@)0 (e — m (R k)

—r-Vin —1
(33.55)

Manipulating equation (33.31) in the same way as equation (33.47), and
using equations (33.53) and (33.54), we can write the following*equations
for the vertex function on the Fermi surface

( r-vp (@
AR (K) + S £O0 B T 50— ) )
r 0 r n_ TV 6(@) 0(p!
ZkAp,(k): < zkA,u,(k) + Zk’ f (k’k )1 — TV — “)6(/1 = Ek')zk'Au(k )
A (k "(k, k' o) ] AP (k!
| 26 A (R) + 204 f7 (K, )l_r.‘w_i77 (1 — exr)zir AR (k).

(33.56)
We will need these results later at the final stage of the derivation of the
Landau Fermi liquid theory.

To complete this section and verify the Landau Fermi liquid theory, we
will relate the values of the vertex functions Ag(k) and A?(k) on the Fermi
surface to the self-energy. These relationships are established by the Ward
identities.

We consider first the self-energy M (k,&). A diagram for M(k,&) with
an internal line &’ explicitly indicated is shown in figure 33.5. If we remove
an internal line &’ in all possible ways from M (k, &) we obtain the irreducible
scattering function I(k, k') (see figure 33.5). From this figure it is clear that
we can write

M(k,3) =) " I(k,k")G(K'). (33.57)
kl
We want to take the partial derivative of M (k,&) with respect to &. This
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Figure 33.5 Diagrammatic representation of the relation between the self-
energy and the irreducible scattering function.

is by definition
. M(k,o+¢)— Mk,o)
lim .

e—0 €

By conservation of energy @ at each vertex, increasing @ to &+ ¢ is the same
as on the right-hand side of equation (33.57) increasing all frequencies @ &' to
&' + €. We then immediately obtain

= Z I(k, k" a~,G(k’) . (33.58)

This is illustrated in the low-order example in figure 33.6. But

kO k,W+e
KD kiG'se
kW k,W+e
Mik Gy =Lk k"1GLAG) Mk, w)+s-£1(k kGG e)
L

Figure 33.6 This second-order example illustrates equation 33.57.

SO

From equations (33.33) and (33.42) we have in the r = 0 limit

AQ(k) = 14 I(k, k)G (K)A(R"). (33.60)
kl
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By comparing equation (33.59) and equation (33.60) we arrive at the first
Ward identity:

0 OM (k)
Ay(k) =1~ EH

For the second Ward identity, we consider dM(k,&)/0ky. Now M (k,&)
depends on k4 only through the matrix elements of the interaction potential.
These matrix elements are all invariant if all momenta are increased by the
same amount. Therefore, instead of differentiating the right-hand side of

equation (33.57) with respect to k,, we may differentiate every internal
line, given by G(k,&), with respect to k’,. Thus

(33.61)

6M(k,<:3) _ / 4 !~
= %:I(k,k )ak'aG(k ,&').
But
9 rany g G+ 40,@) - G(K, &)
ok’ Gk, &) = q}lll’_r}lo o
! ' ~I 1~
= lim feba/mt Mk e 2) = MICD) G0k, /)G + 0,5,
Ja— o

The last factor is just the 7 = co limit of G(k’,&')G(k’,&"), so we obtain

0
ak,a

- ~ - k' oMK, &)
1o~y 2/t ~t oo (1! ~! o s
G(k,w)—[G(k,w)+R (k,w)][ + i ]
Thus

oM (k&) _ N [~2r ~ ot ~nl [Fa | OM(K', &)
T_;I(k,k)[G(k,w)+R (K, &")] T

(33.62)

But according to the r = co limit of equation (33.33) we have

ko

AP(k,G) = 2+ 3 I(k,K) [GHK) + R°°(k’)] AR(E).  (33.63)
, -

By comparing (33.62) and (33.63), we obtain

~ K oM (k,w)
AR (ko) = 2 4 7] .
R (3364
For the remaining two Ward identities, which involve A% and AP, we
consider a simultaneous translation of the wavevector k and the Fermi sur-
face by an amount ¢,. We denote by M(k + qo,@; qq) the value of the
self-energy under such a translation. This is nothing but the self-energy in
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a reference frame moving with a velocity —g,/m. With this translation, we
may define a ‘total’, or ‘convective’, derivative:
dM(k,&) _

1
= lim — [M(k 5 q0) — Mk, D). 33.65
dka q;g}a Ju [ ( + o, W qCY) ( CU)] ( )

Note that in this derivative, the Fermi surface follows the motion of k. It is
now straightforward to evaluate dM/dky. We have

dM(k,&) i d 1~
T ;I(k,k )dk,aG(k L&),

Now

d
dk’

t ~1 !
G(k',&") = [dM(k’w ) 4 k“]

. 1~ ’ ~1.
dk’, m lim G(k',w )G(k + 9o, W ,Qa)-

qa—0

In the second factor, both k’ and the Fermi surface are translated simulta-
neously so that their relative positions do not change. But then the poles of
G(X',&') and G(k' + q4,@';q4) are on the same side of the Fermi surface,
so according to (33.42) we have

limOG(k',G’)G(k’ + qa, @' 0a) = GE(K', 3.
qa—*

Thus,

dM(k,3) roas ~n [AM(K, T K
T _Zk;I(lc,k)G(k,w) eTTmm el B

If we compare this with the » = 0 limit of equation (33.33)

.k ~ ~
A (k, ) = 73- + ) Ik, k)G (K, T)AL (K, ")
kl

we see that
~ k dM(k,o)

Aok, &) = =% 4 — 277 33.66

For the last Ward identity, we consider an increase dy in the chemical

potential (du > 0). Due to this increase, the volume enclosed by the Fermi

surface must expand to accommodate the increase in particles, hence kp

must increase an amount dkr (which depends on direction in anisotropic
systems), with

Okp

dkp = o

dpu.
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A quasi-particle is by definition an excitation on the Fermi surface, so its
energy Is equal to the chemical potential. Thus, the energies of the quasi-
particles increase when p increases. Consider a point A on the Fermi surface.
As pincreases, this point is translated to a point B. The energies of a quasi-
particle at A and one at B must then satisfy

Oe
e(kp, p+ dp) — e(ka, ) = ‘éuﬁd# + vgdkp = dg,
i 9 ok
€ F
— =1 -y —= 33.67
B %, (33.67)

This equation shows how the energy of a quasi-particle changes with pu. We
will use this relation shortly.

Now consider the self-energy M (k,w). As p increases to u + dy, the
self-energy changes. We then have

8/1 du—0 d[l

Using the same construction as for the other Ward identities, e arrive at

oM(k,w) . , G(k',w';p-{—d,u)—G(k',w’;,u)}
S = dm Stk i

kl

/
- § I(k, k') [M - 1] lim Gk, w';p+ dp)G(K',w'; p).
m 6/1. du—0

(33.69)

We examine the last factor of this expression. With k’ between the Fermi
surfaces at p and p + dy, this wavevector passes from the exterior of the
Fermi surface to the interior of the Fermi surface as y — p + dgp, hence its
pole crosses the real axis in the complex &'~plane. From equation (33.38),
the last factor is in this case

Eemerrel
&' — (e — p) + in
2,
~ ey . ~ .
[w'—(fkf+ %ﬁ—u—du)ﬂn] [& — (exr — u) — in]

, n>0.

If kX’ is not in the region between the Fermi surfaces at p and p + dp, the
limit is simply G*(k’,&’). Since the extra term appears only if k’ is on the
Fermi surface at u, we can write '

dlimO G, & p+dp)GK', &' 1) = GHK',&; ) + 2mizd 8(e — p)8(G")
>
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which is just the 7 — oo limit of the product of the Green’s functions. With
this in (33.69), we have

, ' !~ oo ! 5! g ,’J,

If we compare this with the r = oo limit of (33.33), we deduce that

oM (k, )

o0 Y = —_
A4 (k,(.d) =1 au

(33.70)

All that remains is to write down the Ward identities on the Fermi surface
(k =kp, € = p, 0 = 0). We first note that the residue z; is

1
1— oM (k,w) ‘~
w w=0

2L =

If we compare this with the first Ward identity, equation (33.61), we see

that .
0 ~ .
A4(k, UJ) = ‘;;c‘.
Furthermore, the quasi-particle energy is at the pole of the Green’s function.
The location of this pole is given by

- — - M(k,0)=0. 33.71
fk Qm ( )w) ( )
If we differentiate this expression with respect to k,, we obtain

de [ OM(k,D) ko OM(k,0)]
T [1 —= a=o] [m+———————aka = 0. (33.72)

From the second Ward identity, equation (33.64), and equation (33.72), we

then have
1 _Qi 1

= —Vkq-

Ago(kaaj) = ;—I;Bka - 2

If, on the other hand, we take the total derivative as defined in equation
(33.65) of (33.71) with respect to k, and use the third Ward identity (33.66),

we obtain
1 dEk

2, dka’
To evaluate the final Ward identity on the Fermi surface, we differentiate
(33.71) with respect to the chemical potential. The result is

Dy [1_ oM (k, &) J _oM(k0)
ou 00 \z—o op

AS(k,3) = (33.73)
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Using equation (33.68), the equation for the residue z; and the fourth Ward
identity, equation (33.70), we obtain

1 Bek 1
—— = — — A" 33.74
2k 6/‘ 2k 4 ( )
But according to (33.67), we have
ack 6’6}7
il s i
Op Ry
which in (33.74) yields
1  Okp
Ago (k ) -—U 6/1

We can evaluate deg/dkq by transforming to a coordinate system moving
with a uniform velocity —go/m. In this coordinate system, the Hamiltonian
is

2

Hq_z_(_'ﬂfi)__}_v H+qaz_f_+ 2m .

If we let E,; denote the expectation value of the energy in a state | ¥n) seen
in this reference frame, then

2
EQ:ZW'RI ltpn +Qaz¢n|_|¢n) N2q—:n+(¢an|1/)n).
k

From the definition (33.65) we have

dE 0B, <, ka, _
i st R

where J, is the a-component of the total current density. Hence, it follows
that deg/dks is the component jy , of the current carried by the quasi-
particle k. If the interactions are translationally invariant and thus con-
serve momentum, the current carried in the presence of a quasi-particle in
the interacting system is the same as the current carried in the absence of
interactions. This current is simply k/m, so we have

k
h = Ve, = —
Jk k€¢k m

SO

~ 1,
Ag(kaw) = Ik,
Zk
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We can then summarize the Ward identities as follows:

Ak, &) = 1 (33.75)
APk, T) = vké);f (33.76)
zkAg°(k,5) = Vo (33.77)
2A(K,8) = jka- (33.78)

If we now use these forms of the Ward identities in equations (33.56), we
obtain

jk,a = Uk + Z fkk'vk’,aé(fk' — p) (3379)
k' .

Okp dk'p
hg = 1- %: ik vk i §(exr — p) (33.80)

These two equations are precisely the properties (2)—(3) of the Landau
Fermi liquid theory. We have then finished verifying these two properties,
when we add the fact that it is obvious from perturbation theory that one
quasi-particle contains precisely one bare particle. In addifion, in the veri-
fication of these properties we have made the identification

fr s = 2mizgzpTO(k, k). 33.81
k.k

Thus, we have obtained the microscopic expression for fy y. Equation -
(33.81) states that the Landau f-function is given by the scattering function
in the limit of long wavelengths and low energies.

All that we have left to do is to verify the transport equation of the
Landau Fermi liquid theory. To this end, we consider the response of the
quasi-particles to a perturbation which couples to the density of the system.
To be specific, we take the perturbation to be of the form

Hiy(q,t) = qu_qe"m

where Vq is an amplitude. The perturbation is macroscopic in the sense that
q/kp € 1 and w/ep < 1. We seek the response of the quasi-particle density,
so we must find an expression for this quantity. Previously, we introduced

the operator C; (t)gr, which we argued is a quasi-particle creation operator.
In analogy with the particle-density operator

S o2 (OHCkpqr2(Ome’ T
k,q

we introduce the quasi-particle density operator

> O a2 O ik tq s (One ™"
k,q
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so that _
> O /2 H iy qr2(Ome’ T
q

1s the density of quasi-particles k at r. The response of this density to the
perturbation Hj(q,t) is then (see Chapter 27)

wt

énx(q,t) = 6nk(q,w)e“i

t .

o ——di/ dt'e"t e_“"t
—o0

x(%o | [Cf_ /2 Chraran,p-a(t)n] | ¥o)
(33.82)

where 7 is a positive infinitesimal which assures that we turn on the pertur-
bation adiabatically. In particular, at ¢ = 0 we have

0 .

bnk(q,w) = —iVy [_Oo dte_“"tent(‘l’o I Clt_q/zc'k+q/2,/7—q(t)H] | o).

; B * (33.83)
If we define a renormalized real-time correlation function Dy(k,t —t'; q,w)
by

i134(k,t —t';q,w)

R ~twt” —n|t"|
= dt'e e
—00

x (Yo | T{CL_, /()i Cicrass®mp—q(t")rr} | W),
(33.84)

we can write the quasi-particle response as
6o (@,w) = VgDa(k, 0%; q,w). (33.85)

To show the equality between equations (33.83) and (33.85) we must show
under what conditions '

/_Oo dte~ e~ (wo | T {A(0)y B(t)g} | To)

0 N
- / dt e~ et Wy | [AQ)z, B(t)m] | Bo)  (33.86)

i © @)

for any two bosonic Heisenberg operators A(t)y and B(t)y (e.g., A =
C’lt_ q /2C'k+q /2 and B = pq). By inserting a complete set of eigenstates
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Yn, the left side of equation (33.86) becomes

Z/OO dt e-—-iwt—n]tl

X [e_i(Eo_En)tAOanOQ(_t) + ei(Eo-En)tBonAnOH(t)]

. AonBro : BonAno

n

(33.87)

The right-hand side of equation (33.86), on the other hand, is

0 : . :
Z/ dt e—twt+nt [e—z(Eg _En)tAOanO — ei(Eo —En)tBOnAnO
. J—co

. AonBno . BonAno
- lZw—i—(Eo—E'n)—{—in ZEw——(Eo—En)+in

n n

(33.88)

We define a function Sy(w’) by

$1") = 3 AonBuob (&' — (En — Fo))

and a function Sp(w’) by
Sg(w’) = Z BOnAn06 (w' - (En - EQ)) .
n

These functions are essentially generalizations of the spectral functions
A(k,w’) and B(k,w’) introduced in Chapter 15 (see equation (15.30)). Since
E, > Ey, it follows that S;(w’) and S3(w’) vanish if w’ < 0. Equation
(33.87) can then be written as

o) / o0 !
z/ dw’——s—'}-((;u—)—.— — i/ dw'—Sz(—,ci-)—.—- (33.89)
—c0 w—w +1n — w+w —an
and equation (33.88) can be written as
o0 / o0 /
z/ dw'i(ci—).— - z/ dw'M.—. (33.90)
oo wW—w/41n —eo  wWHW +in

Using the by now familiar identity

1
z £y

1_ .
= P; Finé(z)
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these two equations become

zP/d 1= 2 + TS (w) — zP/d S2() — 7Sy(~w)

-
zP/d' + 751 (w) zP/d'

respectively. These two expressions are identical if w > 0, and differ by the
sign of the term 7S3(—w) if w < 0. To avoid any complications, we will
assume that w > 0. This is in any case not unreasonable, since w is the
frequency with which the peg;urbation is driving the system.

The correlation function Dy (k,¢~¢'; q,w) is a real-time correlation func-
tion which is closely related to the real-tirme correlation function D4(gq) which
we studied earlier. Dy(q) could be decomposed into a vertex part and a
particle-hole propagator:

iDy(q) = ) Aa(k;9)G(k + ¢/2)G(k — ¢/2) =i Dy(k,q).  (33.91)
k k

and

+ 7S (—w)

*

The Fourier transform 54(k ¢) of D(k,t— t’;q,w) is a renormalized version
of D4(k,q) which satisfies the same equation, but with the two Green’s
functions replaced by mixed Green’s functions g(k) and §(k) defined by

gt =) = (Yo |T{Cu(®nel(t)r} | ¥o)
gkt =t) = (| T{e®aC{(t)n} | o)

so that
iDy(k,q) = Aa(k, 9)g(k + q/2)5(k — ¢/2). (33.92)

To cast this equation in a more transparent form, we start by writing
out the zero-temperature form of the mixed Green’s function g(k,t —¢'):

ig(kat —1 )
1.
Z ez‘(EgN)—EﬁlN“))(t—t’) (ck)on (Ck) n0 N bt — t')
ek = (BS = ESYY) 4 igy V&
.t
— Z e_i(E(()N)_ESIN_l))(t—t') (ck)()n (ck)n‘() ink g(t/ — t)
n —€) - (Ey(lN_l) — E(()N)) + ’ink \/EI:
(33.93)

where we have used equations (33.11) and (33.12). On the other hand, the
Lehmann representation for the Green’s function G(k,J) is
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G(k,w)

(et)on (f)
zn: w— (EgN'fl) —kE'(()]g)) + in
_ /Oo &’ { Ak, w’) " B(k,w’) ] . (33.94)
0

w—w+in wHw —in

(CL)On (¢k)no

+
= w4+ (BN EMy ~in

Here, A(k,w') and B(k,w’) are the spectral functions

Ak’ = 3 (ekdon (c]) 6w’ = (BSHD — B

n0
n

Bko) = Y (c]) (er)nodlw = (BS ™V - B,

On

By comparing (33.93) and (33.94), we see that we have

ig(k,t —t)
B /°° 4 ( ik ) e~ (=t [A(k,w)8(t — t') — B(k, —w)d(t' —t)]
Y AP VZk w— €x + ing '

(33.95)
If k is near the Fermi surface, we use

Ak,w) = Ainc(k,w) + 26(w — €x)0(e — )
B(k,w) = Binc(k,w)+ 2£8(w + €g)0(p — €g)

where Aj,c(k,w) and By,c(k,w) are the incoherent parts of the spectral
functions. We have explicitly written out the #-functions to demonstrate
that the two terms correspond to quasi-particle and quasi-hole excitations,
respectively. These parts are analytic at the Fermi surface. The incoherent
part of the spectral densities do not contribute anything as g — 0. In this
limit, we then have

igk,t —t')
= e ) (e — wo(t — ') — e ) a(p — ot — ).

In other words, the function g(k,t —t’) is a renormalized conventional un-
perturbed propagator with the unperturbed energies replaced by the exact
quasi-particle energies. Going through the same analysis for g(k,¢ — ¢/),
we find precisely the same result. By Fourier transforming g(k,t —¢') and
g(k,t —t') and inserting the results in equation (33.92) we arrive at
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iDy(k,0,0; q,w)
= [_ 0; 3—:1\4(’0»9)
2k
(£k+q/2 —O+p—w/2+ in’) (fk—q/z +u—-T+w/2+ i””) .
(33.96)
In this expression, the poles of the integrand are on different sides of the

real W-axis, and the contributions from the poles dominate the integral. In
the limit |q| — 0, w — 0 (the r-limit), the factor

g(k +q¢/2)g(k - ¢/2)
behaves precisely as the r-limit of G(k + q/2)G(k — q/2), except for the

fact that g(k + ¢/2) and §(k — ¢/2) are renormalized by a factor of z;1/2
each compared to the interacting Green’s functions G(k % ¢/2). Hence, this
r-limit is the r-limit of G(k + ¢/2)G(k — ¢/2) divided by z, so the result is

X

.~ z 271
iDy(k,0,0;q,w) = —Q—f;AZ(k,O;q)q E——— vib(ex - 1). (33.97)

This result inserted in equation (33.85) yields

q- vk I
4 Ve —w—in ek~ WAk, 0;). (33.98)

bmac(a,w) = —Vq

By using equation (33.52) and the Ward identity equation (33.75), we can
write

* Vit
A3k, 00) = 14 fie o —— B §(egs — p) 2 AG(K, 05 q). (33.99)
= W —q v —dn

We can eliminate A} between these two equations. By inserting equation

(33.99) in (33.98), we obtain

(w—q-vg)onk(q,w)
= qu . Vké(fk — /J) (33100)

AN
X 143 e g 0w — Wz A, 0:0) )
kl

W — q - Vkl
(33.101)
On the other hand, if we relabel k — k’ in equation (33.98), multiply by

Ji x and sum over k/, we have
’

q - Vy/
Y fepbi(@w) =Va > fie k §(ep — )z A(K, 0;q).
R .y W—q- Vg —11

(33.102)
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Inserting equation (33.102) in (33.101) yields
(w—q-vg)bnk(qw) = Vqq-vidlex —p)
+a-vid(er = 1) Y fipedrie(a,w).
' (33.103)
If we introduce the amplitude F of the force created by the perturbation,
F =—iqVy

Equation (33.103) takes the form

0 = (q-vg—w)ong(q,w)+iF - vib(ep — p)
+a - veb(er — 1) Y frowbnpr(a,w). (33.104)
k’ .

This is precisely the transport equation in the absence of collisions of the
Landau Fermi liquid theory and the verification of the Landau Fermi liquid
theory is complete.

We conclude with a comment on the expression (33.83) for ény(q,w):

dng(q,w)

0 .
= —iVq [ dte™™tn (W | [Cf_ 1 Cuiqp-a(Om| | o).
oo q/

This expression shows that ény(q,w) can be interpreted as a probability
amplitude for finding a quasi-particle—quasi-hole pair of momentum q and
energy w. Note that the expression is not positive definite, so that an inter-
pretation as a probab:lity is not permissible.



Chapter 34

Application to the Kondo
problem

A standard result due to Bloch in transport theory predicts that the resis-
tivity p(T') of metals should vary as T° at low temperatures, due to normal
electron—phonon scattering. In real metals, even the simplest' ones, such
as potassium and sodium, the resistivity exhibits a more complex tempera-
ture dependence than this. Although the normal electron-phonon scatter-
ing term can in some cases be identified, there are also contributions to the
resistivity from many other scattering processes, such as electron—electron
scattering and electron—impurity scattering. The contribution to the resis-
tivity from these two processes is proportional to T2 at low temperatures
and low impurity concentrations (for an extensive review, see Bass et al.
[40]). If a small amount of magnetic impurities, such as iron, chromium or
manganese, is added to the metal, the resistivity exhibits a minimum. The
temperature at which this minimum occurs seems to vary with the density
n; of the impurity, and the depth of the minimum, p(0) — p(Tyin), is pro-
portional to n;. Since p(0) itself is proportional to n;, the relative minimum
in the resistivity is roughly independent of n;, and is usually equal to about
ten percent of p(0).

The explanation for the effect, but by no means a complete theory of
the temperature dependence of the system, was provided by Kondo in 1964.
He considered the problem of a single magnetic impurity in the sea of con-
duction electrons. The conduction electrons may suffer a spin-flip as they
scatter off the impurity. This makes the problem a very difficult many-body
problem,; since the Pauli exclusion principle has to be taken into account
when the scattering rates off the internal degrees of freedom of the impurity
are calculated. It is found that a low-temperature regime is entered when
the temperature is much less than a characteristic temperature, the Kondo
temperature Tk, of the system. Exactly what happens near this temper-
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ature could not be sorted out until renormalization group techniques were
applied to the problem by Wilson [42]. He showed that when T' goes be-
low Tk, the system enters into an effective strong-coupling regime, where
the system behaves as though the coupling J between the impurity and the
conduction electrons goes to infinity. Once in this strong coupling regime,
Nozieres [31] showed that Fermi liquid theory could adequately describe the
system. We will here briefly review this application of Fermi liquid theory
by Nozieres.

We consider a single magnetic spin—% impurity in the sea of N Bloch elec-
trons. The appropriate Hamiltonian for this problem is the Kondo Hamil-
tonian, which consists of the kinetic energy of the conduction electrons and
an anti-ferromagnetic coupling to the spin of the impurity:

H = Z ekchcka +J/N Z S- saalc;rmck:a,. (34.1)
ko ko,k'c’

Here, S is the spin operator of the impurity, s,,/ is the spin operator of
the conduction electrons, and J > 0. For our purposes here, it is better
to write the Hamiltonian in a real-space representation. We imagine that

1

the system is on a lattice, so that c; creates an electron of spin o at site
i with a spatial wavefunction é(r — R;). By a simple transformation, the
Hamiltonian (34.1) can then be written

H=3"Tjcl cjo+ IS sg0rcd,c00 (34.2)
ij
where 0 is the impurity site. The T;; are the hopping integrals given by

T;; = /d3r¢*(r — Ri)HBloan¢(r — R;)

with Hg)och the Bloch Hamiltonian of the conduction electrons.

We will follow Noziéres and apply Fermi liquid theory to the low-
temperature regime of this problem. This means that we start by assuming
that at low temperatures, the coupling J is very large compared to all other
dynamic degrees of freedom. A single electron can then substantially lower
its energy by binding to the impurity in a singlet state. As J — oo, the
binding energy goes to infinity, so that it requires an infinite amount of en-
ergy to remove the electron from the singlet state. Hence, the impurity will
trap a single conduction electron into a singlet state. By the Pauli exclusion
principle, no more electrons can occupy the singlet state, so the impurity
now acts as an infinitely repulsive site for the N — 1 remaining electrons. We
will identify this state of the system as our ideal ‘non-interacting’ reference
system of the Fermi liquid theory.

At large, but finite J, it is still impossible to break the singlet state,
but virtual excitations of the singlet state are possible. The impurity site
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may be excited virtually to the states of 0 and 2 electrons at the impurity,
and eventually to the triplet state with one electron at the impurity. As
a consequence of these virtual excitations, the impurity is now polarizable.
This is in analogy with virtual excitations in atoms, molecules and solids —
the virtual excitations do not give rise to any real transitions, such as light
absorption, but they change the polarization of the medium. In analogy with
these system, the polarization of the impurity acts as an effective interaction
between conduction electrons — first one electron passes by the impurity and
polarizes it, and this polarization affects a second electron which passes by
the impurity, just as optical phonons in solids. We identify the eigenstates
of the system in this regime as those of our ‘real’ interacting system of the
Fermi liquid theory. :

We then assume that there is a one-to-one correspondence between the
eigenstates of the ‘ideal’ J — oo system and those of the ‘real’ system with
J large but finite. For J large but finite, the state of the system is described
by the distribution function n, of quasi-particle scattering states, and all
physical properties of the system are functionals of n,.

The quasi-particles « are scattering states, which are described by phase
shifts. We limit ourselves to s-wave scattering, so there is only one phase
shift 6, for each quasi-particle. The phase shift §, in general depends on
the energy e, of the quasi-particle. In addition, because of the impurity-
mediated effective interaction between the quasi-particles, the phase shift
will also depend on the distribution ng of all quasi-particles. The phase
shift is then of the form

ba = (5[60,71,5]. (34.3)

It is the phase shift of the quasi-particle that plays the role of the free energy
in the conventional Fermi liquid theory. Consequently, we expand the phase
shift in powers of the quasi-particle energy ¢4 — ¢ and in the departure of
the quasi-particle distribution from the ground state

éng =ng — ng)).

The expansion of the phase shift is then

8o (€) = b0(€) + Y _ beaerarbnor(€). (34.4)

e'a’

We furthermore assume that all quantities are analytic near the Fermi sur-
face, so we can expand

50(6) = 50 -+ a(e — [J) +... (345)

and : ‘
¢’ca,c’a’ =yt + ... » (346)
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where we have carried out the expansion only to first order. The quantities
80, « and ¢,,+ are numbers which permit a phenomenological description
of the low-temperature behavior of the system. These numbers correspond
to the parameters of the conventional Fermi liquid theory. Only the four
quantities 6g, @ and ¢, +o = ¢° £ ¢* enter. Here we have defined symmetric
and antisymmetric parts of ¢,,/, in analogy with f¢ and f°. The total
number of electrons is constant and ¢° never shows up. If we define

nt—np=m
and sum over quasi-particles in equation (34.4), we obtain
bo(€) = b0 + ale — p) + o¢"m. (34.7)

A theorem due to Fumi [41] relates the total energy of the impurity
due to its interactions with the conduction electrons to the scattering phase
shifts. From our point of view, the impurity causes an effective electron—
electron interaction, so the energy of the impurity is expressed as a shift in
the energies of the conduction electron, such that the sum of these shifts is
equal to the total energy of the impurity. Fumi’s theorem then states that
the energy shifts are —8y/[71/(0)]. Here, /(0) is the density-of-states at the
Fermi surface for one spin direction for an impurity-free system, t.e., the
number of electron states per unit energy at the Fermi surface (as opposed
to our definition of ¥(0) from before, which is the number of states per unit
energy and unit volume). The quasi-particle energies due to the interactions
are then

bo
m/(0)
As a result of scattering off the impurity, new states will appear in the
electron spectrum, for example, the bound singlet state. Consequently, there
will be a change 61/(0) in the density-of-state at the Fermi surface. By
combining equation (34.7) and (34.8), we obtain this change as

(34.8)

?a'zf—

(61

5v'(0) = V(0) [g—; ~ 1] = - (34.9)

The change in the density-of-states leads to a change §C, in the specific

heat
6C, o

Cy, m/(0)
Measurement of the specific heat will thus yield a. Note that the change
in C, change is of order 1/N, since we are studying the effects of a single
impurity.
In the presence of an applied external magnetic field H, the quasi-particle
energies will shift, depending on the orientation of the spin relative to the
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direction of the magnetic field (see equations (34.7) and (34.8)):

~ afe—p)  ¢°

= e-gupH 7/(0) 7ru’(0)m
. a

€ = f+.t7;us@sH--a(E o, ¢

7'(0) WV’(O)m'

To first order in the magnetic field strength, the chemical potential remains
unchanged, so the Fermi levels for the two spin directions must be equal to
p. The density of electrons with spin up induced by the magnetic field is
then

§V'(0)

TI,T = -€TV'(O)[1 + V’(O) ]

and the induced down-spin density is

61/'(0)]
v(0)

ng= —glV'(O)[l -+

In these two expressions, we have taken into account the change in the
density-of-states due to the impurity. We obtain the magnetization m from

m=ny—n = [29HBH + ;r%%m] V'(0) [1 + 6;’((()()))}

with the result

29pp HV'(0) [1 + W—f@j]

202
1- m/’i()iyl(o) [1 + 7\'1/?]0;]

29ugHY'(0) [1 + %]

m =

~ 1— 22‘1
~ ’ @ 2¢°
~ 29upHv'(0) [1 + T (0) + - ]

where we used equation (34.9). The spin susceptibility is then

/ 2 -
_ g#gm = 2/(0) (gup)* [1 + WC:(O) + f ] '

This result is easily understood. The terms in the bracket give the enhance-
ment of the susceptibility. The term a/[r1/(0)] is an enhancement due to
the increased density-of-states at the Fermi surface (equation (34.9)), and
the term 2¢% /7 comes from the impurity-mediated electron—electron inter-
action.
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We have now obtained two expressions containing the two parameters o
and ¢%. We would like to obtain an expression for a third property, which
can then test the predictive powers of the theory. To this end, we will
now calculate the zero-temperature conductivity of the system. In the end,
we also want to calculate the low-temperature conductivity of the system,
to verify that we obtain a conductivity which increases with temperature,
consistent with a minimum in the resistivity at a finite temperature.

Because we are only including s-wave scattering, every collision restores
angular momentum £ = 0. The collision integral that enters the Boltzmann
equation then takes the simple form

I(n) = —n1, W5 (e),

where ny = n — ng(T) is the current carrying departure from thermal equi-
librium and W, (¢) is the total relaxation rate of ns(¢), which includes relax-
ation both due to elastic and inelastic scattering. The conductivity is then
directly found from the Boltzmann transport theory [37] as

e )e? ”F Z/ af( 6)/86. ‘ (34.10)

Here, f(e) is the Fermi distribution function.

At zero temperature, only elastic scattering is possible. For elastic s-wave
scattering, the relaxation rate can be found fairly easily in the following way.
The scattering problem can be formulated in terms of the so-called T-matrix

[43], defined as

Toro = [ ouor ) Vogr(r) i (1)

where ¢}/, is the incoming Bloch state, 1, is the exact wavefunction, and
Vo o'(r) is the scattering potential. With outgoing-wave boundary condi-
tions, the diagonal T-matrix is given in terms of the phase-shifts as

1 :
Ty = — = e tibe(k) .
k k 55 ¢ sin é4(k)

The self-energy is related to the scattering matrix by

21n;

mk

MX,5) = nThp = — (20 + 1)et e sin[5, (k)] (34.11)

where n; 1s the impurity concentration. The relaxation rate is the magnitude
of the imaginary part of the self-energy, so equation (34.11) gives

2n;

sin? 6, (¢).
v'(0) 65(c)

Wy(e) = -
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In the absence of magnetic fields, §,(p) = 8, so we obtain

_ 1 m/(0)%vie?
"3 n;sin? bo

o(0)

We now consider the low-temperature conductivity (7). At low, but
finite, temperatures, the Fermi function in the expression (34.10) broadens
over a range of width T. We consider only elastic scattering. We can use
equation (34.10) directly, and we expand sin? §(¢) to order (€ — p)?. Unless
6 &~ m/2, such an expansion involves coefficients of higher order than given
in equation (34.5). However, in the case of strong coupling and particle-hole
symmetry, one can show that 6g &~ 7/2, so that the expansion yields

sin? §(e) = 1 — o?(e — p)?

and we obtain for the conductivity

o(T) 1 5 2.2
—_— - ) 1
o =Lt gme’T (34.12)

The result (34.12) shows that the conductivity increases as the temperature
increases from T" = 0, consistent with a minimum in the resistivity at a finite
temperature.

For a rigorous result, we should also consider inelastic scattering. In this
case, processes in which one electron scatters off the impurity and excites one
or several electron—hole pairs have to be included. We will not go through
the actual calculation here. The result is the same as equation (34.12) for
the case 69 ~ %, with an additional term proportional to T2, which arises
from inelastic particle-particle scattering (see Noziéres [31] for details).



420 KONDO PROBLEM

We have then concluded our discussions of interacting many-particle sys-
tems. Our discussions have been on an introductory level, aimed at making
the reader familiar with basic ideas and, by now, classical results, such as
the Gell-Mann—Brueckner theory of the electron gas. There are, of course,
many topics that we have not discussed at all. One important topic is den-
sity functional theory, which is a method (for extended systems essentially
the only method) which can deal with inhomogeneous systems in a system-
atic way (see, for example, Dreizler and Gross [44]). Another topic is highly
correlated electron systems, which are systems in which electron correlations
dominate. As a consequence, approximations such as the random-phase ap-
proximation are inadequate. Other methods, for example variational meth-
ods using trial wavefunctions, provide a viable approach. The importance of
such systems is illustrated by pointing out that they include the fractional
quantum Hall effect (see Chakraborty and Pietildinen [45]), heavy fermions
and, most likely, high-temperature superconductors. It is our hope that the
interested reader has at this point achieved a sufficient understanding of
basic many-body theories to be able to turn to these more recent and still
developing areas.
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