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INTRODUCTION
Sine its introdution into quantum hemistry in the late 1960s by �C���zek andPaldus,1{3 oupled luster theory has emerged as perhaps the most reliable, yetomputationally a�ordable method for the approximate solution of the eletroniShr�odinger equation and the predition of moleular properties. The purpose ofthis hapter is to provide omputational hemists who seek a deeper knowledge ofoupled luster theory with the bakground neessary to understand the extensiveliterature on this important ab initio tehnique.In spite of the method's present utility and popularity, the quantum hemialommunity was slow to aept oupled luster theory, perhaps beause the earliestresearhers in the �eld used elegant but unfamiliar mathematial tools suh asFeynman-like diagrams and seond-quantization to derive working equations. Nearlyten years after the essential ontributions of Paldus and �C���zek, Hurley presenteda re-derivation of the oupled luster doubles (CCD) equations4 in terms whihwere more familiar to quantum hemists. Soon thereafter Monkhorst5 developeda general oupled luster response theory for alulating moleular properties. Bythe end of the 1970s, omputer implementations of the theory for realisti systemsbegan to appear as the groups of Pople6 and Bartlett7 eah developed and testedspin-orbital CCD programs. A few years later, Purvis and Bartlett derived theoupled luster singles and doubles (CCSD) equations and implemented them ina pratial omputer program.8 Sine that pioneering ahievement, the popularityof oupled luster methods has blossomed, and tremendous e�orts have been madein the onstrution of highly eÆient CCSD energy odes,8{14 inlusion of higherexitations in the oupled luster wavefuntion,15{34 spin-adaptation of open-shell4



5methods,35{42 as well as development of analyti �rst43{54 and seond55{59 energyderivatives, and methods to treat exited states.60{74In the following setion, we will use the luster funtion approah developedby Sinano�glu75 to justify the well-known exponential form of the oupled lusterwavefuntion. This task requires use of the mathematial tehnique knownas seond-quantization (also alled \oupation-number" formalism), and weintrodue important onepts as they are needed. We then onstrut theoperator equations of oupled luster theory and address issues suh as theHausdor� expansion, variational approahes, and an eigenvalue perspetive onthe oupled luster problem. In the next setion, we develop a set of algebraiand diagrammati tools needed to derive programmable equations for the CCSDmethod, and, using these tools, we disuss the property of the energy known assize extensivity. Next, we examine the relationship between the oupled lusterequations and those of �nite-order many-body perturbation theory, leading toan explanation of the popular (T) orretion implemented in many quantumhemial program pakages. We then disuss some of the issues assoiated with aneÆient omputer implementation of oupled-luster-like equations, suh as matrixformulations, intermediate fatorization, spin and spatial symmetry simpli�ations,and atomi-orbital-based algorithms. Finally, we desribe some of the latestdevelopments in the theory, inluding the implementation of open-shell Brueknermethods, an area of oupled luster theory whih in reent years has proven to bevaluable for a number of diÆult open-shell symmetry-breaking problems.We would like to stress that this hapter is a review of oupled luster theory.It is not primarily intended to provide an analysis of the numerial performane ofthe oupled luster model, and we diret readers in searh of suh information toseveral reent publiations.76{79 Instead, we o�er a detailed explanation of the mostimportant aspets of oupled luster theory at a level appropriate for the general



6omputational hemistry ommunity. Although many of the topis desribed herehave been disussed by other authors,77,78,80,81 this hapter is unique in that itattempts to provide a onise, pratial introdution to the mathematial tehniquesof oupled luster theory (both algebrai and diagrammati), as well as a disussionof the eÆient implementation of the method on high-performane omputers, in amanner aessible to newomers to the �eld.



FUNDAMENTAL CONCEPTS
In this setion we examine some of the ritial ideas that ontribute to mostwavefuntion-based models of eletron orrelation, inluding oupled luster,on�guration interation, and many-body perturbation theory. We begin with theonept of the luster funtion whih may be used to inlude the e�ets of eletronorrelation in the wavefuntion. Using a formalism in whih the luster funtionsare onstruted by luster operators ating on a referene determinant, we justifythe use of the \exponential ansatz" of oupled luster theory.80Cluster Expansion of the WavefuntionConsider a model system of four eletrons moving in an arbitrary eletrostati �eldgenerated by the nulei in a moleule. For our purposes, it is not neessary to speifythe number of these nulei, their types, or positions; only the general form of theeletroni wavefuntion is of interest. It is onvenient to desribe the motions ofeah eletron separately by assigning them to one-eletron funtions, �i(x1), wherex1 is a vetor of the oordinates (inluding spin) of eletron 1. In addition, eletronsare fermions, so the eletroni wavefuntion must be antisymmetri with respetto interhange of the oordinates of any pair of eletrons. A traditional and veryuseful starting point for suh a four-eletron wavefuntion is the so-alled Slaterdeterminant �0 = 1p4!
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8where the 1=p4! is a normalization onstant. Expansion of this determinantreveals a linear ombination of produts of the four funtions, �i, �j, �k, and �l,with the eletroni oordinates xn distributed among them in all possible ways.Sine permutation of any two rows in the determinant | whih is equivalent tointerhanging the oordinates of any two eletrons | hanges the sign of �0, theantisymmetry priniple is maintained.The omponent funtions �i may be hosen in a variety of ways. For example,if the nulear �eld were only a single beryllium nuleus, the one-eletron spatialfuntions ould be onstruted to mimi the atomi 1s and 2s orbitals. For amoleular system, the funtions an be onstruted as a linear ombination of atomiorbitals (AOs) in whih eah one-eletron funtion represents a moleular orbital(MO) whose AO oeÆients are optimized via the Hartree-Fok self-onsistent-�eld(SCF) proedure.82 A onvenient shorthand notation for this wavefuntion onsistsof a Dira-notation ket ontaining only the diagonal elements of the above matrix,�0 = j�i(x1)�j(x2)�k(x3)�l(x4)i; [2℄where the normalization fator is inluded impliitly. As disussed in detail elsewherein Reviews in Computational Chemistry ,77 the single-determinant wavefuntion failsto aount for the instantaneous Coulombi interations whih keep the eletrons ofopposite spin apart.82How an we improve this so-alled independent-partile approximation suh thatthe motions of the eletrons are orrelated? Often the set of oupied orbitals (i.e.,those funtions whih ompose the Slater determinant above) is hosen from a largerset of one-eletron funtions. These \extra" funtions are frequently referred to as



9virtual orbitals and may, for example, arise as a byprodut of the SCF proedure.aWithin the spae desribed by the full set of orbitals, any funtion of N variablesmay be written in terms of N -tuple produts of the �p. For example, a funtion oftwo variables may be onstruted by using all possible binary produts of the set ofone-eletron funtions, e.g.,f(x1;x2) =Xp>q pq�p(x1)�q(x2); [3℄where the double-summation runs over the entire set of one-eletron funtions andthe notation p > q indiates that only unique pairs of funtions are inluded. Insteadof orrelating the motions of a spei� pair of eletrons, however, we may use amodi�ed form of this expansion to orrelate the motions of any two eletrons withina seleted pair of oupied orbitals | say funtions i and j | using a two-partileluster funtion, fij(xm;xn) =Xa>b tabij �a(xm)�b(xn); [4℄where the tabij are the luster oeÆients whose spei� values are determined viathe eletroni Shr�odinger equation (see the next setion on formal oupled lustertheory beginning on p. 21). Inserting this into �0 leads to the somewhat-improvedeletroni wavefuntion,	 = j [�i(x1)�j(x2) + fij(x1;x2)℄�k(x3)�l(x4)i; [5℄where the Dira shorthand implies a orretly antisymmetrized wavefuntioninluding normalization fators as in Eq. [2℄. Inlusion of the luster funtion, fij,in the wavefuntion produes a linear ombination of Slater determinants involvingaWe will denote those funtions that are part of the oupied spae with the subsriptsi, j, k, : : : ; those within the virtual spae with a, b, , : : : and arbitrary funtions whihmay lie in either spae with p, q, r, : : :



10replaement of oupied orbitals �i and �j by virtual orbitals �a and �b, suh that	 = �0 +Xa>b tabij j�a(x1)�b(x2)�k(x3)�l(x4)i: [6℄In addition, the determinantal form of the individual terms in this expansion impliesantisymmetrization of the luster oeÆients, suh that tabij = �tabji = �tbaij = tbaji .It should be arefully noted here that the luster funtion, fij(x1;x2), is intendedto orrelate the motions of any pair of eletrons plaed in orbitals i and j, and notjust the motions of eletrons 1 and 2. Sine the Slater determinant produes a linearombination of orbital produts, inluding terms suh as[�i(x1)�j(x2) + fij(x1;x2)℄�k(x3)�l(x4) [7℄and [�i(x3)�j(x4) + fij(x3;x4)℄�k(x1)�l(x2); [8℄whih di�er only in their distribution of eletroni oordinates, the luster funtionorrelates the motion of every pair of eletrons found in orbitals �i and �j.Depending on the hemial system of interest, however, it might be more prudentto orrelate the motions of eletrons in orbitals k and l rather than orbitals i and j.For example, �i and �j might orrespond to moleular ore orbitals, while �k and �lmight orrespond to the atomi or moleular valene orbitals. Eletron orrelationan be partiularly important in the latter set of funtions beause the valeneorbitals are often diretly involved in the formation of hemial bonds. In this ase,the wavefuntion would be written as	 = j�i(x1)�j(x2) [�k(x3)�l(x4) + fkl(x3;x4)℄i: [9℄On the other hand, a more intelligent approah might be to orrelate all possiblepairwise ombinations of orbitals in this four-eletron system, i.e.,� = j�i�j�k�li+ jfij�k�li � jfik�j�li+ jfil�j�ki+ j�ifjk�li �j�ifjl�ki+ j�i�jfkli+ jfijfkli � jfikfjli+ jfilfjki; [10℄



11where the eletroni oordinates are now impliit in the notation, and the signs onindividual terms arise from the permutations in the orbital ordering needed to de�nethe appropriate luster funtions. However, there is no need to limit this approah toonly orbital pairs; following Harris et al.,80 we ould introdue three-orbital lusterfuntions and inlude these in our new wavefuntion to give� = j�i�j�k�li+ jfij�k�li � jfik�j�li+ jfil�j�ki+ j�ifjk�li �j�ifjl�ki+ j�i�jfkli+ jfijfkli � jfikfjli+ jfilfjki+jfijk�li � jfijl�ki+ jfikl�ji+ j�ifjkli: [11℄If one ontinues this proess to inlude all luster funtions for up to N orbitals(four in the ase disussed here), as well as single-orbital \luster" funtions whihaount for adjustment of the one-eletron basis as other luster funtions are added,we ould obtain the exat wavefuntion within the spae spanned by the f�pg. Onthe other hand, we might assume that lusters larger than pairs are less importantto an adequate desription of the system | an assumption supported by the fatthat the eletroni Hamiltonian ontains operators desribing pairwise eletroniinterations at most.75 We ould therefore write a four-eletron wavefuntion whihinludes all lusters of only one and two orbitals as80,83	 = j�i�j�k�li+ jfi�j�k�li+ j�ifj�k�li+ j�i�jfk�li+ j�i�j�kfli+jfifj�k�li+ jfi�jfk�li+ jfi�j�kfli+ j�ifjfk�li+ j�ifj�kfli+j�i�jfkfli+ jfifjfk�li+ jfifj�kfli+ jfi�jfkfli+ j�ifjfkfli+jfij�k�li � jfik�j�li+ jfil�j�ki+ j�ifjk�li � j�ifjl�ki+j�i�jfkli+ jfijfkli � jfikfjli+ jfilfjki+ jfifjfkfli+ [12℄jfijfk�li+ jfij�kfli+ jfijfkfli � jfikfj�li � jfik�jfli � jfikfjfli+jfilfj�li+ jfil�jfli+ jfilfjfli+ jfifjk�li+ j�ifjkfli+ jfifjkfli �jfifjl�ki � j�ifjlfki � jfifjlfki+ jfi�jfkli+ j�ifjfkli+ jfifjfkli:



12Cluster Funtions and the Exponential AnsatzThe ompliated notation of Eq. [12℄ an be drastially redued by using a simpleanalyti form for the luster funtions. Note again that eah determinant involvinga luster funtion is atually a linear ombination of determinants eah of whihdi�ers from the referene, �0, by a spei� number of orbitals. For example, the27th term in Eq. [12℄ expands to beomejfij�kfli =Xa>bX tabij tl j�a�b�k�i; [13℄where we have inserted the de�nition of the two-eletron luster funtion in Eq. [4℄and its one-eletron ounterpart to indiate the pairwise orrelation of eletronsin orbitals �i and �j as well as the \orrelation" of eletrons in orbital �l. Notethat eah determinant in the above summation di�ers from the referene byexatly three orbitals: orbitals �i, �j, and �l are replaed by orbitals �a, �b,and �, respetively. Hene, eah term an be written as the result of somesubstitution operator (or produts of suh operators) ating on �0. This task isperhaps most easily aomplished using the mathematial tehnique known as seondquantization.80,82,84We will de�ne a reation operator by its ation on a Slater determinant:aypj�q : : : �si = j�p�q : : : �si; [14℄where we have added one more olumn (orbital) and one more row (eletron) toform the new determinant on the right-hand side. We may de�ne an annihilationoperator in a similar manner to obtainapj�p�q : : : �si = j�q : : : �si; [15℄



13where we have removed the �rst olumn (orbital) and the �rst row (eletron) fromthe original funtion.b A given Slater determinant may be written as a hain ofreation operators ating on the true vauum (a state ontaining no eletrons ororbitals), i.e., aypayq : : : aysj i = j�p�q : : : �si: [16℄Note also that an annihilation operator ating on the vauum state gives a zeroresult, apj i = 0: [17℄Pairwise permutations of the operators introdue hanges in the sign of the resultingdeterminant, e.g., ayqaypj i = j�q�pi = �j�p�qi = �aypayqj i: [18℄Therefore, the antiommutation relation for a pair of reation operators is simplyaypayq + ayqayp = 0: [19℄The analogous relation for a pair of annihilation operators isapaq + aqap = 0: [20℄Therefore, if we hange the ordering of a pair of annihilation or reation operators,we must also hange the sign of the resulting expression. Finally, it may be shownthat the antiommutation relation for the \mixed" produt isaypaq + aqayp = Æpq; [21℄bThe annihilation operator ap is simply the Hermitian onjugate of the reation operatorayp. An equivalent perspetive on Eq. [14℄, therefore, is the annihilation operator ap atingto the left on the bra-state, h�0j, to giveh�q : : : �sjap = h�p�q : : : �sj = (j�p�q : : : �si)y = �aypj�q : : : �si�y :



14where Æpq is the onventional Kroneker delta whih equals 1 if p = q and 0 if p 6= q.Using these so-alled seond-quantized operators, we may de�ne the single-orbitalluster operator t̂i �Xa tai ayaai ; [22℄where the operator ai deletes the orbital �i from the determinant on whih theoperator ats, whereas aya introdues the orbital �a in its plae. (The ^ is usedto indiate a seond-quantized operator.) Similarly, a two-orbital luster operatorwhih substitutes orbital �a for �i and �b for �j is given byt̂ij �Xa>b tabij ayaaybajai ; [23℄(Again note that the order of replaement is important for the sign of the resultingdeterminant.) Hene, the 27th term of Eq. [12℄ shown expliitly in Eq. [13℄ may bewritten simply as jfij�kfli = t̂ij t̂lj�0i: [24℄The reation operators in Eqs. [22℄ and [23℄ are restrited to at only on thevirtual orbitals, and the annihilation operators may at only on the oupied orbitals.Therefore, by Eq. [21℄, the reation-annihilation operator pairs exatly antiommute:ayaai + aiaya = Æia = 0; [25℄sine the oupied orbital �i and the virtual orbital �a annot be the same.Therefore, by the above equation as well as the antiommutation relations givenin Eqs. [19℄ and [20℄, all of the reation and annihilation operators in t̂i and t̂ijantiommute. Given the additional fat that the luster operators always ontaineven numbers of seond-quantized operators, the t̂i and t̂ij operators themselves will



15exatly ommute.Equations [22℄ and [23℄ may be used to rewrite the long one- and two-orbitalluster wavefuntion in Eq. [12℄ above as	 = 0�1 +Xi t̂i + 12Xij t̂it̂j + 16Xijk t̂it̂j t̂k + 12Xij t̂ij+18Xijkl t̂ij t̂kl + 124Xijkl t̂it̂j t̂kt̂l + 12Xijk t̂ij t̂k + 14Xijkl t̂ij t̂k t̂l1A�0: [26℄We may simplify this expression even further by de�ning the total one- andtwo-orbital luster operators T̂1 �Xi t̂i =Xia tai ayaai ; [27℄and T̂2 � 12Xij t̂ij = 14Xijab tabij ayaaybajai ; [28℄respetively.d More generally, an n-orbital luster operator may be de�ned asT̂n = � 1n!�2 nXij:::ab::: tab:::ij:::ayaayb : : : ajai : [29℄This redues the wavefuntion expression to	 = �1 + T̂1 + 12! T̂ 21 + 13! T̂ 31 + T̂2 + 12! T̂ 22 + 14! T̂ 41 + T̂2T̂1 + 12! T̂2T̂ 21��0: [30℄Higher-order terms (e.g., T̂ 32 ) do not appear, of ourse, beause our example systemontains only four eletrons. If we remember that T̂1 and T̂2 ommute, then all ofNote that ommutation of luster operators holds only when the oupied and virtualorbital spaes are disjoint, as is the ase in spin-orbital or spin-restrited losed-shelltheories. For spin-restrited open-shell approahes, where singly oupied orbitalsontribute terms to both the oupied and virtual orbital subspaes, the ommutationrelations of luster operators are signi�antly more ompliated. See Ref. 36 for adisussion of this issue.dThe fators of 1=2 and 1=4 are inluded here to orret for the \double ounting"resulting from the now unrestrited summations over i, j, a, and b.



16the terms from the above equation math those from the power series expansion ofan exponential funtion! Thus, the general expression for Eq. [30℄ is	 = eT̂1+T̂2�0 � eT̂�0; [31℄whih is a rather onvenient redution from the original Eq. [12℄.The \exponential ansatz" given in Eq. [31℄ is one of the entral equations ofoupled luster theory. The exponentiated luster operator, T̂ , when applied to thereferene determinant, produes a new wavefuntion ontaining luster funtions,eah of whih orrelates the motion of eletrons within spei� orbitals. If T̂inludes ontributions from all possible orbital groupings for the N -eletron system(that is, T̂1; T̂2; : : : ; T̂N), then the exat wavefuntion within the given one-eletronbasis may be obtained from the referene funtion. The luster operators, T̂n, arefrequently referred to as exitation operators, sine the determinants they produefrom �0 resemble exited states in Hartree-Fok theory. Trunation of the lusteroperator at spei� substitution/exitation levels leads to a hierarhy of oupledluster tehniques (e.g., T̂ � T̂1 + T̂2 ! CCSD; T̂ � T̂1 + T̂2 + T̂3 ! CCSDT,et., where \S", \D", and \T", indiate that single-, double-, and triple-exitations,respetively, are inluded in the wavefuntion expansion).Wavefuntion Separability and Size Consisteny of the EnergyIt is perhaps useful to ompare the exponential ansatz of Eq. [31℄ with theanalogous expansions of other wavefuntions. In the on�guration interation(CI) approah,85,86 for example, a linear exitation operator is used instead of anexponential, 	CI = �1 + Ĉ��0; [32℄where Ĉ is a linear ombination of luster-like operators de�ned similarly to T̂ , viz.,Ĉ = Ĉ1 + Ĉ2 + : : :



17= Xia ai ayaai + 14Xijab abij ayaaybajai + : : : : [33℄Trunation of Ĉ at the single- and double-exitation level (CISD) leads to awavefuntion with exatly the same number of amplitudes (ai and abij ) as that neededfor the CCSD wavefuntion (tai and tabij ). However, the latter impliitly inludeshigher exitation levels (triples and quadruples) by the inlusion of T̂ produts inthe power series expansion of eT̂ . Suh produts are ommonly referred to in theliterature as disonneted wavefuntion ontributions.e Both the CI and CC methodswill produe exat wavefuntions if one does not trunate Ĉ (full CI) or T̂ (full CC).In fat, in the limit of exat linear and exponential wavefuntion expansions, arelationship between the CI and CC amplitudes may be developed5 that revealsthe fatorization of eah level of CI exitation into onneted and disonnetedomponents, e.g., Ĉ2 = T̂2 + 12 T̂ 21 : [34℄The two di�erent forms of the exitation operator in CI and CC theory havesigni�ant onsequenes for both the energy and wavefuntion as the number ofeletrons is inreased or as the (moleular) system is separated into fragments.Consider the struture of the oupled luster and on�guration interationwavefuntions for a generi system involving two in�nitely separated (and thereforenon-interating) omponents X and Y . If the moleular orbitals used to de�ne theluster funtions T̂ and Ĉ are loalized on eah of the two fragments | a hoiewhih will not a�et the energy assoiated with either the referene determinant,�0, or the orrelated wavefuntion, 	CI or 	CC | then the luster operators maybe separated into omponents involving intrafragment exitations only, i.e.,T̂ = T̂X + T̂Y and Ĉ = ĈX + ĈY : [35℄eThis terminology should not be onfused with so-alled disonneted diagrammationtributions, whih are disussed later in the hapter.



18For example, the amplitudes tabij or abij , in whih orbitals �i and �a are loalizedon fragment X and orbitals �j and �b are loalized on fragment Y , will be zero.Thus, the total oupled luster exponential operator may be written as a produt ofindependent oupled luster operators for eah fragment, viz.87	CC = eT̂�0 = eT̂X+T̂Y�0 = eT̂XeT̂Y �0: [36℄Sine the referene determinant, �0, is fatorizable into determinants isolated on eahfragment (in the loalized orbital desription), the total oupled luster wavefuntionmay be written as a produt of oupled luster wavefuntions for eah of theseparated fragments.f As a result, the sum of the oupled luster energies omputedfor eah fragment separately is the same as that omputed for the \supermoleule"in whih the fragments are inluded together in the alulation,ECC = EXCC + EYCC : [37℄This property of the oupled luster energy is ommonly known as \sizeonsisteny".89For the on�guration interation wavefuntion, however, multipliativeseparability is not possible:	CI = �1 + Ĉ��0 = �1 + ĈX + ĈY ��0: [38℄As a result, the CI energy is not size onsistent, and the sum of the energies of theseparated fragments di�ers from the CI energy of the supermoleule,ECI 6= EXCI + EYCI : [39℄fIt should be noted that the loalized orbital requirement is used here stritly for ease ofanalysis, and the property of multipliative separability of the oupled luster wavefuntiondoes not stritly depend on this omputational requirement, as disussed in Ref. 88.



19In the event that the CI luster operator, Ĉ, is not trunated, however, it is possibleto write the resulting full CI wavefuntion as a produt of wavefuntions for eahseparated fragment, sine the linear operator may be transformed into an exponentialusing a generalized form of Eq. [34℄.Consider the lassi example of an ensemble of hydrogen moleules. Both theCCSD and CISD wavefuntions are exat (within the given one-eletron basis set)for a single H2 moleule sine there are only two eletrons to be orrelated. However,errors are introdued in the CI energy in the ase of two (or more) non-interatingH2 units due to the lak of multipliative separability of the wavefuntion. The sizeonsistent CCSD method, on the other hand, produes the orret total energy,regardless of the number of non-interating H2 monomers in the system, sinethe total oupled luster wavefuntion may be written as a produt of separatedwavefuntions, eah of whih is exat for the given hydrogen moleule.Some aution should be exerised in the appliation of the size onsistenyonept when applied to open-shell fragments, however. As Taylor has reentlypointed out,81 a given method may be size onsistent for some systems but notfor others. For example, the spin-restrited Hartree-Fok (RHF) approah is sizeonsistent for the dissoiation of the hydrogen uoride in its 3� exited state intoatoms, HF(3�)! H(2S) + F(2P ); [40℄sine the single determinant wavefuntion an orretly desribe the high-spineletroni states in both the supermoleule and the separated fragments. TheRHF method is not size onsistent, however, when desribing the dissoiation ofthe ground state of HF, into these same atomi states,HF(1�+)! H(2S) + F(2P ): [41℄



20This size-inonsisteny ours beause the two open-shell eletrons on theatoms must be singlet-oupled to produe the orret dissoiation limit, and asupermoleule, two-determinant approah is therefore required. This diÆulty alsoapplies to oupled luster or perturbation-based wavefuntions that use the RHFdeterminant as a referene; these methods annot be size onsistent for a givenmoleular system unless the referene wavefuntion is size onsistent.A more general property of the oupled luster energy whih is related to sizeonsisteny is \size extensivity." This is a stritly mathematial harateristi ofthe wavefuntion whih relates to saling of the omputed energy with respetto the number of orrelated eletrons and the resulting energy dependene of thewavefuntion amplitude equations. Size extensivity is not dependent on the systemunder study, and it applies to all regions of the potential energy surfae | not justto the fragmentation limit. We will return to this topi later in the hapter after wehave disussed the algebrai and diagrammati tehniques needed to derive workingoupled luster equations.



FORMAL COUPLED CLUSTER THEORY
The exponential ansatz desribed above is essential to oupled luster theory, but wedo not yet have a reipe for determining the so-alled \luster amplitudes" (tai , tabij ,et.) whih parameterize the power series expansion impliit in Eq. [31℄. Naturally,the starting point for this analysis is the eletroni Shr�odinger equation,Ĥj	i = Ej	i; [42℄where the oupled luster wavefuntion, 	CC � eT̂�0, is used to approximate theexat solution, 	, ĤeT̂ j�0i = EeT̂ j�0i: [43℄Using a \projetive" tehnique, one may left-multiply this equation by the referene,�0, to obtain an expression for the energy,h�0jĤeT̂ j�0i = Eh�0jeT̂ j�0i = E; [44℄where intermediate normalization, h�0j	CCi = 1, is assumed. Additionally, onemay obtain expressions for the luster amplitudes by left-projeting the Shr�odingerequation by the exited determinants produed by the ation of the luster operator,T̂ , on the referene, h�ab:::ij::: jĤeT̂ j�0i = Eh�ab:::ij::: jeT̂ j�0i; [45℄where j�ab:::ij::: i represents an exited determinant in whih orbitals �i, �j, et. havebeen replaed with orbitals �a, �b, et.g Projetion by the determinant j�abij i, forexample, will produe an equation for the spei� amplitude tabij (oupled to otheramplitudes). These equations are non-linear (due to the presene of eT̂ ) and energydependent. Furthermore, they are formally exat; if the luster operator, T̂ , is notgIn seond-quantization terminology, j�ab:::ij::: i = ayaayb : : : ajai j�0i.21



22trunated, the exat wavefuntion within the spae spanned by the set of orthogonalone-eletron funtions, �p, may be obtained.Trunation of the Exponential AnsatzReall that the exponentiated operator may be expanded in a power series aseT̂ = 1 + T̂ + T̂ 22! + T̂ 33! + : : : : [46℄Inserting this into the energy expression Eq. [44℄ we obtainh�0jĤ(1 + T̂ + T̂ 22! + T̂ 33! + : : :)j�0i = E; [47℄whih beomes, after distributing terms,h�0jĤj�0i+ h�0jĤT̂ j�0i+ h�0jĤ T̂ 22! j�0i+ h�0jĤ T̂ 33! j�0i+ : : : = E: [48℄Note that Ĥ is at most a two-partile operator and that T̂ is at least a one-partileexitation operator. Then, assuming that the referene wavefuntion is a singledeterminant onstruted from a set of one-eletron funtions, Slater's rules82 statethat matrix elements of the Hamiltonian between determinants that di�er by morethan two orbitals are zero. Thus, the fourth term on the left-hand side of the aboveequation ontains, at the least, threefold exitations, and, as a result, that matrixelement (and all higher-order elements) neessarily vanish. The energy equationthen simpli�es to h�0jĤj�0i+ h�0jĤT̂ j�0i+ h�0jĤ T̂ 22! j�0i = E: [49℄This is the natural trunation of the oupled luster energy equation; an analogousphenomenon ours for the amplitude equation (Eq. [45℄). This trunation dependsonly on the form of Ĥ and not on that of T̂ or on the number of eletrons. Equation[49℄ is orret even if T̂ is trunated to a partiular exitation level.



23The Hausdor� ExpansionAlthough the energy and amplitudes expressions (Eqs. [44℄ and [45℄, respetively)are useful for gaining a formal understanding of the oupled luster method, theyare not amenable to pratial omputer implementation.90 One must �rst rewritethese expressions in terms of the one- and two-eletron integrals arising from theeletroni Hamiltonian as well as the luster amplitudes, whih, apart from theenergy itself, are the only unknown quantities. To that end, it is onvenient toexerise mathematial foresight and multiply the Shr�odinger equation (Eq. [43℄) bythe inverse of the exponential operator, e�T̂ . Upon subsequent left-projetion by thereferene, �0, and the exited determinants, �ab:::ij::: , one obtains modi�ed energy andamplitude equations, h�0je�T̂ ĤeT̂ j�0i = E [50℄and h�ab:::ij::: je�T̂ ĤeT̂ j�0i = 0; [51℄respetively, whih involve the similarity-transformed Hamiltonian, e�T̂ ĤeT̂ .Equations [50℄ and [51℄ de�ne the onventional oupled luster method. It maybe shown that these expressions are equivalent to Eqs. [44℄ and [45℄,5,80 but withtwo advantages. First, the amplitude equations (Eq. [51℄) are now deoupledfrom the energy equation (Eq. [50℄). Seond, a simpli�ation via the so-alledCampbell-Baker-Hausdor� formula91 of e�T̂ ĤeT̂ leads to a linear ombination ofnested ommutators of Ĥ with the luster operator, T̂ , viz.e�T̂ ĤeT̂ = Ĥ + hĤ; T̂ i+ 12! hhĤ; T̂ i ; T̂ i+ 13! hhhĤ; T̂ i ; T̂ i ; T̂ i+14! hhhhĤ; T̂ i ; T̂ i ; T̂ i ; T̂ i+ : : : : [52℄This expression is usually referred to simply as the Hausdor� expansion, andalthough it may not immediately appear to be a simpli�ation of the oupled luster



24equations, the in�nite series trunates naturally in a manner somewhat analogousto that desribed earlier for the operator, ĤeT̂ .As shown expliitly in Refs. 84, 80, and 92, the reation and annihilationoperators desribed earlier may be used to represent dynamial operators suh asthe eletroni Hamiltonian:Ĥ =Xpq hpqaypaq + 14 Xpqrshpqjjrsiaypayqasar: [53℄In this expression, hpq � h�pjĥj�qi represents a matrix element of the one-eletronomponent of the Hamiltonian, ĥ, while hpqjjrsi � h�p�qj�r�si � h�p�qj�s�riis its antisymmetrized two-eletron ounterpart. Equation [53℄ ontains generalannihilation and reation operators (e.g., ayp or aq) whih may at on orbitals ineither the oupied or virtual subspaes. The luster operators, T̂n, on the otherhand, ontain operators whih are restrited to at in only one of these spaes(e.g., ayb whih may at only on the virtual orbitals). As pointed out earlier, theluster operators therefore ommute with one another, but not with the Hamiltonian,Ĥ. For example, onsider the ommutator of the pair of general seond-quantizedoperators from the one-eletron omponent of the Hamiltonian in Eq. [53℄ with thesingle-exitation pair found in the luster operator, T̂1:haypaq; ayaai i = aypaqayaai � ayaaiaypaq: [54℄The antiommutation relations of annihilation and reation operators given inEqs. [19℄, [20℄, and [21℄ may be applied to the two terms on the right-hand sideof this expression to givehaypaq; ayaai i = aypÆqaai � ayaÆipaq; [55℄The Kroneker delta funtions, Æqa and Æip, resulting from Eq. [21℄ annot besimpli�ed to 1 or 0 beause the indies p and q may refer to either oupied or virtual



25orbitals. The important point here, however, is that the ommutator has redued thenumber of general-index seond-quantized operators by one. Therefore, eah nestedommutator from the Hausdor� expansion of Ĥ and T̂ serves to eliminate one of theeletroni Hamiltonian's general-index annihilation or reation operators in favorof a simple delta funtion. Sine Ĥ ontains at most four suh operators (in itstwo-eletron omponent), all reation or annihilation operators arising from Ĥ willbe eliminated beginning with the quadruply nested ommutator in the Hausdor�expansion. All higher-order terms will ontain ommutators of only the lusteroperators, T̂ , and are therefore zero. Hene, Eq. [52℄ trunates itself naturallyafter the �rst �ve terms shown.80 This onvenient property results entirely fromthe two-eletron property of the Hamiltonian and the fat that the luster operatorsommute; it is not dependent on the number of eletrons in the system, the level ofsubstitution inluded in T̂ , or any onsideration of the types of determinants uponwhih the operators at.Using the trunated Hausdor� expansion, we may obtain analyti expressionsfor the ommutators in Eq. [52℄ and insert these into the oupled luster energy andamplitude equations (Eqs. [50℄ and [51℄, respetively). However, this is only the �rststep in obtaining expressions whih may be eÆiently implemented on the omputer.We must next hoose a trunation of T̂ and then derive expressions ontaining onlyone- and two-eletron integrals and luster amplitudes. This is a formidable task towhih we will return in later setions.A Variational Coupled Cluster Theory?The \projetive" tehniques desribed above for solving the oupled luster equationsrepresent a partiularly onvenient way of obtaining the amplitudes whih de�nethe oupled luster wavefuntion, eT̂�0. However, the asymmetri energy formula



26shown in Eq. [50℄ does not onform to any variational onditions where the energyis determined from an expetation value equation. As a result, the omputed energywill not be an upper bound to the exat energy in the event that the luster operator,T̂ , is trunated. But the exponential ansatz does not require that we solve theoupled luster equations in this manner. We ould, instead, onstrut a variationalsolution by requiring that the amplitudes minimize the expression1,2Eexat � E = h�0j(eT̂ )yĤeT̂ j�0ih�0j(eT̂ )yeT̂ j�0i = h	jĤj	ih	j	i : [56℄Unfortunately, this equation is onsiderably more omplex than the projetive energyexpression given in Eq. [50℄ sine there is no natural trunation of its power seriesexpansion,h�0j(eT̂ )yĤeT̂ j�0i = h�0j(1+ T̂ y+ 12 �T̂ y�2+ : : :)Ĥ(1 + T̂ + 12 �T̂�2+ : : :)j�0i: [57℄For example, in the term h�0jT̂ yĤT̂ j�0i, whih is inluded in the above equation,as T̂ reates an exited determinant from j�0i on the right, T̂ y reates an exiteddeterminant from h�0j on the left. Thus, the Hamiltonian matrix elements will notvanish at some high exitation level, and the series will not terminate before theN -eletron limit. Trunation of this expression for large numbers of terms appearsto be arbitrary at best.The ostensible impratiality of a variational oupled luster theory raises animportant question as to the physial reality of the oupled luster energy asomputed using projetive, asymmetri tehniques. Quantum mehanis ditatesthat physial observables (suh as the energy) are expetation values of Hermitianoperators. The oupled luster energy expression ontains the operator e�T̂ ĤeT̂ ,



27whih is not Hermitian, regardless of the trunation of T̂ :h�e�T̂ ĤeT̂�y = �eT̂�y Ĥ �e�T̂�y = eT̂ yĤe�T̂ y 6= e�T̂ ĤeT̂ : [58℄However, if T̂ is not trunated, the similarity transformed operator has an energyeigenvalue spetrum that is idential to the original Hermitian operator, Ĥ, thusjustifying its formal use in quantum mehanial models. Pratially speaking, theoupled luster energy tends to losely approximate the expetation value resulteven when T̂ is trunated. Furthermore, one might speulate that some measure ofthe di�erene between the expetation value and asymmetri energies | perhaps asmeasured by the asymmetry of the oupled luster redued density65 |might proveto be a useful diagnosti of the reliability of results obtained from the oupled lustermethod for spei� systems. This issue has been reently disussed by Kutzelnigg.93Variational oupled luster methods that make use of Eq. [57℄ have been studiedby several researhers. The unitary oupled luster (UCC) approah in whihthe luster operator T̂ is replaed by T̂ � T̂ y (where T̂ y indiates a de-exitationoperator whih is the Hermitian adjoint of T̂ ) was pursued by Ho�mann andhThe inequality with the �nal term in this expression relies on the fat that theHermitian adjoint of an exitation (luster) operator, T̂ , is a de-exitation operator as,an be seen from the properties of its omponent annihilation and reation operators. Forexample, we note that T̂1 =Xia tai ayaai 6= T̂ y1 =Xia (tai )� ayiaa:On the other hand, the inverse of the exponentiated exitation operator, e�T̂ , is also anexitation operator, as an be seen from its power series expansion,e�T̂ = 1� T̂ + 12 T̂ 2 � 13! T̂ 3 + : : : :



28Simons.94,95 The in�nite series in this ase is not trunated arbitrarily, but insteadby identifying whih terms are needed to omplete the series through a partiularorder of perturbation theory. Bartlett and Noga have onstruted an alternativetheory, termed the expetation value oupled luster (XCC) method,96 in whih theusual de�nition of T̂ is retained and Eq. [57℄ is used, but again the series trunationis based on perturbation theory arguments. Finally, we note the extended oupledluster method (ECCM) of Arponen and Bishop,97,98 whih uses a modi�ed energyfuntional inluding an additional exponentiated deexitation operator analogous toeT̂ y. These as well as other variational and semi-variational approahes to the lusterexpansion have been reviewed reently by Bartlett et al.99 and by Szalay et al.100An Eigenvalue Approah to Coupled Cluster TheoryUp to this point, our disussion has foused on the expansion of the wavefuntionusing the exponential ansatz given in Eq. [31℄. When the luster operator, T̂ ,is trunated, the resulting CC wavefuntion may be viewed as an approximateeigenfuntion of the exat eletroni Hamiltonian. However, another equallyvalid perspetive fouses instead on onstrution of the exat eigenvetors of anapproximate Hamiltonian. In on�guration interation theory, for example, oneonventionally represents the eletroni Hamiltonian within a determinantal basisonsisting of the referene (�0), single exitations (�ai ), double exitations (�abij ),et. In the CISD approximation the Hamiltonian is represented shematially asĤCISD = 0BBBBBB� ESCF 0 Ĥ0D0 ĤSS ĤSDĤD0 ĤDS ĤDD
1CCCCCCA ; [59℄where ĤSD, for example, represents the blok of Hamiltonian matrix elementsbetween singly and doubly exited determinants and ESCF = h�0jĤj�0i. We assume



29here that Brillouin's theorem82 holds for the referene determinant, and therefore thematrix elements involving �0 and singly exited determinants are zero. The CISDenergy is the lowest eigenvalue of this Hermitian matrix, and the CISD wavefuntionis the orresponding eigenvetor, i.e.,ĤCISDj	CISDi = ECISDj	CISDi: [60℄The oupled luster \Shr�odinger equation", whih leads to the energy andamplitude expressions given in Eqs. [50℄ and [51℄, may be written ase�T̂ ĤeT̂ j�0i = Ej�0i: [61℄Like Eq. [60℄, this equation represents an eigenvalue problem101 in whih thesimilarity-transformed Hamiltonian, �H � e�T̂ ĤeT̂ , is used in plae of the bareeletroni Hamiltonian, Ĥ. The ground-state eigenvetor of �H is simply j�0i witheigenvalue E. However, �H is not Hermitian, unlike the CI Hamiltonian, and itsmatrix representation is therefore non-symmetri. In the CCSD approximation, forexample, �HCCSD = 0BBBBBB� ECCSD �H0S �H0D0 �HSS �HSD0 �HDS �HDD
1CCCCCCA ; [62℄where the CCSD energy is given by h�0j �Hj�0i, by Eq. [50℄ and �HDS 6= �HSD. Thebloks of matrix elements h�ai j �Hj�0i and h�abij j �Hj�0i are both zero beause the T̂amplitudes whih parameterize the similarity transformation of Ĥ into �H satisfy theequations, 0 = h�ai j �Hj�0i [63℄and 0 = h�abij j �Hj�0i; [64℄



30whih are simply spei� ases of Eq. [51℄. Furthermore, unlike the CI ase, �H0Sis nonzero in spite of Brillouin's theorem beause �H inludes ontributions fromproduts of the bare Hamiltonian with the luster operators, T̂ .As a result of the asymmetry of �H, the right-hand eigenvalue problem given inEq. [61℄ is di�erent from the left-hand eigenvalue problem,hLj �H = hLjE: [65℄The omputed energy, E, however, is the same for both equations. In Eq. [65℄ above,the left eigenvetor, hLj, may be written in terms of a luster operator, L̂, ating onthe referene from the right, viz. hLj � h�0jL̂: [66℄The operator L̂ may be de�ned in analogy to the luster operator, T̂ , as a sum ofof luster operators, L̂ = 1 + L̂1 + L̂2 + : : : : [67℄The leading term of 1, whih does not appear in T̂ (f. Eq. [29℄), is required in orderthat the left- and right-hand eigenvetors have unit overlap with one another. Unlikethe luster operators, T̂n, the operators L̂n at to the left on h�0j. Therefore, it isonvenient to de�ne them as de-exitation operators (or, equivalently, as bra-stateexitation operators), L̂n = � 1n!�2 nXij:::ab::: lij:::ab:::ayiayj : : : abaa; [68℄The task of determining the left-hand ground-state eigenvetor of �H is thus reduedto determining the amplitudes lij:::ab:::. The ground-state oupled luster energy maythen be written as E = h�0jL̂ �Hj�0i; [69℄



31where the left and right wavefuntions are assumed to be normalized aordingto h�0jL̂j�0i = 1. This expression, whih is more general than Eq. [50℄, provides apartiularly useful starting point for the derivation of oupled luster analyti energyderivatives; the left-hand eigenvetor, h�0jL̂, is related to the �̂ operator whiharises due to the response of the luster amplitudes to the external perturbationparameter.49The onept of the oupled luster method as an eigenvalue problemmay be easilygeneralized to inlude exited states (in this ase, states that are not the lowestin energy within a given symmetry). We may write the more general right-handproblem as �HR̂(m)j�0i = EmR̂(m)j�0i; [70℄where R̂(m) = R̂0(m) + R̂1(m) + R̂2(m) + : : : [71℄represents a luster operator expansion for the m-th exited state with energy Em.For the ground state, R̂(0) = 1, as desribed above. Similarly, the left-handeigenvalue problem beomesh�0jL̂(m) �H = h�0jL̂(m)Em: [72℄\Biorthonormality" of the left-hand and right-hand eigenvetors may be enforedsuh that h�0jL̂(m)R̂(n)j�0i = Æmn; [73℄leads to the generalized oupled luster energy expressionEm = h�0jL̂(m) �HR̂(m)j�0i: [74℄Note that the biorthonormality of the left- and right-hand states does not implyorthonormality of the left- or right-hand states among themselves, e.g.,h�0jR̂y(m)R̂(n)j�0i 6= Æmn: [75℄



32The eigenvalue perspetive desribed above does not o�er any omputationalonveniene for the ground-state problem beause one must still use Eq. [51℄to determine the luster amplitudes that de�ne the similarity transformation ofthe eletroni Hamiltonian, Ĥ, into the CC Hamiltonian, �H. However, thisperspetive does provide a rather simple CI-like approah for determining exitedstate wavefuntions. Equation-of-motion oupled luster theory (EOM-CC),5,60{63,65the name of whih is based on early formulations involving response operators, hasseen a onsiderable rise in popularity in reent years. The EOM-CCSD method,65,73for example, is de�ned as the diagonalization of the CCSD e�etive Hamiltonian,�HCCSD (where the luster amplitudes are taken from the orresponding CCSDground-state energy alulation) in the spae of all singly and doubly exiteddeterminants. It should be noted, however, that trunation of the luster operator,T̂ , in the de�nition of �H does not introdue errors into the EOM-CC energy, beausethe exat energy would still be obtained if the diagonalization basis were omplete.Muh e�ort has been devoted reently to the development of a variety ofexited-state oupled luster tehniques whih are related to EOM-CC. For example,the linear-response oupled luster (LR-CC) approah73 originally desribedby Monkhorst5 and reently implemented by several groups69,70,102{105 an beused to obtain idential results to those given by onventional EOM-CC. Inaddition, the symmetry-adapted luster (SAC-CI) method devised independentlyby Nakatsuji106{108 some years ago may be viewed as an approximation to EOM-CCand LR-CC. A relationship between EOM-CC and Fok-spae multi-refereneoupled luster theory (FS-MRCC)64,109{112 has been exploited in the onstrutionof methods for desribing lasses of doublet eletroni states whih are aessible viaeither eletron-attahment (EOMEA-CC)88,113 or ionization (EOMIP-CC)67,109{111from a given referene. Finally, we note the reent work by Nooijen and Bartletton the similarity-transformed equation-of-motion oupled luster (STEOM-CC)



33method,74,114 in whih the e�etive Hamiltonian desribed above is furthertransformed using a redued luster operator, Ŝ, whih serves to deouple singlyexited determinants from doubly and triply exited determinants in �H.



DERIVATION OF THE COUPLED CLUSTEREQUATIONS
\It is the need to remove the `unlinked lusters' and the introdutionof Feynman diagrams whih make MBPT [and CC theory℄ appearunfamiliar to quantum hemists."115 | K. F. FreedIn this setion we onstrut working equations for the oupled luster singlesand doubles (CCSD) method. Beginning from the approximation T̂ � T̂1 + T̂2, weuse algebrai and diagrammati tehniques to obtain programmable equations forthe luster amplitudes, tai and tabij , in terms of the one- and two-eletron integralsof the eletroni Hamiltonian. As a �rst step we must introdue a few importanttools of seond quantization suh as normal ordering and Wik's theorem to makethe mathematial analysis muh less ompliated. The approah desribed heremay easily be extended to higher-order luster approximations (e.g., CCSDT andCCSDTQ, where the latter inludes quadruple exitations), as well as many-bodyperturbation theory expressions.As indiated in Karl Freed's quote above, the general quantum hemistryommunity has been slow to aept diagrammati analyses of many-bodyperturbation theory and oupled luster methods, and, until reently, thesetehniques have been used by relatively few researhers in the �eld. One of the goalsof this review is to explain in straightforward terms one diagrammati approahommonly used for the onstrution of oupled luster equations. While attemptingto be somewhat rigorous in the algebrai derivation of the oupled luster equations,we present the orresponding diagrams with only minimal justi�ation. For readers34



35with a strong mathematial bakground who are interested in more detail, anextensive analysis of a similar diagrammati tehnique may be found in the reenttext by Harris, Monkhorst, and Freeman.80Normal-Ordered Seond-Quantized OperatorsAs stated in Merzbaher's text on quantum mehanis91 (Ch. 21, x4), anormal-ordered string of seond-quantization operators is one in whih we �nd \allannihilation operators standing to the right of all reation operators." Normalordering of suh strings provides a bookkeeping system by whih the nonzeromatrix elements of seond-quantized operators may be more easily identi�ed. Asan example, onsider an arbitrary string of annihilation and reation operators,Â = apayqarays. By appliation of the antiommutation relations given in Eqs. [19℄,[20℄, and [21℄, we may move the two annihilation operators to the right and thereforewrite the string in an equivalent form asÂ = apayqarays= Æpqarays � ayqaparays= ÆpqÆrs � Æpqaysar � Ærsayqap + ayqapaysar= ÆpqÆrs � Æpqaysar � Ærsayqap + Æpsayqar � ayqaysapar: [76℄Three of the �ve terms in the �nal rearrangement ontain operator strings of reduedlength and the �rst term ontains only Kroneker delta funtions. Note also that allof the operator strings on the right-hand side of the �nal equality are normal orderedby Merzbaher's de�nition. If we now evaluate the quantum mehanial expetationvalue of this operator in the true vauum state, j i, we obtainih jÂj i = h jÆpqÆrsj i � h jÆpqaysarj i � h jÆrsayqapj i+ h jÆpsayqarj i � h jayqaysaparj iiThe vauum, j i, is a state ontaining no eletrons.



36= ÆpqÆrs; [77℄where we assume that the vauum state is normalized. Hene, the only term of Â inEq. [76℄ whih produes a nonzero result is the one ontaining no seond-quantizedoperators; all other terms involve appliation of an annihilation operator to j i onthe right.If, on the other hand, we wish to evaluate a matrix element of Â involvingdeterminants other than j i on the left and right, normal ordering simpli�es thisanalysis as well. For example, onsider the matrix element of Â between thesingle-partile states, h�tj and j�ui,h�tjÂj�ui = h jat Âayuj i: [78℄Sine the left- and right-hand states may be written simply as single annihilation andreation operators ating on the vauum, the desired matrix element of Â may berewritten as the vauum expetation value of a new operator, B̂ � at Âayu. Therefore,we need only rewrite B̂ in normal order and selet only those terms whih ontainno annihilation or reation operators as we did in Eq. [77℄. After muh algebraimanipulation, whih we shall omit here, it an be shown thath�tjÂj�ui = h jB̂j i = ÆtuÆpqÆrs + ÆtqÆpsÆru � ÆtqÆpuÆrs � ÆtsÆpqÆru: [79℄By rearranging a given string of annihilation and reation operators into anormal-ordered form, matrix elements of suh operators between determinantalwavefuntions may be evaluated in a relatively algorithmi manner. However, suhan approah based on the diret appliation of the antiommutation relations anbe quite tedious even for relatively short operator strings, and many opportunitiesfor error may arise.



37Wik's Theorem for the Evaluation of Matrix ElementsUsing the antiommutation relations of Eqs. [19℄, [20℄, and [21℄, an arbitrary stringof annihilation and reation operators an be written as a linear ombinationof normal-ordered strings (most of whih ontain redued numbers of operators)multiplied by Kroneker delta funtions. These redued terms may be viewed asarising from so-alled \ontrations" between operator pairs. A ontration betweentwo arbitrary annihilation/reation operators, A and B, is de�ned asAB � AB � fABgv; [80℄where the notation fABgv indiates the normal-ordered form of the pair (thesubsript v will be explained shortly). That is, the ontration between the operatorsis simply the original ordering of the pair minus the normal-ordered pair. Forexample, if both operators are annihilation or reation operators, the ontrationis zero beause suh pairs are already normal ordered:apaq = apaq � fapaqgv = apaq � apaq = 0 [81℄and aypayq = aypayq � faypayqgv = aypayq � aypayq = 0: [82℄In addition, a third ombination where A is a reation operator and B is anannihilation operator is also zero, sine the string is again already normal ordered:aypaq = aypaq � faypaqgv = aypaq � aypaq = 0: [83℄



38The �nal ombination where A is an annihilation operator and B is a reationoperator is not zero, however, due to the antiommutation relations in Eq. [21℄:japayq = apayq � fapayqgv = apayq + ayqap = Æpq : [84℄Note that we must maintain the orret sign when the operators in the brakets,f gv, are reordered.Wik's theorem116 provides a reipe by whih an arbitrary string of annihilationand reation operators, ABC : : :XY Z, may be written as a linear ombination ofnormal-ordered strings. Shematially, Wik's theorem isABC : : :XY Z = fABC : : :XY Zgv [85℄+ XsinglesfAB : : :XY Zgv+ XdoublesfABC : : :XY Zgv+ : : : ;where \singles," \doubles," et. refer to the number of pairwise ontrations inludedin the summation. The braket notation, f gv, has again been used to indiate thenormal-ordered form of the given string. If we apply this theorem to the operatorfrom the last setion, Â, we obtainÂ = fapayqaraysgv + fapayqaraysgv + fapayqaraysgv + fapayqaraysgv + fapayqaraysgv; [86℄where only the nonzero ontrations have been inluded (f. Eqs. [81℄ - [84℄). Theevaluation of the pairwise ontrations may introdue sign hanges beause the stringof operators must be permuted to bring the pair together before the ontrationjNote that the use of the brakets, f gv, around a string implies that the operatorsontained therein, exept for any pair being ontrated, exatly antiommute. Hene, ageneral term suh as fABC : : : XY Zgv may be written exatly as �fBAC : : : XY Zgv,without onern for the antiommutation relations.



39may be evaluated. If the number of permutations is odd, the sign is negative; if thenumber is even, the sign is positive. For example, a ontration of the formfABCDgv = fADBCgv [87℄would have a positive sign sine two permutations are neessary to bring operatorsA and D into adjaeny, but a ontration of the formfABCDgv = � fACBDgv [88℄would have a negative sign sine only one permutation is neessary to bring operatorsA and C together. Thus, the ontration introdues the sign (�1)P , where P is thenumber of permutations required to bring the operators into adjaeny. Evaluatingthe ontrations above for Â givesÂ = fapayqaraysgv + Æpqfaraysgv + Æpsfayqargv + Ærsfapayqgv + ÆpqÆrs= ayqaysapar � Æpqaysar + Æpsayqar � Ærsayqap + ÆpqÆrs: [89℄This result is idential to that obtained using the antiommutation relations andgiven in Eq. [76℄.How does Wik's theorem help us in evaluating matrix elements ofseond-quantized operators? Reall that any matrix element of an operator maybe written as a vauum expetation value by simply writing its left- and right-handdeterminants as operator strings ating on the vauum state, j i. The ompositestring of annihilation and reation operators may then be rewritten using Wik'stheorem as an expansion of normal-ordered strings. However, the only terms thatneed to be retained in this expansion are those that are \fully ontrated". All otherterms will give a zero result, by onstrution. For example, for the operator, B̂, fromthe last setion, Wik's theorem gives the following fully ontrated terms:fatapayqaraysayugv + fatapayqaraysayugv + fatapayqaraysayugv + fatapayqaraysayugv; [90℄



40whih, when the ontrations are evaluated, will give exatly the result given inEq. [79℄. The large number of ontrations in the above equation also suggests auseful rule of thumb for determining the sign of a fully ontrated term: if thenumber of rossings in the ontration lines is odd, the sign on the term is negative;if the number of rossings is even, the sign is positive. For example, the sign on theseond term above is positive sine there are two rossings, whereas the sign on thethird term is negative sine there is only one rossing.kA somewhat more general version of Wik's theorem may be developed whihinvolves produts of operator strings, some or all of whih may be normal ordered.117The original form of Wik's theorem is only slightly modi�ed in that the ontrationsneed only be evaluated between normal-ordered strings and not within them. Forexample, for a produt of two normal-ordered strings, the generalizedWik's theoremsays that fABC : : :gvfXY Z : : :gv = fABC : : :XY Z : : :gv [91℄+ XsinglesfABC : : :XY Z : : : gv+ XdoublesfABC : : :XY Z : : : gv+ : : : :This equation easily extends to produts of several strings.Another approah to the problem of matrix element evaluation and operatoralgebra is presented in the text by Harris, Monkhorst, and Freeman,80 whodesribe the so-alled \ontration theorem." While Wik's theorem serves as aonvenient approah to the onversion of a general string of onstrution operators(or produts of strings) into sums of redued normal-ordered strings, the ontrationkThis sign rule only applies to fully ontrated terms and assumes that one plaes allthe ontration lines above the expression.



41theorem avoids all use of normal ordering, and deals stritly with ommutators andantiommutators of general strings. This latter approah will give idential resultsto the appliation of Wik's theorem and has a few subtle di�erenes, inluding analtered sign rule. Note also that one rarely (if ever) �nds a proof of Wik's theoremin the modern literature, but Harris, Monkhorst, and Freeman give an expliit proofof their ontration theorem.The Fermi Vauum and the Partile-Hole FormalismIn many-eletron theories suh as on�guration interation or oupled luster theory,it is more onvenient to deal with the n-eletron referene determinant, j�0i, ratherthan the true vauum state, j i. In the evaluation of matrix elements usingWik's theorem as desribed above, even the use of normal-ordered strings would betremendously tedious if one had to inlude the omplete set of operators required togenerate j�0i from the true vauum (i.e., j�0i = ayiayjayk : : : j i).We will therefore alter the de�nition of normal ordering from one given relative tothe true vauum to one given relative to the referene state j�0i (whih is sometimesalled the \Fermi vauum"). The one-eletron states oupied in j�0i are referredto as hole states, and those unoupied in j�0i are referred to as partile states. Thisnomenlature is based upon the determinant produed when annihilation-reationoperator strings at on the Fermi vauum. That is, a \hole" is reated when anoriginally oupied state is ated upon by an annihilation operator suh as ai ,whereas a \partile" is reated when an originally unoupied state is ated upon bya reation operator suh as aya. Therefore, we will refer to operators that reate ordestroy holes and partiles as quasipartile (or just q-partile) onstrution operators.That is, q-annihilation operators are those whih annihilate holes and partiles (e.g.,ayi and aa) and q-reation operators are those whih reate holes and partiles (e.g., ai



42and aya).l Therefore, a string of seond-quantized operators is normal ordered relativeto the Fermi vauum if all q-annihilation operators lie to the right of all q-reationoperators. We will denote suh normal-ordered strings using f g (note the lak ofthe subsript v, whih we impliitly used earlier to indiate normal ordering relativeto the true vauum).This new de�nition of normal ordering hanges our analysis of the Wik'stheorem ontrations only slightly. Whereas before, the only nonzero pairwiseontration required the annihilation operator to be to the left of the reationoperator (f. Eq. [84℄), now the only nonzero ontrations plae the q-partileannihilation operator to the left of the q-partile reation operator. There are onlytwo ways this an our, namely,ayiaj = ayiaj � fayiajg = ayiaj + ajayi = Æij [92℄and aaayb = aaayb � faaaybg = aaayb + aybaa = Æab : [93℄The analogous ontrations that plae the q-partile annihilation operator to theright of the q-partile reation operators are zero:ayaab = aiayj = 0: [94℄All other ombinations neessarily involve mixed hole and partile indies for whihthe Kroneker delta funtions will give zero.lNote that this q-partile de�nition of annihilation and reation simply reverses theroles of seond-quantized operators ating in the oupied (hole) spae, but leaves thethose ating in the unoupied (partile) spae untouhed.



43The Normal-Ordered Eletroni HamiltonianThe seond-quantized form of the eletroni Hamiltonian80,84,92Ĥ =Xpq hpjhjqiaypaq + 14 Xpqrshpqjjrsiaypayqasar; [95℄may be ast into normal-ordered form using Wik's theorem. We may begin byrewriting the pair of operators in the one-eletron part of the Hamiltonian asaypaq = faypaqg+ faypaqg: [96℄The ontration rules we examined earlier (f. Eqs. [92℄ and [93℄) state that, sinethe reation operator is on the left, the ontration is zero unless ayp and aq both atin the hole spae and give Æpq. This simpli�es the one-eletron part of the equationto Xpq hpjhjqifaypaqg+Xi hijhjii: [97℄Now we rewrite the string of annihilation and reation operators from thetwo-eletron part of Ĥ asaypayqasar = faypayqasarg+ faypayqasarg+ faypayqasarg+ faypayqasarg+faypayqasarg+ faypayqasarg+ faypayqasarg: [98℄Again, all of these ontrations are zero unless the leftmost operator of theontration ats in the hole spae. This leads to the simpli�ed formaypayqasar = faypayqasarg � Æp2iÆpsfayqarg+ Æq2iÆqsfayparg+ Æp2iÆprfayqasg�Æq2iÆqrfaypasg � Æp2iÆpsÆq2jÆqr + Æp2iÆprÆq2jÆqs; [99℄where the notation p 2 i means that p must be ontained in the set ofoupied-orbitals and must be equal to i. Note that the signs on eah of the terms



44are derived from the ontration rules disussed earlier. Inserting this expressionbak into the equation for the two-eletron part of the Hamiltonian, we obtain14 Xpqrshpqjjrsifaypayqasarg � 14Xqri hiqjjriifayqarg+ 14Xpri hpijjriifayparg [100℄+14Xqsi hiqjjisifayqasg � 14Xpsi hpijjisifaypasg � 14Xij hijjjjii+ 14Xij hijjjiji:Remembering that for antisymmetrized two-eletron integrals in Dira's notation,hpqjjrsi = �hpqjjsri = �hqpjjrsi = hqpjjsri, we may re-index sums and ombineterms where appropriate to obtain14 Xpqrshpqjjrsifaypayqasarg+Xpri hpijjriifayparg+ 12Xij hijjjiji: [101℄The omplete Hamiltonian is thereforeĤ = Xpq hpjhjqifaypaqg+Xpri hpijjriifayparg+ 14 Xpqrshpqjjrsifaypayqasarg+Xi hijhjii+ 12Xij hijjjiji: [102℄Note that the �rst and seond terms on the RHS of this equation are simplythe spin-orbital Fok operator (in normal-ordered form) and that the last twoterms are the Hartree-Fok energy (i.e., the Fermi vauum expetation value ofthe Hamiltonian). Thus, we may writeĤ =Xpq fpqfaypaqg+ 14 Xpqrshpqjjrsifaypayqasarg+ h�0jĤj�0i [103℄or Ĥ = F̂N + V̂N + h�0jĤj�0i; [104℄where the subsript N indiates normal ordering of all the omponent operatorsstrings. Therefore, the normal-ordered Hamiltonian is simplyĤN � F̂N + V̂N = Ĥ � h�0jĤj�0i: [105℄



45This result is easily generalized: the normal-ordered form of an operator is simplythe operator itself minus its referene expetation value. For the Hamiltonianexample, above, the normal-ordered Hamiltonian is just the Hamiltonian minus theSCF energy (i.e., ĤN may be onsidered to be a orrelation operator). Due to itsonsiderable onveniene for oupled luster and many-body perturbation theoryanalyses, for the remainder of this hapter we will adopt this onventional form ofĤ given in Eq. [105℄.Simpli�ation of the Coupled Cluster HamiltonianThe onepts of normal ordering and Wik's theorem provide the mathematial toolsneeded to derive programmable oupled luster equations from the more formalexpressions given in Eqs. [50℄ and [51℄. If we trunate the luster operator suhthat T̂ � T̂1 + T̂2 and insert it into the similarity-transformed normal-orderedHamiltonian, �H � e�T̂ ĤNeT̂ , we obtain�H = ĤN + hĤN ; T̂1i + hĤN ; T̂2i+ 12 hhĤN ; T̂1i ; T̂1i+12 hhĤN ; T̂2i ; T̂2i+ hhĤN ; T̂1i ; T̂2i+ : : : ; [106℄where the Hausdor� expansion above terminates naturally at quadruply nestedommutators as desribed earlier.m Our task in onstruting the CCSD equations isto obtain seond-quantized expressions for eah term of �H above, insert these intoEqs. [50℄ and [51℄, and �nally evaluate the resulting matrix elements.The �rst ommutator of Eq. [106℄ expands to give,[ĤN ; T̂1℄ = [F̂N ; T̂1℄ + [V̂N ; T̂1℄ = F̂N T̂1 � T̂1F̂N + V̂N T̂1 � T̂1V̂N ; [107℄mSine the luster operators ommute, we havehhĤN ; T̂1i ; T̂2i = 12 hhĤN ; T̂1i ; T̂2i+ 12 hhĤN ; T̂2i ; T̂1i :Therefore, a fator of 1/2 does not appear in front of this term in the above expansion.



46using the de�nition of ĤN given in Eq. [105℄. The seond-quantized de�nition of T̂1is simply T̂1 =Xia tai fayaaig; [108℄where the brakets indiate that the operator string is already normal-ordered(i.e., this is the only nonzero term resulting from appliation of Wik's theoremto Eq. [27℄). Given the seond-quantized form of F̂N from the previous setion, the�rst term of the ommutator may be written asF̂N T̂1 =Xpq Xia fpqtai faypaqgfayaaig: [109℄The generalized form of Wik's theorem (see Eq. [91℄) says that this produt ofnormal-ordered operator strings may be written using only ontrations betweenthe two strings. That is,faypaqgfayaaig = faypaqayaaig+ faypaqayaaig+ faypaqayaaig+ faypaqayaaig= faypaqayaaig+ Æpifaqayag+ Æqafaypaig+ ÆpiÆqa: [110℄For the seond term of the expanded ommutator, T̂1F̂N , where the operator stringsfrom F̂N and T̂1 are simply reversed in order, Wik's theorem gives only one term,viz. fayaaigfaypaqg = fayaaiaypaqg = faypaqayaaig: [111℄All other ontrations, whih involve aya and ai on the left, are zero by Eq. [94℄.The �nal equality in this expression arises from the fat that, by onstrution, alloperators within the brakets antiommute. Therefore, using Eqs. [110℄ and [111℄,we may writeF̂N T̂1 � T̂1F̂N = Xpq Xia fpqtai �Æpifaqayag+ Æqafaypaig+ ÆpiÆqa�= Xqia fiqtai faqayag+Xpia fpatai faypaig+Xia fiatai : [112℄



47This example illustrates how the ommutator allows only those terms involvingontrations between the operators to survive; the \unontrated" terms areeliminated. Note that the �nal term on the right-hand side involves omponentsof the Fok operator in the oupied-virtual blok; if Brillouin's theorem82 holds forthe set of moleular orbitals used to onstrut �0, then this term is zero.Now onsider the �rst doubly nested ommutator from Eq. [106℄. The terminvolving the Fok operator expands to give12 hhF̂N ; T̂1i ; T̂1i = 12 F̂N T̂ 21 � T̂1F̂N T̂1 + 12 T̂ 21 F̂N : [113℄Applying Wik's theorem to the operator strings in the �rst term on the right-handside of this equation gives12F̂N T̂ 21 = 12Xpq Xia Xjb fpqtai tbj �faypaqayaaiaybajg+ faypaqayaaiaybajg+faypaqayaaiaybajg+ faypaqayaaiaybajg+ faypaqayaaiaybajg+ faypaqayaaiaybajg+faypaqayaaiaybajg+ faypaqayaaiaybajg+ faypaqayaaiaybajg� : [114℄Evaluating the ontrations leads to12 F̂N T̂ 21 = 12Xaibj tai tbj  Xpq fpqfaypaqayaaiaybajg+ [115℄Xq fiqfaqayaaybajg+Xq fjqfaqayaaiaybg+Xp fpafaypaiaybajg+Xp fpbfaypayaaiajg+fiafaybajg+ fjafaiaybg � fibfayaajg+ fjbfayaaig) :This expression may be simpli�ed signi�antly by reognizing that, beause of thesummation outside the parentheses, i, j, a, and b are dummy indies and may beexhanged. For example, the seond and third terms on the right-hand side areidential: Xaibj tai tbj  Xq fiqfaqayaaybajg+Xq fjqfaqayaaiaybg! [116℄



48=XaibjXq �fjqtbjtai faqaybayaaig+ fjqtai tbjfaqayaaiaybg�=XaibjXq �fjqtai tbjfaqayaaiaybg+ fjqtai tbjfaqayaaiaybg� : [117℄The �rst step in this analysis results from simply swapping index i with j and indexa with b. Similarly, one may show equivalene of terms four and �ve, six and nine,and seven and eight (with appropriate sign hanges). The �nal, simpli�ed expressionis thus12 F̂N T̂ 21 = 12Xaibj tai tbj  Xpq fpqfaypaqayaaiaybajg+ 2Xq fjqfaqayaaiaybg+2Xp fpbfaypayaaiajg+ 2fjbfayaaig+ 2fjafaiaybg! : [118℄A similar analysis for the remaining two terms of the doubly nested ommutatorgives T̂1F̂N T̂1 = Xaibj tai tbj  Xpq fpqfayaaiaypaqaybajg+Xq fjqfayaaiayqaybg+Xp fpbfayaaiaypajg+ fjbfayaaig! [119℄and 12 T̂ 21 F̂N = 12XaibjXpq fpqtai tbjfayaaiaybajaypaqg: [120℄Inserting these expressions into Eq. [113℄ and anelling terms gives the rather simpleresult, 12 hhF̂N ; T̂1i ; T̂1i =Xaibj fjatai tbjfaiaybg: [121℄The two examples given so far, hF̂N ; T̂1i and 12 hhF̂N ; T̂1i ; T̂1i, allow us to makean important generalization when Wik's theorem is applied to the ommutators inEq. [106℄:� The only nonzero terms in the Hausdor� expansion are those in whih theHamiltonian, ĤN , has at least one ontration with every luster operator, T̂n,on its right.



49That is, the Hamiltonian must share at least one index with every luster operatoromponent in the �nal expression. We may therefore rewrite Eq. [106℄ in a simplerform: �H = �ĤN + ĤN T̂1 + ĤN T̂2 + 12ĤN T̂ 21 + 12ĤN T̂ 22 + ĤN T̂1T̂2+ [122℄16ĤN T̂ 31 + 12ĤN T̂ 21 T̂2 + 12ĤN T̂1T̂ 22 + 16ĤN T̂ 32 +124ĤN T̂ 41 + 16ĤN T̂ 31 T̂2 + 14ĤN T̂ 21 T̂ 22 + 16ĤN T̂1T̂ 32 + 124ĤN T̂ 42� ;where we have now written every term in the CCSD Hausdor� expansion expliitlyand the subsript  indiates that only those terms in whih the Hamiltonian isonneted (in the Wik's theorem sense) to every luster operator on its right shouldbe inluded in the algebrai interpretation of the operator. This is often referredto as the \onneted luster" form of the similarity-transformed Hamiltonian.2 Thisexpression makes the trunation of the Hausdor� expansion even learer; sine theHamiltonian ontains at most four annihilation and reation operators (in V̂N), ĤNan onnet to at most four luster operators at one. Therefore, the Hausdor�expansion must trunate at the quarti terms.The CCSD Energy EquationUsing the onneted luster form of �H de�ned above, as well as the tehniques ofWik's theorem and normal ordering, we may derive a programmable form of theenergy expression in the CCSD approximation. In aord with Eq. [50℄ and thenormal-ordered Hamiltonian, the energy is given byECCSD � E0 = h�0j �Hj�0i; [123℄where the CCSD e�etive Hamiltonian of Eq. [122℄ is inserted for �H and E0 isthe SCF energy, h�0jĤj�0i. The leading term in this expression is the referene



50expetation value of the normal-ordered Hamiltonian, whih is zero by onstrution:h�0jĤN j�0i = 0: [124℄For all other terms, we may use the advantage of normal-ordering of the operatorsto determine all of the fully ontrated terms of the operator produt. For example,for the seond term of Eq. [122℄, insertion of the de�nition of the normal-orderedHamiltonian gives �ĤN T̂1� = �F̂N T̂1� + �V̂N T̂1� ; [125℄where the subsript  has the same meaning as in the previous setion. We havealready evaluated the �rst omponent of this pair, and the result is given in Eq. [112℄,whih ontains only one fully ontrated term, i.e.,h�0j �F̂N T̂1� j�0i =Xia fiatai : [126℄The two-eletron omponent, on the other hand, ontributes nothing to the energyexpression, beause no fully ontrated terms an be generated from it:�V̂N T̂1� = 14 XpqrsXia hpqjjrsitai faypayqasargfayaaig= 14 XpqrsXia hpqjjrsitai �faypayqasarayaaig+ faypayqasarayaaig+faypayqasarayaaig+ faypayqasarayaaig+ faypayqasarayaaig+ faypayqasarayaaig+faypayqasarayaaig+ faypayqasarayaaig+ faypayqasarayaaig� : [127℄Therefore, the energy ontribution from the linear T̂1 operator isECCSD  h�0j �ĤN T̂1� j�0i =Xia fiatai : [128℄(The left arrow indiates that this is only one of several terms ontributing to theenergy on the left-hand side.) However, this term will be zero if Brillouin's theoremholds for the moleular orbitals in whih the Fok matrix is represented.82



51Next onsider the ontribution to the energy from the linear T̂2 term in Eq. [123℄,h�0j �ĤN T̂2� j�0i = h�0j h�F̂N T̂2� + �V̂N T̂2�i j�0i: [129℄The normal-ordered form of T̂2 may be derived from Eq. [28℄ to obtainT̂2 = 14Xaibj tabij fayaaybajaig: [130℄The referene expetation value of the �rst term on the right-hand side of Eq. [129℄is zero beause it annot produe any fully ontrated omponents:�F̂N T̂2� = 14Xpq Xaibj fpqtabij faypaqgfayaaybajaig= 14Xpq Xaibj fpqtabij �faypaqayaaybajaig+ faypaqayaaybajaig+faypaqayaaybajaig+ faypaqayaaybajaig+ faypaqayaaybajaig+ faypaqayaaybajaig+faypaqayaaybajaig+ faypaqayaaybajaig+ faypaqayaaybajaig� : [131℄The two-eletron omponent, however, produes four equivalent fully ontratedterms, and therefore ontributes to the oupled luster energy:h�0j �V̂N T̂2� j�0i = 116 XpqrsXaibjhpqjjrsitabij h�0jfaypayqasargfayaaybajaigj�0i= 116 XpqrsXaibjhpqjjrsitabij 0�faypayqasarayaaybajaig+ faypayqasarayaaybajaig+faypayqasarayaaybajaig+ faypayqasarayaaybajaig1A= 116 XpqrsXaibjhpqjjrsitabij (ÆpiÆqjÆraÆsb + ÆpjÆqiÆrbÆsa � ÆpjÆqiÆraÆsb � ÆpiÆqjÆrbÆsa)= 14Xaibjhijjjabitabij : [132℄The fator of 116 appearing in the �rst three equalities arises simply from the produtof the fators of 14 that appear in the de�nitions of V̂N (Eq. [105℄) and T̂2 (Eq. [130℄),and the �nal fator of 14 results from the olletion of the last four terms together.



52Next we onsider the �rst quadrati term from Eq. [123℄, whih involves two T̂1luster operators. The referene expetation value of the one-eletron omponent,12 �F̂N T̂ 21 �, is zero beause the single onstrution operator pair in the Fok operatorannot produe fully ontrated terms with the two onstrution operator pairs inT̂ 21 . The two-eletron omponent, on the other hand, does produe fully ontratedterms, viz.,12h�0j �V̂N T̂ 21 � j�0i = 18 XpqrsXai Xbj hpqjjrsitai tbjh�0jfaypayqasargfayaaigfaybajgj�0i= 18 XpqrsXaibjhpqjjrsitai tbj  faypayqasarayaaiaybajg+ faypayqasarayaaiaybajg+faypayqasarayaaiaybajg+ faypayqasarayaaiaybajg!= 18 XpqrsXaibjhpqjjrsitai tbj (�ÆpjÆqiÆraÆsb + ÆpjÆqiÆrbÆsa + ÆpiÆqjÆraÆsb � ÆpiÆqjÆrbÆsa)= 12Xaibjhijjjabitai tbj: [133℄The fator of 18 appearing in the �rst three equalities arises from produt of the fatorof 12 from the Hausdor� expansion and the 14 from the de�nition of V̂N (Eq. [105℄).In all of the remaining terms in the energy expression in Eq. [123℄ theluster operators ontribute more onstrution operator pairs than the Hamiltonianomponents. For example, the \mixed" term, �ĤN T̂1T̂2�, involves three pairsfrom the luster operators (one from T̂1 and two from T̂2) but only two fromthe two-eletron omponent of the Hamiltonian. Therefore, none of these termsan produe fully ontrated produts, and their referene expetation values arezero. The absene of these \higher-order" omponents might also be rationalized interms of Slater's rules: sine the Hamiltonian is a two-eletron operator, the T̂1T̂2produt produes a triply exited determinant on the right whih annot oupleto the referene �0 through the Hamiltonian. However, as we will see in the nextsetion, this interpretation is inadequate as it fails to explain why ertain terms are



53missing from the amplitude equations for higher exitations (e.g., the CCSDT T̂3amplitude equation).We have now derived all the ontributions to the CCSD energy. SummingEqs. [126℄, [132℄, and [133℄, we obtain the �nal expressionECCSD � E0 =Xia fiatai + 14Xaibjhijjjabitabij + 12Xaibjhijjjabitai tbj: [134℄This equation is not restrited to the CCSD approximation, however. Sinehigher-exitation luster operators suh as T̂3 and T̂4 annot produe fully ontratedterms with the Hamiltonian, their ontribution to the oupled luster energyexpression is zero. Therefore, Eq. [134℄ also holds for more ompliated methods suhas CCSDT, CCSDTQ, et. Higher-exitation luster operators an ontribute to theenergy indiretly, however, through the equations used to determine the amplitudes,tai and tabij , whih are needed in the energy equation above.The CCSD Amplitude EquationsAs disussed earlier, the luster amplitudes that parameterize the oupled lusterwavefuntion may be determined from the \projetive" Shr�odinger equation givenin Eq. [51℄. In the CCSD approximation, the single exitation amplitudes, tai , maybe determined from 0 = h�ai j �Hj�0i; [135℄and the double exitation amplitudes, tabij , from0 = h�abij j �Hj�0i; [136℄where �H is given by Eq. [122℄. For reasons we desribe in detail later in thesetion entitled, \Computer Implementation of Coupled Cluster Theory," Eq. [135℄ isommonly referred to as the T̂1 amplitude equation and Eq. [136℄ as the T̂2 amplitude



54equation. Rather than dealing with all 15 terms arising from the insertion of Eq. [122℄into Eqs. [135℄ and [136℄, we will fous on only a few representative examples.The onstrution of the oupled luster amplitude equations is somewhat moreompliated than the energy equation in that the latter requires only refereneexpetation values of the seond-quantized operators. For the amplitude equations,we now require matrix elements between the referene, �0, on the right and spei�exited determinants on the left. We must therefore onvert these into refereneexpetation value expressions by writing the exited determinants as exitationoperator strings ating on �0. For example, a doubly exited bra-determinant maybe written as h�abij j = h�0jfayiayjabaag: [137℄The �nal matrix element therefore requires that we obtain all fully ontrated Wik'stheorem terms from the produt of the above operator string and the elements of�H. The leading term of �H in Eq. [122℄ is simply the eletroni Hamiltonian itself.For its ontribution to the T̂1 amplitude equation, we must therefore evaluate matrixelements of ĤN between singly exited determinants and �0,h�ai j �F̂N + V̂N� j�0i = [138℄Xpq fpqh�0jfayiaagfaypaqgj�0i+ 14 Xpqrshpqjjrsih�0jfayiaagfaypayqasargj�0i:The two-eletron omponent of this equation annot produe full ontrations andis therefore zero. The one-eletron term, however, simpli�es to a single Fok matrixelement: h�ai jF̂N j�0i = Xpq fpqh�0jfayiaagfaypaqgj�0i= Xpq fpqfayiaaaypaqg= Xpq fpqÆiqÆap



55= fai: [139℄For the ontribution of ĤN to the T̂2 amplitude equation, on the other hand, we mustevaluate the matrix elements of the normal-ordered Hamiltonian between doublyexited determinants and �0, viz.h�abij j �F̂N + V̂N� j�0i = [140℄Xpq fpqh�0jfayiayjabaagfaypaqgj�0i+ 14 Xpqrshpqjjrsih�0jfayiayjabaagfaypayqasargj�0i:In this ase, it is the one-eletron omponent that annot produe full ontrations,whereas the two-eletron omponent ontributes only a single integral:h�abij jV̂N j�0i = 14 Xpqrshpqjjrsih�0jfayiayjabaagfaypayqasargj�0i= 14 Xpqrshpqjjrsi0�fayiayjabaaaypayqasarg+ fayiayjabaaaypayqasarg+fayiayjabaaaypayqasarg+ fayiayjabaaaypayqasarg1A= 14 Xpqrshpqjjrsi (ÆpaÆqbÆriÆsj � ÆpbÆqaÆriÆsj � ÆpaÆqbÆrjÆsi + ÆpbÆqaÆrjÆsi)= habjjiji: [141℄The seond term of Eq. [122℄, whih is linear in T̂1, provides a more interestingexample than ĤN alone. Its ontribution to the T̂1 amplitude equation involves thematrix elementsh�ai j �hF̂N + V̂Ni T̂1� j�0i = Xpq Xjb fpqtbjh�0jfayiaag �faypaqgfaybajg� j�0i+14 XpqrsXjb hpqjjrsitbjh�0jfayiaag �faypayqasargfaybajg� j�0i;[142℄where the subsript  reminds us that we must retain at least one ontration betweenthe Hamiltonian fragment and the luster operator on its right. For the two-eletron



56term, Wik's theorem givesh�ai j �V̂N T̂1� j�0i = 14 XpqrsXjb hpqjjrsitbjh�0jfayiaag �faypayqasargfaybajg� j�0i= 14 XpqrsXjb hpqjjrsitbj  fayiaaaypayqasaraybajg+ fayiaaaypayqasaraybajg+fayiaaaypayqasaraybajg+ fayiaaaypayqasaraybajg!= 14 XpqrsXjb hpqjjrsitbj (�ÆpaÆqjÆrbÆsi + ÆpjÆqaÆrbÆsi + ÆpaÆqjÆriÆsb � ÆpjÆqaÆriÆsb)=Xjb hjajjbiitbj: [143℄The ontribution of �ĤN T̂1� to the T̂2 equation involves the matrix elementsh�abij j �hF̂N + V̂Ni T̂1� j�0i = Xpq Xk fpqtkh�0jfayiayjabaag �faypaqgfayakg� j�0i+14 XpqrsXk hpqjjrsitkh�0jfayiayjabaag �faypayqasargfayakg� j�0i:[144℄In this ase, the two-eletron term simpli�es to four ontributions after some ratherompliated manipulation:h�abij j �V̂N T̂1� j�0i = 14 XpqrsXk hpqjjrsitkh�0jfayiayjabaag �faypayqasargfayakg� j�0i= 14 XpqrsXk hpqjjrsitk  fayiayjabaaaypayqasarayakg+fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg+ fayiayjabaaaypayqasarayakg1CA= 14 XpqrsXk hpqjjrsitk �



57(ÆpaÆqbÆrÆsjÆik � ÆpbÆqaÆrÆsjÆik � ÆpaÆqbÆrÆsiÆjk + ÆpbÆqaÆrÆsiÆjk�ÆpaÆqbÆrjÆsÆik + ÆpbÆqaÆrjÆsÆik + ÆpaÆqbÆriÆsÆjk � ÆpbÆqaÆriÆsÆjk �ÆpaÆqkÆriÆsjÆb + ÆpbÆqkÆriÆsjÆa � ÆpbÆqkÆrjÆsiÆa + ÆpaÆqkÆrjÆsiÆb +ÆpkÆqaÆriÆsjÆb � ÆpkÆqbÆriÆsjÆa � ÆpkÆqaÆrjÆsiÆb + ÆpkÆqbÆrjÆsiÆa)=X �habjjjiti � habjjiitj�+Xk �hijjjbkitak � hijjjakitbk� : [145℄As our third example, we onsider the ontribution of the one-eletron omponentof the fourth term of Eq. [122℄ to the T̂1 amplitude equation. The matrix elementof interest in this ase is12h�ai j �F̂N T̂ 21 � j�0i = 12Xpq Xjb Xk fpqtbjtkh�0jfayiaag �faypaqgfaybajgfayakg� j�0i:[146℄When applied to the operator strings in this expression, Wik's theorem gives onlytwo nonzero ontrations, in spite of the relatively large number of onstrutionoperators:h�0jfayiaag �faypaqgfaybajgfayakg� j�0i= fayiaaaypaqaybajayakg+ fayiaaaypaqaybajayakg= �ÆpkÆqbÆijÆa � ÆpjÆqÆikÆab: [147℄When the Kroneker delta strings are inserted bak into the matrix elementexpression, we obtain 12h�ai j �F̂N T̂ 21 � j�0i = �Xk fkti tak: [148℄Additional ontrations suh asfayiaaaypaqaybajayakg and fayiaaaypaqaybajayakg [149℄are not inluded even though they are nonzero beause, as our earlier analysis of theommutators of the Hausdor� expansion indiated, the Hamiltonian fragment must



58be onneted at least one to every luster operator on the right. Similar analysesapply to other ontributions suh as �V̂N T̂ 22 �, �V̂N T̂1T̂2�, et.This last point also has interesting onsequenes for the higher exitationamplitude equations suh as that for T̂3. For example, one term that arises inthe general Hausdor� expansion is 15! �V̂N T̂ 51 �. This term does not ontribute to theT̂3 amplitude equation 0 = 15!h�abijkj �V̂N T̂ 51 � j�0i: [150℄From a on�guration interation perspetive, suh a matrix element of theHamiltonian between the quintuply exited determinant generated by the operatorT̂ 51 on the right and the triply exited determinant on the left is nonzero aordingto Slater's rules. However, beause the two-eletron fragment of the Hamiltonianannot onnet to more than four luster operators on its right, suh a matrix elementannot ontribute to the amplitude equation by the onneted luster properties ofthe Hausdor� expansion. Similarly, the �F̂N T̂2� ontribution to T̂3 is also zerobeause any onnetion between F̂N and T̂2 does not leave enough onstrutionoperator pairs to ompletely onnet to the triply exited determinant on the left.The �nal example of this setion is the ontribution of the 12 �V̂N T̂ 21 T̂2� term ofEq. [122℄ to the T̂2 amplitude equation. The matrix elements of interest in this aseinvolve only the two-eletron omponent of ĤN , beause the one-eletron omponentannot onnet to more than two luster operators:12h�abij j �V̂N T̂ 21 T̂2� j�0i = 132 XpqrsXk Xld Xmnefhpqjjrsitktdl tefmn � [151℄h�0jfayiayjabaagfaypayqasasgfayakgfaydadgfayeayfanamgj�0i:The fator of 132 appearing here arises as the produt of the fator of 12 from theHausdor� expansion and the two fators of 14 from the de�nitions of V̂N (Eq. [105℄)and T̂2 (Eq.[130℄). To derive from this matrix element an expression involving onlytwo-eletron integrals and luster amplitudes, we must apply Wik's theorem to the



59string of 16 annihilation and reation operators above. Although this might be auseful exerise for those readers who wish to test their own stamina and patiene,we will avoid it here. We note, however, that this task is tedious at best andreognize that Wik's theorem has not eliminated all of the opportunities for errorwhen dealing with ompliated seond-quantized equations.One all of the ontributions of Eq. [122℄ to Eqs. [135℄ and [136℄ have beendetermined in the manner desribed above, they are then summed to give theamplitude equations. For T̂1, the resulting equation is0 = fai +X fati �Xk fkitak +Xk hkajjiitk +Xk fktaik + 12Xkdhkajjditdki �12Xkl hkljjiitakl �Xk fkti tak �Xkl hkljjiitktal +Xkdhkajjditktdi � [152℄Xkldhkljjditktdi tal +Xkldhkljjditktdali � 12Xkldhkljjditdkital � 12Xkldhkljjditakl tdi ;while for T̂2, the resulting equation is0 = habjjiji+X �fbtaij � fatbij��Xk �fkjtabik � fkitabjk�+ [153℄12Xkl hkljjijitabkl + 12Xd habjjditdij + P (ij)P (ab)Xk hkbjjjitaik +P (ij)X habjjjiti � P (ab)Xk hkbjjijitak +12P (ij)P (ab)Xkldhkljjditaik tdblj + 14Xkldhkljjditdij tabkl �P (ab)12Xkldhkljjditaij tbdkl � P (ij)12Xkldhkljjditabiktdjl +P (ab)12Xkl hkljjijitaktbl + P (ij)12Xd habjjdititdj � P (ij)P (ab)Xk hkbjjiitaktj +P (ab)Xk fktaktbij + P (ij)Xk fkti tabjk �P (ij)Xkl hkljjiitktablj + P (ab)Xkdhkajjditktdbij +P (ij)P (ab)Xkdhakjjditdi tbjk + P (ij)P (ab)Xkl hkljjiital tbjk +P (ij)12Xkl hkljjjititabkl � P (ab)12Xkdhkbjjditaktdij �



60P (ij)P (ab)12Xkdhkbjjdititaktdj + P (ij)P (ab)12Xkl hkljjjititaktbl �P (ij)Xkldhkljjditktdi tablj � P (ab)Xkldhkljjditktal tdbij +P (ij)14Xkldhkljjdititdj tabkl + P (ab)14Xkldhkljjditaktbl tdij +P (ij)P (ab)Xkldhkljjdititbl tadkj + P (ij)P (ab)14Xkldhkljjdititaktdj tbl :The notation P (pq) indiates a permutation operator whose ation on a givenfuntion is de�ned by P (pq)f(p; q) = f(p; q)� f(q; p): [154℄For example, from the T̂2 equation above, one of the terms beomesP (ij)Xk fkti tabjk =Xk �fkti tabjk � fktjtabik� : [155℄Relative to diret appliation of the antiommutation relations for annihilationand reation operators, Wik's theorem helps to dramatially redue the tediuminvolved in deriving the rather ompliated amplitude equations above. However,as illustrated by Eq. [151℄, Wik's theorem still does not go far enough. Even ifthe luster operator is trunated to inlude only double exitations, the resultingalgebra provides many opportunities for error. When even higher exitations aredesired the number of algebrai manipulations required by Wik's theorem beomesrapidly insurmountable. A number of omputer algorithms for the derivation ofoupled-luster-related equations have been desribed in the literature,33,36,118 butthese have thus far been diÆult to apply in a general fashion. Diagrammatitehniques o�er a more pratial approah to the onstrution of ompliated oupledluster equations. They provide a simple bookkeeping system for the numerousterms generated by Wik's theorem (most of whih are redundant) and allow usto identify in advane whih terms will not ontribute to the wavefuntion and/orthe energy. In the next setion we will outline one diagrammati approah whih



61is partiularly onvenient for deriving a variety of oupled-luster-like equations,inluding ground-state energies, energy derivatives, and EOM-CC equations.An Introdution to Coupled Cluster DiagramsIn this setion, we present a simple diagrammati formalism popularized byKuharski and Bartlett20 by whih one may onstrut the oupled luster energy andamplitude equations far more quikly than by diret appliation of Wik's theorem.nWe begin by desribing some of the general features of the diagrams, inluding theirrelationship to the partile-hole formalism and how they may be used to representnormal-ordered dynamial operators. Next we desribe how the operator diagramsmay be onneted together to form operator produts in a manner analogous toWik's theorem. We then onstrut the diagrammati form of the CCSD energy andamplitude equations, and, as eah new diagram is presented, we provide rules forits algebrai interpretation. The diagrams desribed here may be used to representeither wavefuntions, operators, or matrix elements, depending on the ontext of themathematial analysis. However, the set of rules we will present for interpreting thediagrams algebraially will apply only to the matrix element representation, sinethat is the most appropriate ontext for the oupled luster energy and amplitudeequations.onMany varieties of diagrams have used throughout the hemial physis literature formany years (e.g., see Refs. 1, 2, 117, 119, and 80). The diagrammati formalism we havehosen here has been frequently used in work by the Bartlett group among others120and is partiularly straightforward for \onventional" oupled luster and many-bodyperturbation theories.oThe algebrai rules for interpreting the diagrams as operators or wavefuntions di�eronly slightly from the matrix element approah disussed here. We reommend Refs. 80and 88 for additional information.



62We make use of the partile-hole formalism in diagrammati analyses by drawingupward and downward direted lines that identify those orbitals whih di�er fromthose in the referene determinant, �0, as shown in Figure 1. Downward diretedlines represent hole states (orbitals oupied in the referene) and upward diretedlines represent partile states (orbitals unoupied in the referene). Hene, onemay interpret the fourth diagram of the �gure as a single-determinant wavefuntionthat di�ers from the referene by a single exitation from orbital �i to orbital�a. Furthermore, this onvention implies that the referene wavefuntion itself isrepresented by empty spae as indiated in Figure 1().
i j a b i a(a) (b) () (d)Figure 1: Some basi omponents of oupled luster diagrams: (a) hole lines; (b)partile lines; () the referene wavefuntion, �0, represented by empty spae; (d)a single-determinant wavefuntion, �ai , whih di�ers from the referene by a singleexitation.Diagrams representing dynamial operators (suh as the one- and two-eletronomponents of the normal-ordered Hamiltonian, ĤN) are depited by horizontal\interation lines" with vertial direted lines like those in Figure 1 representing theannihilation and reation operator strings. We will hoose di�erent interation linesto represent di�erent types of operators (e.g., a dashed line to indiate omponentsof the eletroni Hamiltonian, a solid line for luster operators, T̂1, T̂2, et.). Thedireted lines emanate from \verties" on the interation line; eah vertex representsthe ation of the operator on individual eletrons. Thus, one-eletron diagramshave one vertex, two-eletron diagrams have two verties, et. Eah vertex has



63two direted lines attahed to it, one inoming and one outgoing, assoiated withthe annihilation and reation operators of the operator's normal-ordered string.Sine one-eletron operators ontain two seond-quantized omponents (see, forexample, Eq. [53℄), their diagrammati representations ontain two direted lines.Similarly, diagrams representing two-eletron operators ontain four direted lines,three-eletron operators ontain six direted lines, et. The upward and downwarddiretions of these lines are dependent on the orbital subspaes in whih theseond-quantized operators at: q-reation operatorsp lie above the interation line,whereas q-annihilation lines lie below the interation line.For example, we denote the one-eletron omponent of the Hamiltonian, F̂N , bya dashed interation line apped by an \X". This operator may be written in fourfragments as shown in Figure 2. The �rst fragment, whih involves only operatorsin the partile (unoupied) spae, has one q-reation line above the interation lineorresponding to the aya omponent of its operator string, and one q-annihilationline below the interation line orresponding to the ab omponent. Similarly, theseond fragment in the �gure, whih involves only operators in the hole (oupied)spae, has one q-reation line above the interation line orresponding to the ajomponent of the operator string, and one q-annihilation line below the interationline orresponding to the ayi omponent. The third F̂N fragment ontains onlyq-annihilation lines below the interation line sine the operator string onsists onlyof ayi and aa omponents. Finally, the fourth fragment ontains only q-reation linesabove the interation line representing the aya and ai omponents of the operatorstring.The two-eletron fragment of the Hamiltonian may be partitioned in a similarmanner as shown in Figure 3, with a dashed horizontal interation line and withpSee the earlier disussion beginning on p. 41 of the partile-hole formalism for anexplanation of q-reation and q-annihilation operators.



64F̂N = Xab fabfayaabg + Xij fijfayiajg + Xia fiafayiaag + Xia faifayaaig= X + X + X +
X0 0 �1 +1Figure 2: Diagrammati representation of eah fragment of the one-partileomponent of the Hamiltonian operator, F̂N . The exitation level of eah diagramis indiated beneath it. The interation line is indiated by the dashed horizontalline apped by the \X".impliit antisymmetry with respet to permutation of the lines leaving or enteringthe left and right verties. For example, in the third diagram, orresponding to asum over the operator omponents, hiajjbjifayiayaajabg, the diagram as shown may bewritten in four equivalent ways (di�ering only by a sign), eah formed by permutingeither the two outgoing lines or the two inoming lines from the left and right verties:
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In addition, diagrammati representations of the luster operators, T̂ , are shown inFigure 4, with solid horizontal interation lines. Sine the luster operators ontainonly q-reation strings (and thereby generate exited determinants from the referene



65V̂N= 14Xabdhabjjdifayaaybadag + 14Xijklhijjjklifayiayjal akg + Xiabjhiajjbjifayiayaajabg+ 12Xaibhaijjbifayaayiaabg + 12Xijkahijjjkaifayiayjaaakg + 12Xabihabjjiifayaaybaiag+ 12Xiajkhiajjjkifayiayaakajg + 14Xabijhabjjijifayaaybajaig + 14Xijabhijjjabifayiayjabaag
= + +

0 0 0
+ + +

�1 �1 +1
+ + +

+1 +2 �2Figure 3: Diagrammati representation of eah fragment of the two-partileomponent of the Hamiltonian operator, V̂N . The exitation level of eah diagramis indiated beneath it. The interation line is indiated by the dashed horizontalline.



66
T̂1 = Xia tai fayaaig = +1
T̂2 = 14Xijabtabij fayaaybajaig = +2
T̂3 = 136 Xijkabtabijkfayaaybayakajaig= +3

Figure 4: Diagrammati representation of the T̂1, T̂2, and T̂3 exitation operators.The exitation level of eah diagram is indiated to its right. The interation line isindiated by a solid horizontal bar.wavefuntion), they ontain no lines below the horizontal bar. Furthermore, theserepresentations are also fully antisymmetri in that exhange of any pair of outgoingor inoming lines introdues a hange in the sign of the diagram. We will disuss thispoint in greater detail later when we introdue rules for interpreting the diagramsalgebraially.Other than the operator representation above, we will interpret the diagramsin this hapter from bottom to top as matrix elements of operators (or operatorproduts) between determinants. For the oupled luster energy and amplitudeequations shown in Eqs. [50℄ and [51℄, the pertinent matrix elements always ontainthe referene determinant, �0, on the right and either �0 or exited determinantssuh as �abij on the left. Diagrams are partiularly onvenient for onstruting suhmatrix elements sine they provide a straightforward method for evaluating thetypes of determinants to whih individual operator fragments in Figures 2-4 may



67be applied or what determinants they produe. As an example, onsider the fourthF̂N fragment in Figure 2, whih ontains no lines below and two lines above thehorizontal operator line. Sine the referene wavefuntion, �0, is represented byempty spae, and a singly exited determinant, �ai , by a pair of direted lines suhas those in Figure 1(d), we may interpret the diagram from bottom to top to obtainthe matrix element h�ai jF̂N j�0i =
X

i a : [156℄A similar analysis may be applied to the two-eletron operator in the third diagramin Figure 3, whih ontains partile-hole pairs of lines both above and belowthe interation line. Eah of these pairs may be interpreted as singly exiteddeterminants to obtain the general matrix element
h�ai jV̂N j�bji = ai

j b
: [157℄

The luster operator diagrams are partiularly simple to interpret as matrixelements; the diagrams always involve the referene determinant on the right(beause they ontain no lines below the interation line) and an exited determinanton the left, e.g., h�abij jT̂2j�0i = ai j b : [158℄We also make use of a simple bookkeeping system20 whih indiates the\exitation level" a partiular operator fragment produes. This value is determinedby subtrating the number of q-annihilation lines from the number of q-reationlines and dividing the result by two. For example, the �rst and seond one-eletronHamiltonian fragments shown in Figure 2 are assigned an exitation level of 0, sine



68both the wavefuntion to whih they are applied (at the bottom of the diagram)and the wavefuntion they produe (at the top of the diagram) di�er from thereferene by a single orbital; no net exitation is produed. The fourth one-eletronfragment, however, has an exitation level of +1 sine it e�etively produes a singleexitation from the referene wavefuntion. Two-eletron Hamiltonian fragmentshave exitation levels ranging from +2 to �2, as indiated in Figure 3, and the T̂operators have the obvious exitation levels indiated in Figure 4.Diagrammati Representation of the CCSD Energy EquationAs disussed in detail earlier, produts of normal-ordered operators an be simpli�edalgebraially using Wik's theorem by evaluating pairs of ontrations betweenthe omponent annihilation and reation operators. Many of these ontrationsprodue mathematially redundant terms whih an be ombined after ompliatedmanipulation to eventually produe a muh simpler expression. Diagrams provide astraightforward sheme by whih these redundanies may be eliminated.As an example, onsider the CCSD energy equation whih we derived earlier inEq. [134℄ using Wik's theorem. Eah term of the general expressionECCSD � E0 = h�0jĤN + �ĤN T̂1 + ĤN T̂2 + 12ĤN T̂ 21 + : : :� j�0i [159℄is a matrix element of a omponent of e�T̂ ĤNeT̂ involving the referene determinant,�0, on both the right and left. Sine �0 is depited diagrammatially by empty spae,the diagrams assoiated with the energy equation must ontain no direted linesthat extend above or below the �rst (lowest) or last (highest) operator interationlines; that is, the energy diagrams an ontain no \external" lines. Clearly none ofthe diagrams representing fragments of ĤN shown in Figures 2 and 3 satisfy thisriterion, and they therefore do not ontribute to the CCSD energy. This is the



69expeted result beause all of these diagrams represent normal-ordered operatorswhose referene expetation value is zero, by onstrution.Next we onsider the term from Eq. [159℄ whih is linear in T̂1ECCSD  h�0j �ĤN T̂1� j�0i; [160℄whih we examined earlier to obtain Eq. [126℄. (The left arrow indiates thatthis is only one of several terms whih ontribute to the energy on the left-handside.) The rightmost operator in this matrix element is T̂1, so its interation linemust lie at the bottom of the �nal diagram. Making use of the exitation levelsassoiated with the operator diagrams desribed above, we note that the T̂1 diagramprodues an exitation level of +1 from the referene determinant. Sine the matrixelement of interest must ontain �0 on the left, the total exitation level of the �naldiagram must be 0. Therefore, we require those Hamiltonian diagrams whih havean exitation level of �1 and whih ontain the referene determinant at the top ofthe diagram. Of the F̂N and V̂N diagrams given above, only the third diagram ofFigure 2 meets these riteria. We may then onnet the T̂1 diagram with this F̂Nfragment to obtain h�0j �F̂N T̂1� j�0i = X : [161℄Note that both lines from the T̂1 diagram must onnet to eah line from theF̂N fragment in order to avoid external lines. The diagram may be interpretedalgebraially using the following rules:� Label all direted lines with appropriate indies. By the onvention we haveused so far, hole lines would be labeled with i; j; k; l; ::: and partile lines with



70a; b; ; d; :::. Therefore, for the diagram above we label the hole line with i andthe partile line with a to obtain X

i a .
� Eah operator interation line ontributes an integral or amplitude to thematrix element expression. Fok matrix elements are onstruted from thediagram by the rule houtjf̂ jini, where out indiates the index of the outgoingdireted line and in indiates the index of the inoming direted line at theinteration line's vertex. T̂ operators ontribute amplitudes to the expression,onstruted using the hole and partile indies in their left to right order inthe diagram. In this ase, the Fok matrix element is fia and the amplitude istai .� Summations are inluded over all \internal" indies | that is, all indiesassoiated with lines that begin and end at operator interation lines anddo not extend to in�nity above or below the diagram like the external linesdesribed above. Thus, the present diagram requires a summation over indiesi and a.� The sign of the diagram is determined based on the formula (�1)h+l, where h isthe number of hole lines in the diagram and l is the number of \loops." A loopis a route along a series of direted lines that either returns to its beginningor begins at one external line and ends at another. In this ase, we have onlyone hole line (i) and one loop, so the sign on the diagram is positive.



71Aording to these rules, the �nal algebrai interpretation of the above diagram istherefore
X =Xia fiatai ; [162℄whih is idential to Eq. [126℄ obtained earlier using Wik's theorem.Now onsider the next term of Eq. [159℄ whih is linear in T̂2,ECCSD  h�0j �ĤN T̂2� j�0i; [163℄whih we examined earlier in Eq. [132℄. Again the luster operator must lie atthe bottom of the �nal diagram beause it is the rightmost operator in the matrixelement. Sine T̂2 produes an exitation level of +2 (see Figure 4), we requirethose Hamiltonian diagrams that have an exitation level of �2 (in order to obtaina total exitation level of 0) and whih ontain the referene wavefuntion abovethe Hamiltonian interation line. The only ĤN diagram whih meets these riteriais the last diagram of Figure 3, , whih ontains four q-annihilationlines. Conneting this diagram with that of T̂2 suh that there are no external linesgives h�0j �V̂N T̂2� j�0i = : [164℄To onstrut the algebrai interpretation of this diagram, we �rst assign labels to thehole and partile lines as before, to obtain ai j b. By the rules desribedabove, there are four internal lines and thus four summation indies. In addition,



72there are two loops in this diagram (one involving the i and a lines and the otherinvolving the j and b lines) and two hole lines, giving an overall + sign. For theremainder of the algebrai expression, we require two rules in addition to thosedesribed above:� The V̂N fragment ontributes the two-eletron integral, hijjjabi, whih isonstruted by the rule hleft� out; right � outjjleft� in; right � ini,where left-out and right-out indiate the left and right outgoing lines fromthe V̂N diagram vertex, respetively, and left-in and right-in indiate theleft and right inoming lines, respetively. The ontribution of the T̂2 operatorto the expression is obtained by taking the hole and partile indies from theT̂2 vertex in their left-to-right ordering in the diagram. For this diagram, V̂Nontributes the integral hijjjabi and T̂2 ontributes the amplitude tabij .� This diagram ontains two pairs of \equivalent" lines | that is, lines beginningat the same operator interation line and ending at the same interation line.For eah suh pair, a prefator of 12 is multiplied onto the algebrai expression.qThe �nal algebrai interpretation of this diagram is therefore= 14Xijabhijjjabitabij : [165℄We ould have used a somewhat di�erent onnetivity for the V̂N and T̂2 diagramfragments than the one shown above. For example, we ould also have hosen insteadqIt is possible for groups of three or more lines to be identi�ed as equivalent, thoughthis an happen only in many-body perturbation theory, expetation-value oupled lustertheory, or unitary oupled luster theory. For suh diagrams, a prefator of 1n! , where n isthe number of eletron lines, must be inluded.



73to build this diagram ash�0j �V̂N T̂2� j�0i = : [166℄However, reall that the V̂N and T̂ operator diagrams from Figures 3 and 4 areantisymmetri with respet to permutation of either the pair of outgoing lines or thepair of inoming lines at the two verties. Hene, we have the relations,
ia b j = � ja b i = � ib a j = jb a i : [167℄

Therefore, the two energy diagrams are equivalent sine the two hole lines andthe two partile lines from the T̂2 diagram both onnet to the same V̂N diagramfragment: = : [168℄The equivalene of the two diagrams an also be seen through their algebraiinterpretations, whih we obtain by applying the same rules given above to the thenew diagram from Eq. [166℄. Again, we label the hole and partile lines using theindies i, j, a, and b, to obtain i j
ba . In this ase, the algebrai analysisis idential to that given for the diagram of Eq. [164℄ above, with two exeptions:(1) the two-eletron integral ontributed by the V̂N fragment is hijjjbai rather thanhijjjabi beause its two inoming partile lines have been reversed; (2) althoughthere are still two hole lines, there is now only one loop, whih involves all four



74direted lines, giving rise to a negative sign for the diagram. Hene, the algebraiinterpretation of the diagram is= �14Xijabhijjjbaitabij = +14Xijabhijjjabitabij = : [169℄where we have used the antisymmetry of the Dira notation two-eletron integralsto make the equivalene of the two diagrams learer.Next onsider the omponent of Eq. [159℄ whih is quadrati in T̂1,ECCSD  12h�0j �ĤN T̂ 21 � j�0i: [170℄Sine the two luster operators at on the referene determinant to produe a totalexitation level of +2, we require the same Hamiltonian �2 diagram fragment usedin Eq. [164℄. Also, beause the luster operators at before the Hamiltonian operatorin the matrix element, they are plaed at the bottom of the diagram. Furthermore,beause the the T̂1 operators ommute, their vertial ordering in the diagram is notimportant. The omplete diagram is formed by onneting the V̂N vertex to both ofthe T̂1 diagrams to give 12h�0jV̂N T̂ 21 j�0i = : [171℄For this diagram, the algebrai analysis is quite similar to that used to obtainEq. [165℄ above. There are two hole lines, and two partile lines, all of whihare summation indies. Sine there are two loops, the total sign on the diagramis positive. The two-eletron integral provided by the V̂N fragment is again hijjjabi,but there are now two T̂1 amplitude fragments, one ontributing tai and the other tbj.Note also that the two pairs of hole lines and partile lines are no longer equivalent asthey were in Eq. [165℄. We require only one additional rule to evaluate this diagram:� Unlike the diagram in Eq. [165℄, this diagram ontains a pair of \equivalent"verties; sine both T̂1 fragments are onneted to the same V̂N interation



75line in exatly the same manner (eah by a hole line and a partile line), aprefator of 12 is multiplied into the �nal expression. Generally speaking, ifthere are n equivalent verties in the diagram, they ontribute a prefator of1n! to the �nal expression.Thus, the �nal algebrai expression for this diagram is= 12Xijabhijjjabitai tbj: [172℄The diagrammati analysis also makes it learer that no higher-orderontributions to the Hausdor� expansion in Eq. [159℄ an ontribute to the oupledluster energy. All remaining terms ontain luster operator produts whih produeexitation levels higher than +2. However, there are no Hamiltonian operatordiagrams whih an derease this exitation level by more than �2. Therefore,there an be no higher-order ontributions to the oupled luster energy equation,whih must have a total exitation level of 0.Summing diagrammati Eqs. [162℄, [165℄, and [172℄, we obtain the �nal energyequation ECCSD � E0 = X + += Xia fiatai + 14Xijabhijjjabitabij + 12Xijabhijjjabitai tbj; [173℄whih is idential to that derived earlier using Wik's theorem.Diagrammati Representation of the CCSD Amplitude EquationsThe same diagrammati onepts used to derive the CCSD energy equation abovemay also be applied to the CCSD T̂1 and T̂2 amplitude equations, with a fewadditional rules. Here we onsider the ontribution of eah term of �H given in



76Eq. [122℄ to the amplitude equations in the same order as we did using Wik'stheorem before. The resulting matrix elements always ontain the referenedeterminant, �0, on the right and an exited determinant on the left (e.g., �ai for theT̂1 equation and �abij for the T̂2 equation). The orresponding diagrams always havethe same general struture: no q-annihilation lines below the diagram and a ertainnumber of q-reation lines extending above. For example, diagrams ontributing tothe T̂1 amplitude equation ontain exatly two q-reation lines above (and therefore atotal exitation level of +1) and diagrams ontributing to the T̂2 amplitude equationontain four q-reation lines above (and a total exitation level of +2).The leading term of �H is just the eletroni Hamiltonian itself. For itsontribution to the T̂1 amplitude equation, we must evaluate the matrix elements,h�ai j �F̂N + V̂N� j�0i, as before. Sine these elements ontain the referenedeterminant on the right and a singly exited determinant on the left, we requirethose +1 Hamiltonian diagrams that ontain no lines below the interation lineand a single pair of lines above it. The only diagram from Figures 2 and 3 thatmeets this riterion is the fourth fragment of the one-eletron operator, F̂N . Hene,there is no ontribution from V̂N in this ase, and the matrix element is representeddiagrammatially as h�ai jF̂N j�0i =
X

: [174℄The algebrai interpretation of this diagram is straightforward: (1) we label thetwo lines using indies i and a to maintain onsisteny with the singly exiteddeterminant, �ai , used in the matrix element itself; (2) there are no internal lines andtherefore no summation indies; (3) the F̂N fragment ontributes the Fok matrixelement, fai; (4) there is only one loop (whih starts at one external line and endsat another) and one hole line, giving a positive sign. Thus, the �nal expression is



77simply
X

i a = fai; [175℄whih we derived earlier in Eq. [139℄ using Wik's theorem.For the ontribution of ĤN to the T̂2 amplitude equation, we must evaluatethe matrix element, h�abij j �F̂N + V̂N� j�0i, whih ontains the referene determinanton the right and a doubly exited determinant on the left. Therefore, we requirethose ĤN diagrams that produe a +2 exitation, and whih have no q-annihilationlines. Only the eighth diagram of Figure 3, , meets this riterion. Itsalgebrai interpretation is arried out as follows: (1) we label the lines (in order)as i, a, j, and b, for onsisteny with the doubly exited determinant in the matrixelement; (2) there are no internal lines and therefore no summation indies; (3) thetwo-eletron integral ontributed by the V̂N interation line is habjjiji; (4) there aretwo hole lines and two loops, giving a positive sign. Therefore, this matrix elementmay be written as h�abij jV̂N j�0i = bji a = habjjiji; [176℄whih is the same as that derived earlier in Eq. [141℄.The ontribution of the seond term of Eq. [122℄ to the T̂1 amplitude equationis only slightly more ompliated. This term involves the matrix element,h�ai j �hF̂N + V̂N i T̂1� j�0i, and, as before, we will onsider only the ontributionof V̂N . The T̂1 operator, whih ats �rst and is therefore plaed at the bottom of thediagram, produes a +1 exitation from the referene on the right. Sine the singlyexited determinant on the left-hand side of the matrix element indiates an overall



78+1 exitation level, we require the three diagram fragments of V̂N whih have anoverall exitation level of 0:
.

However, the �rst two of these fragments an onnet to the T̂1 diagram in only oneindex | via either a single hole line or partile line | thus leaving an additionalline extending below the T̂1 interation line in the �nal diagram, e.g.,
6= h�ai j �V̂N T̂1� j�0i: [177℄

Beause suh diagrams annot represent matrix elements that have the referenewavefuntion on the right, only the third diagram above an ontribute to the T̂1amplitude equation. Conneting this V̂N fragment to the T̂1 diagram gives
h�ai j �V̂N T̂1� j�0i = : [178℄

The algebrai interpretation of this diagram proeeds exatly as before: (1) we labelthe external lines using i and a for onsisteny with the singly exited determinantin the matrix element, and the internal lines are labeled with the summation indiesj and b; (2) the appropriate two-eletron integral ontributed by the V̂N omponent



79is hjajjbii and the T̂1 amplitude is tbj; (3) there are two loops and two hole linesgiving the diagram a positive sign. The �nal expression for this diagram is therefore
=Xjb hjajjbiitbj; [179℄

whih is idential to the result in Eq. [143℄.The ontribution of �V̂N T̂1� to the T̂2 amplitude equation involves the matrixelement h�abij j �V̂N T̂1� j�0i. In this ase, we require an overall exitation level of +2as ditated by the doubly exited determinant on the left. Sine the T̂1 operatorprodues a +1 exitation from �0, we require diagrams six and seven of V̂N in Figure3 whih produe a +1 exitation:

These may be onneted to the T̂1 amplitude diagram from below to give two terms
h�abij j �V̂N T̂1� j�0i = + : [180℄

These two diagrams may be interpreted using the rules desribed above: (1) weassign indies i, j, a, and b (from left to right) to the external lines for onsisteny



80with the doubly exited determinant in the matrix element; (2) there is only oneinternal (summation) line in eah diagram to whih we assign the indies  in the leftdiagram and k in the right diagram; (3) in the left diagram, there are two loops andtwo hole lines giving a positive sign, and in the right diagram there are two loopsand three hole lines giving a negative sign; (4) the two-eletron integral in the leftdiagram is habjjji and in the right diagram is hkbjjiji; (5) the T̂1 amplitude in theleft diagram is ti and in the right diagram is tak; (6) there are neither equivalent linesnor equivalent verties so no additional fators of 12 appear in the �nal expression.Before the algebrai interpretation is omplete, however, we require one additionalrule:� Eah pair of unique, external hole or partile lines introdues a permutationfuntion, P (pq) (as de�ned earlier in Eq. [154℄), to ensure antisymmetry of the�nal expression.Note again that the four external q-reation lines of the T̂2 amplitude diagramsorrespond to the wavefuntion lines of a doubly exited determinant; in the abovediagrams, the i, j, a, and b external lines orrespond to the exitation orbitalsof the determinant, �abij . Sine this determinant is antisymmetri with respet topermutation of either the i and j indies or the a and b indies, this antisymmetrymust be maintained in the �nal algebrai expression. Pairs of external lines whihoriginate from the same operator interation line (suh as the two partile linesin the leftmost diagram of Eq. [180℄) are not unique and the expression is alreadyantisymmetri with respet to permutation of suh pairs. Pairs of external linesthat do not originate on the same operator interation line (suh as the hole linesof the leftmost diagram) are unique, and a permutation operator must be inludedin the algebrai interpretation to ensure proper antisymmetry. For example, in theleft-hand diagram above, there are two external partile lines and two external hole



81lines. The diagram is already antisymmetri to permutation of the two partile linesbeause they both onnet to the V̂N diagram fragment. The hole lines, on the otherhand, onnet to di�erent verties | one to T̂1 and the other to V̂N . Therefore, thediagram is not antisymmetri to permutation of these lines, and we must inludethe operator P (ij) in the algebrai expression orresponding to this diagram:= P (ij)X habjjjiti : [181℄Similarly, the external partile lines in the rightmost diagram must be permuted inits algebrai expression: = �P (ab)Xk hkbjjijitak: [182℄When the permutation operators are expanded, these expressions are idential tothose given in Eq. [145℄ derived earlier using Wik's theorem and some ompliatedalgebra.The next example is the ontribution of �F̂N T̂ 21 � to the T̂1 amplitude equation,whih requires the matrix element h�ai j �F̂N T̂ 21 � j�0i. To obtain an overall exitationlevel of +1, as ditated by the singly exited determinant on the left and the refereneon the right, we must use the �1 diagram fragment of F̂N , X , sine the twoT̂1 operators produe an exitation level of +2. There are three ways to onnet thisF̂N diagram fragment to the luster operator diagrams to produe a matrix element



82with the appropriate determinants above and below the diagrams:
X X X :The �rst and third diagrams above are equivalent and orrespond to the ontrationsindiated in Eq. [149℄. These violate the \onneted luster" form of e�T̂ ĤNeT̂ ��ĤNeT̂� disussed earlier, whih requires that the Hamiltonian fragment must shareat least one index with every luster operator on its right. The seond diagramis therefore the only aeptable ontribution from this matrix element to the T̂1amplitude equation. Its algebrai interpretation proeeds as usual: (1) the externallines are labeled i and a to math the singly exited determinant, �ai , in the matrixelement; (2) the internal (summation) lines are labeled by the dummy indies k and; (3) the Fok operator ontributes the element fk, and the T̂1 operators ontributethe amplitudes ti and tak; (4) there are two hole lines and only one loop, giving anoverall negative sign to the diagram; (5) there are no equivalent internal lines, norare the two T̂1 fragments equivalent sine they do not onnet to the F̂N diagramfragment in the same way (one onnets via a hole line and the other via a partileline). The �nal expression is therefore12h�ai j �F̂N T̂ 21 � j�0i = X = �Xk fkti tak; [183℄whih is the same as the result given in Eq. [148℄.As a �nal example, onsider the ontribution of the 12 �V̂N T̂ 21 T̂2� operator to theT̂2 equation. As disussed earlier, the orresponding matrix element, whih involvesa doubly exited determinant on the left and the referene determinant on the right,requires onsiderable e�ort if analyzed using Wik's theorem. Diagrammatially,



83however, this analysis is muh simpler. The only diÆulty arises in the onstrutionof only uniquely onneted diagrams. For example, one might onstrut the twoseemingly di�erent diagrams: and .Careful inspetion, however, reveals that the diagrams are equivalent beause onean be produed from the other by permutation of the hole or partile lines on theT̂2 fragment. (This equivalene an also be proven algebraially, and the reader isenouraged to arry this analysis out independently.)One an ensure that only unique diagrams are produed by using astraightforward proedure developed by Kuharski and Bartlett.20 In this approah,one �rst assigns + symbols to partile lines and � symbols to hole lines lying belowthe interation line of the Hamiltonian fragment or above the interation line forthe luster operators. Unique onnetivities of the operator diagrams are produedby ombining these signs in all unique ways. In the present example, the two T̂1operators eah ontribute one + sign and one � sign, the T̂2 operator ontributes two+ signs and two � signs, and the �2 exitation level fragment of V̂N ontributes two+ signs and two � signs. Sine in this ase every direted line from the Hamiltonianfragment must onnet to lines from the luster operators, we must math the +and � signs from V̂N to the same signs on the luster operators. For example, wemight hoose one + and one � from the T̂2 operator, leaving one + for one of the T̂1fragments and one � for the remaining T̂1. We will denote this \sign sequene" as+�j+ j�, where the �rst pair of signs belong to the T̂2 operator, and the remainingsigns (separated by the vertial bars) belong to the T̂1 operator fragments. The



84orresponding diagram would be+�j+ j� = and :where the onnetivity ditated by the sign sequene is maintained in the diagram.The sign sequene helps to reveal the equivalene of the two diagrams; the T̂2operator in eah diagram onnets to the V̂N fragment by a partile-hole pair of lineswhile the T̂1 operators onnet by either a partile or a hole line. Note that thissequene is equivalent to the sequene +�j�j+ beause the T̂1 operators ommute.For this matrix element, there are only �ve unique sign sequenes, inluding the onegiven above: (1) +� j+ j�, (2) + + j � j�, (3) �� j+ j+, (4) �j+ j+�, and (5)+j � j +�. These �ve Kuharski-Bartlett sign sequenes give rise to the diagrams(in order)12h�abij j �V̂N T̂ 21 T̂2� j�0i = + [184℄
+ +

+ : [185℄The algebrai interpretation of eah of these diagrams, using the rules desribedearlier, is easily shown to be (in the same order as the diagrams above)12h�abij j �V̂N T̂ 21 T̂2� j�0i = �P (ij)P (ab)Xkldhkljjditaiktdj tbl + [186℄14P (ab)Xkldhkljjditdij taktbl + 14P (ij)Xkldhkljjditabkl ti tdj �P (ij)Xkldhkljjditabiktjtdl � P (ab)Xkldhkljjditaij tbktdl :



85The permutation operators appear in order to maintain the antisymmetry of thealgebrai expressions, as explained earlier. Note that the fators of 14 appearing inthe seond and third terms result from both a pair of equivalent lines and a pair ofequivalent verties in eah of the orresponding diagrams.Size Extensivity of the Coupled Cluster EnergyEarlier in the hapter we disussed the property of the oupled luster energyknown as size onsisteny, whih implies that the energy of two non-interatingfragments omputed separately is the same as that omputed for both fragmentssimultaneously. A related property is known as size extensivity, whih is appliedto methods whose energy sales linearly with N (the number of eletrons), just asthe exat energy sales. Whereas size onsisteny applies only to non-interatingmoleular fragments, size extensivity is a more general mathematial onept thatapplies to any point on the potential energy surfae. The term was popularizedin eletroni struture theory by Bartlett87 and is based on analogous extensivethermodynami properties. In this setion, we show that the exponential ansatzof oupled luster theory guarantees size extensivity, but that the trunated CIapproah does not.Consider the struture of the CI Shr�odinger equation (assuming intermediatenormalization as well as normal-ordered ĤN and Ĉ operators), beginning from thelinear ansatz of Eq. [32℄:ĤN �1 + Ĉ1 + Ĉ2 + : : :� j�0i = (ECI � E0) �1 + Ĉ1 + Ĉ2 + : : :� j�0i: [187℄Left-projetion of this equation by the referene determinant, �0, leads to the energyequation, ECI � E0 = h�0jĤN �Ĉ1 + Ĉ2� j�0i; [188℄



86where trunation of the CI expansion is a natural onsequene of Slater's rules.By appliation of Wik's theorem (or the orresponding diagrams, of ourse), thisequation may be written in algebrai form asECI � E0 =Xia fiaai + 14Xijabhijjjabiabij : [189℄If anonial Hartree-Fok orbitals are hosen, the �rst term is zero by Brillouin'stheorem.How do the individual terms on the right-hand side of Eq. [189℄ sale as moreeletrons are added to the system? If we assume a loalized orbital basis (whihdoes not limit the validity of this analysis), then, for a given oupied orbital, �i,the two-eletron integral, hijjjabi, for example, will be zero unless the orbitals, �j,�a, and �b, are in reasonably lose proximity to �i, due to the relatively short range ofthe intereletroni potential. Assuming that the number of orbitals whih ful�ll thisproximity requirement for (i.e., are \loal" to) �i is �nite, then all of the individualtwo-eletron integrals, hijjjabi, assoiated with �i are independent of the number ofeletrons in the system. That is, as more eletrons (and therefore more oupiedand virtual orbitals) enter the alulation, the set of individual two-eletron integralsassoiated with orbital �i remains una�eted. Assuming that the CI oeÆients, abij ,in the seond term of Eq. [189℄ have the same independene | an assumption wewill examine momentarily | then the i-independent summation,Zi �Xjabhijjjabiabij ; [190℄will be una�eted as the size of the system inreases. Sine there are N eletrons,the �nal summation over oupied orbital index i produes N independent Ziontributions, ECI  Xi Zi: [191℄(The left arrow indiates that the term on the right-hand side is one of several termsthat ontribute to ECI.) Therefore the seond term of Eq. [189℄ sales linearly with



87the number of eletrons, if and only if the CI oeÆients, abij , are independent of N .A similar argument holds for the �rst term on the right-hand side of the equationas well.The CI oeÆient equations are obtained by left-projetion of Eq. [187℄ by exiteddeterminants. For example, the Ĉ1 equation from full CI ish�ai jĤN �1 + Ĉ1 + Ĉ2 + Ĉ3� j�0i = (ECI � E0) h�ai jĈ1j�0i = ECIai ; [192℄whih is energy-dependent, unlike the orresponding oupled luster amplitudeequation. Every term on the left-hand side of this equation involves either bareHamiltonian matrix elements, whih are independent of N , or ontrations of suhmatrix elements with CI oeÆients, whose N -saling is not yet known. The term onthe right-hand side, whih ontains the CI energy, on the other hand, does dependon the system size | as N inreases, ECI inreases (with some undetermined order).This non-unit saling implies that, if size extensivity is to be maintained, terms onthe left-hand side of Eq. [192℄ must sale similarly with N in order to anel out the\errors" introdued by the presene of ECI. If all exitation operators are inludedin the CI ansatz, then this ompensation is inluded in the orresponding oeÆientequations. For example, we see that in Eq. [192℄ above, Ĉ3 an ontribute to Ĉ1 bySlater's rules. The Ĉ3 equation itself ish�abijk jĤN �Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4 + Ĉ5� j�0i = (ECI � E0) abijk; [193℄whih inludes ontributions from up to Ĉ5. The �rst term on the left-hand sideinvolving Ĉ1 may be written asabijk  = ai hjkjjbi; [194℄where we have used the thik bar in the diagram to distinguish the Ĉ1 operatorfrom the orresponding T̂1 operator. Sine the orbitals on the Ĉ1 omponent are



88ompletely independent of those of the two-eletron integral (i.e., the diagram is\disonneted"), this term will produe nonzero Ĉ3 omponents involving orbitalswhih are spatially distant as the size of the system is inreased. That is, for a givenorbital, �i, the number of nonzero oeÆients, abijk , involving the orbitals �j, �k,et., inreases as more eletrons (orbitals) are added to the system. Therefore, theterm from Eq. [192℄ involving Ĉ3, whih may be written asai  14 Xjkb abijkhjkjjbi; [195℄sales approximately linearly as N inreases. This term would therefore ontributeto the \ompensating errors" desribed above to ensure appropriate linear salingof the CI energy with respet to the number of eletrons. Similarly, the N salingof the Ĉ3 equation itself is orreted by suh disonneted terms arising from higherexitation levels suh as Ĉ4 and Ĉ5. Therefore, if the CI equations are trunatedat a partiular exitation level, the higher-exitation terms needed to anel theinorret N -saling of the energy-dependent term in eah oeÆient equation willbe lost, and the errors in the trunated CI energy relative to the exat (full CI) energywill be ompounded as the size of the system inreases. The well-known Davidsonorretion for the CISD energy is designed to aount for the size extensivity errorof this method.121,122The oupled luster energy, on the other hand, does not su�er from this lakof size extensivity for two reasons: (1) The amplitude equations in Eq. [50℄ areindependent of the oupled luster energy; (2) The Hausdor� expansion of thesimilarity transformed Hamiltonian in Eq. [106℄, for example, guarantees that theonly nonzero terms are those in whih the Hamiltonian is onneted to all the lusteroperators on its right, regardless of the trunation of T̂ . Hene, no diagrams suhas that in Eq. [194℄ appear in the oupled luster amplitude equations. As a result,



89the T̂ amplitudes are independent of the system size, and the oupled luster energyomputed via Eq. [123℄ sales linearly with the number of eletrons.A size extensive method is frequently de�ned esoterially as one whose energyand amplitude/oeÆient equations ontain no \unlinked" diagrams, suh as(ECI � E0) ai  ; [196℄in whih the two diagram omponents annot be onneted to eah other even byappliation of other interation lines.r Although suh terms are indeed absent in theoupled luster equations (as well as those of many-body perturbation theory), onemust also exlude disonneted amplitude omponents suh as those in Eq. [194℄(whih also ontribute to the improper N -dependene of the amplitudes) in orderto ensure orret saling of the energy.

rThe \disonneted" diagram of Eq. [194℄ is not unlinked sine the inlusion ofan additional V̂N fragment an onnet its two omponents | Harris et al.80 havereommended that suh terms should be alled \linkable." With terms suh as\disonneted," \onneted," \linked," and \unlinked" used to desribe diagrams, it isnot surprising that these tehniques have aused muh onfusion in the past.



CONNECTION TO MANY-BODY PERTURBATIONTHEORY
In this setion we examine the fundamental relationship between many-bodyperturbation theory (MBPT) and oupled luster theory. As originally pointed outby Bartlett,87,123 this onnetion allows one to onstrut �nite-order perturbationtheory energies and wavefuntions via \iterations" of the oupled luster equations.The essential aspets of MBPT have already been disussed in Volume 5 of Reviewsin Computational Chemistry77 as well as numerous other texts.80,82,124,125 Wetherefore only summarize the main points of MBPT and fous on its intimate linkto oupled luster theory as well as how MBPT an be used to onstrut energyorretions for higher-order luster operators suh as the popular (T) orretion foronneted triple exitations.Perturbational Deomposition of the Cluster OperatorsTwo essential onepts underlie the onstrution of MBPT from basi theRayleigh-Shr�odinger perturbation theory:77,82� The zeroth-order omponent of the eletroni Hamiltonian is taken to bethe Fok operator suh that the perturbation operator (sometimes alled theutuation potential) is then the remaining two-eletron operator, V̂N :ĤN = Ĥ(0) + Ĥ(1) = F̂N + V̂N : [197℄This partitioning, when applied in onjuntion with the set of anonial Hartree-Fokorbitals (in whih F̂N is diagonal), orresponds to the M�ller-Plesset variantof many-body perturbation theory.126 A Hartree-Fok determinant, whih is90



91an eigenfuntion of F̂N , is therefore the natural hoie for the zeroth-orderwavefuntion.s� Eah perturbed wavefuntion, 	(n), is expanded in a CI-like fashion as a linearombination of exited determinants,	(n) =Xia aa (n)i �ai + 14Xijab aab (n)ij �abij + : : : : [198℄As disussed in detail in Refs. 77 and 82, for example, this expansion is not N -fold(where N is the number of eletrons in the system) for the lower perturbationalorders, but trunates to inlude only modest exitation levels. For example, the�rst-order wavefuntion, whih may be used to ompute both the seond- andthird-order energies, ontains ontributions from only doubly exited determinants,whereas the seond-order wavefuntion, whih ontributes to the fourth- and�fth-order perturbed energies, ontains ontributions from singly, doubly, triply, andquadruply exited determinants. Furthermore, the sum of the zeroth- and �rst orderenergies is equal to the SCF energy. This determinantal expansion of the perturbedwavefuntions suggests that we may also deompose the luster operators, T̂n, byorders of perturbation theory:T̂n = T̂ (1)n + T̂ (2)n + T̂ (3)n + : : : ; [199℄Depending on the hoie of moleular orbital basis, the earliest terms for ertainexitation levels are naturally zero. For example, in M�ller-Plesset theory, only T̂2ontains a nonzero �rst-order omponent; ontributions to T̂1, T̂3, and T̂4 �rst appearsThe hoie of F̂N as the zeroth-order Hamiltonian requires the use of either aspin-restrited (losed-shell) Hartree-Fok (RHF) or spin-unrestrited Hartree-Fok (UHF)determinant as the zeroth-order (referene) wavefuntion. Sine spin-restrited open-shellHartree-Fok (ROHF) referene funtions are not eigenfuntions of the spin-orbital F̂N ,other partitionings are required.127{134



92in seond order beause the orresponding seond-order wavefuntion ontains single,double, triple, and quadruple exitations.Perturbation Theory Energies from the Coupled Cluster HamiltonianThe partitioning of the eletroni Hamiltonian and the orresponding breakdownof the luster operators leads to an expansion of the oupled luster e�etiveHamiltonian, �H, in orders of perturbation theory through the Hausdor� expansiongiven in Eq. [122℄: �H = �H(0) + �H(1) + �H(2) + : : : : [200℄Sine the zeroth-order omponent of �H onsists of only the Fok operator inM�ller-Plesset theory, the �rst-order omponents of �H may be written as�H(1) = V̂N + �F̂N T̂ (1)2 � ; [201℄and the seond-order term as�H(2) = �F̂N T̂ (2)1 + V̂N T̂ (1)2 + 12F̂N �T̂ (1)2 �2� : [202℄Eah of these expressions is onstruted by simply assigning the appropriateperturbational orders to eah operator in Eq. [122℄ and retaining only thoseterms whih orrespond to the desired order, n. Using �H(n) as an approximateHamiltonian, one may onstrut n-th order Shr�odinger equations of the form�H(n)j�0i = E(n)j�0i: [203℄One omputes the energy in the n-th order of MBPT via a zeroth-order expetationvalue, viz. E(n) = h�0j �H(n)j�0i; [204℄



93obtained by left-projetion of Eq. [203℄ by �0. For example, the seond-order energy(often referred to as the MP2 energy) may be omputed fromE(2) = h�0j �F̂N T̂ (2)1 � j�0i+ h�0j �V̂N T̂ (1)2 � j�0i+ 12h�0j�F̂N �T̂ (1)2 �2� j�0i; [205℄whih may be evaluated as usual using Wik's theorem or the diagrammatitehniques desribed earlier in the hapter. We denote the luster operators ofa partiular order diagrammatially by adding hash marks to the orrespondinginteration line. For example, the �rst-order T̂2 operator may be written asT̂ (1)2 = ; [206℄and the seond-order T̂1 operator asT̂ (2)1 = : [207℄The �rst term on the right-hand side of Eq. [205℄ involving T̂ (2)1 must be zero in
MBPT beause the orresponding diagram, X , involves the fia elements
of the spin-orbital Fok matrix, whih are neessarily zero in the basis of anonialHartree-Fok orbitals. Furthermore, the third term on the right-hand side of theequation annot ontribute to the energy sine F̂N annot anel the +4 exitationlevel produed by the luster operators. Therefore, Eq. [205℄ may be written asE(2) = = 14Xijabhijjjabitab(1)ij : [208℄



94The �rst-order T̂2 amplitudes, whih are required for the above equation, maybe determined by left-projeting the �rst-order variant of Eq. [203℄ involving �H(1)by a doubly exited determinant, �abij , as we did earlier in the onstrution of theoupled luster amplitude equations,0 = h�abij j �H(1)j�0i = h�abij jV̂N j�0i+ h�abij j �F̂N T̂ (1)2 � j�0i: [209℄Evaluating this expression diagrammatially, we obtain0 = + X + X= habjjiji + X �fbta(1)ij � fatb(1)ij � � Xk �fkjtab(1)ik � fkitab(1)jk � : [210℄Again assuming anonial Hartree-Fok orbitals, the terms ontaining Fok matrixelements are redued to inlude the diagonal elements only:(fii + fjj � faa � fbb) tab(1)ij = habjjiji: [211℄Thus, the diagrammati equation ould be rewritten more simply asD2 = ; [212℄where the notation D2 � Dabij � fii + fjj � faa � fbb has been used to denote theseparation of the orbital energies (the diagonal Fok matrix elements) from the termsinvolving the Fok operator. This equation may be rearranged further by anotherslight modi�ation of our urrent diagrammati notation:tab(1)ij = = = habjjijiDabij : [213℄



95The extra horizontal bar aross the lines emanating from the V̂N fragment is usedto denote division by the Dabij \energy denominator" from the above algebraiexpression. This new diagrammati feature may be used to indiate other suhdenominators, inluding those from the T̂ (n)1 and T̂ (n)3 equations, as we will see later inthe hapter. Inserting Eq. [213℄ into Eq. [208℄, the �nal MBPT(2) energy expressionmay be written asE(2) = = 14Xijab hijjjabihabjjijiDabij : [214℄This expression is idential to that derived diretly from perturbation theory inRefs. 77 and 82.As the above analysis learly shows, the MBPT(2) energy may be determined byapproximating the CCSD energy using only those omponents whih ontribute to�H(2). The CCSD energy is therefore \omplete" through at least the seond orderof MBPT. One an arry this disussion further to onstrut the MBPT(3) energyas well. However, beginning with fourth order, the CCSD fails to inlude all theneessary terms. This result makes sense, of ourse, beause of the exitation levelinluded in eah perturbed wavefuntion. The MBPT(2) and MBPT(3) energiesrequire only doubly exited determinants whih are inluded expliitly in the CCSDapproximation, but the MBPT(4) energy inludes ontributions from singly, doubly,triply, and quadruply exited determinants. It may be shown6,87,135,136 that theMBPT(4) quadruple exitation ontributions may be fatored exatly into produtsof double exitations, but no suh fatorization is possible for the orrespondingtriples. As a result, the CCSD energy laks only triple exitation ontributions tobe omplete through fourth order.Reognition of this relationship between oupled luster theory and MBPT hasinspired researh e�orts to onstrut perturbation-based orretions to the CCSD



96energy to aount for higher exitation ontributions. Undoubtedly, the mostsuessful and popular of these is the (T) orretion �rst desribed for losed-shellmoleular systems by Raghavahari et al.24 In the next setion, we will desribe thestruture of this orretion using diagrammati tehniques.The (T) CorretionNumerous studies over the last 15 years have on�rmed the importane oftriple and higher exitations for the aurate predition of many moleularproperties.15{17,24,25,27,51,137,138 Unfortunately, the full CCSDT approah,22,23,26 inwhih triple exitations are inluded expliitly via the T̂ � T̂1 + T̂2 + T̂3 lusteroperator, is far too omputationally expensive for general appliation to mostsystems of hemial interest.As pointed out in the previous setion, the CCSD energy ontains ontributionsidential to those of the MBPT(2) and MBPT(3) energy, but laks triple exitationontributions neessary for MBPT(4). Thus, a natural approah to the \triplesproblem" is to orret the CCSD energy for the missing MBPT(4) terms,18 usingthe CCSDT similarity-transformed Hamiltonian,�HCCSDT = e�T̂1�T̂2�T̂3ĤNeT̂1+T̂2+T̂3 ; [215℄for the perturbational deomposition. The fourth-order energy depends on thise�etive Hamiltonian asE(4) = h�0j �H(4)j�0i = h�0j �V̂N T̂ (3)2 � j�0i = = 14Xijabhijjjabitab(3)ij :[216℄(Note that we have omitted numerous �H(4) omponents whih annot ontribute tothe energy expression.) The third-order T̂2 omponent of this equation is determined



97via 0 = h�abij j �H(3)j�0i= h�abij j�F̂N T̂ (3)2 + V̂N T̂ (2)1 + V̂N T̂ (2)2 + V̂N T̂ (2)3 + 12 V̂N �T̂ (1)2 �2� j�0i: [217℄Note the appearane of the T̂3 operator through the use of �HCCSDT. Sine we wish toonstrut a orretion to the CCSD energy, whih already ontains the ontributionsfrom the T̂1 and T̂2 terms, we need to onstrut only the �V̂N T̂ (2)3 � omponent ofthe above equation, whih may be represented diagrammatially asT̂ (3)2 =  + ; [218℄where we have indiated the two-eletron denominator D2 using the horizontal barnotation desribed earlier. The T̂ (2)3 amplitudes needed for this equation may bedetermined from the orresponding seond-order amplitude equation:0 = h�abijkj �V̂N T̂ (1)2 + F̂N T̂ (2)3 � j�0i; [219℄whih we may write using the denominator notation from the previous setion asD3 = + : [220℄This equation may be interpreted algebraially asDabijk tab(2)ijk = P (k=ij)P (a=b)Xd hbjjdkitad(1)ij � P (i=jk)P (=ab)Xl hljjjkitab(1)il ;[221℄where the P (p=qr) permutation operators perform antisymmetri permutations ofindex p with indies q and r, in analogy to the two-index P (pq) operator de�nedearlier in the hapter. The �rst-order T̂2 amplitudes here are omputed using



98Eq. [213℄. These T̂ (2)3 amplitudes may then be inserted into Eq. [218℄ to ompute theT̂ (3)2 amplitudes, whih may then be used in Eq. [216℄ to ompute the triple-exitationontribution to the fourth-order energy, E(4)T .t The orreted CCSD energy,ECCSD+T(4) = ECCSD + E(4)T : [222℄was referred to as CCSD+T(4) by Urban et al.18 beause E(4)T is the true fourth-ordertriples energy when Eq. [221℄ is used to ompute T̂ (2)3 . If, on the other hand,we hoose to use the onverged CCSD T̂2 amplitudes rather than �rst-order T̂2in Eq. [221℄ | that is, amplitudes that solve Eq. [153℄ | we obtain a di�erentorretion, whih Urban et al. have denoted CCSD+T(CCSD) (although morereently this method has been alled CCSD[T℄):ECCSD+T(CCSD) = ECCSD + E [4℄T ; [223℄where the supersript [4℄ notation indiates that the usual fourth-order triples energyformula is evaluated using CCSD T̂2 amplitudes. It has been shown24,140 thatthe CCSD+T(CCSD)/CCSD[T℄ approah has a tendeny to overestimate tripleexitation e�ets, whih for some systems leads to qualitatively inorret preditionsof moleular properties.24A few years after the work by Urban et al., Pople and o-workers developed atriples orretion for the QCISD (quadrati on�guration interation | a methodtIt should be noted that the \proedure" outlined here for omputing E(4)T is ertainlynot the most eÆient approah. As disussed more than two deades ago,136,139 theexpression for E(4)T may be ast into the formE(4)T = 136 Xijkab tab(2)ijk Dabijk tab(2)ijk ;where Dabijk is the three-eletron ounterpart of Dabij . Instead of storing individual tripleexitation amplitudes, however, eah ontribution to the summation above is omputedseparately using equations involving only two-eletron integrals and energy denominators.



99ommonly viewed as an approximation to CCSD) energy. In their work,17 they notedthat in order to properly balane the ontribution of single and double exitationsto the triples orretion, an additional term beyond E [4℄T must be inluded. In 1989,a similar analysis was developed by Raghavahari et al. who determined that a�fth-order energy ontribution involving single exitations, denoted E [5℄ST , should beinluded in the CCSD orretion, as well.24 This omponent may be derived based onthe seond-order T̂3 ontribution to the third-order T̂1 operator, whih subsequentlyontributes to fourth-order T̂2. Although the diagrammati tehniques desribedabove are partiularly onvenient for deriving E [5℄ST , we will avoid this task here, andsimply present the �nal equationE[5℄ST = 14 Xijkabhjkjjbitai tabijk ; [224℄where the triple exitation amplitudes are determined using a modi�ed form ofEq. [221℄ whih inludes ontributions of single exitation amplitudes,Dabijk tabijk = P (i=jk)P (a=b) "Xd hbjjdiitadjk �Xl hlajjjkitbil + tai hbjjjki# : [225℄Hene, the total CCSD(T) energy may be suintly written asECCSD(T) = ECCSD + E [4℄T + E [5℄ST : [226℄We again note, that large-sale omputer implementations of the (T) method do notatually use Eq. [225℄ to ompute and subsequently store the T̂3 amplitudes. Instead,a muh more eÆient algorithm is employed in whih the ontributions to E [4℄T andE[5℄ST are omputed for eah unique ombination of i, j, and k indies,141,142 thusavoiding the O(N 6) storage requirement assoiated with solving Eq. [225℄ expliitly.We also note that Deegan and Knowles have reently onstruted an augmentedtriples orretion, denoted CCSD+T, whih inludes additional �fth-order termswhih are missing in CCSD.30



100What is the motivation for the inlusion of this partiular �fth-order term overother suh terms in the (T) orretion? There have been inuential numerialstudies that serve to rationalize the suess of the (T) orretion from a purelyempirial standpoint,24,25,143,144 but here we are more interested in a physialmotivation. Pople and o-workers17 referred to E [5℄ST as neessary to \balane" singleand double exitation ontributions. A more omplete �fth-order analysis than thatpresented here20,24,143,144 would show that CCSD alone already inludes �fth-orderdouble-triple interation terms. Hene, we may onsider this apparent mismath tobe the explanation for the inadequay of CCSD [and espeially CCSD+T(CCSD)℄ inertain diÆult ases, suh as the asymmetri strething frequeny of O3.24 However,the physial interpretation behind a balaning of single and double exitationontributions is unlear. For M�ller-Plesset perturbation theory, single exitationsdo not ontribute until the seond-order wavefuntion, and double exitationsprovide the earliest orretion of the zeroth-order state. This suggests, then, thatdouble exitations should be more important in the perturbational analysis thansingle exitations and that no suh balaning of the two is important. On the otherhand, we reognize that the delayed appearane of single exitations in the perturbedwavefuntions is an artifat of Brillouin's theorem.82 That is, it is stritly beause ofthe form of the arbitrarily hosen moleular orbitals that single exitations do notappear in �rst order. If we make our perturbational analysis more general, suh thatsingle exitations appear alongside double exitations in the wavefuntion expansion,then the E [5℄ST energy term shifts to fourth order rather than �fth order. From thisperspetive, then, single and double exitations should perhaps be treated alike, andthe perturbational order has less to do with the seletion of orretions terms thanthe exitation types themselves. This shifting of perturbational orders is seen, forexample, in ertain types of open-shell perturbation theory.134 Extension of the (T)orretion to open-shell systems based on a spin-restrited referene wavefuntion



101presents numerous diÆulties,31 and reent work in this area has produed a numberof interesting tehniques.27,29,33,51Reently, it has been shown32 that equation-of-motion oupled luster theory(EOM-CC)5,60{63,65 provides a unique perspetive on the CCSD(T) method. Insteadof taking the Hartree-Fok determinant as the zeroth-order wavefuntion andsubsequently deomposing the CCSD and CCSDT equations in terms of themany-body perturbation expansion, as we have done above, the CCSD wavefuntionis taken as zeroth-order and the energy viewed as the lowest eigenvalue of an e�etiveHamiltonian with assoiated left and right eigenvetors. By substituting onvergedCCSD luster amplitudes in plae of the left eigenvetor in the lowest-order energyorretion, the usual (T) energy expression is obtained. In suh an analysis, bothsingle and double ontributions arrive in the same order (third) of this \perturbationtheory," and no arguments based on balaning the two are neessary. Thisunique perspetive on the (T) orretion has also led to the onstrution of a new\asymmetri" triples orretion, denoted a-CCSD(T),34,145 whih utilizes the lefteigenvetor for the ground state CCSD eigenvalue problem.



COMPUTER IMPLEMENTATION OF COUPLEDCLUSTER THEORY
In this setion we disuss many of the issues involved in writing an eÆient omputerprogram for solving the oupled luster amplitude and energy equations derivedearlier in the hapter. Sine the original implementations of the CCD6,7 and CCSD8methods, streamlining the ompliated oupled luster equations has been thesubjet of intense researh. Here we fous on �ve main ideas used in pratial CCSDprograms: (1) fatorization of the amplitude equations [Eqs. (152) and (153)℄ intoterms whih are at most linear in the luster amplitudes, T̂1 and T̂2; (2) matrix-basedstorage and manipulation of the amplitudes and integrals; (3) spatial symmetrysimpli�ations; (4) inlusion of spin fatorization in alulations for both losed-and open-shell moleules; and (5) atomi-orbital-based algorithms for the redutionof disk storage requirements.It is perhaps not immediately lear how one may go about solving the T̂1 andT̂2 amplitude equations given in Eqs. [152℄ and [153℄ for the individual amplitudes,tai and tabij . A simple rearrangement of the equations, however, provides a morepalatable form of these expressions that leads to a simple iterative approah fordetermining the oupled luster wavefuntion amplitudes. For example, the �rstfew terms of Eq. [152℄ may be written as0 = fai + faatai � fiitai +X (1� Æa) fati �Xk (1� Æik) fiktak + : : : ; [227℄where the diagonal omponents of the seond and third terms on the right-hand sideof Eq. [152℄ have been separated from the summation. De�ningDai � fii � faa; [228℄102



103the amplitude equation may be rewritten asDai tai = fai +X (1� Æa) fati �Xk (1� Æik) fiktak + : : : : [229℄Similarly, de�ning Dabij � fii + fjj � faa � fbb; [230℄the T̂2 amplitude equation may be rewritten asDabij tabij = habjjiji+ P (ab)X (1� Æb) fbtaij � P (ij)Xk (1� Ækj) fkjtabik + : : : : [231℄To determine the values of the amplitudes, one must solve the above set ofoupled non-linear equations iteratively. A simple starting approximation for tai andtabij on the left-hand sides of the equations may be obtained by setting all of theamplitudes on the right-hand side to zero. Hene, for the T̂1 amplitudes we havetai = fai=Dai ; [232℄and for the T̂2 amplitudes, tabij = habjjiji=Dabij : [233℄This initial guess may then be inserted on the right-hand sides of the equationsand subsequently used to obtain new amplitudes. The proess is ontinued untilself-onsisteny is reahed. For the speial ase in whih anonial Hartree-Fokmoleular orbitals are used, the Fok matrix is diagonal and the T̂2 amplitudeapproximation above is exatly the same as the �rst-order perturbed wavefuntionparameters derived from M�ller-Plesset theory (f. Eq. [213℄). In that ase, the Daiand Dabij arrays ontain the usual moleular orbital energies, and the initial guess forthe T̂1 amplitudes vanishes.Fatorization of the Coupled Cluster EquationsThe form of Eqs. [152℄ and [153℄ is perhaps misleading in that many of the termsappear to be omputationally more expensive than is neessary. For example,



104Eq. [153℄ ontains the following term whih is quadrati in the T̂2 amplitudes:Dabij tabij  14Xkldhkljjditdij tabkl ; [234℄where the left arrow indiates that we are examining only one of several terms whihontribute to the expression on the left-hand side. This term sales as O(h4p4), whereh denotes the number of oupied orbitals and p denotes the number of unoupiedorbitals. However, this expression may be fatored into a produt of two terms, e.g.,14Xkldhkljjditdij tabkl = 12Xkl tabkl 12Xd hkljjditdij � 12Xkl tabklXklij ; [235℄where the X intermediate is de�ned asXklij � 12Xd hkljjditdij : [236℄Now the original term may be evaluated in two steps: (1) onstrution and storageof X; and (2) ontration of the X array with the tabkl amplitudes. Eah of thesesteps sales as O(h4p2) | a signi�ant redution from the original O(h4p4).Every term in the oupled luster amplitude equations whih is non-linear inT̂ may be fatored into linear omponents. As a result, eah step of the iterativesolution of the CCSD equations sales at worst as a. O(N 6) (where N is the numberof moleular orbitals). The full CCSDT method in whih all T̂3-ontaining termsare inluded requires an iterative O(N 8) algorithm, whereas the CCSD(T) method,whih is designed to approximate CCSDT, requires a non-iterative O(N 7) algorithm.The inlusion of all T̂4 lusters in the CCSDTQ method sales as O(N 10).The most eÆient sheme for fatorization of the amplitude equations asdesribed above is not obvious, however, and numerous researhers have developedsets of intermediates to streamline their own oupled luster programs over thepast twenty years.6{8,11{13,21,22,146,147 Many of these fatorizations have been basedon areful inspetion of the amplitude equations.6{8,11{13 Suseria, Janssen, and



105Shaefer, for example, developed a set of intermediates based on their reformulationof the CCSD amplitude and energy equations13 in a unitary group formalismdesigned to o�er speial eÆieny when the referene wavefuntion, �0, is aspin-restrited losed-shell Hartree-Fok determinant. Closely related intermediateswere utilized in ertain open-shell theories developed by Suseria27 for the PSIprogram pakage148 and by Knowles, Hampel, and Werner37 for the MOLPROpakage.149Diagrammati tehniques also provide a route to the onstrution of eÆientoupled luster intermediates.21,146,147 Kuharski and Bartlett,147 for example,have desribed a partiularly lever approah by whih one uses matrix elementsof the similarity transformed Hamiltonian as the desired intermediates. Considerthe matrix element of �H between the referene (on the left) and a singly exiteddeterminant (on the right). Diagrammatially, this matrix element is resolved intotwo terms as h�0j �Hj�ai i = X += fia + Xk hikjjaitk� # : [237℄We have hosen the double bar with the \#" sign in the �nal diagram to simplydenote the sum of the two diagrams orresponding to the matrix element. If weontrat this diagram with a T̂2 operator fragment from below, we obtain twoontributions to the T̂1 amplitude equations, viz.
# = X + : [238℄



106The last two diagrams are equivalent to the �fth and twelfth terms from the T̂1amplitude equation in Eq. [152℄. These intermediates have the partiular advantagethat, if the �nal goal of the alulation is atually an analyti energy gradient oran EOM-CCSD-based approah, for example, one need not reompute the requiredmatrix elements of �H. Intermediates derived in this manner have been utilized inthe oupled luster programs found in the ACES II150 and PSI148 ab initio programpakages.Matrix-Based Storage of Integrals and AmplitudesAdditional omputational eÆieny in the solution of the oupled luster equationsmay be employed by formulating eah of the terms as matrix-matrix or matrix-vetorproduts,14 for whih modern workstations and superomputers are partiularlyadept.151 For example, the set of T̂2 amplitudes, tdij , ould be stored as a matrixby de�ning ompound row and olumn indies ij and d, respetively, in termsof the individual orbital indies i, j, , and d. Ignoring permutational symmetry,this storage sheme produes a \supermatrix" with h2 rows and p2 olumns andwhose elements may be labeled T2(ij; d). Similarly, the set of two-eletron integralsused in the onstrution of the X intermediate above ould be stored as a matrixby de�ning a ompound row index kl and a ompound olumn index d to give asupermatrix I(kl; d). The ontration between these matries given expliitly inEq. [236℄ ould then be written as a multipliation between the amplitude matrixT2 and the transpose of the integral matrix I to produe the new matrix X:X = T2I+; [239℄where the individual elements of X may be denoted as X(ij; kl). This type ofnotation is often used in the oupled luster literature as it provides a muh more



107ompat presentation of the energy and amplitude equations than that given above,and it relates diretly to a streamlined omputer implementation.Spatial Symmetry Simpli�ationsSpatial symmetry also provides a means for improving the eÆieny of oupledluster programs. As shown by the work of �C�arsky and o-workers,152 the solutionof the oupled luster equations may be greatly simpli�ed by exploiting onstraintson the luster amplitudes imposed by the point group symmetry of the moleuleof interest. In partiular, given that the moleular orbital basis is based onsymmetry-adapted funtions (as is ommonly done in ab initio programs suhas PSI,148 ACES II,150 and MOLPRO149), the luster amplitudes (as well asone- and two-eletron integrals) vanish unless the diret produt of the irreduiblerepresentations (irreps) assoiated with eah orbital omponent ontains the totallysymmetri irrep. For example, a given T̂2 amplitude, tabij , is zero unless�i 
 �j 
 �a 
 �b = A1; [240℄where A1 is the totally symmetri irrep of the moleular point group. Sine thediret produt (
) of any irrep with itself always ontains A1, Eq. [240℄ impliesthat, for example,u �ij � �i 
 �j = �a 
 �b � �ab: [241℄If the moleular orbitals are organized suh that all orbitals of a given irrepare grouped together, the matrix-based storage sheme desribed above takes on auOf ourse, other partitionings of the four indies i, j, a, and b are equally valid. Forexample, the following equality also holds based on Eq. [240℄:�i = �jab � �j 
 �a 
 �b:



108partiularly onvenient form.14 Using the C2v point group as an example, the T2matrix of Eq. [239℄ may be shematially written as
T2 = ij A1A2B1B2

dA1 A2 B1 B2X 0 0 00 X 0 00 0 X 00 0 0 X ;
where X implies a submatrix of nonzero values, and we have labeled the rows andolumns of the supermatrix by the appropriate ompound indies ij and d. Inaddition, we have indiated the C2v irrep labels for the given ompound index.The B2 label for the ij row index, for example, denotes the set of i and j indexombinations with �ij � �i 
 �j = B2. If a given amplitude falls within the A2diagonal subblok, then the ompound indies meet the riterion, �ij = �d = A2.Clearly, one needs to store only the nonzero diagonal subbloks of the abovematrix; assuming that the same number of moleular orbitals belong within eahirrep of the point group, this orresponds to memory/disk savings of the orderof the group (4 in the ase of the C2v group). Furthermore, if this symmetrysheme were also used to store the X and I matries of Eq. [239℄, then the matrixmultipliation would be redued to four independent produts involving only thesymmetry-restrited diagonal bloks | a omputational savings of the square of theorder of the point group (16 for C2v). This matrix-based approah to symmetrysimpli�ation of the oupled luster equations has been referred to as the \diretprodut deomposition" (DPD) tehnique14 and has been disussed in the literaturefor both energies14 and analyti gradients50 for non-degenerate (Abelian) pointgroups. In their reent work on oupled luster analyti seond derivatives, Stantonand Gauss have extended their DPD approah for derivatives of luster amplitudes,



109whih are generally not totally symmetri quantities.57,58 Furthermore, work on theextension of symmetry methods to inlude non-Abelian point groups has also beenreported.153{155Spin Fatorization of the Coupled Cluster EquationsThe oupled luster and on�guration interation equations presented thus far in thishapter have impliitly used spin-dependent moleular orbitals for their de�nitions ofdeterminants, integrals, and wavefuntion amplitudes. This spin-orbital formulationhas the advantage that it may be used with any set of orbitals, inludingspin-restrited Hartree-Fok (RHF), spin-unrestrited Hartree-Fok (UHF),spin-restrited open-shell Hartree-Fok (ROHF), quasi-restrited Hartree-Fok(QRHF), Bruekner orbitals, et. That is, by inlusion of all omponents of thespin-orbital Fok matrix, F̂N , the CCSD equations in Eqs. [123℄, [152℄, and [153℄,for example, are valid for any hoie of orbitals.v By assigning the onventional spinfuntions, � and �, to eah oupied and virtual orbital, we may fator the oupledluster energy and amplitude equations into their spin-dependent omponents. Dueto the spin-symmetry assoiated with the one- and two-eletron integrals, most ofthese omponents will be be zero following spin integration, and may be ignoredin the omputational implementation of the equations. For example, onsider thevAlthough a spin-orbital formulation is oneptually simple, desirable properties suh asspin-adaptation may be lost when the eletroni state of interest is open shell, for example.A rigorously spin adapted theory must inlude spin-free de�nitions of the luster operators,T̂ , and an appropriate (perhaps multi-determinant) referene wavefuntion.39,41,42,156{158Suh general oupled luster derivations are beyond the sope of this hapter, though someof the issues assoiated with diÆult open-shell problems are disussed in the next setion.



110linear T̂1 ontribution to the CCSD energy given in Eq. [123℄,ECCSD  Xia fiatai : [242℄The summation may be fatored into a number of spin ases asXia fiatai = Xi�a� fi�a�ta�i� + Xi�a� fi�a� ta�i� + Xi�a� fi�a� ta�i� + Xi�a� fi�a�ta�i�= Xi�a� fi�a�ta�i� + Xi�a� fi�a� ta�i� ; [243℄where the mixed spin terms vanish after spin integration of the Fok matrix integralsover the orthogonal spin funtions � and �. Similarly, the T̂2 ontribution to ECCSDmay be fatored into three nonvanishing spin ases, viz.,14Xijabhijjjabitabij = 14 Xi�j�a�b�hi�j�jja�b�ita�b�i�j� + 14 Xi�j�a�b�hi�j�jja�b�ita�b�i�j� +Xi�j�a�b�hi�j�jja�b�ita�b�i�j� ; [244℄where we have used the permutational antisymmetry of the luster amplitudes andthe two-eletron integrals to simplify the nonzero mixed spin ases into a singleterm. Similar fatorization of the T̂1 and T̂2 amplitude equations is possible. Themost omputationally eÆient implementation of the CCSD equations must takethese fatorizations into aount in order to avoid wasted storage and omputationof the many vanishing amplitudes.Atomi-Orbital-Basis AlgorithmsThe iterative proedure for solving the amplitude equations desribed above requiresstorage of a number of quantities, inluding T̂1 and T̂2 amplitudes, as well as one-



111and two-eletron integrals in the moleular-orbital (MO) basis. Of these, the setof two-eletron integrals involving four virtual orbitals (e.g., habjjdi) requires themost disk spae and quikly beomes the omputational bottlenek as the size ofthe basis set is inreased. One way of irumventing this problem is to avoid thetransformation and storage of this integral lass ompletely and to instead evaluatetheir ontribution to the T̂2 amplitude equation (f. Eq. [153℄),tabij  Xd tdij habjjdi; [245℄using the two-eletron integrals in the atomi-orbital (AO) [or, symmetry-orbital(SO)℄ basis. The advantage is that, unlike the MO basis funtions, the AO funtionsare often strongly loalized at the atomi enters, and, as a result only a frationof the total number of assoiated two-eletron integrals are nonzero for large basissets. The outline of this AO-basis algorithm may beome learer if we rewrite theabove equation in terms of the untransformed integrals:tabij  Xd tdij X����Ca�Cb�C�Cd�h��jj��i; [246℄where the indies �, �, �, and � are used to denote AO-basis funtions, and, foronveniene, we assume that the MO-basis transformation oeÆients suh as Ca�are real. Reordering the summations in this equation we obtaintabij  X�� Ca�Cb�X�� h��jj��iXd C�Cd�tdij : [247℄The last summation may be interpreted as the \baktransformation" of the twovirtual indies on the T̂2 amplitude into the AO basis, i.e.,t��ij =Xd C�Cd�tdij : [248℄If this set of \half-AO" amplitudes is omputed and stored (using two standardO(N 5) steps159), they may be subsequently ontrated with the AO-basis integrals



112to give t��ij =X�� h��jj��it��ij ; [249℄whih requires an O(N 6) algorithm. The �nal summation is then evaluated totransform the �nal half-AO amplitudes bak to the MO basis to obtain the ompleteontribution to T̂2, tabij  X�� Ca�Cb�t��ij : [250℄A similar proedure may be onstruted for terms involving three-virtual indexintegrals, habjjii.160AO-basis algorithms have been exploited for many years in the onstrutionof orrelated wavefuntions,161 partiularly in MBPT(2).154,162 In oupledluster theory, a number of approahes have reently been disussed in theliterature. For example, Hampel, Peterson, and Werner,160 have reported aneÆient implementation of the Bruekner-orbital-based CCD method that avoidsthe transformation and storage of the habjjdi integrals and omputing theappropriate ontributions as desribed above. Koh, Helgaker, Christiansen, ando-workers163,164 have arried the approah even further by avoiding storage of eventhe AO-basis two-eletron integrals and omputing limited distributions of these \onthe y" as they are needed. Their largest single-point CCSD energy alulationsusing this algorithm have involved more than 500 basis funtions.164 Rendell andLee165 have taken a somewhat di�erent tak in CCSD(T) energy alulations byapproximating the habjjii and habjjdi integrals via a \resolution of the identity"tehnique (f. Eq. [225℄). In their approah, a set of auxiliary funtions is usedto rewrite these four-enter eletron repulsion integrals as produts of three-enterintegrals, whih require signi�antly less storage spae. Finally, we note thatAO-basis tehniques have proven to be vital to the reent work of Stanton and



113Gauss on analyti seond derivatives for a number of orrelated tehniques, inludingSDQ-MBPT(4), CCSD, and CCSD(T).57,58



CURRENT RESEARCH AND FUTURE DIRECTIONS
In this �nal setion, we examine in detail a number of reent researh e�orts inoupled luster theory. This review is far from exhaustive, and, due to spaeonsiderations, we hoose to fous primarily on two spei� areas in whih thepresent authors have made ontributions. We will then disuss some of the mostimportant theoretial and omputational advanes expeted in the near future. Wealso reommend Refs. 78 and 79 for a disussion of other reent work.Coupled Cluster Theory for Open-Shell MoleulesFor the losed-shell eletroni states of many small moleules, the task of determiningmoleular properties is generally well-understood, and oupled luster methods |partiularly the CCSD(T) approah| in onjuntion with large basis sets, have beenfound to give exeptionally aurate results relative to experiment for properties suhas moleular geometries, harmoni vibrational frequenies, infrared intensities, andeletri dipole moments.78,79,137,138,166 The potential energy surfaes of open-shellspeies,w on the other hand, often present serious omputational problems. In themost widely used open-shell CCSD(T) approahes,27,35,51 a alulation for a radialation, for example, requires approximately three times the omputational e�ort ofits losed-shell ounterpart, even if a spin-restrited open-shell Hartree-Fok (ROHF)determinant is hosen as the referene wavefuntion. This diÆulty arises due toan unbalaned exhange interation between open- and losed-shell eletrons suhwWe wish to emphasize that the present disussion fouses only on high-spin open-shellsystems to whih a single-determinant referene wavefuntion is appliable. Coupledluster tehniques for low spin ases, suh as open-shell singlets, have been pursued inthe literature for many years, however, and provide a fertile area of researh.158,167{170114



115that the Fok matrix, whih appears in the spin-orbital oupled luster expressionspresented in Eqs. [152℄ and [153℄, ontains di�erent � and � omponents. As aresult, the luster operators may be fatored into two di�erent spin ases for T̂1 (ta�i�and ta�i� ) and three di�erent spin ases for T̂2 (ta�b�i�j� , ta�b�i�j� , and ta�b�i�j� ).Several researhers have reently devoted onsiderable e�ort to the derivationand eÆient implementation of tehniques based on spin-restrited referenedeterminants that redue the omputational disrepany between losed- andopen-shell systems.33,38,171{173 This emphasis on spin-restrited tehniques hasresulted in part from a bias towards referene wavefuntions whih maintain thespin symmetry of the exat wavefuntion (suh as the ROHF determinant), butalso beause of the possible eÆieny advantages spin-restrited methods haveover unrestrited tehniques. That is, sine the omponent moleular orbitals areonstrained to have idential spatial parts for eah spin funtion, it should be possibleto onstrut the orrelated wavefuntion in a manner that takes advantage of thissymmetry.It should be noted, however, that the use of a spin-symmetry-adapteddeterminant suh as the ROHF wavefuntion as a referene in a oupled lusteralulation does produe a spin-pure energy,x but does not imply that the orrelatedwavefuntion itself is an eigenfuntion of Ŝ2 as well.27,35 For the spin-orbitalde�nition of T̂ desribed here, spin ontamination an still enter into the oupledluster wavefuntion through the non-linear ontributions of luster operators tothe amplitude equations,37 though the importane of this ontamination has beenquestioned.174 A great deal of e�ort has been devoted reently to the eÆientxThe ROHF-CCSD energy is indeed ompletely spin projeted as disussed in Refs. 35,27, and 37, but is still di�erent from that omputed using a spin-adapted oupled lusterwavefuntion.



116onstrution of spin-adapted open-shell oupled luster wavefuntions and/or orretspin expetation value equations.36{42,158Spin-Restrited Triple Exitation CorretionsThe (T) orretion disussed earlier beginning on p. 96 is derived via a perturbationaldeomposition of the oupled luster energy and amplitude equations. Thisdeomposition depends on a partiular partitioning of the eletroni Hamiltonian,ĤN , into a zeroth-order omponent and a utuation potential | that is, a partiularde�nition of many-body perturbation theory. When based upon the anonialHartree-Fok orbitals of an RHF or UHF referene determinant, this partitioning issimple, and Ĥ(0) is taken to be the (diagonal) Fok matrix. For ROHF referenewavefuntions, however, the hoie of partitioning is less obvious, and a variety ofspin-restrited open-shell theories have been reported in the literature in reentyears.127{134,175 For example, in the RMP129 or ROHF-MBPT130 method, thediagonal oupied and virtual bloks of the Fok operator are hosen as Ĥ(0),and the o�-diagonal oupied-virtual bloks are inluded in Ĥ(1) along with V̂N .The resulting perturbed energy and wavefuntion equations have muh in ommonwith the onventional ROHF-CCSD energy and amplitude equations, leading toa onvenient form for the ROHF-CCSD(T) method.29 One drawbak of thisapproah, however, is that the o�-diagonal fij and fab omponents of the Fokmatrix (ontained in the �rst and seond diagrams in Figure 2), are nonzero. Thus,Eq. [225℄ presented earlier takes on a more general form,29,31Dabijk tabijk = P (i=jk)P (a=b) "Xd hbjjdiitadjk �Xl hlajjjkitbil + tai hbjjjki+ fiatbjk#�P (i=jk)Xl (1� Æil)filtabjkl + P (a=b)Xd (1� Æad)fadtbdijk: [251℄



117The presene of fil and fad omponents requires an iterative solution of thisequation | an approah whih neessitates storage of the T̂3 amplitudes in eahiteration! This sheme is unreasonable sine the number of suh amplitudeswould rapidly beome the omputational bottlenek as the size of the moleularsystem inreases. This problem may be irumvented, however, by utilizing theso-alled \semianonial" moleular orbital basis in whih the oupied-oupiedand virtual-virtual bloks of the Fok matrix are diagonal.29,129,130 In this basis, thetwo �nal terms in the T̂3 equation above vanish, and the onventional non-iterativeomputational proedure desribed earlier in the hapter may be employed.The use of semianonial orbitals does have a drawbak, however, in that oneis neessarily fored to use a omputational proedure omparable to that of theUHF-CCSD(T) approah. Sine the ROHF-based spin-orbital Fok matrix ontainsdi�erent � and � omponents, rotation to the semianonial basis breaks thespin-restrition on the moleular orbitals.y Thus, the integrals used in Eq. [251℄above are broken into UHF-like �� �, � � �, and �� � spin ases with a requisitefator of three inrease in storage requirements.This problem an be avoided, however, if an appropriate open-shell perturbationtheory is de�ned suh that the zeroth-order Hamiltonian is diagonal in the trulyspin-restrited moleular orbital basis. The \Z-averaged" perturbation theory(ZAPT) de�ned by Lee and Jayatilaka132 ful�lls this requirement. ZAPT takesadvantage of the symmetri spin orbital basis. For eah doubly oupied spatialorbital and eah unoupied spatial orbital, the usual � and � spin funtions areyThis diagonalization a�ets neither the ROHF determinant itself nor the ROHF orCCSD energies due to the well-known invariane of those methods with respet to ertainlasses of orbital rotations.134



118used, but for the singly oupied orbitals, new spin funtions,�+ = 1p2(� + �) [252℄and �� = 1p2(�� �) [253℄are assigned. By onvention, �+ funtions are assoiated with oupied spin orbitals,and �� funtions with unoupied spin orbitals. In this basis, the spin orbital Fokoperator takes on the shemati form,
F̂ZAPT = d�d�s�+s��v�v�

0BBBBBBBBBBBBBBBBBB�
F̂M�L� F̂M�L� F̂L�T�+ 0 0 F̂D�L�F̂M�L� F̂M�L� F̂L�T�+ 0 F̂D�L� 0F̂L�T�+ F̂L�T�+ F̂U�+T�+ 0 0 00 0 0 F̂U��T�� F̂U�T�� �F̂D�T��0 F̂D�L� 0 F̂D�T�� F̂E�D� F̂E�D�F̂D�L� 0 0 �F̂D�T�� F̂E�D� F̂E�D�

1CCCCCCCCCCCCCCCCCCA ; [254℄
where apital letters L and M denote doubly oupied spatial orbitals, T and Udenote singly oupied spatial orbitals, and D and E denote unoupied spatialorbitals. Using a standard de�nition of ROHF orbitals, the diagonal bloks of thisFok matrix are themselves diagonal when the theory is applied to onventionalhigh-spin open-shell systems.132,134With the diagonal bloks of the Fok operator above taken as the ZAPTzeroth-order Hamiltonian, the various exitation operators of oupled luster theorymay be deomposed into perturbational orders, as desribed earlier in the hapter.The same T̂3 ontributions used to de�ne the onventional (T) orretion an thenbe onstruted to produe a ZAPT-based triples orretion | denoted (zT).33 Thisanalysis is ompliated by the fat that the theory requires that one distinguishthe singly oupied orbitals from the doubly oupied and unoupied orbitals.



119Hene, the partile-hole formalism used throughout this hapter must be generalizedsuh that there are two types of holes (doubly oupied and singly oupied) andtwo types of partiles (unoupied and singly oupied). The tedious algebraiapproah to the derivation of the (zT) orretion was arried out in Ref. 33 by theonstrution of a symboli manipulation program (designed for the Mathematiainterfae176) for the appliation of Wik's theorem to seond-quantized operatorstrings. This program is desribed in detail in Ref. 118. The related diagrammatianalysis involves essentially the same rules outlined earlier in the hapter with theompliation that luster operators and Hamiltonian fragments must be fatoredsuh that the diagrams di�erentiate between the two types of hole and partilelines. The rather ompliated equations for the (zT) orretion are presented in anAppendix in Ref. 33.The performane of the (zT) orretion is essentially idential to that of theonventional ROHF-CCSD(T) method. Appliation of both to a series of diatomimoleules in ground and exited states indiates insigni�ant di�erenes between thetwo in the predition of bond lengths, harmoni vibrational frequenies, anharmonionstants, et. Unfortunately, the ompliated equations assoiated with the (zT)orretion have thus far preluded its large sale implementation and, as a result,further systemati studies involving larger basis sets have not yet been arried out.Bruekner Orbitals in Coupled Cluster TheoryIn 1958, Nesbet extended Bruekner's theory for in�nite nulear matter177 tonon-uniform systems of atoms and moleules.178 By onsideration of the CISDproblem in whih the eletroni Hamiltonian is diagonalized within the basis ofthe referene and all singly and doubly exited determinants, Nesbet explainedthat Bruekner theory allows one to onstrut a set of orthonormal moleular



120orbitals for whih the orrelated wavefuntion oeÆients for all singly exiteddeterminants vanish. Unfortunately, the onstrution of the set of orbitals thatful�ll this \Bruekner ondition" an be determined only a posteriori from thesingle exitation oeÆients omputed in a given orbital basis. As a result, thepratial implementation of Bruekner-orbital-based methods has usually requiredthe repeated onstrution of the orrelated wavefuntion (along with the assoiatedintegral transformation). Despite this drawbak, Bruekner orbitals have foundnew life within oupled luster theory in reent years.173,179{192 In 1981, Chilesand Dykstra179 introdued the �rst moleular appliation of the Bruekner oupledluster doubles (B-CCD) method, whih they referred to as CCD(T̂1=0). Someyears later, Handy and o-workers182{184 also implemented B-CCD energies, alongwith a perturbational triple-exitation orretion [known as B-CCD(T)℄ and analytienergy gradients. Sine these important theoretial developments, perhaps the mostsigni�ant work in this area has been reported by Hampel, Peterson, and Werner,160who explained that the speial form of the B-CCD amplitude equations allows one toavoid the repeated transformation of ertain lasses of two-eletron integrals. Thisadvantage, when oupled to speially designed extrapolation shemes that onvergethe Bruekner orbitals and luster amplitudes simultaneously, permits signi�antredution in the omputational expense of the method suh that B-CCD may ostno more than a onventional CCSD alulation.Perhaps the greatest need for Bruekner-orbital-based methods arises in systemssu�ering from artifatual symmetry-breaking orbital instabilities,140,193{196 wherethe approximate wavefuntion fails to maintain the seleted spin and/or spatialsymmetry harateristis of the exat wavefuntion. Suh instabilities arise inSCF-like wavefuntions as a result of a ompetition between valene-bond-likesolutions to the Hartree-Fok equations; these solutions typially allow forloalization of an unpaired eletron onto one of two or more symmetry-equivalent



121atoms in the moleule. In the ground 2�g state of O�2 , for example, a pair ofsymmetry-broken Hartree-Fok wavefuntions may be onstruted with the unpairedeletron loalized onto one oxygen atom or the other. Though symmetry-brokenwavefuntions have sometimes been exploited to produe providentially orretresults in a few systems, they are often not bene�ial or even aeptable,197 andthe question of whether to relax onstraints in the presene of an instability wasoriginally desribed by L�owdin as the \symmetry dilemma."198The e�ets of symmetry-breaking orbital instabilities on properties omputedusing orrelated wavefuntions built from a single-determinant referene has reentlybeen investigated140 for a number of �nite-order MBPT and oupled luster methods.Due to a orresponding singularity in the moleular orbital Hessian,193,196,199{201nearby orbital instabilities an produe sometimes dramatially distorted results forseond-order properties suh as harmoni vibrational frequenies and polarizabilities.However, one important onlusion of Ref. 140 is that the hoie of referenewavefuntion an signi�antly a�et the loation of this Hessian singularity on thepotential energy surfae, and, as a result, a properly seleted set of moleular orbitalsan often eliminate the symmetry breaking problem by moving the instability outof the region of interest. In reent years, Bruekner orbitals have been utilizedin onjuntion with oupled luster theory for preisely this purpose for a numberof \diÆult" moleular systems,185,186,202{205 suh as the nitrate radial,186 the O+4ion,192,202 the hydrogen-peroxide radial ation,203,204 and the ~C 2A2 exited state ofNO2.205The implementation of B-CC methods for open-shell systems (where symmetrybreaking instabilities are the most likely to our) is straightforward when either aUHF or ROHF referene wavefuntion is used as the initial guess for the Brueknerdeterminant. Unfortunately in the ROHF ase, it is not possible to maintainspin restrition on the moleular orbitals beause the single exitation amplitudes,



122whih may be used as the rotation parameters for the iterative onstrution ofthe Bruekner orbitals, are not symmetri in the spin indies due to the unevenexhange interation between the open- and losed-shell eletrons disussed earlier.As a result, the repeated onstrution of the oupled luster wavefuntion requiresthe transformation and storage of roughly three times the number of two-eletronintegrals needed for the initial ROHF-CCSD alulation. This diÆulty, whih isdiretly omparable to the problem of semianonial orbitals desribed in the lastsetion, represents a signi�ant obstale for open-shell B-CCD implementations.The symmetri spin orbital basis, whih was also used to onstrut thespin-restrited (zT) orretion, also provides a route to a spin-restrited open-shellB-CC theory (RB-CC).173 In this spin basis, the T̂1 amplitudes may be shown tohave the symmetries, tA�I� = tA�I� ; [255℄tA�I� = tA�I� ; [256℄tW��I� = �tW��I� ; [257℄and tA�W�+ = tA�W�+ ; [258℄where I, A, andW indiate doubly oupied, unoupied, and singly oupied spatialorbitals, respetively. The \spin-ip" T̂1 amplitudes of the type tA�I� are generallynonzero in the symmetri spin orbital basis, but it may be argued132 that theseamplitudes should instead be lassi�ed as double exitations. The remaining threelasses of T̂1 amplitudes may be used to arry out a series of �rst-order rotationsamong the orbital subspaes, viz.~�I = �I + tA�I� �A + tW��I� �W ; [259℄~�W = �W + tA�W�+�A � tW��I� �I : [260℄



123At onvergene the orbitals will obey the Bruekner onditionstA�I� = tA�W�+ = tW��I� = 0: [261℄These equations provide the basis for the RB-CC method sine they do not implyany loss of spin restrition on the moleular orbitals as the rotation is applied.Furthermore, the RB-CC method may be trivially implemented within existingROHF-CCSD programs by a simple \symmetrization" of the standard (�; �) T̂1amplitudes into the new spin basis173 prior to the rotation.The performane of the RB-CCD method (whih is analogous to the onventionalunrestrited B-CCD method) has been tested on the nitrate radial, NO3, andthe ~C 2A2 state of NO2, both of whih have presented diÆulties for a varietyof theoretial methods due in part to symmetry breaking instabilities in theHartree-Fok referene wavefuntion. The RB-CCD method was found to provideresults in exellent agreement with the B-CCD method, inluding the orretpredition of Cs symmetry for the equilibrium geometry of the ~C state of NO2.205,206Work is presently underway for extension of the RB-CCD method to inlude triples[i.e., a RB-CCD(T) method where the triples orretion is de�ned similarly to the(zT) orretion desribed above℄ and analytial energy gradients.Future Researh ProspetsThanks in part to the omputational advanes desribed in the previous setion,oupled luster theory has developed into arguably the most aurate andomputationally a�ordable method of modern omputational quantum hemistry.The results of oupled luster alulations are ommonly found in the hemialphysis literature, and, when the auray of experimental results is questioned,the CCSD(T) method is often used to settle the debate. In spite of this suess,oupled luster theory is far from appliable to all problems of hemial interest.



124The majority of the urrent researh e�orts may be divided into four overlappingategories:� Large moleules and extended systems. As noted in the previous setionon p. 104, the CCSD(T) method sales as O(N 7), where N is the number of basisfuntions. This implies that a fator of two inrease in the size of the moleularsystem involves a a. 128 inrease in the CPU ost of the alulation. For example,a high-auray CCSD(T) energy alulation for the amino aid alanine requiresapproximately �ve days on modern workstations; an equivalent alulation for thealanine dimer would require nearly two years to omplete. In addition, the storagerequirements of the CCSD(T) method sale roughly as O(N )4, leading to rapidlyinsurmountable disk spae limitations as the size of the system inreases. Our ownreent CCSD(T) alulations on isomers of [10℄annulene (moleular formula C10H10)involving more than 300 basis funtions and low symmetry may represent the urrentlimit of \onventional" oupled luster programs.207One of the most promising approahes to overoming the saling problems of theoupled luster method lies in the loal orrelation onept developed primarilyby Saeb� and Pulay.208{212 This sheme relies on the use of a set of loalized,non-orthogonal moleular orbitals in order to drastially redue the number ofnon-negligible parameters in the orrelated wave funtion. Some e�ort in thisdiretion has been reported by Hampel and Werner213 and it is likely that newimplementations and extensions of the \loal-CC" method will appear in the nextfew years. In addition, the storage bottlenek assoiated with large moleules hasalso been examined by several researhers, leading to \integral diret"163,164 and\resolution of the identity" methods,165 desribed in the earlier setion of the hapterentitled \Atomi-Orbital-Basis Algorithms."� Exited eletroni states. One de�ieny of the onventional oupledluster methods is that they apply only to ground eletroni states (or, more



125aurately, to the lowest-energy states of a given spin and spatial symmetry). Theequation-of-motion oupled luster method5,60{63,65 (desribed earlier in the hapteron p. 32) and related methods suh as SAC-CI106{108 and STEOM-CC74,114 havebeen devised suh that higher-lying eletroni states may be studied. These methodshave proven to provide reliable auray (on the order of 0.2 eV) in the preditionof eletroni exitation spetra for states whih are well-desribed by promotionof a single eletron from the ground state. Perhaps the most important work inexited-state oupled luster theory in the next several years will be the developmentof methods for treating \doubly exited" states and the improvement of the aurayof EOM-CC to better than 0.1 eV through extension of existing methods for theeÆient inlusion of triply exited determinants in the diagonalization spae of�H.70,71,105,214{217� Potential energy surfaes. All oupled luster methods depend impliitlyupon a referene wavefuntion (usually the single-on�guration Hartree-Fokdeterminant). However, for ases where this referene fails dramatially,even the CCSD(T) method annot be expeted to provide reliable results.Bond-breaking provides an exellent example of this behavior; as a � bondis separated, for instane, a single determinant fails to properly inlude botheletroni on�gurations [(�)2 and (��)2℄ needed to desribe the dissoiationproess with even qualitatively auray. Sine a omplete potential energysurfae is vital to researh e�orts in reation dynamis, for instane, muhe�ort has been devoted to the onstrution of multireferene oupled luster(MRCC) shemes based primarily on multion�gurational SCF (MCSCF) referenewavefuntions.76,78,125,218{223 Of partiular interest is the work by Pieuh,Adamowiz, and o-workers,218,219,223 in whih a MRCCSD wavefuntion, forexample, is obtained via seleted triple and quadruple exitations from a fullCCSDTQ wavefuntion onstruted from a single eletroni on�guration. This



126approah is similar to that used earlier in multireferene on�guration interationmethods.86,224 By retaining a single-determinant referene formalism, one avoidsmany of the diÆulties of a \true" MCSCF-based approah and automatedtehniques for the onstrution of higher exitation levels (i.e., beyond quadruples)are promising. In addition, multideterminantal oupled luster methods suhas the unitary-group approah39,158,167,168 have been atively pursued in reentyears41,42,169,170 for desribing biradials and other \low-spin" eletroni states forwhih a single-determinant referene is inadequate.� High-auray methods. For properties suh as dissoiation andfragmentation energies, oupled luster theory used in onjuntion with large basissets is often expeted to provide \hemial auray," i.e., �1 kal/mol. In reentyears, many researhers have asked what would be required to obtain \spetrosopiauray", i.e., �1 m�1.z It has been shown in a numerous studies in thepast deade226{231 that the onvergene of the oupled luster (as well as CI andperturbation theory) energies towards a \basis set limit" is muh slower than thatpossible with Hartree-Fok. That is, for a given level of eletron orrelation (e.g.,CCSD), one must use muh more omplete basis sets (perhaps inluding high levelsof orbital angular momentum, s, p, d, f , et.) relative to Hartree-Fok beforeadditional improvements to the basis set make no signi�ant ontributions to theomputed energy. The soure of this problem is a well-known failure by orrelatedtehniques suh as oupled luster when used with ommon Gaussian-type basisfuntions to desribe the behavior of many-eletron wavefuntions as eletronsapproah one another losely.232 One tehnique for overoming this diÆulty isto inlude terms whih expliitly involve the intereletroni distane, 1r12 , in thezIt should be noted that the goal of true spetrosopi auray may be unattainabledue to the impliit errors assoiated with the use of a Born-Oppenheimer, non-relativistiHamiltonian to desribe moleular systems.225



127orrelated wavefuntion. When applied in oupled luster theory, suh an approahhas the advantage that the onventional formalism and implementation remainlargely intat, with a number of sophistiated modi�ations needed to aount forthe additional mathematial term(s). The reent work on the linear r12-CCSDmethod by Klopper, Kutzelnigg, Noga, and o-workers232 and on Gaussian geminalsby Persson and Taylor229 is promising, and further impressive developments are likelyto be reported in the next several years.
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Figure 1: Some basi omponents of oupled luster diagrams: (a) hole lines; (b)partile lines; () the referene wavefuntion, �0, represented by empty spae; (d)a single-determinant wavefuntion, �ai , whih di�ers from the referene by a singleexitation.Figure 2: Diagrammati representation of eah fragment of the one-partileomponent of the Hamiltonian operator, F̂N . The exitation level of eah diagramis indiated beneath it. The interation line is indiated by the dashed horizontalline apped by the \X".Figure 3: Diagrammati representation of eah fragment of the two-partileomponent of the Hamiltonian operator, V̂N . The exitation level of eah diagramis indiated beneath it. The interation line is indiated by the dashed horizontalline.Figure 4: Diagrammati representation of the T̂1, T̂2, and T̂3 exitation operators.The exitation level of eah diagram is indiated to its right. The interation line isindiated by a solid horizontal bar.
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