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INTRODUCTION

Since its introduction into quantum chemistry in the late 1960s by Cizek and
Paldus,'™ coupled cluster theory has emerged as perhaps the most reliable, yet
computationally affordable method for the approximate solution of the electronic
Schrodinger equation and the prediction of molecular properties. The purpose of
this chapter is to provide computational chemists who seek a deeper knowledge of
coupled cluster theory with the background necessary to understand the extensive
literature on this important ab initio technique.

In spite of the method’s present utility and popularity, the quantum chemical
community was slow to accept coupled cluster theory, perhaps because the earliest
researchers in the field used elegant but unfamiliar mathematical tools such as
Feynman-like diagrams and second-quantization to derive working equations. Nearly
ten years after the essential contributions of Paldus and Cizek, Hurley presented
a re-derivation of the coupled cluster doubles (CCD) equations! in terms which
were more familiar to quantum chemists. Soon thereafter Monkhorst® developed
a general coupled cluster response theory for calculating molecular properties. By
the end of the 1970s, computer implementations of the theory for realistic systems
began to appear as the groups of Pople® and Bartlett” each developed and tested
spin-orbital CCD programs. A few years later, Purvis and Bartlett derived the
coupled cluster singles and doubles (CCSD) equations and implemented them in
a practical computer program.® Since that pioneering achievement, the popularity
of coupled cluster methods has blossomed, and tremendous efforts have been made

1

in the construction of highly efficient CCSD energy codes,®'* inclusion of higher
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excitations in the coupled cluster wavefunction, spin-adaptation of open-shell
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methods,?*? as well as development of analytic first**5* and second® % energy
derivatives, and methods to treat excited states.5% 7

In the following section, we will use the cluster function approach developed
by Sinanoglu™ to justify the well-known exponential form of the coupled cluster
wavefunction.  This task requires use of the mathematical technique known
as second-quantization (also called “occupation-number” formalism), and we
introduce important concepts as they are needed. @~ We then construct the
operator equations of coupled cluster theory and address issues such as the
Hausdorff expansion, variational approaches, and an eigenvalue perspective on
the coupled cluster problem. In the next section, we develop a set of algebraic
and diagrammatic tools needed to derive programmable equations for the CCSD
method, and, using these tools, we discuss the property of the energy known as
size extensivity. Next, we examine the relationship between the coupled cluster
equations and those of finite-order many-body perturbation theory, leading to
an explanation of the popular (T) correction implemented in many quantum
chemical program packages. We then discuss some of the issues associated with an
efficient computer implementation of coupled-cluster-like equations, such as matrix
formulations, intermediate factorization, spin and spatial symmetry simplifications,
and atomic-orbital-based algorithms. Finally, we describe some of the latest
developments in the theory, including the implementation of open-shell Brueckner
methods, an area of coupled cluster theory which in recent years has proven to be
valuable for a number of difficult open-shell symmetry-breaking problems.

We would like to stress that this chapter is a review of coupled cluster theory.
It is not primarily intended to provide an analysis of the numerical performance of
the coupled cluster model, and we direct readers in search of such information to
several recent publications.”® ™ Instead, we offer a detailed explanation of the most

important aspects of coupled cluster theory at a level appropriate for the general
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computational chemistry community. Although many of the topics described here
have been discussed by other authors,”®8%81 this chapter is unique in that it
attempts to provide a concise, practical introduction to the mathematical techniques
of coupled cluster theory (both algebraic and diagrammatic), as well as a discussion
of the efficient implementation of the method on high-performance computers, in a

manner accessible to newcomers to the field.



FUNDAMENTAL CONCEPTS

In this section we examine some of the critical ideas that contribute to most
wavefunction-based models of electron correlation, including coupled -cluster,
configuration interaction, and many-body perturbation theory. We begin with the
concept of the cluster function which may be used to include the effects of electron
correlation in the wavefunction. Using a formalism in which the cluster functions
are constructed by cluster operators acting on a reference determinant, we justify

the use of the “exponential ansatz” of coupled cluster theory.®

Cluster Expansion of the Wavefunction

Consider a model system of four electrons moving in an arbitrary electrostatic field
generated by the nuclei in a molecule. For our purposes, it is not necessary to specify
the number of these nuclei, their types, or positions; only the general form of the
electronic wavefunction is of interest. It is convenient to describe the motions of
each electron separately by assigning them to one-electron functions, ¢;(x;), where
x; is a vector of the coordinates (including spin) of electron 1. In addition, electrons
are fermions, so the electronic wavefunction must be antisymmetric with respect
to interchange of the coordinates of any pair of electrons. A traditional and very

useful starting point for such a four-electron wavefunction is the so-called Slater

determinant
¢z‘(X1) ¢j(X1) ¢k(X1) ¢1(X1)
1 bi(x2) ¢j(X2) Dp(x2)  B1(x2)
@0:— s []_]
VA Gi(xa) dy(x3) duloxs) ()
Gi(xa) dj(xa) dr(x4) 1(x4)
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where the 1/\/@ is a normalization constant. Expansion of this determinant
reveals a linear combination of products of the four functions, ¢;, ¢;, ¢, and ¢y,
with the electronic coordinates x, distributed among them in all possible ways.
Since permutation of any two rows in the determinant — which is equivalent to
interchanging the coordinates of any two electrons — changes the sign of ®(, the
antisymmetry principle is maintained.

The component functions ¢; may be chosen in a variety of ways. For example,
if the nuclear field were only a single beryllium nucleus, the one-electron spatial
functions could be constructed to mimic the atomic 1s and 2s orbitals. For a
molecular system, the functions can be constructed as a linear combination of atomic
orbitals (AOs) in which each one-electron function represents a molecular orbital
(MO) whose AO coefficients are optimized via the Hartree-Fock self-consistent-field
(SCF) procedure.® A convenient shorthand notation for this wavefunction consists

of a Dirac-notation ket containing only the diagonal elements of the above matrix,

Dy = |pi(x1)9;(x2) Pk (X3) i (x4)), 2]

where the normalization factor is included implicitly. As discussed in detail elsewhere
in Reviews in Computational Chemistry,”” the single-determinant wavefunction fails
to account for the instantaneous Coulombic interactions which keep the electrons of
opposite spin apart.®?

How can we improve this so-called independent-particle approximation such that
the motions of the electrons are correlated? Often the set of occupied orbitals (i.e.,

those functions which compose the Slater determinant above) is chosen from a larger

set of one-electron functions. These “extra” functions are frequently referred to as



virtual orbitals and may, for example, arise as a byproduct of the SCF procedure.?
Within the space described by the full set of orbitals, any function of N variables
may be written in terms of N-tuple products of the ¢,. For example, a function of
two variables may be constructed by using all possible binary products of the set of
one-electron functions, e.g.,

f(x1,%2) Zcpq¢p X1)Pq(Xa2), [3]

p>q

where the double-summation runs over the entire set of one-electron functions and
the notation p > ¢ indicates that only unique pairs of functions are included. Instead
of correlating the motions of a specific pair of electrons, however, we may use a
modified form of this expansion to correlate the motions of any two electrons within
a selected pair of occupied orbitals — say functions 7 and ;7 — using a two-particle

cluster function,

fzy Xm;Xn Zt ¢a Xm ¢b Xn) [4}

a>b

where the tf}’ are the cluster coefficients whose specific values are determined via
the electronic Schrodinger equation (see the next section on formal coupled cluster
theory beginning on p. 21). Inserting this into ®, leads to the somewhat-improved

electronic wavefunction,

U = | [ps(x1)d;(x2) + fij(x1,X2)] dr(x3)di(x4)), [5]

where the Dirac shorthand implies a correctly antisymmetrized wavefunction
including normalization factors as in Eq. [2]. Inclusion of the cluster function, f;;,

in the wavefunction produces a linear combination of Slater determinants involving

2We will denote those functions that are part of the occupied space with the subscripts
i, j, k, ..., those within the virtual space with a, b, ¢, ... and arbitrary functions which

may lie in either space with p, ¢, r, ...
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replacement of occupied orbitals ¢; and ¢; by virtual orbitals ¢, and ¢, such that

U =P, + Z t?;|¢a(xl)¢b(x2)¢k(X3)¢1(X4)>- 6]

a>b

In addition, the determinantal form of the individual terms in this expansion implies
antisymmetrization of the cluster coefficients, such that {7 = —#4? = —t2¢ = 5%

It should be carefully noted here that the cluster function, f;;(x;,X3), is intended
to correlate the motions of any pair of electrons placed in orbitals ¢ and j, and not
just the motions of electrons 1 and 2. Since the Slater determinant produces a linear

combination of orbital products, including terms such as

(i (x1)j(x2) + fij(x1,X2)] i (x3)P1(X4) 7]
and
[pi(x3) ;1 (Xa) + fij(x3,X4)] dr(x1)Di(x2), 8]

which differ only in their distribution of electronic coordinates, the cluster function
correlates the motion of every pair of electrons found in orbitals ¢; and ¢;.
Depending on the chemical system of interest, however, it might be more prudent
to correlate the motions of electrons in orbitals £ and [ rather than orbitals 7 and j.
For example, ¢; and ¢; might correspond to molecular core orbitals, while ¢ and ¢,
might correspond to the atomic or molecular valence orbitals. Electron correlation
can be particularly important in the latter set of functions because the valence
orbitals are often directly involved in the formation of chemical bonds. In this case,

the wavefunction would be written as

U = |pi(x1) 0 (x2) [k (x3)Br(x4) + frai(x3,X4)])- 9]

On the other hand, a more intelligent approach might be to correlate all possible

pairwise combinations of orbitals in this four-electron system, i.e.,

S = |¢ididndr) + |[ijordi) — | fixdjtr) + | fudjdr) + |difindr) —
i fj1dk) + |0idj frr) + | fisfr) — | firfi0) + | fufin), [10]
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where the electronic coordinates are now implicit in the notation, and the signs on
individual terms arise from the permutations in the orbital ordering needed to define
the appropriate cluster functions. However, there is no need to limit this approach to
only orbital pairs; following Harris et al.,*® we could introduce three-orbital cluster

functions and include these in our new wavefunction to give

S = [gigiordr) + | fijordr) — [firdidn) + | fudjon) + i findr) —

|Gi f10r) + |icbj fra) + | fijfrr) — | finSfi) + | furfin) +

| figedr) — | finnor) + | finds) + i fin)- [11]
If one continues this process to include all cluster functions for up to N orbitals
(four in the case discussed here), as well as single-orbital “cluster” functions which
account for adjustment of the one-electron basis as other cluster functions are added,
we could obtain the exact wavefunction within the space spanned by the {¢,}. On
the other hand, we might assume that clusters larger than pairs are less important
to an adequate description of the system — an assumption supported by the fact
that the electronic Hamiltonian contains operators describing pairwise electronic

interactions at most.” We could therefore write a four-electron wavefunction which

includes all clusters of only one and two orbitals as®%®3

U = |gidjoudn) + |fidjoudn) + |0ifiondr) + |did; fudn) + |didjon fi) +
fifiordn) + [ fidsfudr) + | fidjdr o) + 10ififrdn) + |difidufi) +
Gidj fufi) + [ fififu) + [ fifionf0) + 1 fidi fufo) + 0ififuf0) +
[fisbudr) — | findson) + [ fudion) + |bifindn) — |bifudn) +
(0i¢3 fre) + [ fig fu) = Vi) + | fafiw) + [ fififefi) + [12]
\fisfedn) + [figbrfo) + | fig fufi) — | finfi00) — [ fiwdi i) — [faefi i) +
\fufin) + [ fudi i) + fufi o) + | fifiwdn) +|@ifinfi) + [ fifinfi) —
fifudr) = |@ifiufe) = | fifisfw) + [ fibifu) + |0ifife) + [ fif5 fu)-
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Cluster Functions and the Exponential Ansatz

The complicated notation of Eq. [12] can be drastically reduced by using a simple
analytic form for the cluster functions. Note again that each determinant involving
a cluster function is actually a linear combination of determinants each of which
differs from the reference, ®y, by a specific number of orbitals. For example, the

27th term in Eq. [12] expands to become
[figdrfi) = 3 31t |badrdnde). [13]

a>b ¢
where we have inserted the definition of the two-electron cluster function in Eq. [4]
and its one-electron counterpart to indicate the pairwise correlation of electrons
in orbitals ¢; and ¢; as well as the “correlation” of electrons in orbital ¢;. Note
that each determinant in the above summation differs from the reference by
exactly three orbitals: orbitals ¢;, ¢;, and ¢, are replaced by orbitals ¢,, ¢,
and ¢., respectively. Hence, each term can be written as the result of some
substitution operator (or products of such operators) acting on ®y. This task is
perhaps most easily accomplished using the mathematical technique known as second
quantization.3%82:84

We will define a creation operator by its action on a Slater determinant:

a;‘¢q---¢s> = W’p@sq---d)s% [14]

where we have added one more column (orbital) and one more row (electron) to
form the new determinant on the right-hand side. We may define an annihilation

operator in a similar manner to obtain

ap‘d)p¢9"'¢8> = |¢q---¢s>a [15]
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where we have removed the first column (orbital) and the first row (electron) from
the original function.” A given Slater determinant may be written as a chain of
creation operators acting on the true vacuum (a state containing no electrons or

orbitals), i.e.,
Tt Ty — 16
ayay ... ail ) = |dpdq ... bs). [16]
Note also that an annihilation operator acting on the vacuum state gives a zero

result,

a,| ) = 0. [17]

Pairwise permutations of the operators introduce changes in the sign of the resulting

determinant, e.g.,
afab] ) = bedp) = ~|bpeg) = —abal] ). [18]

Therefore, the anticommutation relation for a pair of creation operators is simply
=0. [19]
The analogous relation for a pair of annihilation operators is

a,a, + a,a, = 0. [20]

Therefore, if we change the ordering of a pair of annihilation or creation operators,
we must also change the sign of the resulting expression. Finally, it may be shown

that the anticommutation relation for the “mixed” product is

a;ﬂaq + aqa;ﬂ = Opgs [21]

bThe annihilation operator a,, is simply the Hermitian conjugate of the creation operator
a;f). An equivalent perspective on Eq. [14], therefore, is the annihilation operator a, acting
to the left on the bra-state, (®g], to give

(B dulay = (pbo . bs] = (dyby. .. ) = (allgy-.. 4)" .
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where d,, is the conventional Kronecker delta which equals 1 if p = ¢ and 0 if p # ¢.
Using these so-called second-quantized operators, we may define the single-orbital

cluster operator

t; =3 tiaja;, [22]

a

where the operator a, deletes the orbital ¢; from the determinant on which the
operator acts, whereas af introduces the orbital ¢, in its place. (The " is used
to indicate a second-quantized operator.) Similarly, a two-orbital cluster operator

which substitutes orbital ¢, for ¢; and ¢, for ¢; is given by

ty = tha Jraba a; [23]

i Qg
a>b

(Again note that the order of replacement is important for the sign of the resulting
determinant.) Hence, the 27th term of Eq. [12] shown explicitly in Eq. [13] may be
written simply as

~

|fisbe i) = tijhi| @o). [24]

The creation operators in Eqs. [22] and [23] are restricted to act only on the
virtual orbitals, and the annihilation operators may act only on the occupied orbitals.

Therefore, by Eq. [21], the creation-annihilation operator pairs exactly anticommute:
ala; +a;a} = 6iy = 0, [25]

since the occupied orbital ¢; and the virtual orbital ¢, cannot be the same.
Therefore, by the above equation as well as the anticommutation relations given
in Egs. [19] and [20], all of the creation and annihilation operators in #; and f;;
anticommute. Given the additional fact that the cluster operators always contain

even numbers of second-quantized operators, the #; and fij operators themselves will
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exactly commute.®
Equations [22] and [23] may be used to rewrite the long one- and two-orbital
cluster wavefunction in Eq. [12] above as

U [
U = (1+Zt+ Ztt+ Z tt+52tij+
(]

zgk
Zt“tkm— fofkfl Zf " +4Zt“tktl d,. 26]
zgkl zgkl ijk

We may simplify this expression even further by defining the total one- and
two-orbital cluster operators

~

TlEZ :th ga;, [27]

and

~

2

1 . 1
S Y iy =1 Y tehalalose, 28

iJ ijab

respectively.? More generally, an n-orbital cluster operator may be defined as

. 1\2 »
T, = <_) Z t?;’.'.'.'ala}; Cooa,a;. 29]

|
e/ i ab...

This reduces the wavefunction expression to

1, 1 1., 1 1
U= <1+T1+2T2+3T3+T2+2T2+4T4+T2T1+2T2T)@U 130]

Higher-order terms (e.g., TS) do not appear, of course, because our example system

contains only four electrons. If we remember that Tl and TQ commute, then all of

®Note that commutation of cluster operators holds only when the occupied and virtual
orbital spaces are disjoint, as is the case in spin-orbital or spin-restricted closed-shell
theories.  For spin-restricted open-shell approaches, where singly occupied orbitals
contribute terms to both the occupied and virtual orbital subspaces, the commutation
relations of cluster operators are significantly more complicated. See Ref. 36 for a

discussion of this issue.

dThe factors of 1/2 and 1/4 are included here to correct for the “double counting”

resulting from the now unrestricted summations over i, j, a, and b.
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the terms from the above equation match those from the power series expansion of

an exponential function! Thus, the general expression for Eq. [30] is
U = el 0d = Ty, [31]

which is a rather convenient reduction from the original Eq. [12].

The “exponential ansatz” given in Eq. [31] is one of the central equations of
coupled cluster theory. The exponentiated cluster operator, T, when applied to the
reference determinant, produces a new wavefunction containing cluster functions,
each of which correlates the motion of electrons within specific orbitals. If T
includes contributions from all possible orbital groupings for the N-electron system
(that is, T, Ty, ... ,TN), then the exact wavefunction within the given one-electron
basis may be obtained from the reference function. The cluster operators, T, are
frequently referred to as excitation operators, since the determinants they produce
from @ resemble excited states in Hartree-Fock theory. Truncation of the cluster
operator at specific substitution/excitation levels leads to a hierarchy of coupled
cluster techniques (e.g., T=T +1T, - CCSD; T =T, + Ty + T3 — CCSDT,
etc., where “S”, “D”, and “T”, indicate that single-, double-, and triple-excitations,

respectively, are included in the wavefunction expansion).

Wavefunction Separability and Size Consistency of the Energy

It is perhaps useful to compare the exponential ansatz of Eq. [31] with the
analogous expansions of other wavefunctions. In the configuration interaction
(CI) approach,®8¢ for example, a linear excitation operator is used instead of an
exponential,

Ve = (1 + é) Dy, [32]

where C'is a linear combination of cluster-like operators defined similarly to T, viz.,

~

C = él+ég+
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1
= > ctala; + 1 > cf]baza,tajai +.... [33]
ia ijab

Truncation of C' at the single- and double-excitation level (CISD) leads to a
wavefunction with exactly the same number of amplitudes (¢? and c;-‘;’) as that needed
for the CCSD wavefunction (¢! and #;). However, the latter implicitly includes
higher excitation levels (triples and quadruples) by the inclusion of T products in
the power series expansion of e Such products are commonly referred to in the
literature as disconnected wavefunction contributions.® Both the CI and CC methods
will produce exact wavefunctions if one does not truncate C' (full CI) or T (full CC).
In fact, in the limit of exact linear and exponential wavefunction expansions, a
relationship between the CI and CC amplitudes may be developed® that reveals
the factorization of each level of CI excitation into connected and disconnected
components, e.g.,
Cy =T+ %T 34
The two different forms of the excitation operator in CI and CC theory have
significant consequences for both the energy and wavefunction as the number of
electrons is increased or as the (molecular) system is separated into fragments.
Consider the structure of the coupled cluster and configuration interaction
wavefunctions for a generic system involving two infinitely separated (and therefore
non-interacting) components X and Y. If the molecular orbitals used to define the
cluster functions 7" and C' are localized on each of the two fragments — a choice
which will not affect the energy associated with either the reference determinant,
®, or the correlated wavefunction, ¥, or W — then the cluster operators may

be separated into components involving intrafragment excitations only, i.e.,

T:T)(—FTY and é:éx+éy [35]

®This terminology should not be confused with so-called disconnected diagrammatic

contributions, which are discussed later in the chapter.
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For example, the amplitudes ¢ or ¢{/, in which orbitals ¢; and ¢, are localized
on fragment X and orbitals ¢; and ¢, are localized on fragment Y, will be zero.
Thus, the total coupled cluster exponential operator may be written as a product of

independent coupled cluster operators for each fragment, viz.8"

Voo = By = TxHTr @y = eTx el @y [36]

Since the reference determinant, @, is factorizable into determinants isolated on each
fragment (in the localized orbital description), the total coupled cluster wavefunction
may be written as a product of coupled cluster wavefunctions for each of the
separated fragments.! As a result, the sum of the coupled cluster energies computed
for each fragment separately is the same as that computed for the “supermolecule”

in which the fragments are included together in the calculation,
Ecc = Ej¢ + Ebe. [37]

This property of the coupled cluster energy is commonly known as “size
consistency” .8
For the configuration interaction wavefunction, however, multiplicative

separability is not possible:
Tor=(14C) @ = (1+Cx + Cy) @p. [38]

As a result, the CI energy is not size consistent, and the sum of the energies of the

separated fragments differs from the CI energy of the supermolecule,

Ecr # EGp + Eop. [39]

fTt should be noted that the localized orbital requirement is used here strictly for ease of
analysis, and the property of multiplicative separability of the coupled cluster wavefunction

does not strictly depend on this computational requirement, as discussed in Ref. 88.
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In the event that the CI cluster operator, C’, is not truncated, however, it is possible
to write the resulting full CI wavefunction as a product of wavefunctions for each
separated fragment, since the linear operator may be transformed into an exponential
using a generalized form of Eq. [34].

Consider the classic example of an ensemble of hydrogen molecules. Both the
CCSD and CISD wavefunctions are exact (within the given one-electron basis set)
for a single Hy molecule since there are only two electrons to be correlated. However,
errors are introduced in the CI energy in the case of two (or more) non-interacting
Hs units due to the lack of multiplicative separability of the wavefunction. The size
consistent CCSD method, on the other hand, produces the correct total energy,
regardless of the number of non-interacting Hy monomers in the system, since
the total coupled cluster wavefunction may be written as a product of separated
wavefunctions, each of which is exact for the given hydrogen molecule.

Some caution should be exercised in the application of the size consistency
concept when applied to open-shell fragments, however. As Taylor has recently

t,81 a given method may be size consistent for some systems but not

pointed ou
for others. For example, the spin-restricted Hartree-Fock (RHF) approach is size
consistent for the dissociation of the hydrogen fluoride in its 3II excited state into

atoms,

HF (M) — H(2S) + F(*P), [40]

since the single determinant wavefunction can correctly describe the high-spin
electronic states in both the supermolecule and the separated fragments. The
RHF method is not size consistent, however, when describing the dissociation of

the ground state of HF, into these same atomic states,

HF('ST) — H(®S) + F(*P). [41]
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This size-inconsistency occurs because the two open-shell electrons on the
atoms must be singlet-coupled to produce the correct dissociation limit, and a
supermolecule, two-determinant approach is therefore required. This difficulty also
applies to coupled cluster or perturbation-based wavefunctions that use the RHF
determinant as a reference; these methods cannot be size consistent for a given
molecular system unless the reference wavefunction is size consistent.

A more general property of the coupled cluster energy which is related to size
consistency is “size extensivity.” This is a strictly mathematical characteristic of
the wavefunction which relates to scaling of the computed energy with respect
to the number of correlated electrons and the resulting energy dependence of the
wavefunction amplitude equations. Size extensivity is not dependent on the system
under study, and it applies to all regions of the potential energy surface — not just
to the fragmentation limit. We will return to this topic later in the chapter after we
have discussed the algebraic and diagrammatic techniques needed to derive working

coupled cluster equations.



FORMAL COUPLED CLUSTER THEORY

The exponential ansatz described above is essential to coupled cluster theory, but we

ab

do not yet have a recipe for determining the so-called “cluster amplitudes” (¢¢, b3

etc.) which parameterize the power series expansion implicit in Eq. [31]. Naturally,

the starting point for this analysis is the electronic Schrodinger equation,
H|T) = E|T), [42]

where the coupled cluster wavefunction, Voo = eT<I>0, is used to approximate the
exact solution, W,

HeT|Dg) = Ee”| D). [43]

Using a “projective” technique, one may left-multiply this equation by the reference,

®(, to obtain an expression for the energy,
(| He |Bg) = E(Dgle!|Dy) = F, [44]

where intermediate normalization, (®¢|¥cc) = 1, is assumed. Additionally, one
may obtain expressions for the cluster amplitudes by left-projecting the Schrédinger
equation by the excited determinants produced by the action of the cluster operator,
T, on the reference,

(@5 HT| @) = B(@E)7[¢"|@o), [43]
where \(bfjbjj represents an excited determinant in which orbitals ¢;, ¢;, etc. have
been replaced with orbitals ¢,, ¢, etc.®8 Projection by the determinant |<I>§‘;’>, for
example, will produce an equation for the specific amplitude t?;’ (coupled to other
amplitudes). These equations are non-linear (due to the presence of eT) and energy

~

dependent. Furthermore, they are formally exact; if the cluster operator, T, is not

&In second-quantization terminology, |¢)f]b) = ala}: oo a;a;| D).

21
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truncated, the exact wavefunction within the space spanned by the set of orthogonal

one-electron functions, ¢,, may be obtained.

Truncation of the Exponential Ansatz

Recall that the exponentiated operator may be expanded in a power series as

R . T2 T3
T— R R
e —1+T—i—2!+3!+.... [46]

Inserting this into the energy expression Eq. [44] we obtain
R R T2 T3

which becomes, after distributing terms,

. . K T3

Note that H is at most a two-particle operator and that T is at least a one-particle
excitation operator. Then, assuming that the reference wavefunction is a single
determinant constructed from a set of one-electron functions, Slater’s rules®? state
that matrix elements of the Hamiltonian between determinants that differ by more
than two orbitals are zero. Thus, the fourth term on the left-hand side of the above
equation contains, at the least, threefold excitations, and, as a result, that matrix
element (and all higher-order elements) necessarily vanish. The energy equation

then simplifies to

. . T2
<@0|H|‘I’0>+<‘I’0\HT|‘I’0>+<‘I)0\H§|‘I)0> =FE. [49]

This is the natural truncation of the coupled cluster energy equation; an analogous
phenomenon occurs for the amplitude equation (Eq. [45]). This truncation depends
only on the form of H and not on that of 7' or on the number of electrons. Equation

[49] is correct even if T is truncated to a particular excitation level.
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The Hausdorff Expansion

Although the energy and amplitudes expressions (Eqgs. [44] and [45], respectively)
are useful for gaining a formal understanding of the coupled cluster method, they
are not amenable to practical computer implementation.”® One must first rewrite
these expressions in terms of the one- and two-electron integrals arising from the
electronic Hamiltonian as well as the cluster amplitudes, which, apart from the
energy itself, are the only unknown quantities. To that end, it is convenient to
exercise mathematical foresight and multiply the Schrédinger equation (Eq. [43]) by
the inverse of the exponential operator, e T Upon subsequent left-projection by the
reference, @y, and the excited determinants, @?}’l'l'l', one obtains modified energy and
amplitude equations,

(Dole THe™ @) = E [50]

and

(@3¢ HeT|2g) = 0, 51]
respectively, which involve the similarity-transformed Hamiltonian, e THeT.
Equations [50] and [51] define the conventional coupled cluster method. It may
be shown that these expressions are equivalent to Eqs. [44] and [45],>% but with
two advantages. First, the amplitude equations (Eq. [51]) are now decoupled
from the energy equation (Eq. [50]). Second, a simplification via the so-called
Campbell-Baker-Hausdorff formula® of e~THeT leads to a linear combination of

nested commutators of H with the cluster operator, T, viz.

(7. 7). 7). 7). T| +.... [52]

This expression is usually referred to simply as the Hausdorff expansion, and

although it may not immediately appear to be a simplification of the coupled cluster
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equations, the infinite series truncates naturally in a manner somewhat analogous
to that described earlier for the operator, HeT.

As shown explicitly in Refs. 84, 80, and 92, the creation and annihilation
operators described earlier may be used to represent dynamical operators such as
the electronic Hamiltonian:

. 1
H = Z hpqa;aq + 1 Z (pq||rs)a;ﬂa$asar. [53]
g

pars
In this expression, hy, = (#p|h|d,) represents a matrix element of the one-electron
component of the Hamiltonian, h, while (pg||rs) = (¢pdy|drds) — (dpdyldsdr)
is its antisymmetrized two-electron counterpart. Equation [53] contains general
annihilation and creation operators (e.g., al or a,) which may act on orbitals in
either the occupied or virtual subspaces. The cluster operators, Tn, on the other
hand, contain operators which are restricted to act in only one of these spaces
(e.g., az which may act only on the virtual orbitals). As pointed out earlier, the
cluster operators therefore commute with one another, but not with the Hamiltonian,
H. For example, consider the commutator of the pair of general second-quantized
operators from the one-electron component of the Hamiltonian in Eq. [53] with the

single-excitation pair found in the cluster operator, Ty

by

azai] =a a,. [54]

The anticommutation relations of annihilation and creation operators given in
Egs. [19], [20], and [21] may be applied to the two terms on the right-hand side

of this expression to give

[a;aq,alai] = aléqaai_al@paq; [55]

The Kronecker delta functions, d,, and d;,, resulting from Eq. [21] cannot be

simplified to 1 or 0 because the indices p and ¢ may refer to either occupied or virtual
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orbitals. The important point here, however, is that the commutator has reduced the
number of general-index second-quantized operators by one. Therefore, each nested
commutator from the Hausdorff expansion of H and T serves to eliminate one of the
electronic Hamiltonian’s general-index annihilation or creation operators in favor
of a simple delta function. Since H contains at most four such operators (in its
two-electron component), all creation or annihilation operators arising from H will
be eliminated beginning with the quadruply nested commutator in the Hausdorff
expansion. All higher-order terms will contain commutators of only the cluster
operators, T, and are therefore zero. Hence, Eq. [52] truncates itself naturally
after the first five terms shown.®” This convenient property results entirely from
the two-electron property of the Hamiltonian and the fact that the cluster operators
commute; it is not dependent on the number of electrons in the system, the level of
substitution included in T, or any consideration of the types of determinants upon
which the operators act.

Using the truncated Hausdorff expansion, we may obtain analytic expressions
for the commutators in Eq. [52] and insert these into the coupled cluster energy and
amplitude equations (Eqgs. [50] and [51], respectively). However, this is only the first
step in obtaining expressions which may be efficiently implemented on the computer.
We must next choose a truncation of 7' and then derive expressions containing only
one- and two-electron integrals and cluster amplitudes. This is a formidable task to

which we will return in later sections.

A Variational Coupled Cluster Theory?

The “projective” techniques described above for solving the coupled cluster equations

represent a particularly convenient way of obtaining the amplitudes which define

the coupled cluster wavefunction, e’ ®,. However, the asymmetric energy formula
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shown in Eq. [50] does not conform to any variational conditions where the energy
is determined from an expectation value equation. As a result, the computed energy
will not be an upper bound to the exact energy in the event that the cluster operator,
T, is truncated. But the exponential ansatz does not require that we solve the

coupled cluster equations in this manner. We could, instead, construct a variational

solution by requiring that the amplitudes minimize the expression':?

_ (@of(e") AT |@g) _ (WIH|Y)
Eemact S E = <(I>0‘(€T)T€T‘(I>0> - <\If‘\11> : [56]

Unfortunately, this equation is considerably more complex than the projective energy
expression given in Eq. [50] since there is no natural truncation of its power series

expansion,

~

(@] (7Y HeT @) = <¢0(1+TT+% (T . DHQ+ T+ (T) +..)[@0). [57]

N | —

For example, in the term <®U\TTFIT\<I>O>, which is included in the above equation,
as T creates an excited determinant from |®o) on the right, Tt creates an excited
determinant from (®g| on the left. Thus, the Hamiltonian matrix elements will not
vanish at some high excitation level, and the series will not terminate before the
N-electron limit. Truncation of this expression for large numbers of terms appears
to be arbitrary at best.

The ostensible impracticality of a variational coupled cluster theory raises an
important question as to the physical reality of the coupled cluster energy as
computed using projective, asymmetric techniques. Quantum mechanics dictates
that physical observables (such as the energy) are expectation values of Hermitian

operators. The coupled cluster energy expression contains the operator e*T}AIeTA,
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which is not Hermitian, regardless of the truncation of T:h
PN NI R oy
(e_THeT) = (eT) H (e_T) =e""He " £ e THE [58]

However, if T is not truncated, the similarity transformed operator has an energy
eigenvalue spectrum that is identical to the original Hermitian operator, H, thus
justifying its formal use in quantum mechanical models. Practically speaking, the
coupled cluster energy tends to closely approximate the expectation value result
even when T is truncated. Furthermore, one might speculate that some measure of
the difference between the expectation value and asymmetric energies — perhaps as
measured by the asymmetry of the coupled cluster reduced density® — might prove
to be a useful diagnostic of the reliability of results obtained from the coupled cluster
method for specific systems. This issue has been recently discussed by Kutzelnigg.”?

Variational coupled cluster methods that make use of Eq. [57] have been studied
by several researchers. The unitary coupled cluster (UCC) approach in which
the cluster operator T is replaced by T — Tt (where Tt indicates a de-excitation

operator which is the Hermitian adjoint of T) was pursued by Hoffmann and

hThe inequality with the final term in this expression relies on the fact that the
Hermitian adjoint of an excitation (cluster) operator, T, is a de-excitation operator as,
can be seen from the properties of its component annihilation and creation operators. For
example, we note that
Ty =Y tlafa; # 1] = 3 (t0)" ala,.
ia ia

On the other hand, the inverse of the exponentiated excitation operator, e‘T, is also an

excitation operator, as can be seen from its power series expansion,

- ~ 1. 1 -~
-7 2 3
=1-T+=-T°“—-— =T
e +2 3 +
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Simons.’*? The infinite series in this case is not truncated arbitrarily, but instead
by identifying which terms are needed to complete the series through a particular
order of perturbation theory. Bartlett and Noga have constructed an alternative
theory, termed the expectation value coupled cluster (XCC) method,?® in which the
usual definition of 7" is retained and Eq. [57] is used, but again the series truncation
is based on perturbation theory arguments. Finally, we note the extended coupled
cluster method (ECCM) of Arponen and Bishop,’”? which uses a modified energy
functional including an additional exponentiated deexcitation operator analogous to
eT". These as well as other variational and semi-variational approaches to the cluster

expansion have been reviewed recently by Bartlett et al.”? and by Szalay et al.'?

An Eigenvalue Approach to Coupled Cluster Theory

Up to this point, our discussion has focused on the expansion of the wavefunction
using the exponential ansatz given in Eq. [31]. When the cluster operator, T,
is truncated, the resulting CC wavefunction may be viewed as an approximate
eigenfunction of the exact electronic Hamiltonian. However, another equally
valid perspective focuses instead on construction of the ezact eigenvectors of an
approrimate Hamiltonian. In configuration interaction theory, for example, one
conventionally represents the electronic Hamiltonian within a determinantal basis

consisting of the reference (@), single excitations (®¢), double excitations (®¢7),

etc. In the CISD approximation the Hamiltonian is represented schematically as

Escr 0 Hyp
HCISD = 0 HSS HSD ) [59}
Hpo Hps Hpp
where fISD, for example, represents the block of Hamiltonian matrix elements

between singly and doubly excited determinants and Escp = (®|H|®). We assume
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here that Brillouin’s theorem® holds for the reference determinant, and therefore the
matrix elements involving @, and singly excited determinants are zero. The CISD
energy is the lowest eigenvalue of this Hermitian matrix, and the CISD wavefunction

is the corresponding eigenvector, i.e.,

Heiso|Persp) = Ecwsp|Peis)- [60]

The coupled cluster “Schrodinger equation”, which leads to the energy and

amplitude expressions given in Eqs. [50] and [51], may be written as
e THeT|®,) = E|®y). [61]

Like Eq. [60], this equation represents an eigenvalue problem!'! in which the
similarity-transformed Hamiltonian, H = e*TAfleTA, is used in place of the bare
electronic Hamiltonian, H. The ground-state eigenvector of H is simply |®;) with
eigenvalue E. However, H is not Hermitian, unlike the CI Hamiltonian, and its
matrix representation is therefore non-symmetric. In the CCSD approximation, for

example,

Eccsp Hos  Hop
Heesp = 0 Hgss Hsp | [62]
0 Hps Hpp
where the CCSD energy is given by (®o|H|®), by Eq. [50] and Hps # Hsp. The
blocks of matrix elements (®¢ H|®,) and (®¢?|H|®,) are both zero because the T
amplitudes which parameterize the similarity transformation of H into H satisfy the
equations,

0 = (D |H|Py) [63]

and

0= <(I>g]b‘H‘(I>O>7 [64}
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which are simply specific cases of Eq. [51]. Furthermore, unlike the CI case, Hyg
is nonzero in spite of Brillouin’s theorem because H includes contributions from
products of the bare Hamiltonian with the cluster operators, T.

As a result of the asymmetry of H, the right-hand eigenvalue problem given in

Eq. [61] is different from the left-hand eigenvalue problem,
(C|H = (L|E. [65]

The computed energy, E, however, is the same for both equations. In Eq. [65] above,

the left eigenvector, (£|, may be written in terms of a cluster operator, £, acting on

the reference from the right, viz.

(L] = (Po| L. [66]

~

The operator L may be defined in analogy to the cluster operator, T, as a sum of

of cluster operators,

L=1+L+Lo+.... [67]

The leading term of 1, which does not appear in 7 (cf. Eq. [29]), is required in order
that the left- and right-hand eigenvectors have unit overlap with one another. Unlike
the cluster operators, Tn, the operators L, act to the left on (®g|. Therefore, it is
convenient to define them as de-excitation operators (or, equivalently, as bra-state
excitation operators),

R 1\2 o

L, = <m> Z l;]b'_'.'.aga} Cayay, [68]

ij...ab...

The task of determining the left-hand ground-state eigenvector of H is thus reduced
to determining the amplitudes l;’b The ground-state coupled cluster energy may

then be written as

E= <@0\£H|‘I)0>a [69]
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where the left and right wavefunctions are assumed to be normalized according
to (®g|L|®y) = 1. This expression, which is more general than Eq. [50], provides a
particularly useful starting point for the derivation of coupled cluster analytic energy
derivatives; the left-hand eigenvector, (@0|ﬁ, is related to the A operator which
arises due to the response of the cluster amplitudes to the external perturbation
parameter.®?

The concept of the coupled cluster method as an eigenvalue problem may be easily
generalized to include excited states (in this case, states that are not the lowest
in energy within a given symmetry). We may write the more general right-hand
problem as

HR(m)|®y) = E,R(m)| o). [70]

where

~ ~

R(m) = Ro(m) + Ri(m) + Ra(m) + ... 71]
represents a cluster operator expansion for the m-th excited state with energy F,,.

For the ground state, 7@(0) = 1, as described above. Similarly, the left-hand

eigenvalue problem becomes
(| L(m)H = (Bg|L(m) Epy. [72]

“Biorthonormality” of the left-hand and right-hand eigenvectors may be enforced
such that

(D] L(m)R(n)|Po) = Synm, 73]
leads to the generalized coupled cluster energy expression
By = (9| L(m) HR (m)|®y). [74]

Note that the biorthonormality of the left- and right-hand states does not imply

orthonormality of the left- or right-hand states among themselves, e.g.,

(Bo|RT(m)R(n)|®0) # G- [75]
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The eigenvalue perspective described above does not offer any computational
convenience for the ground-state problem because one must still use Eq. [51]
to determine the cluster amplitudes that define the similarity transformation of
the electronic Hamiltonian, f[, into the CC Hamiltonian, H. However, this
perspective does provide a rather simple Cl-like approach for determining excited
state wavefunctions. Equation-of-motion coupled cluster theory (EOM-CC),560-63,65
the name of which is based on early formulations involving response operators, has
seen a considerable rise in popularity in recent years. The EOM-CCSD method,5%
for example, is defined as the diagonalization of the CCSD effective Hamiltonian,
Heosp (where the cluster amplitudes are taken from the corresponding CCSD
ground-state energy calculation) in the space of all singly and doubly excited
determinants. It should be noted, however, that truncation of the cluster operator,
T, in the definition of H does not introduce errors into the EOM-CC energy, because
the exact energy would still be obtained if the diagonalization basis were complete.
Much effort has been devoted recently to the development of a variety of
excited-state coupled cluster techniques which are related to EOM-CC. For example,
the linear-response coupled cluster (LR-CC) approach™ originally described

69,70,102-105 o1 be

by Monkhorst® and recently implemented by several groups
used to obtain identical results to those given by conventional EOM-CC. In
addition, the symmetry-adapted cluster (SAC-CI) method devised independently
by Nakatsuji'® 1% some years ago may be viewed as an approximation to EOM-CC
and LR-CC. A relationship between EOM-CC and Fock-space multi-reference
coupled cluster theory (FS-MRCC)54:109°112 hag been exploited in the construction
of methods for describing classes of doublet electronic states which are accessible via
either electron-attachment (EOMEA-CC)®:'!3 or ionization (EOMIP-CC)S7109-111

from a given reference. Finally, we note the recent work by Nooijen and Bartlett

on the similarity-transformed equation-of-motion coupled cluster (STEOM-CC)
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method,”* " in which the effective Hamiltonian described above is further
transformed using a reduced cluster operator, S, which serves to decouple singly

excited determinants from doubly and triply excited determinants in H.



DERIVATION OF THE COUPLED CLUSTER,
EQUATIONS

“It is the need to remove the ‘unlinked clusters’ and the introduction
of Feynman diagrams which make MBPT [and CC theory| appear

unfamiliar to quantum chemists.” 15

— K. F. Freed

In this section we construct working equations for the coupled cluster singles
and doubles (CCSD) method. Beginning from the approximation T =T +1T, we

use algebraic and diagrammatic techniques to obtain programmable equations for

ab
ij

the cluster amplitudes, ¢ and t{’, in terms of the one- and two-electron integrals
of the electronic Hamiltonian. As a first step we must introduce a few important
tools of second quantization such as normal ordering and Wick’s theorem to make
the mathematical analysis much less complicated. The approach described here
may easily be extended to higher-order cluster approximations (e.g., CCSDT and
CCSDTQ, where the latter includes quadruple excitations), as well as many-body
perturbation theory expressions.

As indicated in Karl Freed’s quote above, the general quantum chemistry
community has been slow to accept diagrammatic analyses of many-body
perturbation theory and coupled cluster methods, and, until recently, these
techniques have been used by relatively few researchers in the field. One of the goals
of this review is to explain in straightforward terms one diagrammatic approach
commonly used for the construction of coupled cluster equations. While attempting

to be somewhat rigorous in the algebraic derivation of the coupled cluster equations,

we present the corresponding diagrams with only minimal justification. For readers

34
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with a strong mathematical background who are interested in more detail, an
extensive analysis of a similar diagrammatic technique may be found in the recent

text by Harris, Monkhorst, and Freeman.®

Normal-Ordered Second-Quantized Operators

As stated in Merzbacher’s text on quantum mechanics® (Ch. 21, §4), a
normal-ordered string of second-quantization operators is one in which we find “all
annihilation operators standing to the right of all creation operators.” Normal
ordering of such strings provides a bookkeeping system by which the nonzero
matrix elements of second-quantized operators may be more easily identified. As
an example, consider an arbitrary string of annihilation and creation operators,

~

A = a,afa,al. By application of the anticommutation relations given in Eqs. [19],
[20], and [21], we may move the two annihilation operators to the right and therefore

write the string in an equivalent form as

A = aalaai

P T

= Spga,al — a:gaparal
= OpgOrs — Opgtila, (5rsa a, + ala,ala

qQpTsTr

= OpgOrs — Opgatla, — Spsatay, + Sysata, — alalaa,. [76]

Three of the five terms in the final rearrangement contain operator strings of reduced
length and the first term contains only Kronecker delta functions. Note also that all
of the operator strings on the right-hand side of the final equality are normal ordered
by Merzbacher’s definition. If we now evaluate the quantum mechanical expectation

value of this operator in the true vacuum state, | ), we obtain'

CIALY = (18q0nsl ) = ( 1dpala,| ) = ([Srsaba,| ) + ( 8psaba,| ) — ( la}alaya,| )

'The vacuum, | ), is a state containing no electrons.
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= Opglrs, [77]

where we assume that the vacuum state is normalized. Hence, the only term of Ain
Eq. [76] which produces a nonzero result is the one containing no second-quantized
operators; all other terms involve application of an annihilation operator to | ) on
the right.

If, on the other hand, we wish to evaluate a matrix element of A involving
determinants other than | ) on the left and right, normal ordering simplifies this
analysis as well. For example, consider the matrix element of A between the

single-particle states, (¢;| and |¢,),
(&1 Alou) = ( |a, Adl| ). [78]

Since the left- and right-hand states may be written simply as single annihilation and
creation operators acting on the vacuum, the desired matrix element of A may be
rewritten as the vacuum expectation value of a new operator, B = a, Aaf. Therefore,
we need only rewrite B in normal order and select only those terms which contain
no annihilation or creation operators as we did in Eq. [77]. After much algebraic

manipulation, which we shall omit here, it can be shown that
<¢t|A‘¢u> - < ‘B| > - 6tu6pq6rs + 6tq6p56ru - 6tq6pu6r5 - 6t56pq6ru- [79]

By rearranging a given string of annihilation and creation operators into a
normal-ordered form, matrix elements of such operators between determinantal
wavefunctions may be evaluated in a relatively algorithmic manner. However, such
an approach based on the direct application of the anticommutation relations can
be quite tedious even for relatively short operator strings, and many opportunities

for error may arise.
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Wick’s Theorem for the Evaluation of Matrix Elements

Using the anticommutation relations of Eqs. [19], [20], and [21], an arbitrary string
of annihilation and creation operators can be written as a linear combination
of normal-ordered strings (most of which contain reduced numbers of operators)
multiplied by Kronecker delta functions. These reduced terms may be viewed as
arising from so-called “contractions” between operator pairs. A contraction between

two arbitrary annihilation/creation operators, A and B, is defined as
AB = AB — {AB},, [80]

where the notation {AB}, indicates the normal-ordered form of the pair (the
subscript v will be explained shortly). That is, the contraction between the operators
is simply the original ordering of the pair minus the normal-ordered pair. For
example, if both operators are annihilation or creation operators, the contraction

is zero because such pairs are already normal ordered:

a,d, = a,a, — {a,a,}, = a,a, —a,a, =0 [81]
and
a@l alal — {alal}, = alal — alal = 0. [82]

In addition, a third combination where A is a creation operator and B is an

annihilation operator is also zero, since the string is again already normal ordered:

a‘ma = —{ala,}y = ala, —ala, = 0. [83]
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The final combination where A is an annihilation operator and B is a creation

operator is not zero, however, due to the anticommutation relations in Eq. [21]:
a a:g = apa:g - {apaz}v = apaz + azap = 0pq - [84]

Note that we must maintain the correct sign when the operators in the brackets,
{ }+, are reordered.

Wick’s theorem!!® provides a recipe by which an arbitrary string of annihilation
and creation operators, ABC'... XY Z, may be written as a linear combination of

normal-ordered strings. Schematically, Wick’s theorem is

ABC...XYZ = {ABC...XYZ}, 85]

+ Y {AB...XYZ},

singles

]
+ > {ABC...XYZ},

doubles
+...,
where “singles,” “doubles,” etc. refer to the number of pairwise contractions included
in the summation. The bracket notation, { },, has again been used to indicate the
normal-ordered form of the given string. If we apply this theorem to the operator

from the last section, /l, we obtain

A= {a, aqaral} —|—{apaqaras} —|—{apaqaras} —|—{apa27'l} + {d did dl},, [86]

qu‘S

where only the nonzero contractions have been included (cf. Eqs. [81] - [84]). The
evaluation of the pairwise contractions may introduce sign changes because the string

of operators must be permuted to bring the pair together before the contraction

INote that the use of the brackets, { },, around a string implies that the operators
contained therein, except for any pair being contracted, exactly anticommute. Hence, a
general term such as {ABC ... XY Z}, may be written ezactly as —{BAC ... XY Z},,

without concern for the anticommutation relations.
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may be evaluated. If the number of permutations is odd, the sign is negative; if the

number is even, the sign is positive. For example, a contraction of the form
{ABCD}, = {ADBC}, 87]

would have a positive sign since two permutations are necessary to bring operators

A and D into adjacency, but a contraction of the form
{ABCDY, = — {ACBD}, 88

would have a negative sign since only one permutation is necessary to bring operators
A and C together. Thus, the contraction introduces the sign (—1)”, where P is the
number of permutations required to bring the operators into adjacency. Evaluating

the contractions above for A gives

~

A = {a aqara’Jsr}U + 6pq{aral}v + 6195{@2@1"}11 + 67"S{apaz}v + 613‘167"5

= alalapar — dpgata, + (5psa:gar — (5rsa;ap + OpgOrs- [89]

This result is identical to that obtained using the anticommutation relations and
given in Eq. [76].

How does Wick’s theorem help us in evaluating matrix elements of
second-quantized operators? Recall that any matrix element of an operator may
be written as a vacuum expectation value by simply writing its left- and right-hand
determinants as operator strings acting on the vacuum state, | ). The composite
string of annihilation and creation operators may then be rewritten using Wick’s
theorem as an expansion of normal-ordered strings. However, the only terms that
need to be retained in this expansion are those that are “fully contracted”. All other
terms will give a zero result, by construction. For example, for the operator, B, from

the last section, Wick’s theorem gives the following fully contracted terms:

STt —F= 1 1t ] ST Tl 1t ]
{ p;riz}_F{ aaqarasa:&}_F{ p;ri:&}—i_{ p;rsL [90]
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which, when the contractions are evaluated, will give exactly the result given in
Eq. [79]. The large number of contractions in the above equation also suggests a
useful rule of thumb for determining the sign of a fully contracted term: if the
number of crossings in the contraction lines is odd, the sign on the term is negative;
if the number of crossings is even, the sign is positive. For example, the sign on the
second term above is positive since there are two crossings, whereas the sign on the
third term is negative since there is only one crossing.*

A somewhat more general version of Wick’s theorem may be developed which
involves products of operator strings, some or all of which may be normal ordered.!!
The original form of Wick’s theorem is only slightly modified in that the contractions
need only be evaluated between normal-ordered strings and not within them. For

example, for a product of two normal-ordered strings, the generalized Wick’s theorem

says that
{ABC .. }{XYZ..}, = {ABC...XYZ..}, [91]
+ Y {ABC...XYZ...},
singles
S R
+ > {ABC...XYZ...},
doubles

+ ..

This equation easily extends to products of several strings.

Another approach to the problem of matrix element evaluation and operator
algebra is presented in the text by Harris, Monkhorst, and Freeman,’® who
describe the so-called “contraction theorem.” While Wick’s theorem serves as a
convenient approach to the conversion of a general string of construction operators

(or products of strings) into sums of reduced normal-ordered strings, the contraction

kThis sign rule only applies to fully contracted terms and assumes that one places all

the contraction lines above the expression.
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theorem avoids all use of normal ordering, and deals strictly with commutators and
anticommutators of general strings. This latter approach will give identical results
to the application of Wick’s theorem and has a few subtle differences, including an
altered sign rule. Note also that one rarely (if ever) finds a proof of Wick’s theorem
in the modern literature, but Harris, Monkhorst, and Freeman give an explicit proof

of their contraction theorem.

The Fermi Vacuum and the Particle-Hole Formalism

In many-electron theories such as configuration interaction or coupled cluster theory,
it is more convenient to deal with the n-electron reference determinant, |®q), rather
than the true vacuum state, | ). In the evaluation of matrix elements using
Wick’s theorem as described above, even the use of normal-ordered strings would be
tremendously tedious if one had to include the complete set of operators required to
generate |®g) from the true vacuum (i.e., |®g) = a}a}a,t o))

We will therefore alter the definition of normal ordering from one given relative to
the true vacuum to one given relative to the reference state |®q) (which is sometimes
called the “Fermi vacuum”). The one-electron states occupied in |®g) are referred
to as hole states, and those unoccupied in |®g) are referred to as particle states. This
nomenclature is based upon the determinant produced when annihilation-creation
operator strings act on the Fermi vacuum. That is, a “hole” is created when an
originally occupied state is acted upon by an annihilation operator such as a;,
whereas a “particle” is created when an originally unoccupied state is acted upon by
a creation operator such as af. Therefore, we will refer to operators that create or
destroy holes and particles as quasiparticle (or just g-particle) construction operators.

That is, ¢g-annihilation operators are those which annihilate holes and particles (e.g.,

a} and a,) and ¢-creation operators are those which create holes and particles (e.g., a;
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and al).! Therefore, a string of second-quantized operators is normal ordered relative
to the Fermi vacuum if all g-annihilation operators lie to the right of all ¢-creation
operators. We will denote such normal-ordered strings using { } (note the lack of
the subscript v, which we implicitly used earlier to indicate normal ordering relative
to the true vacuum).

This new definition of normal ordering changes our analysis of the Wick’s
theorem contractions only slightly. Whereas before, the only nonzero pairwise
contraction required the annihilation operator to be to the left of the creation
operator (cf. Eq. [84]), now the only nonzero contractions place the g-particle
annihilation operator to the left of the ¢-particle creation operator. There are only

two ways this can occur, namely,

aTc‘zj = a:-raj - {ajaj} = a:-raj + a]-a:-r = 0jj [92]
and
G’IFLZ = aaaz - {aaaz} = aaaz + G’Zaa = 6017 : [93]

The analogous contractions that place the g-particle annihilation operator to the

right of the g-particle creation operators are zero:
dha, = d;df =0. [94]

All other combinations necessarily involve mixed hole and particle indices for which

the Kronecker delta functions will give zero.

Note that this g-particle definition of annihilation and creation simply reverses the
roles of second-quantized operators acting in the occupied (hole) space, but leaves the

those acting in the unoccupied (particle) space untouched.
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The Normal-Ordered Electronic Hamiltonian

The second-quantized form of the electronic Hamiltonian8%8492

H= Z (plhlg)ata, + ~ Z (pal[rs)afata,a,, [95]
4 pars
may be cast into normal-ordered form using Wick’s theorem. We may begin by

rewriting the pair of operators in the one-electron part of the Hamiltonian as
a;aq = {a o+ {a o [96]

The contraction rules we examined earlier (cf. Egs. [92] and [93]) state that, since
the creation operator is on the left, the contraction is zero unless a}, and a, both act
in the hole space and give d,,. This simplifies the one-electron part of the equation

to

>_(plhlg){ala }+Z ilhfi). [97]

pq

Now we rewrite the string of annihilation and creation operators from the

two-electron part of H as

[+ 1 1
a;ﬂazasar {a;ﬂ :gasar} + {a}, zasar} + {a; :gasar} + {a}, zasa
+{a;f) (Jgasar}—i_{a;r) ;asar}—i_{ap Qqa,a, [98]

Again, all of these contractions are zero unless the leftmost operator of the

contraction acts in the hole space. This leads to the simplified form

;Jagasar = {a;a;asar} - 51)62'51)5{“:;(%} + 5(162'5(15{“;%} + 5p6i5p7“{agas}
qeléqr{a } 5p€i5ps(5q€j5qr + ‘5p€i‘5pr5q€j5qsa [99]

where the notation p € ¢ means that p must be contained in the set of

occupied-orbitals and must be equal to 7. Note that the signs on each of the terms
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are derived from the contraction rules discussed earlier. Inserting this expression

back into the equation for the two-electron part of the Hamiltonian, we obtain

7 Z (pallrs){ajata,a,} — %Z(MIN’HG d+g Z (pil[ri){afa,}  [100]

PQT‘S qri pri
L 1
7 S tiallis){afa,} — 3 Spillisyaba} — ¢ S (isllgi) + 5 S (il i)
qsi pst 2] ij

Remembering that for antisymmetrized two-electron integrals in Dirac’s notation,
(pql|lrs) = —(pq||sr) = —{qp||rs) = (gp||sr), we may re-index sums and combine
terms where appropriate to obtain
> (palirs{afala,a,) + Spillrid{aba,) + 5 Gl o
pqrs pri ij
The complete Hamiltonian is therefore

o = Y (plhlg){ala,} + > (pil|ri){ala,} + = Z (pqlrs){alala,a,

pq pri Plﬂ"s

F3GlA) + 5 i i), 102

Note that the first and second terms on the RHS of this equation are simply
the spin-orbital Fock operator (in normal-ordered form) and that the last two
terms are the Hartree-Fock energy (i.e., the Fermi vacuum expectation value of

the Hamiltonian). Thus, we may write

H=Y fp{ala,} + - Z (pa|irs){alala,a,} + (Po| H| D) [103]
pq pqrs
or
ﬁ:FN+VN+<q>U|H|q>U>a [104]

where the subscript N indicates normal ordering of all the component operators

strings. Therefore, the normal-ordered Hamiltonian is simply

Hy = Fy + Vy = H — (9| H|Dy). [105]
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This result is easily generalized: the normal-ordered form of an operator is simply
the operator itself minus its reference expectation value. For the Hamiltonian
example, above, the normal-ordered Hamiltonian is just the Hamiltonian minus the
SCF energy (i.e., Hy may be considered to be a correlation operator). Due to its
considerable convenience for coupled cluster and many-body perturbation theory
analyses, for the remainder of this chapter we will adopt this conventional form of

H given in Eq. [103].

Simplification of the Coupled Cluster Hamiltonian

The concepts of normal ordering and Wick’s theorem provide the mathematical tools
needed to derive programmable coupled cluster equations from the more formal
expressions given in Eqs. [50] and [51]. If we truncate the cluster operator such
that T = Tl + Tg and insert it into the similarity-transformed normal-ordered
Hamiltonian, H = e*TﬁNeT, we obtain

. N ~ . . 1 N ~ ~
H = Hy+ [y D]+ Ay, D] + 5 [[Av. ] 1] +

1 N ~ ~ A ~ ~

5“:HN;T2];T2}+[|:HN;T1}7T2}+"'7 [106]
where the Hausdorff expansion above terminates naturally at quadruply nested
commutators as described earlier.™ Our task in constructing the CCSD equations is
to obtain second-quantized expressions for each term of H above, insert these into

Eqgs. [50] and [51], and finally evaluate the resulting matrix elements.

The first commutator of Eq. [106] expands to give,

[HN;TI] = [FN;TI] + [VN,Tﬂ = FNT1 — TIFN + VNTI — TIVN: [107]

MSince the cluster operators commute, we have

([, 1] 2] + 5 [ 2] ).

DN | =

[ 2] -

Therefore, a factor of 1/2 does not appear in front of this term in the above expansion.
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using the definition of Hy given in Eq. [105]. The second-quantized definition of T}
is simply
= > ti{ala;}, [108]
ia

where the brackets indicate that the operator string is already normal-ordered
(i.e., this is the only nonzero term resulting from application of Wick’s theorem
to Bq. [27]). Given the second-quantized form of Fy from the previous section, the

first term of the commutator may be written as
FNTr =303 futi{afa Hala, ). [109]

Pq a

The generalized form of Wick’s theorem (see Eq. [91]) says that this product of
normal-ordered operator strings may be written using only contractions between

the two strings. That is,

{a;aq}{alai} = {a’p q Qg z}+{ap q Qg z}+{a;) 7}; z}+{ }

= {a’p q a, z} + 6pl{aq } + 64‘1{0’;{)6%} + 5pi6‘1‘1‘ [110]

For the second term of the expanded commutator, TlﬁN, where the operator strings
from Fy and T} are simply reversed in order, Wick’s theorem gives only one term,
Viz.

{CL }{ap q} = {aa a; p q} = {ap q a, z} [111]

All other contractions, which involve af and a, on the left, are zero by Eq. [94].
The final equality in this expression arises from the fact that, by construction, all
operators within the brackets anticommute. Therefore, using Eqgs. [110] and [111],
we may write

FNfl - TlﬁN = Z Z qut? (5pi{aqal} + 5qa{a;ai} + 5pz~(5qa)

Pq ia

= > futi{ogal} + 37 fati{aja;} + 3 fuuti. [112]

qia pia
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This example illustrates how the commutator allows only those terms involving

contractions between the operators to survive; the “uncontracted” terms are

eliminated. Note that the final term on the right-hand side involves components

of the Fock operator in the occupied-virtual block; if Brillouin’s theorem®? holds for
the set of molecular orbitals used to construct @, then this term is zero.

Now consider the first doubly nested commutator from Eq. [106]. The term

involving the Fock operator expands to give

([Fx 1] 1] = S BNT? — TibwTy + ST E 113

DN | =

Applying Wick’s theorem to the operator strings in the first term on the right-hand

side of this equation gives

%FNTE = —%%%fmt“tb < afa,ala;ala; }—I—{mlaba H
{afa,ala;aja;} + {ayi blagala;} + {afagala;dfa} + {afd,dld;ala;} +
Baaiaald} + {Haadala) + (4ihadadld,}) 114]
Evaluating the contractions leads to
%FNTIZ = —%t (Z fo{ala aaazaba - [115]

; fiq{aqaaabaj} + Z qu{aqajzai al} +

zp: fpa{a; aba b+ Z fpb{a; L“za b+

fm{aZaj} + fia{a,al} - fib{alaj} + fjb{alai}) :
This expression may be simplified significantly by recognizing that, because of the
summation outside the parentheses, ¢, j, a, and b are dummy indices and may be
exchanged. For example, the second and third terms on the right-hand side are
identical:

5 86, (S it} + 5 ool 116
q q

aibj
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- Z Z (fyqt ta{a aba a; } + f]qt“tb{aqa GZ})

aibj 4q

- Z Z (f]qtatb{aqa al} + f]qt“tb{aqa GZ}) - [117]

aiby 4
The first step in this analysis results from simply swapping index ¢ with j and index
a with b. Similarly, one may show equivalence of terms four and five, six and nine,
and seven and eight (with appropriate sign changes). The final, simplified expression
is thus
Lo 2o b
§FNT1 = _Ztat (Z qu{ap q a zaba3}+22qu{a azaz}+

azb]
25 fulelela) + 2fplola) + 2k az}) [us

A similar analysis for the remaining two terms of the doubly nested commutator

gives
TRV = Y 41 (prq{aa a;aja qaba}+2fm{aaazaqa b+
aibj
S fwfalaala}) + fpfala, }) 119
D
and
1.
5 Zprqt“tb a;aba;ala,}. [120]
azb] pq

Inserting these expressions into Eq. [113] and cancelling terms gives the rather simple

result,

[Fv. Th) . T1] = Y fatith{a,al}. [121]

aibj

N | —

The two examples given so far, [FN, Tl] and % HFN, Tl] ,Tl], allow us to make
an important generalization when Wick’s theorem is applied to the commutators in

Eq. [106]:

e The only nonzero terms in the Hausdorff expansion are those in which the
Hamiltonian, I:IN, has at least one contraction with every cluster operator, Tn,

on its right.



49
That is, the Hamiltonian must share at least one index with every cluster operator
component in the final expression. We may therefore rewrite Eq. [106] in a simpler

form:

_ N A A A A 1. - 1. - PPN

i - (HN + HNTy + BTy + S HNT? + AT + BT+ [122]
Lo 1 e e o 1

6HNTI3 + 5HNTET2 + 5HNT1T22 + 6HNT23 +

Uoor 1 g L o a1

ST HNT S HNTIT + TANTRT + AT + ﬂJLINT;)C,

where we have now written every term in the CCSD Hausdorff expansion explicitly
and the subscript ¢ indicates that only those terms in which the Hamiltonian is
connected (in the Wick’s theorem sense) to every cluster operator on its right should
be included in the algebraic interpretation of the operator. This is often referred
to as the “connected cluster” form of the similarity-transformed Hamiltonian.? This
expression makes the truncation of the Hausdorff expansion even clearer; since the
Hamiltonian contains at most four annihilation and creation operators (in V), Hy
can connect to at most four cluster operators at once. Therefore, the Hausdorff

expansion must truncate at the quartic terms.

The CCSD Energy Equation

Using the connected cluster form of H defined above, as well as the techniques of
Wick’s theorem and normal ordering, we may derive a programmable form of the
energy expression in the CCSD approximation. In accord with Eq. [50] and the

normal-ordered Hamiltonian, the energy is given by
Ecesp — Eo = (Do H| Do), [123]

where the CCSD effective Hamiltonian of Eq. [122] is inserted for H and Ej is

the SCF energy, (®,|H|®,). The leading term in this expression is the reference
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expectation value of the normal-ordered Hamiltonian, which is zero by construction:

For all other terms, we may use the advantage of normal-ordering of the operators
to determine all of the fully contracted terms of the operator product. For example,
for the second term of Eq. [122], insertion of the definition of the normal-ordered
Hamiltonian gives

(7). = (P73, + (7). 5
where the subscript ¢ has the same meaning as in the previous section. We have
already evaluated the first component of this pair, and the result is given in Eq. [112],

which contains only one fully contracted term, i.e.,
(Do (FNTI)C o) =D fiat?. [126]

The two-electron component, on the other hand, contributes nothing to the energy

expression, because no fully contracted terms can be generated from it:

(VNTI)C = Z Z qu’I“S ta{a;[) (Easar}{a};ai}

Pl]TS ia
[+ v 11
= = Z > (pq||rs)t? ({aT gasaraaal} + {aT Ilasaraaal}wL
quS ia
[f tr—t ]
{a; ;asa/’ra/aaz} + {a/T ;asa/’raaaz} + {a/T ;asa/’raaaz} + {a/T za/sa/’raaa/z} +
[+ ¥ [+ ]

{a/T j]a/sa/ra/a Z} + {a/T j]a/sa/raa Z} + {a/T j]a/sa/raaa/l ) ) [127]

Therefore, the energy contribution from the linear T, operator is
ECCSD <— <(I)0‘ (ﬁNTI)c |q)g> = Z fmt?. [128]

(The left arrow indicates that this is only one of several terms contributing to the
energy on the left-hand side.) However, this term will be zero if Brillouin’s theorem

holds for the molecular orbitals in which the Fock matrix is represented.?
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Next consider the contribution to the energy from the linear Ty term in Eq. [123],
(@o| (HnT2) |B0) = (Do| [(FnT) + (VwTh) | 1®0). [129]

The normal-ordered form of Ty may be derived from Eq. [28] to obtain

- 1
= S t{alaja;a;}. [130]
aibj
The reference expectation value of the first term on the right-hand side of Eq. [129]

is zero because it cannot produce any fully contracted components:

(FNTQ)C = _szpqt }{a ab a; }

Pq aibj
= _szpqtab( apay, aaba }+{ap q aaba a; }+

pq azb]
{afagafata,d, ) + {ahdalala;a} + afd,afalasa,) + (Gdalaid e} +
(658 3kafa,d} + {afd afdia,a,} + (afi,afdlasa,}) 131

The two-electron component, however, produces four equivalent fully contracted
terms, and therefore contributes to the coupled cluster energy:

(@o| (VWT), [®0) = Z > (pallrs)ty(o|{afala,a, Halaja,a; }Po)

pars aibj
- zzpqumab(a;mgimﬁﬁ

pqrs aibj

- Z Z pQHTS tab 6 6 6 651) + 6pj6qi6rb65a - 6pj6qi6ra65b - 6pi6qj6rb65a)

pqrs aibj

= - Z ij||ab) ta(’. [132]

azb]
The factor of 1¢ appearing in the first three equalities arises simply from the product
of the factors of ; that appear in the definitions of Vy (Eq. [105]) and T (Eq. [130]),

and the final factor of i results from the collection of the last four terms together.
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Next we consider the first quadratic term from Eq. [123], which involves two Ty

cluster operators. The reference expectation value of the one-electron component,

% (FNTIQ)C, is zero because the single construction operator pair in the Fock operator

cannot produce fully contracted terms with the two construction operator pairs in

Tf The two-electron component, on the other hand, does produce fully contracted
terms, viz.,

;(q)ol (VWT?),_|@o) = Z ZZ (pallrs)ti13(@o|{afata,a, Hala; }{aja; }|Po)

pqrs ai

= Z > (pqllrs)tit! ({aJr a-aZch} + {c‘zj,azasaraaaiazgj}+

D q (PN
qusazb]

Nie=c ey
{a;f) ;asaraaazaba }+ {a;f) ;asarazazabaj}

=35 Z Z pq‘ ‘TS t tb 6pj6qi6ra65b + 6pj6qi6rb65a + 6pi6qj6ra(ssb - 6pi6qj6rb(ssa)

pqrs aibj

= Z ij|lab)titt. [133]

2 o
The factor of % appearing in the first three equalities arises from product of the factor
of § from the Hausdorff expansion and the § from the definition of Vy (Eq. [105]).

In all of the remaining terms in the energy expression in Eq. [123] the
cluster operators contribute more construction operator pairs than the Hamiltonian
components. For example, the “mixed” term, (ﬁNﬁTQ)C, involves three pairs
from the cluster operators (one from 77 and two from 7) but only two from
the two-electron component of the Hamiltonian. Therefore, none of these terms
can produce fully contracted products, and their reference expectation values are
zero. The absence of these “higher-order” components might also be rationalized in
terms of Slater’s rules: since the Hamiltonian is a two-electron operator, the T, T,
product produces a triply excited determinant on the right which cannot couple
to the reference ®; through the Hamiltonian. However, as we will see in the next

section, this interpretation is inadequate as it fails to explain why certain terms are
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missing from the amplitude equations for higher excitations (e.g., the CCSDT Ty
amplitude equation).

We have now derived all the contributions to the CCSD energy. Summing
Eqs. [126], [132], and [133], we obtain the final expression

1 . 1 .

Ecasp — By = Z fiali + 4 a%(ljabﬂ?f +3 a%(ljab)t?t?- [134]

This equation is not restricted to the CCSD approximation, however. Since

higher-excitation cluster operators such as Ty and T cannot produce fully contracted

terms with the Hamiltonian, their contribution to the coupled cluster energy

expression is zero. Therefore, Eq. [134] also holds for more complicated methods such

as CCSDT, CCSDTQ), etc. Higher-excitation cluster operators can contribute to the

energy indirectly, however, through the equations used to determine the amplitudes,

t¢ and #§?, which are needed in the energy equation above.

The CCSD Amplitude Equations

As discussed earlier, the cluster amplitudes that parameterize the coupled cluster
wavefunction may be determined from the “projective” Schrodinger equation given
in Eq. [51]. In the CCSD approximation, the single excitation amplitudes, ¢, may

3 [

be determined from

0= (D7 |H|Dy), [135]
and the double excitation amplitudes, tf‘;’, from
0= <(I>g]b‘H‘(I>O>7 [136]

where H is given by Eq. [122]. For reasons we describe in detail later in the
section entitled, “Computer Implementation of Coupled Cluster Theory,” Eq. [135] is

commonly referred to as the T amplitude equation and Eq. [136] as the T, amplitude
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equation. Rather than dealing with all 15 terms arising from the insertion of Eq. [122]
into Eqgs. [135] and [136], we will focus on only a few representative examples.

The construction of the coupled cluster amplitude equations is somewhat more
complicated than the energy equation in that the latter requires only reference
expectation values of the second-quantized operators. For the amplitude equations,
we now require matrix elements between the reference, ®;, on the right and specific
excited determinants on the left. We must therefore convert these into reference
expectation value expressions by writing the excited determinants as excitation
operator strings acting on ®,. For example, a doubly excited bra-determinant may
be written as

(@3] = (Po/{aalaya,}. [137]

The final matrix element therefore requires that we obtain all fully contracted Wick’s
theorem terms from the product of the above operator string and the elements of
H.

The leading term of H in Eq. [122] is simply the electronic Hamiltonian itself.
For its contribution to the 7} amplitude equation, we must therefore evaluate matrix

elements of Hy between singly excited determinants and @,

(07 (FN + VN) |®g) = [138]
>~ Fra®ol{ala,}{aba, } o) + i >~ (pallrs)(®ol{ala,}{ajala,a, }| o).

The two-electron component of this equation cannot produce full contractions and
is therefore zero. The one-electron term, however, simplifies to a single Fock matrix

element:

(@F|Fy|®0) = D fya(®ol{ala,}{a}a,}|®0)

[Tt ]
= Z qu{al“ﬁ;aq
pq

= Z fpqdiqOap
pq
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= fai- [139]

For the contribution of Hy to the Tb amplitude equation, on the other hand, we must
evaluate the matrix elements of the normal-ordered Hamiltonian between doubly

excited determinants and @, viz.

(@] (Fyv + Viv) |@0) = [140]
prq ol {alajaya,}{ala,}|®o) +4 >~ (pallrs)(®o|{alala,a,}{alalaa,}|®).

In this case, it is the one-electron component that cannot produce full contractions,

whereas the two-electron component contributes only a single integral:

(@3 |[Viv|@o) = —quurs (@o| {alala,a,}{a}ala,a, }| @)
4 pgrs
1 =11 | sl
— j;§£:<qurS> ({a}a;ab&;&ga;asa,} +—{ alal Ty, a;a;asa,}4—
pars

Tt ]

{alal alayagatalaga,} + {alal alaya,alalaga, )

1
Z Z<pq‘ ‘TS> (6pa6qb6ri55j - 5pb6qa5riésj - 6pa6qb6rj55i + 5pb6qa5rj65i)
pqrs

= (ab]|ij)- 141]

The second term of Eq. [122], which is linear in Ty, provides a more interesting
example than Hy alone. Its contribution to the T} amplitude equation involves the
matrix elements

@ ([Fv + V] T1) 90) = S5 futt(@ol{ala,} ({aba,} {ala,}) 1@0) +
Pg b
i Z > (pal|rs)t3(@o|{ala,} ({afafa,a, Hafa;}) |®0),
4 pars b
[142]
where the subscript ¢ reminds us that we must retain at least one contraction between

the Hamiltonian fragment and the cluster operator on its right. For the two-electron
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term, Wick’s theorem gives

(@f] (W) 190) = Z > (pal|rs)t}(®o|{afa,} ({afafa,a, Haja,}) |o)

4 pors jb
S (TR e

ala blala b dia;} + {ala, alala,d,a) a]}+

{lﬁﬁ L It }>

pqrs b

tald
ajag atalaga,dja;} + {azaaap hag aba

= = Z Z pQHTS 6pa6q16rb551 + 6p]5qa6rb551 + 6pa6q]5m(55b 6pj5qa6ri55b)

4 pars 3
= (ja||bi) t;’-. [143]
jb

The contribution of (HNTI) to the Tg equation involves the matrix elements

(@] ([Fx + V] l)cl% S futi(@ol{alala,a,} ({aha, Halay}) 1@0) +

Pq ke

T Z >~ (palrs)ti(@ol{alala,a,} ({ajafa,a, }{ala,}) |o).

pqrs kc

144]

In this case, the two-electron term simplifies to four contributions after some rather

complicated manipulation:

a Sals 2 1 .
<(I)l-;’ (VNT1)C Dy) = 1 Z Z (pq||rs)ti(Po {a aja,a, }({a; :;asar}{aiak})c ®y)
Pars ke
1 [
=12 2 (pallrs)t; ({aTmsaralakH
pars ke
= . . e

{ngg;;;;;i;ilsaralik}-+-{a}£}&baaa;& a,a,a Jk}'+'{a | Ay, 0 alésaralik}-+

T L

bbbt atd,y + (L IR at) + (LT gl et +
— e

{Lja;abaaa};a;(fﬁ p+ {aTa 4,0, a;‘,agas ala ) + {al T aba a;,a:gas ala,} +

{alatd,a data,aala,} + {atatabﬂTaTa 4l w )+ {aJr ! A1) ‘

apqsrc

{‘aTataba alala,a.ala,} + {ala c|Lba clﬁclzga a,ata,} + {a ‘ Taljl
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(OpadqbOredsiOik — OpbOgadredsidik — OpadabOrcdsidjn + OphdgadredsiOjn—
0pa0gbOrjOscOik + OppOgadrjOscOik + OpaOghOriOscdjr — OppOgadriOscdjn —
0pa0gk0riOsjObe + OppOgk0ridsjOac — OppOqk0rjOsiOac + OpalgkOrjOsiOpe +
Op0qadriOsjObe — OprOgbOridsjOac — OpkOqadrjOsiObe + Opkdghdrjdsidac)
= Z ((ablicj)ts — (abllei)is) + Xk: (Ggllbk)eE: = (ij]ak)tr) - [145]
As our third example, we consider the contribution of the one-electron component

of the fourth term of Eq. [122] to the T, amplitude equation. The matrix element

of interest in this case is

S0 (BNT?) 100 = 5 3 5 fathid@ol{aa, ) ({afo,}{ao, Hola,})_|20).
Pq jb ke 146]
When applied to the operator strings in this expression, Wick’s theorem gives only
two nonzero contractions, in spite of the relatively large number of construction

operators:

(@ol{ala,} ({aja,Haja;Hala,}) |®o)

= {aZ (g0 qabajacak}+{a1aaa;aqa};ajalak}

= —6,0g80100c — Op;OgcOitOab. [147]

When the Kronecker delta strings are inserted back into the matrix element

expression, we obtain
1 a nile s c
5 (@ (EnT?) |®) = Z FretSte. [148]

Additional contractions such as

T

and {ala, a, qaba]acak} [149]

are not included even though they are nonzero because, as our earlier analysis of the

commutators of the Hausdorff expansion indicated, the Hamiltonian fragment must
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be connected at least once to every cluster operator on the right. Similar analyses
apply to other contributions such as (VNTS)C, (VNT1T2)C, etc.

This last point also has interesting consequences for the higher excitation
amplitude equations such as that for Ts. For example, one term that arises in
the general Hausdorff expansion is é (VNTP)C This term does not contribute to the
Ty amplitude equation

1 A A
(@3] (VTT) |@o). [150]

From a configuration interaction perspective, such a matrix element of the
Hamiltonian between the quintuply excited determinant generated by the operator
Tf‘ on the right and the triply excited determinant on the left is nonzero according
to Slater’s rules. However, because the two-electron fragment of the Hamiltonian
cannot connect to more than four cluster operators on its right, such a matrix element
cannot contribute to the amplitude equation by the connected cluster properties of
the Hausdorff expansion. Similarly, the (FNTQ)C contribution to Ty is also zero
because any connection between Fy and T, does not leave enough construction
operator pairs to completely connect to the triply excited determinant on the left.

The final example of this section is the contribution of the % (VNTETQ)C term of
Eq. [122] to the Ty amplitude equation. The matrix elements of interest in this case
involve only the two-electron component of ]f[N, because the one-electron component
cannot connect to more than two cluster operators:

1 NP 1
S@PN(WIPT) 1®0) = 225557 3 (pallrsititits], < 151]

pars kc ld mnef
(®ol{alaja,a,H{afaba,a,}{ala,}aha,}ala}a,a,,} @),

The factor of 3% appearing here arises as the product of the factor of % from the
Hausdorff expansion and the two factors of ; from the definitions of Vv (Eq. [105])
and Ty (Eq.[130]). To derive from this matrix element an expression involving only

two-electron integrals and cluster amplitudes, we must apply Wick’s theorem to the
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string of 16 annihilation and creation operators above. Although this might be a

useful exercise for those readers who wish to test their own stamina and patience,

we will avoid it here. We note, however, that this task is tedious at best and

recognize that Wick’s theorem has not eliminated all of the opportunities for error

when dealing with complicated second-quantized equations.

Once all of the contributions of Eq. [122] to Egs. [135] and [136] have been

determined in the manner described above, they are then summed to give the

amplitude equations. For Tl, the resulting equation is

0

\4€ ac 1 ¢
i b 3 fucti = fucth + L lhalleid + 3 fuetsp + 5 3 (halledt -
¢ k ke kc

ked

1 N ca cpa N Cya C
3 SR eiytyy = fretity = > (Kl|ei)tit! + > (kal|ed)tit! — [152]
ke

klc klc ked

C a C a 1 C a 1 ca
Z<kl||0d>tkt§dtl + Z<leCd>tktldi D) Z(leCdﬁk?tz D) Z(leCdﬁkztga
kled kled Eled Eled

while for Ty, the resulting equation is

0

abllig) + 3= (Foetls — fact) — ; (fustss — fuatsh) + [153]

1 oy 1 . N .
> SOCRII i) + 5 S dabledyted + P(if) Plab) S (kb +
kl cd ke

P(ij) Y (ab||cj)ts — P(ab) > (kb||ij)t; +

c k
1 1
S P (i) P(ab) > (kllled)tsgty + > (ki )ity —
2 klcd 4 ied

1 ac ! abe
P(ab)§ > (kl|ed)tist — P(Z])§ > (Kl ed)titst +

klcd klcd

1 .\ ya a1 ¢ .. . ayzc
P(ab)§ Z(kl||2])tktlb + P(zy)§ Z(ab||cd)tit;l — P(ij)P(ab) Z(kazc)tktj +
kl cd ke

P(ab) 3 fuettt? + P(if) 3 fret(teh —
ke ke

P(ig) S (kl||ciytgt!? + P(ab) > (kal|ed)tgtd +
kle ked
P(ij)P(ab) Y _(ak||dc)tith + P(ij)P(ab) > (kl||ic)ttl +
ked kle

. 1 N cipa 1 aC
P(ij)5 S () istss — Plab) 5 Y (kb jed)tgesd —

klc ked
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. 1 cra . 1 N s
P(zy)P(ab)§ Z(kb\ \cd>titkt§l + P(Z])P(ab)§ Z(kl||0]>titkt? —

ked kle
P(ig) Y (kl|jcd)titity — P(ab) >~ (kl||cd)tititdd +
kled kled
NN ]' C a ]' a Ci
P(ij) I%(ku cd) 55t + Plab) 5 %(kl\ cd)tytytsd +

1
P(ij)P(ab) Y (kl||cd)t5t)ted + P(ij) P(ab)~ > (kl||cd)titgtdt).
kled kled

The notation P(pq) indicates a permutation operator whose action on a given

function is defined by

P(pq)f(p.q) = f(p,q) — f(q,p). [154]

For example, from the T equation above, one of the terms becomes

P(ij) Y fuetitsh = > (fuetitsh — fuctitsy) . [155]
ke

ke

Relative to direct application of the anticommutation relations for annihilation
and creation operators, Wick’s theorem helps to dramatically reduce the tedium
involved in deriving the rather complicated amplitude equations above. However,
as illustrated by Eq. [151], Wick’s theorem still does not go far enough. Even if
the cluster operator is truncated to include only double excitations, the resulting
algebra provides many opportunities for error. When even higher excitations are
desired the number of algebraic manipulations required by Wick’s theorem becomes
rapidly insurmountable. A number of computer algorithms for the derivation of
coupled-cluster-related equations have been described in the literature,3335 118 byt
these have thus far been difficult to apply in a general fashion. Diagrammatic
techniques offer a more practical approach to the construction of complicated coupled
cluster equations. They provide a simple bookkeeping system for the numerous
terms generated by Wick’s theorem (most of which are redundant) and allow us

to identify in advance which terms will not contribute to the wavefunction and/or

the energy. In the next section we will outline one diagrammatic approach which
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is particularly convenient for deriving a variety of coupled-cluster-like equations,

including ground-state energies, energy derivatives, and EOM-CC equations.

An Introduction to Coupled Cluster Diagrams

In this section, we present a simple diagrammatic formalism popularized by
Kucharski and Bartlett?® by which one may construct the coupled cluster energy and
amplitude equations far more quickly than by direct application of Wick’s theorem.”
We begin by describing some of the general features of the diagrams, including their
relationship to the particle-hole formalism and how they may be used to represent
normal-ordered dynamical operators. Next we describe how the operator diagrams
may be connected together to form operator products in a manner analogous to
Wick’s theorem. We then construct the diagrammatic form of the CCSD energy and
amplitude equations, and, as each new diagram is presented, we provide rules for
its algebraic interpretation. The diagrams described here may be used to represent
either wavefunctions, operators, or matrix elements, depending on the context of the
mathematical analysis. However, the set of rules we will present for interpreting the
diagrams algebraically will apply only to the matrix element representation, since
that is the most appropriate context for the coupled cluster energy and amplitude

equations.®

"Many varieties of diagrams have used throughout the chemical physics literature for
many years (e.g., see Refs. 1, 2, 117, 119, and 80). The diagrammatic formalism we have
chosen here has been frequently used in work by the Bartlett group among others'?
and is particularly straightforward for “conventional” coupled cluster and many-body

perturbation theories.
°The algebraic rules for interpreting the diagrams as operators or wavefunctions differ

only slightly from the matrix element approach discussed here. We recommend Refs. 80

and 88 for additional information.
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We make use of the particle-hole formalism in diagrammatic analyses by drawing
upward and downward directed lines that identify those orbitals which differ from
those in the reference determinant, ®y, as shown in Figure 1. Downward directed
lines represent hole states (orbitals occupied in the reference) and upward directed
lines represent particle states (orbitals unoccupied in the reference). Hence, one
may interpret the fourth diagram of the figure as a single-determinant wavefunction
that differs from the reference by a single excitation from orbital ¢; to orbital
¢o. Furthermore, this convention implies that the reference wavefunction itself is

represented by empty space as indicated in Figure 1(c).

(2) (b) (c) (d)

Figure 1: Some basic components of coupled cluster diagrams: (a) hole lines; (b)
particle lines; (¢) the reference wavefunction, ®g, represented by empty space; (d)
a single-determinant wavefunction, ®{, which differs from the reference by a single
excitation.

Diagrams representing dynamical operators (such as the one- and two-electron
components of the normal-ordered Hamiltonian, ﬁN) are depicted by horizontal
“interaction lines” with vertical directed lines like those in Figure 1 representing the
annihilation and creation operator strings. We will choose different interaction lines
to represent different types of operators (e.g., a dashed line to indicate components
of the electronic Hamiltonian, a solid line for cluster operators, Tl, TQ, etc.). The
directed lines emanate from “vertices” on the interaction line; each vertex represents
the action of the operator on individual electrons. Thus, one-electron diagrams

have one vertex, two-electron diagrams have two vertices, etc. Each vertex has
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two directed lines attached to it, one incoming and one outgoing, associated with
the annihilation and creation operators of the operator’s normal-ordered string.
Since one-electron operators contain two second-quantized components (see, for
example, Eq. [53]), their diagrammatic representations contain two directed lines.
Similarly, diagrams representing two-electron operators contain four directed lines,
three-electron operators contain six directed lines, etc. The upward and downward
directions of these lines are dependent on the orbital subspaces in which the
second-quantized operators act: g-creation operatorsP lie above the interaction line,
whereas g-annihilation lines lie below the interaction line.

For example, we denote the one-electron component of the Hamiltonian, FN, by
a dashed interaction line capped by an “X”. This operator may be written in four
fragments as shown in Figure 2. The first fragment, which involves only operators
in the particle (unoccupied) space, has one g-creation line above the interaction line
corresponding to the al component of its operator string, and one g-annihilation
line below the interaction line corresponding to the a, component. Similarly, the
second fragment in the figure, which involves only operators in the hole (occupied)
space, has one g-creation line above the interaction line corresponding to the a;

component of the operator string, and one g-annihilation line below the interaction

t

line corresponding to the a; component. The third Fy fragment contains only
g-annihilation lines below the interaction line since the operator string consists only
of a;-r and a, components. Finally, the fourth fragment contains only g-creation lines
above the interaction line representing the al and a; components of the operator
string.

The two-electron fragment of the Hamiltonian may be partitioned in a similar

manner as shown in Figure 3, with a dashed horizontal interaction line and with

PSee the earlier discussion beginning on p. 41 of the particle-hole formalism for an

explanation of g-creation and g-annihilation operators.
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Py = 2 faldla,} 4 Zfij{a;raj + Y falala,} 4 Y fulala}
ab 1] ia ia

X
= Xy Xy /\ + \/
X

Figure 2: Diagrammatic representation of each fragment of the one-particle
component of the Hamiltonian operator, Fiy. The excitation level of each diagram
is indicated beneath it. The interaction line is indicated by the dashed horizontal
line capped by the “X”.

implicit antisymmetry with respect to permutation of the lines leaving or entering
the left and right vertices. For example, in the third diagram, corresponding to a
sum over the operator components, (ia| |bj){ajalajab}, the diagram as shown may be

written in four equivalent ways (differing only by a sign), each formed by permuting

either the two outgoing lines or the two incoming lines from the left and right vertices:

— —

In addition, diagrammatic representations of the cluster operators, T, are shown in
Figure 4, with solid horizontal interaction lines. Since the cluster operators contain

only g-creation strings (and thereby generate excited determinants from the reference
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Vy= iZ(abHcd){alaZadac} + %Z@J'Hkl){al‘a}azak} + Z(iaHbj){ajalajab}

abed ijkl iabj

+ S (ailbe){atala.a,} + 1Y Gjllka){alala,a,} & £ (abllci){alafa;a,}

aibe ijka abci

+ 3> (ialljk) {alafaga} ¢ §> (abllij){afaja;a;} 4§D (ijllab){alajaya,}

iajk abij ijab

+1 +2 -2

Figure 3: Diagrammatic representation of each fragment of the two-particle
component of the Hamiltonian operator, Vy. The excitation level of each diagram
is indicated beneath it. The interaction line is indicated by the dashed horizontal
line.
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T = > ti{ala; = +1
ia
Ty = Zt {aTaba - +92
zgab
T3 = Z tg]blg{ajzazalakajai} = +3
zykabc

Figure 4: Diagrammatic representation of the Tl, TQ, and T} excitation operators.
The excitation level of each diagram is indicated to its right. The interaction line is
indicated by a solid horizontal bar.

wavefunction), they contain no lines below the horizontal bar. Furthermore, these
representations are also fully antisymmetric in that exchange of any pair of outgoing
or incoming lines introduces a change in the sign of the diagram. We will discuss this
point in greater detail later when we introduce rules for interpreting the diagrams
algebraically.

Other than the operator representation above, we will interpret the diagrams
in this chapter from bottom to top as matrix elements of operators (or operator
products) between determinants. For the coupled cluster energy and amplitude
equations shown in Eqgs. [50] and [51], the pertinent matrix elements always contain
the reference determinant, ®y, on the right and either ®, or excited determinants
such as @f‘;’ on the left. Diagrams are particularly convenient for constructing such
matrix elements since they provide a straightforward method for evaluating the

types of determinants to which individual operator fragments in Figures 2-4 may
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be applied or what determinants they produce. As an example, consider the fourth
Fy fragment in Figure 2, which contains no lines below and two lines above the
horizontal operator line. Since the reference wavefunction, ®q, is represented by
empty space, and a singly excited determinant, ®¢, by a pair of directed lines such
as those in Figure 1(d), we may interpret the diagram from bottom to top to obtain
the matrix element

(B Fy|®p) = i [a . [156]

---X
A similar analysis may be applied to the two-electron operator in the third diagram
in Figure 3, which contains particle-hole pairs of lines both above and below
the interaction line. Each of these pairs may be interpreted as singly excited

determinants to obtain the general matrix element

(@ Vnl®l) = f : [157]

The cluster operator diagrams are particularly simple to interpret as matrix
elements; the diagrams always involve the reference determinant on the right
(because they contain no lines below the interaction line) and an excited determinant

on the left, e.g.,
(37| T5|®0) = i\ fa ji /b, [158]

0 which indicates the

We also make use of a simple bookkeeping system?
“excitation level” a particular operator fragment produces. This value is determined
by subtracting the number of g-annihilation lines from the number of g-creation

lines and dividing the result by two. For example, the first and second one-electron

Hamiltonian fragments shown in Figure 2 are assigned an excitation level of 0, since
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both the wavefunction to which they are applied (at the bottom of the diagram)
and the wavefunction they produce (at the top of the diagram) differ from the
reference by a single orbital; no net excitation is produced. The fourth one-electron
fragment, however, has an excitation level of +1 since it effectively produces a single
excitation from the reference wavefunction. Two-electron Hamiltonian fragments
have excitation levels ranging from +2 to —2, as indicated in Figure 3, and the T

operators have the obvious excitation levels indicated in Figure 4.

Diagrammatic Representation of the CCSD Energy Equation

As discussed in detail earlier, products of normal-ordered operators can be simplified
algebraically using Wick’s theorem by evaluating pairs of contractions between
the component annihilation and creation operators. Many of these contractions
produce mathematically redundant terms which can be combined after complicated
manipulation to eventually produce a much simpler expression. Diagrams provide a
straightforward scheme by which these redundancies may be eliminated.

As an example, consider the CCSD energy equation which we derived earlier in

Eq. [134] using Wick’s theorem. Each term of the general expression
. PN PN 1. -
ECCSD — Eg — <q)[]|HN + <HNT1 + HNT2 + §HNT12 + . > |q)g> [159]

is a matrix element of a component of e_T]f[NeT involving the reference determinant,
®, on both the right and left. Since ® is depicted diagrammatically by empty space,
the diagrams associated with the energy equation must contain no directed lines
that extend above or below the first (lowest) or last (highest) operator interaction
lines; that is, the energy diagrams can contain no “external” lines. Clearly none of
the diagrams representing fragments of Hy shown in Figures 2 and 3 satisfy this

criterion, and they therefore do not contribute to the CCSD energy. This is the
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expected result because all of these diagrams represent normal-ordered operators
whose reference expectation value is zero, by construction.

Next we consider the term from Eq. [159] which is linear in T}
Ecasp < (Do (1{11\11%1)C Do), [160]

which we examined earlier to obtain Eq. [126]. (The left arrow indicates that
this is only one of several terms which contribute to the energy on the left-hand
side.) The rightmost operator in this matrix element is 7}, so its interaction line
must lie at the bottom of the final diagram. Making use of the excitation levels
associated with the operator diagrams described above, we note that the T, diagram
produces an excitation level of +1 from the reference determinant. Since the matrix
element of interest must contain ®, on the left, the total excitation level of the final
diagram must be 0. Therefore, we require those Hamiltonian diagrams which have
an excitation level of —1 and which contain the reference determinant at the top of
the diagram. Of the Fy and Vy diagrams given above, only the third diagram of

Figure 2 meets these criteria. We may then connect the T, diagram with this Ey

---X
(@o| (EnT) |®o) = Q . [161]

Note that both lines from the T} diagram must connect to each line from the

fragment to obtain

Ey fragment in order to avoid external lines. The diagram may be interpreted

algebraically using the following rules:

e Label all directed lines with appropriate indices. By the convention we have

used so far, hole lines would be labeled with ¢, j, k, [, ... and particle lines with
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a,b,c,d,.... Therefore, for the diagram above we label the hole line with ¢ and
---X
the particle line with a to obtain | a

Each operator interaction line contributes an integral or amplitude to the
matrix element expression. Fock matrix elements are constructed from the
diagram by the rule (out|f|in), where out indicates the index of the outgoing
directed line and in indicates the index of the incoming directed line at the
interaction line’s vertex. T operators contribute amplitudes to the expression,
constructed using the hole and particle indices in their left to right order in
the diagram. In this case, the Fock matrix element is f;, and the amplitude is

te.

7

Summations are included over all “internal” indices — that is, all indices
associated with lines that begin and end at operator interaction lines and
do not extend to infinity above or below the diagram like the external lines
described above. Thus, the present diagram requires a summation over indices

7 and a.

h+l where h is

The sign of the diagram is determined based on the formula (—1)
the number of hole lines in the diagram and [ is the number of “loops.” A loop
is a route along a series of directed lines that either returns to its beginning

or begins at one external line and ends at another. In this case, we have only

one hole line (i) and one loop, so the sign on the diagram is positive.
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According to these rules, the final algebraic interpretation of the above diagram is

X
O = fulf, [162]

which is identical to Eq. [126] obtained earlier using Wick’s theorem.

therefore

Now consider the next term of Eq. [159] which is linear in Ty,
Eccosp < (Do (1{11\11%2)C Do), [163]

which we examined earlier in Eq. [132]. Again the cluster operator must lie at
the bottom of the final diagram because it is the rightmost operator in the matrix
element. Since T, produces an excitation level of +2 (see Figure 4), we require
those Hamiltonian diagrams that have an excitation level of —2 (in order to obtain
a total excitation level of 0) and which contain the reference wavefunction above

the Hamiltonian interaction line. The only Hy diagram which meets these criteria

is the last diagram of Figure 3, /\ /\ , which contains four g-annihilation

lines. Connecting this diagram with that of 7, such that there are no external lines
gives

A~ ~

(@o| (VWTh)_[®o) = [164]

hole and particle lines as before, to obtain i b, By the rules described

above, there are four internal lines and thus four summation indices. In addition,
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there are two loops in this diagram (one involving the i and a lines and the other
involving the j and b lines) and two hole lines, giving an overall + sign. For the
remainder of the algebraic expression, we require two rules in addition to those

described above:

e The Vy fragment contributes the two-electron integral, (ij||ab), which is
constructed by the rule (left — out,right — out||left — in,right — in),
where left-out and right-out indicate the left and right outgoing lines from
the Vy diagram vertex, respectively, and left-in and right-in indicate the
left and right incoming lines, respectively. The contribution of the Ty operator
to the expression is obtained by taking the hole and particle indices from the
Ty vertex in their left-to-right ordering in the diagram. For this diagram, Vi

contributes the integral (ij||ab) and T contributes the amplitude e,

e This diagram contains two pairs of “equivalent” lines — that is, lines beginning
at the same operator interaction line and ending at the same interaction line.

For each such pair, a prefactor of % is multiplied onto the algebraic expression.4

The final algebraic interpretation of this diagram is therefore

= 1 btz 165

ijab

We could have used a somewhat different connectivity for the Vy and Th diagram

fragments than the one shown above. For example, we could also have chosen instead

41t is possible for groups of three or more lines to be identified as equivalent, though
this can happen only in many-body perturbation theory, expectation-value coupled cluster
theory, or unitary coupled cluster theory. For such diagrams, a prefactor of %, where n is

the number of electron lines, must be included.
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to build this diagram as

(@o| (VWT) [ ®0) = [166]

However, recall that the Vy and T operator diagrams from Figures 3 and 4 are
antisymmetric with respect to permutation of either the pair of outgoing lines or the

pair of incoming lines at the two vertices. Hence, we have the relations,

ARARSARAES ARAR AR ATC

Therefore, the two energy diagrams are equivalent since the two hole lines and

the two particle lines from the T diagram both connect to the same Vy diagram

fragment:

[168]

The equivalence of the two diagrams can also be seen through their algebraic
interpretations, which we obtain by applying the same rules given above to the the

new diagram from Eq. [166]. Again, we label the hole and particle lines using the

indices 7, 7, a, and b, to obtain J . In this case, the algebraic analysis

is identical to that given for the diagram of Eq. [164] above, with two exceptions:
(1) the two-electron integral contributed by the Vy fragment is (ij||ba) rather than
(ij]|ab) because its two incoming particle lines have been reversed; (2) although

there are still two hole lines, there is now only one loop, which involves all four
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directed lines, giving rise to a negative sign for the diagram. Hence, the algebraic

interpretation of the diagram is

[169]

1 N . 1 .. a
= =7 L ullba)ty =+ 3 ijllab)tiy =

ijab ijab
where we have used the antisymmetry of the Dirac notation two-electron integrals
to make the equivalence of the two diagrams clearer.

Next consider the component of Eq. [159] which is quadratic in Ty,
1 iy 2
FEccsp < §<q)o| (HNTl)C D). [170]

Since the two cluster operators act on the reference determinant to produce a total
excitation level of 42, we require the same Hamiltonian —2 diagram fragment used
in Eq. [164]. Also, because the cluster operators act before the Hamiltonian operator
in the matrix element, they are placed at the bottom of the diagram. Furthermore,
because the the T} operators commute, their vertical ordering in the diagram is not

important. The complete diagram is formed by connecting the Vy vertex to both of

£ (@0 V77 o) = O Q | 171]

For this diagram, the algebraic analysis is quite similar to that used to obtain

the 7} diagrams to give

Eq. [165] above. There are two hole lines, and two particle lines, all of which
are summation indices. Since there are two loops, the total sign on the diagram
is positive. The two-electron integral provided by the Vi fragment is again (ij||ab),
but there are now two 7} amplitude fragments, one contributing ¢? and the other t’J’-.
Note also that the two pairs of hole lines and particle lines are no longer equivalent as

they were in Eq. [165]. We require only one additional rule to evaluate this diagram:

e Unlike the diagram in Eq. [165], this diagram contains a pair of “equivalent”

vertices; since both 77 fragments are connected to the same Vy interaction
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line in exactly the same manner (each by a hole line and a particle line), a
prefactor of % is multiplied into the final expression. Generally speaking, if
there are n equivalent vertices in the diagram, they contribute a prefactor of

L to the final expression.
n.

Thus, the final algebraic expression for this diagram is

Q <> :%Zb@jab)tgt;. 172]

The diagrammatic analysis also makes it clearer that no higher-order
contributions to the Hausdorff expansion in Eq. [159] can contribute to the coupled
cluster energy. All remaining terms contain cluster operator products which produce
excitation levels higher than +2. However, there are no Hamiltonian operator
diagrams which can decrease this excitation level by more than —2. Therefore,
there can be no higher-order contributions to the coupled cluster energy equation,
which must have a total excitation level of 0.

Summing diagrammatic Eqs. [162], [165], and [172], we obtain the final energy

2 2 N\

R TP B,
= Y ful] + 2 > (ijllab)tsy + 5 > (ijl|ab)tits, [173]

ia ijab ijab

equation

which is identical to that derived earlier using Wick’s theorem.

Diagrammatic Representation of the CCSD Amplitude Equations

The same diagrammatic concepts used to derive the CCSD energy equation above
may also be applied to the CCSD Ty and Ty amplitude equations, with a few

additional rules. Here we consider the contribution of each term of H given in
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Eq. [122] to the amplitude equations in the same order as we did using Wick’s
theorem before. The resulting matrix elements always contain the reference
determinant, @, on the right and an excited determinant on the left (e.g., ®¢ for the
T equation and @%’ for the Ty equation). The corresponding diagrams always have
the same general structure: no g-annihilation lines below the diagram and a certain
number of g-creation lines extending above. For example, diagrams contributing to
the T} amplitude equation contain exactly two g-creation lines above (and therefore a
total excitation level of +1) and diagrams contributing to the Ty amplitude equation
contain four g-creation lines above (and a total excitation level of +2).

The leading term of H is just the electronic Hamiltonian itself. For its
contribution to the T} amplitude equation, we must evaluate the matrix elements,
(Y] (FN + VN) |®y), as before.  Since these elements contain the reference
determinant on the right and a singly excited determinant on the left, we require
those +1 Hamiltonian diagrams that contain no lines below the interaction line
and a single pair of lines above it. The only diagram from Figures 2 and 3 that
meets this criterion is the fourth fragment of the one-electron operator, Fy. Hence,
there is no contribution from Vy in this case, and the matrix element is represented
diagrammatically as

(BF|Fy|®o) = : [174]

---X
The algebraic interpretation of this diagram is straightforward: (1) we label the
two lines using indices ¢ and a to maintain consistency with the singly excited
determinant, ®¢, used in the matrix element itself; (2) there are no internal lines and
therefore no summation indices; (3) the Fy fragment contributes the Fock matrix
element, f,;; (4) there is only one loop (which starts at one external line and ends

at another) and one hole line, giving a positive sign. Thus, the final expression is
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simply
i fa = fa, [175]
---X

which we derived earlier in Eq. [139] using Wick’s theorem.
For the contribution of Hy to the T amplitude equation, we must evaluate
the matrix element, (@ (FN + VN) |®g), which contains the reference determinant
on the right and a doubly excited determinant on the left. Therefore, we require

those Hy diagrams that produce a +2 excitation, and which have no g-annihilation

lines. Only the eighth diagram of Figure 3, \/ \/ , meets this criterion. Its

algebraic interpretation is carried out as follows: (1) we label the lines (in order)
as i, a, j, and b, for consistency with the doubly excited determinant in the matrix
element; (2) there are no internal lines and therefore no summation indices; (3) the
two-electron integral contributed by the Vy interaction line is (ab||ij); (4) there are

two hole lines and two loops, giving a positive sign. Therefore, this matrix element

(®57|Viy|®o) = i\/a j\/b = (abllij), [176]

which is the same as that derived earlier in Eq. [141].

may be written as

The contribution of the second term of Eq. [122] to the T amplitude equation
is only slightly more complicated. This term involves the matrix element,
(D] ([FN + VN] Tl)c |®o), and, as before, we will consider only the contribution
of Viy. The T} operator, which acts first and is therefore placed at the bottom of the
diagram, produces a +1 excitation from the reference on the right. Since the singly

excited determinant on the left-hand side of the matrix element indicates an overall
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+1 excitation level, we require the three diagram fragments of Vy which have an

eeeeeeeeeeeeeeeeeeeeee \/
A

However, the first two of these fragments can connect to the T diagram in only one

overall excitation level of 0:

index — via either a single hole line or particle line — thus leaving an additional

line extending below the T interaction line in the final diagram, e.g.,
A (W) [0). 177

Because such diagrams cannot represent matrix elements that have the reference
wavefunction on the right, only the third diagram above can contribute to the T,

amplitude equation. Connecting this Vi fragment to the T, diagram gives
(7] (VNfl)c | Do) = \/ : [178]

The algebraic interpretation of this diagram proceeds exactly as before: (1) we label
the external lines using ¢ and a for consistency with the singly excited determinant
in the matrix element, and the internal lines are labeled with the summation indices

J and b; (2) the appropriate two-electron integral contributed by the Vi component
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is (ja||bi) and the T; amplitude is tb; (3) there are two loops and two hole lines

giving the diagram a positive sign. The final expression for this diagram is therefore

= zbj<ja||bz'>t§, [179]

which is identical to the result in Eq. [143].

The contribution of (VNTl)c to the TQ amplitude equation involves the matrix
element (®¢? (VNﬂ)c |®g). In this case, we require an overall excitation level of +2
as dictated by the doubly excited determinant on the left. Since the T, operator
produces a +1 excitation from ®,, we require diagrams six and seven of Vy in Figure

3 which produce a +1 excitation:

These may be connected to the T; amplitude diagram from below to give two terms

(2 (VNTl)C\be): \/\/ + \/ . [180]

These two diagrams may be interpreted using the rules described above: (1) we

assign indices i, j, a, and b (from left to right) to the external lines for consistency
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with the doubly excited determinant in the matrix element; (2) there is only one
internal (summation) line in each diagram to which we assign the indices ¢ in the left
diagram and k in the right diagram; (3) in the left diagram, there are two loops and
two hole lines giving a positive sign, and in the right diagram there are two loops
and three hole lines giving a negative sign; (4) the two-electron integral in the left
diagram is (ab||cj) and in the right diagram is (kb||ij): (5) the T} amplitude in the
left diagram is ¢{ and in the right diagram is ¢{; (6) there are neither equivalent lines
nor equivalent vertices so no additional factors of % appear in the final expression.
Before the algebraic interpretation is complete, however, we require one additional

rule:

e Each pair of unique, external hole or particle lines introduces a permutation
function, P(pq) (as defined earlier in Eq. [154]), to ensure antisymmetry of the

final expression.

Note again that the four external g-creation lines of the T, amplitude diagrams
correspond to the wavefunction lines of a doubly excited determinant; in the above
diagrams, the 7, 7, a, and b external lines correspond to the excitation orbitals
of the determinant, @?}’. Since this determinant is antisymmetric with respect to
permutation of either the 7 and j indices or the ¢ and b indices, this antisymmetry
must be maintained in the final algebraic expression. Pairs of external lines which
originate from the same operator interaction line (such as the two particle lines
in the leftmost diagram of Eq. [180]) are not unique and the expression is already
antisymmetric with respect to permutation of such pairs. Pairs of external lines
that do not originate on the same operator interaction line (such as the hole lines
of the leftmost diagram) are unique, and a permutation operator must be included
in the algebraic interpretation to ensure proper antisymmetry. For example, in the

left-hand diagram above, there are two external particle lines and two external hole
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lines. The diagram is already antisymmetric to permutation of the two particle lines
because they both connect to the Vy diagram fragment. The hole lines, on the other
hand, connect to different vertices — one to T; and the other to Vy. Therefore, the
diagram is not antisymmetric to permutation of these lines, and we must include

the operator P(ij) in the algebraic expression corresponding to this diagram:

\/\/ P(ij) (abHcy)tc [181]

Similarly, the external particle lines in the rightmost diagram must be permuted in

its algebraic expression:

When the permutation operators are expanded, these expressions are identical to
those given in Eq. [145] derived earlier using Wick’s theorem and some complicated
algebra.

The next example is the contribution of (FNTf)C to the T} amplitude equation,
which requires the matrix element (®¢| (FNTIZ)C |®g). To obtain an overall excitation

level of +1, as dictated by the singly excited determinant on the left and the reference

X
on the right, we must use the —1 diagram fragment of E, /\ , since the two

T operators produce an excitation level of +2. There are three ways to connect this

Fy diagram fragment to the cluster operator diagrams to produce a matrix element
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with the appropriate determinants above and below the diagrams:

VI W oy

The first and third diagrams above are equivalent and correspond to the contractions
indicated in Eq. [149]. These violate the “connected cluster” form of e T Hyel =
(ﬁNeT)C discussed earlier, which requires that the Hamiltonian fragment must share
at least one index with every cluster operator on its right. The second diagram
is therefore the only acceptable contribution from this matrix element to the Ty
amplitude equation. Its algebraic interpretation proceeds as usual: (1) the external
lines are labeled 7 and a to match the singly excited determinant, ®¢, in the matrix
element; (2) the internal (summation) lines are labeled by the dummy indices & and
¢; (3) the Fock operator contributes the element f., and the T operators contribute
the amplitudes ¢ and t¢; (4) there are two hole lines and only one loop, giving an
overall negative sign to the diagram; (5) there are no equivalent internal lines, nor
are the two T} fragments equivalent since they do not connect to the Fy diagram
fragment in the same way (one connects via a hole line and the other via a particle

line). The final expression is therefore
1 al| (10 72 cia
S (P01 (EnTE), | 0) = == fuctits, [183]
ke

which is the same as the result given in Eq. [148].

As a final example, consider the contribution of the % (VNTETQ)C operator to the
T equation. As discussed earlier, the corresponding matrix element, which involves
a doubly excited determinant on the left and the reference determinant on the right,

requires considerable effort if analyzed using Wick’s theorem. Diagrammatically,
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however, this analysis is much simpler. The only difficulty arises in the construction
of only uniquely connected diagrams. For example, one might construct the two

seemingly different diagrams:

and

Careful inspection, however, reveals that the diagrams are equivalent because one
can be produced from the other by permutation of the hole or particle lines on the
Ty fragment. (This equivalence can also be proven algebraically, and the reader is
encouraged to carry this analysis out independently.)

One can ensure that only unique diagrams are produced by using a
straightforward procedure developed by Kucharski and Bartlett.? In this approach,
one first assigns + symbols to particle lines and — symbols to hole lines lying below
the interaction line of the Hamiltonian fragment or above the interaction line for
the cluster operators. Unique connectivities of the operator diagrams are produced
by combining these signs in all unique ways. In the present example, the two Ty
operators each contribute one + sign and one — sign, the T, operator contributes two
+ signs and two — signs, and the —2 excitation level fragment of Vy contributes two
+ signs and two — signs. Since in this case every directed line from the Hamiltonian
fragment must connect to lines from the cluster operators, we must match the +
and — signs from Vi to the same signs on the cluster operators. For example, we
might choose one + and one — from the Ty operator, leaving one + for one of the Ty
fragments and one — for the remaining T;. We will denote this “sign sequence” as
+ — |+ |—, where the first pair of signs belong to the T, operator, and the remaining

signs (separated by the vertical bars) belong to the T; operator fragments. The
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corresponding diagram would be

+—‘+‘—: and

where the connectivity dictated by the sign sequence is maintained in the diagram.
The sign sequence helps to reveal the equivalence of the two diagrams; the Ty
operator in each diagram connects to the Vi fragment by a particle-hole pair of lines
while the 7} operators connect by either a particle or a hole line. Note that this
sequence is equivalent to the sequence + — | — |+ because the Tl operators commute.

For this matrix element, there are only five unique sign sequences, including the one

given above: (1) + - | + ‘_: (2) ++ ‘ - ‘_: (3) - | + H—a (4) _‘ + ‘ + -, and (5)
+| — | + —. These five Kucharski-Bartlett sign sequences give rise to the diagrams
(in order)

1 NERDURIN
5(@;‘; (VWIPT:) |®0) = + [184]

[185]

The algebraic interpretation of each of these diagrams, using the rules described

earlier, is easily shown to be (in the same order as the diagrams above)

1 s 2 - - ac
§<<1>g;’ (VWIPTs) |®0) = —P(ij)P(ab) Y (kll|cd)tife]ty + [186]
kled
1 cdya b 1 . . abycypd
1P ab) Y (klled)eiitie) + S P(if) > (Rl led)tiy it —
kled kled

P(ig) Y (ki led)titity — Pab) > (kll|cd)tii ity

klcd klcd
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The permutation operators appear in order to maintain the antisymmetry of the
algebraic expressions, as explained earlier. Note that the factors of i appearing in
the second and third terms result from both a pair of equivalent lines and a pair of

equivalent vertices in each of the corresponding diagrams.

Size Extensivity of the Coupled Cluster Energy

Earlier in the chapter we discussed the property of the coupled cluster energy
known as size consistency, which implies that the energy of two non-interacting
fragments computed separately is the same as that computed for both fragments
simultaneously. A related property is known as size extensivity, which is applied
to methods whose energy scales linearly with N (the number of electrons), just as
the exact energy scales. Whereas size consistency applies only to non-interacting
molecular fragments, size extensivity is a more general mathematical concept that
applies to any point on the potential energy surface. The term was popularized

in electronic structure theory by Bartlett®”

and is based on analogous extensive
thermodynamic properties. In this section, we show that the exponential ansatz
of coupled cluster theory guarantees size extensivity, but that the truncated CI
approach does not.

Consider the structure of the CI Schriodinger equation (assuming intermediate

normalization as well as normal-ordered Hy and C operators), beginning from the

linear ansatz of Eq. [32]:
Hy (14 Ci+Co+...) o) = (Eer — Fo) (1+Cr+ Co +...) |®0). 187]

Left-projection of this equation by the reference determinant, ®g, leads to the energy
equation,

Eci — Ey = <q’o|ﬁN (6'1 + (72) D), [188]
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where truncation of the CI expansion is a natural consequence of Slater’s rules.
By application of Wick’s theorem (or the corresponding diagrams, of course), this

equation may be written in algebraic form as

1 . a
Eci— Ey = Z fiaCf + 7 > (ij||ab)csy. [189]

ijab
If canonical Hartree-Fock orbitals are chosen, the first term is zero by Brillouin’s

theorem.

How do the individual terms on the right-hand side of Eq. [189] scale as more
electrons are added to the system? If we assume a localized orbital basis (which
does not limit the validity of this analysis), then, for a given occupied orbital, ¢;,
the two-electron integral, (ij||ab), for example, will be zero unless the orbitals, ¢;,
04, and ¢y, are in reasonably close proximity to ¢;, due to the relatively short range of
the interelectronic potential. Assuming that the number of orbitals which fulfill this
proximity requirement for (i.e., are “local” to) ¢; is finite, then all of the individual
two-electron integrals, (ij||ab), associated with ¢; are independent of the number of
electrons in the system. That is, as more electrons (and therefore more occupied

and virtual orbitals) enter the calculation, the set of individual two-electron integrals

associated with orbital ¢; remains unaffected. Assuming that the CI coefficients, cf}’,
in the second term of Eq. [189] have the same independence — an assumption we

will examine momentarily — then the i-independent summation,

Z; = Z(ijuawcgj, [190]

jab
will be unaffected as the size of the system increases. Since there are N electrons,

the final summation over occupied orbital index ¢ produces N independent Z;
contributions,
Eci > Z;. [191]
i
(The left arrow indicates that the term on the right-hand side is one of several terms

that contribute to Fc1.) Therefore the second term of Eq. [189] scales linearly with
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the number of electrons, if and only if the CI coefficients, c%’, are independent of .
A similar argument holds for the first term on the right-hand side of the equation
as well.

The CI coefficient equations are obtained by left-projection of Eq. [187] by excited

determinants. For example, the o equation from full CI is
(@ Hy (14 C1 + Ca+ C5) [®0) = (Ecr — Eo) (24]C1| @) = Ecucf, 192]

which is energy-dependent, unlike the corresponding coupled cluster amplitude
equation. Every term on the left-hand side of this equation involves either bare
Hamiltonian matrix elements, which are independent of N, or contractions of such
matrix elements with CI coefficients, whose N-scaling is not yet known. The term on
the right-hand side, which contains the CI energy, on the other hand, does depend
on the system size — as N increases, Fcy increases (with some undetermined order).
This non-unit scaling implies that, if size extensivity is to be maintained, terms on
the left-hand side of Eq. [192] must scale similarly with N in order to cancel out the
“errors” introduced by the presence of F¢p. If all excitation operators are included
in the CI ansatz, then this compensation is included in the corresponding coefficient
equations. For example, we see that in Eq. [192] above, C; can contribute to C; by

Slater’s rules. The C5 equation itself is

(@he|Hy (C1 + Co+ Cs + Cu + C5) | ) = (Eex — Eo) il (193]

which includes contributions from up to Cs. The first term on the left-hand side

involving Ch may be written as

where we have used the thick bar in the diagram to distinguish the Cy operator

from the corresponding T operator. Since the orbitals on the Ch component are
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completely independent of those of the two-electron integral (i.e., the diagram is
“disconnected”), this term will produce nonzero Cs components involving orbitals

which are spatially distant as the size of the system is increased. That is, for a given

abc

orbital, ¢;, the number of nonzero coefficients, cf;r,

involving the orbitals ¢;, ¢,
etc., increases as more electrons (orbitals) are added to the system. Therefore, the
term from Eq. [192] involving Cs, which may be written as
cf = Zcf]b,g (jk||bc), [195]
4 e
scales approximately linearly as /N increases. This term would therefore contribute
to the “compensating errors” described above to ensure appropriate linear scaling
of the CI energy with respect to the number of electrons. Similarly, the N scaling
of the (5 equation itself is corrected by such disconnected terms arising from higher
excitation levels such as Cy and Cs. Therefore, if the CI equations are truncated
at a particular excitation level, the higher-excitation terms needed to cancel the
incorrect N-scaling of the energy-dependent term in each coefficient equation will
be lost, and the errors in the truncated CI energy relative to the exact (full CI) energy
will be compounded as the size of the system increases. The well-known Davidson
correction for the CISD energy is designed to account for the size extensivity error
of this method.!2!-122
The coupled cluster energy, on the other hand, does not suffer from this lack
of size extensivity for two reasons: (1) The amplitude equations in Eq. [50] are
independent of the coupled cluster energy; (2) The Hausdorff expansion of the
similarity transformed Hamiltonian in Eq. [106], for example, guarantees that the
only nonzero terms are those in which the Hamiltonian is connected to all the cluster
operators on its right, regardless of the truncation of T. Hence, no diagrams such

as that in Eq. [194] appear in the coupled cluster amplitude equations. As a result,
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the T amplitudes are independent of the system size, and the coupled cluster energy
computed via Eq. [123] scales linearly with the number of electrons.

A size extensive method is frequently defined esoterically as one whose energy

and amplitude/coefficient equations contain no “unlinked” diagrams, such as

(Eor — Eo) ¢ M \/ , 1196

in which the two diagram components cannot be connected to each other even by
application of other interaction lines.” Although such terms are indeed absent in the
coupled cluster equations (as well as those of many-body perturbation theory), one
must also exclude disconnected amplitude components such as those in Eq. [194]
(which also contribute to the improper N-dependence of the amplitudes) in order

to ensure correct scaling of the energy.

"The “disconnected” diagram of Eq. [194] is not unlinked since the inclusion of
an additional Vy fragment can connect its two components — Harris et al.®0 have
recommended that such terms should be called “linkable.”  With terms such as
“disconnected,” “connected,” “linked,” and “unlinked” used to describe diagrams, it is

not surprising that these techniques have caused much confusion in the past.



CONNECTION TO MANY-BODY PERTURBATION
THEORY

In this section we examine the fundamental relationship between many-body
perturbation theory (MBPT) and coupled cluster theory. As originally pointed out
by Bartlett,®”12% this connection allows one to construct finite-order perturbation
theory energies and wavefunctions via “iterations” of the coupled cluster equations.
The essential aspects of MBPT have already been discussed in Volume 5 of Reviews
in Computational Chemistry”™™ as well as numerous other texts.8082:124.125 e
therefore only summarize the main points of MBPT and focus on its intimate link
to coupled cluster theory as well as how MBPT can be used to construct energy

corrections for higher-order cluster operators such as the popular (T) correction for

connected triple excitations.

Perturbational Decomposition of the Cluster Operators

Two essential concepts underlie the construction of MBPT from basic the

Rayleigh-Schrodinger perturbation theory:7"%2

e The zeroth-order component of the electronic Hamiltonian is taken to be
the Fock operator such that the perturbation operator (sometimes called the

fluctuation potential) is then the remaining two-electron operator, Vi

Hy =HOY + HY = Fy + Vy. [197]

This partitioning, when applied in conjunction with the set of canonical Hartree-Fock
orbitals (in which Fy is diagonal), corresponds to the Mgller-Plesset variant

of many-body perturbation theory.'?® A Hartree-Fock determinant, which is

90
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an eigenfunction of Fy, is therefore the natural choice for the zeroth-order

wavefunction.®

e Each perturbed wavefunction, ¥(" is expanded in a CI-like fashion as a linear
combination of excited determinants,
o =3¢ Mo 4 i Saf Mag 4 [198]
ia ijab

As discussed in detail in Refs. 77 and 82, for example, this expansion is not N-fold
(where N is the number of electrons in the system) for the lower perturbational
orders, but truncates to include only modest excitation levels. For example, the
first-order wavefunction, which may be used to compute both the second- and
third-order energies, contains contributions from only doubly excited determinants,
whereas the second-order wavefunction, which contributes to the fourth- and
fifth-order perturbed energies, contains contributions from singly, doubly, triply, and
quadruply excited determinants. Furthermore, the sum of the zeroth- and first order
energies is equal to the SCF energy. This determinantal expansion of the perturbed

wavefunctions suggests that we may also decompose the cluster operators, T},, by

orders of perturbation theory:
T,=TYD +T® 47O 4 [199]

Depending on the choice of molecular orbital basis, the earliest terms for certain
excitation levels are naturally zero. For example, in Moller-Plesset theory, only T

contains a nonzero first-order component; contributions to 77, 713, and T} first appear

SThe choice of Fy as the zeroth-order Hamiltonian requires the use of either a
spin-restricted (closed-shell) Hartree-Fock (RHF) or spin-unrestricted Hartree-Fock (UHF)
determinant as the zeroth-order (reference) wavefunction. Since spin-restricted open-shell
Hartree-Fock (ROHF) reference functions are not eigenfunctions of the spin-orbital Fy,

other partitionings are required.!?” 134
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in second order because the corresponding second-order wavefunction contains single,

double, triple, and quadruple excitations.

Perturbation Theory Energies from the Coupled Cluster Hamiltonian

The partitioning of the electronic Hamiltonian and the corresponding breakdown
of the cluster operators leads to an expansion of the coupled cluster effective
Hamiltonian, H, in orders of perturbation theory through the Hausdorff expansion
given in Eq. [122]:

H=H" + Y + 7@ 1+ ... 200]

Since the zeroth-order component of H consists of only the Fock operator in

Mpgller-Plesset theory, the first-order components of H may be written as
HO =Vy + (FnTyY) 201]
and the second-order term as
O — (m@ + VT 4 %FN (T§1>)2>C | 1202]

Each of these expressions is constructed by simply assigning the appropriate
perturbational orders to each operator in Eq. [122] and retaining only those
terms which correspond to the desired order, n. Using H™ as an approximate

Hamiltonian, one may construct n-th order Schrodinger equations of the form
H™|®) = E™|®y). [203]

One computes the energy in the n-th order of MBPT via a zeroth-order expectation

value, viz.

B = (@[ ™)), 204]
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obtained by left-projection of Eq. [203] by ®,. For example, the second-order energy

(often referred to as the MP2 energy) may be computed from
PN A a 1 . - 2
E® = (@] (FwT) o) + (@0l (TwT5") (@0} + 50| (Fx (7)) 1@0), (203

which may be evaluated as usual using Wick’s theorem or the diagrammatic
techniques described earlier in the chapter. We denote the cluster operators of
a particular order diagrammatically by adding hash marks to the corresponding

interaction line. For example, the first-order T, operator may be written as

T = , 1206]

T = . 207]

The first term on the right-hand side of Eq. [205] involving 7 must be zero in

X

MBPT because the corresponding diagram, , involves the f;, elements

of the spin-orbital Fock matrix, which are necessarily zero in the basis of canonical
Hartree-Fock orbitals. Furthermore, the third term on the right-hand side of the
equation cannot contribute to the energy since Fy cannot cancel the +4 excitation

level produced by the cluster operators. Therefore, Eq. [205] may be written as

]- .. a
= 7 (il lab)t. [208]

ijab
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The first-order T amplitudes, which are required for the above equation, may

be determined by left-projecting the first-order variant of Eq. [203] involving H()
by a doubly excited determinant, <I>ZJ, as we did earlier in the construction of the

coupled cluster amplitude equations,

0 = (@ [HD| Do) = (@5 |Viv|@o) + (B5F| (ENTL") |®y). [209]
Evaluating this expression diagrammatically, we obtain

SR ST

= (abllij) + Z Fuetig = factii V)= (fti) = fatip”) - [210]

k
Again assuming canonical Hartree-Fock orbitals, the terms containing Fock matrix

elements are reduced to include the diagonal elements only:

(fis + fi5 — faa — fov) t?;(l) = (abllij). 211]

Thus, the diagrammatic equation could be rewritten more simply as

YN

where the notation Dy = ijf’ = fii + fjj — faa — foo has been used to denote the
separation of the orbital energies (the diagonal Fock matrix elements) from the terms
involving the Fock operator. This equation may be rearranged further by another

slight modification of our current diagrammatic notation:

_ (abllij)
T pab

%)

ab(1)

[213]
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The extra horizontal bar across the lines emanating from the Vi fragment is used
to denote division by the Df‘;’ “energy denominator” from the above algebraic
expression. This new diagrammatic feature may be used to indicate other such
denominators, including those from the 7™ and 7™ equations, as we will see later in
the chapter. Inserting Eq. [213] into Eq. [208], the final MBPT(2) energy expression

may be written as

20 ﬂ m _ Ly (il by o1

ijab

This expression is identical to that derived directly from perturbation theory in
Refs. 77 and 82.

As the above analysis clearly shows, the MBPT(2) energy may be determined by
approximating the CCSD energy using only those components which contribute to
H® . The CCSD energy is therefore “complete” through at least the second order
of MBPT. One can carry this discussion further to construct the MBPT(3) energy
as well. However, beginning with fourth order, the CCSD fails to include all the
necessary terms. This result makes sense, of course, because of the excitation level
included in each perturbed wavefunction. The MBPT(2) and MBPT(3) energies
require only doubly excited determinants which are included explicitly in the CCSD
approximation, but the MBPT(4) energy includes contributions from singly, doubly,
triply, and quadruply excited determinants. It may be shown®87135136 that the
MBPT(4) quadruple excitation contributions may be factored exactly into products
of double excitations, but no such factorization is possible for the corresponding
triples. As a result, the CCSD energy lacks only triple excitation contributions to
be complete through fourth order.

Recognition of this relationship between coupled cluster theory and MBPT has

inspired research efforts to construct perturbation-based corrections to the CCSD
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energy to account for higher excitation contributions. Undoubtedly, the most
successful and popular of these is the (T) correction first described for closed-shell
molecular systems by Raghavachari et al.?* In the next section, we will describe the

structure of this correction using diagrammatic techniques.

The (T) Correction

Numerous studies over the last 15 years have confirmed the importance of
triple and higher excitations for the accurate prediction of many molecular
properties.!5-17:24,25,27,51, 137,138 {Jpfortunately, the full CCSDT approach,??23:26 in
which triple excitations are included explicitly via the T = Ty + Ty + T cluster
operator, is far too computationally expensive for general application to most
systems of chemical interest.

As pointed out in the previous section, the CCSD energy contains contributions
identical to those of the MBPT(2) and MBPT(3) energy, but lacks triple excitation
contributions necessary for MBPT(4). Thus, a natural approach to the “triples
problem” is to correct the CCSD energy for the missing MBPT(4) terms,'® using

the CCSDT similarity-transformed Hamiltonian,

3 - T-Ty-T5 77 Ti+To+T
Heespr =€ 7' 72 P Hye 172703 [215]

for the perturbational decomposition. The fourth-order energy depends on this
effective Hamiltonian as

_ N 1 . a
EW = (09| HY|®y) = (@] (VWT3") |@g) = = Do (iillab)t .

ijab

216]
(Note that we have omitted numerous H*) components which cannot contribute to

the energy expression.) The third-order Ty component of this equation is determined
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via
0 = (f|H|Py)
PN A NN A A 1~ ~ 2
— (@ (FNT;”’) + VT + VT + VT + 5V (75") ) ®y). [217]
Note the appearance of the T3 operator through the use of Hecgpr. Since we wish to
construct a correction to the CCSD energy, which already contains the contributions

from the Ty and Tj terms, we need to construct only the (VNT§2)) component of
C

the above equation, which may be represented diagrammatically as

, [218]

where we have indicated the two-electron denominator Dy using the horizontal bar
notation described earlier. The T?)(2) amplitudes needed for this equation may be

determined from the corresponding second-order amplitude equation:

0= (@3] (VWI3" + ENTY) |®y), 219]

which we may write using the denominator notation from the previous section as

A -

This equation may be interpreted algebraically as

Dt = P(k/ij)P(a/be) Yo (belldkyti " — Pi/ k) P(c/ab) S (1ell i)ty
‘ l [221]
where the P(p/qr) permutation operators perform antisymmetric permutations of
index p with indices ¢ and r, in analogy to the two-index P(pq) operator defined

earlier in the chapter. The first-order Ty amplitudes here are computed using
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Eq. [213]. These 7 amplitudes may then be inserted into Eq. [218] to compute the
T2(3) amplitudes, which may then be used in Eq. [216] to compute the triple-excitation

contribution to the fourth-order energy, E( )* The corrected CCSD energy,
Ecosp+ty = Becsp + B, [222]

was referred to as COSD+T(4) by Urban et al.!® because E\ is the true fourth-order
triples energy when Eq. [221] is used to compute T3(2). If, on the other hand,
we choose to use the converged CCSD T, amplitudes rather than first-order T
in Eq. [221] — that is, amplitudes that solve Eq. [153] — we obtain a different
correction, which Urban et al. have denoted CCSD+T(CCSD) (although more
recently this method has been called CCSD[T]):

Ecospir(cosn) = Eccsp + By, [223]

where the superscript [4] notation indicates that the usual fourth-order triples energy
formula is evaluated using CCSD 7, amplitudes. It has been shown?*'® that
the CCSD+T(CCSD)/CCSDIT] approach has a tendency to overestimate triple
excitation effects, which for some systems leads to qualitatively incorrect predictions
of molecular properties.?*

A few years after the work by Urban et al., Pople and co-workers developed a
triples correction for the QCISD (quadratic configuration interaction — a method

It should be noted that the “procedure” outlined here for computing Eéfl )

is certainly

not the most efficient approach. As discussed more than two decades ago,'36:13% the

(4)

expression for E.’ may be cast into the form

_ L Z tabc abc abc( )
- ijk l]k zgk ’
zykabc
where D“bkc is the three-electron counterpart of D Instead of storing individual triple
excitation amplitudes, however, each contribution to the summation above is computed

separately using equations involving only two-electron integrals and energy denominators.
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commonly viewed as an approximation to CCSD) energy. In their work,!” they noted
that in order to properly balance the contribution of single and double excitations
to the triples correction, an additional term beyond E;ﬂ must be included. In 1989,
a similar analysis was developed by Raghavachari et al. who determined that a
fiftth-order energy contribution involving single excitations, denoted Eg’}T, should be
included in the CCSD correction, as well.?* This component may be derived based on
the second-order T3 contribution to the third-order 7} operator, which subsequently
contributes to fourth-order Tb. Although the diagrammatic techniques described
above are particularly convenient for deriving EE’}, we will avoid this task here, and

simply present the final equation

1 N aqabc
Egr = 2 (iklibe)tesly, [224
ijkabc
where the triple excitation amplitudes are determined using a modified form of
Eq. [221] which includes contributions of single excitation amplitudes,
Dijtie = P(i/jk)P(a/be) | Y _(belldiytsy — > (lal[ k)i + ¢ belljk) | . [225]

d l

Hence, the total CCSD(T) energy may be succinctly written as
Ecosnery = Eccsn + EX + BE [226]
(T) CCSD T ST

We again note, that large-scale computer implementations of the (T) method do not
actually use Eq. [225] to compute and subsequently store the T, amplitudes. Instead,
a much more efficient algorithm is employed in which the contributions to E%,iﬂ and
Egp are computed for each unique combination of i, j, and & indices,'*""'*? thus
avoiding the O(N®) storage requirement associated with solving Eq. [225] explicitly.
We also note that Deegan and Knowles have recently constructed an augmented
triples correction, denoted CCSD+T, which includes additional fifth-order terms

which are missing in CCSD.3°
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What is the motivation for the inclusion of this particular fifth-order term over
other such terms in the (T) correction? There have been influential numerical
studies that serve to rationalize the success of the (T) correction from a purely
empirical standpoint,?*2%143:144 byt here we are more interested in a physical
motivation. Pople and co-workers!'? referred to Eg’} as necessary to “balance” single
and double excitation contributions. A more complete fifth-order analysis than that
presented here?%:24:143:144 would show that CCSD alone already includes fifth-order
double-triple interaction terms. Hence, we may consider this apparent mismatch to
be the explanation for the inadequacy of CCSD [and especially CCSD+T(CCSD)] in
certain difficult cases, such as the asymmetric stretching frequency of O3.2* However,
the physical interpretation behind a balancing of single and double excitation
contributions is unclear. For Mgller-Plesset perturbation theory, single excitations
do not contribute until the second-order wavefunction, and double excitations
provide the earliest correction of the zeroth-order state. This suggests, then, that
double excitations should be more important in the perturbational analysis than
single excitations and that no such balancing of the two is important. On the other
hand, we recognize that the delayed appearance of single excitations in the perturbed
wavefunctions is an artifact of Brillouin’s theorem.®? That is, it is strictly because of
the form of the arbitrarily chosen molecular orbitals that single excitations do not
appear in first order. If we make our perturbational analysis more general, such that
single excitations appear alongside double excitations in the wavefunction expansion,
then the Egp energy term shifts to fourth order rather than fifth order. From this
perspective, then, single and double excitations should perhaps be treated alike, and
the perturbational order has less to do with the selection of corrections terms than
the excitation types themselves. This shifting of perturbational orders is seen, for
example, in certain types of open-shell perturbation theory.!3 Extension of the (T)

correction to open-shell systems based on a spin-restricted reference wavefunction
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presents numerous difficulties,®' and recent work in this area has produced a number
of interesting techniques.?”>2%3351

Recently, it has been shown?®? that equation-of-motion coupled cluster theory
(EOM-CC)569-63.65 provides a unique perspective on the CCSD(T) method. Instead
of taking the Hartree-Fock determinant as the zeroth-order wavefunction and
subsequently decomposing the CCSD and CCSDT equations in terms of the
many-body perturbation expansion, as we have done above, the CCSD wavefunction
is taken as zeroth-order and the energy viewed as the lowest eigenvalue of an effective
Hamiltonian with associated left and right eigenvectors. By substituting converged
CCSD cluster amplitudes in place of the left eigenvector in the lowest-order energy
correction, the usual (T) energy expression is obtained. In such an analysis, both
single and double contributions arrive in the same order (third) of this “perturbation
theory,” and no arguments based on balancing the two are necessary. This
unique perspective on the (T) correction has also led to the construction of a new

“asymmetric” triples correction, denoted a-CCSD(T),3*!%5 which utilizes the left

eigenvector for the ground state CCSD eigenvalue problem.



COMPUTER IMPLEMENTATION OF COUPLED
CLUSTER THEORY

In this section we discuss many of the issues involved in writing an efficient computer
program for solving the coupled cluster amplitude and energy equations derived
earlier in the chapter. Since the original implementations of the CCD%7 and CCSD?®
methods, streamlining the complicated coupled cluster equations has been the
subject of intense research. Here we focus on five main ideas used in practical CCSD
programs: (1) factorization of the amplitude equations [Egs. (152) and (153)] into
terms which are at most linear in the cluster amplitudes, T, and Tg; (2) matrix-based
storage and manipulation of the amplitudes and integrals; (3) spatial symmetry
simplifications; (4) inclusion of spin factorization in calculations for both closed-
and open-shell molecules; and (5) atomic-orbital-based algorithms for the reduction
of disk storage requirements.
It is perhaps not immediately clear how one may go about solving the T; and
T, amplitude equations given in Egs. [152] and [153] for the individual amplitudes,
t¢ and tf}’. A simple rearrangement of the equations, however, provides a more
palatable form of these expressions that leads to a simple iterative approach for
determining the coupled cluster wavefunction amplitudes. For example, the first
few terms of Eq. [152] may be written as
0= foi + faali — fiit{ + D (1= 0cq) facli — ; (1= 6ir) firty + .- -, [227]
c
where the diagonal components of the second and third terms on the right-hand side

of Eq. [152] have been separated from the summation. Defining

D} = fii = faas [228]

102
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the amplitude equation may be rewritten as

D;lt;l - fai + Z (1 - 60(1) factz? - Z (1 - 6zk) fzktz + ... [229]

k

Similarly, defining
Dab_fzz+f]] faa_fbba [230]

the Ty amplitude equation may be rewritten as

Dt} = (abllig) + P(ab) >~ (1 = Gye) fockf — Zk: — 6us) frgte 4+ ... [231]

To determine the values of the amplitudes, one must solve the above set of
coupled non-linear equations iteratively. A simple starting approximation for ¢{ and
tf}’ on the left-hand sides of the equations may be obtained by setting all of the

amplitudes on the right-hand side to zero. Hence, for the T amplitudes we have
ti = fui/ Dy, [232]

and for the Ty amplitudes,

ti? = (abllij)/ D5y, 233]
This initial guess may then be inserted on the right-hand sides of the equations
and subsequently used to obtain new amplitudes. The process is continued until
self-consistency is reached. For the special case in which canonical Hartree-Fock
molecular orbitals are used, the Fock matrix is diagonal and the T, amplitude
approximation above is exactly the same as the first-order perturbed wavefunction
parameters derived from Mgller-Plesset theory (cf. Eq. [213]). In that case, the D¢
and Df‘;’ arrays contain the usual molecular orbital energies, and the initial guess for

the T} amplitudes vanishes.

Factorization of the Coupled Cluster Equations

The form of Eqs. [152] and [153] is perhaps misleading in that many of the terms

appear to be computationally more expensive than is necessary. For example,
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Eq. [153] contains the following term which is quadratic in the T, amplitudes:
Dbl — Z (kl||cd)t5ityy, [234]
4 e
where the left arrow indicates that we are examining only one of several terms which
contribute to the expression on the left-hand side. This term scales as O(h*p*), where
h denotes the number of occupied orbitals and p denotes the number of unoccupied

orbitals. However, this expression may be factored into a product of two terms, e.g.,

C 1 C 1 a
—Z kl||edytsityy _52 kZQZWH cdyts] = 2275 XY, [235]
4 e kl
where the X intermediate is defined as
1
X} = 5 > (kl||ed)tss. 236]

cd

Now the original term may be evaluated in two steps: (1) construction and storage
of X; and (2) contraction of the X array with the ¢ amplitudes. Each of these
steps scales as O(h*p?) — a significant reduction from the original O(h'p*).

Every term in the coupled cluster amplitude equations which is non-linear in
T may be factored into linear components. As a result, each step of the iterative
solution of the CCSD equations scales at worst as ca. O(N®) (where N is the number
of molecular orbitals). The full CCSDT method in which all Tj-containing terms
are included requires an iterative O(N?®) algorithm, whereas the CCSD(T) method,
which is designed to approximate CCSDT, requires a non-iterative O(N) algorithm.
The inclusion of all T} clusters in the CCSDTQ method scales as O(N9).

The most efficient scheme for factorization of the amplitude equations as
described above is not obvious, however, and numerous researchers have developed
sets of intermediates to streamline their own coupled cluster programs over the
past twenty years.5-811713,21.22,146, 147 N[any of these factorizations have been based

6-8,11-13

on careful inspection of the amplitude equations. Scuseria, Janssen, and
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Schaefer, for example, developed a set of intermediates based on their reformulation
of the CCSD amplitude and energy equations'® in a unitary group formalism
designed to offer special efficiency when the reference wavefunction, &y, is a
spin-restricted closed-shell Hartree-Fock determinant. Closely related intermediates
were utilized in certain open-shell theories developed by Scuseria?’ for the PSI
program package!®® and by Knowles, Hampel, and Werner?” for the MOLPRO
package.'4?
Diagrammatic techniques also provide a route to the construction of efficient

21,146,147 Kycharski and Bartlett,'*” for example,

coupled cluster intermediates.
have described a particularly clever approach by which one uses matrix elements
of the similarity transformed Hamiltonian as the desired intermediates. Consider

the matrix element of H between the reference (on the left) and a singly excited

determinant (on the right). Diagrammatically, this matrix element is resolved into

X fTTTTTTTy
(o|H|PF) = /\ +/\ o

= fiu + D (ik[lac)t;

ke

#
i o

We have chosen the double bar with the “#” sign in the final diagram to simply

two terms as

denote the sum of the two diagrams corresponding to the matrix element. If we
contract this diagram with a Ty operator fragment from below, we obtain two

contributions to the 7} amplitude equations, viz.

SN0 -
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The last two diagrams are equivalent to the fifth and twelfth terms from the Ty
amplitude equation in Eq. [152]. These intermediates have the particular advantage
that, if the final goal of the calculation is actually an analytic energy gradient or
an EOM-CCSD-based approach, for example, one need not recompute the required
matrix elements of H. Intermediates derived in this manner have been utilized in
the coupled cluster programs found in the ACES IT'%° and PSI'*® ab initio program

packages.

Matrix-Based Storage of Integrals and Amplitudes

Additional computational efficiency in the solution of the coupled cluster equations
may be employed by formulating each of the terms as matrix-matrix or matrix-vector
products,' for which modern workstations and supercomputers are particularly
¢ 151

For example, the set of T amplitudes, tfj’-i, could be stored as a matrix

adep
by defining compound row and column indices 77 and cd, respectively, in terms
of the individual orbital indices 7, j, ¢, and d. Ignoring permutational symmetry,
this storage scheme produces a “supermatrix” with h? rows and p? columns and
whose elements may be labeled T5(ij, ed). Similarly, the set of two-electron integrals
used in the construction of the X intermediate above could be stored as a matrix
by defining a compound row index k£l and a compound column index cd to give a
supermatrix I(kl,cd). The contraction between these matrices given explicitly in

Eq. [236] could then be written as a multiplication between the amplitude matrix

Ty and the transpose of the integral matrix I to produce the new matrix X:
X = T,It, [239]

where the individual elements of X may be denoted as X (ij, k). This type of

notation is often used in the coupled cluster literature as it provides a much more
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compact presentation of the energy and amplitude equations than that given above,

and it relates directly to a streamlined computer implementation.

Spatial Symmetry Simplifications

Spatial symmetry also provides a means for improving the efficiency of coupled
cluster programs. As shown by the work of Céarsky and co-workers,'® the solution
of the coupled cluster equations may be greatly simplified by exploiting constraints
on the cluster amplitudes imposed by the point group symmetry of the molecule
of interest. In particular, given that the molecular orbital basis is based on
symmetry-adapted functions (as is commonly done in ab initio programs such
as PSI,'® ACES IL,'%° and MOLPRO'), the cluster amplitudes (as well as
one- and two-electron integrals) vanish unless the direct product of the irreducible

representations (irreps) associated with each orbital component contains the totally

ab

symmetric irrep. For example, a given 75 amplitude, 7, is zero unless

Fi X Fj X Fa (59 F(, = Al, [240]

where A; is the totally symmetric irrep of the molecular point group. Since the
direct product (®) of any irrep with itself always contains A;, Eq. [240] implies
that, for example,"

Fij = Fz X F]‘ = Fa X Fb = Fa(,. [241]

If the molecular orbitals are organized such that all orbitals of a given irrep

are grouped together, the matrix-based storage scheme described above takes on a

"Of course, other partitionings of the four indices i, j, a, and b are equally valid. For

example, the following equality also holds based on Eq. [240]:

Fi = Fjab = Fj ®Fa ®Fb.
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particularly convenient form.'* Using the Cs, point group as an example, the T

matrix of Eq. [239] may be schematically written as

cd
Al A2 Bl BQ

A | X

0 0
Ay 0 X 0 0
X

By 0 0

By 0 0 0 X

where X implies a submatrix of nonzero values, and we have labeled the rows and
columns of the supermatrix by the appropriate compound indices ij and cd. In
addition, we have indicated the Cy, irrep labels for the given compound index.
The B; label for the 5 row index, for example, denotes the set of i and j index
combinations with I';; = I'; ® I'; = By. If a given amplitude falls within the A,
diagonal subblock, then the compound indices meet the criterion, I';; = I'cq = Ao.
Clearly, one needs to store only the nonzero diagonal subblocks of the above
matrix; assuming that the same number of molecular orbitals belong within each
irrep of the point group, this corresponds to memory/disk savings of the order
of the group (4 in the case of the Cs, group). Furthermore, if this symmetry
scheme were also used to store the X and I matrices of Eq. [239], then the matrix
multiplication would be reduced to four independent products involving only the
symmetry-restricted diagonal blocks — a computational savings of the square of the
order of the point group (16 for Cy,). This matrix-based approach to symmetry
simplification of the coupled cluster equations has been referred to as the “direct
product decomposition” (DPD) technique'® and has been discussed in the literature
for both energies'’ and analytic gradients®® for non-degenerate (Abelian) point
groups. In their recent work on coupled cluster analytic second derivatives, Stanton

and Gauss have extended their DPD approach for derivatives of cluster amplitudes,
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which are generally not totally symmetric quantities.®”% Furthermore, work on the
extension of symmetry methods to include non-Abelian point groups has also been

reported.!5371%5

Spin Factorization of the Coupled Cluster Equations

The coupled cluster and configuration interaction equations presented thus far in this
chapter have implicitly used spin-dependent molecular orbitals for their definitions of
determinants, integrals, and wavefunction amplitudes. This spin-orbital formulation
has the advantage that it may be used with any set of orbitals, including
spin-restricted Hartree-Fock (RHF), spin-unrestricted Hartree-Fock (UHF),
spin-restricted open-shell Hartree-Fock (ROHF), quasi-restricted Hartree-Fock
(QRHF), Brueckner orbitals, etc. That is, by inclusion of all components of the
spin-orbital Fock matrix, Fiy, the CCSD equations in Egs. [123], [152], and [153],
for example, are valid for any choice of orbitals.” By assigning the conventional spin
functions, a and f3, to each occupied and virtual orbital, we may factor the coupled
cluster energy and amplitude equations into their spin-dependent components. Due
to the spin-symmetry associated with the one- and two-electron integrals, most of
these components will be be zero following spin integration, and may be ignored

in the computational implementation of the equations. For example, consider the

v Although a spin-orbital formulation is conceptually simple, desirable properties such as
spin-adaptation may be lost when the electronic state of interest is open shell, for example.
A rigorously spin adapted theory must include spin-free definitions of the cluster operators,
T, and an appropriate (perhaps multi-determinant) reference wavefunction.3? 41,42, 156-158

Such general coupled cluster derivations are beyond the scope of this chapter, though some

of the issues associated with difficult open-shell problems are discussed in the next section.
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linear T} contribution to the CCSD energy given in Eq. [123],

Eccsp < Y fial}. [242]

ia
The summation may be factored into a number of spin cases as

Zfiat? = Z fiaao‘t;1 + Z fmaﬂ + Z fzaaﬂ + Z szaataa
ia

Ta Qo igag la g 130

= Z fiaaat?a + Z flgag ig o [243]

fa Qo ZBaﬁ

where the mixed spin terms vanish after spin integration of the Fock matrix integrals
over the orthogonal spin functions o and 3. Similarly, the Ty contribution to Eccsp

may be factored into three nonvanishing spin cases, viz.,

1 .. 1 o
- Z ijllab)ty) = ) Y liajallaaba)tier + 1 S igjsllaghs)tis? +
zyab lajotaba Zﬂjﬂaﬂbﬂ
S iadsllaabs)ti)?, [244]
injganbs

where we have used the permutational antisymmetry of the cluster amplitudes and
the two-electron integrals to simplify the nonzero mixed spin cases into a single
term. Similar factorization of the T} and T amplitude equations is possible. The
most computationally efficient implementation of the CCSD equations must take
these factorizations into account in order to avoid wasted storage and computation

of the many vanishing amplitudes.

Atomic-Orbital-Basis Algorithms

The iterative procedure for solving the amplitude equations described above requires

storage of a number of quantities, including T, and Ty amplitudes, as well as one-
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and two-electron integrals in the molecular-orbital (MO) basis. Of these, the set
of two-electron integrals involving four virtual orbitals (e.g., (abl|cd)) requires the
most disk space and quickly becomes the computational bottleneck as the size of
the basis set is increased. One way of circumventing this problem is to avoid the
transformation and storage of this integral class completely and to instead evaluate

their contribution to the 7, amplitude equation (cf. Eq. [153]),
t?b Z th (abl|cd), [245]

using the two-electron integrals in the atomic-orbital (AO) [or, symmetry-orbital
(SO)] basis. The advantage is that, unlike the MO basis functions, the AO functions
are often strongly localized at the atomic centers, and, as a result only a fraction
of the total number of associated two-electron integrals are nonzero for large basis
sets. The outline of this AO-basis algorithm may become clearer if we rewrite the
above equation in terms of the untransformed integrals:

t Zt Y CLCrCsCi || Aa), [246]

o

where the indices u, v, A, and o are used to denote AO-basis functions, and, for
convenience, we assume that the MO-basis transformation coefficients such as C}

are real. Reordering the summations in this equation we obtain

1= 3 ChCh > (uv||ho) Y- C5Cted. 1247
Ky Ao cd

o"ij
The last summation may be interpreted as the “backtransformation” of the two

virtual indices on the 75 amplitude into the AO basis, i.e.,

o"ij

0 =3 CiCdHs. [248]
cd

If this set of “half-AO” amplitudes is computed and stored (using two standard

O(N?) steps'®?), they may be subsequently contracted with the AO-basis integrals
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to give

= Z(WHA@@;’ , [249]
Ao

which requires an O(N®) algorithm. The final summation is then evaluated to
transform the final half-AO amplitudes back to the MO basis to obtain the complete
contribution to TQ,

vVij -

ti > CaChtly [250]
iz

A similar procedure may be constructed for terms involving three-virtual index
integrals, (ab||ci).'%

AO-basis algorithms have been exploited for many years in the construction
of correlated wavefunctions,'®! particularly in MBPT(2).1%%162  In coupled
cluster theory, a number of approaches have recently been discussed in the
literature. For example, Hampel, Peterson, and Werner,'® have reported an
efficient implementation of the Brueckner-orbital-based CCD method that avoids
the transformation and storage of the (ab||cd) integrals and computing the
appropriate contributions as described above. Koch, Helgaker, Christiansen, and

co-workerg!63 164

have carried the approach even further by avoiding storage of even
the AO-basis two-electron integrals and computing limited distributions of these “on
the fly” as they are needed. Their largest single-point CCSD energy calculations
using this algorithm have involved more than 500 basis functions.'* Rendell and
Lee'® have taken a somewhat different tack in CCSD(T) energy calculations by
approximating the (ab||ci) and (ab||cd) integrals via a “resolution of the identity”
technique (cf. Eq. [225]). In their approach, a set of auxiliary functions is used
to rewrite these four-center electron repulsion integrals as products of three-center

integrals, which require significantly less storage space. Finally, we note that

AO-basis techniques have proven to be vital to the recent work of Stanton and
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Gauss on analytic second derivatives for a number of correlated techniques, including

SDQ-MBPT(4), CCSD, and CCSD(T).57:5



CURRENT RESEARCH AND FUTURE DIRECTIONS

In this final section, we examine in detail a number of recent research efforts in
coupled cluster theory. This review is far from exhaustive, and, due to space
considerations, we choose to focus primarily on two specific areas in which the
present authors have made contributions. We will then discuss some of the most
important theoretical and computational advances expected in the near future. We

also recommend Refs. 78 and 79 for a discussion of other recent work.

Coupled Cluster Theory for Open-Shell Molecules

For the closed-shell electronic states of many small molecules, the task of determining
molecular properties is generally well-understood, and coupled cluster methods —
particularly the CCSD(T) approach — in conjunction with large basis sets, have been
found to give exceptionally accurate results relative to experiment for properties such
as molecular geometries, harmonic vibrational frequencies, infrared intensities, and
electric dipole moments.” 7 137.138.166  The potential energy surfaces of open-shell
species," on the other hand, often present serious computational problems. In the

27,3551 3 calculation for a radical

most widely used open-shell CCSD(T) approaches,
cation, for example, requires approximately three times the computational effort of
its closed-shell counterpart, even if a spin-restricted open-shell Hartree-Fock (ROHF)

determinant is chosen as the reference wavefunction. This difficulty arises due to

an unbalanced exchange interaction between open- and closed-shell electrons such

"We wish to emphasize that the present discussion focuses only on high-spin open-shell
systems to which a single-determinant reference wavefunction is applicable. Coupled
cluster techniques for low spin cases, such as open-shell singlets, have been pursued in

the literature for many years, however, and provide a fertile area of research.!%8167-170

114
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that the Fock matrix, which appears in the spin-orbital coupled cluster expressions
presented in Eqs. [152] and [153], contains different o and [ components. As a
result, the cluster operators may be factored into two different spin cases for T (tie
and #;7) and three different spin cases for Ty (b, t?gff, and t?:;f).

Several researchers have recently devoted considerable effort to the derivation
and efficient implementation of techniques based on spin-restricted reference
determinants that reduce the computational discrepancy between closed- and

33,38,171-173  This emphasis on spin-restricted techniques has

open-shell systems.
resulted in part from a bias towards reference wavefunctions which maintain the
spin symmetry of the exact wavefunction (such as the ROHF determinant), but
also because of the possible efficiency advantages spin-restricted methods have
over unrestricted techniques. That is, since the component molecular orbitals are
constrained to have identical spatial parts for each spin function, it should be possible
to construct the correlated wavefunction in a manner that takes advantage of this
symmetry.

It should be noted, however, that the use of a spin-symmetry-adapted
determinant such as the ROHF wavefunction as a reference in a coupled cluster
calculation does produce a spin-pure energy,® but does not imply that the correlated

27,35 For the spin-orbital

wavefunction itself is an eigenfunction of S? as well.
definition of 7' described here, spin contamination can still enter into the coupled
cluster wavefunction through the non-linear contributions of cluster operators to

the amplitude equations,®” though the importance of this contamination has been

questioned.'™ A great deal of effort has been devoted recently to the efficient

*The ROHF-CCSD energy is indeed completely spin projected as discussed in Refs. 35,
27, and 37, but is still different from that computed using a spin-adapted coupled cluster

wavefunction.



116

construction of spin-adapted open-shell coupled cluster wavefunctions and/or correct

spin expectation value equations.36-42158

Spin-Restricted Triple Excitation Corrections

The (T) correction discussed earlier beginning on p. 96 is derived via a perturbational
decomposition of the coupled cluster energy and amplitude equations. This
decomposition depends on a particular partitioning of the electronic Hamiltonian,
ﬁN, into a zeroth-order component and a fluctuation potential — that is, a particular
definition of many-body perturbation theory. When based upon the canonical
Hartree-Fock orbitals of an RHF or UHF reference determinant, this partitioning is
simple, and H(® is taken to be the (diagonal) Fock matrix. For ROHF reference
wavefunctions, however, the choice of partitioning is less obvious, and a variety of
spin-restricted open-shell theories have been reported in the literature in recent
years. 2713417 For example, in the RMP'? or ROHF-MBPT™" method, the
diagonal occupied and virtual blocks of the Fock operator are chosen as HO),
and the off-diagonal occupied-virtual blocks are included in HO ) along with V.
The resulting perturbed energy and wavefunction equations have much in common
with the conventional ROHF-CCSD energy and amplitude equations, leading to
a convenient form for the ROHF-CCSD(T) method.* One drawback of this
approach, however, is that the off-diagonal f;; and f,, components of the Fock
matrix (contained in the first and second diagrams in Figure 2), are nonzero. Thus,

Eq. [225] presented earlier takes on a more general form,?%3!

Digtie = P(i/jk)P(afbe) | (belldidtsy — > _(lalljk)tif + 15 (belljk) + fiatjh
d l

/]k Z — zl fllt%;f + P a/bc Z 1— 5ad fadtf]cg [251}
l d
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The presence of f; and f,q components requires an iterative solution of this
equation — an approach which necessitates storage of the T, amplitudes in each
iteration! This scheme is unreasonable since the number of such amplitudes
would rapidly become the computational bottleneck as the size of the molecular
system increases. This problem may be circumvented, however, by utilizing the
so-called “semicanonical” molecular orbital basis in which the occupied-occupied
and virtual-virtual blocks of the Fock matrix are diagonal.2?:12%: 139 Tp this basis, the
two final terms in the 7T} equation above vanish, and the conventional non-iterative
computational procedure described earlier in the chapter may be employed.

The use of semicanonical orbitals does have a drawback, however, in that one
is necessarily forced to use a computational procedure comparable to that of the
UHF-CCSD(T) approach. Since the ROHF-based spin-orbital Fock matrix contains
different o« and [ components, rotation to the semicanonical basis breaks the
spin-restriction on the molecular orbitals.Y Thus, the integrals used in Eq. [251]
above are broken into UHF-like oo — o, 8 — (3, and o — 3 spin cases with a requisite
factor of three increase in storage requirements.

This problem can be avoided, however, if an appropriate open-shell perturbation
theory is defined such that the zeroth-order Hamiltonian is diagonal in the truly
spin-restricted molecular orbital basis. The “Z-averaged” perturbation theory
(ZAPT) defined by Lee and Jayatilaka'®? fulfills this requirement. ZAPT takes
advantage of the symmetric spin orbital basis. For each doubly occupied spatial

orbital and each unoccupied spatial orbital, the usual o and (3 spin functions are

YThis diagonalization affects neither the ROHF determinant itself nor the ROHF or

CCSD energies due to the well-known invariance of those methods with respect to certain

classes of orbital rotations.134
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used, but for the singly occupied orbitals, new spin functions,

O'+:

(a+B) [252]

S

and

1
o =5l=h) [253]

are assigned. By convention, o functions are associated with occupied spin orbitals,
and ¢~ functions with unoccupied spin orbitals. In this basis, the spin orbital Fock

operator takes on the schematic form,

do | FMe FMe FERe 0 0 FPP
dy | BMe B Ble 0 B o
pzapr _ 5ot Efe, Ereo EUOT 0 0 0 | -
S0 0 0 0 FY7T  FEYe —FPe
Va 0o EPP 0  FERe  fphoe PSS
o \ Fr 00 —Fpr Fpl FER

where capital letters L and M denote doubly occupied spatial orbitals, 7" and U
denote singly occupied spatial orbitals, and D and E denote unoccupied spatial
orbitals. Using a standard definition of ROHF orbitals, the diagonal blocks of this
Fock matrix are themselves diagonal when the theory is applied to conventional
high-spin open-shell systems.!32:134

With the diagonal blocks of the Fock operator above taken as the ZAPT
zeroth-order Hamiltonian, the various excitation operators of coupled cluster theory
may be decomposed into perturbational orders, as described earlier in the chapter.
The same T} contributions used to define the conventional (T) correction can then
be constructed to produce a ZAPT-based triples correction — denoted (zT).3* This
analysis is complicated by the fact that the theory requires that one distinguish

the singly occupied orbitals from the doubly occupied and unoccupied orbitals.
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Hence, the particle-hole formalism used throughout this chapter must be generalized
such that there are two types of holes (doubly occupied and singly occupied) and
two types of particles (unoccupied and singly occupied). The tedious algebraic
approach to the derivation of the (zT) correction was carried out in Ref. 33 by the
construction of a symbolic manipulation program (designed for the Mathematica

176) for the application of Wick’s theorem to second-quantized operator

interface
strings. This program is described in detail in Ref. 118. The related diagrammatic
analysis involves essentially the same rules outlined earlier in the chapter with the
complication that cluster operators and Hamiltonian fragments must be factored
such that the diagrams differentiate between the two types of hole and particle
lines. The rather complicated equations for the (zT) correction are presented in an
Appendix in Ref. 33.

The performance of the (zT) correction is essentially identical to that of the
conventional ROHF-CCSD(T) method. Application of both to a series of diatomic
molecules in ground and excited states indicates insignificant differences between the
two in the prediction of bond lengths, harmonic vibrational frequencies, anharmonic
constants, etc. Unfortunately, the complicated equations associated with the (zT)

correction have thus far precluded its large scale implementation and, as a result,

further systematic studies involving larger basis sets have not yet been carried out.

Brueckner Orbitals in Coupled Cluster Theory

In 1958, Nesbet extended Brueckner’s theory for infinite nuclear matter!”™ to
non-uniform systems of atoms and molecules.!™ By consideration of the CISD
problem in which the electronic Hamiltonian is diagonalized within the basis of
the reference and all singly and doubly excited determinants, Nesbet explained

that Brueckner theory allows one to construct a set of orthonormal molecular
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orbitals for which the correlated wavefunction coefficients for all singly excited
determinants vanish. Unfortunately, the construction of the set of orbitals that
fulfill this “Brueckner condition” can be determined only a posteriori from the
single excitation coefficients computed in a given orbital basis. As a result, the
practical implementation of Brueckner-orbital-based methods has usually required
the repeated construction of the correlated wavefunction (along with the associated
integral transformation). Despite this drawback, Brueckner orbitals have found
new life within coupled cluster theory in recent years.!”®17-192 T 1981, Chiles
and Dykstra!™ introduced the first molecular application of the Brueckner coupled
cluster doubles (B-CCD) method, which they referred to as CCD(7;=0). Some

1827184 3150 implemented B-CCD energies, along

years later, Handy and co-workers
with a perturbational triple-excitation correction [known as B-CCD(T)] and analytic
energy gradients. Since these important theoretical developments, perhaps the most
significant work in this area has been reported by Hampel, Peterson, and Werner,'6°
who explained that the special form of the B-CCD amplitude equations allows one to
avoid the repeated transformation of certain classes of two-electron integrals. This
advantage, when coupled to specially designed extrapolation schemes that converge
the Brueckner orbitals and cluster amplitudes simultaneously, permits significant
reduction in the computational expense of the method such that B-CCD may cost
no more than a conventional CCSD calculation.

Perhaps the greatest need for Brueckner-orbital-based methods arises in systems

140,193-196 o} are

suffering from artifactual symmetry-breaking orbital instabilities,
the approximate wavefunction fails to maintain the selected spin and/or spatial
symmetry characteristics of the exact wavefunction. Such instabilities arise in
SCF-like wavefunctions as a result of a competition between valence-bond-like

solutions to the Hartree-Fock equations; these solutions typically allow for

localization of an unpaired electron onto one of two or more symmetry-equivalent
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atoms in the molecule. In the ground Z2II, state of O3, for example, a pair of
symmetry-broken Hartree-Fock wavefunctions may be constructed with the unpaired
electron localized onto one oxygen atom or the other. Though symmetry-broken
wavefunctions have sometimes been exploited to produce providentially correct
results in a few systems, they are often not beneficial or even acceptable,'” and
the question of whether to relax constraints in the presence of an instability was
originally described by Lowdin as the “symmetry dilemma.”!%®

The effects of symmetry-breaking orbital instabilities on properties computed
using correlated wavefunctions built from a single-determinant reference has recently
been investigated'*® for a number of finite-order MBPT and coupled cluster methods.
Due to a corresponding singularity in the molecular orbital Hessian,!?3:196,199-201
nearby orbital instabilities can produce sometimes dramatically distorted results for
second-order properties such as harmonic vibrational frequencies and polarizabilities.
However, one important conclusion of Ref. 140 is that the choice of reference
wavefunction can significantly affect the location of this Hessian singularity on the
potential energy surface, and, as a result, a properly selected set of molecular orbitals
can often eliminate the symmetry breaking problem by moving the instability out
of the region of interest. In recent years, Brueckner orbitals have been utilized
in conjunction with coupled cluster theory for precisely this purpose for a number
of “difficult” molecular systems,!85:186:202-205 gyych as the nitrate radical,'®® the Of
ion,'92202 the hydrogen-peroxide radical cation, 203294 and the C 2A, excited state of
NO,.205

The implementation of B-CC methods for open-shell systems (where symmetry
breaking instabilities are the most likely to occur) is straightforward when either a
UHF or ROHF reference wavefunction is used as the initial guess for the Brueckner

determinant. Unfortunately in the ROHF case, it is not possible to maintain

spin restriction on the molecular orbitals because the single excitation amplitudes,
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which may be used as the rotation parameters for the iterative construction of
the Brueckner orbitals, are not symmetric in the spin indices due to the uneven
exchange interaction between the open- and closed-shell electrons discussed earlier.
As a result, the repeated construction of the coupled cluster wavefunction requires
the transformation and storage of roughly three times the number of two-electron
integrals needed for the initial ROHF-CCSD calculation. This difficulty, which is
directly comparable to the problem of semicanonical orbitals described in the last
section, represents a significant obstacle for open-shell B-CCD implementations.

The symmetric spin orbital basis, which was also used to construct the
spin-restricted (zT) correction, also provides a route to a spin-restricted open-shell
B-CC theory (RB-CC).'™ In this spin basis, the T, amplitudes may be shown to

have the symmetries,

t =t [255]
the = 1,7, [256]
w__ W __
t” =t [257]
and
A
e, = tw [258]

where I, A, and I indicate doubly occupied, unoccupied, and singly occupied spatial
orbitals, respectively. The “spin-flip” T amplitudes of the type t?f are generally
nonzero in the symmetric spin orbital basis, but it may be argued!3? that these
amplitudes should instead be classified as double excitations. The remaining three
classes of T; amplitudes may be used to carry out a series of first-order rotations

among the orbital subspaces, viz.
bt A W_—
or=¢r+t170a+ 1,7 ow, [259]

bw = pw + tf}[}; Ga— tzf ¢r. [260]
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At convergence the orbitals will obey the Brueckner conditions
e =t =1, =0. [261]

These equations provide the basis for the RB-CC method since they do not imply
any loss of spin restriction on the molecular orbitals as the rotation is applied.
Furthermore, the RB-CC method may be trivially implemented within existing
ROHF-CCSD programs by a simple “symmetrization” of the standard («, () T,
amplitudes into the new spin basis!™ prior to the rotation.

The performance of the RB-CCD method (which is analogous to the conventional
unrestricted B-CCD method) has been tested on the nitrate radical, NOjz, and
the C' 24, state of NOs, both of which have presented difficulties for a variety
of theoretical methods due in part to symmetry breaking instabilities in the
Hartree-Fock reference wavefunction. The RB-CCD method was found to provide
results in excellent agreement with the B-CCD method, including the correct
prediction of Cy symmetry for the equilibrium geometry of the C state of NO,.205:206
Work is presently underway for extension of the RB-CCD method to include triples
[i.e., a RB-CCD(T) method where the triples correction is defined similarly to the

(zT) correction described above| and analytical energy gradients.

Future Research Prospects

Thanks in part to the computational advances described in the previous section,
coupled cluster theory has developed into arguably the most accurate and
computationally affordable method of modern computational quantum chemistry.
The results of coupled cluster calculations are commonly found in the chemical
physics literature, and, when the accuracy of experimental results is questioned,
the CCSD(T) method is often used to settle the debate. In spite of this success,

coupled cluster theory is far from applicable to all problems of chemical interest.
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The majority of the current research efforts may be divided into four overlapping
categories:

e Large molecules and extended systems. As noted in the previous section
on p. 104, the CCSD(T) method scales as O(N7), where A is the number of basis
functions. This implies that a factor of two increase in the size of the molecular
system involves a ca. 128 increase in the CPU cost of the calculation. For example,
a high-accuracy CCSD(T) energy calculation for the amino acid alanine requires
approximately five days on modern workstations; an equivalent calculation for the
alanine dimer would require nearly two years to complete. In addition, the storage
requirements of the CCSD(T) method scale roughly as O(N)?, leading to rapidly
insurmountable disk space limitations as the size of the system increases. Our own
recent CCSD(T) calculations on isomers of [10Jannulene (molecular formula C;oH;g)
involving more than 300 basis functions and low symmetry may represent the current
limit of “conventional” coupled cluster programs.?°?

One of the most promising approaches to overcoming the scaling problems of the
coupled cluster method lies in the local correlation concept developed primarily
by Saebg and Pulay.?’® 212 This scheme relies on the use of a set of localized,
non-orthogonal molecular orbitals in order to drastically reduce the number of
non-negligible parameters in the correlated wave function. Some effort in this

3 and it is likely that new

direction has been reported by Hampel and Werner?!
implementations and extensions of the “local-CC” method will appear in the next
few years. In addition, the storage bottleneck associated with large molecules has
also been examined by several researchers, leading to “integral direct”!6%164 and
“resolution of the identity” methods,'®® described in the earlier section of the chapter
entitled “Atomic-Orbital-Basis Algorithms.”

e Excited electronic states. One deficiency of the conventional coupled

cluster methods is that they apply only to ground electronic states (or, more
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accurately, to the lowest-energy states of a given spin and spatial symmetry). The

d®60763,65 (described earlier in the chapter

equation-of-motion coupled cluster metho
on p. 32) and related methods such as SAC-CI'%'% and STEOM-CC™ ' have
been devised such that higher-lying electronic states may be studied. These methods
have proven to provide reliable accuracy (on the order of 0.2 eV) in the prediction
of electronic excitation spectra for states which are well-described by promotion
of a single electron from the ground state. Perhaps the most important work in
excited-state coupled cluster theory in the next several years will be the development
of methods for treating “doubly excited” states and the improvement of the accuracy
of EOM-CC to better than 0.1 eV through extension of existing methods for the
efficient inclusion of triply excited determinants in the diagonalization space of
FJ 70,71,105,214-217

e Potential energy surfaces. All coupled cluster methods depend implicitly
upon a reference wavefunction (usually the single-configuration Hartree-Fock
determinant). However, for cases where this reference fails dramatically,
even the CCSD(T) method cannot be expected to provide reliable results.
Bond-breaking provides an excellent example of this behavior; as a ¢ bond
is separated, for instance, a single determinant fails to properly include both
electronic configurations [(0)? and (¢*)?] needed to describe the dissociation
process with even qualitatively accuracy. Since a complete potential energy
surface is vital to research efforts in reaction dynamics, for instance, much
effort has been devoted to the construction of multireference coupled cluster
(MRCC) schemes based primarily on multiconfigurational SCF (MCSCF) reference

76,78,125,218-223  Of particular interest is the work by Piecuch,

wavefunctions.
Adamowicz, and co-workers,?!®219:223 i which a MRCCSD wavefunction, for
example, is obtained via selected triple and quadruple excitations from a full

CCSDTQ wavefunction constructed from a single electronic configuration. This
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approach is similar to that used earlier in multireference configuration interaction
methods.®%22! By retaining a single-determinant reference formalism, one avoids
many of the difficulties of a “true” MCSCF-based approach and automated
techniques for the construction of higher excitation levels (i.e., beyond quadruples)
are promising. In addition, multideterminantal coupled cluster methods such
as the unitary-group approach?®® 58167168 haye been actively pursued in recent
years*!: 42169170 f51 describing biradicals and other “low-spin” electronic states for
which a single-determinant reference is inadequate.

e High-accuracy methods. For properties such as dissociation and
fragmentation energies, coupled cluster theory used in conjunction with large basis
sets is often expected to provide “chemical accuracy,” i.e., £1 kcal/mol. In recent
years, many researchers have asked what would be required to obtain “spectroscopic
accuracy”, i.e., £1 em '* It has been shown in a numerous studies in the
past decade??"23! that the convergence of the coupled cluster (as well as CI and
perturbation theory) energies towards a “basis set limit” is much slower than that
possible with Hartree-Fock. That is, for a given level of electron correlation (e.g.,
CCSD), one must use much more complete basis sets (perhaps including high levels
of orbital angular momentum, s, p, d, f, etc.) relative to Hartree-Fock before
additional improvements to the basis set make no significant contributions to the
computed energy. The source of this problem is a well-known failure by correlated
techniques such as coupled cluster when used with common Gaussian-type basis
functions to describe the behavior of many-electron wavefunctions as electrons
approach one another closely.?? One technique for overcoming this difficulty is

L in the

to include terms which explicitly involve the interelectronic distance, -

“It should be noted that the goal of true spectroscopic accuracy may be unattainable

due to the implicit errors associated with the use of a Born-Oppenheimer, non-relativistic

Hamiltonian to describe molecular systems.??
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correlated wavefunction. When applied in coupled cluster theory, such an approach
has the advantage that the conventional formalism and implementation remain
largely intact, with a number of sophisticated modifications needed to account for
the additional mathematical term(s). The recent work on the linear rj,-CCSD
method by Klopper, Kutzelnigg, Noga, and co-workers?*? and on Gaussian geminals
by Persson and Taylor??? is promising, and further impressive developments are likely

to be reported in the next several years.
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Figure 1: Some basic components of coupled cluster diagrams: (a) hole lines; (b)
particle lines; (c¢) the reference wavefunction, ®g, represented by empty space; (d)
a single-determinant wavefunction, ®¢, which differs from the reference by a single

79

excitation.

Figure 2: Diagrammatic representation of each fragment of the one-particle
component of the Hamiltonian operator, Fy. The excitation level of each diagram
is indicated beneath it. The interaction line is indicated by the dashed horizontal

line capped by the “X”.

Figure 3: Diagrammatic representation of each fragment of the two-particle
component of the Hamiltonian operator, V. The excitation level of each diagram
is indicated beneath it. The interaction line is indicated by the dashed horizontal

line.

Figure 4. Diagrammatic representation of the Tl, TQ, and Ty excitation operators.
The excitation level of each diagram is indicated to its right. The interaction line is

indicated by a solid horizontal bar.
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