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INTRODUCTION
Sin
e its introdu
tion into quantum 
hemistry in the late 1960s by �C���zek andPaldus,1{3 
oupled 
luster theory has emerged as perhaps the most reliable, yet
omputationally a�ordable method for the approximate solution of the ele
troni
S
hr�odinger equation and the predi
tion of mole
ular properties. The purpose ofthis 
hapter is to provide 
omputational 
hemists who seek a deeper knowledge of
oupled 
luster theory with the ba
kground ne
essary to understand the extensiveliterature on this important ab initio te
hnique.In spite of the method's present utility and popularity, the quantum 
hemi
al
ommunity was slow to a

ept 
oupled 
luster theory, perhaps be
ause the earliestresear
hers in the �eld used elegant but unfamiliar mathemati
al tools su
h asFeynman-like diagrams and se
ond-quantization to derive working equations. Nearlyten years after the essential 
ontributions of Paldus and �C���zek, Hurley presenteda re-derivation of the 
oupled 
luster doubles (CCD) equations4 in terms whi
hwere more familiar to quantum 
hemists. Soon thereafter Monkhorst5 developeda general 
oupled 
luster response theory for 
al
ulating mole
ular properties. Bythe end of the 1970s, 
omputer implementations of the theory for realisti
 systemsbegan to appear as the groups of Pople6 and Bartlett7 ea
h developed and testedspin-orbital CCD programs. A few years later, Purvis and Bartlett derived the
oupled 
luster singles and doubles (CCSD) equations and implemented them ina pra
ti
al 
omputer program.8 Sin
e that pioneering a
hievement, the popularityof 
oupled 
luster methods has blossomed, and tremendous e�orts have been madein the 
onstru
tion of highly eÆ
ient CCSD energy 
odes,8{14 in
lusion of higherex
itations in the 
oupled 
luster wavefun
tion,15{34 spin-adaptation of open-shell4



5methods,35{42 as well as development of analyti
 �rst43{54 and se
ond55{59 energyderivatives, and methods to treat ex
ited states.60{74In the following se
tion, we will use the 
luster fun
tion approa
h developedby Sinano�glu75 to justify the well-known exponential form of the 
oupled 
lusterwavefun
tion. This task requires use of the mathemati
al te
hnique knownas se
ond-quantization (also 
alled \o

upation-number" formalism), and weintrodu
e important 
on
epts as they are needed. We then 
onstru
t theoperator equations of 
oupled 
luster theory and address issues su
h as theHausdor� expansion, variational approa
hes, and an eigenvalue perspe
tive onthe 
oupled 
luster problem. In the next se
tion, we develop a set of algebrai
and diagrammati
 tools needed to derive programmable equations for the CCSDmethod, and, using these tools, we dis
uss the property of the energy known assize extensivity. Next, we examine the relationship between the 
oupled 
lusterequations and those of �nite-order many-body perturbation theory, leading toan explanation of the popular (T) 
orre
tion implemented in many quantum
hemi
al program pa
kages. We then dis
uss some of the issues asso
iated with aneÆ
ient 
omputer implementation of 
oupled-
luster-like equations, su
h as matrixformulations, intermediate fa
torization, spin and spatial symmetry simpli�
ations,and atomi
-orbital-based algorithms. Finally, we des
ribe some of the latestdevelopments in the theory, in
luding the implementation of open-shell Brue
knermethods, an area of 
oupled 
luster theory whi
h in re
ent years has proven to bevaluable for a number of diÆ
ult open-shell symmetry-breaking problems.We would like to stress that this 
hapter is a review of 
oupled 
luster theory.It is not primarily intended to provide an analysis of the numeri
al performan
e ofthe 
oupled 
luster model, and we dire
t readers in sear
h of su
h information toseveral re
ent publi
ations.76{79 Instead, we o�er a detailed explanation of the mostimportant aspe
ts of 
oupled 
luster theory at a level appropriate for the general



6
omputational 
hemistry 
ommunity. Although many of the topi
s des
ribed herehave been dis
ussed by other authors,77,78,80,81 this 
hapter is unique in that itattempts to provide a 
on
ise, pra
ti
al introdu
tion to the mathemati
al te
hniquesof 
oupled 
luster theory (both algebrai
 and diagrammati
), as well as a dis
ussionof the eÆ
ient implementation of the method on high-performan
e 
omputers, in amanner a

essible to new
omers to the �eld.



FUNDAMENTAL CONCEPTS
In this se
tion we examine some of the 
riti
al ideas that 
ontribute to mostwavefun
tion-based models of ele
tron 
orrelation, in
luding 
oupled 
luster,
on�guration intera
tion, and many-body perturbation theory. We begin with the
on
ept of the 
luster fun
tion whi
h may be used to in
lude the e�e
ts of ele
tron
orrelation in the wavefun
tion. Using a formalism in whi
h the 
luster fun
tionsare 
onstru
ted by 
luster operators a
ting on a referen
e determinant, we justifythe use of the \exponential ansatz" of 
oupled 
luster theory.80Cluster Expansion of the Wavefun
tionConsider a model system of four ele
trons moving in an arbitrary ele
trostati
 �eldgenerated by the nu
lei in a mole
ule. For our purposes, it is not ne
essary to spe
ifythe number of these nu
lei, their types, or positions; only the general form of theele
troni
 wavefun
tion is of interest. It is 
onvenient to des
ribe the motions ofea
h ele
tron separately by assigning them to one-ele
tron fun
tions, �i(x1), wherex1 is a ve
tor of the 
oordinates (in
luding spin) of ele
tron 1. In addition, ele
tronsare fermions, so the ele
troni
 wavefun
tion must be antisymmetri
 with respe
tto inter
hange of the 
oordinates of any pair of ele
trons. A traditional and veryuseful starting point for su
h a four-ele
tron wavefun
tion is the so-
alled Slaterdeterminant �0 = 1p4!

����������������
�i(x1) �j(x1) �k(x1) �l(x1)�i(x2) �j(x2) �k(x2) �l(x2)�i(x3) �j(x3) �k(x3) �l(x3)�i(x4) �j(x4) �k(x4) �l(x4)

���������������� ; [1℄
7



8where the 1=p4! is a normalization 
onstant. Expansion of this determinantreveals a linear 
ombination of produ
ts of the four fun
tions, �i, �j, �k, and �l,with the ele
troni
 
oordinates xn distributed among them in all possible ways.Sin
e permutation of any two rows in the determinant | whi
h is equivalent tointer
hanging the 
oordinates of any two ele
trons | 
hanges the sign of �0, theantisymmetry prin
iple is maintained.The 
omponent fun
tions �i may be 
hosen in a variety of ways. For example,if the nu
lear �eld were only a single beryllium nu
leus, the one-ele
tron spatialfun
tions 
ould be 
onstru
ted to mimi
 the atomi
 1s and 2s orbitals. For amole
ular system, the fun
tions 
an be 
onstru
ted as a linear 
ombination of atomi
orbitals (AOs) in whi
h ea
h one-ele
tron fun
tion represents a mole
ular orbital(MO) whose AO 
oeÆ
ients are optimized via the Hartree-Fo
k self-
onsistent-�eld(SCF) pro
edure.82 A 
onvenient shorthand notation for this wavefun
tion 
onsistsof a Dira
-notation ket 
ontaining only the diagonal elements of the above matrix,�0 = j�i(x1)�j(x2)�k(x3)�l(x4)i; [2℄where the normalization fa
tor is in
luded impli
itly. As dis
ussed in detail elsewherein Reviews in Computational Chemistry ,77 the single-determinant wavefun
tion failsto a

ount for the instantaneous Coulombi
 intera
tions whi
h keep the ele
trons ofopposite spin apart.82How 
an we improve this so-
alled independent-parti
le approximation su
h thatthe motions of the ele
trons are 
orrelated? Often the set of o

upied orbitals (i.e.,those fun
tions whi
h 
ompose the Slater determinant above) is 
hosen from a largerset of one-ele
tron fun
tions. These \extra" fun
tions are frequently referred to as



9virtual orbitals and may, for example, arise as a byprodu
t of the SCF pro
edure.aWithin the spa
e des
ribed by the full set of orbitals, any fun
tion of N variablesmay be written in terms of N -tuple produ
ts of the �p. For example, a fun
tion oftwo variables may be 
onstru
ted by using all possible binary produ
ts of the set ofone-ele
tron fun
tions, e.g.,f(x1;x2) =Xp>q 
pq�p(x1)�q(x2); [3℄where the double-summation runs over the entire set of one-ele
tron fun
tions andthe notation p > q indi
ates that only unique pairs of fun
tions are in
luded. Insteadof 
orrelating the motions of a spe
i�
 pair of ele
trons, however, we may use amodi�ed form of this expansion to 
orrelate the motions of any two ele
trons withina sele
ted pair of o

upied orbitals | say fun
tions i and j | using a two-parti
le
luster fun
tion, fij(xm;xn) =Xa>b tabij �a(xm)�b(xn); [4℄where the tabij are the 
luster 
oeÆ
ients whose spe
i�
 values are determined viathe ele
troni
 S
hr�odinger equation (see the next se
tion on formal 
oupled 
lustertheory beginning on p. 21). Inserting this into �0 leads to the somewhat-improvedele
troni
 wavefun
tion,	 = j [�i(x1)�j(x2) + fij(x1;x2)℄�k(x3)�l(x4)i; [5℄where the Dira
 shorthand implies a 
orre
tly antisymmetrized wavefun
tionin
luding normalization fa
tors as in Eq. [2℄. In
lusion of the 
luster fun
tion, fij,in the wavefun
tion produ
es a linear 
ombination of Slater determinants involvingaWe will denote those fun
tions that are part of the o

upied spa
e with the subs
riptsi, j, k, : : : ; those within the virtual spa
e with a, b, 
, : : : and arbitrary fun
tions whi
hmay lie in either spa
e with p, q, r, : : :



10repla
ement of o

upied orbitals �i and �j by virtual orbitals �a and �b, su
h that	 = �0 +Xa>b tabij j�a(x1)�b(x2)�k(x3)�l(x4)i: [6℄In addition, the determinantal form of the individual terms in this expansion impliesantisymmetrization of the 
luster 
oeÆ
ients, su
h that tabij = �tabji = �tbaij = tbaji .It should be 
arefully noted here that the 
luster fun
tion, fij(x1;x2), is intendedto 
orrelate the motions of any pair of ele
trons pla
ed in orbitals i and j, and notjust the motions of ele
trons 1 and 2. Sin
e the Slater determinant produ
es a linear
ombination of orbital produ
ts, in
luding terms su
h as[�i(x1)�j(x2) + fij(x1;x2)℄�k(x3)�l(x4) [7℄and [�i(x3)�j(x4) + fij(x3;x4)℄�k(x1)�l(x2); [8℄whi
h di�er only in their distribution of ele
troni
 
oordinates, the 
luster fun
tion
orrelates the motion of every pair of ele
trons found in orbitals �i and �j.Depending on the 
hemi
al system of interest, however, it might be more prudentto 
orrelate the motions of ele
trons in orbitals k and l rather than orbitals i and j.For example, �i and �j might 
orrespond to mole
ular 
ore orbitals, while �k and �lmight 
orrespond to the atomi
 or mole
ular valen
e orbitals. Ele
tron 
orrelation
an be parti
ularly important in the latter set of fun
tions be
ause the valen
eorbitals are often dire
tly involved in the formation of 
hemi
al bonds. In this 
ase,the wavefun
tion would be written as	 = j�i(x1)�j(x2) [�k(x3)�l(x4) + fkl(x3;x4)℄i: [9℄On the other hand, a more intelligent approa
h might be to 
orrelate all possiblepairwise 
ombinations of orbitals in this four-ele
tron system, i.e.,� = j�i�j�k�li+ jfij�k�li � jfik�j�li+ jfil�j�ki+ j�ifjk�li �j�ifjl�ki+ j�i�jfkli+ jfijfkli � jfikfjli+ jfilfjki; [10℄



11where the ele
troni
 
oordinates are now impli
it in the notation, and the signs onindividual terms arise from the permutations in the orbital ordering needed to de�nethe appropriate 
luster fun
tions. However, there is no need to limit this approa
h toonly orbital pairs; following Harris et al.,80 we 
ould introdu
e three-orbital 
lusterfun
tions and in
lude these in our new wavefun
tion to give� = j�i�j�k�li+ jfij�k�li � jfik�j�li+ jfil�j�ki+ j�ifjk�li �j�ifjl�ki+ j�i�jfkli+ jfijfkli � jfikfjli+ jfilfjki+jfijk�li � jfijl�ki+ jfikl�ji+ j�ifjkli: [11℄If one 
ontinues this pro
ess to in
lude all 
luster fun
tions for up to N orbitals(four in the 
ase dis
ussed here), as well as single-orbital \
luster" fun
tions whi
ha

ount for adjustment of the one-ele
tron basis as other 
luster fun
tions are added,we 
ould obtain the exa
t wavefun
tion within the spa
e spanned by the f�pg. Onthe other hand, we might assume that 
lusters larger than pairs are less importantto an adequate des
ription of the system | an assumption supported by the fa
tthat the ele
troni
 Hamiltonian 
ontains operators des
ribing pairwise ele
troni
intera
tions at most.75 We 
ould therefore write a four-ele
tron wavefun
tion whi
hin
ludes all 
lusters of only one and two orbitals as80,83	 = j�i�j�k�li+ jfi�j�k�li+ j�ifj�k�li+ j�i�jfk�li+ j�i�j�kfli+jfifj�k�li+ jfi�jfk�li+ jfi�j�kfli+ j�ifjfk�li+ j�ifj�kfli+j�i�jfkfli+ jfifjfk�li+ jfifj�kfli+ jfi�jfkfli+ j�ifjfkfli+jfij�k�li � jfik�j�li+ jfil�j�ki+ j�ifjk�li � j�ifjl�ki+j�i�jfkli+ jfijfkli � jfikfjli+ jfilfjki+ jfifjfkfli+ [12℄jfijfk�li+ jfij�kfli+ jfijfkfli � jfikfj�li � jfik�jfli � jfikfjfli+jfilfj�li+ jfil�jfli+ jfilfjfli+ jfifjk�li+ j�ifjkfli+ jfifjkfli �jfifjl�ki � j�ifjlfki � jfifjlfki+ jfi�jfkli+ j�ifjfkli+ jfifjfkli:



12Cluster Fun
tions and the Exponential AnsatzThe 
ompli
ated notation of Eq. [12℄ 
an be drasti
ally redu
ed by using a simpleanalyti
 form for the 
luster fun
tions. Note again that ea
h determinant involvinga 
luster fun
tion is a
tually a linear 
ombination of determinants ea
h of whi
hdi�ers from the referen
e, �0, by a spe
i�
 number of orbitals. For example, the27th term in Eq. [12℄ expands to be
omejfij�kfli =Xa>bX
 tabij t
l j�a�b�k�
i; [13℄where we have inserted the de�nition of the two-ele
tron 
luster fun
tion in Eq. [4℄and its one-ele
tron 
ounterpart to indi
ate the pairwise 
orrelation of ele
tronsin orbitals �i and �j as well as the \
orrelation" of ele
trons in orbital �l. Notethat ea
h determinant in the above summation di�ers from the referen
e byexa
tly three orbitals: orbitals �i, �j, and �l are repla
ed by orbitals �a, �b,and �
, respe
tively. Hen
e, ea
h term 
an be written as the result of somesubstitution operator (or produ
ts of su
h operators) a
ting on �0. This task isperhaps most easily a

omplished using the mathemati
al te
hnique known as se
ondquantization.80,82,84We will de�ne a 
reation operator by its a
tion on a Slater determinant:aypj�q : : : �si = j�p�q : : : �si; [14℄where we have added one more 
olumn (orbital) and one more row (ele
tron) toform the new determinant on the right-hand side. We may de�ne an annihilationoperator in a similar manner to obtainapj�p�q : : : �si = j�q : : : �si; [15℄



13where we have removed the �rst 
olumn (orbital) and the �rst row (ele
tron) fromthe original fun
tion.b A given Slater determinant may be written as a 
hain of
reation operators a
ting on the true va
uum (a state 
ontaining no ele
trons ororbitals), i.e., aypayq : : : aysj i = j�p�q : : : �si: [16℄Note also that an annihilation operator a
ting on the va
uum state gives a zeroresult, apj i = 0: [17℄Pairwise permutations of the operators introdu
e 
hanges in the sign of the resultingdeterminant, e.g., ayqaypj i = j�q�pi = �j�p�qi = �aypayqj i: [18℄Therefore, the anti
ommutation relation for a pair of 
reation operators is simplyaypayq + ayqayp = 0: [19℄The analogous relation for a pair of annihilation operators isapaq + aqap = 0: [20℄Therefore, if we 
hange the ordering of a pair of annihilation or 
reation operators,we must also 
hange the sign of the resulting expression. Finally, it may be shownthat the anti
ommutation relation for the \mixed" produ
t isaypaq + aqayp = Æpq; [21℄bThe annihilation operator ap is simply the Hermitian 
onjugate of the 
reation operatorayp. An equivalent perspe
tive on Eq. [14℄, therefore, is the annihilation operator ap a
tingto the left on the bra-state, h�0j, to giveh�q : : : �sjap = h�p�q : : : �sj = (j�p�q : : : �si)y = �aypj�q : : : �si�y :



14where Æpq is the 
onventional Krone
ker delta whi
h equals 1 if p = q and 0 if p 6= q.Using these so-
alled se
ond-quantized operators, we may de�ne the single-orbital
luster operator t̂i �Xa tai ayaai ; [22℄where the operator ai deletes the orbital �i from the determinant on whi
h theoperator a
ts, whereas aya introdu
es the orbital �a in its pla
e. (The ^ is usedto indi
ate a se
ond-quantized operator.) Similarly, a two-orbital 
luster operatorwhi
h substitutes orbital �a for �i and �b for �j is given byt̂ij �Xa>b tabij ayaaybajai ; [23℄(Again note that the order of repla
ement is important for the sign of the resultingdeterminant.) Hen
e, the 27th term of Eq. [12℄ shown expli
itly in Eq. [13℄ may bewritten simply as jfij�kfli = t̂ij t̂lj�0i: [24℄The 
reation operators in Eqs. [22℄ and [23℄ are restri
ted to a
t only on thevirtual orbitals, and the annihilation operators may a
t only on the o

upied orbitals.Therefore, by Eq. [21℄, the 
reation-annihilation operator pairs exa
tly anti
ommute:ayaai + aiaya = Æia = 0; [25℄sin
e the o

upied orbital �i and the virtual orbital �a 
annot be the same.Therefore, by the above equation as well as the anti
ommutation relations givenin Eqs. [19℄ and [20℄, all of the 
reation and annihilation operators in t̂i and t̂ijanti
ommute. Given the additional fa
t that the 
luster operators always 
ontaineven numbers of se
ond-quantized operators, the t̂i and t̂ij operators themselves will



15exa
tly 
ommute.
Equations [22℄ and [23℄ may be used to rewrite the long one- and two-orbital
luster wavefun
tion in Eq. [12℄ above as	 = 0�1 +Xi t̂i + 12Xij t̂it̂j + 16Xijk t̂it̂j t̂k + 12Xij t̂ij+18Xijkl t̂ij t̂kl + 124Xijkl t̂it̂j t̂kt̂l + 12Xijk t̂ij t̂k + 14Xijkl t̂ij t̂k t̂l1A�0: [26℄We may simplify this expression even further by de�ning the total one- andtwo-orbital 
luster operators T̂1 �Xi t̂i =Xia tai ayaai ; [27℄and T̂2 � 12Xij t̂ij = 14Xijab tabij ayaaybajai ; [28℄respe
tively.d More generally, an n-orbital 
luster operator may be de�ned asT̂n = � 1n!�2 nXij:::ab::: tab:::ij:::ayaayb : : : ajai : [29℄This redu
es the wavefun
tion expression to	 = �1 + T̂1 + 12! T̂ 21 + 13! T̂ 31 + T̂2 + 12! T̂ 22 + 14! T̂ 41 + T̂2T̂1 + 12! T̂2T̂ 21��0: [30℄Higher-order terms (e.g., T̂ 32 ) do not appear, of 
ourse, be
ause our example system
ontains only four ele
trons. If we remember that T̂1 and T̂2 
ommute, then all of
Note that 
ommutation of 
luster operators holds only when the o

upied and virtualorbital spa
es are disjoint, as is the 
ase in spin-orbital or spin-restri
ted 
losed-shelltheories. For spin-restri
ted open-shell approa
hes, where singly o

upied orbitals
ontribute terms to both the o

upied and virtual orbital subspa
es, the 
ommutationrelations of 
luster operators are signi�
antly more 
ompli
ated. See Ref. 36 for adis
ussion of this issue.dThe fa
tors of 1=2 and 1=4 are in
luded here to 
orre
t for the \double 
ounting"resulting from the now unrestri
ted summations over i, j, a, and b.



16the terms from the above equation mat
h those from the power series expansion ofan exponential fun
tion! Thus, the general expression for Eq. [30℄ is	 = eT̂1+T̂2�0 � eT̂�0; [31℄whi
h is a rather 
onvenient redu
tion from the original Eq. [12℄.The \exponential ansatz" given in Eq. [31℄ is one of the 
entral equations of
oupled 
luster theory. The exponentiated 
luster operator, T̂ , when applied to thereferen
e determinant, produ
es a new wavefun
tion 
ontaining 
luster fun
tions,ea
h of whi
h 
orrelates the motion of ele
trons within spe
i�
 orbitals. If T̂in
ludes 
ontributions from all possible orbital groupings for the N -ele
tron system(that is, T̂1; T̂2; : : : ; T̂N), then the exa
t wavefun
tion within the given one-ele
tronbasis may be obtained from the referen
e fun
tion. The 
luster operators, T̂n, arefrequently referred to as ex
itation operators, sin
e the determinants they produ
efrom �0 resemble ex
ited states in Hartree-Fo
k theory. Trun
ation of the 
lusteroperator at spe
i�
 substitution/ex
itation levels leads to a hierar
hy of 
oupled
luster te
hniques (e.g., T̂ � T̂1 + T̂2 ! CCSD; T̂ � T̂1 + T̂2 + T̂3 ! CCSDT,et
., where \S", \D", and \T", indi
ate that single-, double-, and triple-ex
itations,respe
tively, are in
luded in the wavefun
tion expansion).Wavefun
tion Separability and Size Consisten
y of the EnergyIt is perhaps useful to 
ompare the exponential ansatz of Eq. [31℄ with theanalogous expansions of other wavefun
tions. In the 
on�guration intera
tion(CI) approa
h,85,86 for example, a linear ex
itation operator is used instead of anexponential, 	CI = �1 + Ĉ��0; [32℄where Ĉ is a linear 
ombination of 
luster-like operators de�ned similarly to T̂ , viz.,Ĉ = Ĉ1 + Ĉ2 + : : :



17= Xia 
ai ayaai + 14Xijab 
abij ayaaybajai + : : : : [33℄Trun
ation of Ĉ at the single- and double-ex
itation level (CISD) leads to awavefun
tion with exa
tly the same number of amplitudes (
ai and 
abij ) as that neededfor the CCSD wavefun
tion (tai and tabij ). However, the latter impli
itly in
ludeshigher ex
itation levels (triples and quadruples) by the in
lusion of T̂ produ
ts inthe power series expansion of eT̂ . Su
h produ
ts are 
ommonly referred to in theliterature as dis
onne
ted wavefun
tion 
ontributions.e Both the CI and CC methodswill produ
e exa
t wavefun
tions if one does not trun
ate Ĉ (full CI) or T̂ (full CC).In fa
t, in the limit of exa
t linear and exponential wavefun
tion expansions, arelationship between the CI and CC amplitudes may be developed5 that revealsthe fa
torization of ea
h level of CI ex
itation into 
onne
ted and dis
onne
ted
omponents, e.g., Ĉ2 = T̂2 + 12 T̂ 21 : [34℄The two di�erent forms of the ex
itation operator in CI and CC theory havesigni�
ant 
onsequen
es for both the energy and wavefun
tion as the number ofele
trons is in
reased or as the (mole
ular) system is separated into fragments.Consider the stru
ture of the 
oupled 
luster and 
on�guration intera
tionwavefun
tions for a generi
 system involving two in�nitely separated (and thereforenon-intera
ting) 
omponents X and Y . If the mole
ular orbitals used to de�ne the
luster fun
tions T̂ and Ĉ are lo
alized on ea
h of the two fragments | a 
hoi
ewhi
h will not a�e
t the energy asso
iated with either the referen
e determinant,�0, or the 
orrelated wavefun
tion, 	CI or 	CC | then the 
luster operators maybe separated into 
omponents involving intrafragment ex
itations only, i.e.,T̂ = T̂X + T̂Y and Ĉ = ĈX + ĈY : [35℄eThis terminology should not be 
onfused with so-
alled dis
onne
ted diagrammati

ontributions, whi
h are dis
ussed later in the 
hapter.



18For example, the amplitudes tabij or 
abij , in whi
h orbitals �i and �a are lo
alizedon fragment X and orbitals �j and �b are lo
alized on fragment Y , will be zero.Thus, the total 
oupled 
luster exponential operator may be written as a produ
t ofindependent 
oupled 
luster operators for ea
h fragment, viz.87	CC = eT̂�0 = eT̂X+T̂Y�0 = eT̂XeT̂Y �0: [36℄Sin
e the referen
e determinant, �0, is fa
torizable into determinants isolated on ea
hfragment (in the lo
alized orbital des
ription), the total 
oupled 
luster wavefun
tionmay be written as a produ
t of 
oupled 
luster wavefun
tions for ea
h of theseparated fragments.f As a result, the sum of the 
oupled 
luster energies 
omputedfor ea
h fragment separately is the same as that 
omputed for the \supermole
ule"in whi
h the fragments are in
luded together in the 
al
ulation,ECC = EXCC + EYCC : [37℄This property of the 
oupled 
luster energy is 
ommonly known as \size
onsisten
y".89For the 
on�guration intera
tion wavefun
tion, however, multipli
ativeseparability is not possible:	CI = �1 + Ĉ��0 = �1 + ĈX + ĈY ��0: [38℄As a result, the CI energy is not size 
onsistent, and the sum of the energies of theseparated fragments di�ers from the CI energy of the supermole
ule,ECI 6= EXCI + EYCI : [39℄fIt should be noted that the lo
alized orbital requirement is used here stri
tly for ease ofanalysis, and the property of multipli
ative separability of the 
oupled 
luster wavefun
tiondoes not stri
tly depend on this 
omputational requirement, as dis
ussed in Ref. 88.



19In the event that the CI 
luster operator, Ĉ, is not trun
ated, however, it is possibleto write the resulting full CI wavefun
tion as a produ
t of wavefun
tions for ea
hseparated fragment, sin
e the linear operator may be transformed into an exponentialusing a generalized form of Eq. [34℄.Consider the 
lassi
 example of an ensemble of hydrogen mole
ules. Both theCCSD and CISD wavefun
tions are exa
t (within the given one-ele
tron basis set)for a single H2 mole
ule sin
e there are only two ele
trons to be 
orrelated. However,errors are introdu
ed in the CI energy in the 
ase of two (or more) non-intera
tingH2 units due to the la
k of multipli
ative separability of the wavefun
tion. The size
onsistent CCSD method, on the other hand, produ
es the 
orre
t total energy,regardless of the number of non-intera
ting H2 monomers in the system, sin
ethe total 
oupled 
luster wavefun
tion may be written as a produ
t of separatedwavefun
tions, ea
h of whi
h is exa
t for the given hydrogen mole
ule.Some 
aution should be exer
ised in the appli
ation of the size 
onsisten
y
on
ept when applied to open-shell fragments, however. As Taylor has re
entlypointed out,81 a given method may be size 
onsistent for some systems but notfor others. For example, the spin-restri
ted Hartree-Fo
k (RHF) approa
h is size
onsistent for the disso
iation of the hydrogen 
uoride in its 3� ex
ited state intoatoms, HF(3�)! H(2S) + F(2P ); [40℄sin
e the single determinant wavefun
tion 
an 
orre
tly des
ribe the high-spinele
troni
 states in both the supermole
ule and the separated fragments. TheRHF method is not size 
onsistent, however, when des
ribing the disso
iation ofthe ground state of HF, into these same atomi
 states,HF(1�+)! H(2S) + F(2P ): [41℄



20This size-in
onsisten
y o

urs be
ause the two open-shell ele
trons on theatoms must be singlet-
oupled to produ
e the 
orre
t disso
iation limit, and asupermole
ule, two-determinant approa
h is therefore required. This diÆ
ulty alsoapplies to 
oupled 
luster or perturbation-based wavefun
tions that use the RHFdeterminant as a referen
e; these methods 
annot be size 
onsistent for a givenmole
ular system unless the referen
e wavefun
tion is size 
onsistent.A more general property of the 
oupled 
luster energy whi
h is related to size
onsisten
y is \size extensivity." This is a stri
tly mathemati
al 
hara
teristi
 ofthe wavefun
tion whi
h relates to s
aling of the 
omputed energy with respe
tto the number of 
orrelated ele
trons and the resulting energy dependen
e of thewavefun
tion amplitude equations. Size extensivity is not dependent on the systemunder study, and it applies to all regions of the potential energy surfa
e | not justto the fragmentation limit. We will return to this topi
 later in the 
hapter after wehave dis
ussed the algebrai
 and diagrammati
 te
hniques needed to derive working
oupled 
luster equations.



FORMAL COUPLED CLUSTER THEORY
The exponential ansatz des
ribed above is essential to 
oupled 
luster theory, but wedo not yet have a re
ipe for determining the so-
alled \
luster amplitudes" (tai , tabij ,et
.) whi
h parameterize the power series expansion impli
it in Eq. [31℄. Naturally,the starting point for this analysis is the ele
troni
 S
hr�odinger equation,Ĥj	i = Ej	i; [42℄where the 
oupled 
luster wavefun
tion, 	CC � eT̂�0, is used to approximate theexa
t solution, 	, ĤeT̂ j�0i = EeT̂ j�0i: [43℄Using a \proje
tive" te
hnique, one may left-multiply this equation by the referen
e,�0, to obtain an expression for the energy,h�0jĤeT̂ j�0i = Eh�0jeT̂ j�0i = E; [44℄where intermediate normalization, h�0j	CCi = 1, is assumed. Additionally, onemay obtain expressions for the 
luster amplitudes by left-proje
ting the S
hr�odingerequation by the ex
ited determinants produ
ed by the a
tion of the 
luster operator,T̂ , on the referen
e, h�ab:::ij::: jĤeT̂ j�0i = Eh�ab:::ij::: jeT̂ j�0i; [45℄where j�ab:::ij::: i represents an ex
ited determinant in whi
h orbitals �i, �j, et
. havebeen repla
ed with orbitals �a, �b, et
.g Proje
tion by the determinant j�abij i, forexample, will produ
e an equation for the spe
i�
 amplitude tabij (
oupled to otheramplitudes). These equations are non-linear (due to the presen
e of eT̂ ) and energydependent. Furthermore, they are formally exa
t; if the 
luster operator, T̂ , is notgIn se
ond-quantization terminology, j�ab:::ij::: i = ayaayb : : : ajai j�0i.21



22trun
ated, the exa
t wavefun
tion within the spa
e spanned by the set of orthogonalone-ele
tron fun
tions, �p, may be obtained.Trun
ation of the Exponential AnsatzRe
all that the exponentiated operator may be expanded in a power series aseT̂ = 1 + T̂ + T̂ 22! + T̂ 33! + : : : : [46℄Inserting this into the energy expression Eq. [44℄ we obtainh�0jĤ(1 + T̂ + T̂ 22! + T̂ 33! + : : :)j�0i = E; [47℄whi
h be
omes, after distributing terms,h�0jĤj�0i+ h�0jĤT̂ j�0i+ h�0jĤ T̂ 22! j�0i+ h�0jĤ T̂ 33! j�0i+ : : : = E: [48℄Note that Ĥ is at most a two-parti
le operator and that T̂ is at least a one-parti
leex
itation operator. Then, assuming that the referen
e wavefun
tion is a singledeterminant 
onstru
ted from a set of one-ele
tron fun
tions, Slater's rules82 statethat matrix elements of the Hamiltonian between determinants that di�er by morethan two orbitals are zero. Thus, the fourth term on the left-hand side of the aboveequation 
ontains, at the least, threefold ex
itations, and, as a result, that matrixelement (and all higher-order elements) ne
essarily vanish. The energy equationthen simpli�es to h�0jĤj�0i+ h�0jĤT̂ j�0i+ h�0jĤ T̂ 22! j�0i = E: [49℄This is the natural trun
ation of the 
oupled 
luster energy equation; an analogousphenomenon o

urs for the amplitude equation (Eq. [45℄). This trun
ation dependsonly on the form of Ĥ and not on that of T̂ or on the number of ele
trons. Equation[49℄ is 
orre
t even if T̂ is trun
ated to a parti
ular ex
itation level.



23The Hausdor� ExpansionAlthough the energy and amplitudes expressions (Eqs. [44℄ and [45℄, respe
tively)are useful for gaining a formal understanding of the 
oupled 
luster method, theyare not amenable to pra
ti
al 
omputer implementation.90 One must �rst rewritethese expressions in terms of the one- and two-ele
tron integrals arising from theele
troni
 Hamiltonian as well as the 
luster amplitudes, whi
h, apart from theenergy itself, are the only unknown quantities. To that end, it is 
onvenient toexer
ise mathemati
al foresight and multiply the S
hr�odinger equation (Eq. [43℄) bythe inverse of the exponential operator, e�T̂ . Upon subsequent left-proje
tion by thereferen
e, �0, and the ex
ited determinants, �ab:::ij::: , one obtains modi�ed energy andamplitude equations, h�0je�T̂ ĤeT̂ j�0i = E [50℄and h�ab:::ij::: je�T̂ ĤeT̂ j�0i = 0; [51℄respe
tively, whi
h involve the similarity-transformed Hamiltonian, e�T̂ ĤeT̂ .Equations [50℄ and [51℄ de�ne the 
onventional 
oupled 
luster method. It maybe shown that these expressions are equivalent to Eqs. [44℄ and [45℄,5,80 but withtwo advantages. First, the amplitude equations (Eq. [51℄) are now de
oupledfrom the energy equation (Eq. [50℄). Se
ond, a simpli�
ation via the so-
alledCampbell-Baker-Hausdor� formula91 of e�T̂ ĤeT̂ leads to a linear 
ombination ofnested 
ommutators of Ĥ with the 
luster operator, T̂ , viz.e�T̂ ĤeT̂ = Ĥ + hĤ; T̂ i+ 12! hhĤ; T̂ i ; T̂ i+ 13! hhhĤ; T̂ i ; T̂ i ; T̂ i+14! hhhhĤ; T̂ i ; T̂ i ; T̂ i ; T̂ i+ : : : : [52℄This expression is usually referred to simply as the Hausdor� expansion, andalthough it may not immediately appear to be a simpli�
ation of the 
oupled 
luster



24equations, the in�nite series trun
ates naturally in a manner somewhat analogousto that des
ribed earlier for the operator, ĤeT̂ .As shown expli
itly in Refs. 84, 80, and 92, the 
reation and annihilationoperators des
ribed earlier may be used to represent dynami
al operators su
h asthe ele
troni
 Hamiltonian:Ĥ =Xpq hpqaypaq + 14 Xpqrshpqjjrsiaypayqasar: [53℄In this expression, hpq � h�pjĥj�qi represents a matrix element of the one-ele
tron
omponent of the Hamiltonian, ĥ, while hpqjjrsi � h�p�qj�r�si � h�p�qj�s�riis its antisymmetrized two-ele
tron 
ounterpart. Equation [53℄ 
ontains generalannihilation and 
reation operators (e.g., ayp or aq) whi
h may a
t on orbitals ineither the o

upied or virtual subspa
es. The 
luster operators, T̂n, on the otherhand, 
ontain operators whi
h are restri
ted to a
t in only one of these spa
es(e.g., ayb whi
h may a
t only on the virtual orbitals). As pointed out earlier, the
luster operators therefore 
ommute with one another, but not with the Hamiltonian,Ĥ. For example, 
onsider the 
ommutator of the pair of general se
ond-quantizedoperators from the one-ele
tron 
omponent of the Hamiltonian in Eq. [53℄ with thesingle-ex
itation pair found in the 
luster operator, T̂1:haypaq; ayaai i = aypaqayaai � ayaaiaypaq: [54℄The anti
ommutation relations of annihilation and 
reation operators given inEqs. [19℄, [20℄, and [21℄ may be applied to the two terms on the right-hand sideof this expression to givehaypaq; ayaai i = aypÆqaai � ayaÆipaq; [55℄The Krone
ker delta fun
tions, Æqa and Æip, resulting from Eq. [21℄ 
annot besimpli�ed to 1 or 0 be
ause the indi
es p and q may refer to either o

upied or virtual



25orbitals. The important point here, however, is that the 
ommutator has redu
ed thenumber of general-index se
ond-quantized operators by one. Therefore, ea
h nested
ommutator from the Hausdor� expansion of Ĥ and T̂ serves to eliminate one of theele
troni
 Hamiltonian's general-index annihilation or 
reation operators in favorof a simple delta fun
tion. Sin
e Ĥ 
ontains at most four su
h operators (in itstwo-ele
tron 
omponent), all 
reation or annihilation operators arising from Ĥ willbe eliminated beginning with the quadruply nested 
ommutator in the Hausdor�expansion. All higher-order terms will 
ontain 
ommutators of only the 
lusteroperators, T̂ , and are therefore zero. Hen
e, Eq. [52℄ trun
ates itself naturallyafter the �rst �ve terms shown.80 This 
onvenient property results entirely fromthe two-ele
tron property of the Hamiltonian and the fa
t that the 
luster operators
ommute; it is not dependent on the number of ele
trons in the system, the level ofsubstitution in
luded in T̂ , or any 
onsideration of the types of determinants uponwhi
h the operators a
t.Using the trun
ated Hausdor� expansion, we may obtain analyti
 expressionsfor the 
ommutators in Eq. [52℄ and insert these into the 
oupled 
luster energy andamplitude equations (Eqs. [50℄ and [51℄, respe
tively). However, this is only the �rststep in obtaining expressions whi
h may be eÆ
iently implemented on the 
omputer.We must next 
hoose a trun
ation of T̂ and then derive expressions 
ontaining onlyone- and two-ele
tron integrals and 
luster amplitudes. This is a formidable task towhi
h we will return in later se
tions.A Variational Coupled Cluster Theory?The \proje
tive" te
hniques des
ribed above for solving the 
oupled 
luster equationsrepresent a parti
ularly 
onvenient way of obtaining the amplitudes whi
h de�nethe 
oupled 
luster wavefun
tion, eT̂�0. However, the asymmetri
 energy formula



26shown in Eq. [50℄ does not 
onform to any variational 
onditions where the energyis determined from an expe
tation value equation. As a result, the 
omputed energywill not be an upper bound to the exa
t energy in the event that the 
luster operator,T̂ , is trun
ated. But the exponential ansatz does not require that we solve the
oupled 
luster equations in this manner. We 
ould, instead, 
onstru
t a variationalsolution by requiring that the amplitudes minimize the expression1,2Eexa
t � E = h�0j(eT̂ )yĤeT̂ j�0ih�0j(eT̂ )yeT̂ j�0i = h	jĤj	ih	j	i : [56℄Unfortunately, this equation is 
onsiderably more 
omplex than the proje
tive energyexpression given in Eq. [50℄ sin
e there is no natural trun
ation of its power seriesexpansion,h�0j(eT̂ )yĤeT̂ j�0i = h�0j(1+ T̂ y+ 12 �T̂ y�2+ : : :)Ĥ(1 + T̂ + 12 �T̂�2+ : : :)j�0i: [57℄For example, in the term h�0jT̂ yĤT̂ j�0i, whi
h is in
luded in the above equation,as T̂ 
reates an ex
ited determinant from j�0i on the right, T̂ y 
reates an ex
iteddeterminant from h�0j on the left. Thus, the Hamiltonian matrix elements will notvanish at some high ex
itation level, and the series will not terminate before theN -ele
tron limit. Trun
ation of this expression for large numbers of terms appearsto be arbitrary at best.The ostensible impra
ti
ality of a variational 
oupled 
luster theory raises animportant question as to the physi
al reality of the 
oupled 
luster energy as
omputed using proje
tive, asymmetri
 te
hniques. Quantum me
hani
s di
tatesthat physi
al observables (su
h as the energy) are expe
tation values of Hermitianoperators. The 
oupled 
luster energy expression 
ontains the operator e�T̂ ĤeT̂ ,



27whi
h is not Hermitian, regardless of the trun
ation of T̂ :h�e�T̂ ĤeT̂�y = �eT̂�y Ĥ �e�T̂�y = eT̂ yĤe�T̂ y 6= e�T̂ ĤeT̂ : [58℄However, if T̂ is not trun
ated, the similarity transformed operator has an energyeigenvalue spe
trum that is identi
al to the original Hermitian operator, Ĥ, thusjustifying its formal use in quantum me
hani
al models. Pra
ti
ally speaking, the
oupled 
luster energy tends to 
losely approximate the expe
tation value resulteven when T̂ is trun
ated. Furthermore, one might spe
ulate that some measure ofthe di�eren
e between the expe
tation value and asymmetri
 energies | perhaps asmeasured by the asymmetry of the 
oupled 
luster redu
ed density65 |might proveto be a useful diagnosti
 of the reliability of results obtained from the 
oupled 
lustermethod for spe
i�
 systems. This issue has been re
ently dis
ussed by Kutzelnigg.93Variational 
oupled 
luster methods that make use of Eq. [57℄ have been studiedby several resear
hers. The unitary 
oupled 
luster (UCC) approa
h in whi
hthe 
luster operator T̂ is repla
ed by T̂ � T̂ y (where T̂ y indi
ates a de-ex
itationoperator whi
h is the Hermitian adjoint of T̂ ) was pursued by Ho�mann andhThe inequality with the �nal term in this expression relies on the fa
t that theHermitian adjoint of an ex
itation (
luster) operator, T̂ , is a de-ex
itation operator as,
an be seen from the properties of its 
omponent annihilation and 
reation operators. Forexample, we note that T̂1 =Xia tai ayaai 6= T̂ y1 =Xia (tai )� ayiaa:On the other hand, the inverse of the exponentiated ex
itation operator, e�T̂ , is also anex
itation operator, as 
an be seen from its power series expansion,e�T̂ = 1� T̂ + 12 T̂ 2 � 13! T̂ 3 + : : : :



28Simons.94,95 The in�nite series in this 
ase is not trun
ated arbitrarily, but insteadby identifying whi
h terms are needed to 
omplete the series through a parti
ularorder of perturbation theory. Bartlett and Noga have 
onstru
ted an alternativetheory, termed the expe
tation value 
oupled 
luster (XCC) method,96 in whi
h theusual de�nition of T̂ is retained and Eq. [57℄ is used, but again the series trun
ationis based on perturbation theory arguments. Finally, we note the extended 
oupled
luster method (ECCM) of Arponen and Bishop,97,98 whi
h uses a modi�ed energyfun
tional in
luding an additional exponentiated deex
itation operator analogous toeT̂ y. These as well as other variational and semi-variational approa
hes to the 
lusterexpansion have been reviewed re
ently by Bartlett et al.99 and by Szalay et al.100An Eigenvalue Approa
h to Coupled Cluster TheoryUp to this point, our dis
ussion has fo
used on the expansion of the wavefun
tionusing the exponential ansatz given in Eq. [31℄. When the 
luster operator, T̂ ,is trun
ated, the resulting CC wavefun
tion may be viewed as an approximateeigenfun
tion of the exa
t ele
troni
 Hamiltonian. However, another equallyvalid perspe
tive fo
uses instead on 
onstru
tion of the exa
t eigenve
tors of anapproximate Hamiltonian. In 
on�guration intera
tion theory, for example, one
onventionally represents the ele
troni
 Hamiltonian within a determinantal basis
onsisting of the referen
e (�0), single ex
itations (�ai ), double ex
itations (�abij ),et
. In the CISD approximation the Hamiltonian is represented s
hemati
ally asĤCISD = 0BBBBBB� ESCF 0 Ĥ0D0 ĤSS ĤSDĤD0 ĤDS ĤDD
1CCCCCCA ; [59℄where ĤSD, for example, represents the blo
k of Hamiltonian matrix elementsbetween singly and doubly ex
ited determinants and ESCF = h�0jĤj�0i. We assume



29here that Brillouin's theorem82 holds for the referen
e determinant, and therefore thematrix elements involving �0 and singly ex
ited determinants are zero. The CISDenergy is the lowest eigenvalue of this Hermitian matrix, and the CISD wavefun
tionis the 
orresponding eigenve
tor, i.e.,ĤCISDj	CISDi = ECISDj	CISDi: [60℄The 
oupled 
luster \S
hr�odinger equation", whi
h leads to the energy andamplitude expressions given in Eqs. [50℄ and [51℄, may be written ase�T̂ ĤeT̂ j�0i = Ej�0i: [61℄Like Eq. [60℄, this equation represents an eigenvalue problem101 in whi
h thesimilarity-transformed Hamiltonian, �H � e�T̂ ĤeT̂ , is used in pla
e of the bareele
troni
 Hamiltonian, Ĥ. The ground-state eigenve
tor of �H is simply j�0i witheigenvalue E. However, �H is not Hermitian, unlike the CI Hamiltonian, and itsmatrix representation is therefore non-symmetri
. In the CCSD approximation, forexample, �HCCSD = 0BBBBBB� ECCSD �H0S �H0D0 �HSS �HSD0 �HDS �HDD
1CCCCCCA ; [62℄where the CCSD energy is given by h�0j �Hj�0i, by Eq. [50℄ and �HDS 6= �HSD. Theblo
ks of matrix elements h�ai j �Hj�0i and h�abij j �Hj�0i are both zero be
ause the T̂amplitudes whi
h parameterize the similarity transformation of Ĥ into �H satisfy theequations, 0 = h�ai j �Hj�0i [63℄and 0 = h�abij j �Hj�0i; [64℄



30whi
h are simply spe
i�
 
ases of Eq. [51℄. Furthermore, unlike the CI 
ase, �H0Sis nonzero in spite of Brillouin's theorem be
ause �H in
ludes 
ontributions fromprodu
ts of the bare Hamiltonian with the 
luster operators, T̂ .As a result of the asymmetry of �H, the right-hand eigenvalue problem given inEq. [61℄ is di�erent from the left-hand eigenvalue problem,hLj �H = hLjE: [65℄The 
omputed energy, E, however, is the same for both equations. In Eq. [65℄ above,the left eigenve
tor, hLj, may be written in terms of a 
luster operator, L̂, a
ting onthe referen
e from the right, viz. hLj � h�0jL̂: [66℄The operator L̂ may be de�ned in analogy to the 
luster operator, T̂ , as a sum ofof 
luster operators, L̂ = 1 + L̂1 + L̂2 + : : : : [67℄The leading term of 1, whi
h does not appear in T̂ (
f. Eq. [29℄), is required in orderthat the left- and right-hand eigenve
tors have unit overlap with one another. Unlikethe 
luster operators, T̂n, the operators L̂n a
t to the left on h�0j. Therefore, it is
onvenient to de�ne them as de-ex
itation operators (or, equivalently, as bra-stateex
itation operators), L̂n = � 1n!�2 nXij:::ab::: lij:::ab:::ayiayj : : : abaa; [68℄The task of determining the left-hand ground-state eigenve
tor of �H is thus redu
edto determining the amplitudes lij:::ab:::. The ground-state 
oupled 
luster energy maythen be written as E = h�0jL̂ �Hj�0i; [69℄



31where the left and right wavefun
tions are assumed to be normalized a

ordingto h�0jL̂j�0i = 1. This expression, whi
h is more general than Eq. [50℄, provides aparti
ularly useful starting point for the derivation of 
oupled 
luster analyti
 energyderivatives; the left-hand eigenve
tor, h�0jL̂, is related to the �̂ operator whi
harises due to the response of the 
luster amplitudes to the external perturbationparameter.49The 
on
ept of the 
oupled 
luster method as an eigenvalue problemmay be easilygeneralized to in
lude ex
ited states (in this 
ase, states that are not the lowestin energy within a given symmetry). We may write the more general right-handproblem as �HR̂(m)j�0i = EmR̂(m)j�0i; [70℄where R̂(m) = R̂0(m) + R̂1(m) + R̂2(m) + : : : [71℄represents a 
luster operator expansion for the m-th ex
ited state with energy Em.For the ground state, R̂(0) = 1, as des
ribed above. Similarly, the left-handeigenvalue problem be
omesh�0jL̂(m) �H = h�0jL̂(m)Em: [72℄\Biorthonormality" of the left-hand and right-hand eigenve
tors may be enfor
edsu
h that h�0jL̂(m)R̂(n)j�0i = Æmn; [73℄leads to the generalized 
oupled 
luster energy expressionEm = h�0jL̂(m) �HR̂(m)j�0i: [74℄Note that the biorthonormality of the left- and right-hand states does not implyorthonormality of the left- or right-hand states among themselves, e.g.,h�0jR̂y(m)R̂(n)j�0i 6= Æmn: [75℄



32The eigenvalue perspe
tive des
ribed above does not o�er any 
omputational
onvenien
e for the ground-state problem be
ause one must still use Eq. [51℄to determine the 
luster amplitudes that de�ne the similarity transformation ofthe ele
troni
 Hamiltonian, Ĥ, into the CC Hamiltonian, �H. However, thisperspe
tive does provide a rather simple CI-like approa
h for determining ex
itedstate wavefun
tions. Equation-of-motion 
oupled 
luster theory (EOM-CC),5,60{63,65the name of whi
h is based on early formulations involving response operators, hasseen a 
onsiderable rise in popularity in re
ent years. The EOM-CCSD method,65,73for example, is de�ned as the diagonalization of the CCSD e�e
tive Hamiltonian,�HCCSD (where the 
luster amplitudes are taken from the 
orresponding CCSDground-state energy 
al
ulation) in the spa
e of all singly and doubly ex
iteddeterminants. It should be noted, however, that trun
ation of the 
luster operator,T̂ , in the de�nition of �H does not introdu
e errors into the EOM-CC energy, be
ausethe exa
t energy would still be obtained if the diagonalization basis were 
omplete.Mu
h e�ort has been devoted re
ently to the development of a variety ofex
ited-state 
oupled 
luster te
hniques whi
h are related to EOM-CC. For example,the linear-response 
oupled 
luster (LR-CC) approa
h73 originally des
ribedby Monkhorst5 and re
ently implemented by several groups69,70,102{105 
an beused to obtain identi
al results to those given by 
onventional EOM-CC. Inaddition, the symmetry-adapted 
luster (SAC-CI) method devised independentlyby Nakatsuji106{108 some years ago may be viewed as an approximation to EOM-CCand LR-CC. A relationship between EOM-CC and Fo
k-spa
e multi-referen
e
oupled 
luster theory (FS-MRCC)64,109{112 has been exploited in the 
onstru
tionof methods for des
ribing 
lasses of doublet ele
troni
 states whi
h are a

essible viaeither ele
tron-atta
hment (EOMEA-CC)88,113 or ionization (EOMIP-CC)67,109{111from a given referen
e. Finally, we note the re
ent work by Nooijen and Bartletton the similarity-transformed equation-of-motion 
oupled 
luster (STEOM-CC)



33method,74,114 in whi
h the e�e
tive Hamiltonian des
ribed above is furthertransformed using a redu
ed 
luster operator, Ŝ, whi
h serves to de
ouple singlyex
ited determinants from doubly and triply ex
ited determinants in �H.



DERIVATION OF THE COUPLED CLUSTEREQUATIONS
\It is the need to remove the `unlinked 
lusters' and the introdu
tionof Feynman diagrams whi
h make MBPT [and CC theory℄ appearunfamiliar to quantum 
hemists."115 | K. F. FreedIn this se
tion we 
onstru
t working equations for the 
oupled 
luster singlesand doubles (CCSD) method. Beginning from the approximation T̂ � T̂1 + T̂2, weuse algebrai
 and diagrammati
 te
hniques to obtain programmable equations forthe 
luster amplitudes, tai and tabij , in terms of the one- and two-ele
tron integralsof the ele
troni
 Hamiltonian. As a �rst step we must introdu
e a few importanttools of se
ond quantization su
h as normal ordering and Wi
k's theorem to makethe mathemati
al analysis mu
h less 
ompli
ated. The approa
h des
ribed heremay easily be extended to higher-order 
luster approximations (e.g., CCSDT andCCSDTQ, where the latter in
ludes quadruple ex
itations), as well as many-bodyperturbation theory expressions.As indi
ated in Karl Freed's quote above, the general quantum 
hemistry
ommunity has been slow to a

ept diagrammati
 analyses of many-bodyperturbation theory and 
oupled 
luster methods, and, until re
ently, thesete
hniques have been used by relatively few resear
hers in the �eld. One of the goalsof this review is to explain in straightforward terms one diagrammati
 approa
h
ommonly used for the 
onstru
tion of 
oupled 
luster equations. While attemptingto be somewhat rigorous in the algebrai
 derivation of the 
oupled 
luster equations,we present the 
orresponding diagrams with only minimal justi�
ation. For readers34



35with a strong mathemati
al ba
kground who are interested in more detail, anextensive analysis of a similar diagrammati
 te
hnique may be found in the re
enttext by Harris, Monkhorst, and Freeman.80Normal-Ordered Se
ond-Quantized OperatorsAs stated in Merzba
her's text on quantum me
hani
s91 (Ch. 21, x4), anormal-ordered string of se
ond-quantization operators is one in whi
h we �nd \allannihilation operators standing to the right of all 
reation operators." Normalordering of su
h strings provides a bookkeeping system by whi
h the nonzeromatrix elements of se
ond-quantized operators may be more easily identi�ed. Asan example, 
onsider an arbitrary string of annihilation and 
reation operators,Â = apayqarays. By appli
ation of the anti
ommutation relations given in Eqs. [19℄,[20℄, and [21℄, we may move the two annihilation operators to the right and thereforewrite the string in an equivalent form asÂ = apayqarays= Æpqarays � ayqaparays= ÆpqÆrs � Æpqaysar � Ærsayqap + ayqapaysar= ÆpqÆrs � Æpqaysar � Ærsayqap + Æpsayqar � ayqaysapar: [76℄Three of the �ve terms in the �nal rearrangement 
ontain operator strings of redu
edlength and the �rst term 
ontains only Krone
ker delta fun
tions. Note also that allof the operator strings on the right-hand side of the �nal equality are normal orderedby Merzba
her's de�nition. If we now evaluate the quantum me
hani
al expe
tationvalue of this operator in the true va
uum state, j i, we obtainih jÂj i = h jÆpqÆrsj i � h jÆpqaysarj i � h jÆrsayqapj i+ h jÆpsayqarj i � h jayqaysaparj iiThe va
uum, j i, is a state 
ontaining no ele
trons.



36= ÆpqÆrs; [77℄where we assume that the va
uum state is normalized. Hen
e, the only term of Â inEq. [76℄ whi
h produ
es a nonzero result is the one 
ontaining no se
ond-quantizedoperators; all other terms involve appli
ation of an annihilation operator to j i onthe right.If, on the other hand, we wish to evaluate a matrix element of Â involvingdeterminants other than j i on the left and right, normal ordering simpli�es thisanalysis as well. For example, 
onsider the matrix element of Â between thesingle-parti
le states, h�tj and j�ui,h�tjÂj�ui = h jat Âayuj i: [78℄Sin
e the left- and right-hand states may be written simply as single annihilation and
reation operators a
ting on the va
uum, the desired matrix element of Â may berewritten as the va
uum expe
tation value of a new operator, B̂ � at Âayu. Therefore,we need only rewrite B̂ in normal order and sele
t only those terms whi
h 
ontainno annihilation or 
reation operators as we did in Eq. [77℄. After mu
h algebrai
manipulation, whi
h we shall omit here, it 
an be shown thath�tjÂj�ui = h jB̂j i = ÆtuÆpqÆrs + ÆtqÆpsÆru � ÆtqÆpuÆrs � ÆtsÆpqÆru: [79℄By rearranging a given string of annihilation and 
reation operators into anormal-ordered form, matrix elements of su
h operators between determinantalwavefun
tions may be evaluated in a relatively algorithmi
 manner. However, su
han approa
h based on the dire
t appli
ation of the anti
ommutation relations 
anbe quite tedious even for relatively short operator strings, and many opportunitiesfor error may arise.



37Wi
k's Theorem for the Evaluation of Matrix ElementsUsing the anti
ommutation relations of Eqs. [19℄, [20℄, and [21℄, an arbitrary stringof annihilation and 
reation operators 
an be written as a linear 
ombinationof normal-ordered strings (most of whi
h 
ontain redu
ed numbers of operators)multiplied by Krone
ker delta fun
tions. These redu
ed terms may be viewed asarising from so-
alled \
ontra
tions" between operator pairs. A 
ontra
tion betweentwo arbitrary annihilation/
reation operators, A and B, is de�ned asAB � AB � fABgv; [80℄where the notation fABgv indi
ates the normal-ordered form of the pair (thesubs
ript v will be explained shortly). That is, the 
ontra
tion between the operatorsis simply the original ordering of the pair minus the normal-ordered pair. Forexample, if both operators are annihilation or 
reation operators, the 
ontra
tionis zero be
ause su
h pairs are already normal ordered:apaq = apaq � fapaqgv = apaq � apaq = 0 [81℄and aypayq = aypayq � faypayqgv = aypayq � aypayq = 0: [82℄In addition, a third 
ombination where A is a 
reation operator and B is anannihilation operator is also zero, sin
e the string is again already normal ordered:aypaq = aypaq � faypaqgv = aypaq � aypaq = 0: [83℄



38The �nal 
ombination where A is an annihilation operator and B is a 
reationoperator is not zero, however, due to the anti
ommutation relations in Eq. [21℄:japayq = apayq � fapayqgv = apayq + ayqap = Æpq : [84℄Note that we must maintain the 
orre
t sign when the operators in the bra
kets,f gv, are reordered.Wi
k's theorem116 provides a re
ipe by whi
h an arbitrary string of annihilationand 
reation operators, ABC : : :XY Z, may be written as a linear 
ombination ofnormal-ordered strings. S
hemati
ally, Wi
k's theorem isABC : : :XY Z = fABC : : :XY Zgv [85℄+ XsinglesfAB : : :XY Zgv+ XdoublesfABC : : :XY Zgv+ : : : ;where \singles," \doubles," et
. refer to the number of pairwise 
ontra
tions in
ludedin the summation. The bra
ket notation, f gv, has again been used to indi
ate thenormal-ordered form of the given string. If we apply this theorem to the operatorfrom the last se
tion, Â, we obtainÂ = fapayqaraysgv + fapayqaraysgv + fapayqaraysgv + fapayqaraysgv + fapayqaraysgv; [86℄where only the nonzero 
ontra
tions have been in
luded (
f. Eqs. [81℄ - [84℄). Theevaluation of the pairwise 
ontra
tions may introdu
e sign 
hanges be
ause the stringof operators must be permuted to bring the pair together before the 
ontra
tionjNote that the use of the bra
kets, f gv, around a string implies that the operators
ontained therein, ex
ept for any pair being 
ontra
ted, exa
tly anti
ommute. Hen
e, ageneral term su
h as fABC : : : XY Zgv may be written exa
tly as �fBAC : : : XY Zgv,without 
on
ern for the anti
ommutation relations.



39may be evaluated. If the number of permutations is odd, the sign is negative; if thenumber is even, the sign is positive. For example, a 
ontra
tion of the formfABCDgv = fADBCgv [87℄would have a positive sign sin
e two permutations are ne
essary to bring operatorsA and D into adja
en
y, but a 
ontra
tion of the formfABCDgv = � fACBDgv [88℄would have a negative sign sin
e only one permutation is ne
essary to bring operatorsA and C together. Thus, the 
ontra
tion introdu
es the sign (�1)P , where P is thenumber of permutations required to bring the operators into adja
en
y. Evaluatingthe 
ontra
tions above for Â givesÂ = fapayqaraysgv + Æpqfaraysgv + Æpsfayqargv + Ærsfapayqgv + ÆpqÆrs= ayqaysapar � Æpqaysar + Æpsayqar � Ærsayqap + ÆpqÆrs: [89℄This result is identi
al to that obtained using the anti
ommutation relations andgiven in Eq. [76℄.How does Wi
k's theorem help us in evaluating matrix elements ofse
ond-quantized operators? Re
all that any matrix element of an operator maybe written as a va
uum expe
tation value by simply writing its left- and right-handdeterminants as operator strings a
ting on the va
uum state, j i. The 
ompositestring of annihilation and 
reation operators may then be rewritten using Wi
k'stheorem as an expansion of normal-ordered strings. However, the only terms thatneed to be retained in this expansion are those that are \fully 
ontra
ted". All otherterms will give a zero result, by 
onstru
tion. For example, for the operator, B̂, fromthe last se
tion, Wi
k's theorem gives the following fully 
ontra
ted terms:fatapayqaraysayugv + fatapayqaraysayugv + fatapayqaraysayugv + fatapayqaraysayugv; [90℄



40whi
h, when the 
ontra
tions are evaluated, will give exa
tly the result given inEq. [79℄. The large number of 
ontra
tions in the above equation also suggests auseful rule of thumb for determining the sign of a fully 
ontra
ted term: if thenumber of 
rossings in the 
ontra
tion lines is odd, the sign on the term is negative;if the number of 
rossings is even, the sign is positive. For example, the sign on these
ond term above is positive sin
e there are two 
rossings, whereas the sign on thethird term is negative sin
e there is only one 
rossing.kA somewhat more general version of Wi
k's theorem may be developed whi
hinvolves produ
ts of operator strings, some or all of whi
h may be normal ordered.117The original form of Wi
k's theorem is only slightly modi�ed in that the 
ontra
tionsneed only be evaluated between normal-ordered strings and not within them. Forexample, for a produ
t of two normal-ordered strings, the generalizedWi
k's theoremsays that fABC : : :gvfXY Z : : :gv = fABC : : :XY Z : : :gv [91℄+ XsinglesfABC : : :XY Z : : : gv+ XdoublesfABC : : :XY Z : : : gv+ : : : :This equation easily extends to produ
ts of several strings.Another approa
h to the problem of matrix element evaluation and operatoralgebra is presented in the text by Harris, Monkhorst, and Freeman,80 whodes
ribe the so-
alled \
ontra
tion theorem." While Wi
k's theorem serves as a
onvenient approa
h to the 
onversion of a general string of 
onstru
tion operators(or produ
ts of strings) into sums of redu
ed normal-ordered strings, the 
ontra
tionkThis sign rule only applies to fully 
ontra
ted terms and assumes that one pla
es allthe 
ontra
tion lines above the expression.



41theorem avoids all use of normal ordering, and deals stri
tly with 
ommutators andanti
ommutators of general strings. This latter approa
h will give identi
al resultsto the appli
ation of Wi
k's theorem and has a few subtle di�eren
es, in
luding analtered sign rule. Note also that one rarely (if ever) �nds a proof of Wi
k's theoremin the modern literature, but Harris, Monkhorst, and Freeman give an expli
it proofof their 
ontra
tion theorem.The Fermi Va
uum and the Parti
le-Hole FormalismIn many-ele
tron theories su
h as 
on�guration intera
tion or 
oupled 
luster theory,it is more 
onvenient to deal with the n-ele
tron referen
e determinant, j�0i, ratherthan the true va
uum state, j i. In the evaluation of matrix elements usingWi
k's theorem as des
ribed above, even the use of normal-ordered strings would betremendously tedious if one had to in
lude the 
omplete set of operators required togenerate j�0i from the true va
uum (i.e., j�0i = ayiayjayk : : : j i).We will therefore alter the de�nition of normal ordering from one given relative tothe true va
uum to one given relative to the referen
e state j�0i (whi
h is sometimes
alled the \Fermi va
uum"). The one-ele
tron states o

upied in j�0i are referredto as hole states, and those uno

upied in j�0i are referred to as parti
le states. Thisnomen
lature is based upon the determinant produ
ed when annihilation-
reationoperator strings a
t on the Fermi va
uum. That is, a \hole" is 
reated when anoriginally o

upied state is a
ted upon by an annihilation operator su
h as ai ,whereas a \parti
le" is 
reated when an originally uno

upied state is a
ted upon bya 
reation operator su
h as aya. Therefore, we will refer to operators that 
reate ordestroy holes and parti
les as quasiparti
le (or just q-parti
le) 
onstru
tion operators.That is, q-annihilation operators are those whi
h annihilate holes and parti
les (e.g.,ayi and aa) and q-
reation operators are those whi
h 
reate holes and parti
les (e.g., ai



42and aya).l Therefore, a string of se
ond-quantized operators is normal ordered relativeto the Fermi va
uum if all q-annihilation operators lie to the right of all q-
reationoperators. We will denote su
h normal-ordered strings using f g (note the la
k ofthe subs
ript v, whi
h we impli
itly used earlier to indi
ate normal ordering relativeto the true va
uum).This new de�nition of normal ordering 
hanges our analysis of the Wi
k'stheorem 
ontra
tions only slightly. Whereas before, the only nonzero pairwise
ontra
tion required the annihilation operator to be to the left of the 
reationoperator (
f. Eq. [84℄), now the only nonzero 
ontra
tions pla
e the q-parti
leannihilation operator to the left of the q-parti
le 
reation operator. There are onlytwo ways this 
an o

ur, namely,ayiaj = ayiaj � fayiajg = ayiaj + ajayi = Æij [92℄and aaayb = aaayb � faaaybg = aaayb + aybaa = Æab : [93℄The analogous 
ontra
tions that pla
e the q-parti
le annihilation operator to theright of the q-parti
le 
reation operators are zero:ayaab = aiayj = 0: [94℄All other 
ombinations ne
essarily involve mixed hole and parti
le indi
es for whi
hthe Krone
ker delta fun
tions will give zero.lNote that this q-parti
le de�nition of annihilation and 
reation simply reverses theroles of se
ond-quantized operators a
ting in the o

upied (hole) spa
e, but leaves thethose a
ting in the uno

upied (parti
le) spa
e untou
hed.



43The Normal-Ordered Ele
troni
 HamiltonianThe se
ond-quantized form of the ele
troni
 Hamiltonian80,84,92Ĥ =Xpq hpjhjqiaypaq + 14 Xpqrshpqjjrsiaypayqasar; [95℄may be 
ast into normal-ordered form using Wi
k's theorem. We may begin byrewriting the pair of operators in the one-ele
tron part of the Hamiltonian asaypaq = faypaqg+ faypaqg: [96℄The 
ontra
tion rules we examined earlier (
f. Eqs. [92℄ and [93℄) state that, sin
ethe 
reation operator is on the left, the 
ontra
tion is zero unless ayp and aq both a
tin the hole spa
e and give Æpq. This simpli�es the one-ele
tron part of the equationto Xpq hpjhjqifaypaqg+Xi hijhjii: [97℄Now we rewrite the string of annihilation and 
reation operators from thetwo-ele
tron part of Ĥ asaypayqasar = faypayqasarg+ faypayqasarg+ faypayqasarg+ faypayqasarg+faypayqasarg+ faypayqasarg+ faypayqasarg: [98℄Again, all of these 
ontra
tions are zero unless the leftmost operator of the
ontra
tion a
ts in the hole spa
e. This leads to the simpli�ed formaypayqasar = faypayqasarg � Æp2iÆpsfayqarg+ Æq2iÆqsfayparg+ Æp2iÆprfayqasg�Æq2iÆqrfaypasg � Æp2iÆpsÆq2jÆqr + Æp2iÆprÆq2jÆqs; [99℄where the notation p 2 i means that p must be 
ontained in the set ofo

upied-orbitals and must be equal to i. Note that the signs on ea
h of the terms



44are derived from the 
ontra
tion rules dis
ussed earlier. Inserting this expressionba
k into the equation for the two-ele
tron part of the Hamiltonian, we obtain14 Xpqrshpqjjrsifaypayqasarg � 14Xqri hiqjjriifayqarg+ 14Xpri hpijjriifayparg [100℄+14Xqsi hiqjjisifayqasg � 14Xpsi hpijjisifaypasg � 14Xij hijjjjii+ 14Xij hijjjiji:Remembering that for antisymmetrized two-ele
tron integrals in Dira
's notation,hpqjjrsi = �hpqjjsri = �hqpjjrsi = hqpjjsri, we may re-index sums and 
ombineterms where appropriate to obtain14 Xpqrshpqjjrsifaypayqasarg+Xpri hpijjriifayparg+ 12Xij hijjjiji: [101℄The 
omplete Hamiltonian is thereforeĤ = Xpq hpjhjqifaypaqg+Xpri hpijjriifayparg+ 14 Xpqrshpqjjrsifaypayqasarg+Xi hijhjii+ 12Xij hijjjiji: [102℄Note that the �rst and se
ond terms on the RHS of this equation are simplythe spin-orbital Fo
k operator (in normal-ordered form) and that the last twoterms are the Hartree-Fo
k energy (i.e., the Fermi va
uum expe
tation value ofthe Hamiltonian). Thus, we may writeĤ =Xpq fpqfaypaqg+ 14 Xpqrshpqjjrsifaypayqasarg+ h�0jĤj�0i [103℄or Ĥ = F̂N + V̂N + h�0jĤj�0i; [104℄where the subs
ript N indi
ates normal ordering of all the 
omponent operatorsstrings. Therefore, the normal-ordered Hamiltonian is simplyĤN � F̂N + V̂N = Ĥ � h�0jĤj�0i: [105℄



45This result is easily generalized: the normal-ordered form of an operator is simplythe operator itself minus its referen
e expe
tation value. For the Hamiltonianexample, above, the normal-ordered Hamiltonian is just the Hamiltonian minus theSCF energy (i.e., ĤN may be 
onsidered to be a 
orrelation operator). Due to its
onsiderable 
onvenien
e for 
oupled 
luster and many-body perturbation theoryanalyses, for the remainder of this 
hapter we will adopt this 
onventional form ofĤ given in Eq. [105℄.Simpli�
ation of the Coupled Cluster HamiltonianThe 
on
epts of normal ordering and Wi
k's theorem provide the mathemati
al toolsneeded to derive programmable 
oupled 
luster equations from the more formalexpressions given in Eqs. [50℄ and [51℄. If we trun
ate the 
luster operator su
hthat T̂ � T̂1 + T̂2 and insert it into the similarity-transformed normal-orderedHamiltonian, �H � e�T̂ ĤNeT̂ , we obtain�H = ĤN + hĤN ; T̂1i + hĤN ; T̂2i+ 12 hhĤN ; T̂1i ; T̂1i+12 hhĤN ; T̂2i ; T̂2i+ hhĤN ; T̂1i ; T̂2i+ : : : ; [106℄where the Hausdor� expansion above terminates naturally at quadruply nested
ommutators as des
ribed earlier.m Our task in 
onstru
ting the CCSD equations isto obtain se
ond-quantized expressions for ea
h term of �H above, insert these intoEqs. [50℄ and [51℄, and �nally evaluate the resulting matrix elements.The �rst 
ommutator of Eq. [106℄ expands to give,[ĤN ; T̂1℄ = [F̂N ; T̂1℄ + [V̂N ; T̂1℄ = F̂N T̂1 � T̂1F̂N + V̂N T̂1 � T̂1V̂N ; [107℄mSin
e the 
luster operators 
ommute, we havehhĤN ; T̂1i ; T̂2i = 12 hhĤN ; T̂1i ; T̂2i+ 12 hhĤN ; T̂2i ; T̂1i :Therefore, a fa
tor of 1/2 does not appear in front of this term in the above expansion.



46using the de�nition of ĤN given in Eq. [105℄. The se
ond-quantized de�nition of T̂1is simply T̂1 =Xia tai fayaaig; [108℄where the bra
kets indi
ate that the operator string is already normal-ordered(i.e., this is the only nonzero term resulting from appli
ation of Wi
k's theoremto Eq. [27℄). Given the se
ond-quantized form of F̂N from the previous se
tion, the�rst term of the 
ommutator may be written asF̂N T̂1 =Xpq Xia fpqtai faypaqgfayaaig: [109℄The generalized form of Wi
k's theorem (see Eq. [91℄) says that this produ
t ofnormal-ordered operator strings may be written using only 
ontra
tions betweenthe two strings. That is,faypaqgfayaaig = faypaqayaaig+ faypaqayaaig+ faypaqayaaig+ faypaqayaaig= faypaqayaaig+ Æpifaqayag+ Æqafaypaig+ ÆpiÆqa: [110℄For the se
ond term of the expanded 
ommutator, T̂1F̂N , where the operator stringsfrom F̂N and T̂1 are simply reversed in order, Wi
k's theorem gives only one term,viz. fayaaigfaypaqg = fayaaiaypaqg = faypaqayaaig: [111℄All other 
ontra
tions, whi
h involve aya and ai on the left, are zero by Eq. [94℄.The �nal equality in this expression arises from the fa
t that, by 
onstru
tion, alloperators within the bra
kets anti
ommute. Therefore, using Eqs. [110℄ and [111℄,we may writeF̂N T̂1 � T̂1F̂N = Xpq Xia fpqtai �Æpifaqayag+ Æqafaypaig+ ÆpiÆqa�= Xqia fiqtai faqayag+Xpia fpatai faypaig+Xia fiatai : [112℄



47This example illustrates how the 
ommutator allows only those terms involving
ontra
tions between the operators to survive; the \un
ontra
ted" terms areeliminated. Note that the �nal term on the right-hand side involves 
omponentsof the Fo
k operator in the o

upied-virtual blo
k; if Brillouin's theorem82 holds forthe set of mole
ular orbitals used to 
onstru
t �0, then this term is zero.Now 
onsider the �rst doubly nested 
ommutator from Eq. [106℄. The terminvolving the Fo
k operator expands to give12 hhF̂N ; T̂1i ; T̂1i = 12 F̂N T̂ 21 � T̂1F̂N T̂1 + 12 T̂ 21 F̂N : [113℄Applying Wi
k's theorem to the operator strings in the �rst term on the right-handside of this equation gives12F̂N T̂ 21 = 12Xpq Xia Xjb fpqtai tbj �faypaqayaaiaybajg+ faypaqayaaiaybajg+faypaqayaaiaybajg+ faypaqayaaiaybajg+ faypaqayaaiaybajg+ faypaqayaaiaybajg+faypaqayaaiaybajg+ faypaqayaaiaybajg+ faypaqayaaiaybajg� : [114℄Evaluating the 
ontra
tions leads to12 F̂N T̂ 21 = 12Xaibj tai tbj  Xpq fpqfaypaqayaaiaybajg+ [115℄Xq fiqfaqayaaybajg+Xq fjqfaqayaaiaybg+Xp fpafaypaiaybajg+Xp fpbfaypayaaiajg+fiafaybajg+ fjafaiaybg � fibfayaajg+ fjbfayaaig) :This expression may be simpli�ed signi�
antly by re
ognizing that, be
ause of thesummation outside the parentheses, i, j, a, and b are dummy indi
es and may beex
hanged. For example, the se
ond and third terms on the right-hand side areidenti
al: Xaibj tai tbj  Xq fiqfaqayaaybajg+Xq fjqfaqayaaiaybg! [116℄



48=XaibjXq �fjqtbjtai faqaybayaaig+ fjqtai tbjfaqayaaiaybg�=XaibjXq �fjqtai tbjfaqayaaiaybg+ fjqtai tbjfaqayaaiaybg� : [117℄The �rst step in this analysis results from simply swapping index i with j and indexa with b. Similarly, one may show equivalen
e of terms four and �ve, six and nine,and seven and eight (with appropriate sign 
hanges). The �nal, simpli�ed expressionis thus12 F̂N T̂ 21 = 12Xaibj tai tbj  Xpq fpqfaypaqayaaiaybajg+ 2Xq fjqfaqayaaiaybg+2Xp fpbfaypayaaiajg+ 2fjbfayaaig+ 2fjafaiaybg! : [118℄A similar analysis for the remaining two terms of the doubly nested 
ommutatorgives T̂1F̂N T̂1 = Xaibj tai tbj  Xpq fpqfayaaiaypaqaybajg+Xq fjqfayaaiayqaybg+Xp fpbfayaaiaypajg+ fjbfayaaig! [119℄and 12 T̂ 21 F̂N = 12XaibjXpq fpqtai tbjfayaaiaybajaypaqg: [120℄Inserting these expressions into Eq. [113℄ and 
an
elling terms gives the rather simpleresult, 12 hhF̂N ; T̂1i ; T̂1i =Xaibj fjatai tbjfaiaybg: [121℄The two examples given so far, hF̂N ; T̂1i and 12 hhF̂N ; T̂1i ; T̂1i, allow us to makean important generalization when Wi
k's theorem is applied to the 
ommutators inEq. [106℄:� The only nonzero terms in the Hausdor� expansion are those in whi
h theHamiltonian, ĤN , has at least one 
ontra
tion with every 
luster operator, T̂n,on its right.



49That is, the Hamiltonian must share at least one index with every 
luster operator
omponent in the �nal expression. We may therefore rewrite Eq. [106℄ in a simplerform: �H = �ĤN + ĤN T̂1 + ĤN T̂2 + 12ĤN T̂ 21 + 12ĤN T̂ 22 + ĤN T̂1T̂2+ [122℄16ĤN T̂ 31 + 12ĤN T̂ 21 T̂2 + 12ĤN T̂1T̂ 22 + 16ĤN T̂ 32 +124ĤN T̂ 41 + 16ĤN T̂ 31 T̂2 + 14ĤN T̂ 21 T̂ 22 + 16ĤN T̂1T̂ 32 + 124ĤN T̂ 42�
 ;where we have now written every term in the CCSD Hausdor� expansion expli
itlyand the subs
ript 
 indi
ates that only those terms in whi
h the Hamiltonian is
onne
ted (in the Wi
k's theorem sense) to every 
luster operator on its right shouldbe in
luded in the algebrai
 interpretation of the operator. This is often referredto as the \
onne
ted 
luster" form of the similarity-transformed Hamiltonian.2 Thisexpression makes the trun
ation of the Hausdor� expansion even 
learer; sin
e theHamiltonian 
ontains at most four annihilation and 
reation operators (in V̂N), ĤN
an 
onne
t to at most four 
luster operators at on
e. Therefore, the Hausdor�expansion must trun
ate at the quarti
 terms.The CCSD Energy EquationUsing the 
onne
ted 
luster form of �H de�ned above, as well as the te
hniques ofWi
k's theorem and normal ordering, we may derive a programmable form of theenergy expression in the CCSD approximation. In a

ord with Eq. [50℄ and thenormal-ordered Hamiltonian, the energy is given byECCSD � E0 = h�0j �Hj�0i; [123℄where the CCSD e�e
tive Hamiltonian of Eq. [122℄ is inserted for �H and E0 isthe SCF energy, h�0jĤj�0i. The leading term in this expression is the referen
e



50expe
tation value of the normal-ordered Hamiltonian, whi
h is zero by 
onstru
tion:h�0jĤN j�0i = 0: [124℄For all other terms, we may use the advantage of normal-ordering of the operatorsto determine all of the fully 
ontra
ted terms of the operator produ
t. For example,for the se
ond term of Eq. [122℄, insertion of the de�nition of the normal-orderedHamiltonian gives �ĤN T̂1�
 = �F̂N T̂1�
 + �V̂N T̂1�
 ; [125℄where the subs
ript 
 has the same meaning as in the previous se
tion. We havealready evaluated the �rst 
omponent of this pair, and the result is given in Eq. [112℄,whi
h 
ontains only one fully 
ontra
ted term, i.e.,h�0j �F̂N T̂1�
 j�0i =Xia fiatai : [126℄The two-ele
tron 
omponent, on the other hand, 
ontributes nothing to the energyexpression, be
ause no fully 
ontra
ted terms 
an be generated from it:�V̂N T̂1�
 = 14 XpqrsXia hpqjjrsitai faypayqasargfayaaig= 14 XpqrsXia hpqjjrsitai �faypayqasarayaaig+ faypayqasarayaaig+faypayqasarayaaig+ faypayqasarayaaig+ faypayqasarayaaig+ faypayqasarayaaig+faypayqasarayaaig+ faypayqasarayaaig+ faypayqasarayaaig� : [127℄Therefore, the energy 
ontribution from the linear T̂1 operator isECCSD  h�0j �ĤN T̂1�
 j�0i =Xia fiatai : [128℄(The left arrow indi
ates that this is only one of several terms 
ontributing to theenergy on the left-hand side.) However, this term will be zero if Brillouin's theoremholds for the mole
ular orbitals in whi
h the Fo
k matrix is represented.82



51Next 
onsider the 
ontribution to the energy from the linear T̂2 term in Eq. [123℄,h�0j �ĤN T̂2�
 j�0i = h�0j h�F̂N T̂2�
 + �V̂N T̂2�
i j�0i: [129℄The normal-ordered form of T̂2 may be derived from Eq. [28℄ to obtainT̂2 = 14Xaibj tabij fayaaybajaig: [130℄The referen
e expe
tation value of the �rst term on the right-hand side of Eq. [129℄is zero be
ause it 
annot produ
e any fully 
ontra
ted 
omponents:�F̂N T̂2�
 = 14Xpq Xaibj fpqtabij faypaqgfayaaybajaig= 14Xpq Xaibj fpqtabij �faypaqayaaybajaig+ faypaqayaaybajaig+faypaqayaaybajaig+ faypaqayaaybajaig+ faypaqayaaybajaig+ faypaqayaaybajaig+faypaqayaaybajaig+ faypaqayaaybajaig+ faypaqayaaybajaig� : [131℄The two-ele
tron 
omponent, however, produ
es four equivalent fully 
ontra
tedterms, and therefore 
ontributes to the 
oupled 
luster energy:h�0j �V̂N T̂2�
 j�0i = 116 XpqrsXaibjhpqjjrsitabij h�0jfaypayqasargfayaaybajaigj�0i= 116 XpqrsXaibjhpqjjrsitabij 0�faypayqasarayaaybajaig+ faypayqasarayaaybajaig+faypayqasarayaaybajaig+ faypayqasarayaaybajaig1A= 116 XpqrsXaibjhpqjjrsitabij (ÆpiÆqjÆraÆsb + ÆpjÆqiÆrbÆsa � ÆpjÆqiÆraÆsb � ÆpiÆqjÆrbÆsa)= 14Xaibjhijjjabitabij : [132℄The fa
tor of 116 appearing in the �rst three equalities arises simply from the produ
tof the fa
tors of 14 that appear in the de�nitions of V̂N (Eq. [105℄) and T̂2 (Eq. [130℄),and the �nal fa
tor of 14 results from the 
olle
tion of the last four terms together.



52Next we 
onsider the �rst quadrati
 term from Eq. [123℄, whi
h involves two T̂1
luster operators. The referen
e expe
tation value of the one-ele
tron 
omponent,12 �F̂N T̂ 21 �
, is zero be
ause the single 
onstru
tion operator pair in the Fo
k operator
annot produ
e fully 
ontra
ted terms with the two 
onstru
tion operator pairs inT̂ 21 . The two-ele
tron 
omponent, on the other hand, does produ
e fully 
ontra
tedterms, viz.,12h�0j �V̂N T̂ 21 �
 j�0i = 18 XpqrsXai Xbj hpqjjrsitai tbjh�0jfaypayqasargfayaaigfaybajgj�0i= 18 XpqrsXaibjhpqjjrsitai tbj  faypayqasarayaaiaybajg+ faypayqasarayaaiaybajg+faypayqasarayaaiaybajg+ faypayqasarayaaiaybajg!= 18 XpqrsXaibjhpqjjrsitai tbj (�ÆpjÆqiÆraÆsb + ÆpjÆqiÆrbÆsa + ÆpiÆqjÆraÆsb � ÆpiÆqjÆrbÆsa)= 12Xaibjhijjjabitai tbj: [133℄The fa
tor of 18 appearing in the �rst three equalities arises from produ
t of the fa
torof 12 from the Hausdor� expansion and the 14 from the de�nition of V̂N (Eq. [105℄).In all of the remaining terms in the energy expression in Eq. [123℄ the
luster operators 
ontribute more 
onstru
tion operator pairs than the Hamiltonian
omponents. For example, the \mixed" term, �ĤN T̂1T̂2�
, involves three pairsfrom the 
luster operators (one from T̂1 and two from T̂2) but only two fromthe two-ele
tron 
omponent of the Hamiltonian. Therefore, none of these terms
an produ
e fully 
ontra
ted produ
ts, and their referen
e expe
tation values arezero. The absen
e of these \higher-order" 
omponents might also be rationalized interms of Slater's rules: sin
e the Hamiltonian is a two-ele
tron operator, the T̂1T̂2produ
t produ
es a triply ex
ited determinant on the right whi
h 
annot 
oupleto the referen
e �0 through the Hamiltonian. However, as we will see in the nextse
tion, this interpretation is inadequate as it fails to explain why 
ertain terms are



53missing from the amplitude equations for higher ex
itations (e.g., the CCSDT T̂3amplitude equation).We have now derived all the 
ontributions to the CCSD energy. SummingEqs. [126℄, [132℄, and [133℄, we obtain the �nal expressionECCSD � E0 =Xia fiatai + 14Xaibjhijjjabitabij + 12Xaibjhijjjabitai tbj: [134℄This equation is not restri
ted to the CCSD approximation, however. Sin
ehigher-ex
itation 
luster operators su
h as T̂3 and T̂4 
annot produ
e fully 
ontra
tedterms with the Hamiltonian, their 
ontribution to the 
oupled 
luster energyexpression is zero. Therefore, Eq. [134℄ also holds for more 
ompli
ated methods su
has CCSDT, CCSDTQ, et
. Higher-ex
itation 
luster operators 
an 
ontribute to theenergy indire
tly, however, through the equations used to determine the amplitudes,tai and tabij , whi
h are needed in the energy equation above.The CCSD Amplitude EquationsAs dis
ussed earlier, the 
luster amplitudes that parameterize the 
oupled 
lusterwavefun
tion may be determined from the \proje
tive" S
hr�odinger equation givenin Eq. [51℄. In the CCSD approximation, the single ex
itation amplitudes, tai , maybe determined from 0 = h�ai j �Hj�0i; [135℄and the double ex
itation amplitudes, tabij , from0 = h�abij j �Hj�0i; [136℄where �H is given by Eq. [122℄. For reasons we des
ribe in detail later in these
tion entitled, \Computer Implementation of Coupled Cluster Theory," Eq. [135℄ is
ommonly referred to as the T̂1 amplitude equation and Eq. [136℄ as the T̂2 amplitude



54equation. Rather than dealing with all 15 terms arising from the insertion of Eq. [122℄into Eqs. [135℄ and [136℄, we will fo
us on only a few representative examples.The 
onstru
tion of the 
oupled 
luster amplitude equations is somewhat more
ompli
ated than the energy equation in that the latter requires only referen
eexpe
tation values of the se
ond-quantized operators. For the amplitude equations,we now require matrix elements between the referen
e, �0, on the right and spe
i�
ex
ited determinants on the left. We must therefore 
onvert these into referen
eexpe
tation value expressions by writing the ex
ited determinants as ex
itationoperator strings a
ting on �0. For example, a doubly ex
ited bra-determinant maybe written as h�abij j = h�0jfayiayjabaag: [137℄The �nal matrix element therefore requires that we obtain all fully 
ontra
ted Wi
k'stheorem terms from the produ
t of the above operator string and the elements of�H. The leading term of �H in Eq. [122℄ is simply the ele
troni
 Hamiltonian itself.For its 
ontribution to the T̂1 amplitude equation, we must therefore evaluate matrixelements of ĤN between singly ex
ited determinants and �0,h�ai j �F̂N + V̂N� j�0i = [138℄Xpq fpqh�0jfayiaagfaypaqgj�0i+ 14 Xpqrshpqjjrsih�0jfayiaagfaypayqasargj�0i:The two-ele
tron 
omponent of this equation 
annot produ
e full 
ontra
tions andis therefore zero. The one-ele
tron term, however, simpli�es to a single Fo
k matrixelement: h�ai jF̂N j�0i = Xpq fpqh�0jfayiaagfaypaqgj�0i= Xpq fpqfayiaaaypaqg= Xpq fpqÆiqÆap



55= fai: [139℄For the 
ontribution of ĤN to the T̂2 amplitude equation, on the other hand, we mustevaluate the matrix elements of the normal-ordered Hamiltonian between doublyex
ited determinants and �0, viz.h�abij j �F̂N + V̂N� j�0i = [140℄Xpq fpqh�0jfayiayjabaagfaypaqgj�0i+ 14 Xpqrshpqjjrsih�0jfayiayjabaagfaypayqasargj�0i:In this 
ase, it is the one-ele
tron 
omponent that 
annot produ
e full 
ontra
tions,whereas the two-ele
tron 
omponent 
ontributes only a single integral:h�abij jV̂N j�0i = 14 Xpqrshpqjjrsih�0jfayiayjabaagfaypayqasargj�0i= 14 Xpqrshpqjjrsi0�fayiayjabaaaypayqasarg+ fayiayjabaaaypayqasarg+fayiayjabaaaypayqasarg+ fayiayjabaaaypayqasarg1A= 14 Xpqrshpqjjrsi (ÆpaÆqbÆriÆsj � ÆpbÆqaÆriÆsj � ÆpaÆqbÆrjÆsi + ÆpbÆqaÆrjÆsi)= habjjiji: [141℄The se
ond term of Eq. [122℄, whi
h is linear in T̂1, provides a more interestingexample than ĤN alone. Its 
ontribution to the T̂1 amplitude equation involves thematrix elementsh�ai j �hF̂N + V̂Ni T̂1�
 j�0i = Xpq Xjb fpqtbjh�0jfayiaag �faypaqgfaybajg�
 j�0i+14 XpqrsXjb hpqjjrsitbjh�0jfayiaag �faypayqasargfaybajg�
 j�0i;[142℄where the subs
ript 
 reminds us that we must retain at least one 
ontra
tion betweenthe Hamiltonian fragment and the 
luster operator on its right. For the two-ele
tron



56term, Wi
k's theorem givesh�ai j �V̂N T̂1�
 j�0i = 14 XpqrsXjb hpqjjrsitbjh�0jfayiaag �faypayqasargfaybajg�
 j�0i= 14 XpqrsXjb hpqjjrsitbj  fayiaaaypayqasaraybajg+ fayiaaaypayqasaraybajg+fayiaaaypayqasaraybajg+ fayiaaaypayqasaraybajg!= 14 XpqrsXjb hpqjjrsitbj (�ÆpaÆqjÆrbÆsi + ÆpjÆqaÆrbÆsi + ÆpaÆqjÆriÆsb � ÆpjÆqaÆriÆsb)=Xjb hjajjbiitbj: [143℄The 
ontribution of �ĤN T̂1�
 to the T̂2 equation involves the matrix elementsh�abij j �hF̂N + V̂Ni T̂1�
 j�0i = Xpq Xk
 fpqt
kh�0jfayiayjabaag �faypaqgfay
akg�
 j�0i+14 XpqrsXk
 hpqjjrsit
kh�0jfayiayjabaag �faypayqasargfay
akg�
 j�0i:[144℄In this 
ase, the two-ele
tron term simpli�es to four 
ontributions after some rather
ompli
ated manipulation:h�abij j �V̂N T̂1�
 j�0i = 14 XpqrsXk
 hpqjjrsit
kh�0jfayiayjabaag �faypayqasargfay
akg�
 j�0i= 14 XpqrsXk
 hpqjjrsit
k  fayiayjabaaaypayqasaray
akg+fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg+ fayiayjabaaaypayqasaray
akg1CA= 14 XpqrsXk
 hpqjjrsit
k �



57(ÆpaÆqbÆr
ÆsjÆik � ÆpbÆqaÆr
ÆsjÆik � ÆpaÆqbÆr
ÆsiÆjk + ÆpbÆqaÆr
ÆsiÆjk�ÆpaÆqbÆrjÆs
Æik + ÆpbÆqaÆrjÆs
Æik + ÆpaÆqbÆriÆs
Æjk � ÆpbÆqaÆriÆs
Æjk �ÆpaÆqkÆriÆsjÆb
 + ÆpbÆqkÆriÆsjÆa
 � ÆpbÆqkÆrjÆsiÆa
 + ÆpaÆqkÆrjÆsiÆb
 +ÆpkÆqaÆriÆsjÆb
 � ÆpkÆqbÆriÆsjÆa
 � ÆpkÆqaÆrjÆsiÆb
 + ÆpkÆqbÆrjÆsiÆa
)=X
 �habjj
jit
i � habjj
iit
j�+Xk �hijjjbkitak � hijjjakitbk� : [145℄As our third example, we 
onsider the 
ontribution of the one-ele
tron 
omponentof the fourth term of Eq. [122℄ to the T̂1 amplitude equation. The matrix elementof interest in this 
ase is12h�ai j �F̂N T̂ 21 �
 j�0i = 12Xpq Xjb Xk
 fpqtbjt
kh�0jfayiaag �faypaqgfaybajgfay
akg�
 j�0i:[146℄When applied to the operator strings in this expression, Wi
k's theorem gives onlytwo nonzero 
ontra
tions, in spite of the relatively large number of 
onstru
tionoperators:h�0jfayiaag �faypaqgfaybajgfay
akg�
 j�0i= fayiaaaypaqaybajay
akg+ fayiaaaypaqaybajay
akg= �ÆpkÆqbÆijÆa
 � ÆpjÆq
ÆikÆab: [147℄When the Krone
ker delta strings are inserted ba
k into the matrix elementexpression, we obtain 12h�ai j �F̂N T̂ 21 �
 j�0i = �Xk
 fk
t
i tak: [148℄Additional 
ontra
tions su
h asfayiaaaypaqaybajay
akg and fayiaaaypaqaybajay
akg [149℄are not in
luded even though they are nonzero be
ause, as our earlier analysis of the
ommutators of the Hausdor� expansion indi
ated, the Hamiltonian fragment must



58be 
onne
ted at least on
e to every 
luster operator on the right. Similar analysesapply to other 
ontributions su
h as �V̂N T̂ 22 �
, �V̂N T̂1T̂2�
, et
.This last point also has interesting 
onsequen
es for the higher ex
itationamplitude equations su
h as that for T̂3. For example, one term that arises inthe general Hausdor� expansion is 15! �V̂N T̂ 51 �
. This term does not 
ontribute to theT̂3 amplitude equation 0 = 15!h�ab
ijkj �V̂N T̂ 51 �
 j�0i: [150℄From a 
on�guration intera
tion perspe
tive, su
h a matrix element of theHamiltonian between the quintuply ex
ited determinant generated by the operatorT̂ 51 on the right and the triply ex
ited determinant on the left is nonzero a

ordingto Slater's rules. However, be
ause the two-ele
tron fragment of the Hamiltonian
annot 
onne
t to more than four 
luster operators on its right, su
h a matrix element
annot 
ontribute to the amplitude equation by the 
onne
ted 
luster properties ofthe Hausdor� expansion. Similarly, the �F̂N T̂2�
 
ontribution to T̂3 is also zerobe
ause any 
onne
tion between F̂N and T̂2 does not leave enough 
onstru
tionoperator pairs to 
ompletely 
onne
t to the triply ex
ited determinant on the left.The �nal example of this se
tion is the 
ontribution of the 12 �V̂N T̂ 21 T̂2�
 term ofEq. [122℄ to the T̂2 amplitude equation. The matrix elements of interest in this 
aseinvolve only the two-ele
tron 
omponent of ĤN , be
ause the one-ele
tron 
omponent
annot 
onne
t to more than two 
luster operators:12h�abij j �V̂N T̂ 21 T̂2�
 j�0i = 132 XpqrsXk
 Xld Xmnefhpqjjrsit
ktdl tefmn � [151℄h�0jfayiayjabaagfaypayqasasgfay
akgfaydadgfayeayfanamgj�0i:The fa
tor of 132 appearing here arises as the produ
t of the fa
tor of 12 from theHausdor� expansion and the two fa
tors of 14 from the de�nitions of V̂N (Eq. [105℄)and T̂2 (Eq.[130℄). To derive from this matrix element an expression involving onlytwo-ele
tron integrals and 
luster amplitudes, we must apply Wi
k's theorem to the



59string of 16 annihilation and 
reation operators above. Although this might be auseful exer
ise for those readers who wish to test their own stamina and patien
e,we will avoid it here. We note, however, that this task is tedious at best andre
ognize that Wi
k's theorem has not eliminated all of the opportunities for errorwhen dealing with 
ompli
ated se
ond-quantized equations.On
e all of the 
ontributions of Eq. [122℄ to Eqs. [135℄ and [136℄ have beendetermined in the manner des
ribed above, they are then summed to give theamplitude equations. For T̂1, the resulting equation is0 = fai +X
 fa
t
i �Xk fkitak +Xk
 hkajj
iit
k +Xk
 fk
ta
ik + 12Xk
dhkajj
dit
dki �12Xkl
 hkljj
iit
akl �Xk
 fk
t
i tak �Xkl
 hkljj
iit
ktal +Xk
dhkajj
dit
ktdi � [152℄Xkl
dhkljj
dit
ktdi tal +Xkl
dhkljj
dit
ktdali � 12Xkl
dhkljj
dit
dkital � 12Xkl
dhkljj
dit
akl tdi ;while for T̂2, the resulting equation is0 = habjjiji+X
 �fb
ta
ij � fa
tb
ij��Xk �fkjtabik � fkitabjk�+ [153℄12Xkl hkljjijitabkl + 12X
d habjj
dit
dij + P (ij)P (ab)Xk
 hkbjj
jita
ik +P (ij)X
 habjj
jit
i � P (ab)Xk hkbjjijitak +12P (ij)P (ab)Xkl
dhkljj
dita
ik tdblj + 14Xkl
dhkljj
dit
dij tabkl �P (ab)12Xkl
dhkljj
dita
ij tbdkl � P (ij)12Xkl
dhkljj
ditabikt
djl +P (ab)12Xkl hkljjijitaktbl + P (ij)12X
d habjj
dit
itdj � P (ij)P (ab)Xk
 hkbjji
itakt
j +P (ab)Xk
 fk
taktb
ij + P (ij)Xk
 fk
t
i tabjk �P (ij)Xkl
 hkljj
iit
ktablj + P (ab)Xk
dhkajj
dit
ktdbij +P (ij)P (ab)Xk
dhakjjd
itdi tb
jk + P (ij)P (ab)Xkl
 hkljji
ital tb
jk +P (ij)12Xkl
 hkljj
jit
itabkl � P (ab)12Xk
dhkbjj
ditakt
dij �



60P (ij)P (ab)12Xk
dhkbjj
dit
itaktdj + P (ij)P (ab)12Xkl
 hkljj
jit
itaktbl �P (ij)Xkl
dhkljj
dit
ktdi tablj � P (ab)Xkl
dhkljj
dit
ktal tdbij +P (ij)14Xkl
dhkljj
dit
itdj tabkl + P (ab)14Xkl
dhkljj
ditaktbl t
dij +P (ij)P (ab)Xkl
dhkljj
dit
itbl tadkj + P (ij)P (ab)14Xkl
dhkljj
dit
itaktdj tbl :The notation P (pq) indi
ates a permutation operator whose a
tion on a givenfun
tion is de�ned by P (pq)f(p; q) = f(p; q)� f(q; p): [154℄For example, from the T̂2 equation above, one of the terms be
omesP (ij)Xk
 fk
t
i tabjk =Xk
 �fk
t
i tabjk � fk
t
jtabik� : [155℄Relative to dire
t appli
ation of the anti
ommutation relations for annihilationand 
reation operators, Wi
k's theorem helps to dramati
ally redu
e the tediuminvolved in deriving the rather 
ompli
ated amplitude equations above. However,as illustrated by Eq. [151℄, Wi
k's theorem still does not go far enough. Even ifthe 
luster operator is trun
ated to in
lude only double ex
itations, the resultingalgebra provides many opportunities for error. When even higher ex
itations aredesired the number of algebrai
 manipulations required by Wi
k's theorem be
omesrapidly insurmountable. A number of 
omputer algorithms for the derivation of
oupled-
luster-related equations have been des
ribed in the literature,33,36,118 butthese have thus far been diÆ
ult to apply in a general fashion. Diagrammati
te
hniques o�er a more pra
ti
al approa
h to the 
onstru
tion of 
ompli
ated 
oupled
luster equations. They provide a simple bookkeeping system for the numerousterms generated by Wi
k's theorem (most of whi
h are redundant) and allow usto identify in advan
e whi
h terms will not 
ontribute to the wavefun
tion and/orthe energy. In the next se
tion we will outline one diagrammati
 approa
h whi
h



61is parti
ularly 
onvenient for deriving a variety of 
oupled-
luster-like equations,in
luding ground-state energies, energy derivatives, and EOM-CC equations.An Introdu
tion to Coupled Cluster DiagramsIn this se
tion, we present a simple diagrammati
 formalism popularized byKu
harski and Bartlett20 by whi
h one may 
onstru
t the 
oupled 
luster energy andamplitude equations far more qui
kly than by dire
t appli
ation of Wi
k's theorem.nWe begin by des
ribing some of the general features of the diagrams, in
luding theirrelationship to the parti
le-hole formalism and how they may be used to representnormal-ordered dynami
al operators. Next we des
ribe how the operator diagramsmay be 
onne
ted together to form operator produ
ts in a manner analogous toWi
k's theorem. We then 
onstru
t the diagrammati
 form of the CCSD energy andamplitude equations, and, as ea
h new diagram is presented, we provide rules forits algebrai
 interpretation. The diagrams des
ribed here may be used to representeither wavefun
tions, operators, or matrix elements, depending on the 
ontext of themathemati
al analysis. However, the set of rules we will present for interpreting thediagrams algebrai
ally will apply only to the matrix element representation, sin
ethat is the most appropriate 
ontext for the 
oupled 
luster energy and amplitudeequations.onMany varieties of diagrams have used throughout the 
hemi
al physi
s literature formany years (e.g., see Refs. 1, 2, 117, 119, and 80). The diagrammati
 formalism we have
hosen here has been frequently used in work by the Bartlett group among others120and is parti
ularly straightforward for \
onventional" 
oupled 
luster and many-bodyperturbation theories.oThe algebrai
 rules for interpreting the diagrams as operators or wavefun
tions di�eronly slightly from the matrix element approa
h dis
ussed here. We re
ommend Refs. 80and 88 for additional information.



62We make use of the parti
le-hole formalism in diagrammati
 analyses by drawingupward and downward dire
ted lines that identify those orbitals whi
h di�er fromthose in the referen
e determinant, �0, as shown in Figure 1. Downward dire
tedlines represent hole states (orbitals o

upied in the referen
e) and upward dire
tedlines represent parti
le states (orbitals uno

upied in the referen
e). Hen
e, onemay interpret the fourth diagram of the �gure as a single-determinant wavefun
tionthat di�ers from the referen
e by a single ex
itation from orbital �i to orbital�a. Furthermore, this 
onvention implies that the referen
e wavefun
tion itself isrepresented by empty spa
e as indi
ated in Figure 1(
).
i j a b i a(a) (b) (
) (d)Figure 1: Some basi
 
omponents of 
oupled 
luster diagrams: (a) hole lines; (b)parti
le lines; (
) the referen
e wavefun
tion, �0, represented by empty spa
e; (d)a single-determinant wavefun
tion, �ai , whi
h di�ers from the referen
e by a singleex
itation.Diagrams representing dynami
al operators (su
h as the one- and two-ele
tron
omponents of the normal-ordered Hamiltonian, ĤN) are depi
ted by horizontal\intera
tion lines" with verti
al dire
ted lines like those in Figure 1 representing theannihilation and 
reation operator strings. We will 
hoose di�erent intera
tion linesto represent di�erent types of operators (e.g., a dashed line to indi
ate 
omponentsof the ele
troni
 Hamiltonian, a solid line for 
luster operators, T̂1, T̂2, et
.). Thedire
ted lines emanate from \verti
es" on the intera
tion line; ea
h vertex representsthe a
tion of the operator on individual ele
trons. Thus, one-ele
tron diagramshave one vertex, two-ele
tron diagrams have two verti
es, et
. Ea
h vertex has



63two dire
ted lines atta
hed to it, one in
oming and one outgoing, asso
iated withthe annihilation and 
reation operators of the operator's normal-ordered string.Sin
e one-ele
tron operators 
ontain two se
ond-quantized 
omponents (see, forexample, Eq. [53℄), their diagrammati
 representations 
ontain two dire
ted lines.Similarly, diagrams representing two-ele
tron operators 
ontain four dire
ted lines,three-ele
tron operators 
ontain six dire
ted lines, et
. The upward and downwarddire
tions of these lines are dependent on the orbital subspa
es in whi
h these
ond-quantized operators a
t: q-
reation operatorsp lie above the intera
tion line,whereas q-annihilation lines lie below the intera
tion line.For example, we denote the one-ele
tron 
omponent of the Hamiltonian, F̂N , bya dashed intera
tion line 
apped by an \X". This operator may be written in fourfragments as shown in Figure 2. The �rst fragment, whi
h involves only operatorsin the parti
le (uno

upied) spa
e, has one q-
reation line above the intera
tion line
orresponding to the aya 
omponent of its operator string, and one q-annihilationline below the intera
tion line 
orresponding to the ab 
omponent. Similarly, these
ond fragment in the �gure, whi
h involves only operators in the hole (o

upied)spa
e, has one q-
reation line above the intera
tion line 
orresponding to the aj
omponent of the operator string, and one q-annihilation line below the intera
tionline 
orresponding to the ayi 
omponent. The third F̂N fragment 
ontains onlyq-annihilation lines below the intera
tion line sin
e the operator string 
onsists onlyof ayi and aa 
omponents. Finally, the fourth fragment 
ontains only q-
reation linesabove the intera
tion line representing the aya and ai 
omponents of the operatorstring.The two-ele
tron fragment of the Hamiltonian may be partitioned in a similarmanner as shown in Figure 3, with a dashed horizontal intera
tion line and withpSee the earlier dis
ussion beginning on p. 41 of the parti
le-hole formalism for anexplanation of q-
reation and q-annihilation operators.



64F̂N = Xab fabfayaabg + Xij fijfayiajg + Xia fiafayiaag + Xia faifayaaig= X + X + X +
X0 0 �1 +1Figure 2: Diagrammati
 representation of ea
h fragment of the one-parti
le
omponent of the Hamiltonian operator, F̂N . The ex
itation level of ea
h diagramis indi
ated beneath it. The intera
tion line is indi
ated by the dashed horizontalline 
apped by the \X".impli
it antisymmetry with respe
t to permutation of the lines leaving or enteringthe left and right verti
es. For example, in the third diagram, 
orresponding to asum over the operator 
omponents, hiajjbjifayiayaajabg, the diagram as shown may bewritten in four equivalent ways (di�ering only by a sign), ea
h formed by permutingeither the two outgoing lines or the two in
oming lines from the left and right verti
es:

aj

i b
$

b

a

i

j $
i

j

b

a $ aj

i b
:

In addition, diagrammati
 representations of the 
luster operators, T̂ , are shown inFigure 4, with solid horizontal intera
tion lines. Sin
e the 
luster operators 
ontainonly q-
reation strings (and thereby generate ex
ited determinants from the referen
e



65V̂N= 14Xab
dhabjj
difayaaybada
g + 14Xijklhijjjklifayiayjal akg + Xiabjhiajjbjifayiayaajabg+ 12Xaib
haijjb
ifayaayia
abg + 12Xijkahijjjkaifayiayjaaakg + 12Xab
ihabjj
iifayaaybaia
g+ 12Xiajkhiajjjkifayiayaakajg + 14Xabijhabjjijifayaaybajaig + 14Xijabhijjjabifayiayjabaag
= + +

0 0 0
+ + +

�1 �1 +1
+ + +

+1 +2 �2Figure 3: Diagrammati
 representation of ea
h fragment of the two-parti
le
omponent of the Hamiltonian operator, V̂N . The ex
itation level of ea
h diagramis indi
ated beneath it. The intera
tion line is indi
ated by the dashed horizontalline.
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T̂1 = Xia tai fayaaig = +1
T̂2 = 14Xijabtabij fayaaybajaig = +2
T̂3 = 136 Xijkab
tab
ijkfayaaybay
akajaig= +3

Figure 4: Diagrammati
 representation of the T̂1, T̂2, and T̂3 ex
itation operators.The ex
itation level of ea
h diagram is indi
ated to its right. The intera
tion line isindi
ated by a solid horizontal bar.wavefun
tion), they 
ontain no lines below the horizontal bar. Furthermore, theserepresentations are also fully antisymmetri
 in that ex
hange of any pair of outgoingor in
oming lines introdu
es a 
hange in the sign of the diagram. We will dis
uss thispoint in greater detail later when we introdu
e rules for interpreting the diagramsalgebrai
ally.Other than the operator representation above, we will interpret the diagramsin this 
hapter from bottom to top as matrix elements of operators (or operatorprodu
ts) between determinants. For the 
oupled 
luster energy and amplitudeequations shown in Eqs. [50℄ and [51℄, the pertinent matrix elements always 
ontainthe referen
e determinant, �0, on the right and either �0 or ex
ited determinantssu
h as �abij on the left. Diagrams are parti
ularly 
onvenient for 
onstru
ting su
hmatrix elements sin
e they provide a straightforward method for evaluating thetypes of determinants to whi
h individual operator fragments in Figures 2-4 may



67be applied or what determinants they produ
e. As an example, 
onsider the fourthF̂N fragment in Figure 2, whi
h 
ontains no lines below and two lines above thehorizontal operator line. Sin
e the referen
e wavefun
tion, �0, is represented byempty spa
e, and a singly ex
ited determinant, �ai , by a pair of dire
ted lines su
has those in Figure 1(d), we may interpret the diagram from bottom to top to obtainthe matrix element h�ai jF̂N j�0i =
X

i a : [156℄A similar analysis may be applied to the two-ele
tron operator in the third diagramin Figure 3, whi
h 
ontains parti
le-hole pairs of lines both above and belowthe intera
tion line. Ea
h of these pairs may be interpreted as singly ex
iteddeterminants to obtain the general matrix element
h�ai jV̂N j�bji = ai

j b
: [157℄

The 
luster operator diagrams are parti
ularly simple to interpret as matrixelements; the diagrams always involve the referen
e determinant on the right(be
ause they 
ontain no lines below the intera
tion line) and an ex
ited determinanton the left, e.g., h�abij jT̂2j�0i = ai j b : [158℄We also make use of a simple bookkeeping system20 whi
h indi
ates the\ex
itation level" a parti
ular operator fragment produ
es. This value is determinedby subtra
ting the number of q-annihilation lines from the number of q-
reationlines and dividing the result by two. For example, the �rst and se
ond one-ele
tronHamiltonian fragments shown in Figure 2 are assigned an ex
itation level of 0, sin
e



68both the wavefun
tion to whi
h they are applied (at the bottom of the diagram)and the wavefun
tion they produ
e (at the top of the diagram) di�er from thereferen
e by a single orbital; no net ex
itation is produ
ed. The fourth one-ele
tronfragment, however, has an ex
itation level of +1 sin
e it e�e
tively produ
es a singleex
itation from the referen
e wavefun
tion. Two-ele
tron Hamiltonian fragmentshave ex
itation levels ranging from +2 to �2, as indi
ated in Figure 3, and the T̂operators have the obvious ex
itation levels indi
ated in Figure 4.Diagrammati
 Representation of the CCSD Energy EquationAs dis
ussed in detail earlier, produ
ts of normal-ordered operators 
an be simpli�edalgebrai
ally using Wi
k's theorem by evaluating pairs of 
ontra
tions betweenthe 
omponent annihilation and 
reation operators. Many of these 
ontra
tionsprodu
e mathemati
ally redundant terms whi
h 
an be 
ombined after 
ompli
atedmanipulation to eventually produ
e a mu
h simpler expression. Diagrams provide astraightforward s
heme by whi
h these redundan
ies may be eliminated.As an example, 
onsider the CCSD energy equation whi
h we derived earlier inEq. [134℄ using Wi
k's theorem. Ea
h term of the general expressionECCSD � E0 = h�0jĤN + �ĤN T̂1 + ĤN T̂2 + 12ĤN T̂ 21 + : : :�
 j�0i [159℄is a matrix element of a 
omponent of e�T̂ ĤNeT̂ involving the referen
e determinant,�0, on both the right and left. Sin
e �0 is depi
ted diagrammati
ally by empty spa
e,the diagrams asso
iated with the energy equation must 
ontain no dire
ted linesthat extend above or below the �rst (lowest) or last (highest) operator intera
tionlines; that is, the energy diagrams 
an 
ontain no \external" lines. Clearly none ofthe diagrams representing fragments of ĤN shown in Figures 2 and 3 satisfy this
riterion, and they therefore do not 
ontribute to the CCSD energy. This is the



69expe
ted result be
ause all of these diagrams represent normal-ordered operatorswhose referen
e expe
tation value is zero, by 
onstru
tion.Next we 
onsider the term from Eq. [159℄ whi
h is linear in T̂1ECCSD  h�0j �ĤN T̂1�
 j�0i; [160℄whi
h we examined earlier to obtain Eq. [126℄. (The left arrow indi
ates thatthis is only one of several terms whi
h 
ontribute to the energy on the left-handside.) The rightmost operator in this matrix element is T̂1, so its intera
tion linemust lie at the bottom of the �nal diagram. Making use of the ex
itation levelsasso
iated with the operator diagrams des
ribed above, we note that the T̂1 diagramprodu
es an ex
itation level of +1 from the referen
e determinant. Sin
e the matrixelement of interest must 
ontain �0 on the left, the total ex
itation level of the �naldiagram must be 0. Therefore, we require those Hamiltonian diagrams whi
h havean ex
itation level of �1 and whi
h 
ontain the referen
e determinant at the top ofthe diagram. Of the F̂N and V̂N diagrams given above, only the third diagram ofFigure 2 meets these 
riteria. We may then 
onne
t the T̂1 diagram with this F̂Nfragment to obtain h�0j �F̂N T̂1�
 j�0i = X : [161℄Note that both lines from the T̂1 diagram must 
onne
t to ea
h line from theF̂N fragment in order to avoid external lines. The diagram may be interpretedalgebrai
ally using the following rules:� Label all dire
ted lines with appropriate indi
es. By the 
onvention we haveused so far, hole lines would be labeled with i; j; k; l; ::: and parti
le lines with



70a; b; 
; d; :::. Therefore, for the diagram above we label the hole line with i andthe parti
le line with a to obtain X

i a .
� Ea
h operator intera
tion line 
ontributes an integral or amplitude to thematrix element expression. Fo
k matrix elements are 
onstru
ted from thediagram by the rule houtjf̂ jini, where out indi
ates the index of the outgoingdire
ted line and in indi
ates the index of the in
oming dire
ted line at theintera
tion line's vertex. T̂ operators 
ontribute amplitudes to the expression,
onstru
ted using the hole and parti
le indi
es in their left to right order inthe diagram. In this 
ase, the Fo
k matrix element is fia and the amplitude istai .� Summations are in
luded over all \internal" indi
es | that is, all indi
esasso
iated with lines that begin and end at operator intera
tion lines anddo not extend to in�nity above or below the diagram like the external linesdes
ribed above. Thus, the present diagram requires a summation over indi
esi and a.� The sign of the diagram is determined based on the formula (�1)h+l, where h isthe number of hole lines in the diagram and l is the number of \loops." A loopis a route along a series of dire
ted lines that either returns to its beginningor begins at one external line and ends at another. In this 
ase, we have onlyone hole line (i) and one loop, so the sign on the diagram is positive.



71A

ording to these rules, the �nal algebrai
 interpretation of the above diagram istherefore
X =Xia fiatai ; [162℄whi
h is identi
al to Eq. [126℄ obtained earlier using Wi
k's theorem.Now 
onsider the next term of Eq. [159℄ whi
h is linear in T̂2,ECCSD  h�0j �ĤN T̂2�
 j�0i; [163℄whi
h we examined earlier in Eq. [132℄. Again the 
luster operator must lie atthe bottom of the �nal diagram be
ause it is the rightmost operator in the matrixelement. Sin
e T̂2 produ
es an ex
itation level of +2 (see Figure 4), we requirethose Hamiltonian diagrams that have an ex
itation level of �2 (in order to obtaina total ex
itation level of 0) and whi
h 
ontain the referen
e wavefun
tion abovethe Hamiltonian intera
tion line. The only ĤN diagram whi
h meets these 
riteriais the last diagram of Figure 3, , whi
h 
ontains four q-annihilationlines. Conne
ting this diagram with that of T̂2 su
h that there are no external linesgives h�0j �V̂N T̂2�
 j�0i = : [164℄To 
onstru
t the algebrai
 interpretation of this diagram, we �rst assign labels to thehole and parti
le lines as before, to obtain ai j b. By the rules des
ribedabove, there are four internal lines and thus four summation indi
es. In addition,



72there are two loops in this diagram (one involving the i and a lines and the otherinvolving the j and b lines) and two hole lines, giving an overall + sign. For theremainder of the algebrai
 expression, we require two rules in addition to thosedes
ribed above:� The V̂N fragment 
ontributes the two-ele
tron integral, hijjjabi, whi
h is
onstru
ted by the rule hleft� out; right � outjjleft� in; right � ini,where left-out and right-out indi
ate the left and right outgoing lines fromthe V̂N diagram vertex, respe
tively, and left-in and right-in indi
ate theleft and right in
oming lines, respe
tively. The 
ontribution of the T̂2 operatorto the expression is obtained by taking the hole and parti
le indi
es from theT̂2 vertex in their left-to-right ordering in the diagram. For this diagram, V̂N
ontributes the integral hijjjabi and T̂2 
ontributes the amplitude tabij .� This diagram 
ontains two pairs of \equivalent" lines | that is, lines beginningat the same operator intera
tion line and ending at the same intera
tion line.For ea
h su
h pair, a prefa
tor of 12 is multiplied onto the algebrai
 expression.qThe �nal algebrai
 interpretation of this diagram is therefore= 14Xijabhijjjabitabij : [165℄We 
ould have used a somewhat di�erent 
onne
tivity for the V̂N and T̂2 diagramfragments than the one shown above. For example, we 
ould also have 
hosen insteadqIt is possible for groups of three or more lines to be identi�ed as equivalent, thoughthis 
an happen only in many-body perturbation theory, expe
tation-value 
oupled 
lustertheory, or unitary 
oupled 
luster theory. For su
h diagrams, a prefa
tor of 1n! , where n isthe number of ele
tron lines, must be in
luded.



73to build this diagram ash�0j �V̂N T̂2�
 j�0i = : [166℄However, re
all that the V̂N and T̂ operator diagrams from Figures 3 and 4 areantisymmetri
 with respe
t to permutation of either the pair of outgoing lines or thepair of in
oming lines at the two verti
es. Hen
e, we have the relations,
ia b j = � ja b i = � ib a j = jb a i : [167℄

Therefore, the two energy diagrams are equivalent sin
e the two hole lines andthe two parti
le lines from the T̂2 diagram both 
onne
t to the same V̂N diagramfragment: = : [168℄The equivalen
e of the two diagrams 
an also be seen through their algebrai
interpretations, whi
h we obtain by applying the same rules given above to the thenew diagram from Eq. [166℄. Again, we label the hole and parti
le lines using theindi
es i, j, a, and b, to obtain i j
ba . In this 
ase, the algebrai
 analysisis identi
al to that given for the diagram of Eq. [164℄ above, with two ex
eptions:(1) the two-ele
tron integral 
ontributed by the V̂N fragment is hijjjbai rather thanhijjjabi be
ause its two in
oming parti
le lines have been reversed; (2) althoughthere are still two hole lines, there is now only one loop, whi
h involves all four



74dire
ted lines, giving rise to a negative sign for the diagram. Hen
e, the algebrai
interpretation of the diagram is= �14Xijabhijjjbaitabij = +14Xijabhijjjabitabij = : [169℄where we have used the antisymmetry of the Dira
 notation two-ele
tron integralsto make the equivalen
e of the two diagrams 
learer.Next 
onsider the 
omponent of Eq. [159℄ whi
h is quadrati
 in T̂1,ECCSD  12h�0j �ĤN T̂ 21 �
 j�0i: [170℄Sin
e the two 
luster operators a
t on the referen
e determinant to produ
e a totalex
itation level of +2, we require the same Hamiltonian �2 diagram fragment usedin Eq. [164℄. Also, be
ause the 
luster operators a
t before the Hamiltonian operatorin the matrix element, they are pla
ed at the bottom of the diagram. Furthermore,be
ause the the T̂1 operators 
ommute, their verti
al ordering in the diagram is notimportant. The 
omplete diagram is formed by 
onne
ting the V̂N vertex to both ofthe T̂1 diagrams to give 12h�0jV̂N T̂ 21 j�0i = : [171℄For this diagram, the algebrai
 analysis is quite similar to that used to obtainEq. [165℄ above. There are two hole lines, and two parti
le lines, all of whi
hare summation indi
es. Sin
e there are two loops, the total sign on the diagramis positive. The two-ele
tron integral provided by the V̂N fragment is again hijjjabi,but there are now two T̂1 amplitude fragments, one 
ontributing tai and the other tbj.Note also that the two pairs of hole lines and parti
le lines are no longer equivalent asthey were in Eq. [165℄. We require only one additional rule to evaluate this diagram:� Unlike the diagram in Eq. [165℄, this diagram 
ontains a pair of \equivalent"verti
es; sin
e both T̂1 fragments are 
onne
ted to the same V̂N intera
tion



75line in exa
tly the same manner (ea
h by a hole line and a parti
le line), aprefa
tor of 12 is multiplied into the �nal expression. Generally speaking, ifthere are n equivalent verti
es in the diagram, they 
ontribute a prefa
tor of1n! to the �nal expression.Thus, the �nal algebrai
 expression for this diagram is= 12Xijabhijjjabitai tbj: [172℄The diagrammati
 analysis also makes it 
learer that no higher-order
ontributions to the Hausdor� expansion in Eq. [159℄ 
an 
ontribute to the 
oupled
luster energy. All remaining terms 
ontain 
luster operator produ
ts whi
h produ
eex
itation levels higher than +2. However, there are no Hamiltonian operatordiagrams whi
h 
an de
rease this ex
itation level by more than �2. Therefore,there 
an be no higher-order 
ontributions to the 
oupled 
luster energy equation,whi
h must have a total ex
itation level of 0.Summing diagrammati
 Eqs. [162℄, [165℄, and [172℄, we obtain the �nal energyequation ECCSD � E0 = X + += Xia fiatai + 14Xijabhijjjabitabij + 12Xijabhijjjabitai tbj; [173℄whi
h is identi
al to that derived earlier using Wi
k's theorem.Diagrammati
 Representation of the CCSD Amplitude EquationsThe same diagrammati
 
on
epts used to derive the CCSD energy equation abovemay also be applied to the CCSD T̂1 and T̂2 amplitude equations, with a fewadditional rules. Here we 
onsider the 
ontribution of ea
h term of �H given in



76Eq. [122℄ to the amplitude equations in the same order as we did using Wi
k'stheorem before. The resulting matrix elements always 
ontain the referen
edeterminant, �0, on the right and an ex
ited determinant on the left (e.g., �ai for theT̂1 equation and �abij for the T̂2 equation). The 
orresponding diagrams always havethe same general stru
ture: no q-annihilation lines below the diagram and a 
ertainnumber of q-
reation lines extending above. For example, diagrams 
ontributing tothe T̂1 amplitude equation 
ontain exa
tly two q-
reation lines above (and therefore atotal ex
itation level of +1) and diagrams 
ontributing to the T̂2 amplitude equation
ontain four q-
reation lines above (and a total ex
itation level of +2).The leading term of �H is just the ele
troni
 Hamiltonian itself. For its
ontribution to the T̂1 amplitude equation, we must evaluate the matrix elements,h�ai j �F̂N + V̂N� j�0i, as before. Sin
e these elements 
ontain the referen
edeterminant on the right and a singly ex
ited determinant on the left, we requirethose +1 Hamiltonian diagrams that 
ontain no lines below the intera
tion lineand a single pair of lines above it. The only diagram from Figures 2 and 3 thatmeets this 
riterion is the fourth fragment of the one-ele
tron operator, F̂N . Hen
e,there is no 
ontribution from V̂N in this 
ase, and the matrix element is representeddiagrammati
ally as h�ai jF̂N j�0i =
X

: [174℄The algebrai
 interpretation of this diagram is straightforward: (1) we label thetwo lines using indi
es i and a to maintain 
onsisten
y with the singly ex
iteddeterminant, �ai , used in the matrix element itself; (2) there are no internal lines andtherefore no summation indi
es; (3) the F̂N fragment 
ontributes the Fo
k matrixelement, fai; (4) there is only one loop (whi
h starts at one external line and endsat another) and one hole line, giving a positive sign. Thus, the �nal expression is



77simply
X

i a = fai; [175℄whi
h we derived earlier in Eq. [139℄ using Wi
k's theorem.For the 
ontribution of ĤN to the T̂2 amplitude equation, we must evaluatethe matrix element, h�abij j �F̂N + V̂N� j�0i, whi
h 
ontains the referen
e determinanton the right and a doubly ex
ited determinant on the left. Therefore, we requirethose ĤN diagrams that produ
e a +2 ex
itation, and whi
h have no q-annihilationlines. Only the eighth diagram of Figure 3, , meets this 
riterion. Itsalgebrai
 interpretation is 
arried out as follows: (1) we label the lines (in order)as i, a, j, and b, for 
onsisten
y with the doubly ex
ited determinant in the matrixelement; (2) there are no internal lines and therefore no summation indi
es; (3) thetwo-ele
tron integral 
ontributed by the V̂N intera
tion line is habjjiji; (4) there aretwo hole lines and two loops, giving a positive sign. Therefore, this matrix elementmay be written as h�abij jV̂N j�0i = bji a = habjjiji; [176℄whi
h is the same as that derived earlier in Eq. [141℄.The 
ontribution of the se
ond term of Eq. [122℄ to the T̂1 amplitude equationis only slightly more 
ompli
ated. This term involves the matrix element,h�ai j �hF̂N + V̂N i T̂1�
 j�0i, and, as before, we will 
onsider only the 
ontributionof V̂N . The T̂1 operator, whi
h a
ts �rst and is therefore pla
ed at the bottom of thediagram, produ
es a +1 ex
itation from the referen
e on the right. Sin
e the singlyex
ited determinant on the left-hand side of the matrix element indi
ates an overall



78+1 ex
itation level, we require the three diagram fragments of V̂N whi
h have anoverall ex
itation level of 0:
.

However, the �rst two of these fragments 
an 
onne
t to the T̂1 diagram in only oneindex | via either a single hole line or parti
le line | thus leaving an additionalline extending below the T̂1 intera
tion line in the �nal diagram, e.g.,
6= h�ai j �V̂N T̂1�
 j�0i: [177℄

Be
ause su
h diagrams 
annot represent matrix elements that have the referen
ewavefun
tion on the right, only the third diagram above 
an 
ontribute to the T̂1amplitude equation. Conne
ting this V̂N fragment to the T̂1 diagram gives
h�ai j �V̂N T̂1�
 j�0i = : [178℄

The algebrai
 interpretation of this diagram pro
eeds exa
tly as before: (1) we labelthe external lines using i and a for 
onsisten
y with the singly ex
ited determinantin the matrix element, and the internal lines are labeled with the summation indi
esj and b; (2) the appropriate two-ele
tron integral 
ontributed by the V̂N 
omponent



79is hjajjbii and the T̂1 amplitude is tbj; (3) there are two loops and two hole linesgiving the diagram a positive sign. The �nal expression for this diagram is therefore
=Xjb hjajjbiitbj; [179℄

whi
h is identi
al to the result in Eq. [143℄.The 
ontribution of �V̂N T̂1�
 to the T̂2 amplitude equation involves the matrixelement h�abij j �V̂N T̂1�
 j�0i. In this 
ase, we require an overall ex
itation level of +2as di
tated by the doubly ex
ited determinant on the left. Sin
e the T̂1 operatorprodu
es a +1 ex
itation from �0, we require diagrams six and seven of V̂N in Figure3 whi
h produ
e a +1 ex
itation:

These may be 
onne
ted to the T̂1 amplitude diagram from below to give two terms
h�abij j �V̂N T̂1�
 j�0i = + : [180℄

These two diagrams may be interpreted using the rules des
ribed above: (1) weassign indi
es i, j, a, and b (from left to right) to the external lines for 
onsisten
y



80with the doubly ex
ited determinant in the matrix element; (2) there is only oneinternal (summation) line in ea
h diagram to whi
h we assign the indi
es 
 in the leftdiagram and k in the right diagram; (3) in the left diagram, there are two loops andtwo hole lines giving a positive sign, and in the right diagram there are two loopsand three hole lines giving a negative sign; (4) the two-ele
tron integral in the leftdiagram is habjj
ji and in the right diagram is hkbjjiji; (5) the T̂1 amplitude in theleft diagram is t
i and in the right diagram is tak; (6) there are neither equivalent linesnor equivalent verti
es so no additional fa
tors of 12 appear in the �nal expression.Before the algebrai
 interpretation is 
omplete, however, we require one additionalrule:� Ea
h pair of unique, external hole or parti
le lines introdu
es a permutationfun
tion, P (pq) (as de�ned earlier in Eq. [154℄), to ensure antisymmetry of the�nal expression.Note again that the four external q-
reation lines of the T̂2 amplitude diagrams
orrespond to the wavefun
tion lines of a doubly ex
ited determinant; in the abovediagrams, the i, j, a, and b external lines 
orrespond to the ex
itation orbitalsof the determinant, �abij . Sin
e this determinant is antisymmetri
 with respe
t topermutation of either the i and j indi
es or the a and b indi
es, this antisymmetrymust be maintained in the �nal algebrai
 expression. Pairs of external lines whi
horiginate from the same operator intera
tion line (su
h as the two parti
le linesin the leftmost diagram of Eq. [180℄) are not unique and the expression is alreadyantisymmetri
 with respe
t to permutation of su
h pairs. Pairs of external linesthat do not originate on the same operator intera
tion line (su
h as the hole linesof the leftmost diagram) are unique, and a permutation operator must be in
ludedin the algebrai
 interpretation to ensure proper antisymmetry. For example, in theleft-hand diagram above, there are two external parti
le lines and two external hole
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 to permutation of the two parti
le linesbe
ause they both 
onne
t to the V̂N diagram fragment. The hole lines, on the otherhand, 
onne
t to di�erent verti
es | one to T̂1 and the other to V̂N . Therefore, thediagram is not antisymmetri
 to permutation of these lines, and we must in
ludethe operator P (ij) in the algebrai
 expression 
orresponding to this diagram:= P (ij)X
 habjj
jit
i : [181℄Similarly, the external parti
le lines in the rightmost diagram must be permuted inits algebrai
 expression: = �P (ab)Xk hkbjjijitak: [182℄When the permutation operators are expanded, these expressions are identi
al tothose given in Eq. [145℄ derived earlier using Wi
k's theorem and some 
ompli
atedalgebra.The next example is the 
ontribution of �F̂N T̂ 21 �
 to the T̂1 amplitude equation,whi
h requires the matrix element h�ai j �F̂N T̂ 21 �
 j�0i. To obtain an overall ex
itationlevel of +1, as di
tated by the singly ex
ited determinant on the left and the referen
eon the right, we must use the �1 diagram fragment of F̂N , X , sin
e the twoT̂1 operators produ
e an ex
itation level of +2. There are three ways to 
onne
t thisF̂N diagram fragment to the 
luster operator diagrams to produ
e a matrix element



82with the appropriate determinants above and below the diagrams:
X X X :The �rst and third diagrams above are equivalent and 
orrespond to the 
ontra
tionsindi
ated in Eq. [149℄. These violate the \
onne
ted 
luster" form of e�T̂ ĤNeT̂ ��ĤNeT̂�
 dis
ussed earlier, whi
h requires that the Hamiltonian fragment must shareat least one index with every 
luster operator on its right. The se
ond diagramis therefore the only a

eptable 
ontribution from this matrix element to the T̂1amplitude equation. Its algebrai
 interpretation pro
eeds as usual: (1) the externallines are labeled i and a to mat
h the singly ex
ited determinant, �ai , in the matrixelement; (2) the internal (summation) lines are labeled by the dummy indi
es k and
; (3) the Fo
k operator 
ontributes the element fk
, and the T̂1 operators 
ontributethe amplitudes t
i and tak; (4) there are two hole lines and only one loop, giving anoverall negative sign to the diagram; (5) there are no equivalent internal lines, norare the two T̂1 fragments equivalent sin
e they do not 
onne
t to the F̂N diagramfragment in the same way (one 
onne
ts via a hole line and the other via a parti
leline). The �nal expression is therefore12h�ai j �F̂N T̂ 21 �
 j�0i = X = �Xk
 fk
t
i tak; [183℄whi
h is the same as the result given in Eq. [148℄.As a �nal example, 
onsider the 
ontribution of the 12 �V̂N T̂ 21 T̂2�
 operator to theT̂2 equation. As dis
ussed earlier, the 
orresponding matrix element, whi
h involvesa doubly ex
ited determinant on the left and the referen
e determinant on the right,requires 
onsiderable e�ort if analyzed using Wi
k's theorem. Diagrammati
ally,



83however, this analysis is mu
h simpler. The only diÆ
ulty arises in the 
onstru
tionof only uniquely 
onne
ted diagrams. For example, one might 
onstru
t the twoseemingly di�erent diagrams: and .Careful inspe
tion, however, reveals that the diagrams are equivalent be
ause one
an be produ
ed from the other by permutation of the hole or parti
le lines on theT̂2 fragment. (This equivalen
e 
an also be proven algebrai
ally, and the reader isen
ouraged to 
arry this analysis out independently.)One 
an ensure that only unique diagrams are produ
ed by using astraightforward pro
edure developed by Ku
harski and Bartlett.20 In this approa
h,one �rst assigns + symbols to parti
le lines and � symbols to hole lines lying belowthe intera
tion line of the Hamiltonian fragment or above the intera
tion line forthe 
luster operators. Unique 
onne
tivities of the operator diagrams are produ
edby 
ombining these signs in all unique ways. In the present example, the two T̂1operators ea
h 
ontribute one + sign and one � sign, the T̂2 operator 
ontributes two+ signs and two � signs, and the �2 ex
itation level fragment of V̂N 
ontributes two+ signs and two � signs. Sin
e in this 
ase every dire
ted line from the Hamiltonianfragment must 
onne
t to lines from the 
luster operators, we must mat
h the +and � signs from V̂N to the same signs on the 
luster operators. For example, wemight 
hoose one + and one � from the T̂2 operator, leaving one + for one of the T̂1fragments and one � for the remaining T̂1. We will denote this \sign sequen
e" as+�j+ j�, where the �rst pair of signs belong to the T̂2 operator, and the remainingsigns (separated by the verti
al bars) belong to the T̂1 operator fragments. The
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orresponding diagram would be+�j+ j� = and :where the 
onne
tivity di
tated by the sign sequen
e is maintained in the diagram.The sign sequen
e helps to reveal the equivalen
e of the two diagrams; the T̂2operator in ea
h diagram 
onne
ts to the V̂N fragment by a parti
le-hole pair of lineswhile the T̂1 operators 
onne
t by either a parti
le or a hole line. Note that thissequen
e is equivalent to the sequen
e +�j�j+ be
ause the T̂1 operators 
ommute.For this matrix element, there are only �ve unique sign sequen
es, in
luding the onegiven above: (1) +� j+ j�, (2) + + j � j�, (3) �� j+ j+, (4) �j+ j+�, and (5)+j � j +�. These �ve Ku
harski-Bartlett sign sequen
es give rise to the diagrams(in order)12h�abij j �V̂N T̂ 21 T̂2�
 j�0i = + [184℄
+ +

+ : [185℄The algebrai
 interpretation of ea
h of these diagrams, using the rules des
ribedearlier, is easily shown to be (in the same order as the diagrams above)12h�abij j �V̂N T̂ 21 T̂2�
 j�0i = �P (ij)P (ab)Xkl
dhkljj
dita
iktdj tbl + [186℄14P (ab)Xkl
dhkljj
dit
dij taktbl + 14P (ij)Xkl
dhkljj
ditabkl t
i tdj �P (ij)Xkl
dhkljj
ditabikt
jtdl � P (ab)Xkl
dhkljj
dita
ij tbktdl :



85The permutation operators appear in order to maintain the antisymmetry of thealgebrai
 expressions, as explained earlier. Note that the fa
tors of 14 appearing inthe se
ond and third terms result from both a pair of equivalent lines and a pair ofequivalent verti
es in ea
h of the 
orresponding diagrams.Size Extensivity of the Coupled Cluster EnergyEarlier in the 
hapter we dis
ussed the property of the 
oupled 
luster energyknown as size 
onsisten
y, whi
h implies that the energy of two non-intera
tingfragments 
omputed separately is the same as that 
omputed for both fragmentssimultaneously. A related property is known as size extensivity, whi
h is appliedto methods whose energy s
ales linearly with N (the number of ele
trons), just asthe exa
t energy s
ales. Whereas size 
onsisten
y applies only to non-intera
tingmole
ular fragments, size extensivity is a more general mathemati
al 
on
ept thatapplies to any point on the potential energy surfa
e. The term was popularizedin ele
troni
 stru
ture theory by Bartlett87 and is based on analogous extensivethermodynami
 properties. In this se
tion, we show that the exponential ansatzof 
oupled 
luster theory guarantees size extensivity, but that the trun
ated CIapproa
h does not.Consider the stru
ture of the CI S
hr�odinger equation (assuming intermediatenormalization as well as normal-ordered ĤN and Ĉ operators), beginning from thelinear ansatz of Eq. [32℄:ĤN �1 + Ĉ1 + Ĉ2 + : : :� j�0i = (ECI � E0) �1 + Ĉ1 + Ĉ2 + : : :� j�0i: [187℄Left-proje
tion of this equation by the referen
e determinant, �0, leads to the energyequation, ECI � E0 = h�0jĤN �Ĉ1 + Ĉ2� j�0i; [188℄
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ation of the CI expansion is a natural 
onsequen
e of Slater's rules.By appli
ation of Wi
k's theorem (or the 
orresponding diagrams, of 
ourse), thisequation may be written in algebrai
 form asECI � E0 =Xia fia
ai + 14Xijabhijjjabi
abij : [189℄If 
anoni
al Hartree-Fo
k orbitals are 
hosen, the �rst term is zero by Brillouin'stheorem.How do the individual terms on the right-hand side of Eq. [189℄ s
ale as moreele
trons are added to the system? If we assume a lo
alized orbital basis (whi
hdoes not limit the validity of this analysis), then, for a given o

upied orbital, �i,the two-ele
tron integral, hijjjabi, for example, will be zero unless the orbitals, �j,�a, and �b, are in reasonably 
lose proximity to �i, due to the relatively short range ofthe interele
troni
 potential. Assuming that the number of orbitals whi
h ful�ll thisproximity requirement for (i.e., are \lo
al" to) �i is �nite, then all of the individualtwo-ele
tron integrals, hijjjabi, asso
iated with �i are independent of the number ofele
trons in the system. That is, as more ele
trons (and therefore more o

upiedand virtual orbitals) enter the 
al
ulation, the set of individual two-ele
tron integralsasso
iated with orbital �i remains una�e
ted. Assuming that the CI 
oeÆ
ients, 
abij ,in the se
ond term of Eq. [189℄ have the same independen
e | an assumption wewill examine momentarily | then the i-independent summation,Zi �Xjabhijjjabi
abij ; [190℄will be una�e
ted as the size of the system in
reases. Sin
e there are N ele
trons,the �nal summation over o

upied orbital index i produ
es N independent Zi
ontributions, ECI  Xi Zi: [191℄(The left arrow indi
ates that the term on the right-hand side is one of several termsthat 
ontribute to ECI.) Therefore the se
ond term of Eq. [189℄ s
ales linearly with



87the number of ele
trons, if and only if the CI 
oeÆ
ients, 
abij , are independent of N .A similar argument holds for the �rst term on the right-hand side of the equationas well.The CI 
oeÆ
ient equations are obtained by left-proje
tion of Eq. [187℄ by ex
iteddeterminants. For example, the Ĉ1 equation from full CI ish�ai jĤN �1 + Ĉ1 + Ĉ2 + Ĉ3� j�0i = (ECI � E0) h�ai jĈ1j�0i = ECI
ai ; [192℄whi
h is energy-dependent, unlike the 
orresponding 
oupled 
luster amplitudeequation. Every term on the left-hand side of this equation involves either bareHamiltonian matrix elements, whi
h are independent of N , or 
ontra
tions of su
hmatrix elements with CI 
oeÆ
ients, whose N -s
aling is not yet known. The term onthe right-hand side, whi
h 
ontains the CI energy, on the other hand, does dependon the system size | as N in
reases, ECI in
reases (with some undetermined order).This non-unit s
aling implies that, if size extensivity is to be maintained, terms onthe left-hand side of Eq. [192℄ must s
ale similarly with N in order to 
an
el out the\errors" introdu
ed by the presen
e of ECI. If all ex
itation operators are in
ludedin the CI ansatz, then this 
ompensation is in
luded in the 
orresponding 
oeÆ
ientequations. For example, we see that in Eq. [192℄ above, Ĉ3 
an 
ontribute to Ĉ1 bySlater's rules. The Ĉ3 equation itself ish�ab
ijk jĤN �Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4 + Ĉ5� j�0i = (ECI � E0) 
ab
ijk; [193℄whi
h in
ludes 
ontributions from up to Ĉ5. The �rst term on the left-hand sideinvolving Ĉ1 may be written as
ab
ijk  = 
ai hjkjjb
i; [194℄where we have used the thi
k bar in the diagram to distinguish the Ĉ1 operatorfrom the 
orresponding T̂1 operator. Sin
e the orbitals on the Ĉ1 
omponent are
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ompletely independent of those of the two-ele
tron integral (i.e., the diagram is\dis
onne
ted"), this term will produ
e nonzero Ĉ3 
omponents involving orbitalswhi
h are spatially distant as the size of the system is in
reased. That is, for a givenorbital, �i, the number of nonzero 
oeÆ
ients, 
ab
ijk , involving the orbitals �j, �k,et
., in
reases as more ele
trons (orbitals) are added to the system. Therefore, theterm from Eq. [192℄ involving Ĉ3, whi
h may be written as
ai  14 Xjkb
 
ab
ijkhjkjjb
i; [195℄s
ales approximately linearly as N in
reases. This term would therefore 
ontributeto the \
ompensating errors" des
ribed above to ensure appropriate linear s
alingof the CI energy with respe
t to the number of ele
trons. Similarly, the N s
alingof the Ĉ3 equation itself is 
orre
ted by su
h dis
onne
ted terms arising from higherex
itation levels su
h as Ĉ4 and Ĉ5. Therefore, if the CI equations are trun
atedat a parti
ular ex
itation level, the higher-ex
itation terms needed to 
an
el thein
orre
t N -s
aling of the energy-dependent term in ea
h 
oeÆ
ient equation willbe lost, and the errors in the trun
ated CI energy relative to the exa
t (full CI) energywill be 
ompounded as the size of the system in
reases. The well-known Davidson
orre
tion for the CISD energy is designed to a

ount for the size extensivity errorof this method.121,122The 
oupled 
luster energy, on the other hand, does not su�er from this la
kof size extensivity for two reasons: (1) The amplitude equations in Eq. [50℄ areindependent of the 
oupled 
luster energy; (2) The Hausdor� expansion of thesimilarity transformed Hamiltonian in Eq. [106℄, for example, guarantees that theonly nonzero terms are those in whi
h the Hamiltonian is 
onne
ted to all the 
lusteroperators on its right, regardless of the trun
ation of T̂ . Hen
e, no diagrams su
has that in Eq. [194℄ appear in the 
oupled 
luster amplitude equations. As a result,



89the T̂ amplitudes are independent of the system size, and the 
oupled 
luster energy
omputed via Eq. [123℄ s
ales linearly with the number of ele
trons.A size extensive method is frequently de�ned esoteri
ally as one whose energyand amplitude/
oeÆ
ient equations 
ontain no \unlinked" diagrams, su
h as(ECI � E0) 
ai  ; [196℄in whi
h the two diagram 
omponents 
annot be 
onne
ted to ea
h other even byappli
ation of other intera
tion lines.r Although su
h terms are indeed absent in the
oupled 
luster equations (as well as those of many-body perturbation theory), onemust also ex
lude dis
onne
ted amplitude 
omponents su
h as those in Eq. [194℄(whi
h also 
ontribute to the improper N -dependen
e of the amplitudes) in orderto ensure 
orre
t s
aling of the energy.

rThe \dis
onne
ted" diagram of Eq. [194℄ is not unlinked sin
e the in
lusion ofan additional V̂N fragment 
an 
onne
t its two 
omponents | Harris et al.80 havere
ommended that su
h terms should be 
alled \linkable." With terms su
h as\dis
onne
ted," \
onne
ted," \linked," and \unlinked" used to des
ribe diagrams, it isnot surprising that these te
hniques have 
aused mu
h 
onfusion in the past.



CONNECTION TO MANY-BODY PERTURBATIONTHEORY
In this se
tion we examine the fundamental relationship between many-bodyperturbation theory (MBPT) and 
oupled 
luster theory. As originally pointed outby Bartlett,87,123 this 
onne
tion allows one to 
onstru
t �nite-order perturbationtheory energies and wavefun
tions via \iterations" of the 
oupled 
luster equations.The essential aspe
ts of MBPT have already been dis
ussed in Volume 5 of Reviewsin Computational Chemistry77 as well as numerous other texts.80,82,124,125 Wetherefore only summarize the main points of MBPT and fo
us on its intimate linkto 
oupled 
luster theory as well as how MBPT 
an be used to 
onstru
t energy
orre
tions for higher-order 
luster operators su
h as the popular (T) 
orre
tion for
onne
ted triple ex
itations.Perturbational De
omposition of the Cluster OperatorsTwo essential 
on
epts underlie the 
onstru
tion of MBPT from basi
 theRayleigh-S
hr�odinger perturbation theory:77,82� The zeroth-order 
omponent of the ele
troni
 Hamiltonian is taken to bethe Fo
k operator su
h that the perturbation operator (sometimes 
alled the
u
tuation potential) is then the remaining two-ele
tron operator, V̂N :ĤN = Ĥ(0) + Ĥ(1) = F̂N + V̂N : [197℄This partitioning, when applied in 
onjun
tion with the set of 
anoni
al Hartree-Fo
korbitals (in whi
h F̂N is diagonal), 
orresponds to the M�ller-Plesset variantof many-body perturbation theory.126 A Hartree-Fo
k determinant, whi
h is90



91an eigenfun
tion of F̂N , is therefore the natural 
hoi
e for the zeroth-orderwavefun
tion.s� Ea
h perturbed wavefun
tion, 	(n), is expanded in a CI-like fashion as a linear
ombination of ex
ited determinants,	(n) =Xia aa (n)i �ai + 14Xijab aab (n)ij �abij + : : : : [198℄As dis
ussed in detail in Refs. 77 and 82, for example, this expansion is not N -fold(where N is the number of ele
trons in the system) for the lower perturbationalorders, but trun
ates to in
lude only modest ex
itation levels. For example, the�rst-order wavefun
tion, whi
h may be used to 
ompute both the se
ond- andthird-order energies, 
ontains 
ontributions from only doubly ex
ited determinants,whereas the se
ond-order wavefun
tion, whi
h 
ontributes to the fourth- and�fth-order perturbed energies, 
ontains 
ontributions from singly, doubly, triply, andquadruply ex
ited determinants. Furthermore, the sum of the zeroth- and �rst orderenergies is equal to the SCF energy. This determinantal expansion of the perturbedwavefun
tions suggests that we may also de
ompose the 
luster operators, T̂n, byorders of perturbation theory:T̂n = T̂ (1)n + T̂ (2)n + T̂ (3)n + : : : ; [199℄Depending on the 
hoi
e of mole
ular orbital basis, the earliest terms for 
ertainex
itation levels are naturally zero. For example, in M�ller-Plesset theory, only T̂2
ontains a nonzero �rst-order 
omponent; 
ontributions to T̂1, T̂3, and T̂4 �rst appearsThe 
hoi
e of F̂N as the zeroth-order Hamiltonian requires the use of either aspin-restri
ted (
losed-shell) Hartree-Fo
k (RHF) or spin-unrestri
ted Hartree-Fo
k (UHF)determinant as the zeroth-order (referen
e) wavefun
tion. Sin
e spin-restri
ted open-shellHartree-Fo
k (ROHF) referen
e fun
tions are not eigenfun
tions of the spin-orbital F̂N ,other partitionings are required.127{134



92in se
ond order be
ause the 
orresponding se
ond-order wavefun
tion 
ontains single,double, triple, and quadruple ex
itations.Perturbation Theory Energies from the Coupled Cluster HamiltonianThe partitioning of the ele
troni
 Hamiltonian and the 
orresponding breakdownof the 
luster operators leads to an expansion of the 
oupled 
luster e�e
tiveHamiltonian, �H, in orders of perturbation theory through the Hausdor� expansiongiven in Eq. [122℄: �H = �H(0) + �H(1) + �H(2) + : : : : [200℄Sin
e the zeroth-order 
omponent of �H 
onsists of only the Fo
k operator inM�ller-Plesset theory, the �rst-order 
omponents of �H may be written as�H(1) = V̂N + �F̂N T̂ (1)2 �
 ; [201℄and the se
ond-order term as�H(2) = �F̂N T̂ (2)1 + V̂N T̂ (1)2 + 12F̂N �T̂ (1)2 �2�
 : [202℄Ea
h of these expressions is 
onstru
ted by simply assigning the appropriateperturbational orders to ea
h operator in Eq. [122℄ and retaining only thoseterms whi
h 
orrespond to the desired order, n. Using �H(n) as an approximateHamiltonian, one may 
onstru
t n-th order S
hr�odinger equations of the form�H(n)j�0i = E(n)j�0i: [203℄One 
omputes the energy in the n-th order of MBPT via a zeroth-order expe
tationvalue, viz. E(n) = h�0j �H(n)j�0i; [204℄



93obtained by left-proje
tion of Eq. [203℄ by �0. For example, the se
ond-order energy(often referred to as the MP2 energy) may be 
omputed fromE(2) = h�0j �F̂N T̂ (2)1 �
 j�0i+ h�0j �V̂N T̂ (1)2 �
 j�0i+ 12h�0j�F̂N �T̂ (1)2 �2�
 j�0i; [205℄whi
h may be evaluated as usual using Wi
k's theorem or the diagrammati
te
hniques des
ribed earlier in the 
hapter. We denote the 
luster operators ofa parti
ular order diagrammati
ally by adding hash marks to the 
orrespondingintera
tion line. For example, the �rst-order T̂2 operator may be written asT̂ (1)2 = ; [206℄and the se
ond-order T̂1 operator asT̂ (2)1 = : [207℄The �rst term on the right-hand side of Eq. [205℄ involving T̂ (2)1 must be zero in
MBPT be
ause the 
orresponding diagram, X , involves the fia elements
of the spin-orbital Fo
k matrix, whi
h are ne
essarily zero in the basis of 
anoni
alHartree-Fo
k orbitals. Furthermore, the third term on the right-hand side of theequation 
annot 
ontribute to the energy sin
e F̂N 
annot 
an
el the +4 ex
itationlevel produ
ed by the 
luster operators. Therefore, Eq. [205℄ may be written asE(2) = = 14Xijabhijjjabitab(1)ij : [208℄



94The �rst-order T̂2 amplitudes, whi
h are required for the above equation, maybe determined by left-proje
ting the �rst-order variant of Eq. [203℄ involving �H(1)by a doubly ex
ited determinant, �abij , as we did earlier in the 
onstru
tion of the
oupled 
luster amplitude equations,0 = h�abij j �H(1)j�0i = h�abij jV̂N j�0i+ h�abij j �F̂N T̂ (1)2 �
 j�0i: [209℄Evaluating this expression diagrammati
ally, we obtain0 = + X + X= habjjiji + X
 �fb
ta
(1)ij � fa
tb
(1)ij � � Xk �fkjtab(1)ik � fkitab(1)jk � : [210℄Again assuming 
anoni
al Hartree-Fo
k orbitals, the terms 
ontaining Fo
k matrixelements are redu
ed to in
lude the diagonal elements only:(fii + fjj � faa � fbb) tab(1)ij = habjjiji: [211℄Thus, the diagrammati
 equation 
ould be rewritten more simply asD2 = ; [212℄where the notation D2 � Dabij � fii + fjj � faa � fbb has been used to denote theseparation of the orbital energies (the diagonal Fo
k matrix elements) from the termsinvolving the Fo
k operator. This equation may be rearranged further by anotherslight modi�
ation of our 
urrent diagrammati
 notation:tab(1)ij = = = habjjijiDabij : [213℄



95The extra horizontal bar a
ross the lines emanating from the V̂N fragment is usedto denote division by the Dabij \energy denominator" from the above algebrai
expression. This new diagrammati
 feature may be used to indi
ate other su
hdenominators, in
luding those from the T̂ (n)1 and T̂ (n)3 equations, as we will see later inthe 
hapter. Inserting Eq. [213℄ into Eq. [208℄, the �nal MBPT(2) energy expressionmay be written asE(2) = = 14Xijab hijjjabihabjjijiDabij : [214℄This expression is identi
al to that derived dire
tly from perturbation theory inRefs. 77 and 82.As the above analysis 
learly shows, the MBPT(2) energy may be determined byapproximating the CCSD energy using only those 
omponents whi
h 
ontribute to�H(2). The CCSD energy is therefore \
omplete" through at least the se
ond orderof MBPT. One 
an 
arry this dis
ussion further to 
onstru
t the MBPT(3) energyas well. However, beginning with fourth order, the CCSD fails to in
lude all thene
essary terms. This result makes sense, of 
ourse, be
ause of the ex
itation levelin
luded in ea
h perturbed wavefun
tion. The MBPT(2) and MBPT(3) energiesrequire only doubly ex
ited determinants whi
h are in
luded expli
itly in the CCSDapproximation, but the MBPT(4) energy in
ludes 
ontributions from singly, doubly,triply, and quadruply ex
ited determinants. It may be shown6,87,135,136 that theMBPT(4) quadruple ex
itation 
ontributions may be fa
tored exa
tly into produ
tsof double ex
itations, but no su
h fa
torization is possible for the 
orrespondingtriples. As a result, the CCSD energy la
ks only triple ex
itation 
ontributions tobe 
omplete through fourth order.Re
ognition of this relationship between 
oupled 
luster theory and MBPT hasinspired resear
h e�orts to 
onstru
t perturbation-based 
orre
tions to the CCSD



96energy to a

ount for higher ex
itation 
ontributions. Undoubtedly, the mostsu

essful and popular of these is the (T) 
orre
tion �rst des
ribed for 
losed-shellmole
ular systems by Raghava
hari et al.24 In the next se
tion, we will des
ribe thestru
ture of this 
orre
tion using diagrammati
 te
hniques.The (T) Corre
tionNumerous studies over the last 15 years have 
on�rmed the importan
e oftriple and higher ex
itations for the a

urate predi
tion of many mole
ularproperties.15{17,24,25,27,51,137,138 Unfortunately, the full CCSDT approa
h,22,23,26 inwhi
h triple ex
itations are in
luded expli
itly via the T̂ � T̂1 + T̂2 + T̂3 
lusteroperator, is far too 
omputationally expensive for general appli
ation to mostsystems of 
hemi
al interest.As pointed out in the previous se
tion, the CCSD energy 
ontains 
ontributionsidenti
al to those of the MBPT(2) and MBPT(3) energy, but la
ks triple ex
itation
ontributions ne
essary for MBPT(4). Thus, a natural approa
h to the \triplesproblem" is to 
orre
t the CCSD energy for the missing MBPT(4) terms,18 usingthe CCSDT similarity-transformed Hamiltonian,�HCCSDT = e�T̂1�T̂2�T̂3ĤNeT̂1+T̂2+T̂3 ; [215℄for the perturbational de
omposition. The fourth-order energy depends on thise�e
tive Hamiltonian asE(4) = h�0j �H(4)j�0i = h�0j �V̂N T̂ (3)2 �
 j�0i = = 14Xijabhijjjabitab(3)ij :[216℄(Note that we have omitted numerous �H(4) 
omponents whi
h 
annot 
ontribute tothe energy expression.) The third-order T̂2 
omponent of this equation is determined



97via 0 = h�abij j �H(3)j�0i= h�abij j�F̂N T̂ (3)2 + V̂N T̂ (2)1 + V̂N T̂ (2)2 + V̂N T̂ (2)3 + 12 V̂N �T̂ (1)2 �2�
 j�0i: [217℄Note the appearan
e of the T̂3 operator through the use of �HCCSDT. Sin
e we wish to
onstru
t a 
orre
tion to the CCSD energy, whi
h already 
ontains the 
ontributionsfrom the T̂1 and T̂2 terms, we need to 
onstru
t only the �V̂N T̂ (2)3 �
 
omponent ofthe above equation, whi
h may be represented diagrammati
ally asT̂ (3)2 =  + ; [218℄where we have indi
ated the two-ele
tron denominator D2 using the horizontal barnotation des
ribed earlier. The T̂ (2)3 amplitudes needed for this equation may bedetermined from the 
orresponding se
ond-order amplitude equation:0 = h�ab
ijkj �V̂N T̂ (1)2 + F̂N T̂ (2)3 �
 j�0i; [219℄whi
h we may write using the denominator notation from the previous se
tion asD3 = + : [220℄This equation may be interpreted algebrai
ally asDab
ijk tab
(2)ijk = P (k=ij)P (a=b
)Xd hb
jjdkitad(1)ij � P (i=jk)P (
=ab)Xl hl
jjjkitab(1)il ;[221℄where the P (p=qr) permutation operators perform antisymmetri
 permutations ofindex p with indi
es q and r, in analogy to the two-index P (pq) operator de�nedearlier in the 
hapter. The �rst-order T̂2 amplitudes here are 
omputed using



98Eq. [213℄. These T̂ (2)3 amplitudes may then be inserted into Eq. [218℄ to 
ompute theT̂ (3)2 amplitudes, whi
h may then be used in Eq. [216℄ to 
ompute the triple-ex
itation
ontribution to the fourth-order energy, E(4)T .t The 
orre
ted CCSD energy,ECCSD+T(4) = ECCSD + E(4)T : [222℄was referred to as CCSD+T(4) by Urban et al.18 be
ause E(4)T is the true fourth-ordertriples energy when Eq. [221℄ is used to 
ompute T̂ (2)3 . If, on the other hand,we 
hoose to use the 
onverged CCSD T̂2 amplitudes rather than �rst-order T̂2in Eq. [221℄ | that is, amplitudes that solve Eq. [153℄ | we obtain a di�erent
orre
tion, whi
h Urban et al. have denoted CCSD+T(CCSD) (although morere
ently this method has been 
alled CCSD[T℄):ECCSD+T(CCSD) = ECCSD + E [4℄T ; [223℄where the supers
ript [4℄ notation indi
ates that the usual fourth-order triples energyformula is evaluated using CCSD T̂2 amplitudes. It has been shown24,140 thatthe CCSD+T(CCSD)/CCSD[T℄ approa
h has a tenden
y to overestimate tripleex
itation e�e
ts, whi
h for some systems leads to qualitatively in
orre
t predi
tionsof mole
ular properties.24A few years after the work by Urban et al., Pople and 
o-workers developed atriples 
orre
tion for the QCISD (quadrati
 
on�guration intera
tion | a methodtIt should be noted that the \pro
edure" outlined here for 
omputing E(4)T is 
ertainlynot the most eÆ
ient approa
h. As dis
ussed more than two de
ades ago,136,139 theexpression for E(4)T may be 
ast into the formE(4)T = 136 Xijkab
 tab
(2)ijk Dab
ijk tab
(2)ijk ;where Dab
ijk is the three-ele
tron 
ounterpart of Dabij . Instead of storing individual tripleex
itation amplitudes, however, ea
h 
ontribution to the summation above is 
omputedseparately using equations involving only two-ele
tron integrals and energy denominators.
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ommonly viewed as an approximation to CCSD) energy. In their work,17 they notedthat in order to properly balan
e the 
ontribution of single and double ex
itationsto the triples 
orre
tion, an additional term beyond E [4℄T must be in
luded. In 1989,a similar analysis was developed by Raghava
hari et al. who determined that a�fth-order energy 
ontribution involving single ex
itations, denoted E [5℄ST , should bein
luded in the CCSD 
orre
tion, as well.24 This 
omponent may be derived based onthe se
ond-order T̂3 
ontribution to the third-order T̂1 operator, whi
h subsequently
ontributes to fourth-order T̂2. Although the diagrammati
 te
hniques des
ribedabove are parti
ularly 
onvenient for deriving E [5℄ST , we will avoid this task here, andsimply present the �nal equationE[5℄ST = 14 Xijkab
hjkjjb
itai tab
ijk ; [224℄where the triple ex
itation amplitudes are determined using a modi�ed form ofEq. [221℄ whi
h in
ludes 
ontributions of single ex
itation amplitudes,Dab
ijk tab
ijk = P (i=jk)P (a=b
) "Xd hb
jjdiitadjk �Xl hlajjjkitb
il + tai hb
jjjki# : [225℄Hen
e, the total CCSD(T) energy may be su

in
tly written asECCSD(T) = ECCSD + E [4℄T + E [5℄ST : [226℄We again note, that large-s
ale 
omputer implementations of the (T) method do nota
tually use Eq. [225℄ to 
ompute and subsequently store the T̂3 amplitudes. Instead,a mu
h more eÆ
ient algorithm is employed in whi
h the 
ontributions to E [4℄T andE[5℄ST are 
omputed for ea
h unique 
ombination of i, j, and k indi
es,141,142 thusavoiding the O(N 6) storage requirement asso
iated with solving Eq. [225℄ expli
itly.We also note that Deegan and Knowles have re
ently 
onstru
ted an augmentedtriples 
orre
tion, denoted CCSD+T, whi
h in
ludes additional �fth-order termswhi
h are missing in CCSD.30



100What is the motivation for the in
lusion of this parti
ular �fth-order term overother su
h terms in the (T) 
orre
tion? There have been in
uential numeri
alstudies that serve to rationalize the su

ess of the (T) 
orre
tion from a purelyempiri
al standpoint,24,25,143,144 but here we are more interested in a physi
almotivation. Pople and 
o-workers17 referred to E [5℄ST as ne
essary to \balan
e" singleand double ex
itation 
ontributions. A more 
omplete �fth-order analysis than thatpresented here20,24,143,144 would show that CCSD alone already in
ludes �fth-orderdouble-triple intera
tion terms. Hen
e, we may 
onsider this apparent mismat
h tobe the explanation for the inadequa
y of CCSD [and espe
ially CCSD+T(CCSD)℄ in
ertain diÆ
ult 
ases, su
h as the asymmetri
 stret
hing frequen
y of O3.24 However,the physi
al interpretation behind a balan
ing of single and double ex
itation
ontributions is un
lear. For M�ller-Plesset perturbation theory, single ex
itationsdo not 
ontribute until the se
ond-order wavefun
tion, and double ex
itationsprovide the earliest 
orre
tion of the zeroth-order state. This suggests, then, thatdouble ex
itations should be more important in the perturbational analysis thansingle ex
itations and that no su
h balan
ing of the two is important. On the otherhand, we re
ognize that the delayed appearan
e of single ex
itations in the perturbedwavefun
tions is an artifa
t of Brillouin's theorem.82 That is, it is stri
tly be
ause ofthe form of the arbitrarily 
hosen mole
ular orbitals that single ex
itations do notappear in �rst order. If we make our perturbational analysis more general, su
h thatsingle ex
itations appear alongside double ex
itations in the wavefun
tion expansion,then the E [5℄ST energy term shifts to fourth order rather than �fth order. From thisperspe
tive, then, single and double ex
itations should perhaps be treated alike, andthe perturbational order has less to do with the sele
tion of 
orre
tions terms thanthe ex
itation types themselves. This shifting of perturbational orders is seen, forexample, in 
ertain types of open-shell perturbation theory.134 Extension of the (T)
orre
tion to open-shell systems based on a spin-restri
ted referen
e wavefun
tion



101presents numerous diÆ
ulties,31 and re
ent work in this area has produ
ed a numberof interesting te
hniques.27,29,33,51Re
ently, it has been shown32 that equation-of-motion 
oupled 
luster theory(EOM-CC)5,60{63,65 provides a unique perspe
tive on the CCSD(T) method. Insteadof taking the Hartree-Fo
k determinant as the zeroth-order wavefun
tion andsubsequently de
omposing the CCSD and CCSDT equations in terms of themany-body perturbation expansion, as we have done above, the CCSD wavefun
tionis taken as zeroth-order and the energy viewed as the lowest eigenvalue of an e�e
tiveHamiltonian with asso
iated left and right eigenve
tors. By substituting 
onvergedCCSD 
luster amplitudes in pla
e of the left eigenve
tor in the lowest-order energy
orre
tion, the usual (T) energy expression is obtained. In su
h an analysis, bothsingle and double 
ontributions arrive in the same order (third) of this \perturbationtheory," and no arguments based on balan
ing the two are ne
essary. Thisunique perspe
tive on the (T) 
orre
tion has also led to the 
onstru
tion of a new\asymmetri
" triples 
orre
tion, denoted a-CCSD(T),34,145 whi
h utilizes the lefteigenve
tor for the ground state CCSD eigenvalue problem.



COMPUTER IMPLEMENTATION OF COUPLEDCLUSTER THEORY
In this se
tion we dis
uss many of the issues involved in writing an eÆ
ient 
omputerprogram for solving the 
oupled 
luster amplitude and energy equations derivedearlier in the 
hapter. Sin
e the original implementations of the CCD6,7 and CCSD8methods, streamlining the 
ompli
ated 
oupled 
luster equations has been thesubje
t of intense resear
h. Here we fo
us on �ve main ideas used in pra
ti
al CCSDprograms: (1) fa
torization of the amplitude equations [Eqs. (152) and (153)℄ intoterms whi
h are at most linear in the 
luster amplitudes, T̂1 and T̂2; (2) matrix-basedstorage and manipulation of the amplitudes and integrals; (3) spatial symmetrysimpli�
ations; (4) in
lusion of spin fa
torization in 
al
ulations for both 
losed-and open-shell mole
ules; and (5) atomi
-orbital-based algorithms for the redu
tionof disk storage requirements.It is perhaps not immediately 
lear how one may go about solving the T̂1 andT̂2 amplitude equations given in Eqs. [152℄ and [153℄ for the individual amplitudes,tai and tabij . A simple rearrangement of the equations, however, provides a morepalatable form of these expressions that leads to a simple iterative approa
h fordetermining the 
oupled 
luster wavefun
tion amplitudes. For example, the �rstfew terms of Eq. [152℄ may be written as0 = fai + faatai � fiitai +X
 (1� Æ
a) fa
t
i �Xk (1� Æik) fiktak + : : : ; [227℄where the diagonal 
omponents of the se
ond and third terms on the right-hand sideof Eq. [152℄ have been separated from the summation. De�ningDai � fii � faa; [228℄102



103the amplitude equation may be rewritten asDai tai = fai +X
 (1� Æ
a) fa
t
i �Xk (1� Æik) fiktak + : : : : [229℄Similarly, de�ning Dabij � fii + fjj � faa � fbb; [230℄the T̂2 amplitude equation may be rewritten asDabij tabij = habjjiji+ P (ab)X
 (1� Æb
) fb
ta
ij � P (ij)Xk (1� Ækj) fkjtabik + : : : : [231℄To determine the values of the amplitudes, one must solve the above set of
oupled non-linear equations iteratively. A simple starting approximation for tai andtabij on the left-hand sides of the equations may be obtained by setting all of theamplitudes on the right-hand side to zero. Hen
e, for the T̂1 amplitudes we havetai = fai=Dai ; [232℄and for the T̂2 amplitudes, tabij = habjjiji=Dabij : [233℄This initial guess may then be inserted on the right-hand sides of the equationsand subsequently used to obtain new amplitudes. The pro
ess is 
ontinued untilself-
onsisten
y is rea
hed. For the spe
ial 
ase in whi
h 
anoni
al Hartree-Fo
kmole
ular orbitals are used, the Fo
k matrix is diagonal and the T̂2 amplitudeapproximation above is exa
tly the same as the �rst-order perturbed wavefun
tionparameters derived from M�ller-Plesset theory (
f. Eq. [213℄). In that 
ase, the Daiand Dabij arrays 
ontain the usual mole
ular orbital energies, and the initial guess forthe T̂1 amplitudes vanishes.Fa
torization of the Coupled Cluster EquationsThe form of Eqs. [152℄ and [153℄ is perhaps misleading in that many of the termsappear to be 
omputationally more expensive than is ne
essary. For example,



104Eq. [153℄ 
ontains the following term whi
h is quadrati
 in the T̂2 amplitudes:Dabij tabij  14Xkl
dhkljj
dit
dij tabkl ; [234℄where the left arrow indi
ates that we are examining only one of several terms whi
h
ontribute to the expression on the left-hand side. This term s
ales as O(h4p4), whereh denotes the number of o

upied orbitals and p denotes the number of uno

upiedorbitals. However, this expression may be fa
tored into a produ
t of two terms, e.g.,14Xkl
dhkljj
dit
dij tabkl = 12Xkl tabkl 12X
d hkljj
dit
dij � 12Xkl tabklXklij ; [235℄where the X intermediate is de�ned asXklij � 12X
d hkljj
dit
dij : [236℄Now the original term may be evaluated in two steps: (1) 
onstru
tion and storageof X; and (2) 
ontra
tion of the X array with the tabkl amplitudes. Ea
h of thesesteps s
ales as O(h4p2) | a signi�
ant redu
tion from the original O(h4p4).Every term in the 
oupled 
luster amplitude equations whi
h is non-linear inT̂ may be fa
tored into linear 
omponents. As a result, ea
h step of the iterativesolution of the CCSD equations s
ales at worst as 
a. O(N 6) (where N is the numberof mole
ular orbitals). The full CCSDT method in whi
h all T̂3-
ontaining termsare in
luded requires an iterative O(N 8) algorithm, whereas the CCSD(T) method,whi
h is designed to approximate CCSDT, requires a non-iterative O(N 7) algorithm.The in
lusion of all T̂4 
lusters in the CCSDTQ method s
ales as O(N 10).The most eÆ
ient s
heme for fa
torization of the amplitude equations asdes
ribed above is not obvious, however, and numerous resear
hers have developedsets of intermediates to streamline their own 
oupled 
luster programs over thepast twenty years.6{8,11{13,21,22,146,147 Many of these fa
torizations have been basedon 
areful inspe
tion of the amplitude equations.6{8,11{13 S
useria, Janssen, and
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haefer, for example, developed a set of intermediates based on their reformulationof the CCSD amplitude and energy equations13 in a unitary group formalismdesigned to o�er spe
ial eÆ
ien
y when the referen
e wavefun
tion, �0, is aspin-restri
ted 
losed-shell Hartree-Fo
k determinant. Closely related intermediateswere utilized in 
ertain open-shell theories developed by S
useria27 for the PSIprogram pa
kage148 and by Knowles, Hampel, and Werner37 for the MOLPROpa
kage.149Diagrammati
 te
hniques also provide a route to the 
onstru
tion of eÆ
ient
oupled 
luster intermediates.21,146,147 Ku
harski and Bartlett,147 for example,have des
ribed a parti
ularly 
lever approa
h by whi
h one uses matrix elementsof the similarity transformed Hamiltonian as the desired intermediates. Considerthe matrix element of �H between the referen
e (on the left) and a singly ex
iteddeterminant (on the right). Diagrammati
ally, this matrix element is resolved intotwo terms as h�0j �Hj�ai i = X += fia + Xk
 hikjja
it
k� # : [237℄We have 
hosen the double bar with the \#" sign in the �nal diagram to simplydenote the sum of the two diagrams 
orresponding to the matrix element. If we
ontra
t this diagram with a T̂2 operator fragment from below, we obtain two
ontributions to the T̂1 amplitude equations, viz.
# = X + : [238℄



106The last two diagrams are equivalent to the �fth and twelfth terms from the T̂1amplitude equation in Eq. [152℄. These intermediates have the parti
ular advantagethat, if the �nal goal of the 
al
ulation is a
tually an analyti
 energy gradient oran EOM-CCSD-based approa
h, for example, one need not re
ompute the requiredmatrix elements of �H. Intermediates derived in this manner have been utilized inthe 
oupled 
luster programs found in the ACES II150 and PSI148 ab initio programpa
kages.Matrix-Based Storage of Integrals and AmplitudesAdditional 
omputational eÆ
ien
y in the solution of the 
oupled 
luster equationsmay be employed by formulating ea
h of the terms as matrix-matrix or matrix-ve
torprodu
ts,14 for whi
h modern workstations and super
omputers are parti
ularlyadept.151 For example, the set of T̂2 amplitudes, t
dij , 
ould be stored as a matrixby de�ning 
ompound row and 
olumn indi
es ij and 
d, respe
tively, in termsof the individual orbital indi
es i, j, 
, and d. Ignoring permutational symmetry,this storage s
heme produ
es a \supermatrix" with h2 rows and p2 
olumns andwhose elements may be labeled T2(ij; 
d). Similarly, the set of two-ele
tron integralsused in the 
onstru
tion of the X intermediate above 
ould be stored as a matrixby de�ning a 
ompound row index kl and a 
ompound 
olumn index 
d to give asupermatrix I(kl; 
d). The 
ontra
tion between these matri
es given expli
itly inEq. [236℄ 
ould then be written as a multipli
ation between the amplitude matrixT2 and the transpose of the integral matrix I to produ
e the new matrix X:X = T2I+; [239℄where the individual elements of X may be denoted as X(ij; kl). This type ofnotation is often used in the 
oupled 
luster literature as it provides a mu
h more
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ompa
t presentation of the energy and amplitude equations than that given above,and it relates dire
tly to a streamlined 
omputer implementation.Spatial Symmetry Simpli�
ationsSpatial symmetry also provides a means for improving the eÆ
ien
y of 
oupled
luster programs. As shown by the work of �C�arsky and 
o-workers,152 the solutionof the 
oupled 
luster equations may be greatly simpli�ed by exploiting 
onstraintson the 
luster amplitudes imposed by the point group symmetry of the mole
uleof interest. In parti
ular, given that the mole
ular orbital basis is based onsymmetry-adapted fun
tions (as is 
ommonly done in ab initio programs su
has PSI,148 ACES II,150 and MOLPRO149), the 
luster amplitudes (as well asone- and two-ele
tron integrals) vanish unless the dire
t produ
t of the irredu
iblerepresentations (irreps) asso
iated with ea
h orbital 
omponent 
ontains the totallysymmetri
 irrep. For example, a given T̂2 amplitude, tabij , is zero unless�i 
 �j 
 �a 
 �b = A1; [240℄where A1 is the totally symmetri
 irrep of the mole
ular point group. Sin
e thedire
t produ
t (
) of any irrep with itself always 
ontains A1, Eq. [240℄ impliesthat, for example,u �ij � �i 
 �j = �a 
 �b � �ab: [241℄If the mole
ular orbitals are organized su
h that all orbitals of a given irrepare grouped together, the matrix-based storage s
heme des
ribed above takes on auOf 
ourse, other partitionings of the four indi
es i, j, a, and b are equally valid. Forexample, the following equality also holds based on Eq. [240℄:�i = �jab � �j 
 �a 
 �b:
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ularly 
onvenient form.14 Using the C2v point group as an example, the T2matrix of Eq. [239℄ may be s
hemati
ally written as
T2 = ij A1A2B1B2


dA1 A2 B1 B2X 0 0 00 X 0 00 0 X 00 0 0 X ;
where X implies a submatrix of nonzero values, and we have labeled the rows and
olumns of the supermatrix by the appropriate 
ompound indi
es ij and 
d. Inaddition, we have indi
ated the C2v irrep labels for the given 
ompound index.The B2 label for the ij row index, for example, denotes the set of i and j index
ombinations with �ij � �i 
 �j = B2. If a given amplitude falls within the A2diagonal subblo
k, then the 
ompound indi
es meet the 
riterion, �ij = �
d = A2.Clearly, one needs to store only the nonzero diagonal subblo
ks of the abovematrix; assuming that the same number of mole
ular orbitals belong within ea
hirrep of the point group, this 
orresponds to memory/disk savings of the orderof the group (4 in the 
ase of the C2v group). Furthermore, if this symmetrys
heme were also used to store the X and I matri
es of Eq. [239℄, then the matrixmultipli
ation would be redu
ed to four independent produ
ts involving only thesymmetry-restri
ted diagonal blo
ks | a 
omputational savings of the square of theorder of the point group (16 for C2v). This matrix-based approa
h to symmetrysimpli�
ation of the 
oupled 
luster equations has been referred to as the \dire
tprodu
t de
omposition" (DPD) te
hnique14 and has been dis
ussed in the literaturefor both energies14 and analyti
 gradients50 for non-degenerate (Abelian) pointgroups. In their re
ent work on 
oupled 
luster analyti
 se
ond derivatives, Stantonand Gauss have extended their DPD approa
h for derivatives of 
luster amplitudes,
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h are generally not totally symmetri
 quantities.57,58 Furthermore, work on theextension of symmetry methods to in
lude non-Abelian point groups has also beenreported.153{155Spin Fa
torization of the Coupled Cluster EquationsThe 
oupled 
luster and 
on�guration intera
tion equations presented thus far in this
hapter have impli
itly used spin-dependent mole
ular orbitals for their de�nitions ofdeterminants, integrals, and wavefun
tion amplitudes. This spin-orbital formulationhas the advantage that it may be used with any set of orbitals, in
ludingspin-restri
ted Hartree-Fo
k (RHF), spin-unrestri
ted Hartree-Fo
k (UHF),spin-restri
ted open-shell Hartree-Fo
k (ROHF), quasi-restri
ted Hartree-Fo
k(QRHF), Brue
kner orbitals, et
. That is, by in
lusion of all 
omponents of thespin-orbital Fo
k matrix, F̂N , the CCSD equations in Eqs. [123℄, [152℄, and [153℄,for example, are valid for any 
hoi
e of orbitals.v By assigning the 
onventional spinfun
tions, � and �, to ea
h o

upied and virtual orbital, we may fa
tor the 
oupled
luster energy and amplitude equations into their spin-dependent 
omponents. Dueto the spin-symmetry asso
iated with the one- and two-ele
tron integrals, most ofthese 
omponents will be be zero following spin integration, and may be ignoredin the 
omputational implementation of the equations. For example, 
onsider thevAlthough a spin-orbital formulation is 
on
eptually simple, desirable properties su
h asspin-adaptation may be lost when the ele
troni
 state of interest is open shell, for example.A rigorously spin adapted theory must in
lude spin-free de�nitions of the 
luster operators,T̂ , and an appropriate (perhaps multi-determinant) referen
e wavefun
tion.39,41,42,156{158Su
h general 
oupled 
luster derivations are beyond the s
ope of this 
hapter, though someof the issues asso
iated with diÆ
ult open-shell problems are dis
ussed in the next se
tion.
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ontribution to the CCSD energy given in Eq. [123℄,ECCSD  Xia fiatai : [242℄The summation may be fa
tored into a number of spin 
ases asXia fiatai = Xi�a� fi�a�ta�i� + Xi�a� fi�a� ta�i� + Xi�a� fi�a� ta�i� + Xi�a� fi�a�ta�i�= Xi�a� fi�a�ta�i� + Xi�a� fi�a� ta�i� ; [243℄where the mixed spin terms vanish after spin integration of the Fo
k matrix integralsover the orthogonal spin fun
tions � and �. Similarly, the T̂2 
ontribution to ECCSDmay be fa
tored into three nonvanishing spin 
ases, viz.,14Xijabhijjjabitabij = 14 Xi�j�a�b�hi�j�jja�b�ita�b�i�j� + 14 Xi�j�a�b�hi�j�jja�b�ita�b�i�j� +Xi�j�a�b�hi�j�jja�b�ita�b�i�j� ; [244℄where we have used the permutational antisymmetry of the 
luster amplitudes andthe two-ele
tron integrals to simplify the nonzero mixed spin 
ases into a singleterm. Similar fa
torization of the T̂1 and T̂2 amplitude equations is possible. Themost 
omputationally eÆ
ient implementation of the CCSD equations must takethese fa
torizations into a

ount in order to avoid wasted storage and 
omputationof the many vanishing amplitudes.Atomi
-Orbital-Basis AlgorithmsThe iterative pro
edure for solving the amplitude equations des
ribed above requiresstorage of a number of quantities, in
luding T̂1 and T̂2 amplitudes, as well as one-



111and two-ele
tron integrals in the mole
ular-orbital (MO) basis. Of these, the setof two-ele
tron integrals involving four virtual orbitals (e.g., habjj
di) requires themost disk spa
e and qui
kly be
omes the 
omputational bottlene
k as the size ofthe basis set is in
reased. One way of 
ir
umventing this problem is to avoid thetransformation and storage of this integral 
lass 
ompletely and to instead evaluatetheir 
ontribution to the T̂2 amplitude equation (
f. Eq. [153℄),tabij  X
d t
dij habjj
di; [245℄using the two-ele
tron integrals in the atomi
-orbital (AO) [or, symmetry-orbital(SO)℄ basis. The advantage is that, unlike the MO basis fun
tions, the AO fun
tionsare often strongly lo
alized at the atomi
 
enters, and, as a result only a fra
tionof the total number of asso
iated two-ele
tron integrals are nonzero for large basissets. The outline of this AO-basis algorithm may be
ome 
learer if we rewrite theabove equation in terms of the untransformed integrals:tabij  X
d t
dij X����Ca�Cb�C
�Cd�h��jj��i; [246℄where the indi
es �, �, �, and � are used to denote AO-basis fun
tions, and, for
onvenien
e, we assume that the MO-basis transformation 
oeÆ
ients su
h as Ca�are real. Reordering the summations in this equation we obtaintabij  X�� Ca�Cb�X�� h��jj��iX
d C
�Cd�t
dij : [247℄The last summation may be interpreted as the \ba
ktransformation" of the twovirtual indi
es on the T̂2 amplitude into the AO basis, i.e.,t��ij =X
d C
�Cd�t
dij : [248℄If this set of \half-AO" amplitudes is 
omputed and stored (using two standardO(N 5) steps159), they may be subsequently 
ontra
ted with the AO-basis integrals



112to give t��ij =X�� h��jj��it��ij ; [249℄whi
h requires an O(N 6) algorithm. The �nal summation is then evaluated totransform the �nal half-AO amplitudes ba
k to the MO basis to obtain the 
omplete
ontribution to T̂2, tabij  X�� Ca�Cb�t��ij : [250℄A similar pro
edure may be 
onstru
ted for terms involving three-virtual indexintegrals, habjj
ii.160AO-basis algorithms have been exploited for many years in the 
onstru
tionof 
orrelated wavefun
tions,161 parti
ularly in MBPT(2).154,162 In 
oupled
luster theory, a number of approa
hes have re
ently been dis
ussed in theliterature. For example, Hampel, Peterson, and Werner,160 have reported aneÆ
ient implementation of the Brue
kner-orbital-based CCD method that avoidsthe transformation and storage of the habjj
di integrals and 
omputing theappropriate 
ontributions as des
ribed above. Ko
h, Helgaker, Christiansen, and
o-workers163,164 have 
arried the approa
h even further by avoiding storage of eventhe AO-basis two-ele
tron integrals and 
omputing limited distributions of these \onthe 
y" as they are needed. Their largest single-point CCSD energy 
al
ulationsusing this algorithm have involved more than 500 basis fun
tions.164 Rendell andLee165 have taken a somewhat di�erent ta
k in CCSD(T) energy 
al
ulations byapproximating the habjj
ii and habjj
di integrals via a \resolution of the identity"te
hnique (
f. Eq. [225℄). In their approa
h, a set of auxiliary fun
tions is usedto rewrite these four-
enter ele
tron repulsion integrals as produ
ts of three-
enterintegrals, whi
h require signi�
antly less storage spa
e. Finally, we note thatAO-basis te
hniques have proven to be vital to the re
ent work of Stanton and



113Gauss on analyti
 se
ond derivatives for a number of 
orrelated te
hniques, in
ludingSDQ-MBPT(4), CCSD, and CCSD(T).57,58



CURRENT RESEARCH AND FUTURE DIRECTIONS
In this �nal se
tion, we examine in detail a number of re
ent resear
h e�orts in
oupled 
luster theory. This review is far from exhaustive, and, due to spa
e
onsiderations, we 
hoose to fo
us primarily on two spe
i�
 areas in whi
h thepresent authors have made 
ontributions. We will then dis
uss some of the mostimportant theoreti
al and 
omputational advan
es expe
ted in the near future. Wealso re
ommend Refs. 78 and 79 for a dis
ussion of other re
ent work.Coupled Cluster Theory for Open-Shell Mole
ulesFor the 
losed-shell ele
troni
 states of many small mole
ules, the task of determiningmole
ular properties is generally well-understood, and 
oupled 
luster methods |parti
ularly the CCSD(T) approa
h| in 
onjun
tion with large basis sets, have beenfound to give ex
eptionally a

urate results relative to experiment for properties su
has mole
ular geometries, harmoni
 vibrational frequen
ies, infrared intensities, andele
tri
 dipole moments.78,79,137,138,166 The potential energy surfa
es of open-shellspe
ies,w on the other hand, often present serious 
omputational problems. In themost widely used open-shell CCSD(T) approa
hes,27,35,51 a 
al
ulation for a radi
al
ation, for example, requires approximately three times the 
omputational e�ort ofits 
losed-shell 
ounterpart, even if a spin-restri
ted open-shell Hartree-Fo
k (ROHF)determinant is 
hosen as the referen
e wavefun
tion. This diÆ
ulty arises due toan unbalan
ed ex
hange intera
tion between open- and 
losed-shell ele
trons su
hwWe wish to emphasize that the present dis
ussion fo
uses only on high-spin open-shellsystems to whi
h a single-determinant referen
e wavefun
tion is appli
able. Coupled
luster te
hniques for low spin 
ases, su
h as open-shell singlets, have been pursued inthe literature for many years, however, and provide a fertile area of resear
h.158,167{170114
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k matrix, whi
h appears in the spin-orbital 
oupled 
luster expressionspresented in Eqs. [152℄ and [153℄, 
ontains di�erent � and � 
omponents. As aresult, the 
luster operators may be fa
tored into two di�erent spin 
ases for T̂1 (ta�i�and ta�i� ) and three di�erent spin 
ases for T̂2 (ta�b�i�j� , ta�b�i�j� , and ta�b�i�j� ).Several resear
hers have re
ently devoted 
onsiderable e�ort to the derivationand eÆ
ient implementation of te
hniques based on spin-restri
ted referen
edeterminants that redu
e the 
omputational dis
repan
y between 
losed- andopen-shell systems.33,38,171{173 This emphasis on spin-restri
ted te
hniques hasresulted in part from a bias towards referen
e wavefun
tions whi
h maintain thespin symmetry of the exa
t wavefun
tion (su
h as the ROHF determinant), butalso be
ause of the possible eÆ
ien
y advantages spin-restri
ted methods haveover unrestri
ted te
hniques. That is, sin
e the 
omponent mole
ular orbitals are
onstrained to have identi
al spatial parts for ea
h spin fun
tion, it should be possibleto 
onstru
t the 
orrelated wavefun
tion in a manner that takes advantage of thissymmetry.It should be noted, however, that the use of a spin-symmetry-adapteddeterminant su
h as the ROHF wavefun
tion as a referen
e in a 
oupled 
luster
al
ulation does produ
e a spin-pure energy,x but does not imply that the 
orrelatedwavefun
tion itself is an eigenfun
tion of Ŝ2 as well.27,35 For the spin-orbitalde�nition of T̂ des
ribed here, spin 
ontamination 
an still enter into the 
oupled
luster wavefun
tion through the non-linear 
ontributions of 
luster operators tothe amplitude equations,37 though the importan
e of this 
ontamination has beenquestioned.174 A great deal of e�ort has been devoted re
ently to the eÆ
ientxThe ROHF-CCSD energy is indeed 
ompletely spin proje
ted as dis
ussed in Refs. 35,27, and 37, but is still di�erent from that 
omputed using a spin-adapted 
oupled 
lusterwavefun
tion.
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onstru
tion of spin-adapted open-shell 
oupled 
luster wavefun
tions and/or 
orre
tspin expe
tation value equations.36{42,158Spin-Restri
ted Triple Ex
itation Corre
tionsThe (T) 
orre
tion dis
ussed earlier beginning on p. 96 is derived via a perturbationalde
omposition of the 
oupled 
luster energy and amplitude equations. Thisde
omposition depends on a parti
ular partitioning of the ele
troni
 Hamiltonian,ĤN , into a zeroth-order 
omponent and a 
u
tuation potential | that is, a parti
ularde�nition of many-body perturbation theory. When based upon the 
anoni
alHartree-Fo
k orbitals of an RHF or UHF referen
e determinant, this partitioning issimple, and Ĥ(0) is taken to be the (diagonal) Fo
k matrix. For ROHF referen
ewavefun
tions, however, the 
hoi
e of partitioning is less obvious, and a variety ofspin-restri
ted open-shell theories have been reported in the literature in re
entyears.127{134,175 For example, in the RMP129 or ROHF-MBPT130 method, thediagonal o

upied and virtual blo
ks of the Fo
k operator are 
hosen as Ĥ(0),and the o�-diagonal o

upied-virtual blo
ks are in
luded in Ĥ(1) along with V̂N .The resulting perturbed energy and wavefun
tion equations have mu
h in 
ommonwith the 
onventional ROHF-CCSD energy and amplitude equations, leading toa 
onvenient form for the ROHF-CCSD(T) method.29 One drawba
k of thisapproa
h, however, is that the o�-diagonal fij and fab 
omponents of the Fo
kmatrix (
ontained in the �rst and se
ond diagrams in Figure 2), are nonzero. Thus,Eq. [225℄ presented earlier takes on a more general form,29,31Dab
ijk tab
ijk = P (i=jk)P (a=b
) "Xd hb
jjdiitadjk �Xl hlajjjkitb
il + tai hb
jjjki+ fiatb
jk#�P (i=jk)Xl (1� Æil)filtab
jkl + P (a=b
)Xd (1� Æad)fadtb
dijk: [251℄



117The presen
e of fil and fad 
omponents requires an iterative solution of thisequation | an approa
h whi
h ne
essitates storage of the T̂3 amplitudes in ea
hiteration! This s
heme is unreasonable sin
e the number of su
h amplitudeswould rapidly be
ome the 
omputational bottlene
k as the size of the mole
ularsystem in
reases. This problem may be 
ir
umvented, however, by utilizing theso-
alled \semi
anoni
al" mole
ular orbital basis in whi
h the o

upied-o

upiedand virtual-virtual blo
ks of the Fo
k matrix are diagonal.29,129,130 In this basis, thetwo �nal terms in the T̂3 equation above vanish, and the 
onventional non-iterative
omputational pro
edure des
ribed earlier in the 
hapter may be employed.The use of semi
anoni
al orbitals does have a drawba
k, however, in that oneis ne
essarily for
ed to use a 
omputational pro
edure 
omparable to that of theUHF-CCSD(T) approa
h. Sin
e the ROHF-based spin-orbital Fo
k matrix 
ontainsdi�erent � and � 
omponents, rotation to the semi
anoni
al basis breaks thespin-restri
tion on the mole
ular orbitals.y Thus, the integrals used in Eq. [251℄above are broken into UHF-like �� �, � � �, and �� � spin 
ases with a requisitefa
tor of three in
rease in storage requirements.This problem 
an be avoided, however, if an appropriate open-shell perturbationtheory is de�ned su
h that the zeroth-order Hamiltonian is diagonal in the trulyspin-restri
ted mole
ular orbital basis. The \Z-averaged" perturbation theory(ZAPT) de�ned by Lee and Jayatilaka132 ful�lls this requirement. ZAPT takesadvantage of the symmetri
 spin orbital basis. For ea
h doubly o

upied spatialorbital and ea
h uno

upied spatial orbital, the usual � and � spin fun
tions areyThis diagonalization a�e
ts neither the ROHF determinant itself nor the ROHF orCCSD energies due to the well-known invarian
e of those methods with respe
t to 
ertain
lasses of orbital rotations.134



118used, but for the singly o

upied orbitals, new spin fun
tions,�+ = 1p2(� + �) [252℄and �� = 1p2(�� �) [253℄are assigned. By 
onvention, �+ fun
tions are asso
iated with o

upied spin orbitals,and �� fun
tions with uno

upied spin orbitals. In this basis, the spin orbital Fo
koperator takes on the s
hemati
 form,
F̂ZAPT = d�d�s�+s��v�v�

0BBBBBBBBBBBBBBBBBB�
F̂M�L� F̂M�L� F̂L�T�+ 0 0 F̂D�L�F̂M�L� F̂M�L� F̂L�T�+ 0 F̂D�L� 0F̂L�T�+ F̂L�T�+ F̂U�+T�+ 0 0 00 0 0 F̂U��T�� F̂U�T�� �F̂D�T��0 F̂D�L� 0 F̂D�T�� F̂E�D� F̂E�D�F̂D�L� 0 0 �F̂D�T�� F̂E�D� F̂E�D�

1CCCCCCCCCCCCCCCCCCA ; [254℄
where 
apital letters L and M denote doubly o

upied spatial orbitals, T and Udenote singly o

upied spatial orbitals, and D and E denote uno

upied spatialorbitals. Using a standard de�nition of ROHF orbitals, the diagonal blo
ks of thisFo
k matrix are themselves diagonal when the theory is applied to 
onventionalhigh-spin open-shell systems.132,134With the diagonal blo
ks of the Fo
k operator above taken as the ZAPTzeroth-order Hamiltonian, the various ex
itation operators of 
oupled 
luster theorymay be de
omposed into perturbational orders, as des
ribed earlier in the 
hapter.The same T̂3 
ontributions used to de�ne the 
onventional (T) 
orre
tion 
an thenbe 
onstru
ted to produ
e a ZAPT-based triples 
orre
tion | denoted (zT).33 Thisanalysis is 
ompli
ated by the fa
t that the theory requires that one distinguishthe singly o

upied orbitals from the doubly o

upied and uno

upied orbitals.
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e, the parti
le-hole formalism used throughout this 
hapter must be generalizedsu
h that there are two types of holes (doubly o

upied and singly o

upied) andtwo types of parti
les (uno

upied and singly o

upied). The tedious algebrai
approa
h to the derivation of the (zT) 
orre
tion was 
arried out in Ref. 33 by the
onstru
tion of a symboli
 manipulation program (designed for the Mathemati
ainterfa
e176) for the appli
ation of Wi
k's theorem to se
ond-quantized operatorstrings. This program is des
ribed in detail in Ref. 118. The related diagrammati
analysis involves essentially the same rules outlined earlier in the 
hapter with the
ompli
ation that 
luster operators and Hamiltonian fragments must be fa
toredsu
h that the diagrams di�erentiate between the two types of hole and parti
lelines. The rather 
ompli
ated equations for the (zT) 
orre
tion are presented in anAppendix in Ref. 33.The performan
e of the (zT) 
orre
tion is essentially identi
al to that of the
onventional ROHF-CCSD(T) method. Appli
ation of both to a series of diatomi
mole
ules in ground and ex
ited states indi
ates insigni�
ant di�eren
es between thetwo in the predi
tion of bond lengths, harmoni
 vibrational frequen
ies, anharmoni

onstants, et
. Unfortunately, the 
ompli
ated equations asso
iated with the (zT)
orre
tion have thus far pre
luded its large s
ale implementation and, as a result,further systemati
 studies involving larger basis sets have not yet been 
arried out.Brue
kner Orbitals in Coupled Cluster TheoryIn 1958, Nesbet extended Brue
kner's theory for in�nite nu
lear matter177 tonon-uniform systems of atoms and mole
ules.178 By 
onsideration of the CISDproblem in whi
h the ele
troni
 Hamiltonian is diagonalized within the basis ofthe referen
e and all singly and doubly ex
ited determinants, Nesbet explainedthat Brue
kner theory allows one to 
onstru
t a set of orthonormal mole
ular



120orbitals for whi
h the 
orrelated wavefun
tion 
oeÆ
ients for all singly ex
iteddeterminants vanish. Unfortunately, the 
onstru
tion of the set of orbitals thatful�ll this \Brue
kner 
ondition" 
an be determined only a posteriori from thesingle ex
itation 
oeÆ
ients 
omputed in a given orbital basis. As a result, thepra
ti
al implementation of Brue
kner-orbital-based methods has usually requiredthe repeated 
onstru
tion of the 
orrelated wavefun
tion (along with the asso
iatedintegral transformation). Despite this drawba
k, Brue
kner orbitals have foundnew life within 
oupled 
luster theory in re
ent years.173,179{192 In 1981, Chilesand Dykstra179 introdu
ed the �rst mole
ular appli
ation of the Brue
kner 
oupled
luster doubles (B-CCD) method, whi
h they referred to as CCD(T̂1=0). Someyears later, Handy and 
o-workers182{184 also implemented B-CCD energies, alongwith a perturbational triple-ex
itation 
orre
tion [known as B-CCD(T)℄ and analyti
energy gradients. Sin
e these important theoreti
al developments, perhaps the mostsigni�
ant work in this area has been reported by Hampel, Peterson, and Werner,160who explained that the spe
ial form of the B-CCD amplitude equations allows one toavoid the repeated transformation of 
ertain 
lasses of two-ele
tron integrals. Thisadvantage, when 
oupled to spe
ially designed extrapolation s
hemes that 
onvergethe Brue
kner orbitals and 
luster amplitudes simultaneously, permits signi�
antredu
tion in the 
omputational expense of the method su
h that B-CCD may 
ostno more than a 
onventional CCSD 
al
ulation.Perhaps the greatest need for Brue
kner-orbital-based methods arises in systemssu�ering from artifa
tual symmetry-breaking orbital instabilities,140,193{196 wherethe approximate wavefun
tion fails to maintain the sele
ted spin and/or spatialsymmetry 
hara
teristi
s of the exa
t wavefun
tion. Su
h instabilities arise inSCF-like wavefun
tions as a result of a 
ompetition between valen
e-bond-likesolutions to the Hartree-Fo
k equations; these solutions typi
ally allow forlo
alization of an unpaired ele
tron onto one of two or more symmetry-equivalent



121atoms in the mole
ule. In the ground 2�g state of O�2 , for example, a pair ofsymmetry-broken Hartree-Fo
k wavefun
tions may be 
onstru
ted with the unpairedele
tron lo
alized onto one oxygen atom or the other. Though symmetry-brokenwavefun
tions have sometimes been exploited to produ
e providentially 
orre
tresults in a few systems, they are often not bene�
ial or even a

eptable,197 andthe question of whether to relax 
onstraints in the presen
e of an instability wasoriginally des
ribed by L�owdin as the \symmetry dilemma."198The e�e
ts of symmetry-breaking orbital instabilities on properties 
omputedusing 
orrelated wavefun
tions built from a single-determinant referen
e has re
entlybeen investigated140 for a number of �nite-order MBPT and 
oupled 
luster methods.Due to a 
orresponding singularity in the mole
ular orbital Hessian,193,196,199{201nearby orbital instabilities 
an produ
e sometimes dramati
ally distorted results forse
ond-order properties su
h as harmoni
 vibrational frequen
ies and polarizabilities.However, one important 
on
lusion of Ref. 140 is that the 
hoi
e of referen
ewavefun
tion 
an signi�
antly a�e
t the lo
ation of this Hessian singularity on thepotential energy surfa
e, and, as a result, a properly sele
ted set of mole
ular orbitals
an often eliminate the symmetry breaking problem by moving the instability outof the region of interest. In re
ent years, Brue
kner orbitals have been utilizedin 
onjun
tion with 
oupled 
luster theory for pre
isely this purpose for a numberof \diÆ
ult" mole
ular systems,185,186,202{205 su
h as the nitrate radi
al,186 the O+4ion,192,202 the hydrogen-peroxide radi
al 
ation,203,204 and the ~C 2A2 ex
ited state ofNO2.205The implementation of B-CC methods for open-shell systems (where symmetrybreaking instabilities are the most likely to o

ur) is straightforward when either aUHF or ROHF referen
e wavefun
tion is used as the initial guess for the Brue
knerdeterminant. Unfortunately in the ROHF 
ase, it is not possible to maintainspin restri
tion on the mole
ular orbitals be
ause the single ex
itation amplitudes,
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h may be used as the rotation parameters for the iterative 
onstru
tion ofthe Brue
kner orbitals, are not symmetri
 in the spin indi
es due to the unevenex
hange intera
tion between the open- and 
losed-shell ele
trons dis
ussed earlier.As a result, the repeated 
onstru
tion of the 
oupled 
luster wavefun
tion requiresthe transformation and storage of roughly three times the number of two-ele
tronintegrals needed for the initial ROHF-CCSD 
al
ulation. This diÆ
ulty, whi
h isdire
tly 
omparable to the problem of semi
anoni
al orbitals des
ribed in the lastse
tion, represents a signi�
ant obsta
le for open-shell B-CCD implementations.The symmetri
 spin orbital basis, whi
h was also used to 
onstru
t thespin-restri
ted (zT) 
orre
tion, also provides a route to a spin-restri
ted open-shellB-CC theory (RB-CC).173 In this spin basis, the T̂1 amplitudes may be shown tohave the symmetries, tA�I� = tA�I� ; [255℄tA�I� = tA�I� ; [256℄tW��I� = �tW��I� ; [257℄and tA�W�+ = tA�W�+ ; [258℄where I, A, andW indi
ate doubly o

upied, uno

upied, and singly o

upied spatialorbitals, respe
tively. The \spin-
ip" T̂1 amplitudes of the type tA�I� are generallynonzero in the symmetri
 spin orbital basis, but it may be argued132 that theseamplitudes should instead be 
lassi�ed as double ex
itations. The remaining three
lasses of T̂1 amplitudes may be used to 
arry out a series of �rst-order rotationsamong the orbital subspa
es, viz.~�I = �I + tA�I� �A + tW��I� �W ; [259℄~�W = �W + tA�W�+�A � tW��I� �I : [260℄



123At 
onvergen
e the orbitals will obey the Brue
kner 
onditionstA�I� = tA�W�+ = tW��I� = 0: [261℄These equations provide the basis for the RB-CC method sin
e they do not implyany loss of spin restri
tion on the mole
ular orbitals as the rotation is applied.Furthermore, the RB-CC method may be trivially implemented within existingROHF-CCSD programs by a simple \symmetrization" of the standard (�; �) T̂1amplitudes into the new spin basis173 prior to the rotation.The performan
e of the RB-CCD method (whi
h is analogous to the 
onventionalunrestri
ted B-CCD method) has been tested on the nitrate radi
al, NO3, andthe ~C 2A2 state of NO2, both of whi
h have presented diÆ
ulties for a varietyof theoreti
al methods due in part to symmetry breaking instabilities in theHartree-Fo
k referen
e wavefun
tion. The RB-CCD method was found to provideresults in ex
ellent agreement with the B-CCD method, in
luding the 
orre
tpredi
tion of Cs symmetry for the equilibrium geometry of the ~C state of NO2.205,206Work is presently underway for extension of the RB-CCD method to in
lude triples[i.e., a RB-CCD(T) method where the triples 
orre
tion is de�ned similarly to the(zT) 
orre
tion des
ribed above℄ and analyti
al energy gradients.Future Resear
h Prospe
tsThanks in part to the 
omputational advan
es des
ribed in the previous se
tion,
oupled 
luster theory has developed into arguably the most a

urate and
omputationally a�ordable method of modern 
omputational quantum 
hemistry.The results of 
oupled 
luster 
al
ulations are 
ommonly found in the 
hemi
alphysi
s literature, and, when the a

ura
y of experimental results is questioned,the CCSD(T) method is often used to settle the debate. In spite of this su

ess,
oupled 
luster theory is far from appli
able to all problems of 
hemi
al interest.



124The majority of the 
urrent resear
h e�orts may be divided into four overlapping
ategories:� Large mole
ules and extended systems. As noted in the previous se
tionon p. 104, the CCSD(T) method s
ales as O(N 7), where N is the number of basisfun
tions. This implies that a fa
tor of two in
rease in the size of the mole
ularsystem involves a 
a. 128 in
rease in the CPU 
ost of the 
al
ulation. For example,a high-a

ura
y CCSD(T) energy 
al
ulation for the amino a
id alanine requiresapproximately �ve days on modern workstations; an equivalent 
al
ulation for thealanine dimer would require nearly two years to 
omplete. In addition, the storagerequirements of the CCSD(T) method s
ale roughly as O(N )4, leading to rapidlyinsurmountable disk spa
e limitations as the size of the system in
reases. Our ownre
ent CCSD(T) 
al
ulations on isomers of [10℄annulene (mole
ular formula C10H10)involving more than 300 basis fun
tions and low symmetry may represent the 
urrentlimit of \
onventional" 
oupled 
luster programs.207One of the most promising approa
hes to over
oming the s
aling problems of the
oupled 
luster method lies in the lo
al 
orrelation 
on
ept developed primarilyby Saeb� and Pulay.208{212 This s
heme relies on the use of a set of lo
alized,non-orthogonal mole
ular orbitals in order to drasti
ally redu
e the number ofnon-negligible parameters in the 
orrelated wave fun
tion. Some e�ort in thisdire
tion has been reported by Hampel and Werner213 and it is likely that newimplementations and extensions of the \lo
al-CC" method will appear in the nextfew years. In addition, the storage bottlene
k asso
iated with large mole
ules hasalso been examined by several resear
hers, leading to \integral dire
t"163,164 and\resolution of the identity" methods,165 des
ribed in the earlier se
tion of the 
hapterentitled \Atomi
-Orbital-Basis Algorithms."� Ex
ited ele
troni
 states. One de�
ien
y of the 
onventional 
oupled
luster methods is that they apply only to ground ele
troni
 states (or, more
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urately, to the lowest-energy states of a given spin and spatial symmetry). Theequation-of-motion 
oupled 
luster method5,60{63,65 (des
ribed earlier in the 
hapteron p. 32) and related methods su
h as SAC-CI106{108 and STEOM-CC74,114 havebeen devised su
h that higher-lying ele
troni
 states may be studied. These methodshave proven to provide reliable a

ura
y (on the order of 0.2 eV) in the predi
tionof ele
troni
 ex
itation spe
tra for states whi
h are well-des
ribed by promotionof a single ele
tron from the ground state. Perhaps the most important work inex
ited-state 
oupled 
luster theory in the next several years will be the developmentof methods for treating \doubly ex
ited" states and the improvement of the a

ura
yof EOM-CC to better than 0.1 eV through extension of existing methods for theeÆ
ient in
lusion of triply ex
ited determinants in the diagonalization spa
e of�H.70,71,105,214{217� Potential energy surfa
es. All 
oupled 
luster methods depend impli
itlyupon a referen
e wavefun
tion (usually the single-
on�guration Hartree-Fo
kdeterminant). However, for 
ases where this referen
e fails dramati
ally,even the CCSD(T) method 
annot be expe
ted to provide reliable results.Bond-breaking provides an ex
ellent example of this behavior; as a � bondis separated, for instan
e, a single determinant fails to properly in
lude bothele
troni
 
on�gurations [(�)2 and (��)2℄ needed to des
ribe the disso
iationpro
ess with even qualitatively a

ura
y. Sin
e a 
omplete potential energysurfa
e is vital to resear
h e�orts in rea
tion dynami
s, for instan
e, mu
he�ort has been devoted to the 
onstru
tion of multireferen
e 
oupled 
luster(MRCC) s
hemes based primarily on multi
on�gurational SCF (MCSCF) referen
ewavefun
tions.76,78,125,218{223 Of parti
ular interest is the work by Pie
u
h,Adamowi
z, and 
o-workers,218,219,223 in whi
h a MRCCSD wavefun
tion, forexample, is obtained via sele
ted triple and quadruple ex
itations from a fullCCSDTQ wavefun
tion 
onstru
ted from a single ele
troni
 
on�guration. This
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h is similar to that used earlier in multireferen
e 
on�guration intera
tionmethods.86,224 By retaining a single-determinant referen
e formalism, one avoidsmany of the diÆ
ulties of a \true" MCSCF-based approa
h and automatedte
hniques for the 
onstru
tion of higher ex
itation levels (i.e., beyond quadruples)are promising. In addition, multideterminantal 
oupled 
luster methods su
has the unitary-group approa
h39,158,167,168 have been a
tively pursued in re
entyears41,42,169,170 for des
ribing biradi
als and other \low-spin" ele
troni
 states forwhi
h a single-determinant referen
e is inadequate.� High-a

ura
y methods. For properties su
h as disso
iation andfragmentation energies, 
oupled 
luster theory used in 
onjun
tion with large basissets is often expe
ted to provide \
hemi
al a

ura
y," i.e., �1 k
al/mol. In re
entyears, many resear
hers have asked what would be required to obtain \spe
tros
opi
a

ura
y", i.e., �1 
m�1.z It has been shown in a numerous studies in thepast de
ade226{231 that the 
onvergen
e of the 
oupled 
luster (as well as CI andperturbation theory) energies towards a \basis set limit" is mu
h slower than thatpossible with Hartree-Fo
k. That is, for a given level of ele
tron 
orrelation (e.g.,CCSD), one must use mu
h more 
omplete basis sets (perhaps in
luding high levelsof orbital angular momentum, s, p, d, f , et
.) relative to Hartree-Fo
k beforeadditional improvements to the basis set make no signi�
ant 
ontributions to the
omputed energy. The sour
e of this problem is a well-known failure by 
orrelatedte
hniques su
h as 
oupled 
luster when used with 
ommon Gaussian-type basisfun
tions to des
ribe the behavior of many-ele
tron wavefun
tions as ele
tronsapproa
h one another 
losely.232 One te
hnique for over
oming this diÆ
ulty isto in
lude terms whi
h expli
itly involve the interele
troni
 distan
e, 1r12 , in thezIt should be noted that the goal of true spe
tros
opi
 a

ura
y may be unattainabledue to the impli
it errors asso
iated with the use of a Born-Oppenheimer, non-relativisti
Hamiltonian to des
ribe mole
ular systems.225
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orrelated wavefun
tion. When applied in 
oupled 
luster theory, su
h an approa
hhas the advantage that the 
onventional formalism and implementation remainlargely inta
t, with a number of sophisti
ated modi�
ations needed to a

ount forthe additional mathemati
al term(s). The re
ent work on the linear r12-CCSDmethod by Klopper, Kutzelnigg, Noga, and 
o-workers232 and on Gaussian geminalsby Persson and Taylor229 is promising, and further impressive developments are likelyto be reported in the next several years.
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 representation of ea
h fragment of the one-parti
le
omponent of the Hamiltonian operator, F̂N . The ex
itation level of ea
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ated beneath it. The intera
tion line is indi
ated by the dashed horizontalline 
apped by the \X".Figure 3: Diagrammati
 representation of ea
h fragment of the two-parti
le
omponent of the Hamiltonian operator, V̂N . The ex
itation level of ea
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ated beneath it. The intera
tion line is indi
ated by the dashed horizontalline.Figure 4: Diagrammati
 representation of the T̂1, T̂2, and T̂3 ex
itation operators.The ex
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h diagram is indi
ated to its right. The intera
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