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Preface

Surveying the available textbooks that deal with the quantum mechanics of
many-particle systems, one might easily arrive at the incorrect conclusion
that few new developments have taken place in the last couple of decades.
We only mention the recent discovery of Bose-Einstein condensation of di-
lute vapors of atoms at low temperature to make the point that this is not
the case. In addition, coincidence experiments involving electron beams
have clarified in wonderful detail the properties of electrons in atoms and
protons in nuclei, since the majority of textbooks have been written. Also,
most of them do not provide a satisfactory transition from the typical single-
particle treatment of quantum mechanics to the more advanced material.
Our experience suggests that exposure to the properties and intricacies of
many-body systems outside the narrow scope of one's own research can
be tremendously beneficial for practitioners as well as students, as does
a unified presentation. It usually takes quite some time before a student
of this material masters the subject sufficiently so that new research can
be initiated. Any reduction of that time facilitated by a student-friendly
textbook therefore appears welcome. For these reasons we have made an
attempt at a systematic development of the quantum mechanics of nonrel-
ativistic many-boson and many-fermion systems.

Some material originated as notes that were made available to students
taking an advanced graduate course on this subject. These students typi-
cally take a one-year course in graduate quantum mechanics without actu-
ally seeing many of the topics that deal with the many-body problem. We
note that motivated undergraduate students with one semester of upper-
level quantum mechanics are also able to absorb the material, if they are
willing to fill some small gaps in their knowledge.

As indicated above, an important goal of the presentation is to provide
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viii Many-body theory exposed!

a unified perspective on different fields of physics. Although details differ
greatly when one studies atoms, molecules, electrons in solids, quantum
liquids, nuclei, nuclear/neutron matter, Bose-Einstein or fermion conden-
sates, it is helpful to use the same theoretical framework to develop physi-
cally relevant approximation schemes. We therefore emphasize the Green's
function or propagator method from quantum field theory, which provides
this flexibility, and in addition, is formulated in terms of quantities that can
often be studied experimentally. Indeed, from the comparison of the calcu-
lation of these quantities with data, it is often possible to identify missing
ingredients of the applied approximation, suggesting further improvements.

The propagator method is applied to rederive essential features of one-
and two-particle quantum mechanics, including eigenvalue equations (dis-
crete spectrum) and results relevant for scattering problems (continuum
problem). Employing the occupation number representation (second quan-
tization), the propagator method is then developed for the many-body sys-
tem. We use the language of Feynman diagrams, but also present the equa-
tion of motion method. The important concept of self-consistency is empha-
sized which treats all the particles in the system on an equal footing, even
though the self-energy and the Dyson equation single out one of the parti-
cles. Atomic systems, the electron gas, strongly correlated liquids including
nuclear matter, neutron matter, and helium systems, as well as finite nuclei
illustrate various levels of sophistication needed in the description of these
systems. We introduce the mean-field (Hartree-Fock) method, random
phase approximation (ring diagram summation), summation of ladder dia-
grams, and further extensions. A detailed presentation of the many-boson
problem is provided, containing a discussion of the Gross-Pitaevskii equa-
tion relevant for Bose-Einstein condensation of atomic gases. Spectacular
features of many-particle quantum mechanics in the form of Bose-Einstein
condensation, superfluidity, and superconductivity are also discussed.

Results of these methods are, where possible, confronted with experi-
mental data in the form of excitation spectra and transition probabilities
or cross sections. Examples of actual theoretical calculations that rely on
numerical calculations are included to illustrate some of the recent applica-
tions of the propagator method. We have relied in some cases on our own
research to present this material for the sole reason that we are familiar
with it. References to different approaches to the many-body problem are
sometimes included but are certainly not comprehensive.

The book offers several options for use as an advanced course in quantum
mechanics. The first six chapters contain introductory material and can
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be omitted when it was covered in the standard sequence on quantum me-
chanics. Starting from Ch. 7 canonical material is developed supplemented
by topics that have not been treated in other textbooks. It is possible to
tailor the material to the specific needs of the instructor by emphasizing or
omitting sections related to Bose-Einstein condensation, atoms, nuclei, nu-
clear matter, electron gas, etc. In addition to standard problems, we also
introduce a few computer exercises to pursue interesting and illustrative
calculations. We have attempted a more or less self-contained presenta-
tion, but include a sizable list of references for further study. By providing
detailed steps we have tried to reduce the level of frustration many students
encounter when first confronting this challenging material. We hope that
the book will also be useful to researchers in different fields.

As usual with a text of this kind, it is impossible to cover all available
material. We have refrained from discussing important topics in solid state
physics, confident that these are more than adequately covered in appropri-
ate textbooks. We have also omitted the finite-temperature formalism of
many-body perturbation theory, since it is well documented in other texts.

It is a pleasure to thank the many colleagues, students, and others who
have contributed to the material in this book, in particular those who have
collaborated on the research reported here and those from the Department
of Subatomic and Radiation Physics at the University of Ghent. Without
their scholarship and interest we would not have been motivated to complete
this lengthy project. A special thanks goes to our colleagues who have
provided us with data and information that allowed us to construct many
of the figures in the text.

We anticipate unavoidable corrections to the text. Readers can track
these at http://wuphys.wustl.edu/~wimd.

Willem H. Dickhoff, St. Louis
wimd@wuphys.wustl.edu

Dimitri Van Neck, Ghent
Dimitri.VanNeck@UGent.be
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Chapter 1

Identical particles

In this chapter some basic concepts associated with identical particles are
developed. Section 1.1 discusses simple estimates that help to identify
under which conditions quantum phenomena related to identical particles
occur. Section 1.2 is devoted to a short discussion of the theoretical and
experimental background which suggests that only certain many-particle
states are realized in nature. We briefly review the notation relevant for
one-particle quantum mechanics and continue with the case of two identical
particles in Sec. 1.3. In Sec. 1.4 some illustrative examples are presented
which clarify the experimental consequences related to identical particles.
Finally, in Sec. 1.5 the construction of states with N identical fermions or
bosons, is developed and their properties discussed.

1.1 Some simple considerations

In a quantum many-body system, particles of the same species are com-
pletely indistinguishable. Moreover, even in the absence of mutual interac-
tions they still have a profound influence on each other, since the number
of ways in which the same quantum state can be occupied by two or more
particles is severely restricted. This is a consequence of the so-called spin-
statistics theorem, which is further discussed in the next section. One
may expect that such effects do not play a role when the number of pos-
sible quantum states is much larger than the number of particles, since it
is unlikely that two particles would then occupy the same quantum state.
This argument provides a rough-and-ready estimate of the conditions under
which quantum phenomena, related to identical particles, are important.

Consider the energy levels for a particle of mass m enclosed in a box

l



2 Many-body theory exposed!

with volume V = L3,

where ft is Planck's constant and the m can be any nonzero positive integer.
The number of states fl(E) below an energy E is given by

where E is assumed to be large enough so that Cl(E) is essentially a con-
tinuous function of energy (see e.g. [McQuarrie (1976)]). If we take the
average energy of a particle to be E = |fcsT, where fcs is Boltzmann's
constant and T the temperature in kelvin, one can check that in a box
with L = 10 cm and at T — 300 K the number of states Q, for an atom
with mass m = 10~25 kg is about 1030. This is much larger than the num-
ber of atoms N in the box under normal conditions of temperature and
pressure. Generalizing this argument, while requiring N <C fi, quantum
indistinguishability effects will not play a role when

where p = N/V is the particle density and Eq. (1.2) was used with E
replaced by ^k^T. Large particle mass, high temperature, and low density
favor this condition. Small mass, low temperature, and high density on
the other hand favor the appearance of quantum effects associated with
identical particles.

The dimensionless quantity Q is listed in Table 1.1 for a number of
many-body systems. For atoms and molecules one only expects quantum
effects for the very light ones, at low temperatures. For electrons in metals,
however, the condition (1.3) is already dramatically violated at 273 K. In a
white dwarf star the temperature is much higher, but a quantum treatment
of the electrons is still mandatory because of the extreme density. For
the protons and neutrons in nuclei, at a typical nuclear energy scale of
about 1 MeV or 1010 K, the condition (1.3) is also severely violated. The
same holds true for the neutrons in a neutron star at T = 108 K (which
is rather cool according to nuclear standards). Even a dilute vapor of
alkali atoms (rubidium), exhibits a spectacular quantum effect when cooled
down to extremely low temperatures: the formation of a so-called Bose-

(1.1)

(1.2)

(1.3)
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Table 1.1 Q-parameter for different systems

System I T (K) Density (m~3) Mass (u) Q
He (1) 4̂ 2 1.9 x 1028 TM 1.1
He (g) 4.2 2.5 x 1027 4.0 1.4 x KT1

He (g) 273 2.7 x 1025 4.0 2.9 x 10~6

Ne (1) 27.1 3.6 x 1028 20.2 1.1 x 10~2

Ne (g) 273 2.7 x 1025 20.2 2.5 x 10~7

e" Na metal 273 2.5 x 1028 5.5 x 10"4 1.7 x 103

e- Al metal 273 1.8 x 1029 5.5 x 10~4 1.2 x 104

e~ white dwarfs 107 1036 5.5 X 10~4 8.5 x 103

p,n nuclear matter 1010 1.7 x 1044 1.0 6.5 x 102

n neutron star 10* 4.0 x 1044 1.0 1.5 x 106

87Rb condensate 10~7 10^ 87 1.5

The dimensionless quantity Q, given in Eq. (1-3), for a number of many-
body systems, using representative values of densities and temperatures. The
mass of the particles is given in atomic mass units (u). Helium and neon are
considered at atmospheric pressure, with the liquid phase at boiling point.
Electrons in the metals sodium and aluminum can be compared to electrons
in white dwarf stars. Protons and neutrons at saturation density of nuclear
matter (the density observed in the interior of heavy nuclei) are considered as
well as neutrons in the interior of neutron stars. The last entry is the Bose-
Binstein condensate of a dilute vapor of 87Rb atoms, magnetically trapped
and cooled to ca. 100 nK.

Einstein condensate, which was recently achieved experimentally [Wieman
and Cornell (1995)].

Similar estimates for the importance of quantum effects are obtained by
considering the thermal wavelength of a particle which is given by

r \f i"2

for a particle with mass m and energy ksT. When A|, becomes comparable
with the volume per particle iV/N) one expects the identity of particles to
play a significant role.

1.2 Bosons and fermions

Spin and statistics are related at the level of quantum field theory [Streater
and Wightman (2000)]. The Dirac equation for a spin-| fermion cannot be
quantized without insisting that the field operators obey anticommutation
relations. In turn, these relations lead to Fermi-Dirac statistics represented
by the Pauli exclusion principle for fermions. Fermions comprise all funda-

(1.4)
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mental particles with half-integer intrinsic spin. Similarly, the quantization
of Maxwell's equations without sources and currents, is only possible when
commutation relations between the field operators are imposed, leading to
Bose-Einstein statistics. Bosons can be identified by integer intrinsic spin
appropriate for fundamental particles like photons and gluons. A wonder-
ful historical perspective on the development of quantum statistics can be
found in [Pais (1986)].

Several important many-particle systems contain fermions as their basic
constituents. Without recourse to quantum field theory one can treat the
consequences of the identity of spin-| particles as a result that is based on
experimental observation. Indeed, this is how Pauli came to formulate his
famous principle [Pauli (1925)]. By analyzing experimental Zeeman spectra
of atoms, he concluded that electrons in the atom could not occupy the
same single-particle (sp) quantum state. To incorporate this observation
based on experiment, it is necessary to postulate that quantum states which
describe N identical fermions must be antisymmetrical upon interchange of
any two of these particles. A similar postulate, requiring symmetric states
upon interchange, pertains for quantum states of JV identical bosons. Here
too, experimental evidence can be invoked to insist on symmetric states
to account for Planck's radiation law [Pais (1986)]. It appears that only
symmetric or antisymmetric many-particle states are encountered in nature.

1.3 Antisymmetric and symmetric two-particle states

To implement these postulates and study their consequences, it is useful to
repeat a few simple relations of sp quantum mechanics that also play an
important role in many-particle quantum physics. Texts on Quantum Me-
chanics where this background material can be found are [Sakurai (1994)]
and [Messiah (1999)]. A sp state is denoted in Dirac notation by a ket \a),
where a represents a complete set of sp quantum numbers. For a fermion,
a can represent the position quantum numbers, r, its total spin s (which
is usually omitted), and ms the component of its spin along the 2-axis.
For a spinless boson the position quantum numbers, r, may be chosen.
Many other possible complete sets of quantum numbers can be considered.
The most relevant choice usually depends on the specific problem which
holds true in a many-particle setting as well. This choice will be further
discussed when the independent particle model is introduced in Ch. 3. To
keep the presentation general, the notation \a) will be employed. When
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discussing specific examples, appropriate choices of sp quantum numbers
will be employed.

The sp states form a complete set with respect to some complete set of
commuting observables like the position operator, the total spin, and its
third component. They are normalized such that

(<*\0) = <W (1-5)

where the Kronecker symbol is used to include the possibility of 5-function
normalization for continuous quantum numbers. For eigenstates of the
position operator one has for example

(r,ms |r ',m's) = S(r -r')5matmla (1.6)

for a spin-| fermion. For a spinless boson

(r\r') = S(r - r') (1.7)

is appropriate in this representation. The completeness of the sp states
makes it possible to write the unit operator as

X>)<a| = l. (1.8)
a

In the case of continuous quantum numbers, an integration must be used
instead of a summation, or a combination of both in the case of a mixed
spectrum.

The complex vector space, relevant for N particles, can be constructed
as the direct product space of the corresponding sp spaces [Messiah (1999)].
Complete sets of states for N particles are obtained by forming the appro-
priate product states. The essential ideas can already be elucidated by con-
sidering two particles. In this case the notation (note the rounded bracket
in the ket)

|aia2) = |ai) |a2) (1.9)

is introduced. The first ket on the right-hand side of this equation refers
to particle 1 and the second to particle 2. Such product states obey the
following normalization condition

(aiC^Kf*;,) = <Jaia'/a2a^ (1-10)
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and completeness relation

J2 )a1a2)(a1a2\ = 1. (1.11)
aia2

While these product states are sufficient for two nonidentical particles,
they do not incorporate the correct symmetry required to describe iden-
tical bosons or fermions. Indeed, for ot\ and a2 different we note that

\a2ai) ± \OLXOL2). (1.12)

This represents a difficulty when performing a measurement on the system
if the two particles are identical. If a\ is obtained for one particle and a2

for the other, it is unclear which of the states in Eq. (1.12) represents the
two particles. In fact, the two particles could as well be described by

ci\a1a2) + c2\a2ai) (1-13)

which leads to an identical set of eigenvalues when a measurement is per-
formed. This degeneracy is known as the exchange degeneracy. The ex-
change degeneracy presents a difficulty because a specification of the eigen-
values of a complete set of observables does not uniquely determine the state
as expected on the basis of general postulates of quantum mechanics [Dirac
(1958)].

To display the way in which the antisymmetrization or symmetriza-
tion postulates avoid this difficulty, it is convenient to employ permutation
operators. One defines the permutation operator P\2 by

Pia |aio2) = |a2ai). (1.14)

While introduced as interchanging the quantum numbers of the particles,
this operator can also be viewed as effectively interchanging the particles.
Clearly,

P12 = P21 and P\2 = 1. (1.15)

Consider the Hamiltonian of two identical particles:

H=£ + & + V^-^- (L16)

The observables, like position and momentum, must appear symmetrically
in the Hamiltonian, as in the classical case. To study the action of Pu,
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consider an operator Ay acting on particle 1

Ai|aitt2) =ai|aia!2) (1-17)

where a± is an eigenvalue of Ai contained in the set of quantum numbers
ai. Similarly, an identical operator A2 acting on particle 2 will yield

A2\aia2) = a2 |aia2)- (1-18)

We note that

Pi2Ai\ala2) - aiP12\aia2) = ai\a2ax) - A2\a2ax) (1.19)

and

Pi2^i|aia2) = PnAiP£Pu\aia2) = P^P^a^on). (1.20)

Prom these two results one deduces that

PuAiPn1 = A2, (1.21)

since Eqs. (1.19) and (1.20) hold for any state \a\a2). It follows that

Pi2HPx-2
l = H (1.22)

or

[Pi2,H]=0, (1.23)

implying that both operators can be diagonal simultaneously. In the case
that ct\ ± a2, the normalized eigenkets of P i 2 are:

|ai"2>+ = - ^ { | a i a 2 ) + K « i ) } (1-24)

and

\aia2)_ = -={\aia2) - |a2ai)}, (1.25)

with eigenvalues +1 and -1, respectively. While these states normally do
not yet correspond to eigenstates of the two-particle Hamiltonian given
in Eq. (1.16), they now have the correct symmetry, so that eigenstates of
H will be linear combinations of these symmetric or antisymmetric two-
particle states, depending on the identity of the particles involved.

We define the symmetrizer

5ia = i ( l + Pi2) (1-26)
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and the antisymmetrizer

Aia = ±(l-P12). (1-27)

When applied to any linear combination of \aia2) and \a2a1), these oper-
ators will automatically generate the symmetric or antisymmetric state. In
the case of identical fermions, the Pauli exclusion principle results from the
requirement that an ./V-particle state must be antisymmetrical upon inter-
change of any two particles. In the case of two particles this implies that
the relevant state is the antisymmetrical one (dropping the - subscript):

\a1a2) = ^7={\a1a2)-\a2a1)}. (1.28)
v2

This state vanishes when a,\ =0.2, thus incorporating Pauli's principle. The
symmetric state for two bosons [Eq. (1.24)] is not yet properly normalized
when a.\ = a2, while demonstrating the possibility that bosons can occupy
the same sp quantum state. The properly normalized two-boson state is
given by

r 1 i 1 / 2

\a^s = ^rrn ^aia^+ \a^)}> (L2Q)

where na denotes the number of particles in sp state a. Obviously

] T na = 2 (1.30)
a

in this case. Prom now on, the states for more than one particle which
have angular brackets will denote the antisymmetric or symmetric states.
It should also be noted that as required for fermions

|a2ai) = -\aia2) (1-31)

and both kets therefore represent the same physical state. Only one of these
states should be counted when the completeness relation for two identical
fermions is considered. In practice this can be accomplished by ordering the
sp quantum numbers. Suppose one has a set of sp states labeled by discrete
quantum numbers |1), |2), |3),... etc. For two particles the completeness
relation in terms of antisymmetric states then reads e.g.

£ itf> fa'i = L (L32)
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It is also possible to use an unrestricted sum, if one corrects for the number
of equivalent states

^ E ly>foi= !• (L33)
ij

For bosons the completeness relation for ordered sp quantum numbers is
also expressed by Eq. (1.32), whereas

ij

applies for unrestricted sums.

1.4 Some experimental consequences related to identical
particles

Scattering experiments represent an ideal tool to illustrate the consequences
of dealing with identical particles. Consider two particles that have identical
mass and charge, but can be distinguished in some other way, say their color
being red or blue. A scattering experiment considered in the center of mass
of these particles can have two separate outcomes for the same scattering
angle. If the red particle approaches in the ^-direction and detectors able
to distinguish red and blue, are located in the direction 6 (detector D{) and
n — 9 (detector D2) with the z-axis, the (quantummechanical) cross section
for the red particle in D\ and the blue particle in D2 reads

%r(red DuUue D2) = \f(6)\2 , (1.35)
ail

where f(6) is the scattering amplitude. The cross section for the red particle
in D2 and the blue particle in £>i is given by

^(red D2,blue Dt) = \f(n-6)\2. (1.36)

If the detectors are colorblind, one cannot distinguish between these pro-
cesses and the cross section for a count in D\ becomes the sum of the two
probabilities

^{particle in D±) = \f(6)\2 + \f(n - 6)\2 . (1.37)

(1.34)
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Fig. 1.1 Differential cross section of 12C on 12C scattering at 5.0 MeV center-of-mass
energy as a function of the scattering angle 0 also in the center of mass. The full curve
is obtained from the Coulomb scattering amplitude by using Eq. (1-37) while the dashed
line employs the correct expression (1.38) for identical bosons. The experimental data
are taken from [Bromley et al. (1961)].

With identical bosons both processes cannot, even in principle, be distin-
guished. This implies that the probability amplitudes must be added before
squaring, to obtain the cross section which therefore reads

^-(bosons) = |/(0) + /(TT - 6)\2 , (1.38)
as 2

and now includes an interference term. The result of the interference is
that at 8 = TT/2 the cross section for bosons is twice that for distinguish-
able particles (but colorblind detectors). This prediction is confirmed by
experiment as shown in Fig. 1.1. In this figure the differential cross sec-
tion for the scattering of two identical 12C nuclei at low energy (5 MeV)
is plotted as a function of the center-of-mass scattering angle. The full
line employs the Coulomb scattering amplitude [Sakurai (1994)] according
to Eq. (1.37) whereas the dashed line employs Eq. (1.38). The comparison
with the data [Bromley et al. (1961)] unambiguously points to the identical
boson-boson cross section as the correct description. In the case of iden-
tical fermions one only obtains the interference when both particles have
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identical spin quantum numbers. The resulting cross section is given by

^(fermions) = \f(e)-f(n-6)\2. (1.39)

It follows that no particles will be detected at all at 6 = TT/2! This type of
experiment does, however, require the beam and target spins to be polarized
in the same direction.

Observe that in Fig. 1.1 the differential cross section for the scatter-
ing of composite particles is shown. This example demonstrates that it is
necessary to consider these carbon nuclei as identical bosons, at least at
those energies where no internal excitation of one or both nuclei can occur.
The critical ingredient that decides on the identity of this nucleus is the
total number of fermions present, 12 here. For an even number of con-
stituent fermions the composite particle behaves as a boson, while it acts
as a fermion when this number is odd. Examples for atoms are the 3He
and 4He isotopes. In each case the number of electrons and protons is 2.
Since 3He has only one neutron, its total number of fermions is odd and a
collection of these atoms will act as identical fermions. The two neutrons
in the 4He nucleus are responsible for the boson character of these atoms.
While chemically identical, these He liquids exhibit spectacularly different
quantum effects. The same reasoning demonstrates that the 87Rb atom,
referred to in Tab. 1.1, represents a boson.

1.5 Antisymmetric and symmetric many-particle states

In dealing with N particles one can proceed in a similar way as in Sec. 1.3
for two particles. Product states are denoted by

|aia2...ajv) = K ) \a2)... \aN) (1.40)

with orthogonality in the form

(a1a2...aN\a'1a'2...a'N) = (ai\a[){a2\a2)--(
aN\a'N)

= 5aua>i5a2ta>2...8aNyalN. (1-41)

The completeness relation reads

^2 \aia2--aN)(aia2...aN\ = 1. (1-42)
CtlC<2...aN
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Again, these product states do not incorporate the correct symmetry. A
projection onto symmetric or antisymmetric states is therefore required.
This is accomplished for fermions by using the antisymmetrizer for TV-
particle states

P

where the sum is over all AH permutations. P is a permutation operator for
iV particles and the sign indicates whether the corresponding permutation
is even or odd.1 A symmetrizer must be used for N identical bosons

v

Normalized antisymmetrical states are then given by

|aia2...aj\r) = VNI A \aia2...aN), (1.45)

while for bosons one obtains

r N\ i 1 / 2

|a1a2...aJV) = —: j — S \aia2...aN) (1.46)

with £ a n« = N.
A consequence of this explicit construction of antisymmetric states for

TV fermions is that no sp state can be occupied by two particles, i.e. the
quantum numbers represented e.g. by a\ cannot occur twice in any anti-
symmetric TV-particle state. Pauli's exclusion principle is therefore incor-
porated. For any antisymmetric TV-particle state there are TV! physically
equivalent states obtained by a permutation of the sp quantum numbers.
Only one physical state corresponds to these TV! states. Some details are
presented in the following example for the case of three particles.

xThe iV-particle permutation operator can be written as a product of two-particle
permutation operators. The number of the latter terms decides the even or odd character
of the iV-particle operator.

(1.43)

(1.44)
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Example: For three fermions for example, one has

\aia2a3) = —;={|aia2a3) - \a2aia3) + |a2a3ai)

- |a3a2ai) + |a3aia2) - |a ia3a2)}.

It should be clear now that antisymmetry upon interchange of any
two particles is incorporated since

|aiQ2o;3) = - |a2aia3)

and so on. For three bosons a possible state reads

\0tia1a2) = /-—{\aia1a2) + \aiatia2) + \otia2ai)
y/o'2\

+ \a2aiai) + \a2aiax) + \axa2ai)}

= -r={|aiaia2) + |aia2ai) + \a2aia{)}.
Vo

Symmetry upon interchange of any two particles is again incorpo-
rated since

|aiaia2) = + |a ia 2 ai )

and so on.

By using a standard ordering of the sp quantum numbers one can write
the completeness relation for N particles as

ordered

^T \a1a2...aN) (aia2...aN\ = 1. (1.47)
aia2...ajv

In the case of a 1-dimensional harmonic oscillator this ordering procedure
is obvious but in other instances no ambiguity need arise. If no ordering is
employed, completeness can be written as

— 5Z \a1a2...aN){a1a2...aN\= 1. (1.48)
CX\(X2---<XN

Normalization for states with ordered sp quantum numbers has the form

(a1a2...aN\al
1a2...a'N) = (a1\a'1)(a2\a'2)...(aN\a'N)

= 6a1,a'18a2,a'2—daN,a'N, (1'49)
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whereas, if the sp states are not ordered, the result is obtained in the form
of a determinant

< Q l K ) (ai\a'2) ... (ai\a'N)
(a2\a'1) (a2\a'2) . . . (a2\a'N)

{aia2...aN\ala2...aN} = . . . (1.50)

(aN\a[) (aN\a'2) ... (aN\a'N)

The normalized JV-particle wave function of an antisymmetric state is given
by

'4>aia2...aN{x\X2...XN) = (XiX2...XN\aia2...OtN), (1-51)

where

(XIX2...XN\ = (xi\(x2\...{xN\ (1.52)

and x\ = {ri,mSl}. Often this wave function is written in determinantal
form

(a;i |ai) . . . (xN\ai)

1 <^i|«2> ••• (xN\a2)
Va1a2...aN{XlX2...XN) = ~J= . . (1.53)

(xi\aN) ... (xN\atN)

Such a wave function is commonly called a Slater determinant [Slater
(1929)] . Exchange of rows and columns in a Slater determinant does not
change their practical use, so both conventions are found in the literature.
In practice it is very cumbersome to work with Slater determinants and
calculate matrix elements of operators between many-particle states. For
this reason a more practical method is introduced in the next chapter.

For JV-boson states there is no restriction on the occupation of sp states.
In fact, all particles can occupy the same sp state! For a given symmetric
iV-particle state there are N\ physically equivalent states, obtained by a
permutation of the sp quantum numbers. In addition, one can have multiple
occupation of a sp state. Such states should only be counted once in the
completeness relation. In an unrestricted sum over quantum numbers for
N = 3 all states

\0t1a1a2) = \otia2oti) = |d!2ai«i) (1-54)
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occur. The appropriate weighting of these states is obtained by including
factorial factors na\ in the completeness relation as follows

^2 a'M\ "" laia2-ow) {axa2...aN\ = 1. (1-55)

When ordering of the sp states is considered, no such factors need be in-
cluded

ordered

] P \a1a2-.-aN) (aia2...aN\ = 1 (1.56)
aia2---ajv

as in the case for fermions. Normalization for states with ordered sp quan-
tum numbers has the form

{aia2...aN\a'1a'2...a'N) = (a1\a'1){a2\a'2)...{aN\a'N)

= <Sai,a'1£a2,a!!"-<W,a'jV> (1-57)

whereas if the sp states are not ordered one has

(a1a2..aN\a'1a'2..a'N) = -—- — - ^ ^{ai\at ){a2\a' )..{aN\ot ) .
[na\..na,\.] ' p

(1.58)
The sum on the right-hand side is called a permanent. The normalized
iV-particle wave function of a symmetric state becomes

ipaia^...aN(xiX2...xN) = (xiX2:-xN\aia2...aN). (1.59)

1.6 Exercises

(1) Determine the expectation value of the kinetic energy for iV particles,
TJV = ]Ci=i fm i ' n terms of the relevant single-particle matrix elements,
by employing the Slater determinant given in Eq. (1.53).

(2) Suppose that the single-particle Hilbert space has finite dimension D
and is spanned by an orthonormal basis set {\a)}, a — 1,... ,D. What
is the dimension of the iV-fermion space? Comment on the result that
the same dimension is obtained for D — N fermions.





Chapter 2

Second quantization

The present chapter introduces a method that greatly facilitates working
with many-fermion or many-boson states. For this purpose the fermion
addition operator is defined in Sec. 2.1 and the Fock space introduced. After
determining the action of the adjoint of the particle addition operator, we
proceed to derive the important anticommutation relations among these
operators. Many-particle states with the correct symmetry properties can
be constructed quite easily by acting with these operators on the state
without particles, the so-called vacuum state. Similar results for bosons
are presented in Sec. 2.2. The form of one- and two-body operators in
terms of particle addition and removal operators is discussed in Sees. 2.3
and 2.4, respectively. Some simple applications follow in Sec. 2.5.

2.1 Fermion addition and removal operators

Dealing with symmetric or antisymmetric many-particle states is simplified
considerably by using the occupation number representation (second quan-
tization). In this section the relevant concepts for fermions are presented.
A key point is not to work in the space of a fixed number of particles. In-
stead, the vector space is employed which is the direct sum of the vacuum
state with no particles |0), the complete set of sp states {|a)}, the complete
set of antisymmetric two-particle states {|aia2)}, and so on until infinite
particle number. This space is referred to as Fock space. Completeness of
the states in this space, using ordered sp quantum numbers, is expressed
by

oo ordered

^2 ^2 \aia2...aN) (aia2---aN\ = 1. (2.1)
iV=O O1O2..OIV

17
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States with different particle number are automatically orthogonal.
An important quantity is the fermion addition operator, often called a

creation operator. It is defined by

4 |aia2...ajv) = |aa:ia2---ajv) (2.2)

and adds a particle with quantum numbers a to an antisymmetric state in
which N particles occupy sp levels {ai,a2, ...,ajv}- The resulting state is
an antisymmetric N + 1-particle state. Note that if the level characterized
by a is already occupied, the result is zero. Observe also that the N + 1-
particle state containing a, may not yet be ordered and the ordering of a
among the m could, consequently, result in an extra minus sign.

The adjoint of a)a is called a particle removal (destruction) operator
based on the following result

oo ordered

aa |aiQ2...ajv) = 2 ^ 2 J laia2--aM) (aia2--aMl a<* \ct\a2..aN)
M=0 a[a'2..a'M

oo ordered

= Yl 12 |ai"2"a'M>(ai«2..aw|a^|aia2..a'Af)*
M=0 a[a'2..a'M

oo ordered
= 1^ S Wia'2..a'M)(aia2..aN\aa'1a'2..a'M)*. (2.3)

M=0 a'ia'2..a'M

The last line is obtained by using the definition of the particle addition
operator given in Eq. (2.2). In addition, M = N-1, since states containing
different particle number are orthogonal. As discussed in Sec. 1.5, the
normalization of antisymmetric states can be given in terms of real numbers.
The complex conjugation sign in Eq. (2.3) can thus be omitted. It is also
clear that once a has been ordered among the a' states, Eq. (1.49) can be
applied. Suppose a must be placed before a\. If i = 1, no sign change will
occur, ordering therefore leads to the phase (-1)1"1. Equation (1.49) then
gives

(a1a2...aN\a'1a'2...aa'i...a'M) = Saua,i5a2ta>2...6aita5a.+ua>...SaN,aiN_i.
(2.4)

As a result, we obtain

aa \aia2...aN) = ( - 1 ) 8 " 1 | a i a 2 . . . a , _ i a i + i . . . a j v ) i f a = a;, (2.5)
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and

aa \aia2...aN) = 0 if a ^ on,i = 1,...,N. (2.6)

As a consequence, one also has

aa\0) = 0. (2.7)

The operator aa therefore has the property that its action upon an anti-
symmetric iV-particle state produces an antisymmetric N— 1-particle state,
provided the sp state a is occupied (otherwise the result is zero).

The fermion addition and removal operators obey the following, ex-
tremely important, operator relations (sometimes called fundamental anti-
commutation relations):

{aa,ajg} = aaa[j + a^aQ = Sa,p, (2.8)

{aa,a /3} = { 4 , 0 ^ = 0. (2.9)

We now present a typical analysis to obtain one of these results. For an
./V-particle ket in which a is not occupied, we have

aaa\ |aia2...ajv) = aa |aaia2--a:;v) = |aia2...a/v) • (2-10)

In addition

a]
aaa\aia2-.aN) = 0. (2.11)

These two results combined, show that

{aa,a)a} \aia.2—aN) = \aia2...aN). (2.12)

When the iV-particle ket does contain the sp state a, we can assume without
loss of generality that a.\ = a. Then

dad^ |aa2...ajv) = 0 (2.13)

and

a^da \aa2...aN) = a^ \a2...aN) = \aa2...aN) (2.14)

which show that

{aa,a\} \aa2...aN) = |aa2...aw). (2.15)
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Since this procedure can be applied for any N and, as shown, for fixed N
for any state, Eq. (2.8) holds for a = 0. A similar strategy can be used for
the proof of the other identities.

Antisymmetric iV-particle states can now be generated by repeated ap-
plication of particle addition operators to the vacuum state

\aia2a3...aN) = o^ |a2a3...ajv> = 4 i a a 2 \az-aN) = •••

= 414a-oLl0> = IIoaj0>. (2.16)
i

Note that Eq. (2.9) automatically ensures that the Pauli principle is incor-
porated in the above construction. Indeed, one can write for example

\aia2...aN) = a ^ L - a L 1°) = -aa2
aa!-aL 1°)

= -|a2ai...aAf>, (2.17)

which shows that the state with a\ = a2 does not exist. Another useful
notation for the antisymmetric states in Fock space identifies which sp
states are present in the ket. The corresponding occupation numbers can
be zero or one for fermions as in the following example

\nai = 1, na2 = 0, na3 = 1,0,...., 0,...) = \aia3) • (2.18)

This notation can be used for any state in Fock space that corresponds to
an antisymmetrized direct product state, and illustrates that antisymmetric
states form the basis in the occupation number representation for identical
fermions.

2.2 Boson addition and removal operators

In dealing with boson addition and removal operators, it is convenient to
use the notation that characterizes the occupation of each sp state

f AH 1 1 / 2

\aia2...atN) - —: j — S \aia2...aN) = \nana>...). (2.19)

The na again correspond to the number of particles that occupy the sp
level a, etc. It is customary to include only those na in Eq. (2.19) that
are different from zero. There is, however, no limit on these occupation
numbers as in the case of fermions. Addition and removal operators may
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be introduced as for fermions. For sp states one has

\a) = 4 |0). (2.20)

For two-particle states

\a0) = 4 4 |0> (2.21)

when a j£ @. If a = /?, we must include an extra normalization factor

\aa) = \na = 2) = i = 4 4 |0). (2.22)

In the general case

\nan0...nu) = * /2 (4)"° (4 ) " " ... (4)"" |0> • (2.23)

The boson addition and removal operators obey the following funda-
mental commutation relations:

[aa, 4 ] = a<*4 ~ alaa = Sa'0> (2.24)

[oa,a^] = [4,aj,] = 0. (2.25)

These results can be generated in a similar way as for fermion operators
and are related to the requirement that symmetric states are obtained after
the action of an addition or removal operator of a boson sp state. The com-
mutation relations for a given sp state are identical to those for harmonic
oscillator quanta. It is then not surprising that the following relations hold

4 \nanp...nu) = y/na + 1 \na + 1 np...nu), (2.26)

aa \nanp...nu) = ^/n^\na - 1 np...nj), (2.27)

and similarly for operators involving other sp quantum numbers. The re-
sults of Eqs. (2.26) and (2.27) can be verified by using Eq. (2.23) and the
commutation relations.
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2.3 One-body operators in Fock space

Relevant operators to consider in many-particle systems involve only the
coordinates of one or two (and in unusual cases three) particles. It is there-
fore important to translate the action of such operators into the language of
particle addition and removal operators. We will follow a similar strategy
as in [Blaizot and Ripka (1986)]. Consider first an operator which acts only
on one particle. Such a one-body operator, F, acting in a sp space can be
written as

^ = EEl a )H^I /?) ( /3 | (2-28)
a 0

and is completely determined by all its matrix elements (a\ F |/3) in a chosen
sp basis. In an TV-particle space the corresponding extension of this operator
is simply

JV

FN = F(l) + F(2) + ... + F(N) = Y^ F(i), (2-29)
2 = 1

where each operator F(i) acts only on particle i. Using Eq. (2.28) the
action of F(i) on a product state (note the round bracket) is given by

F(i)\aia2a3...aN) = \ax) \a2)... |a;_i) { ^ |ft) (#| F \at)} \ai+1)... )aN)
ft

= Y^(Pi\F\<Xi)\ai-<Xi-iPiai+i...aN). (2.30)
fa

The matrix elements of F do not depend on which particle is considered.
The number (fii\F\on) in the above expression will consequently be the
same for any particle. Calculation of this matrix element for another parti-
cle will in fact only involve a change in dummy variables. For the operator
FM we can write

FN\a1a2a3...aN) = F(l) |a<i) |a2)... \aN) + ... + \ax) \a2) ...F(N) \aN)

= ^/(01\F |ai) \pia2...aN) + ... + J2 WN\ F \aN) \aia2...fiN)
01 0N
N

= EXl^ i l F l Q ^l a i a 2 - a i - 1 ^ Q '+ i - a ^)- (2-31)
«=i di
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To obtain the action of FN on an antisymmetric or symmetric iV-particle
state, we observe that FN is symmetric and therefore commutes with the
antisymmetrizer A or the symmetrizer S (remember the example of two
particles in which H commutes with P\2 discussed in Sec. 1.3). As a result

N

FN \aia2az...aN) = E E (&l F ^ \ai0i2-ai~iPiai+1...aN). (2.32)
*=i ft

We can now show that the Fock-space operator (note the """ notation for
a Fock-space operator)

F=^2(a\F\/3)aiap (2.33)
a/3

gives the same result for any N when acting on Eq. (2.16) for fermions and
Eq. (2.23) for bosons. Consider the following commutator in the case of
fermions

[F, 4 j = £ H F \0) [aia0,4j = £ (a\ F \0) (a{aeal - a^aiap)
a/3 a/3

= J2^F W) 4 ( ^ 4 , + 4,. a/3) = E H FI/3) a^/3.«.
«/3 a/3

= J2 («iF \*i) 4 = E (^ 1F \a*) °ft - (2-34)
a ft

where the fundamental anticommutation relation (2.8) has been used. This
result can be employed in the following manipulation

F\aia2a3...aN) = Fa]xlall2...allN |0)

= [A4j42-4jo) + 41^42-4jo)
= ft, <}<-aL 10) + 4 t [F, <}•••< 10) + - + 4 , 4 2 -[A 4W] 10)

= E E ^1F ia'> < -aU_A<^-aL i°)
t = l Pi
N

= E E <#l F la») |«i -«i-iA"i+i -aw>, (2-35)
»=i ft

which proves the equivalence for fermions of Eqs. (2.32) and (2.35) for a
given N. Since this result can be generated for any N, we conclude that
Eq. (2.33) has the required form of a one-body operator in Fock space. A
similar procedure applies for bosons to establish Eq. (2.33).
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2.4 Two-body operators in Fock space

The two-body interaction V provides an example of an operator involving
the coordinates of two particles. In order to establish the corresponding
Fock-space operator, consider first the two-body operator V acting on states
in the two-particle space of product states

V = E E |a/?)M W)W (2-36)
a/3 7<S

In an ./V-particle space the extension of this operator is given by

' V(l,2)+ V(l,3) + V(l,4)+ ...+ V(l,N)+
V(2,3)+V{2,4)+ ...+ V(2,N) +

VN = \ V(3,4)+...+ V(3,N)+

V(N-1,N)
N N

i<j=i i±j

where each operator V(i,j) acts only on particles i and j . The action of
V(i, j) on a product state of N particles yields

V(i,j)\ai..ai..aj..aN) = ^2(Pi0j\V\<Xiaj)
Pi Pi

x \ai..ai-iPiai+i..aj-1(3jaj+i..aN). (2.38)

The matrix elements of V do not depend on the selected pair of particles.
The numbers (j3i/3j\V\aiOtj) in the above expression will thus be identical
for any pair of particles as long as the same quantum numbers are involved.
The action of the operator VN therefore yields

N

VN\aia2a3...aN) = ^ ^2(^j\V\aiaj)\a1...pi...pj...aN). (2.39)

When VN acts on an antisymmetric or symmetric ./V-particle state, we note
that VN is symmetric and consequently commutes with the antisymmetrizer
A or symmetrizer S. As a result,

N

VN\a1a2a3...aN)= ^ ^2(pi0j\V\aiaj)\a1...0i...0j...aN). (2.40)

(2.37)
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The following Fock space operator (again with the "*" notation)

V=\Y, (af3\V\lt)aW0"say (2.41)

generates the same result for any N when acting on Eq. (2.16) for fermions
and Eq. (2.23) for bosons. For fermions, consider the following commutator

[V,al}= £ (PiP3\V\aiail)a}}ia}).aai,. (2.42)
ft Pj as

This commutator is obtained in a similar way as Eq. (2.34) by making use
of the symmetry V(i, j) = V(j, i) which implies

(aP\V\7S) = (Pa\V\6i). (2.43)

We employ this result to demonstrate that

N N

V\aia2a3...aN) = £ £ ^(/3il3j\V\aiaj)ai1...a}ii...a}}i...atlfl |0)
i=l j>i Pi/},

(2.44)
which proves the equivalence. In this derivation it is necessary to use

J2 m, «<'Ha«4,, < ] = £ m, <*>)< (2.45)

for each j > i. Equation (2.44) is equivalent to Eq. (2.39) and holds for any
N. Equation (2.41) therefore represents the extension of the two-particle
operator VN in Fock space. For bosons one proceeds in a similar fashion.
The two-body interaction in Fock space is also represented by Eq. (2.41).
An alternative form for V in the case of fermions can be written as

^ = I £ ( Q ^ y l^> f lW^a7. (2-46)
a0fS

where

<a/3| V |7<5) = {aP\V\>y6) - (ap\V\Sj) = (a/3\ V |7<J>. (2.47)

The last term in Eq. (2.47) contains the second quantized two-body opera-
tor V. Note that in the expressions for V in Eqs. (2.41) and (2.46) the order
of the quantum numbers 7 and S in the matrix element is different from
the ordering of the corresponding particle removal operators. Depending
on the nature of the interaction V, it can be useful to choose the unsym-
metrized version of V given in Eq. (2.41) or the symmetrized version in
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Eq. (2.46). Using this Fock space formulation of one- and two-body opera-
tors, the Hamiltonian of a many-particle system in second quantized form
can be written as

H = f + V

= J2<a\T \P) 4o/J + \ E {aP\V\l5WAasai (2.48)
a/3 a0^d

for both fermions and bosons. The alternative result for the two-body
interaction given in Eq. (2.46), is also useful in the case of bosons but in-
cludes a plus sign. For a given choice of sp basis and two-body interaction
V, it is possible to calculate the relevant one- and two-body matrix ele-
ments which appear in H (although this can be very tedious and computer
time consuming). The calculation of matrix elements of H between many-
particle states is therefore reduced to manipulating particle addition and
removal operators using their (anti)commutation relations. This procedure
represents a considerable practical advantage over other methods that deal
with the calculation of matrix elements of operators between symmetric or
antisymmetric many-particle states.

In the case an explicit three-body interaction (symmetric in the coordi-
nates of the particles) needs to be considered, one can use the first quantized
version in the ./V-particle space

N

WN= Y, W(i,j,k) (2.49)
i<j<k=l

and the Fock space operator

W ' ^ E E {afa\W\a'P1)a<aa\a\<h.aii,aa,. (2.50)
ct0y a'0'Y

2.5 Examples

As an example of a second quantized one-body operator consider

N = Y,aaa«- (2-51)
a

From Eqs. (2.34) and (2.35) it follows that

N \ai...aN) = N \ai...aN) (2.52)
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for any N and any set a,. The operator N can therefore be called the
number operator since it simply counts the number of particles in the state
on which it acts. If the state has a fixed number of particles, it is an
eigenstate of N.

To explain the name second quantization, it is useful to mention the
confusing convention to denote the addition operators for particles with
quantum numbers r,ms by

4,.(r)=4m, (2-53)
and similarly for the removal operators. In this basis the kinetic energy
matrix element becomes

<rm,|r |r 'm' s) = ^5(r - r')V'2<Sms,m« . (2.54)

A conventional spin-independent local two-particle interaction yields

(nmS l r2mS2\V(r,r')\r3mS3 r4mS4) = 6(ri - r3)8{r2 - r4) (2.55)

X bmSl,mS3SmS2,mSiV{\rz - rA\).

The Hamiltonian can now be rewritten as

# = E far tfm,(r){^V2}i>mt(r) (2.56)

+ lH jd"r Jd3r' ^L(r)Tpls(r')V(\r -r'|)</w.(r'Wm.(r).
msm's

The above expression can easily lead to the wrong interpretation when one
mistakenly thinks of tp as a wave function. In order to avoid this pitfall
the notation a)rm8 will be used to denote an operator which adds a particle
with sp quantum numbers {rms} to a many-particle state (and arms for
the removal operator).

A change of sp basis in sp space can be rewritten in the following way

4 |0> = !<*> = £ |A> (A|a> = £ > ! |0> <A|a>. (2.57)
A A

This procedure can be repeated for a^ (aa) acting on any state in Fock
space and leads to the operator identities

4 = D A R a A (2-58)
A
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and

aa = 5> |A>aA . (2.59)
A

Such transformations are unitary since they correspond to a basis transfor-
mation.

2.6 Exercises

(1) Perform the analysis to generate the remaining anticommution relations
in Eqs. (2.8) and (2.9).

(2) Obtain the commutation relations for boson addition and removal op-
erators Eqs. (2.24) and (2.25).

(3) Check Eqs. (2.26) and (2.27).
(4) Calculate the commutator in Eq. (2.42) for both the fermion and the

boson case and check the relation (2.44).
(5) Determine the second-quantized form of

• the density operator

N

PN(V) = ^2S(r-n)
» = 1

• the electrical current density operator

• the three components of the spin density operator

N

SN(V) = ^ s i ( 5 ( r - r»)

in the case of fermions and using the {r, ms} basis.
(6) Determine the second-quantized form of the two-body Coulomb inter-

action for fermions in the {r,ms} basis.
(7) Show that for any n-body operator F^ the relation

£4[a Q ) F< n >] = nF<n>
a

holds, for both fermions and bosons.



Second quantization 29

(8) Use the result from the previous problem to show that, in case of a
Hamiltonian H = T+V consisting of a one-body operator T and a two-
body operator V, the energy expectation value E ^ = (^o\ H \^Q) in
an arbitrary N-body state l*^) can be written as

E» = \{{^\f\*»)

+ £ E [E0
N-E^]\W-i\aa\K)\2\,

a v(N-l) )

where the $^ - 1 ) form the complete set of eigenstates of H in the
(N - l)-particle space.





Chapter 3

Independent-particle model for
fermions in finite systems

Useful descriptions for finite systems comprised of fermions, can be ob-
tained by identifying a one-body potential that already generates some of
the physics associated with the interaction between the particles. This
one-body potential combined with the kinetic energy and pertinent exter-
nal potentials, like the Coulomb attraction to the nucleus for electrons in
atoms, forms a good starting point to discuss the physics of these systems.
In particular, it leads to a shell-model description that is appropriate for
atoms, nuclei, and other localized many-fermion systems. In addition, such
a Hamiltonian may be used as a starting point of the perturbation expansion
of relevant physical quantities, as will be presented in Ch. 8. The general
discussion of this independent-particle description, where fermions do not
interact but are aware of each other's identity, will be given in Sec. 3.1.
The application of the independent-particle model to electrons in atoms is
presented in Sec. 3.2, and for nucleons in nuclei in Sec. 3.3. An important
hypothetical system entitled "nuclear matter" is introduced in Sec. 3.3.1.
It describes an idealized way to represent and study the global properties
of the interior of nuclei which exhibit strikingly similar features for nuclei
heavier than 16O. In Sec. 3.4 the method of second quantization is applied
to the concept of isospin as it is relevant for the description of nuclei.

3.1 General results and the independent-particle model

We obtain a solvable many-particle problem by considering the following
decomposition of the original Hamiltonian

H = f + V = H0 + H!, (3.1)

31
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where

H0 = f + U (3.2)

and

Hi = V - U, (3.3)

with U a suitably chosen one-body operator. When only Ho is considered,
the corresponding many-particle problem can be solved straightforwardly.
Note that a one-body external field Uext can also be included in Ho, if
appropriate.

There are various situations in which the choice of U is very important:
it can be used for example to include the average effect of the two-body
interaction V. The remaining effects of V may then be small, as in the case
of atoms. If the actual ground state of the system breaks a symmetry that
the Hamiltonian respects, the choice of U is critical. Systems with spon-
taneous magnetization provide an example. It is advantageous to include
in the Hamiltonian Ho a term which includes the symmetry-breaking ef-
fect, and yields a noninteracting ground state which displays this behavior.
Such a starting point in perturbation theory suggests better convergence
properties than departing from a noninteracting state with the "wrong"
symmetry. A possible feature of U is therefore that it can speed up the
convergence of the perturbation expansion. In the case of nuclei, we can
use U to localize the nucleons in a potential well. The same holds for the
corresponding many-particle states that are eigenstates of HQ. Without lo-
calization, plane-wave many-particle states must be considered. These are
the eigenstates of T that complicate the description of the nucleus substan-
tially.

In the case of spherical symmetry, the sp problem can be solved straight-
forwardly, although a numerical solution might be required. We denote the
relevant eigenstates and energies of Ho by

Ho|A> = ( r + lO|A) = eA|A>. (3-4)

The second-quantized Hamiltonian Ho using this {|A)} basis can be written
as

ffo = X;(A|(T + l0|A'>4«v
XX'

= Ys£***.* aW = Yl£xala* (3-5)
XX' X
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using Eq. (3.4). All the many-particle eigenkets of Ho for N particles are
of the form

^ = |A1A2...AJV) = 4 iat2 . . .atjO> (3.6)

with eigenvalue

N

££ = $><• (3.7)

The above result can be generated by employing Eqs. (2.34) and (2.35). In
the present case, Eq. (2.34) leads to

[H0,al] =£*,<• (3.8)

For obvious reasons the states |$^) are called independent-particle states,
since the only correlation they include pertains to the Pauli principle pre-
venting the particles to occupy the same sp state. The state with the lowest
energy for N particles corresponds to filling the lowest sp levels in accord
with the Pauli principle. This state is nondegenerate when N corresponds
to a shell closure (a situation with complete occupation according to the
degeneracies of the occupied levels) for the system under consideration. It
may be written as

i o = n a i i°) ' (3-9)
Xi<F

where F characterizes the energy level above which all levels are empty, and
below which all levels are completely occupied. The ket |$^) is sometimes
referred to as the Fermi sea. The present discussion completely solves the
many-fermion problem by generating all the eigenstates and eigenenergies
for any particle number N. Only the solution of the relevant sp problem
given by Eq. (3.4) is required, plus the proper inclusion of the Pauli principle
which is facilitated by the use of second quantization.

3.2 Electrons in atoms

When dealing with electronic problems it is convenient to use the system of
atomic units (a.u.), in which the electron mass me and elementary charge e
are taken as units of mass and charge. In addition, the choice for the units
of length and time is such that the numerical values of h and 4?reo (where
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e0 is the permittivity in free space) are unity as well. The atomic unit of
length then corresponds to the Bohr radius ao,

a.u. (length) = a0 = ^ ° * _ ~ 5.29177 x 10"11 m. (3.10)
ezme

The atomic unit of time is

a.u. (time) = — « 2.41888 x 10~17 s, (3.11)

where

n _ __£ * C3 i2)
47reo/ic ~ 137.036 v ' ;

is the fine-structure constant. The atomic unit for energy is the Hartree,

h2

EH = o « 27.2114 eV, (3.13)
mea&

which is twice the ground-state energy of the Bohr hydrogen atom. The
atomic unit of magnetic dipole moment,

he
a.u. (magnetic moment) = — = 2/ig (3-14)

me

is twice the Bohr magneton, /j,B w 5.78838 10"5eVT~1.
In the description of atoms, most aspects of the physics can be under-

stood on the basis of the following Hamiltonian [Lindgren and Morrison
(1982)]

N 2 N 7 N 1

^ E f - E ^ E i T ^ H ^ — (3-15)

The various parts of this Hamiltonian for ./V electrons correspond, in this
order, to: the kinetic energy of the electrons, the attraction to the nucleus
of charge Z which is assumed to be infinitely heavy, the Coulomb repul-
sion between the electrons, and finally, the magnetic interactions. The
latter include the spin-own-orbit interaction, the spin-other-orbit interac-
tion, and the less important spin-spin and orbit-orbit interactions. The
actual form of the magnetic interactions can be obtained systematically for
a single-electron system by using a nonrelativistic reduction of the Dirac
equation [Cohen-Tannoudji et al. (1992)]. For a many-electron system
this procedure cannot be applied, and is still a subject of study. Since
these magnetic interactions are rather small perturbations compared to the
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other three contributions to the Hamiltonian, it is conventional to lump
them together in an effective one-body spin-orbit interaction. The latter
simulates most of the magnetic interaction effects:

Vmag^VX^Y^Cili-Si, (3.16)
i

where the sum runs only over electrons in the open shells and the Q describe
the strength of this effective sp spin-orbit interaction.

The Hamiltonian for the electrons in an atom is theoretically well
founded. Nevertheless, it should be clear that nonrelativistic calculations
must at some stage be complemented by explicitly including relativity. This
becomes more urgent for heavier atoms since the hydrogen-like binding in-
creases with Z2, becoming 10% of the electron's rest mass for Z = 60. The
increased localization of the Is wave function also leads to high-momentum
components.

Sensible atomic many-body calculations can be performed by neglecting
the magnetic interactions altogether, as will be done in the following dis-
cussion. A characteristic feature of electron shell structure is exemplified by
the ionization energies for neutral atoms shown in Fig. 3.1. These exhibit
marked jumps at the noble gases. A simple starting point to describe shell
closures for atoms is provided by the choice

N

< = £i*o(i) (3.17)

with

Ho(i) = ?j--- + U{ri). (3.18)

The auxiliary sp potential U must contain a large portion of the effect of
the Coulomb repulsion between the electrons. Already for [7 = 0, the sim-
ple atomic shell model with the appropriate sp levels is generated by the
hydrogen-like Hamiltonian with nuclear charge Z. Clearly, the previous
results for the lowest energy, noninteracting many-electron state of this HQ
problem can be applied immediately: electrons will occupy the lowest sp
energy states in accordance with the Pauli principle. For each energy level
there is a (21+1) * (2s -I- l)-fold degeneracy, which stems from the rotational
invariance and spin-independence of the Hamiltonian. An additional, ac-
cidental, degeneracy exists for this problem, yielding sp energies that are
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Fig. 3.1 Ionization energies for neutral atoms. At the positions of the noble gases,
indicated in the figure, large jumps occur, illustrating shell closures. Other, less pro-
nounced maxima identify subshell closures, e.g. at Z = 80 corresponding to mercury.
Experimental data were taken from [Martin et al. (2002)].

only determined by the radial quantum number n and given by —Z2 /n2 in
atomic units.

The degeneracy is lifted when the effect of the closed shells is approx-
imately included in U. This effect is an essential ingredient to explain
the observed ionization energies illustrated in Fig. 3.1. A simple exam-
ple, including U, is provided by considering the alkali atoms. These atoms
have one electron outside a closed shell. The presence of the closed elec-
tron shell(s) screens the nuclear charge for this last electron leading to an
attraction of only one unit of charge at large distances. Very close to the nu-
cleus, this electron will experience the full attraction of the nuclear charge
Z. Both features are illustrated in Fig. 3.2. The presence of closed shells
is expected to generate a spherically symmetric field, due to the filling of
all me and ms substates. A smooth interpolation between these two ex-
treme cases therefore provides a reasonable picture of U, as shown for Na
in Fig. 3.2. This effective potential lifts the accidental degeneracy of the
hydrogen-like Hamiltonian in such a way, that the level with the highest
probability to be close to the nucleus, will profit most in energy. The s
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Fig. 3.2 Illustration of the effective Coulomb potential for the last electron in Na (dotted
line). This potential is given in atomic units (1 H = 27.2 eV) as a function of the distance
in units of the Bohr radius ao = 5.29 X 10 - n m. Close to the nucleus this potential
approaches the full attraction of the nucleus ( — Z/r) shown by the full line, whereas
at larger distances the screening of the other electrons reduces this attraction to — 1/r
shown by the dashed line.

state is thus lowered with respect to the p state, and so on, for a given shell
with radial quantum number "n". The latter becomes a quantum number
distinguishing the states with the same I value. For the sodium atom this
leads to the filling of the corresponding Is, 2s, and 2p shells with the no-
tation: (ls)2(2s)2(2p)6. The last electron will therefore occupy the 3s as
illustrated in Fig. 3.3.

Figure 3.3 also identifies the excited states for this atom that can be
obtained by removing the last electron from the 3s and placing it in one
of the other sp states. Suppose the states \n£mems) are eigenkets of Ho in
Eq. (3.18) with an appropriate auxiliary potential

Ho \ntmems) = eni \nlmt,ms), (3.19)

where n no longer refers to the hydrogen-like quantum number, but still
characterizes the radial behavior of the corresponding wave functions. The
ground state representing Na in this approximation can now be written in
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Fig. 3.3 Energy levels of the Na atom illustrating the tendency of levels with increasing
"n" and i to be more hydrogen-like. The latter energies are displayed in the last column.
The first column corresponds to the available s states for the last electron, the second
column to available p states, etc. Experimental data were taken from [Martin et al.
(2002)].

the following way

|300ms, 211i,211 - i , . . , 100i, 100 - j ) =

^OOm^Lil^ll-l-^OO^IoO-l I0) ' (3-20)

where for each occupied state the four quantum numbers n£mems are in-
dicated. A similar interpretation can be given for the spectra of the other
alkali atoms. The possibility of a simple understanding of these atoms
based on such straightforward considerations, indicates that it must indeed
be possible to represent the effect of the mutual interaction of the electrons
by an average sp potential. The determination of this average sp potential
from the electron-electron interaction requires the Hartree-Fock procedure



Independent-particle model for fermions in finite systems 39

Fig. 3.4 Energy levels of the Ne atom that can be interpreted as the promotion of a 2p
electron to the available empty orbitals starting with 3s etc. The energies of the states
become more hydrogen-like with increasing "n" and I also for this atom. Experimental
data were taken from [Martin et al. (2002)].

as discussed in Ch. 10.
Another simple confirmation of the atomic shell-model picture is pro-

vided by the excited states of the neon atom shown in Fig. 3.4. This atom
has the (ls)2(2s)2(2p)6 configuration occupied in the ground state and cor-
responds to a closed-shell system. All the excited levels can be understood
in terms of the promotion of the last occupied 2p-electron to an unoccu-
pied orbital starting with the 3s, 3p, 3d, 4s, 4p and so on. In terms of
particle addition and removal operators, these states can be obtained from
the closed-shell ground state, \$o) as follows

ala2pM). (3.21)

The excitation energy of such a state is then given by ent — £2P, reflecting
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the results of Eqs. (3.6) and (3.7). The presence of more than one energy
level at the position of a state like Eq. (3.21), is due to the splitting that
results from the inclusion of the magnetic interactions and the two-body
Coulomb interaction. We return to some of the subtleties of this spectrum
not discussed here in Sec. 13.5.

3.3 Nucleons in nuclei

The shell structure observed in atoms is also found in nuclei. However, the
origin of shell structure in nuclei is quite different. In addition, it is not as
easy to understand as in the atomic case. The shell structure in atoms can
be demonstrated by considering the ionization energy as in Fig. 3.1. Shell
closures at 2, 10, 18, 36, 54, and 86, which signal the position of the noble
gas atoms, are then clearly visible. In the case of nuclei, a similar quantity,
called separation energy, should be considered. For neutrons it is defined
by

Sn{N,Z) = B(N,Z)-B{N-l,Z) (3.22)

and for protons by

SP(N,Z) = B(N,Z)-B(N,Z-1), (3.23)

where B describes the nuclear binding energy for the nucleus as a function
of N, the number of neutrons, and Z, the number of protons. B is defined
by decomposing the total mass of the nucleus as follows

M(N,Z) = E(N,Z)/c2 = N mn + Z mp - B(N,Z)/c2. (3.24)

The separation energy exhibits shell closures as illustrated for N = 126 in
Fig. 3.5. A shell closure appears for fixed values of the difference N - Z
as a function of TV, but does display an odd-even staggering that can be
interpreted in terms of additional stability of systems with an even number
of neutrons. Staggering can be eliminated by considering the separation
energy only for odd N with Z even, as a function of the number of neutrons
(see Fig. 3.5), and similarly for protons. From this analysis shell closures
emerge at 7V= 50, 82, and 126 and at Z= 50 and 82. Less clear, but deduced
from other data like spectra and magnetic moments, are shell closures for
both N and Z corresponding to 2, 8, 20, and 28 [Bohr and Mottelson
(1998)]. Historically, it was more difficult to relate these "magic" numbers
to shell closures than in the atomic case.
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Fig. 3.5 Neutron separation energies for nuclei in the Pb region. Only even Z nuclei are
used in this plot. The full line corresponds to N — Z — 41, the dashed line to N — Z = 43.
Data were taken from [Audi et al. (2003)].

The sp potential that is responsible for this type of shell structure is
generated by the nucleons themselves, since there is no center of attraction
as in the case of electrons. Ultimately, the sp potential must be related to
the interactions between the nucleons, which are responsible for the binding
of the system. For now, it is useful to introduce an empirical sp potential
that provides an adequate description of nuclear shell structure and is given
by [Bohr and Mottelson (1998)]

U = Vf(r) + Vest^yil±f(r) (3.25)

with

/(r)=[l + exp (^ ) ] . (3.26)

This form is referred to as a Woods-Saxon shape. The depth of the poten-
tial is given by

V = [-51 ± 33 (^-J^-) | MeV, (3.27)
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where the plus sign is for neutrons, the minus sign for protons, and A =
N + Z the total number of nucleons. The radius parameter is given by

R = r0A
1/3, (3.28)

with TQ — 1.27 fm, the diffuseness parameter a = 0.67 fm, and the strength
of the spin-orbit interaction Vis = —0.44F. For protons one must also
include the effect of their mutual Coulomb repulsion, which can be rea-
sonably represented by the potential of a homogeneous sphere with charge
Z and radius Re = R- Such a parametrization is successful in describing
some of the low-energy properties of nuclei with one more or less particle,
with respect to a doubly magic nucleus like 208Pb. A comparison with
experimental data is shown in Fig 3.6. In the independent-particle model,
the ground state of this nucleus is generated by filling the relevant proton
and neutron shells. The lowest-energy states for the A = 209 system, are
reached by adding a proton or neutron in the corresponding, lowest avail-
able, empty shells. The observed and calculated positions of these levels
show a good correspondence. This is also true for odd nuclei neighboring
16O, 40Ca, 48Ca, and 56Ni that have closed shells for both protons and
neutrons. The energy of an additional proton or neutron for an A = 209
system in this simple model is given by

Ho 4 |208Pbs.s.) = [ea + £(208Pb9.s.)] 4 |208Pbs.s.), (3.29)

where a represents the quantum numbers of an unoccupied proton or neu-
tron state. The experimental information is obtained by subtracting the
ground-state energy of 208Pb from the one of 209Bi or 209Pb, yielding the po-
sition of the first "empty" level for an extra proton or neutron, respectively.
The position of the other experimental levels can then be established by
adding their excitation energy to the sp energy corresponding to the ground
state of the appropriate A — 209 system. Note that this procedure allows a
comparison with the sp levels calculated from the Woods-Saxon potential,
although the comparison presupposes that the independent-particle model
is appropriate. For the states in the A = 207 systems, the independent-
particle description suggests

Ho aa |208Pb5.s.) = [E(20SPbg.s.) - ea] aa |208Pb3.s.) . (3.30)

The calculated position of the levels again corresponds to ea and can be
compared with experiment for the last occupied "sp" state by subtracting
the ground-state energy of the relevant A = 207 system from £ (0 )(208Pb).
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Fig. 3.6 Energy levels of particles and holes with respect to 208Pb. The results for
the empirical potential are shown in the first column for protons and the third column
for neutrons. These levels are compared with the corresponding experimental data for
protons in the second and for neutrons in the fourth column.

Higher excited states in these systems then occur lower in energy (are more
deeply bound) as shown in Fig 3.6. The position of the sp levels compares
favorably with the experimental data, although there are clearly some de-
tails missing. The present interpretation of the experimental data remains
relevant for a correlated system, as shown in Sec. 21.5.

A Woods-Saxon potential has a finite depth with a finite number of
bound states associated with the exponential fall-off at large r, which im-
plies that all bound states are well localized. In contrast, the hydrogen-like
potential has an infinite number of bound states due to the r"1 behav-
ior. The latter also generates orbits with very large radii for weakly bound
states. The central part of the Woods-Saxon potential can be reasonably
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Fig. 3.7 Comparison of the central part of the Woods-Saxon potential given in
Eq. (3.25) with an adjusted HO potential for A = 100.

approximated by a three-dimensional harmonic oscillator (HO) potential

UHo{r) = \mu2r2-V0. (3.31)

The oscillator frequency u> and constant shift VQ can be adjusted to resemble
the Woods-Saxon well as shown in Fig. 3.7. The HO potential has only
discrete eigenstates. Positive energy states, which correspond to scattering
states for the Woods-Saxon well, therefore require special attention. The
eigenvalues of the HO potential read

HHo \ntmims) = (huj(2n + £ +§) - Vo) |n£m^ms) (3.32)

with

n = 0, l ,2, . . .

£ = 0,1,2,...

-I < mt < I (3.33)

The total number of oscillator quanta is given by

TV = 2n + t, (3.34)
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which implies, according to Eq. (3.32), that for each oscillator energy only
states with the same parity are degenerate. The HO potential leads to
the magic numbers 2, 8, 20, 40, 70, 112, and 168, as can be easily ver-
ified. Although the first three shell closures correspond to experimental
observations, the others show little resemblance to experiment.

A Nobel prize winning suggestion was made by [Goeppert-Mayer (1949)]
and [Jensen et al. (1949)] who, independently, introduced a strong one-body
spin-orbit potential, similar to the one given in Eq. (3.25). The effect of
this potential is mostly experienced at the surface of the nucleus, since this
is where the derivative of f(r) peaks [see Eq. (3.26)]. The presence of the
I • s operator requires a change of sp basis to states with good total angular
momentum

\n(£s)jrrij) = V^ \n£mims) ( £ me s ms \ j rrij ) . (3.35)
mem.

The transformation bracket is usually referred to as a Clebsch-Gordan co-
efficient [Sakurai (1994)] (see also App. B). Using the operator identity

£.s=itf-£i-si), (3.36)

one finds

^ \n(ts)jmj) =i(j(j + 1) - £(£+1) - j ( i + 1)) Hls)^). (3.37)

Obviously for an s-wave the spin-orbit potential does not contribute. For
other I-values one obtains for j = £ + | the eigenvalue \£, whereas for
j = £ - | one has -\{£ + 1) from Eq. (3.37). Combining this result with
the sign of Ves and that of the derivative of / ( r ) , shows that the spin-
orbit interaction can substantially lower the energy of the subshell with the
largest orbital angular momentum and j = £+ \. This behavior is confirmed
by experiment in light nuclei, but the shifts are not so large as to alter the
main shell closures at 2, 8, and 20. The first deviation occurs for the 0 / |
shell which becomes a major shell of its own, leading to the observed shell
closure at 28. In higher shells the lowering of this £max + \ orbit is so large
that it comes to reside among the orbitals of the N—l major shell that have
a different parity. This occurs for the 0#§ shell, leading to the shell closure
at 50, the 0/i^ with a resulting closure at 82, and finally with the 0 i^
yielding a shell closure at 126. These features are schematically indicated
in Fig. 3.8, where the first column indicates the energy quantum number
(not to scale) of the major shells of the HO together with their parity
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Fig. 3.8 Schematic energy levels for nucleons with inclusion of a substantial spin-orbit
potential. The left column indicates the major shells together with their parity n. Ap-
propriate shell closures are listed in the rightmost column.

7T. The corresponding quantum numbers are given in the next column.
Additional splitting of the HO degeneracy with the more realistic Woods-
Saxon well, will also favor the higher I orbitals. This feature, together with
the aforementioned spin-orbit effects, is incorporated in the schematic
splitting of the sp levels shown with appropriate sp quantum numbers. The
latter are given together with the number of nucleons they can contain.

The interaction between nucleons is not completely understood theoreti-
cally. In principle, one would like to derive the interaction between nucleons
from the perspective of quantum chromodynamics (QCD). This feat is not
expected in the near future. Protons and neutrons will remain relevant
degrees of freedom to describe nuclei, on account of the energy scales in-
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volved for nuclear excitations. We therefore proceed in a practical way,
and employ experimental data that characterize the two-nucleon system to
construct interactions that represent these data accurately. Different inter-
actions describe the experimental details but they differ at distances not
probed by energies corresponding to elastic nucleon-nucleon (NN) scatter-
ing. Additional features of these interactions are discussed in Ch. 4. Deal-
ing with nucleons implies the use of nonrelativistic quantum mechanics and
the corresponding Schrodinger or Lippmann-Schwinger equations. At 140
MeV excitation energy in the two-nucleon system, it becomes possible to
create an additional pion. Such mesonic degrees of freedom are usually not
included explicitly when considering nuclear excitations below this thresh-
old. Consequently, one often studies the nuclear many-body problem with
a Hamiltonian of the form given by Eq. (2.48), with a two-body interac-
tion V that accounts for all low-energy two-nucleon data in a nonrelativistic
framework. The long-range part of the interaction is accurately represented
by the exchange of a virtual pion. The pion is virtual since not enough en-
ergy is available for its actual production. In commonly used language,
such experimentally constrained interactions are characterized as "realis-
tic". The nuclear many-body problem is therefore defined, with obvious
restrictions: excitations at energies higher than 140 MeV cannot be ac-
counted for explicitly. Nevertheless, it will be possible to understand much
of the many-particle aspects of the nucleus, by considering such a Hamil-
tonian. This is hardly surprising since the coupling to the physical states
above 140 MeV is, albeit indirectly, experimentally constrained. Medium
modifications of the interaction and the properties of nucleons are most
sensitive to an energy scale which is related to shells near the Fermi energy,
i.e. a scale associated with nucleons moving from occupied to empty levels.

3.3.1 Empirical Mass Formula and Nuclear Matter

Important qualitative aspects of nuclei, that require an explanation from
many-body theory, are revealed by the systematics of nuclear binding as a
function of N and Z. The experimental observation that the density in the
interior of nuclei is constant and about the same for nuclei heavier than
16O, is also significant [Frois and Papanicolas (1987)]. The systematics of
nuclear binding is shown in Fig. 3.9, where the binding energy [Eq. (3.39)]
per nucleon is plotted as a function of A = N + Z. For each value of A the
most stable nucleus was used for the experimental point. A smooth curve
through these experimental data is given by the so-called semi-empirical
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Fig. 3.9 Binding energy per nucleon according to the empiciral mass formula given in
Eq. (3.38), compared with the experimental binding for the most stable nucleus at a
given A as a function of A. Data were obtained from [Audi et al. (2003)].

mass formula [Weizsacker (1935); Bethe and Bacher (1936)]

B = bvolA - b.urfA*'3 - \bsyJ
N ~A

Z)2 - \ ^ - . (3.38)

A relevant set of values of the parameters includes [Bohr and Mottelson
(1998)]: bvol = 15.56 MeV, bsur} = 17.23 MeV, bsym = 46.57 MeV, and
Rc = 1.24A1/3 fm. Most nuclei have a binding energy of about 8 MeV per
particle, which is rather small compared to the rest mass of the nucleon
which is about 939 MeV. A plot of the binding energy per nucleon, as
a function of A, according to Eq. (3.38) (evaluated for a given A at the
most stable value of N), is compared with the corresponding experimental
data in Fig. 3.9. The term proportional to the number of particles in
the mass formula, is called the volume term. The second term represents
the loss of attraction due to the presence of the surface, and reflects the
lack of neighbors to interact with in this region. These first two terms
suggest a saturation of the nuclear interaction, implying that nucleons,
on the average, experience attraction from other nucleons only at rather
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short-range. The third term incorporates the tendency of the nuclear force
to favor nuclei with N = Z and is called the symmetry energy. The last
term represents the energy of a uniformly charged sphere of radius Rc.

Theoretically switching off the Coulomb interaction between the pro-
tons, leaves only the volume term for N = Z in the limit of infinite volume
and constant density. This limit is extremely relevant since, as already
mentioned, the central density in the interior of nuclei is found to be con-
stant. Elastic electron scattering experiments reveal the properties of the
charge density at the center of a nucleus; multiplying this number with A/Z
results in the aforementioned constant central density of 0.16 nucleons per
fm3. Such a hypothetical system is referred to as "nuclear matter". It
embodies essential, global properties of nuclei. The value of the saturation
density of nuclear matter, and the corresponding binding energy per parti-
cle of about 16 MeV, requires a theoretical explanation that starts from a
realistic two-body interaction. Indeed, the issue remains a subject of study
to this day. The goal of the nuclear matter problem is then to explain
why a minimum in the energy per particle of -16 MeV occurs at a density
of 0.16 nucleons per fm3. In addition, one must quantitatively reproduce
these numbers applying many-particle methods. A typical failure has been
that when the correct energy at the minimum of the energy per particle was
obtained, the corresponding density is about a factor of two too high, or
when the correct saturation density was obtained, the energy is only about
half of what is required, as discussed in more detail in Sec. 16.3.4.

3.4 Second quantization and isospin

Neutrons and protons display the same magic numbers, and therefore fol-
low the same shell structure. This cannot be accidental. In effect, the mass
difference of the neutron and the proton is only about one part in a thou-
sand of the average of the proton and neutron mass. According to quantum
mechanics, this degeneracy must reflect a symmetry of the Hamiltonian de-
scribing the strong interaction [Heisenberg (1932)]. In other words, there
is an observable which commutes with the Hamiltonian Hs that governs
the strong interaction. As a consequence, simultaneous eigenstates of this
observable and Hs can be found. Assuming that the strong force is indepen-
dent of particle type, one can further neglect the weak and electromagnetic
interactions that do distinguish between the proton and the neutron, and
eliminate the small mass difference.
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In the following discussion [Georgi (1982)] an explicit distinction is made
between particle addition and removal operators for protons and neutrons.
For example, the operator p^a adds a proton with quantum numbers a to
any state in Fock space, and the operator n ,̂ does the same for a neutron.
These operators also obey anticommutation relations, yielding

{PLP&} - <W and {nl,n0} = 6atp, (3.39)

with all other anticommutators equal to zero, including those involving
proton and neutron operators. A state with Z protons and N neutrons is
then given by

| a ia 2 . . . az ;Aft . . . /3 jv) = p J , 1 p J r 2 - P a 8 » f t n k - " J J V I0)- (3-40)

Observing that at the sp level the interchange of a proton for a neutron
with otherwise identical quantum numbers does not change the energy, one
can postulate that this should also be valid for any collection of protons and
neutrons. The corresponding operators are easily written down in second
quantization. The operator which changes neutron into proton states, while
leaving all other quantum numbers unchanged, is represented by

f+ = £ > + n a (3.41)
a

and the operator

f~ = J2niPo> (3-42)
a

accomplishes the opposite. Based on the degeneracy of the neutron and
proton energy, the assumption is that

[HSlf
±] = 0. (3.43)

Consider now the following commutator of T+ and T~ denoted by T3

f3 = \[f+,f-] = l- Y,{pinanlP0 - n\ppplna)
a/3

= 2 YKPaPP6"'/3 ~ nlna6*,0) = 2 ^(piP* ~ nin«)- (3-44)
a/3 a

This operator merely counts the number of protons and subtracts the num-
ber of neutrons (multiplied by | ) . On physical grounds, it is clear that

[Hs,?3] = 0. (3.45)
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It is also possible to show that

[T3,f
±] = ±f±. (3.46)

These operators therefore satisfy the same algebra as the angular momen-
tum operators. Indeed, denning

fl = ̂ (f+ + f-) (3.47)

and

T2 = ±(f+-f-), (3.48)

there is a one-to-one correspondence between the triplet (T\,Ti,Tz)1 and
the triplet of angular momentum operators (Jx, Jy, Jz), including identical
commutation relations. The spectrum of the angular momentum operators
J 2 and Jz is solely determined by the commutation relations between Jx,Jy,
and Jz. Therefore we can simply relabel all these results in terms of new
quantum numbers related to the operators T2 and T3, that are referred to
as the total isospin (squared) and its 3-projection. Isospin invariance of the
strong interaction implies that its Hamiltonian is unchanged under isospin
rotations that are generated by the operators Ti,T-2, and T$, in complete
analogy with the angular momentum case. Rotations in "iso"-space about
a direction n can be written as

fl(n)=exp{-m-T}. (3.49)

Physical states are labeled with isospin quantum numbers T and Mr, for
total isospin and its third component, respectively. Although only states
with T3 as a good quantum number are observed, the full apparatus of an-
gular momentum algebra, summarized in App. B, can be applied in making
use of the isospin symmetry of the strong interaction. Clebsch-Gordan co-
efficients can thus be employed to couple states to good total isospin. The
proton and the neutron represent a doublet with total isospin t = \. The
proton is, arbitrarily, assigned isospin 3-projection mt = \ and the neutron
rrit = —\. Historically, this assignment was opposite in nuclear physics to
make T3 positive for nuclei with neutron excess, which represent the vast
majority of stable nuclides.

Instead of dealing separately with neutrons and protons, the isospin
formalism can be used. The complete set of nucleon quantum numbers

1 Although the kinetic energy is also represented by this symbol, no ambiguity should
arise.
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must then include isospin. For example, a proton at r with spin projection
ms can be denoted by

\rms)p = \rmsmt =1), (3.50)

where the total isospin quantum number t — \ has been suppressed just
like the spin s = \ quantum number. For a neutron, one has a similar
result with mt = — | . For this doublet the eigenvalue equations read

T2\rmsmt) =§(i + 1) |rmsm t) (3.51)

and

T3 \rmsmt) = mt \rmsmt). (3.52)

Particles in an isospin multiplet are looked upon as identical particles, with
T3 as just another quantum number. For this reason the proton addition
and removal operators anticommute with those for neutrons. Examples of
the utility of the isospin concept abound in nuclear physics.

It is useful to determine first the angular momentum of a closed-shell
system before its isospin. Consider the third component of the total angular
momentum operator in second quantization

Jz=Y^ Yl (n£Jm\Jz\n'£'j'm')alejman,tj'm'
nijm n' £' j ' m'

= ^2 hm a]
nljmantjm. (3.53)

ntjm

Without loss of generality, we can let this operator act on one full shell
where all the particles have quantum numbers n,£,j and all components of
j z are occupied

Jz \n£j; m = -j, -j + 1,..., j) =

XI hm aiejman(jm \n£j; 171 = -j,-j + 1, ..., = j)
771

= | ^2 hmj\n£j;m=-j,-j + l,...,j)
m=—j

= 0 x \n£j; m = -j, -j + 1,..., j). (3.54)

We conclude that the ^-component of the total angular momentum van-
ishes. By applying the raising and lowering operator to the closed shell
in a similar way, more vanishing results are generated, demonstrating that
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the total angular momentum of this state is zero. The same analysis holds
for the total isospin. Note that for a given shell, both proton and neutron
states must be completely filled to yield a total isospin of zero. Similar
considerations apply to the closed shells in atoms, where the total orbital
and spin angular momentum are zero, neglecting spin-orbit coupling.

3.5 Exercises

(1) Consider the magnetic moment of Z electrons in an atom with nuclear
charge Z (atomic units are used)

a) Determine the second quantized form of the z-component of this
operator using the sp basis which corresponds to the eigenstates of
the sp Hamiltonian which treats the other electrons in central-field
approximation (see Eq. (3.18)). Be sure to evaluate the relevant
sp matrix elements in this basis.

b) Consider an atom with one electron outside a set of closed shells,
occupying the lowest sp state that is not filled. Denote the quan-
tum numbers of this state by n, £, m,(, ms. Assume that for this last
electron mt = I and ms = | . Determine the magnetic moment
of this atomic state (with one electron outside the closed shells)
by calculating the expectation value of the operator obtained in
part a) with respect to this state (this is the actual definition of
the magnetic moment). When evaluating the magnetic moment,
you should carefully consider all possible contributions, including
the one from the closed shells (if any). Compare your result with
experimental data for alkali atoms.

(2) Calculate the magnetic moment of 15O,15N,17O, and 17F in the
independent-particle approximation. It is defined by

H = (JMj = J\pLt \JMj = J),

where for A nucleons the magnetic moment operator (in first quantiza-
tion) is given by

A

nA = 53 {5/(0 A + g.(i)si}.
i= l
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The factor gi is 1 in units of nuclear magnetons for protons and 0 for
neutrons. The notation assumes that the orbital and spin angular mo-
mentum are in units of ft. A nuclear magneton is given by eh/2mpc. In
these units the spin factor gs is 5.58 for protons and -3.82 for neutrons.
Assume that the above nuclei correspond to either a missing p\ proton
or neutron in the double closed-shell 16O or a d§ proton or neutron
added to it. Employ the second-quantized operator for the magnetic
moment and calculate the sp matrix elements. Use the projection the-
orem [see Eq.(3.10.40) in [Sakurai (1994)]]. Produce an argument to
demonstrate that closed shells don't contribute. Express your results
in nuclear magnetons and compare with experiment.

(3) Write down the charge density operator for the nucleus in first quantiza-
tion including isospin. Construct the corresponding second-quantized
operator. Show that this operator may be written as

Pc(r) = ̂ e Y^ (i + mt)alljmjmtarejmjmt
(jmjmt

in the appropriate basis {\r(ls)jmjmt}}. This operator is appropriate
for a closed-shell system which has no angular momentum. In that case
the nuclear charge distribution depends only on r. One may therefore
divide the charge density operator by 4TT, and integrate over all angles
to obtain the above expression. Evaluate the expectation value of this
operator for the ground state of a doubly closed-shell nucleus.

(4) Use the hydrogen-like Hamiltonian for the He atom to approximate the
ground state in the independent-particle model. Calculate the energy of
the ground state with the inclusion of the expectation values of the two-
body electron-electron interaction (first-order perturbation theory) and
compare with experiment.

(5) Show that the convention that proton operators commute with neutron
operators (i.e. {p^rif}) = [p^njj] = 0, etc.) is equivalent to the choice
of anticommuting operators made in Sec. 3.4 and leads to the same
results for the expectation value of operators that conserve the number
of protons and neutrons.



Chapter 4

Two-particle states and interactions

The present chapter deals with simple symmetry considerations for two-
particle states that clarify the consequences of the Pauli principle, when
such states are coupled to good total angular momentum or isospin. In
Sec. 4.1 we study free particles and the transformation to total and relative
momentum. By first reviewing antisymmetric two-particle states for nucle-
ons, it is possible to simplify to other systems with smaller degeneracies,
like two electrons or two 3He atoms. The results can also be applied to
clarify the possible states for two free identical bosons. In each case impor-
tant contraints on the possible angular momentum states are encountered.
These considerations can be generalized to two particles (holes) outside
closed shells, and several examples are discussed in Sec. 4.2, also leading to
restrictions on the possible angular momentum and isospin states for parti-
cles in the same orbit. In Sec. 4.3 some general observations are presented
on the subject of two-body interactions. Examples of relevant interactions
for various systems are described in Sec. 4.4.

4.1 Symmetry considerations for two-particle states

It is important to develop the consequences of the symmetry of two-particle
states beyond the obvious ones discussed so far. It is frequently practical,
or even necessary, in dealing with two particles to employ the angular mo-
mentum basis. This is important for short-range interactions which only
influence a limited number of angular momentum states. The relevant
transformation proceeds from plane waves to spherical waves, and is usu-
ally treated at the sp level. The consequences of symmetry are substantial
however, and will be illustrated first for two nucleons in free space. These
results can then be simplified for other identical fermion systems.

55
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4.1.1 Free-particle states

We start by briefly discussing the plane-wave states associated with the
kinetic energy operator

Suppressing possible discrete quantum numbers, the momentum eigenstates
of Eq. (4.1)

v2 v12

k^ = t^ <4-2>
describe particles that are not influenced by any interaction. The wave
function associated with these states, the plane wave, can be written as

The present choice leads to the normalization condition

(P'\P) = —-jijs fdr ^(p-p()-r = 6(p' - p). (4.4)

It is often practical to use wave vectors with k = p/h. We introduce the
convention here that momenta are denoted by p,p',P, etc. The notation
reserved for wave vectors is k,K,q, etc. The wave function for the state
with wave vector k becomes

< p | f c ) = J ^ ^ ^
with normalization

(k'\k) = 6(k'-k). (4.6)

For some applications it is more convenient to use the so-called box nor-
malization. The particle is then confined to a cubic box with sides L and
volume V — L3, yielding the wave function

(r\p) = ^ i p r - (4-7)

Boundary conditions imposed at the edges of the box, allow only discrete
values of the momentum p. The normalization then reads

(p'\p) = V ,P . (4-8)

(4.1)

(4.3)
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which can be obtained from

(P'IP) = fdr (p'\r)(r\p) = ̂  f dr e ^ p - p ' ) r = <5P-,P. (4.9)
Jbox V Jbox

The inclusion of spin and other discrete quantum numbers like isospin is
straightforward.

4.1.2 Pauli principle for two-particle states

A free nucleon can be described by quantum numbers corresponding to
momentum, spin ( | ) , spin projection, isospin (^), and isospin projection

\p s - | ms t = i mt) = \pmsmt). (4.10)

These states can, for example, be normalized in the box as

(p'm'sm't \pmsmt) = 5p>,p5msm's5mtm't. (4.11)

Antisymmetry for two nucleons requires the two-body state to be con-
structed as follows

\pim8lmtl;P2mS2mt2) = (4.12)

—j= {\pimSlmtl) \p2mS2mt2) - |p2mS2mt2) |pimSlm t l)}

= ~m Yl H i(i m°i 2 ms2 \S Ms) (J mtl i mt2 \T MT)
* SMS TMT

x |PJ p2 S MST MT)

- (i mS2 i mSl \S Ms) (j mt2 i mtl \T MT)

x \p2 Pl S MST MT)} ,

where the individual spins and isospins have been coupled to total spin and
isospin in the second equality. Since the dynamics is related to the relative
motion of the particles, it is appropriate to switch to a basis involving the
center of mass (total) and relative momentum

P = Pi+P2 (4.13)

P = i (Pi - Pi) • (4.14)

Consequently, the states in the last line of Eq. (4.12) both have the same
total momentum but opposite relative momentum, p and —p, respectively.
The transformation of the relative momentum quantum number to the basis
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with its magnitude, orbital angular momentum, and its projection for these
two cases is given by

\p) = £ \PLML) (LML\p) = £ \PLML) YZMSV) (4-15)
LML LML

and

\-p) = J^ \PLM^) (LML\q?) = J2 \PLML) {-l)LYZML{p). (4.16)
LML LML

The following property of the spherical harmonics has been used in the last
equation

YZML(~P) = Y£ML(-K - 6P,<pp + *) = {-1)LY*LML{P). (4.17)

The symmetry property of the Clebsch-Gordan coefficients (see App. B)
for spin

(i mS2 i mSl |S MS) = (-1)*+*-* (i mtl j mS2 \S Ms) (4.18)

and isospin

(i mt2 i mtl \T Mr) = ( - l ) ^ + * - T (i mti j mt2 | r MT), (4.19)

are used to write Eq. (4.12) as

|pimSlm( l;p2mS2m t2) = (4.20)

SMsTMTLMh

x [1 - (-1)L + S + T] |P p LMLSMS TMT)

= yf Z ! (* m " * m°2 \S Ms) (i m t l i mt2 |T M r) yL*ML(P)
SMgTUTLMLJMj

x ( L M i S Ms | J Mj) [1 - ( - l ) L + s + r ] \P p {LS)JMj TMT).

The coupling to total angular momentum has been performed after the last
equality sign. The main point of Eq. (4.20) is the appearance of the factor
[l - (-1)L+S+T]. Its presence demonstrates that only when L + S + T is
odd, a physical antisymmetric state can occur. In the case of an 5-wave
interaction (L = 0) only two possibilities exist: either 5 = 0 and T = 1
or S = 1 and T = 0. The two other combinations of spin and isospin are
excluded. The spectroscopic notation for the different channels is given
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by 2S+1Lj where the actual values of S and J are inserted, and the letter
notation for L is used (L = 0 corresponds to S, L = 1 to P, L = 2 to D etc.).
The two 5-wave channels for nucleons are thus denoted by 1 5 0 and 35i. The
strong interaction conserves parity and is a scalar with respect to rotations
generated by J and T; the total angular momentum and total isospin.
This implies that the coupling between different channels must conserve
J and T and can change the i-value by AL = 0, ±2. It follows that the
:5o two-proton channel is uncoupled, whereas the proton-neutron channel
allows a coupling between the 3S\ and 3Di channels. The latter coupling is
realized in nature, due to the presence of the so-called tensor force, which is
instrumental in binding the deuteron and giving it its quadrupole moment.
For this reason the coupling to total angular momentum in Eq. (4.20) is
necessary for nucleons.

If we now turn to antisymmetric two-particle states for electrons or 3He
atoms which have spin | , one can start from Eq. (4.12) and simply re-
move all reference to isospin. The corresponding factor that decides which
partial wave channels are physically allowed then becomes [l + (—l)L+jS].
This shows that an S-wave interaction implies a total spin of zero, whereas
a P-wave requires a total spin of one, etc. Since there is no need to con-
sider tensor or spin-orbit forces for these systems, L and 5 are separately
conserved and the coupling to total angular momentum states can be omit-
ted. If only one spin projection of the species is present, the consequence of
the Pauli principle is even more dramatic. The Pauli factor now becomes
[l - (—1)L], demonstrating that there can be no 5-wave interaction. Re-
cent efforts to cool fermionic atoms in magnetic and optical traps to tem-
peratures substantially below the Fermi temperature, have to deal with this
lack of S-wave interaction. For spinless bosons, the above analysis shows
that only states with even L survive, consistent with the experimental ob-
servations discussed in Sec. 1.4.

4.2 Two particles outside closed shells

In finite systems with spherical symmetry the coupling of angular momen-
tum states for two particles must be considered. The consequences of the
Pauli principle are also striking here. We will illustrate this by using second
quantization. Consider two particles added to a closed-shell nucleus such
as discussed in Sect. 3.3. We assume that these two particles are either two
protons or two neutrons in the same sp shell, characterized by total angular
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momentum j . Such a state can be written as

l*imjm0=«Ua5m'l*O>. (4-21)

It is immediately clear that a total angular momentum of J = 2j is not
possible since this would require both particles to have the same maximal
projection of the angular momentum. The possible total angular momen-
tum states can be obtained by coupling the sp angular momenta using
Clebsch-Gordan coefficients. Employing their symmetry properties and
the anticommutation relation of the particle addition operators, one finds

\*ii,JM) =^2(jm j m' \J M) \$jm,jm-) = (~l)J \*JJ,JM) , (4-22)
mm'

where a change of dummy indices is helpful to obtain this result. The factor
(-1)"7 ensures that only even values of J yield physical states. An example
of this situation is illustrated in Fig. 4.1 for two protons or two neutrons
added to the closed-shell system 40Ca. In the independent-particle model
of Ch. 3, these nucleons will occupy the 0 / | sp state. The allowed values of
the total angular momentum for two such nucleons are therefore 0, 2, 4, and
6. The corresponding levels in 42Ca and 42Ti are indicated by solid lines.
Other levels with a more complex interpretation are indicated by dashed
lines. For the 42Sc nucleus all values between 0 and 7 are possible for the
total angular momentum when proton and neutron 0 / | are involved. Some
of these states are present at low energy in this nucleus. It is instructive
to analyze these same spectra using the isospin formalism. The similarity
of the spectra of 42Ca and 42Ti certainly confirms the importance of the
isospin description.

To include isospin we proceed in a similar fashion. Denoting the uncou-
pled states by

$jmmt,jm<m>t) = a\mmAm'm't l*0> , (4.23)

one obtains

\$jj,JM,TMT) = 5^0' m 3 m' \J M) (1 m J m't \T MT) \*jmmt,im'm't)
mm'mtm't

= (-l)J+T+1\$jj,JM,TMT). (4.24)

Therefore J + T must be odd. This result is consistent with Eq. (4.22),
since for two protons or two neutrons the total isospin must be one. The
spectrum of 42Sc in Fig. 4.1 therefore contains both T = 0 and 1 states. The
even J states correspond to similar states in the other nuclei with about
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Fig. 4.1 Lowest energy levels for the A = 42 system illustrating the effect of the Pauli
principle. The relevant sp level for the nucleons is the 0/f. Those levels that can be
interpreted as 0/£2 are indicated by solid lines. Total angular momentum and parity of
the levels are indicated where appropriate. When this assignment is not certain round
brackets are used. The three columns corresponds to the nuclei that can be reached from
40Ca by adding two nucleons. The levels displayed for 40Ca and 42Ti all have isospin 1
and correspond closely to each other. The 0+ and 2+ levels in 42Sc are likewise T = 1
states. The other levels shown, correspond to T = 0 configurations. The presence of
additional levels at higher energy is indicated by the vertical dashed lines. Data were
taken from [Sing and Cameron (2001)].

the same excitation energies. For the odd J states, with T = 0, there is no
counterpart.

For electrons in the same atomic orbital we can apply an identical strat-
egy. The uncoupled states can be denoted by

|*/m<m.,/mimi> = 4memAm'em', l$o) , (4-25)

and one obtains

\$t,LML,SMs) —

Y^it-rntl m!t \L ML) (j ms i m's \S Ms) \$imtm.,im>tm'.)

= ( - 1 ) L + S | $ « , L M L , S M S ) . (4.26)

We conclude that L + S must be even, which is illustrated in Fig. 4.2 for
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Fig. 4.2 Lowest energy levels of the carbon atom illustrating the effect of the Pauli
principle. The three columns are labeled at the bottom by their main electronic config-
uration. The first column corresponds to two electrons in the same 2p orbit which leads
to the restriction L + S even, implied by Eq. (4.26). This restriction does not apply
to the other configurations. Spectroscopic notation,2S+1L, is employed to identify the
L and S values of the different levels. In the case of 5 = 1, the additional splitting,
corresponding to the total angular momentum J, is too small to be visible. Data were
obtained from [Martin et al. (2002)].

the three lowest states in the carbon atom. These states have 2p electrons
outside the Is22s2 configuration. With the coupling scheme of Eq. (4.26)
these last two electrons can couple to S = 0 and 1. The possible L-values
are given by 0, 1, and 2, denoted by 5, P, and D, respectively. The ground
state has 5 = 1 and then must have L = 1 on account of the Pauli principle.
This configuration is denoted by 3P. The even L-values necessarily have
5 = 0 and are labeled by *5 and 1D, respectively. These levels can be
found in the first column of Fig. 4.2. For 5 = 1, additional splittings
occur since different values of the total angular momentum are possible.
They are too small to be distinguished in the figure. It is instructive to
count the number of states of the 2p2 system, including all the possible
degeneracies, as suggested in one of the exercises of this chapter. The
coupling to individual total angular momentum j , as for nucleons, and the
subsequent coupling to total angular momentum should of course lead to
the same number of states, when the Pauli principle is taken into account.
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A few other low-energy configurations are also listed in the second and third
column of Fig. 4.2. The Pauli principle does not restrict the values of L
and 5 for these states.

4.3 General discussion of two-body interactions

The main issue in the many-body problem is an appropriate treatment of
the interaction between the constituent particles. Before giving some ex-
plicit examples of relevant interactions, it is useful to put this discussion
in a wider perspective. All interactions between the spin-| fermions of the
"standard model" of the electroweak and strong interactions, take place
by the exchange of spin-1 bosons. These fermions include all the quarks
which come in three colors and six flavors, and all the leptons which in-
clude the electron, the muon, and the tau together with their corresponding
neutrino's. The exchanged bosons include the photon of quantum electro-
dynamics (QED), the gluons of quantum chromodynamics (QCD), and the
W± and Z bosons complementing the electroweak interaction.

In general, interactions between particles in any setting can be con-
sidered in terms of a generalized exchange mechanism. Depending on the
circumstances, the "particle" that is exchanged between the constituent
fermions may be a low-energy bosonic excitation (of any integer spin) of
the medium. For example, electrons in a solid can exchange the lattice
vibrations (phonons) of the core atoms. It will be useful to keep this ex-
change mechanism in mind, even though it is not always transparently at
work. An illustration is provided by the instantaneous Coulomb repulsion
between two electrons which does originate from the one-photon exchange
mechanism [Sakurai (1967)].

Apart from their obvious thermodynamic relevance, the importance of
the low-energy excitations of a many-particle system cannot be overem-
phasized. Their excitation energy provides a new energy scale which is not
present in the vacuum. This can be discussed at several levels by consider-
ing nuclei. The nucleons making up the nucleus, are themselves composite
objects made up of quarks in such a way that no explicit color is present.
A nucleon can thus be considered as the lowest bound state of three quarks
with total angular momentum and isospin | . Experimentally, it has been
impossible to isolate quarks up to now. The energy scale associated with
generating individual quarks is therefore infinite for all practical purposes.
This is true even though QCD in the high-energy domain describes a weakly
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interacting system of massless quarks, predominantly interacting by the
exchange of single massless gluons. In the low-energy domain, where non-
perturbative effects and confinement dominate, the lowest excited states of
QCD are found at excitation energies of the order of hundreds of MeV. A
particularly important example is the A-isobar at 1232 MeV, which has
spin and isospin | . The energy difference between the nucleon and the
A provides a new energy scale. In addition, there are bosonic excitation
modes of QCD which can be interpreted in terms of quark-antiquark states.
The lowest-energy state is the pion with angular momentum 0 and isospin
1, which also has opposite parity from the nucleon and the A. The energy
of the pion is about 140 MeV. Due to its low energy and strong coupling to
the nucleon, the exchange mechanism, discussed above, is relevant. Con-
sequently, part of the interaction between two nucleons is represented by
the exchange of individual pions. Since they are the lowest-mass mesons,
their exchange generates the long-range part of the interaction, illustrating
the connection between the mass (energy) of the exchanged particle and
the range of the interaction. The idea of a meson-exchange mechanism to
describe the strong interaction, dates back to [Yukawa (1935)]. Exchange
mechanisms of higher-energy mesons with other quantum numbers, can
be used to describe the interaction between two nucleons at shorter range.
The energy scale, which involves the explicit excitation of other QCD states,
therefore starts at 140 MeV with an additional important state (the A) at
300 MeV.

This discussion demonstrates that the elementary excitations of the
QCD field theory are subject to a different energy scale, compared to the
noninteracting free field theory in which the quarks and gluons have no
mass. In the interacting theory, the colorless bound states dominate at low
energy, and explicit single quark and gluon degrees of freedom with color
are effectively at infinite excitation energy. Depending on the objectives one
must choose the relevant degrees of freedom that most efficiently describe
the properties of the system. In the case of one nucleon, one may attempt
a solution of QCD on the lattice. For many nucleons, it is more fruitful to
start from physical nucleons that interact by means of the meson-exchange
mechanism, using input from experimental data. This approach certainly
makes sense on account of the overwhelming experimental evidence that
nucleons retain much of their identity when they are brought together with
other nucleons in nuclei.

In general, one can say that the low-lying excitations of a system play an
important role in understanding the physics of the many-particle system.
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Sometimes these states are referred to as elementary modes of excitation
or quasiparticles. To understand the physics, it may be important to treat
the interaction between these modes. In liquid 4He we find bosonic collec-
tive modes like phonons and rotons. One level of understanding is achieved
by describing the liquid in terms of atoms interacting with each other,
another level is achieved by working with phonons and rotons [Nozieres
and Pines (1990)]. Whereas the former mode of description has certainly
not yet been completely successful in bringing about a microscopic under-
standing of rotons, the latter description mode is restricted by its inherent
phenomenological character. Indeed, even if one can numerically calculate
certain properties of the system microscopically, this does not imply a deep
understanding of the physics at the same time.

For a nucleus it is wise to maintain the description in terms of nucleons
until QCD can be solved with an accuracy better than the lowest energy
scale relevant for the system under study. In a nucleus the lowest exci-
tation modes have energies of the order of MeV's in light nuclei, but in
heavy nuclei the lowest excited state (of boson character) may be at about
50 keV. Again, one is dealing with a new energy scale that is introduced
because nucleons are localized. Nucleons experience an overall mutual at-
traction forming a self-bound system, the nucleus. Its size is dictated by
the interactions between the nucleons in the nuclear medium. From a sp
point of view, the nucleons find themselves bound in the average attractive
field of the other nucleons. Such a potential well has a range corresponding
to the size of the nucleus and consequently, introduces a new energy scale
related to its sp energies. An empirical potential of this kind was presented
in Sec. 3.3. Associated with the new energy scale, one encounters collective
behavior of nuclei that are best understood in terms of nucleons moving
coherently between these sp levels. Such bosonic excitations may be suc-
cessfully employed to interpret other excited states of the many-particle
system.

In a similar vein, one is not interested in understanding the helium
liquids in terms of a Hamiltonian at the level of the Coulomb interactions
between the electrons, the alpha particles, and the electrons and the alpha
particles (or 3He nuclei). Instead, many-particle theory attempts to explain
the properties associated with the relevant energy scales of the whole liquid.
This scale in kelvin (energy/fcs) is associated with the many-particle nature
of the system. The composite helium atoms experience a mutual interaction
characterizing their collisions in free space. It reflects the polarization effect
of the electron cloud of one atom on that of the other, representing the long-
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range part of the interaction. At short distances, the effect of the Pauli
principle between the electrons in the different atoms, leads to a strongly
repulsive component. The resulting interaction between pointlike helium
atoms, is thus used to simulate effects associated with degrees of freedom,
important at higher energy scales. Facilitating this approach is the neat
separation of electronic excitation energies that exceed those of the liquid
by four to five orders of magnitude.

A similar simplification must be made for electrons in a molecule or
solid. The original Hamiltonian, describing the Coulomb interaction be-
tween nuclei, nuclei and electrons, and electrons and electrons, is too gen-
eral to provide a realistic starting point for the description of the solid
state [Anderson (1963); Anderson (1984)]. Instead, the nuclei are assumed
to be localized in a lattice with most of the atomic electrons still tightly
bound to them. Only the electrons that become delocalized, form the rele-
vant electronic degrees of freedom that are subject to a periodic potential
leading to the observed band structure.

4.4 Examples of relevant two-body interactions

After this general perspective we present some examples of interactions
used in many-particle calculations. We will also evaluate some of the rel-
evant two-body matrix elements that appear in the Fock-space two-body
operator in Eq. (2.41). Often, an interaction is grounded in theory, but in
some cases a certain amount of phenomenology, constrained by experiment,
is necessary. Such constraints may involve an accurate description of the
corresponding fermion-fermion scattering in free space. In many systems
the basic interaction only depends on the relative distance between the par-
ticles, and no explicit spin (or isospin) dependence needs to be considered.
Spherical symmetry reduces the dependence further to the magnitude of
the relative distance. For such an interaction two-body matrix elements in
coordinate space yield (suppressing discrete quantum numbers)

(rir2\V\r3r4) = (Rr\V\R'r')

= 6(R - Rf) (r\ V \r') = 6(R - R')8{r - r')V{r). (4.27)

To obtain this result, a transformation to center-of-mass and relative coor-
dinates has been employed

H = *(*"!+r2) (4.28)
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r = n - r2, (4.29)

and similarly for the primed coordinates. An interaction with such ma-
trix elements in coordinate space is called a local interaction, since it is
diagonal in the relative coordinate. An important example is the Coulomb
interaction between charges q\e and qie

Vc{r) = ^ . (4.30)

Another useful interaction is the so-called Yukawa interaction given by

VY{r)=VQ — . (4.31)

In the case of nucleons, a considerable number of operators is required
to describe the interaction accurately. The simplest of these involves the
spin-spin interaction which is usually written as

Vspin=Vcr{r)cr1-<j2, (4.32)

where the dot product involves the Pauli spin matrices of the two particles.
Since <j\ -a2 corresponds to 4si - ^ / / i 2 , two-particle states coupled to good
total spin are needed to construct the eigenstates of this operator. Using
the identity

2si -s2 = S2 - s\ -a\, (4.33)

where S — si + 82, one obtains

(S'M's\tri-(T2\SMs) = {2S{S + l)-3)6s,s>5MstM.s, (4.34)

which yields —3 for 5 = 0 and 1 for 5 = 1. Spin-spin interactions are
not present in the basic interaction between electrons or 3He atoms, but do
appear in an effective form when the interaction between these fermions is
considered inside the medium. Nuclear interactions also carry an explicit
isospin dependence which leads to

Vuo.Pin = Vr(r)Ti-n, (4.35)

where the r matrices are the isospin equivalent of the Pauli spin matrices.
The result, corresponding to Eq. (4.34), reads in this case

(T'M^n • r2 \TMT) = (2T(T+ 1) - 3)5T,T-SMT,M^ (4-36)
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showing that states with good total isospin are necessary. It is possible
to give an accurate account of the scattering of two nucleons up to the
threshold of pion production by employing an interaction of the following
form [Wiringa et al. (1984)]:

t,14(l,2) = £ K(r)+W/
p(r)+^(r)] O\2. (4.37)

p=l,14

The local radial dependence (r = |ri - r2|) is governed by a long-range
pion-exchange term, u£, an intermediate-range part vf, and a short-range
contribution, Vg. The radial dependence of the pion-exchange interaction
contains the Yukawa form of Eq. (4.30). The charged TT+ and ir~ have
a mass of (inhc = mnc

2 — 139.6 MeV, whereas the ir° corresponds to 135
MeV, together usually treated as an isospin triplet. Fourteen operators O\2

need to be considered

1 T\ • Ti <J\ • <X2 (T\ • &2 Ti • T2

5i2 5'l2 Ti • T2 L • S L • S T\ • T2 . .
L2 L2

 T\ • r2 L2 a\ cri L2 cr\ • <T2 TI • T2
(L • S)2 (L • S)2 n • r2

to account for all the details exhibited by the data. This set of operators
contains the usual Pauli spin and isospin matrices, the tensor operator

Sl2{f) = 3 (o-i • f) (<r2 • r) - o-i • o-2, (4.39)

the relative orbital angular momentum L, and the total spin S of the pair.
Employing a partial-wave basis, one can use standard angular momentum
techniques to determine the matrix elements of these operators [Sakurai
(1994); Messiah (1999)], as summarized in App. B. Clearly, it is necessary
to include a coupling to total angular momentum to keep such calculations
manageable. This coupling was outlined in Sec. 4.1. An example of the
radial dependence of the nucleon-nucleon interaction in the two possible
5-wave channels is shown in Fig. 4.3. The interaction was taken from [Reid
(1968)] and is referred to as the Reid soft-core (RSC) potential. It can
be Fourier transformed to momentum space, unlike a hard-core potential.
It is noteworthy that the channel which binds the deuteron, displays less
attraction than the T = 1 interaction which is attractive but doesn't bind
the two-nucleon system. The explanation of this feature is the importance
of the role of the tensor force which acts in the coupled 351-3D1 channel,
as discussed in detail in Ch. 15.
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Fig. 4.3 The radial dependence of the XSQ nucleon-nucleon interaction is shown as
the full line, while the central part of the 3Si-3Di channels corresponds to the dashed
line [Reid (1968)]. The long-range part of these interactions is described by the pion-
exchange interaction.

Matrix elements of interactions in momentum space are needed when
we consider scattering problems or large homogeneous systems. Using the
transformation to total and relative momenta, presented in Eqs. (4.13) and
(4.14), one obtains for a central spin and isospin independent interaction
(suppressing these discrete quantum numbers)

(piP2|F|p3p4) = {Pp\V\P'p') = 8Ptp. (p\ V \p'). (4.40)

Wave vectors can also be employed for the description of the relative motion

(fc| V |fc') = ^ fd3r exp {i(k' - k) • r}V(r). (4.41)

The matrix element can be manipulated further by using the standard
expansion

exp {iq • r} = 4TT ^ ^ r / r a ( r ) ^ m ( q ) j , ( g r ) , (4.42)

where \t is the spherical Bessel function. Inserting this result in Eq. (4.41)
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and performing the angular integration, one obtains

(fe| V \k') = y Jdr r2 io(qr)V(r), (4.43)

with q = |fc - fc'|. For the Yukawa interaction of Eq. (4.31) the last integral
can be performed analytically (see e.g. [Gradshtein and Ryzhik (1980)])
yielding

This result can be employed to generate the matrix element of the Coulomb
interaction

where the case k = k' requires special care but can usually be omitted
on account of cancellations, as for the homogeneous electron gas [Fetter
and Walecka (1971); Mahan (1990); Gross et al. (1991); Mattuck (1992)],
discussed in Sec. 5.2.

Another type of interaction that can be encountered is of the following
form

V(r) = A e-ar. (4.46)

Such a term can be used to describe the short-range part of the atom-atom
repulsion [Aziz et al. (1979)] allowing Fourier transformation unlike r~12-
type interactions. The Fourier transform of the interaction in Eq. (4.46)
yields

( H V M - V h H - ^ - ^ , (4.47)

with q = \q\ — \k' — k\ the magnitude of the transferred wave vector. This
form is also useful for obtaining matrix elements in a partial-wave basis.
The long-range part of the atom-atom interaction contains the attractive
r~e van der Waals tail, but for accurate results is supplemented by r~8 and
r~10 contributions [Aziz et al. (1979)]. The resulting interaction is shown
in Fig. 4.4.

(4.44)

(4.45)
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Fig. 4.4 Helium-helium interaction from [Aziz et al. (1979)]. The qualitative similarity
with the nuclear interactions of Fig. 4.3 is evident.

In a partial-wave basis, matrix elements are required of the form

(kLML\ V \k'L'M'L) = fdk (LML\k) fdk' (k'\L'M'L) (k\ V(r) \k').

(4.48)
In the case of a Yukawa interaction, Eq. (4.44) can be written in the form

This last fraction can be expanded using the following relation between
Legendre functions Qe and Legendre polynomials P(

2kk' ^ubVkk' e=0 \ /

= E E 4*Q'( 2kk )nm(k)YUk>). (4.50)
e=o m=-e ^ '

In the last equality the addition theorem for spherical harmonics was used.
Note that the argument of the Legendre function must be larger than 1,

(4.49)
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while the argument of the Legendre polynomial must be less than 1. In-
serting these results, one obtains after performing the angular integrations

(kLML\ V \k'L'M'L) = SLL, 6MLM, ^ g £ QL ( f ' ' + £ + ^ . (4.51)

The first three Legendre functions are given by

«.<•>-§-fcl)-1

4.5 Exercises

(1) Calculate the normalization of the states given in Eqs. (4.22), (4.24),
and (4.26).

(2) Determine the possible states allowed by the Pauli principle when two
nucleons are added in the 0d| shell to 16O. Include isospin in your
consideration. Which states are allowed when two particles are removed
in the 0p | state? Compare your results with the experimental spectra
for these nuclei.

(3) Consider two nucleons that can occupy the Od | , l s | , or 0d§ orbit.
Determine the number of states allowed by the Pauli principle for each
possible value of J and T.

(4) Determine all the possible states for the 2p2 electron configuration in
carbon when a basis with good total sp angular momentum j is em-
ployed. Compare your number with the L-S scheme.

(5) Evaluate the matrix elements of the fourteen operators in Eq. (4.37) in
the partial wave basis with the total angular momentum J and isospin
T as good quantum numbers.

(6) Calculate the matrix elements of Eqs. (4.45) and (4.47) in a partial
wave basis.

(7) The 1So component of the Reid soft-core interaction is given by

V 5°(r) = -h 1650.6- + 6484.2^ . (4.53)

Calculate the matrix elements of this interaction in momentum space.

(4.52)



Chapter 5

Noninteracting bosons and fermions

In Ch. 3 we discussed the consequences of the Pauli principle for an as-
sembly of noninteracting fermions localized in space. For atoms and nuclei,
the resulting shell model or independent-particle model provides a useful
starting point for further study in later chapters. When dealing with a
large homogeneous system, it is practical to take advantage of translational
invariance in choosing a sp basis. The special role of the momentum or
wave vector basis is therefore clear. The corresponding "shell model" of
such an infinite system is referred to as the Fermi gas. Relevant details
for its description are presented in Sec. 5.1. An important idealization of a
system of electrons in a metal, the electron gas, is introduced in Sec. 5.2.
Fermi gas considerations are relevant for several other infinite systems that
are briefly reviewed in Sees. 5.3 for nuclear and neutron matter, and in
Sec. 5.4 for the 3He liquid.

After reviewing some statistical mechanics in Sec. 5.5, the occupation
number representation is employed to derive some standard results for non-
interacting bosons and fermions at finite temperature. The phenomenon of
Bose-Einstein condensation is discussed in Sec. 5.6. Bosons in an infinite
homogeneous system are considered in Sec. 5.6.1. A preliminary presen-
tation of Bose-Einstein condensation in traps is given in Sec. 5.6.2 with
attention to the thermodynamic limit in Sec. 5.6.3. Fermions at finite tem-
perature are briefly considered in Sec. 5.7.

5.1 The Fermi gas at zero temperature

The bulk properties of homogeneous systems of interacting fermions at a
certain density p is of great interest. For such a system, the Fermi gas,
where the interparticle interactions are neglected, provides a good starting

73
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point. It is instructive to study it first at zero temperature. Applications
involving fermions at finite T will be presented in Sec. 5.7. In the Fermi
gas each particle only contributes its kinetic energy

Ho=T=g-. (5.1)

For the momentum eigenstates of Eq. (5.1), we will apply the box normaliza-
tion discussed in Sec. 4.1.1. It is convenient to introduce periodic boundary
conditions as suggested by translational invariance. In the x-direction, for
example, one requires

eik,x _ eikx(x+L) _ ^k^x^k^L /g^\

where px = hkx. This result implies that

cos(kx +L)+i sin(kx + L) = 1, (5.3)

which is fulfilled when

kx-nx — where nx = 0,±l ,±2, . . . (5.4)

and similarly for ky and kz. It follows that each allowed triple {kx,ky,kz}
corresponds to a triple of integers {nx,ny,nz}. The Pauli principle allows
only a fixed number of fermions in each sp momentum eigenstate, depending
on the spin and/or isospin degeneracy. The ground state is then obtained by
filling the momentum states up to a maximum value; the Fermi momentum
pF = hkF- The maximum wave vector kp can be determined by calculating
the expectation value of the number operator [see Eq. (2.51)] in the ground
state

1*0)= n <i°)' (5-5)
|fc|<*F,M

where fi labels spin/isospin quantum numbers. We will consider the limit
when both N —> oo and V —> oo such that their ratio, the density p — N/V,
remains constant. This procedure is referred to as taking the "thermody-
namic limit." Summations can be replaced by integrations over continuous
quantum numbers like wave vectors, as follows

L^w =* Jdn^f(?j±,ri = j ^ Jdk'Enicri (5.6)
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for any function / . The transition from discrete triples {nx,ny,nz} to
continuous variables can be made in the case of large L, since any physical
quantity described by / will change slowly when one of the discrete variables
changes by one unit. To obtain the Fermi wave vector, we consider

N = (Sol N |*0> = E <$°l aUa** l$°> = E WF ~ fc)

= ^ E / * * W * - * ) = £j*k (5-7)

where v represents the spin/isospin degeneracy and 6 denotes the step func-
tion. The relation between the Fermi wave vector and the density therefore
becomes

(67r2An1/3 [97r)1 / 3 1 . ,

k* = {—\ -{5} s- (58)
In the last equality ro has been introduced, representing the radius of a
sphere containing on average one particle

r) = H (5-9)
Clearly, ro also serves as a measure of the interparticle spacing. Conversely,
one can write the density as

Equations (5.8) and (5.10) show that for a fixed density a smaller Fermi
wave vector is found when the degeneracy factor u is larger.

The energy of the ground state of the Fermi gas is obtained by employing
the kinetic energy operator

t = E E <M ^ i*v> <*•>*• = E ^•ro*,°*M'. <5-n)
fc/i k'fi' k'fi'

with the result

ri*o>=(E^4vafcv) n <i°>- (5-12)

(5.10)
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Using Eq. (2.34), we obtain a kinetic energy contribution from each sp state
that is occupied in |$o)

The energy of the ground state is then generated by taking the appropriate
continuum limit discussed above

h2k2 V ^ f jZ,h2k2 ..,

\k\<kF,n H J

-*&?*"£ ¥- <5-i4»
In the thermodynamic limit the energy per particle is thus given by

Eo V v h2kF 3h2k2F 3 3
AT = N 2 ^ TO^ = 5 ^ T = 5 £ F = 5 ^ ^ - (5-15)

Equation (5.10) has been used here while the free Fermi energy EF and
Fermi temperature 7> have also been introduced. Boltzmann's constant
has been denoted by ks-

5.2 Electron gas

Various systems qualify to be considered in terms of this simple Fermi gas
model. An example is provided by the homogeneous electron gas, which
provides a first approximation to a metal or a plasma. The positive ions
are represented by a static, uniform background. This yields a combined
system that is electrically neutral. One neglects therefore the motion of
the ions which, at least in first approximation, is permissible due to their
much larger mass. The uniform background assumption is less appropriate,
but the system is nevertheless of great importance. We note that the spin
degeneracy factor v = 2. It is also customary to use the Bohr radius
(oo = h2/me2 = 5.29 10~n m = 0.529A) to introduce a dimensionless
parameter for this system given by

rs = —. (5.16)

A metallic element contains NA (Avogadro's number) atoms per mole and
pm/A moles per cm3, where pm is the mass density (in grams per cm3),

(5.13)
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and A is the atomic mass. If one assumes that each atom contributes Z
electrons to conduction, the number of free electrons per cubic centimeter
is

p= E = 6.02205 x l O 2 3 ^ . (5.17)

Taking Z = 1 for alkali metals yields densities (at a temperature of 5K)
of 0.91 for Cs, 1.15 for Rb, 1.40 for K, and 2.65 for Na times 1022/cm3.
Corresponding values of rs are 5.62 for Cs, 5.20 for Rb, 4.86 for K, and
3.93 for Na, respectively. This translates into Fermi wave vectors ranging
from 0.65 A for Cs to 0.92 A for Na. The corresponding range of
Fermi energies and temperatures is given by 1.59 eV and 1.84 xlO4 K
for Cs, and 3.24 eV and 3.77 xlO4 K for Na. In its relativistic version,
the electron gas model can also be used to model white dwarf stars. One
typically assumes that the star contains the nuclei of He atoms (a particles)
and electrons [Landau and Lifshitz (1980); Huang (1987)]. Note that for
realistic conditions it is necessary to treat the electrons relativistically, due
to the high density of such a system.

Perhaps surprisingly, properties of the interacting (not free) electron gas
are also used extensively in quantum chemistry, within the framework of
modern density functional theory (DFT). In DFT the energy of any elec-
tronic system (also strongly inhomogeneous ones like atoms or molecules),
is expressed as a universal functional of the local electron density in the sys-
tem. While the structure of this functional is unknown, it should become
equal to the electron gas result in the limit of slowly varying electron den-
sities. This feature is used as an important constraint in the construction
of phenomenological density functionals [Dreizler and Gross (1990)].

We now consider the electron-gas Hamiltonian in more detail, using
atomic units (see Sec. 3.2). The electron gas consists of a homogeneous
distribution of electrons at density p, interacting through their mutual
Coulomb repulsion. Electrical neutrality is restored, by adding an inert
background distribution of positive charge with the same density. The
electrostatic energy of this positive background is simply

Eb = i Jdn fdr2 , P_ , = \P
2V Jdr^-, (5.18)

which shows that the energy per particle, (Ef,/N), diverges like V2/3 in
the thermodynamic limit because of the long-range nature of the Coulomb
potential. As the system is globally charge-neutral, we expect a finite result
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if we add E\, to similar contributions of the electron-electron and electron-
background interaction. To study this cancellation in a controlled manner,
it is convenient to momentarily replace the Coulomb inverse power law 1/r
with the Yukawa-type function e~Mr /r. The energy of the background now
reads

dr — = hP2V^. (5.19)
r fi

The interaction between the electrons and the background charge dis-

tribution, gives rise to the following one-body potential for the electrons
dr'Y^\ = ~PS dr'~ = "V" (5-20)

This potential is just a constant, as a consequence of translational invari-
ance. The contribution to the total energy of the N electrons is therefore

Ee_6 = i V ( - A = ~P2V%. (5-21)

The matrix elements of the Yukawa interaction are given in Eqs. (4.44).
Including the spin projection ms = ±\, we have

{piimi,p2m2\V\p3m3,pimi)= (5.22)

X A A 4 n l

0mi,m30m2,mi0P,P' y {p_ p,)2 + ^2 "

We have introduced the center-of-mass and relative momenta by

P = Pl+P2, P=h(Pl-P2)

P'=P3 + Pi, P# = i (P3 -P4 ) . (5-23)

For the second-quantized form of the electron-electron interaction we then
have

V= 2 X ! (P^m^P2m2\V\P3m3,p4mi)alimial2m2apimiaP3m3 (5.24)
Pimi

- I s r 4?r 1 t t
Ppp'
mi?7l2

Let's now isolate the part of V where no relative momentum is transferred,
i.e. we split V = Vd + V' where Vd contains the diagonal contributions
in Eq. (5.24) having p = p', and V' contains the remainder. Since the
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interaction matrix element in Vd is a constant, the result can be expressed
in terms of the number operator,

^ = *VJS ^ aUm1
aUm2aP2m2apimi = lyJ^^iN ~ *)• (5'25)

PlP2
mim2

The contribution of Vd to the total energy then becomes [note that in the
thermodynamic limit N(N - 1) ->• N2],

Ed = hvkN2 = x^p2y- (5-26)
This is the classical electrostatic repulsion of the electron charge den-
sity, which nicely cancels with the corresponding terms Eb and Et-\, in
Eqs. (5.19) and (5.21), arising from the positive background.

The final electron gas Hamiltonian therefore becomes

H = f + V' + Ed + Ee-b + Eb = f + V', (5.27)

where V' is given by

V' = k Z2 y (p _ p/)2
 aP/2+pm1

OP/2-pm2
af/2-P'»"2aP/2+p'm1- (5.28)

P,Pjtp'
mim2

Since the summation is restricted to p ^ p' there is now no danger in setting
/z = 0 and going back to the genuine Coulomb force. It is useful to evaluate
the expectation value of this interaction in the noninteracting ground state
[see Exercise (1) of this chapter]. We will take up the discussion of the
electron gas again in later chapters.

5.3 Nuclear and neutron matter

The hypothetical infinite system with N = Z and no Coulomb interaction
between protons, is called nuclear matter and was introduced in Sec. 3.3.1.
The system should reflect two essential numbers in nuclear physics that
characterize global properties of nuclei. The first number is associated
with the observed density in the interior of nuclei, equal to 0.16 nucleons
per fm3. According to Eq. (5.8), the corresponding wave vector, using a
degeneracy factor v = 4 for nuclear matter, is therefore UF = 1.33 fm~ .
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Fig. 5.1 The structure of a neutron star of about 1.4 solar masses. Values of radial
distances and central density are only indicative because of uncertainties in the neutron
matter equation of state.

The interparticle spacing becomes r0 = 1.14 fm, comparable to the mini-
mum in the interaction in the T = 1 channel (see Fig. 4.3). This density
is referred to as the saturation, or normal density of nuclear matter. Since
only the volume term of the empirical mass formula applies, the binding
at saturation density is expected to be about 16 MeV per particle. Nu-
clear matter calculations, starting from realistic interactions, must explain
these saturation properties. A more complete discussion will be presented
in Ch. 16.

Another important application of infinite nuclear systems involves the
study of the interior of neutron stars, which is schematically illustrated in
Fig. 5.1. The physics of neutron stars is intricate and interesting [Baym
and Pethick (1975); Baym and Pethick (1979)]. The low-density exterior
corresponds to a solid crust of a Coulomb lattice of neutron-rich nuclei,
immersed in a degenerate electron fluid. With increasing density, it is ener-
getically favorable to "remove" electrons by the process of inverse /3-decay.
This /?-decay turns the protons in nuclei to neutrons, until the nuclei with
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large neutron excess begin to "drip" neutrons because they can no longer
bind them. The matter density for this "neutron drip" corresponds to 4.3
x 1011 g cm"3. The neutrons form a superfluid of condensed 1So pairs. At
higher density, electrons, nuclei, and free neutrons coexist and determine
the state of lowest energy. With increasing density the neutron proton ratio
increases further, and the neutron fluid essentially determines the proper-
ties of the system above 4 x 1012 g cm"3, where the neutrons start to
provide more pressure than the electrons. The pressure exerted by neu-
trons therefore supports the neutron star against gravitational collapse. At
about 2 x I14 g cm"3 the nuclei have disappeared and liquid composed of
neutrons, while a small fraction of protons, electrons, and muons is present.
This neutron fluid with degeneracy factor v — 2, can be considered a huge
nucleus with a lower density than normal nuclear matter. At higher densi-
ties the interactions between neutrons is important, and must be included
in determining the equation of state. In this density regime, neutrons may
also exhibit superfluidity in the coupled 3P2-3F2 channel, and protons may
become superconducting with X5o quantum numbers. The highest density
region has an uncertain composition. Strange particles, pion condensation,
or quarks degrees of freedom may have to be considered. More details of
neutron superfluidity are discussed in Ch. 22.

5.4 Helium liquids

Helium atoms- come in two isotopic varieties, 3He and 4He. The lighter
isotope is a fermion, the heavier one a boson. Systems of both types of
particles exhibit spectacular quantum features. At zero pressure both sys-
tems remain liquid, when the temperature approaches 0 K. Both exhibit
superfluidity and other remarkable properties, when the temperature is
lowered. The binding forces between the atoms that form the liquid, are
van der Waals type forces. They originate from the polarization induced
in the electron clouds when the atoms approach each other (for a simple
discussion see [Sakurai (1994)]). In addition to this attractive component,
which is quite weak for He atoms, there is an effective short-range repul-
sion between the atoms, which is almost hard-core like. This is due to the
Pauli principle, when the electron clouds start to overlap. Because of their
light mass, there is a delicate balance between the kinetic and potential
energy. At zero pressure both systems remain liquid when the temperature
approaches 0 K. For 3He the observed density at zero pressure is equal
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to 36.84 cm3/mole. This translates into 0.0163 atoms/A which in turn
yields fc^ = 0.784 A , using a degeneracy factor v — 2 since the total
spin of the atom is \. At saturation the binding energy per atom is 2.52
K, a tiny amount compared to the atomic energy scales. It makes sense
to discuss the system from the perspective of atoms interacting through (a
dominant) two-body interaction. The latter can be studied from a more
microscopic starting point and constrained by information at higher tem-
perature. There, quantum effects no longer play a role and the kinetic and
potential energy separate. Attempts have been underway for a long time
to form fully spin-polarized 3He. Such a system would have a degeneracy
v — 1, with interesting consequences for the way in which the interaction is
sampled (see Sec. 4.1). The boson counterpart 4He forms a system that is
more bound. This is hardly surprising, since there is no Pauli principle that
leads to a substantial kinetic energy contribution. At a density of 0.0218
atoms/A the binding energy per atom is 7.14 K.

5.5 Some statistical mechanics

A microscopic description of a system at finite temperature can be obtained
by evaluating the ensemble average of the statistical operator. We will
consider the statistical operator in the grand canonical ensemble

-0(H~u,N)
PG = = , (5.29)

A3

where /? = (fcsT)"1, // is the chemical potential, and the grand partition
function is given by

ZG = Tr ( e ^ ( " - ^ > )

= £ £ (*n\e~0i"~^]K) = lL E e-*^-/*"). (5.30)
N n N n

In the evaluation of the trace, the basis with energy and particle number
eigenstates was used. A standard result from statistical mechanics [Landau
and Lifshitz (1980)] yields the thermodynamic potential

Q(T,V,fi) = -kBT\nZG, (5.31)

so that the statistical operator can be written as

pG = eH
a-A+»*l (5.32)
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The ensemble average (0) of any operator 6 is obtained by evaluating

Tr (e-Ptf-^O)
(6) = Tr (pG0) = \ : ^ . (5.33)

Detailed results can be derived by studying the noninteracting many-
fermion or many-boson systems. By replacing H by HQ, the complete set
of states of the independent-particle model can be used in the occupation
number representation to evaluate the grand partition function. We employ
the notation of Eqs. (2.18) and (2.19), introduced for fermions and bosons,
respectively. Summing over the complete set of states in Fock space, can
also be accomplished by summing over all possible occupations of the sp
states. The operator Ho and the number operator, can then be replaced
by their eigenvalues for a given state as follows

H0\ni...noo) - ^2 niei\n1...n00) (5.34)
i

N\ni...noo) = ̂ 2 ni |ni—«oo) • (5.35)
i

The grand partition function now reads

Zo = ^ exp{/%ni-£ini)}...exp{/8(/moo-Eoonoo)}
ni ...rioo

oo

= n Tr (exp {-p(si - n)^}), (5.36)
i= l

where the trace includes a summation over the possible occupation numbers
for sp state i. All occupation numbers must be included for bosons, yielding

oo oo oo

zo = n E texp w» - e^n=n t1 - exp w^ - e^~l • (5-3?)
i= l n=0 i=l

The thermodynamic potential for noninteracting bosons is then given by

oo

Q^(T,V,fi) = -kBT lnJJ [1-expiPifi-Si)}}-1

t=i

oo

= kBT ^ In [1 " exp {0(n - et)}]. (5.38)
i=i
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The average number of particles is obtained by differentiating the thermo-
dynamic potential with respect to the chemical potential, keeping T and V
(meaning e,) fixed [Landau and Lifshitz (1980)]

oo oo

The mean occupation number of a sp state i is denoted by n?.
For fermions the restriction of the occupation number to 0 or 1 yields

according to Eq. (5.36)

oo 1 oo

2 O f = i i E texp w» - £<)}]n=n t1+exp w» - £<)>] • (5-4°)
i=l n=0 i=l

As a result, the thermodynamic potential for noninteracting fermions reads

oo

n£(T, V, n) = -kBT J2 l n I1 + exP {̂ (/̂  - £i)}] • (5-41)
i=i

The number of particles is given by

OO 00 ..

We note that the average occupation numbers of a sp state i, denoted by n°,
has the familiar form for bosons in Eq. (5.39) and for fermions in Eq. (5.42).

5.6 Bosons at finite T

5.6.1 Bose-Einstein condensation in infinite systems

The ground state of a noninteracting system of bosons is obviously the one
in which all the bosons occupy the lowest sp level. This state is the limit
that one approaches when the temperature is lowered towards T = 0. First
we will consider a collection of bosons in a box with the usual periodic
boundary conditions. The sp energy is given by

«*> = * £ . (5.43)

(5.39)

(5.42)
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Summing over sp states can be replaced by an integral over wave vectors,
as discussed in Sec 5.1

£ - (—/<**, (5-44)

where v is the degeneracy factor associated with discrete quantum numbers
like spin. It is common to transform the integral over k to one over the
energy, as determined by Eq. (5.43)

vV A . 2 J , vV f2m\3/2 ede vV / 2 m \ 3 / 2 1 / 2 , . A .

The thermodynamic potential for an ideal Bose gas can now be written as

< t f = * f l T ^ ( | ^ ) 3 / 2 jTifee1/8 In [1-exp {/*(,,-e)}]

vV (2m\3/2 2 f°° g3/2
- - ^ \ - ¥ ) 3j0 d £exP{/3(£-M)}-l ' ( 5 ' 4 6 )

where in the last line a partial integration has been performed. Similarly
we obtain for the average energy

and average particle number

Using the thermodynamic relation fl = — FV, one recovers from Eqs. (5.46)
and (5.47) the standard expression for an ideal gas, PV = |.E. The denom-
inator in the integrals above reflects the occupation probability, associated
with energy e. As a result, this denominator may not become negative. For
this reason /j must always be such that for a given sp Hamiltonian with a
corresponding spectrum e — // > 0 (for any e). In the present case e may be
zero so /J, < 0. If the density in Eq. (5.48) is kept fixed while the tempera-
ture is lowered, the absolute value of the chemical potential is expected to
decrease, to allow the density to remain constant. The limit n = 0 is then

(5.47)

5.48
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reached for a temperature TQ, for which Eq. (5.48) yields

4TT2 U 2 ) Jo £ exp {e/kBT0} - 1

_ ^ (2mkBT0\
3/2 f™ x1/2

"4TT 2 { V ) Jo
 Xexp(x)-1

vV f2mkBT0\
3/2 3.1 r

= 4^ \ - ^ ) ^2}2^' ( 5 - 4 9 )

where ((§) = 2.612 (Riemann ^-function). The result can be rewritten as

Jo = ^ T T —r~ 77 I • (5.5UJ

For temperatures below To it is clear that the integral will give only the
number of particles with e > 0, while the occupation of the lowest state
becomes macroscopically large. The latter state does not contribute to the
integral, due to y/e weighting which occurs when the summation is replaced
by an integration. Therefore, it is necessary to track the number of particles
in the lowest sp state. Equation (5.49) with To replaced by T, continues to
represent the number of particles with e > 0, since n remains zero. This
implies that for T < To

/ T N 3 / 2

NS>O(T) = N [—j . (5.51)

The remaining particles must then be in the lowest-energy sp state with
e = 0 according to

/ T N 3 / 2 "

JV£=0(T) = N 1 - (— . (5.52)
\1oj J

The macroscopic occupation (proportional to N) of a single quantum state
is referred to as Bose-Einstein condensation. At To a discontinuity in the
slope of the specific heat at constant volume is present [Landau and Lifshitz
(1980); Fetter and Walecka (1971)]. The density of the 4He liquid, p =
0.145 g cm"3, yields To = 3.14 K for the transition temperature. The
actual experimental behavior is somewhat reminiscent of this result, but
the specific heat has the shape of a A, and is different from the ideal gas
prediction. The experimental transition takes place at 2.2 K, below which
4He exhibits superfluid properties. While superfluidity cannot be explained



Noninteracting bosons and fermions 87

by the ideal gas description, it is nevertheless presumed to be related to
Bose-Einstein condensation (see Sec. 19.1).

5.6.2 Bose-Einstein condensation in traps

The original papers by Bose and Einstein are discussed in context by [Pais
(1986)]. Reviews from just before 1995 are collected in [Griffin et al. (1995)]
while the more recent developments are discussed in [Dalfovo et al. (1999);
Ketterle (1999); Burnett et al. (1999)]. New books on the subject have also
been written recently [Pethick and Smith (2002); Pitaevskii and Stringari
(2003)]. In 1995 Bose-Einstein condensation was first observed in exper-
iments on rubidium (87Rb) [Anderson et al. (1995)] and sodium (23Na)
atoms [Davis et al. (1995)], leading to the 2001 Nobel prize in physics,
awarded to Wieman, Cornell, and Ketterle. Both types of atoms have an
odd number of protons and an even number of neutrons in the nucleus. To-
gether with the odd number of electrons, the total number of fermion con-
stituents corresponds to an even integer, which makes these atoms bosons
(for energies small compared to their internal excitation energies).

Historically, the superfluidity of liquid 4He has been linked to Bose-
Einstein condensation. Backed by theory, evidence has been gathered ex-
perimentally from neutron scattering measurements at high momentum
transfer (see Sec. 19.2.1), that the occupation of the lowest sp state is close
to 10% [Sokol (1995)] towards 0 K. This represents a macroscopic occu-
pation of the lowest sp state; the zero momentum state. In the case of
4He it is however, hard to find an unambiguous signature of Bose-Einstein
condensation. Only recently [Wyatt (1998)], has tentative evidence for the
condensate in 4He become available by using quantum evaporation. This
technique involves the scattering of phonons (excitations generated in the
liquid) with atoms, somewhat analogous to the photoelectric effect. When
such a phonon is incident on the free surface of the liquid, it is absorbed by
an atom which is released into the vacuum above the liquid with conserva-
tion of momentum parallel to the surface. Measuring the momentum of the
phonon and the evaporated atom allows determination of the momentum of
the atom in the liquid, before it absorbed the phonon. The measurements
of [Wyatt (1998)] at 100 mK indicate a macroscopic occupation, of the zero
momentum state, but further refinements are necessary to pin down the
actual fraction of condensed atoms.

The first efforts to achieve Bose-Einstein condensation with atomic
gases were focused on experiments with hydrogen atoms, but it was not
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until recently [Pried et al. (1998)] that Bose-Einstein condensation has
been observed for spin-polarized hydrogen. Critical to these new develop-
ments for atomic gases have been laser-based methods, such as laser cool-
ing and magneto-optical trapping [Chu (1998); Cohen-Tannoudji (1998);
Phillips (1998)]. After trapping, further lowering of the temperature can
be accomplished by evaporative cooling in which the depth of the trap is re-
duced, allowing the most energetic atoms to escape. The remaining atoms
rethermalize at lower temperature. It should be noted that these systems
must be studied in a metastable gas phase, since the equilibrium configura-
tion is the solid phase, except for hydrogen. Typical temperatures achieved
to study Bose-Einstein condensation range from 500 nK to 2/iK, with den-
sities between 1014 and 1015 atoms per cm3. The largest condensates in
sodium have 20 million atoms, and in hydrogen 1 billion. Condensates have
also been obtained for 7Li atoms [Bradley et al. (1995)]. Other vapors of
cesium, potassium, and helium are under study. The shape of the conden-
sates depends on the magnetic trap and can be round with a diameter of
10 to 50 (im, or cigar-shaped with a diameter of about 15 jum and a length
of 300 ^m.

The confinement in traps implies that these systems are highly inho-
mogeneous, reflecting a substantial density variation in a finite region of
space. This implies that Bose-Einstein condensation can also be observed
in coordinate space, since the relevant sp wave functions are localized. The
magnetic traps used for alkali atoms, yield confining potentials that can be
very well approximated by a quadratic form, given by

Vext(r) = - m (UJ2
XX2 + u2

yy
2 + u2

zz
2) . (5.53)

The actual analysis of the experimental data requires the inclusion of the
interaction between the atoms, as discussed in Ch. 12. Nevertheless, some
useful results can be generated by assuming the atoms to be identical, point-
like, noninteracting particles in a harmonic potential given by Eq. (5.53).
The eigenvalues of the corresponding three-dimensional harmonic oscillator
potential are given by

£n*nynt = {nx +$) hjJx + (ny + l) Hujy + {nz +\) f)U}z, (5.54)

where {nx,ny,nz} are nonnegative integers. The ground state of the non-
interacting system with N atoms is obtained by putting all atoms in the
lowest sp state with nx = ny = nz = 0. The corresponding sp wave func-
tion is simply the product of three ground state oscillator wave functions:
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one for each of the three dimensions considered. It is given by

<Aooo(r)= ( ^ ) 3 / 4 e x p { - ^ ( W x x 2
+ W ! / 2 /

2
+ ^ 2 ) } , (5.55)

where the normalization factor can be written in terms of the geometric
average of the three oscillator frequencies

coHO = (uixujyU)z)
l/z. (5.56)

The density distribution for the ground state with N such bosons

| 0 = ^(<4>) J V |0>, (5.57)

then becomes

/?(7-)=iV|^ooo(r)|2. (5.58)

The density grows with N, but the size of the cloud is independent of N.
It is determined by the trap potential, yielding the characteristic harmonic
oscillator length

/ k V'2
aHO = • (5.59)

\muHO)
This length corresponds to the average width of the Gaussian, represented
by Eq. (5.55). In the available experiments it is typically of the order
aHO « 1 (im. At finite temperature the atoms will also occupy excited states
of the oscillator potential. The radius of this cloud will be larger than aHO-
The effect can be estimated by using the classical Boltzmann distribution
for the density corresponding to a spherical potential Vext(r) [Landau and
Lifshitz (1980)]

^(rjocexpj-^g^} (5.60)

and assuming ksT 3> huiHO so that a significant fraction of the particles
populates the higher oscillator levels. If

VeXt(r) = \mu?Hor\ (5.61)

the width of the classical density distribution is given by

/ kaT \ ll2

RT = aHO -?— , (5.62)
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and therefore larger than aHO. It illustrates that Bose-Einstein condensa-
tion in harmonic traps shows up in the form of a sharp peak in the central
region of the density distribution. By taking the Fourier transform of the
ground state wave function, the momentum distribution of the atoms in
the condensate is obtained. Since the wave function in momentum space is
also Gaussian, the distribution is centered at zero momentum with a width
proportional to a~x

o. As a result, the condensate appears both in coordi-
nate and momentum space as a narrow peak. This is quite different from
the case of a uniform gas, where the particles go to the zero momentum
state, but there is no signature in coordinate space, since condensed and
noncondensed particles fill the same volume. The experimental signal of
Bose-Einstein condensation has been detected as the occurrence of a sharp
peak over a broader distribution in both the velocity and spatial distri-
butions. By switching off the trap, one lets the condensate expand and
measures the density of the expanding cloud by light absorption. If there is
no interaction between the atoms, the expansion is ballistic and the imaged
distribution can be related to the initial velocity (momentum) distribution.
For the spatial distribution one measures the density of the atoms in the
trap directly by dispersive light scattering. The effect of the interaction be-
tween the atoms modifies the results substantially, as discussed in Ch. 12.
The symmetry of the confining potential leads to important signatures at
the noninteracting level. These features persist when interactions are taken
into account. The first experiments were carried out with axial symmetry
for which the ground state wave function can be written as

A1/4 1
<Aooo(r)= 3 / 2 e x P{-T^( r i + A*2)}' (5-63)

7T'i/4a_L
/ za±

where a± = {h/mui^)1/2 is the oscillator length in the a^-plane. Since
UJ± — A~1/3wHO, it follows that a± = \l/6aHO. The momentum space
wave function has a corresponding asymmetry governed by the parameter
A. If condensation has taken place, the shape of the expanding cloud is an
ellipse with an aspect ratio of \f\, whereas one expects spherical symmetry
in the case of a thermal distribution. The actual values of this ratio are
strongly influenced by the interaction between the atoms, but still show
this important anisotropy which is used to identify the condensate.
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5.6.3 Trapped bosons at finite temperature: thermodynamic
considerations

At temperature T the number of particles is given by Eq. (5.39) which
yields in the present case

while the total energy is given by

E - 3 ? n . e * p { K e n m n , n . - „ ) } - ! • (5-65)

Statistical mechanics is complicated by the fact that the usual thermody-
namic limit is not appropriate for these gases. Indeed, due to the inho-
mogeneity of the system, it is not possible to take N and V to infinity,
while keeping their ratio constant. As in the uniform case however, one
may separate the lowest energy £ooo from the sum in Eq. (5.64) and denote
by NQ the number of particles in this state. This number can be of order
N, when the chemical potential approaches the energy of the lowest state

3
H ->• fi,c = - t u D , (5.66)

where Q = (iox +ujy + CJ2)/3 is the average frequency. This limit is reached
for a critical temperature T = Tc. Equation (5.64) can be written as

N-No= V • — rr - . (5.67)
n.#o.n7#o,n^o 6 X P {0M"*n* + wvnB + uznz)} - 1

The sum can be evaluated numerically for finite N, but for N -> oo it can
be replaced by an integral

r°° l
N-No= / dnxdnvdnz — • • r r—-. (5.68)

Jo exp {j3h(ujxnx + toyny + ujznz)\ - 1

This approximation is referred to as a semiclassical description of the ex-
cited states. It implies that the relevant excitation energies are much larger
than the level spacing which is fixed by the oscillator frequencies. Valid
for large N and ksT 3> luuHO, it can always be checked numerically using
Eq. (5.67). The integral (5.68) can be evaluated with the following result

iV-7V0 = C(3) ( ~ - ) , (5-69)
\fkJHOj

(5.64)
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where the Riemann £ function has a value given by £(3) ss 1.202. This
expression leads to the transition temperature for Bose-Einstein condensa-
tion. Imposing that iVo —> 0 at Tc, one obtains

( N \ 1 / 3
kBTc = tuoHO — - = 0.94 huHO N1/3. (5.70)

Note that the physically relevant "thermodynamic limit" of this harmoni-
cally trapped system would consist of N —> oo, while keeping Nu^0 fixed.
Substituting Eq. (5.70) in (5.69), the T dependence of the condensate frac-
tion for T < Tc becomes

£='-(£)'•
By evaluating the energy in a similar way, all thermodynamic quantities can
be generated. A further useful quantity is the density of thermal particles
out of the condensate, PT(T). The sum of pr{r) a n d the condensate density,
po(r) = No |0ooo(r)| , generate the total density distribution. The classical
expression

PT(r) = I ^ 3 [exP {0£(P'r)} - ^ , (5-72)

can be used in this case, where

£(p,r) = ^- + Vext(r) (5.73)

is the semiclassical energy in phase space. Equation (5.72) then yields

Pr(r) = y~^~-3 L, (5.74)
Ay

where the function g3/2 is a Bose function ga(z) = Yl^=i 7^r> discussed
in [Huang (1987)]. Important finite size corrections and crucial modifi-
cations of these results occur when the interaction between the atoms is
taken into account [Dalfovo et al. (1999)] (see also Ch. 12). Nevertheless,
the above results, involving noninteracting bosons, already yield some use-
ful notions, relevant for the understanding of the recent experiments on
Bose-Einstein condensation.

(5.71)
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5.7 Fermions at finite T

5.7.1 Noninteracting fermion systems

The noninteracting Fermi gas at finite temperature yields thermodynamic
quantities that exhibit characteristic differences with their bosonic counter-
parts. Using fermion occupation numbers, the thermodynamic potential of
the homogeneous Fermi gas becomes

o F _ uV (2m\3/2 2 [°° e3/2

" ° ~ 4*» U V 3 / 0 ^exp {/?(/,-£)} + !' ( 5 J 5 )

after performing similar steps as for the noninteracting Bose gas. Similarly,
we obtain for the energy

and particle number

Using Cl = — PV, one recovers from Eqs. (5.75) and (5.76) also for fermions
the standard result for an ideal gas; PV = |£J. The denominator in the
integrals above, reflects the occupation probability associated with energy
e. It is clear that this occupation number is always less or equal to one, for
all values of /x and T. It is useful to check the zero-temperature limit which
recovers the result from Sec. 5.1 with /i = ep at T = 0, resulting in full
occupation of states with k < ICF, the Fermi sea. Relevant thermodynamic
quantities are straightforward to work out [Fetter and Walecka (1971);
Landau and Lifshitz (1980)].

5.7.2 Fermion atoms in traps

While the transition to a Bose-Einstein condensate for atomic gases is
abrupt, the crossover to quantum degeneracy for fermionic atoms is grad-
ual. It was recently demonstrated for the first time for 40K atoms [DeMarco
and Jin (1999)]. The potassium atom has an odd number of protons, neu-
trons, and electrons, thereby making it a fermion. The electrons combine
to atomic spin F = | . It is more difficult to cool fermions by using the
evaporation technique, mentioned earlier. In this process the highest energy

(5.76)

(5.77)
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atoms are removed and the remaining gas equilibrates by elastic collisions
at a lower temperature. The elastic collision rate dropssharply for fermions
when the temperature is lowered, because the interaction is dominated by
the 5-wave. 5-wave scattering is prohibited for single species fermions, as
discussed in Ch. 4. This problem was overcome by using a mixture of two
spin states for which 5-wave collisions are allowed. For the trap used in
the experiment, one expects a Fermi temperature of 0.6 /iK. The actual
experiment cooled about 8 x 105 atoms to approximately T = 0.5Tp. At
that point, one of the spin states was removed and a single-component gas
remained.

We proceed in a similar fashion as for bosons to describe the sp Hamil-
tonian for the fermions

H=Pl +P2y +Pl + imu2 (a.2 +y2+ ^ 2 ) ^ ( 5 - 7 g )

ZITDJ

where ujr and uiz = Xu)r are the trap frequencies in the radial and axial
directions, respectively. The sp energy is given by Eq. (5.54), with ap-
propriate changes in notation for the oscillator frequencies. In the actual
experiments the thermal energies far exceed the level spacing (fc^T > tkor),
as for the boson systems discussed above. It is therefore allowed to replace
the discrete sp spectrum by a continuous one, employing the appropriate
density of states. The density of states at e can be expressed in general
as [Economou (1983)]

p{e) = YJ 5{e-en), (5.79)
n

where en is given by the spectrum under consideration. For the spectrum
of the Hamiltonian given by Eq. (5.78), one calculates

^ = 2A(feF ^
A practical way to obtain this density is to first determine the number of
states with energy below e + de, then subtract the number below e, and
divide by de (for de -> 0). The fermion equivalent of Eq. (5.64) can now
be used to study the chemical potential [Butts and Rokhsar (1997)]

N= Y. [exp { / ? ( e w - „)} + I]"1 = [de ^ . (5.81)
flj. fly llz
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At zero temperature all levels below the Fermi energy are occupied, the
ones above empty. Integrating Eq. (5.81) gives

eF = ̂ (T = 0,N)=hur[6\N}l/3, (5.82)

which yields the energy scale for the atomic cloud. A characteristic length
scale is given by the extent of the orbit of a classical particle with energy
ep in the trap potential

r o -i 1/2
RF = F g = (48AA01/6ar, (5.83)

where or is the radial oscillator parameter. A characteristic wave number
is obtained from the momentum of a particle with energy ep

which shows that kp is about equal to the inverse of the interparticle spac-
ing in the gas. For a general temperature, the chemical potential can be
determined numerically from Eq. (5.81). Analytic results are available at
low temperature (UBT -C ep) from Sommerfeld's expansion [Landau and
Lifshitz (1980)]

KT,N) = sF l - y ( ^ ) 2 • (5-85)

In the classical limit, fcgT > ep, one finds

li{T,N) = -kBT In 6( — ) . (5.86)
[ V £F )

A similar procedure yields the energy and, subsequently, the specific heat
of the trapped gas from

c» = jtw\N> (5-87)

where E(T, N) is the total energy. The experimental data from [DeMarco
and Jin (1999)] clearly confirm the expectations for the deviations of the
energy from the classical result as a function of temperature, as well as the
behavior of the specific heat given by Eq. (5.87). Further experiments are
geared towards studying situations in which the interaction between atoms

(5.84)
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near the Fermi energy is effectively attractive. The expectation is that new
insights into pairing may be gleaned from such systems.

5.8 Exercises

(1) Evaluate the ground state energy of the electron gas in first-order per-
turbation theory. Make a plot of the energy per particle as a function
of rs and determine the minimum.

(2) Assume that nucleons interact by means of a two-body interaction given
by

V = V0(r) + VT(r)n • T2 + Va{r)cn • cr2 + VaT{r)ai • am • r2,

where each radial dependence is governed by a Yukawa form with differ-
ent masses and constants. Evaluate the ground state energy of nuclear
matter in first-order perturbation theory, using this interaction.

(3) Calculate the energy and corresponding specific heat at constant vol-
ume of the noninteracting Bose gas, below and above To.

(4) Calculate the energy of a trapped Bose gas, the specific heat, and com-
pare these quantities with those from the uniform Bose gas.

(5) Provide the details for the calculation of the density of states given in
Eq. (5.80). Use Sommerfeld's expansion to determine the energy of the
Fermi gas in the trap at low temperature, and calculate the specific
heat according to Eq. (5.87). Compare your results with [DeMarco and
Jin (1999)].



Chapter 6

Propagators in one-particle quantum
mechanics

In order to master the concept of a sp propagator in a many-particle sys-
tem, it is instructive to pose the problem for one particle in this language.
In Sec. 6.1 the time evolution of a quantum state, as generated by the
Hamiltonian of the system, is reviewed. The relation between a state at
an earlier and a later time, suggests the definition of the propagator and
relates it to the intuitive notion of Huygens' principle. The expansion of the
propagator in terms of a known, or unperturbed, propagator is introduced
in Sec. 6.2 with special emphasis on its diagrammatic representation. A so-
lution method for bound state problems is illustrated in Sec. 6.3, whereas a
discussion of scattering in the propagator language is presented in Sec. 6.4.

6.1 Time evolution and propagators

Time evolution in physics is determined by the Hamiltonian of the physical
system under study. In quantum mechanics the state of a particle with
quantum numbers a at time to can be denoted by \a,to). At a time t later
than to, one obtains the state \a,to;t), which has evolved from the initial
state, according to

| a , i o ; i ) = e - ^ ( i - t ° ) | Q , i o ) , (6.1)

for a Hamiltonian that does not depend on time. The correctness of
Eq. (6.1) can be checked by substituting this expression in the Schrodinger
equation

ih—\a,to;t) = H\a,to;t). (6.2)

97
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Equation (6.1) for \a, to;t) can be written in terms of the wave function of
the particle at time t as follows

i/>{r,t) = (r\a,to-t) = (r\e-iH^-^ \a,t0)

= f dr' (r\e-*H{t-to)\r'){r'\a,to)

= ih f dr' G(r, r'; t - *oMr', to), (6.3)

where G is referred to as the propagator or Green's function

G(r,r'; *-*„) = - ! (r\ e-*»('- 'o) | r ' ) . (6.4)

Its physical meaning can be illustrated by recalling Huygens' principle.
Indeed, Eq. (6.3) illustrates that the wave function at r and t is determined
by the wave function at the original time to, receiving contributions from
all r' which are weighted by the amplitude G. Note that knowledge of the
initial wave function and the propagator G thus allows the construction of
the wave function at any time t > to-

Several alternative ways of writing the propagator may be obtained by
using

H\n)=en\n) (6.5)

for the exact eigenstates of H. Assuming a discrete spectrum to simplify
the notation, these alternative ways of writing the propagator include

G(r,r';t -to) = -1- (r\ <.-£"(*-'<>) | r ' ) = _ i (0| a r e - * ^ ' " ^ ^ |0>

= -jE<0la"l")Hai'|0)e-*e»<'-to)
n

= -^Eu»( rK( r>-* e" ( t - t o ) , (6-6)
n

employing standard notation for energy eigenfunctions. To incorporate
the causality condition t > to explicitly, it is convenient to include the
step function 9(t — to) in this expression. For practical calculations it is
essential to consider the Fourier transform (FT) of the propagator to arrive
at nonperturbative (all-order) solution methods. To work out this FT, the
following representation of the step function can be used

f dE' e-iE'(t-t0)/h

• " - w = -y5S-gn^- < 6 7 »
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Note that r\ I 0 is implied. For t > t0, the integration path can be closed
in the lower half plane and the contribution of the enclosed pole yields a
result equal to 1. For t < t0, one can close the contour in the upper half
plane which yields a vanishing outcome, since no pole is enclosed. At t = to
the step function jumps from 0 to 1. Its derivative is given by

~e(t-to)=S(t-to). (6.8)

The FT of the propagator then reads in various alternative forms

G(r,r';£) = - M d(t - t0) e ^ " ^

x{S(t- t o)^«n(r)<(r ' )e-^"(M«)}
n

= y . un(r)u*n(r') _ y . (Oj ar \n) (n\ aj, |0)
^ E - en + irj ^ E - en + irj

The presence of the irj term in the denominator originates from the inclusion
of condition t > to (time going forward). The formulation in Eq. (6.9)
assumes that a spinless boson is considered. The inclusion of spin quantum
numbers for a fermion is straightforward. Some of the expressions for G
will have their counterpart for the sp propagator in a many-particle system.
It is important to realize that one can study the propagator in any sp basis

G(a,P;E) = (0\aaE_^+. a* |0), (6.10)

where a represents an appropriate set of sp quantum numbers to identify
a possible state of the particle.

6.2 Expansion of the propagator and diagram rules

The exact propagator can be related to an approximate one by using a
decomposition of the Hamiltonian

H = H0 + V, (6.11)

where Ho is referred to as the unperturbed Hamiltonian for which the
corresponding propagator G^0' is readily available. The following operator

(6.9)
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identity

with A = E - Ho + irj and B = V may then be employed. This operator
equation relates the operator for G, involving H,

G = -F—7?—- (6.13)
E- H + ir) J

to the corresponding operator G^°\ involving Ho, and the potential V

G = G<°> + G^ V G

= C?(0) + GW V Q(0) + G(0) y G(0) y Q{0) + _ _ (g 1 4 )

The unperturbed propagator, which is given by

GW(a,frE) = (0\aaj-^-^a}i\0), (6.15)

can then be used to obtain

^E^H-^^ = ^E-^krr^ <6-16>

or

G(a,^; E) = G™(a, ft E) + £ G<°>(a, 7; E) (7| y |«5) G(6, ft E). (6.17)
7,5

6.2.1 Diagram rules for the single-particle propagator

It is possible to generate a series of diagrams that represent the contribu-
tions to the sp propagator in a perturbation expansion in the potential V.
These terms can be derived algebraically by iterating the equation for the
sp propagator. It is convenient to choose {\a}} to be eigenstates of Ho with
eigenvalues {ea}. One then obtains

Gl°Ha,ftE)= Sa'0 . (6.18)
E — ea + IT]

For a contribution of kth order in V we find:

(6.12)
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Rule 1 Draw a directed line with k zigzag (horizontal) interaction lines V
and k + 1 directed unperturbed propagators G^

T a

<NAA«

•

1 /3
Rule 2 Label external points (a and /3)

Label each V

*^VV (7|V|<5)

For each full line with arrow write

• • E GW{n,v,E)

i v

Rule 3 Sum (integrate) over all internal quantum numbers

Examples of diagrams in the single-particle problem

T a

'• E Gl°Ha,0;E)
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<<VW E 7 s G{0) («. 7; E) (7l V |<J> G (o) (5,/?; E)
S

T a

E<>

£7 l ( !G(0>(a,7; i5)

% x{££,<7|F|e)G(o)M;£)(0|V|«5)}G(o)(<U;£)
cf\AA*

An extension to third and higher order in V is straightforward. The
representation of the perturbation series given in Eq. (6.14), may appear
superfluous at this point. Similar diagrams will be generated when the sp
propagator is considered in a many-body system however, and it is use-
ful to illustrate some of the possible resummations of the diagrams. To
avoid cluttering notation, the operator form [Eq. (6.14)] can be employed
to rearrange the series in several ways

G = G<°> + G<°> V G<0) + G(o) V G<°> V G<°> + ... (6.19)
= G(0) + G(0) V {G(0) + G(0) y G(0) + } = G(0) + G(0) y Q

= G(o) + {G(°) + G<°) V G<°> + ...} V GW = G(°) +GV G^

= G<0> + G ^ { F + V G<°) V + ...} G(°) = G(o> + G(°) T G™,

where

T = V + V G(o) V + V G(o) V G(o) V + ...

= V + V G(o) {V + V G(o) F + ...}

= V + V G(o) T = V + T G(o) F = F + 1/GV. (6.20)
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G = G(o)' + ffWv» F

1 ' G

Fig. 6.1 Diagrammatic representation of the summation in Eq. (6.19) for sp propagator
G in terms of G'0 ' and V.

A compact way to depict G = G^ + G^VG diagrammatically is given
in Fig. 6.1. The double line is used to represent G. Similar diagram-
matic results can be obtained for the other forms of Eq. (6.19). T is
simply the T-matrix familiar from the calculation of the scattering ampli-
tude. The corresponding equations in Eq. (6.20) represent possible forms
for the Lippmann-Schwinger equation. The diagrammatic representation
of Eq. (6.20) is illustrated in Fig. 6.2. This formulation in terms of T-
matrices, each diagrammatically represented by a double zigzag line, can
be quite practical in the case of continuum solutions. Considering again
the problem in which V represents a localized potential and Ho = T, one
can choose the sp basis {\a) = \p)} to obtain

(Pl\T(E)\p2)= (6.21)

<Pl | V In,) + Jdp (Pl | V \P) E _ p 2 ] 2 m + ir} (P\ T(E) \p2)

for a particle without spin. There should be no confusion between the
kinetic energy T and the symbol for the scattering quantity T(E).

¥W\« V

V
j <VW = *W\« + - G(o)

W r
Fig. 6.2 A possible diagrammatic representation of Eq. (6.20) for T.
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6.3 Solution for discrete states

A general procedure is available to generate the possible discrete states of
H from the propagator equation for G. It can also be applied to solve the
propagator equation in the medium with both an energy-independent, as
well as an energy-dependent potential. In the present case familiar results
will be obtained, but it is useful to illustrate the procedure, since it can
easily be adapted in more complicated situations. The exact eigenkets and
energies of H are denoted by

H \m) = em \m) (6.22)

for possible discrete states (em < 0) and by

H\iJ,)=elt\n) (6.23)

for continuum states (eM > 0). The completeness relation for the exact
eigenstates of H

1 = £ \m) (m\ + fdfi \fi) (fi\ (6.24)
m J

can be used to rewrite Eq. (6.10) as

G(a,0;E) = V <Q|m)H/?) + L W W , (6.25)
*-£ E - em + it] J E-e^+irj

Assume that HQ is given by the kinetic energy T. For V an energy-
independent, localized, but not necessarily local potential, may be con-
sidered. We choose to work with {\a)} = {\p}} representing the eigenstates
of T. To generate the equation for the bound state energies from the prop-
agator equation, the following practical recipe can be employed. Calculate:

lim (E - en){G = G<0) + G(o> V G). (6.26)

The three limits for each of the terms in this equation will be inspected one
at a time. The limit of the left-hand side of Eq. (6.26) yields

=> (p\n){n\p'). (6.27)
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For the first term on the right side of Eq. (6.26) we find

lim (25 - en) (a\ * |/3) => lim (25 - en)
 S(p~P'\

E^en hi — 1 +17] £-»•£„ E — £—(- irj

= 0, (6.28)

and for the last term

= £ (a\ —A— |7> (7 | V |<5) (S\n)(n\/3)
-rs £n l

=» tdP"—^r (p\ V \p») (p"\n)(n\p'), (6.29)

respectively. Collecting the two remaining terms, one finds

(P\n) = ^— r /"dp" <p| V |p"> (p"|n>, (6.30)

or, rearranging slightly and noting that (p\n) = (j>n(p), the momentum
space wave function, one obtains

| ^ n ( p ) + j dp" (p\ V \p") 0n(p") = en0n(p). (6.31)

This corresponds to the Schrodinger equation in momentum space that
yields the bound-state energies and corresponding eigenfunctions.

Instead of the momentum representation, we can maintain the general
notation and collect the limits of Eqs. (6.27)-(6.29) with the result

(a\n) = £ (a\ ~±— |7> <7| V \S) (S\n). (6.32)
^ £n - Ho

By multiplying this equation with ((3\ (en — Ho) |Q) and summing over a,
it reduces to

5 3 </?| (en - Ho) \a) (a\n) = J 2 ^ \ V \S) (S\n)- (6-33)
a S

The matrix form of the Schrodinger eigenvalue equation in the basis {\a}}
can now easily be recognized

en{/3\n) = ^ {(P\ Ho \a) + (/?| V \a)} (a\n). (6.34)
a
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Another useful exercise in anticipation of later many-body applications,
is to consider the issue of normalization. This is not a particularly illumi-
nating problem for the usual case, when V does not depend on the energy.
In the many-body problem we will, however, encounter similar equations in
which the quantity corresponding to V is energy dependent. In such a case,
it is still possible to obtain the appropriate eigenvalue equation, provided
one assumes that V is well-behaved near en. In the resulting eigenvalue
equation, V then appears at the eigenvalue en as follows

(a\n) = Y, ("I ^ 7 " IT) <7l V(en) \6) (6\n). (6.35)

Near the discrete eigenvalue en the propagator can be written as

m a p ^ ̂  (a\n)(n\P)
G(a, (3; E -> en) =̂  — h fa0{E), (6.36)

t, - en

where / is well-behaved near en. The smooth behavior of G^0' and V near
en implies

G^(E)V(E) G^(en)V(en) dG^V

E~en = E-en
 + ^ ^ £n '

 ( 6 ' 3 7 )

Inserting Eq. (6.36) in the propagator equation (6.17), using (6.37) and the
smoothness of / , yields

{-^^ + Men) = G^(a,p-,en)£/ - en

•yd •• £ n >

= G«V,/3;£n) + ̂ \a,T,en) (y\V(en) \6) ™

+ YJG
(o){a,T,en){1\V{en)\5)f50{sn)

+ X^°H°,rM\v(E)\s> m m . (,38)

The first term on the left and the second on the right just represent the
original eigenvalue equation. Together these terms represent the singular
contributions in the propagator equation and therefore cancel each other
here. It is useful to multiply the remaining terms by (n\ {en — Ho) \a)
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while summing over a. The terms containing / are then equal, provided
the alternative form of the eigenvalue equation G = G^ + G V G^ [see
Eq. (6.19)] is used. Eliminating these contributions, the remainder can be
further manipulated to generate the normalization condition in the form

] T > | a ) H n ) - £ < n | a > < a | ^ P |/3) ((3\n) = 1. (6.39)
a a/3 en

For an energy-independent potential one finds

l = £|(a |n) |2 , (6.40)
a

which can of course also be directly obtained by invoking the normaliza-
tion of \n) and the completeness of the states \a). Filling in the steps
outlined here for the more general energy-dependent case, is recommended
as an exercise. The normalization to 1 occurs due the presence of G^ in
the propagator equation when V does not depend on the energy. If not,
additional terms contribute to the normalization as in Eq. (6.39).

6.4 Scattering theory using propagators

The elastic scattering process in free space is completely determined by
one particular matrix element of the T-matrix. It is instructive to obtain
this result explicitly using the propagator method. To this end one starts
from Eq. (6.19) and uses its various incarnations to perform the required
analysis. Employing the ^-function normalization (see Sec. 4.1.1), we choose
the wave vector basis associated with the unperturbed Hamiltonian, HQ —
T. Assuming a spinless particle, the noninteracting propagator reads

G<°Hk,k>;E)=6(k-k')E_Ktkl/2m+.ri. (6.41)

Inserting this result in Eq. (6.19), yields

G(fc, fc'; E) = G<°» (fc, fc'; E) + G(o) (fc; E) f dq {k\V\q)G{q, k';E)

= G<°> (fc, k';E) + G<°> (fc; E)(k\T(E)\k')G^(fc'; E), (6.42)

where

G(°)(fc,fc';£) = 3(k-k')G{0)(k;E) (6.43)
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is the noninteracting propagator. The second equality in Eq. (6.42) is par-
ticularly useful for the asymptotic analysis, to be explored below. The usual
results from scattering theory are derived in the coordinate representation.
The required double FT of the propagator is given by

O^E) = i^j^^O(k,k'-,E)e-^. (6.44)

The transform of the noninteracting propagator only involves one integra-
tion due to the presence of the (̂ -function in Eq. (6.43)

= / ^ j « " i ( ' - ' 1 G ( 0 | ( » : ; - E ) . (6.45)

Equation (6.42) can now be transformed to yield

G(r,r';E) = G^(r,r';E) (6.46)

+ Jdr1Jdr2G<oHr,r1;E)(r1\V\r2)G{r2,r';E)

= Gw(r,r';E) + Jdr, fdr2 G^(r,r1;E)(r1\T(E)\r2)G^(r2,r'-E).

With this result an asymptotic analysis can be developed, leading to the
cross section.

We first need to calculate G(0)(r, r'; E) by means of the FT of Eq. (6.41),
as given in Eq. (6.45). The on-shell wave vector ko is defined by

Performing the angular integrals and extending the integration limit in k
to —oo, leads to (replacing E by k0)

, . , 2m 1 1 f°° eik\r-r'\ _ -ik\r~r'\
a(°)(r r • E) - / rlk k-—- -

i r ' '*> V i\r-r<\8ir*J_* ^(ko-k + iriiko + k + in)

= ^ . ~1 f e*-!-'-'!. (6.48)
h2 4?r|r - r'\ K J

Contour integration in the complex wave-vector plane has been used for
the last equality. When r' > r, we find

fto|r-r'| = * b r y i + ( ^ ) - - ^ « far1 - kof' • r. (6.49)

(6.47)
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Equation (6.48) then becomes

G ( 0 ) ( r ' r ' ; E ) ^ - ^ ^ e ~ ^ " ( 6 - 5 0 )

Substituting the outcome in the second part of Eq. (6.46) for both r' » r
and r' 3> r2, and using the finite range of V, demonstrates that G is
separable and can be written as

m pik<>r'

G(r,r';£0 = -2^2—VUO (6-51)

in the asymptotic domain. In turn, Eq. (6.51) can be inserted in Eq. (6.46),
to arrive at the standard integral equation for the wave function. In ad-
dition, the appropriate formulation for the asymptotic wave function is
obtained, providing the link with the scattering amplitude

</>*» = e~
ik°r'-r + Jdn Jdr2 G<°>(r,ri;£0<»-i|V|r2)^o(r2)

= e-ik0r'.r+ fdri fdr2 G{-°\r,rl;E){rl\T{E)\r2)e-ik^'r\ (6.52)

We identify the origin of the motion f', in the direction of the negative
z-axis, so that k = —kor1 points into the positive ^-direction. Consider
r values, much larger than the range of the potential, and therefore much
larger than any contributing value of r\. Equation (6.50) can now be used
again in the second part of Eq. (6.52), to identify the coefficient multiplying
the outgoing spherical wave elk°r/r as the scattering amplitude. A double
FT of the T-matrix element back to wave vector space, finally yields the
scattering amplitude

fkB(8,<t>) = -Tjjz-(k'\T{E)\k). (6.53)

The angles 9 and <j> are associated with the direction of r and k' = kof,
the latter corresponding to the wave vector of the detected particle. It has
the same magnitude ko as the initial state. The differential cross section
for the direction (9, <j>) is then simply the absolute square of Eq. (6.53)

% = \ho(^<t>)\2- (6-54)

The present formulation is closely tailored to the conventional experimental
situation, where a collimated beam, characterized by a given energy or
momentum, propagates along the 2-axis toward a target situated at the
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origin. Detection takes place in a direction pointing away from the origin
specified by the angles 9 and 0. A similar derivation can be presented for
a particle with spin, to obtain the elastic scattering amplitude (|p/| = \pi\)
in momentum space

/ m , , m i ( M ) = ~ ^ ( 2 7 r ) 3 (p'mf\T(E = ^ ) \pmi). (6.55)

The direction of p' coincides with the wave vector k' above and p points
into the z-direction. The polarized cross section then reads

j ro/,ro;

— ^ - = | / m / , m , (M) | 2 - (6.56)

6.4.1 Partial waves and phase shifts

Often the interaction is of short range and spherically symmetric. When
this is the case, it is invariably useful to analyze the scattering process in an
angular momentum basis since only a limited set of £-values will contribute.
The transformation from states with wave vectors to those with orbital
angular momentum must be employed

|fc) = J2 \Uml) <£m^> = E \kimA Y?mCW- (6-57)

In the latter basis the noninteracting propagator becomes

G^(ktme,k'i'mil;E) = 5-^l6u,5 }
kz ' E — tv- kz 12m + it]

= S{k~2
kl)Su,SmemelG^(k;E). (6.58)

Since the energy has no angular dependence, the energy denominator is
the same as in the wave-vector basis. Expressing Eq. (6.19) in the angular
momentum basis and assuming that the interaction is rotationally invariant,
we find

Ge(k, k1; E) = [
 k2

 j gW (A:; E) + Ge(k; E) j dqq2(k\Ve\q)Ge(q, k'; E)

= ^ v ^G(0>(fc;E) + G(0)(fc;E)(k\Te(E)\k')G^(fc'; E). (6.59)
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The equation for the iterated interaction, or T-matrix, can then be written
as

(k\Te(E)\k') = (klV'lk1) +[°dq q
2(k\Ve\q)G^(q;E)(q\T

e(E)\k'). (6.60)
JO

The coordinate space version of Eq. (6.59) is obtained by a double Fourier-
Bessel transform

Ge{r,r';E) = - dk k2 dk' k'2 }e{kr))e,{k'r')Ge(k,k';E). (6.61)
ft Jo Jo

The transformation proceeds from angular momentum states with wave
vector to those with position, employing the spherical Bessel function

(klmt\rt!mf) = Sie,dmimt, \J^]e(kr). (6.62)

The result for the noninteracting part of the propagator, represented by
the first term in Eq. (6.59), reduces to

G{°](r,r';E) = - dk k2 j^(fcr)j^fcr')G(0)(A;;E). (6.63)
T Jo

The Fourier-Bessel transform of Eq. (6.59) has the following form

/

oo /*oo

dnr{ / dr2r
2

2
Jo

xGe(r,r1;E)(r1\V
e\r2)Ge(r2,r'-E)

rca POO

= G?\r,r';E)+ I dnr\ dr2r\
Jo Jo

x G(0)(r,r1;B)(r1 |^(JE)|r2)G[0)(r2,r';ii;). (6.64)

If the interaction V is local in coordinate space, only one integral in the
first equality remains. The second equality can be used to study the asymp-
totic behavior of the propagator outside the range of the interaction. The
integral in Eq. (6.63) can be performed analytically by employing contour
integration in the complex wave-vector plane, as discussed in [Gottfried
(1994)]. The spherical Bessel functions are well-behaved so all the singu-
larities are contained in the denominator of Eq. (6.63). For r' > r the
following equality can be used

ie(kr')=1-[he(kr') + ht
e(kr')}, (6.65)
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involving the spherical Hankel functions. The term with j^h^ decreases
exponentially in the upper half ft-plane, allowing the contour to be closed
in the upper half plane. The other term requires a contour in the lower half
plane. The final result combines to

Gf] (r, r';E) = -tfco^j /(feor<)h /(fcor>). (6.66)

The coordinate argument in the spherical Hankel function must be the
larger of r and r' and is denoted by r>, while the argument of the spherical
Bessel function is the smaller, and denoted by r<. For simplicity, it will
be assumed in the current analysis that the interaction has a finite range,
(r|V*|r') = 0 for r,r' larger than some ro. Substituting Eq. (6.66) in the
second part of Eq. (6.64) for r' > r and r' > ro yields

Gt{r,r'\E) = -iko^Ue(kor)h£(kor')

roo /•oo "1

+ / dnrj / dr2r\ Gf]Wi;E)(ri|T<(£0|r2>j,(**r2)h,(*or#n
Jo Jo )

2m
= -ikojpipeko(r)Mkor'), (6.67)

where

feoW =h{kor) (6.68)
/•oo roc

+ / dnr\\ dr2rlGi°)(r,rl;E)(r1\T
e(E)\r2)ie(k0r2).

Jo Jo

The propagator therefore separates as a product of a function of r and
a different one of r'. The last line of Eq. (6.67) can be substituted into
the first part of Eq. (6.64) to generate the integral equation for the wave
function ip (under the condition that r' > r0)

^iko{r) = it(kor) (6.69)
{•OO pOO

+ dnr] dr2rlG^0)(r)r1;E)(r1|VV2>^*0(r2)-./o ./o

The version of this integral equation with a local interaction V can be
found in standard textbooks (see e.g. [Gottfried (1994)]). Equation (6.69)
is derived here, to demonstrate the relation between the propagator and
the wave function for a scattering problem.

The asymptotic analysis of the propagator can be performed by using
Eq. (6.66) in Eq. (6.64), under the assumption that the propagator is con-
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sidered for r < r', with both larger than the range of the interaction, TQ.
Values of ri and r2 in Eq. (6.64) larger than r0, yield no contributions to
the integral. As a result, the effective interaction, T, has a range similar to
V. Using the relation between spherical Bessel and Hankel functions (6.65),
the asymptotic behavior of the propagator is obtained from the second part
of Eq. (6.64)

Gt(r,r';E) -> -i ( ^ ) fcoh,(V) jh*(fcor) + he(kor) 1 - 4i^k0

f°° f°° 11
x / dnrl / dr2r

2
2 {n\Te{E)\r2yk{kori)ii(kor2) (6.70)

Jo Jo \ )
= -i^kohe(kor') jhj(fcor) + he(kQr) [l - 2m (^f\ (ko\T

e (E)\k0)} J .

In the last step of Eq. (6.70) one can return to the on-shell matrix element
of the T-matrix in wave-vector space, which completely determines the
outcome of the scattering process. The term in square brackets corresponds
to the 5-matrix element that defines the phase shift

(ko\S
e(E)\ko) = [l - 2m ( ^ <*o|T'(£)|fco>] = e 2 ^ . (6.71)

This result can be represented by

t a i ^ = Re MTKE)W ( 6 7 )

which explicitly shows that a nonzero imaginary part of the iterated in-
teraction is required, to obtain a nonvanishing phase shift. In turn, the
imaginary part of the interaction only appears for energies where the non-
interacting propagator has a nonvanishing imaginary part. For scattering,
this pertains to all positive energies. By substituting the explicit form
of the spherical Hankel functions for I = 0 in Eq. (6.70), the asymptotic
propagator for the s-wave channel reads

Ge=o(r,r';E) -* --^-Le<(*or'+*o) sin{kor + ^ ( 6 J 3 )
K@ll TV

The standard result for the asymptotic wave function is contained in this
equation: the imaginary part of Eq. (6.73) is simply the product of these
wave functions, as a function of r and r', respectively. Finally, the scattering
amplitude can be written in terms of the on-shell T-matrix elements or
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phase shifts

/('•*) = E ^ {Z]IW1} (ko\Te(E)\k0)Pe(cose)

If -4- 1
= Y" —~—ei5e sm5ePe(cos6), (6.74)

V *°
leading to the differential cross section in Eq. (6.54). For the total cross
section we find the usual result

otot = % Y.^ + 2) s i n 2 6*- (6-75)
0 i

6.5 Exercises

(1) Consider the second-order diagram contributing to G. Perform the in-
verse FT to obtain this contribution as a function of the time difference
t-f.

(2) Construct all diagrammatic representations of Eqs. (6.19) and (6.20).
(3) Work out the details of the normalization of the state \n) in the case of

an energy-dependent potential V(E), following the outline given below
Eq. (6.38) and obtain Eq. (6.39).

(4) Perform all the operations that lead to Eq. (6.66).
(5) Extend the formalism discussed in Sec. 6.4.1 to the case of a spin-

| fermion, which also experiences a spin-orbit potential like the one
introduced in Sec. 3.3.



Chapter 7

Single-particle propagator in the
many-body system

In analogy to the case of the sp problem, it is possible to consider a propa-
gator in the many-body system. The definition of this quantity for fermions
is given in Sec. 7.1. It involves the use of the Heisenberg picture in quan-
tum mechanics [Sakurai (1994); Messiah (1999)]. For completeness, some
results related to various pictures in quantum mechanics are collected in
App. A. The propagator is defined in terms of either adding, or removing, a
particle from the correlated TV-particle ground state. The latter (removal)
process is a new feature, not present in the sp problem of Ch. 6, which
corresponds to iV = 0. Complementary information is contained in the
addition and removal amplitudes. Both are accessible experimentally: the
addition process in terms of elastic scattering from the correlated ground
state, and the removal process in coincidence experiments of the form (e, 2e)
for atoms and (e, e'p) for nuclei. Various incarnations of the sp propagator
in the many-body system are discussed. A particularly important one, the
Lehmann representation is studied in Sec. 7.2 and requires a FT to the
energy formulation.

An important connection with experimental data can be made for the
imaginary part of the sp propagator. The relevant quantities are the spec-
tral functions describing the removal and addition probability density of
particles, with specified quantum numbers, to and from the correlated
ground state. They are introduced in Sec. 7.3. Section 7.4 demonstrates
that expectation values of one-body operators in the ground state can be
calculated from the one-body density matrix, which is related to the "hole"
part of the sp propagator. In addition to all one-body expectation values, it
is possible to determine the energy of the ground state from the hole part
of the sp propagator, when the Hamiltonian contains at most two-body
operators. Basic examples for the sp propagator in a noninteracting sys-
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tern are discussed in Sec. 7.5. A simple presentation of knockout reactions
and their relation to spectral functions is given in Sec. 7.6. Experimental
data from the (e,2e) reaction on atoms are discussed in Sec. 7.7. Corre-
sponding results for the (e,e'p) reaction on nuclei are reviewed in Sec. 7.8.
Prom comparison with experiment, a clear "single-particle" picture of the
atom and the nucleus arises, that further motivates the development of the
propagator description of the many-fermion system.

7.1 Fermion single-particle propagator

The sp propagator in a many-particle system is defined as

G(a,P;t,t') = -l-(^\T[aaH(t)alH(t')]\^). (7.1)

The expectation value, with respect to the exact ground state of the system
of N particles, samples an operator that represents both particle as well as
hole propagation. The latter term is naturally absent in the one-particle
problem. The state $^) is the normalized Heisenberg ground state for
the iV-particle system and EQ the corresponding eigenvalue

H\*»)=E0
N\*»). (7.2)

The Heisenberg picture is briefly reviewed in App. A. The particle addition
and removal operators in the definition of the sp propagator are given in
the Heisenberg picture by

aaa(t)=e*Ataae-kAt (7.3)

and

ala(t)=ei6t4e-iA\ (7.4)

respectively. The time-ordering operation1 T, appearing in Eq. (7.1), is
denned here to include a sign change when two fermion operators are in-
terchanged and can be written, using step functions, as

TKH ( t )a l j t ' ) ] = 6{t - t')aaH(t)a]
0H(t') - 8{t' - *)aj,H(<><**(<)• (7-5)

The operation puts operators with the later time to the left of earlier op-

erators and includes a sign when a change of order is required. The reason
1No confusion should arise with the scattering quantity.
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for defining the propagator as a time-ordered product is related to the
availability of a perturbative expansion, as will become clear in Ch. 8.

Invoking the definition of the Heisenberg picture operators and the time-
ordering operation for fermion operators, one obtains

G(a,/3; t - t') = -l-Ut - t>)e*E°^ « | aaer^-^a\ « >

-9(t' - i)e *«*'-«> (*AT| ayiH(t>-t)aa ^NA (? 6)

I. m

n )

As expected, the propagator depends only on the time difference t — t'. Note
that the completeness of the exact eigenstates of H for both the N + 1 as
well as the N - 1 system, has been used together with

H | < + 1 ) = ^ + 1 | * r i > (7-7)

and

H\^)=E»^\*»-i). (7.8)

The first term in Eq. (7.6) is called the addition part of the propagator,
or alternatively, the "particle" or forward propagating part. The second
term is likewise referred to as the removal, the "hole", or the backward
propagating part. While the similarity with Eq. (6.6) is evident (apart
from the presence of the hole part), it is also clear that Eq. (7.6) contains
relevant information about the many-body system.

7.2 Lehmann representation

As in the sp problem, one can introduce the FT of the sp propagator which
is more convenient for practical calculations, but also brings out the infor-
mation that is contained in the sp propagator more clearly

G(a, /3; E) = /"°°d(t - *') e * ^ ' " 0 G(a, /?; t-t'). (7.9)
J — OO
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As before, it is recommended to use the integral representation of the step
function as given in Eq. (6.7). The result of this FT can be expressed in
various equivalent ways. The FT of the last version of G(a, /3; t — t') in
Eq. (7.6) yields

r( RJA V(^1^1^+ 1)(^+ 1I4I^)

V<^14I^-1)<^-1|°»1^)
+ ^ E-iEg-ES-^-ir,

+ ( f ? W r i f i K " ^ - (7J0)

The first equality is known as the Lehmann representation [Lehmann
(1954)] of the sp propagator. The last line is obtained by removing the
complete set of exact N + 1-eigenstates in the first term and the complete
set of N - 1-eigenstates in the second one, after replacing the eigenval-
ues E%+1 and E%~1 by H. Note that any sp basis can be used in this
formulation of the propagator. Many texts choose to specialize either to
coordinate space or momentum representation. However, this does not al-
ways represent the appropriate choice, especially when dealing with finite
systems where comparisons with experimental results are possible. It is
also instructive to compare this form of the sp propagator with the corre-
sponding one for the sp problem [see Eq. (6.9)]. Apart from the hole term,
which is naturally absent in the sp case, there is a clear similarity between
the two results. Indeed, the matrix elements involving the addition and
removal operators, obey Schrodinger-like equations, as will be discussed in
Sec. 9.5.

7.3 Spectral functions

For finite systems one can relate essentially all the information contained
in the sp propagator to experimental data. Consider first the information
in the denominator of the first equality in Eq. (7.10). The positions of
the poles signal the location of the excited states in the N + 1 or TV - 1-
particle systems with respect to the ground state of the TV-particle system.
Note that it should be possible to reach those states by the addition (or
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removal) of a particle with sp quantum numbers a to (or from) the ground
state of the system. It is useful to visualize the addition or removal of a
particle as a physical process that can be realized experimentally. Second,
the numerator determines the distribution of the corresponding transition
strength from the ground state of the jV-particle system to these states in
the N ± 1 systems. This information is a crucial measure of the strength of
the correlations in the system, as they induce behavior which deviates from
the independent-particle model. A good tool to develop intuition for the
effect of correlations on sp properties is provided by the spectral functions.
At energy E, its hole part is the combined probability density for removing
a particle with quantum numbers a from the ground state, while leaving
the remaining N - 1-system at an energy E^~l = EQ — E. The relation
to the imaginary part of the diagonal element of the sp propagator is given
by

Sh(a;E) = ~ImG{a,a;E) E<eZ

= ̂ |K-1|aa|<)|V-«-^-1))- (7-11)
n

A detailed presentation of available experimental information about this
quantity in atoms and nuclei will be discussed in Sees. 7.7 and 7.8, respec-
tively. The probability density for the addition of a particle with quantum
numbers a, leaving the TV + 1-system at energy E%+1 = E^ + E similarly
reads

Sp(a; E) = - - Im G{a, a;E) E> 4
7T

= E|«+1|4K)|V-«+1-^))- (7-12)
771

Equation (7.12) defines the particle spectral function. The Fermi energies
introduced in Eqs. (7.11) and (7.12) are given by

e-F = < - Eg-1 (7.13)

and

e+ = E£+1 - < . (7.14)

In obtaining the imaginary part of the propagator the very practical identity

_ L _ = v \ T iTrS(E) (7.15)
E ±irj E
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has been employed, where the symbol V denotes the principal value. The
above expressions for the spectral functions are particularly useful for an-
alyzing finite systems where discrete bound states exist and for certain
problems involving band structure, localization or external magnetic fields
in condensed matter systems. In finite systems, like nuclei, there can be a
considerable difference between e~j? and e~p. In infinite systems which are
not superfluids or superconductors this difference vanishes in the thermo-
dynamic limit.

The occupation number of a sp state a can be generated from the hole
part of the spectral function by evaluating

n(a) = (*»\alaa\*») = Y,\W-l\a«\K)f
n

= fFdE Ek*?-1!"-!*?) \E-(E»-EZ-1))
• /-°° n

= [ FdESh(a;E). (7.16)
J — oo

The depletion number is determined by the particle part of the spectral
function

d(a) = (*»\aaat |<> = £ | « + 1 | 4 |^) | 2

m

/

oo 9

dE Y,\W+lW\*S)\ S(E - (EZ+l - E?))
= / dE Sp(a;E). (7.17)

An important sum rule exists for n{a) and d[a) which can be deduced by
employing the anticommutation relation for aa and a}a

n(a)+d(a) = « | a)aaa | < ) + « | aaa)a | < ) = « | < > = 1. (7.18)

This distribution between occupation and emptiness of a sp orbital in the
correlated ground state is a sensitive measure of the strength of correlations,
provided a suitable sp basis is chosen, to be discussed in Sees. 7.7 and 7.8.
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7.4 Expectation values of operators in the correlated
ground state

The sp propagator will also provide the expectation value of any one-body
operator in the ground state

« | 6 |*0
N> = £ H O \P) (K\ aUff \*o) = E ("I ° M n"0- (7-19)

Here, na/g is the one-body density matrix element that can be be obtained
from the sp propagator using the Lehmann representation

n0a = J^TieiE"G(a'/?; E) (7-20)

= rdE lEj) — OWl^n*?- 1 !^!^)
J^i€ V E-iEP-EZ-^-ir,

n

Note the convergence factor in the integral with an infinitesimal (positive)
r\ which requires closing the contour in the upper half of the complex E-
plane. Consequently, only the removal or hole part of the spectral amplitude
contributes. Directly using the imaginary part of the propagator yields

npa = - f FdE Im G(a, (3; E) = <*^| a\aa | *^) . (7.21)

Knowledge of the sp propagator G therefore allows the calculation of the
expectation value of any one-body operator in the correlated ground state,
according to Eq. (7.19).

Surprisingly, the energy of the ground state can also be determined from
the sp propagator provided that, as has been assumed up to now, there are
only two-body interactions between the particles. Two-body forces usu-
ally dominate in most systems, but for light nuclei (and thus for nuclear
systems in general), the consideration of at least three-body forces is nec-
essary to account for all experimental details. Most discussions in this
book will not require the explicit consideration of three-body forces. The
energy sum rule for two-body interactions was first clarified by [Galitskii
and Migdal (1958)] and later applied to finite systems by [Koltun (1972);
Koltun (1974)]. It requires only the hole part of the propagator. Consider
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the following integral

Ia = -[FdEE Im G(a,a;E) = f "dE E Sh(a;E) (7.22)
T J~oo J-oo

= ^«-<-1)«|4K-1)K-1l««|O
m

= « | alaaH |O - £ « | a^"1 l^"1) ( ^ l aa |<)
m

= (< | alaaH \^) - « | at Hoa |<> = « | 4K, H] |*0N) .

Using Eqs. (2.34) and (2.42), the commutator in Eq. (7.22) reads

[aa,H] = Y, (Ql T W) a0 + £>/?|F|7<S)4<W (7-23)
0 076

Inserting Eq. (7.23) into (7.22), finally yields

ia = YHT\P) <*"|«UJ I O + E Ml̂ l7^) « | 4 4 ° ^ l*ow) •
(7.24)

Summing this expression over a (see also Exercises (7) and (8) in Ch. 2),
we find

a

Combining Eq. (7.25) with the expectation value for the kinetic energy
applying Eq. (7.19), the desired result can be expressed as

= J_ fEFdE Y{(a\T\/3)+ E8a>0} Im G(/3,a;E)

where the validity of the last equality can be checked by inserting the
definition of Sh(a; E) given in Eq. (7.11).

(7.25)

(7.26)
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7.5 Propagator for noninteracting systems

When the many-particle problem, for example the one with the Hamiltonian
Ho, does not contain a two-body interaction, the sp propagator becomes

G(°\a,f3;t - t') = -l- « | T[aa,(*)4,(*')] |<> , (7.27)

where \$Q) is the nondegenerate ground state of HG for N particles with
eigenvalue

a<F

as in Eq. (3.9) and therefore

Ho | O = E** | O . (7.29)

For the present considerations the state |$^) can correspond to the Slater
determinant of an infinite Fermi system, a closed-shell atom, or a closed-
shell nucleus. The perturbation expansion of propagators for open-shell
systems (having a degenerate ground state) is nontrivial and not well de-
veloped. It will not be further discussed here. The particle addition and
removal operators in the definition (7.27) of the so-called unperturbed sp
propagator, are given by the equivalent of Eqs. (7.3) and (7.4) with the
replacement H -> HQ. This substitution yields these operators in the so-
called interaction picture, summarized in App. A. They are given by

aai(t) = ei"otaae-i"ot (7.30)

and

4,( t)=e**° t4e-* /K (7.31)

respectively. Assuming that HQ is diagonal in the sp basis {\a)} and using
the corresponding interaction picture operators given by Eqs. (A. 15) and
(A. 16) together with the time-ordering operation for fermion operators, one
obtains

G ( o ) ( a , /?; t-t')= Gf {a,j3;t- t') + G(°] (a,0;t- t') (7.32)

= -%j$«p{Q{t - t')0(a - F Je -^ -C- 1 ' ' - 0{t' - t)6(F - cOe**-**'-**}.

Equation (7.32) represents the propagation of a particle or a hole on top
of the noninteracting ground state. As in Ch. 3, we observe that, in the

(7.28)
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sp basis {\a}} associated with Ho, the states with one particle added or
removed, are eigenstates of Ho according to

Ho ai | O = (E*» + ea) 4 | < ) a> F (7.33)

and

Ho aa | O = (E*g - ea) aa | < ) a < F. (7.34)

Choosing another sp basis leads to a slightly more involved result that can
be related to the present one by a double basis transformation both for
the particle addition as well as the particle removal operator, according to
Eqs. (2.58) and (2.59).

Again it is useful to consider the FT of the unperturbed sp propagator
which generates

G<v, f tE) = i J j f c £ L + ̂ U . ,7.35)
I E - ea + %T] E - ea - ir) \

One can also arrive at Eq. (7.35) by replacing H by Ho and | * ^ ) by $^)
in Eq. (7.11) for the exact propagator

G^(a,0-E) = (^\a \ a* |<)
h, — (HQ — £/<J,N ) + IT]

+ W\4F (F
 1 fr, - °aK>- (7-36)

-C' - (As~ - Ho) - ir]

The spectral functions for the noninteracting system are particularly
simple. Using again the sp basis {\a)} which diagonalizes Ho, one has the
following hole spectral function

S{
h

O)(a;E) = hm G^(a,a;E) E < ef

= 6{E-ea)6(F-a). (7.37)

Its particle counterpart yields

S(°> (a;E) = - hm G^ (a,a;E) E> ef+

= 5(E-ea) 6{a-F). (7.38)

The transition strength in the unperturbed spectral function is therefore lo-
cated at the sp energies that correspond to the eigenvalues of the sp Hamil-
tonian H0- The sp states that are occupied contribute to the hole spectral
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function, those that are empty to the particle part. In the independent-
particle model description for an atom, a nucleus, or a Fermi gas, the hole
spectral function therefore displays (̂ -function peaks with strength 1 that
correspond to the certainty that it is possible to remove a particle from
such occupied orbitals. The same holds for the particle spectral function,
where this certainty relates to the possibility of adding a particle to an
empty orbit. The simplicity of these results is related to the choice of the
sp basis. In another sp basis the numerators change while the position of
the poles in the sp propagator does not. As an example, consider the sp
propagator in the {|rms)} representation

E- (Ho - E^N ) + ir)

+ «R'm' ,„ 1 fy. . *rm, | < ) (7.39)
a - ytjQN - n0) - IT]

_ y^ f {rms\a)(a\r'm's)6(a - F) {rms\a)(a\r'm's)8(F - a) \
~ ~ \ E-ea + ir, + E-ea-it) J

Note that the numerators in Eq. (7.39) contain again the relevant sp wave
functions which in this simple example represent the transition matrix el-
ements of the particle addition and removal operators in the coordinate
representation. Occupation numbers are most easily evaluated in the {\a)}
basis, yielding, not surprisingly,

r*™~
n<°)(a) = / dE 5(E - ea) B(F - a) = 9{F - a). (7.40)

J — oo

7.6 Direct knockout reactions

The hole spectral function introduced in Sec. 7.3 can be experimentally
observed in so-called knockout reactions. The general idea is to transfer a
large amount of momentum and energy to a particle of a bound ./V-particle
system (e.g. an electron in an atom or molecule, or a nucleon in a nucleus).
The particle is subsequently ejected from the system, and one ends up with
a fast-moving particle and a bound iV-1-particle system. By observing the
momentum of the ejected particle, it is possible to reconstruct the spectral
function of the system, provided that the interaction between the ejected
particle and the remainder is sufficiently weak.
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Let's assume that the N particle system is initially in its ground state,

|*i) = K > , (7.41)

and makes a transition to a final iV-particle eigenstate

l * / ) = a j , | * n " 1 ) , (7-42)

composed of a bound N — 1-particle eigenstate, l*^"1) , and a particle with
momentum p.

For simplicity we consider the transition matrix elements for a scalar
external probe p(q) = £3*li exp (iq -Tj), which transfers momentum hq to
a particle. Suppressing other possible sp quantum numbers, like e.g. spin,
the second-quantized form of this operator is given by

p(q) = £ (p\exp (iq'r) lp') apap' = 5Z alap-nq- (7-43)
P,P' p

The transition matrix element now becomes

p'

= J2 (*n - 1 | V.pOp'-ftfl + alaP>-hqap |*^)
p'

^^-^ap^K). (7.44)

The last line is obtained in the so-called Impulse Approximation, where
it is assumed that the ejected particle is the one that has absorbed the
momentum from the external field. It is a good approximation whenever
the momentum p of the ejectile is much larger than typical momenta for
the particles in the bound states; the neglected term in Eq. (7.44) is then
very small, as it involves the removal of a particle with momentum p from

There is one other assumption in the derivation: the fact that the final
eigenstate of the TV-particle system was written in the form of Eq. (7.42), i.e.
a plane-wave state for the ejectile on top of an N - 1-particle eigenstate.
Again, this is a good approximation, if the ejectile momentum is large
enough, as can be understood by rewriting the Hamiltonian in the 7V-
particle system as

^ = £ f | + £ V(i,j) = HN-1 + &+YiV(i,N). (7.45)
t=l i<j=\ i=l
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The last term in Eq. (7.45) represents the Final-State Interaction, or the
interaction between the ejected particle N and the other particles l..iV —
1. If the relative momentum between particle TV and the others is large
enough their mutual interaction can be neglected, and HN TH HN-I +
p2

N /2m. The result (7.44) is called the Plane Wave Impulse Approximation
or PWIA knockout amplitude, for obvious reasons. It is precisely a removal
amplitude (in the momentum representation) appearing in the Lehmann
representation of the sp propagator [see Eq. (7.10)].

The cross section of the knockout reaction, where the momentum and
energy of the ejected particle and the probe are either measured or known,
is according to Fermi's golden rule proportional to

da ~ J2<^ + Ei- Ef)\ (9f\p(q) |*<) |2. (7.46)
n

The energy-conserving ^-function contains the energy transfer hui of the
probe, and the initial and final energies of the system are Ei = E^ and
Ef — E^~l + p2/2m, respectively. Note that the internal state of the
residual TV — 1 system is not measured, hence the summation over n in
Eq. (7.46).

Defining the missing momentum pmiss and missing energy Emiss of the
knockout reaction as2

Pmiss =p-hq (7.47)

and

Emiss =P
2/2m-hu = < - E^-1, (7.48)

the PWIA knockout cross section can be rewritten as

da ~ ^(Emiss - E0
N + E^)\ (*»-l\aPm,s, \*») |2

n

= Sh{pmiss;Emiss). (7.49)

Equation (7.49) is therefore exactly proportional to the hole spectral func-
tion defined in Eq. (7.11). This is of course only true in the PWIA, but
when the deviations of the impulse approximation and the effects of the
final-state interaction are small, as for atoms, or well under control as for

2We will neglect here the recoil energy of the residual N — 1 system, i.e. we assume
the mass of the N and N — 1 system to be much heavier than the mass m of the ejected
particle.
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nuclei (see also Sec. 21.5), it is possible to obtain precise experimental in-
formation on the hole spectral function of the system under study.

In many cases the ./V-particle target system is probed by its interaction
with an external electromagnetic radiation field. This is obviously the case
when the target is placed in a real photon beam, but it is also true when a
beam of electrons is incident on the target, e.g. in nuclear (e, e'p) reactions,
or (e, 2e) reactions on atoms, molecules and solids. The scattering process
of the electron off a particle in the target can be described on a deeper
level as the exchange of a virtual photon between the electron and a target
particle. In general a (real or virtual) photon is characterized by its 4-
momentum (hu/c,hq) and its polarization 4-vector (eo,e). The interaction
Hamiltonian, describing the coupling of the electromagnetic field with the
charges and currents in the target, is proportional to

Hint ~ J dreil>r (eop(r) - e • J(r)) ,

= (eop(<7) - e • J ( 9 ) ) , (7.50)

where p and J are the charge density operator and current density operator
of the ./V-particle system. The charge density corresponds to the scalar
probe that was discussed above. The vector nature of the current density
somewhat complicates the discussion, but it can be shown that also in this
case the important proportionality in Eq. (7.49) holds [Frullani and Mougey
(1984)].

7.7 Discussion of (e,2e) data for atoms

The presentation of (e, 2e) data must begin with the hydrogen atom. The
solution of the Schrodinger equation for hydrogen provides key material in
any course on quantum mechanics. The interpretation of the wave func-
tion in coordinate space as a probability amplitude, transforms its absolute
square to the probability density to find the electron at the corresponding
location. This observable has never been measured, but forms the cor-
nerstone of the interpretation of nonrelativistic quantum mechanics. The
Schrodinger equation for hydrogen can also be solved in momentum space,
and the ground-state wave function in atomic units is given by

23/2 1

*.(p) = — ( i T T F (7-51)
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Fig. 7.1 Comparison of the normalized (e,2e) cross section (momentum profile) from
hydrogen with the square of the Is wave function in momentum space, adapted
from [Lohmann and Weigold (1981)]. The solid line represents (1 + p 2 ) " 4 . The mea-
surements were performed at 1200 eV (crosses), 800 eV (circles), and 400 eV (triangles).

An (e, 2e) experiment on hydrogen was performed by [Lohmann and
Weigold (1981)]. As discussed in the previous section, the cross section
for the process is proportional to the removal probability of an electron
with momentum p under the right kinematic conditions. For hydrogen,
this becomes the square of Eq. (7.51), as shown below. The final state in
Eq. (7.49) for the removal of the Is electron corresponds to the vacuum.
The removal amplitude is therefore given by

<0|op|n = 1,1 = 0) = (p\n = 1,1 = 0) = 0 ls(p), (7.52)

neglecting spin, which corresponds exactly to Eq. (7.51). The ability of the
(e, 2e) reaction to extract the square of this wave function, is demonstrated
in Fig. 7.1. The cross section was obtained at several incident energies,
all high enough to ensure that the PWIA result accurately describes the
reaction. When the appropriate electron-electron (Mott) cross section is
divided out, the result should become independent of energy. The com-
parison with the momentum profile, given by the square of (1 + p2)~2 [see
Eq. (7.51)], convincingly demonstrates the correctness of this interpreta-
tion. The (e,2e) experiments on the hydrogen atom therefore come as
close as practically possible to measuring the (square) of the electron wave
function.
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Fig. 7.2 Comparison of the (e, 2e) data from helium at different energies, with theoreti-
cal DWIA calculations based on the Hartree-Fock Is wave function in momentum space.
The theoretical results at different energies cannot be distinguished. The experimental
data were measured at 824.5 eV (crosses), 424.5 eV (open circles), and 224.5 eV (filled
circles) [Hood et. al. (1973)].

For the helium atom, a description in terms of the independent-particle
model is very successful. As discussed in Ch. 3, helium is a closed-shell sys-
tem corresponding to the Is2 configuration. In Ch. 10 we will develop the
correct many-particle description of the mean-field or independent-particle
model. The inclusion of the average effect of the two-body interaction
in the description of the sp properties, is referred to as the Hartree-Fock
method. The resulting sp Hamiltonian therefore also includes the aver-
age contribution of the electron-electron interaction, but still leads to an
independent-particle description. The interpretation of the results of the
(e, 2e) experiment does not change when applied to this system. Data for
the (e, 2e) reaction on helium leading to He+ in its ground state are shown
in Fig. 7.2. The analysis of the reaction is more complicated than for hy-
drogen, since several other reactions like elastic and inelastic scattering,
can take place. It is also possible that ionization occurs with other residual
ion states. These processes can be represented by complex potentials that
describe the elastic scattering of an electron from the atom and the residual
ion [Furness and McCarthy (1973)], and are therefore constrained by other
experimental data. The incoming and outgoing electrons are thus subject
to the corresponding distortions, which lead to a similar description of the
reaction as in the PWIA, with plane waves replaced by these distorted ones.
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The resulting distorted wave impulse approximation (DWIA) is often used
for describing the data. Such DWIA calculations still contain the removal
amplitude ("i/^"1 ap ${?) as an important ingredient. Again, when the
reaction is analyzed for different incident energies, the removal amplitude
should not depend on the energy. Agreement with the data signals that
the interpretation of the reaction mechanism is correct and that the proper
removal amplitude was employed. More details of the description of the
(e, 2e) reaction can be found in [McCarthy and Weigold (1991)]. In Fig. 7.2
the distorted momentum distribution as a function of missing momentum
exhibits no dependence on the incident energy, signaling that distortion ef-
fects are small for the employed kinematical conditions. Moreover, the data
are perfectly described by the DWIA calculation based on the Hartree-Fock
Is wave function for He.

The agreement of the calculation with the data in Fig. 7.2, involves the
square of the momentum space wave function that was normalized to 1. We
will demonstrate in Sec. 9.5 that the removal amplitude (\I/^~1 ap | *^)
obeys a Schrodinger-like equation with an energy-dependent potential,
which is referred to as the self-energy. In Ch. 11 such an energy-dependent
potential will be studied for atoms. The presence of this energy dependence
changes the normalization of the removal amplitude to a value smaller than
1. The normalization factor is referred to as the spectroscopic factor,

S = Jdp\(*^\ap\*»)\2. (7.53)

The independent-particle description generates spectroscopic factors that
are either 1 or 0, depending on whether the state is occupied or not.

For other closed-shell atoms, the spectroscopic factor for the removal
of the last valence electron becomes a bit smaller than 1. The (e,2e) re-
action on neon yields a removal probability of the valence 2p electron of
0.92 [Samardzic et al. (1993)]. Two additional fragments, each carrying
0.04, for 2p removal are found at higher energy. Stronger fragmentation is
observed for the 2s removal in this atom. The sum of all the fragments adds
up to 1 for both the 2p and 2s orbit, so that the occupation of these levels
remains 1, according to the first line of Eq. (7.16). These features persist
for heavier closed-shell atoms. This is illustrated in Fig. 7.3 for the removal
of the valence 3p orbit in argon, described by an appropriate Hartree-Fock
wave function. The shape of the solid curve in this figure describes the data
only, when the theoretical result is multiplied by a spectroscopic factor of
0.95 [McCarthy et al. (1989)]. The interpretation is that the removal proba-
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Fig. 7.3 Differential (e,2e) cross section for the (e,2e) reaction on argon for the 3p
orbit at an incident energy of 1500 eV adapted from [McCarthy et al. (1989)]. The
solid line corresponds to the DWIA calculation using the Hartree-Fock wave function
and multiplied with a spectroscopic factor of 0.95.

bility for the (Hartree-Fock) 3p electron from argon is only 95%. Since there
is a sum rule for the total strength [see Eqs. (7.16) - (7.18)], the remaining
5% must be located elsewhere. In a more recent experiment [Brunger et al.
(1999)], three more fragments were indeed found with a combined strength
of 0.05. The occupation number of the 2>p orbit in argon therefore remains
1, as in the independent-particle model. The choice of the Hartree-Fock 3p
wave function leads to a correct description of the momentum dependence
of the cross section. Using a different wave function leads to an incorrect
momentum dependence, and typically a smaller spectroscopic factor. The
analysis of the (e, 2e) [and (e, e'p)] reaction thus relies on employing the sp
wave functions — to be interpreted as the removal amplitudes — that yield
a correct description of the shape of the cross section. Such wave functions,
one could say, are therefore experimentally determined.

The fragmentation of strength is easy to understand when all fragments
remain below the Fermi energy, as for closed-shell atoms. This can occur
when one-particle—two-hole (Ip2h) states3 mix with the one-hole configu-
ration corresponding to the removal of a valence particle in a closed-shell
system. If the mixing is weak and the energies of the Ip2h states are far
from the valence hole state, only small hole fragments will come to reside

3In general, 7i-particle—m-hole will be denoted by npmh.
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Fig. 7.4 Spectroscopic factors, indicated by bars, for the 3p and 3s removal in ar-
gon [Brunger et al. (1999)]. The dominant ion state configurations are indicated. The
3p4nrf states run from n = 3 to the unresolved 7 and 8 at 44 eV. The last indicated
fragment corresponds to the Rydberg series. The dashed fragment denotes the 3j> spec-
troscopic factor of 0.95 (not shown to scale) (see Fig. 7.3). The dotted horizontal line
represents the sp strength in the Ar + + continuum (above 45 eV), corresponding to 0.08.

at the energies corresponding to the predominantly Ip2h states. Examples
are provided by the fragmentation pattern of the 2p orbit in neon and the
3p in argon. When the hole state is more deeply bound, it is possible that
it mixes more strongly with Ip2h states that are quite nearby in energy.
Such a situation is illustrated in Fig. 7.4 for the removal probability of the
3s electron from argon as a function of E^~1 — EQ* . The spectroscopic
factor for the main 3p fragment is also shown (not to scale), to indicate
the location of the Ar+ ground state. The largest 3s fragment is located
at 29.24 eV, with a spectroscopic factor of 0.55. The dominant Ip2h con-
figurations at the location of the other 3s fragments, are indicated in the
figure. The horizontal dashed line indicates the 8% strength that resides at
energies, corresponding to Ar++ plus one electron in the continuum.

The analysis of the (e, 2e) reaction on argon also shows that the results
for the spectroscopic factors are independent of the incident electron en-
ergy [McCarthy et al. (1989)]. It is therefore permissible to infer that the
removal probabilities that are experimentally extracted, correspond to the
theoretical quantities associated with the numerator of the sp propagator.
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The sum of the spectroscopic factors for the 3s removal is again 1. The re-
sulting picture of a closed-shell atom consequently retains some features of
the independent-particle model, where all the sp strength is concentrated in
levels that are completely full or empty. The corresponding many-particle
description is studied in Ch. 10 and confirms that many atomic properties
can be explained in the so-called Hartree-Fock approximation.

The observed fragmentation of the sp strength however, requires con-
sideration of the mixing process between Ip2h and the valence hole states,
as indicated above. This mixing process has little influence on the occu-
pation numbers. For closed-shell atoms, occupation numbers jump from
1 to 0, when the Fermi energy is crossed, even including the effect of the
interactions. This is no longer true for nuclei, as will be discussed in the
next section. The (e, 2e) reaction has also been successfully applied to
molecules [McCarthy and Weigold (1991)]. More recent applications of this
reaction have focused on the possibility to extract spectroscopic information
for solids [Vos and McCarthy (1995)].

7.8 Discussion of (e, e'p) data for nuclei

For nuclei, the (e, e'p) reaction can be used to study the hole spectral
function. Since the electron interacts weakly with the nucleons, it is an
ideal probe to study nuclei. The dominant operators that excite the nucleus
in electron scattering, have a one-body character. An example is the charge
density operator which has a similar form as Eq. (7.43). Such operators
can only change the quantum numbers of one particle and therefore yield
excited states in which a particle is removed from the correlated ground
state and placed into an unoccupied state. When the incident electron has
enough energy, the removed proton can be sufficiently energetic so that
the Impulse Approximation applies. If the electron transfers a substantial
amount of energy, the resulting excited state is expected to be dominated by
a simple particle-hole state. It corresponds to the outgoing particle, suitably
influenced by the surrounding medium, and the valence hole that is selected
by the kinematics of the reaction. It is assumed that additional interactions
between this particle and hole state play no role (see also Sec. 21.5). The
latter is not true at low excitation energy, where these interactions lead
to collective states. The reaction description therefore corresponds to the
DWIA, discussed in the previous section. The outgoing proton is subject
to an optical potential that is well known from elastic scattering data. Here
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Fig. 7.5 Momentum profiles as a function of missing momentum p m , for valence holes
in several closed-shell nuclei. Appropriate scale factors have been applied to allow the
representation of the data for different orbitals. The experiments were performed at the
NIKHEF accelerator in Amsterdam [Lapikas (1993)].

too, the criterion for a successful description of the reaction, requires that
the extracted spectroscopic factors are independent of the incident energy
of the electron. The details of the theoretical description of the (e, e'p)
reaction can be found in [Bofn et al. (1996)]. The experimental data have
been reviewed in [de Witt Huberts (1990); Dieperink and de Witt Huberts
(1990); Pandharipande et al. (1997)].

The momentum dependence of the (e,e'p) cross section for a specific
final state, is again dominated by the sp wave function associated with the
corresponding orbital. The experimental analysis is performed by slightly
adjusting the parameters of the Woods-Saxon potential, discussed in Ch. 3,
to fit the shape of the cross section. For nuclei it is always necessary to
reduce the theoretical cross section by a spectroscopic factor, substantially
less than 1, to obtain agreement with the data. As for atoms, these spec-
troscopic factors correspond to the removal probabilities that are contained
in the numerator of the sp propagator. Examples of this type of analysis
for several closed-shell nuclei, are shown in Fig. 7.5. So-called reduced cross
sections are plotted, which have been divided by the elementary electron-
proton cross section at the appropriate kinematic conditions. The missing
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Fig. 7.6 Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5 demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5, however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4. A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6. The results in Fig. 7.6 indicate
that there is an essentially global reduction of the sp strength of about
35% for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4Most experiments have been performed on closed-shell nuclei.
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explanation on the basis of the correlations that dominate in nuclei. We
will explore this issue in Chs. 16 and 17.

An additional feature, obtained in the (e, e'p) reaction, is the fragmenta-
tion pattern of the more deeply bound orbitals in nuclei. This exhibits single
isolated peaks only in the immediate vicinity of the Fermi energy, whereas
for more deeply bound states a stronger fragmentation of the strength is
observed with increasing distance from EF- This is beautifully illustrated
by the 208Pb(e,e'p) data from [Quint (1988)], shown in Fig. 7.7. Whereas
the 2s^ orbit exhibits a single peak, there is a substantial fragmentation
of the 0/ strength, which corresponds to the most deeply bound strength
considered. Intermediate results are extracted for orbits in between these
two extremes, as illustrated in Fig. 7.7. Additional information about the
occupation number of the 2s \ valence orbit is also available. By analyz-
ing elastic electron scattering cross sections of neighboring nuclei [Wagner
(1986)], the occupation number for the 2s\ proton orbit of 0.75 is extracted,
which is about 10% larger than the spectroscopic factor [Grabmayr (1992)].
An occupation number less than 1, requires a different explanation than for
the observed pattern of fragmentation. The latter pattern can be under-
stood on the basis of the substantial mixing of the valence hole states with
Ip2h states. In the case of atoms, it is permissible to continue to treat
the ground state as a Slater determinant, even in the presence of electron-
electron interactions. Such a treatment is not valid for nuclei, since the
mutual interaction of nucleons is much stronger, particularly at short inter-
particle distances. Indeed, this repulsive interaction will reduce the wave
function of the relative motion of two nucleons substantially. This reduc-
tion requires the admixture of high-momentum components in the relative
wave function, corresponding to states at high excitation energy. The short-
range repulsion of the interaction is therefore capable to admix high-lying
2p2h states into the correlated ground state \$o) of the nucleus5. These
admixtures lead to a much more complicated ground state which includes
2p2h and additional npnh components. The removal of a valence particle is
not possible from these contributions to the correlated ground state, lead-
ing to a reduced occupation number. The depletion of the Fermi sea must
of course be accompanied by the occupation of states that are empty in
the independent-particle description, in order to conserve the total number
of particles. The importance of short-range correlations suggests that the

5 We will employ the notation A for total particle number in the case of nuclei or
nuclear matter, where A = Z + N. For other systems N will continue to denote the total
number of particles.
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Fig. 7.7 Results for the spectroscopic strength for 208Pb as a function of excitation
energy, Ex, in 207Tl, obtained from the (e,e'p) reaction, adapted from [Quint (1988)].
The spectroscopic factor for the valence 2s i has been adjusted to 0.65 in accord with
the analysis of [Sick and de Witt Huberts (1991)]. No error bars are shown, to emphasize
the character of the observed fragmentation patterns.

occupation of high-momentum states may figure prominently in accounting
for all the particles in the nucleus.

One of the last (e, e'p) experiments performed at the NIKHEF facility
before it was decommissioned, explored the removal of all the protons in the
energy and momentum domain, corresponding to the independent-particle
model. The experiment was performed on 208Pb [van Batenburg (2001)].
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Fig. 7.8 Occupation numbers from the 208Pb(e, e'p) reaction. A global depletion for all
the protons that are fully occupied in the independent-particle model, is clearly visible.
Data have been obtained at the NIKHEF accelerator in Amsterdam [van Batenburg
(2001)].

The complete energy and momentum dependence of the cross section was
analyzed in terras of the contribution of all the proton orbits occupied in
the independent-particle model. For this purpose, energy distributions like
those in Fig. 7.7 were suitably parametrized and combined with momen-
tum profiles from a standard Woods-Saxon potential for this nucleus. As
fit parameters to the data, the overall occupation numbers associated with
these orbits, were employed. The resulting occupation numbers are shown
in Fig. 7.8, plotted as a function of the sp energies of the aforementioned
Woods-Saxon potential. We note the striking depletion of the Fermi sea by
about 20%, which clearly distinguishes the nuclear shell occupations from
the atomic ones. The depletion of the proton orbits increases when the
sp energy approaches the Fermi energy. This feature is also encountered
in other many-body systems, like the electron gas and nuclear matter, as
discussed in Ch. 16. Many of the results, illustrated in this section, will
be addressed again when theoretical calculations for finite nuclei are dis-
cussed in Ch. 17. The global nature of the depletion of the occupation
numbers in 208Pb will also appear as a feature observed in calculations of
the momentum distribution of nuclear matter, presented in Ch. 16.
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The presentation of a sample of experimental data from the (e, 2e) and
(e, e'p) reactions, serves to emphasize the physical content of the sp propa-
gator, defined in this chapter. We emphasize that their availability provides
a crucial tool to assess the quality of the theoretical description of these
systems. In case of disagreement between experiment and theory, it is often
possible to devise improved theoretical approaches, incorporating some of
the physics that is elucidated by the data.

7.9 Exercises

(1) Perform all the steps for bosons, which were discussed in this chapter
for the case of fermions, pertaining to the single-particle propagator.
In particular, obtain the Lehmann representation and the result for the
ground-state energy (and expectation values of one-body operators).

(2) Analyze the energy sum rule, Eq. (7.26), in the presence of three-body
interactions.

(3) Study the large-energy limit of Eq. (7.10). Assume a discrete and finite
sp basis and interpret the sp labels as matrix indices, G(a,fi;E) =
[G{E)]a,p. Show that for E -> oo,

[cm - ^ ~

where the energy matrix [s] is given by the following commutator-
anticommutator combination.

[e]a,0 = (^\{aa,[H,al]}\^).



Chapter 8

Perturbation expansion of the
single-particle propagator

In this chapter several steps are executed, which make it possible to express
the exact propagator in terms of the noninteracting one and the two-body
interaction. The technical details of the derivations are a bit tedious, but
the end result allows an intuitive and practical analysis of the individual
contributions in perturbation theory in terms of so-called Feynman dia-
grams. A systematic analysis of all these contributions then leads to the
Dyson equation discussed in Ch. 9. In the present chapter, Sec. 8.1 sum-
marizes the relevant material from App. A concerning time evolution in the
interaction picture. The expansion of the propagator in terms of the inter-
action is obtained in Sec. 8.2. The evaluation of individual contributions to
this expansion, as an expectation value with respect to the noninteracting
ground state is greatly facilitated by Wick's theorem, discussed in Sec. 8.4.
The motivation for deriving this result is provided in Sec. 8.3. All the
resulting expressions contributing to the propagator, can be represented
pictorially by diagrams, as discussed in Sec. 8.5. Simple rules providing a
dictionary between the diagrams and corresponding mathematical expres-
sion in terms of known quantities, are given in Sec. 8.6. Diagrams are
presented both in time and energy formulation in this section. Additional
rules are developed for systems where it is advisable to treat direct and
exchange matrix elements together.

8.1 Time evolution in the interaction picture

As discussed in App. A, it is convenient to separate the simple time-
dependence of the time-evolution operator associated with Ho, from the
full time-evolution operator, by introducing the interaction picture. For
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state kets this is accomplished by defining

|* /( t)>=exp|^o«}|*s(t)) , (8.1)

where the subscripts / and 5 refer to the interaction and Schrodinger pic-
ture, respectively. Note that the latter picture refers to the conventional
description of the time dependence in quantum mechanics. The corre-
sponding Schrodinger equation in the interaction picture then acquires the
following form, as shown in App. A,

ih^\*I(t)) = H1(t)\*I(t)), (8.2)

with

ffi(t) =exp j^flo*}#iexp j - ^ f l o t j . (8-3)

Time evolution in the interaction picture is governed by the operator that
connects interaction picture kets at different times according to

|¥/(i))=W(t,<o)|*/(to)), (8-4)

where the / subscript has been suppressed in the operator, but a special
symbol U was introduced. At t — to, obviously

W(«o,*o) = l. (8.5)

The equation of motion for this operator is obtained by combining Eqs. (8.2)
and (8.4) with the following result

ih—U(t,to) = JJi(t)W(Mo). (8.6)

According to App. A one may integrate this equation formally and iterate
it to all orders to yield

0 0 / - i \ n 1 rt rt ft

W(Mo) = E T- ~ dtl dt2~ / *nTffi(ti)H1(t2)..fli(tn) ,
n=0 ^ ' "" Jt° Jt° Jt°

(8.7)
where the T-operation is extended to order the H\ operator with the latest
time farthest to the left, and so on.
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8.2 Perturbation expansion in the interaction

The expression for the time-evolution operator in Eq. (8.7) can be used to
write the correlated sp propagator as a sum of known quantities. Each of
these terms is obtained by taking an appropriate expectation value with
respect to the noninteracting ground state. It is convenient to consider
the particle and hole part of the correlated sp propagator separately. In
particular, it can be shown [Mattuck (1992)] that for the particle part of
the sp propagator

G+(a,/3;t-t')= lim lim Q(a,P; T,T',t -1'), (8.8)
T—> — oo(l — it]) T—>+oo(l — iri)

where

i ($*>\ T [u(T,T')aai(t)a^(t')] \*")
Q-—h <$0^(T,r')K) " (8'9)

The choice of the particle part of G implies that t > t'. In addition,
considering the limits in Eq. (8.8), one has

T>t>t' >T'. (8.10)

Note that the particle removal and addition operators, appearing explicitly
and implicitly (inside U) in Eq. (8.8), are given in the interaction picture.
The original definition of G involves the corresponding operators in the
Heisenberg picture and reads

G+(a, /3; t - f) = -l-6(t - t1) « | aaH (i)a^ (t1) \*»). (8.11)

In order to show that Eq. (8.8) is correct we will proceed backwards from
Eq. (8.9). First observe that

U(T, T1) = U{T, t)U{t, t')U{t', T') (8.12)

representing the group property. Inserting this result in Eq. (8.9), one can
move the addition and removal operators under the T sign to their location
suggested by Eq. (8.12). The latter procedure involves no change in sign,
since it always involves an even number of interchanges. At this point the
T symbol can be dropped, resulting in

j (^\U(T,t)aai(t)U{t,f)a^{f)H(t',T') \*»)
Q h «|W(T,T')|O • ( • '
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Equation (A. 11) can now be used for the addition and removal operators,
and Eq. (A.22) to express U in terms of the regular time-evolution operator
Us given in Eq. (A.4), to rewrite Q in the following way

(8.14)
Then we apply Eq. (A.4) again to write the particle addition and removal
operators in the Heisenberg picture, so that

Inserting the completeness relation for the exact Hamiltonian in terms of
states in the N-p&rticle system at appropriate places, generates

i E « I*?) (K \*?) e-W-W) (9»\ aaH(t)al(t') |*ff)

(8.16)
It is now possible to perform the limits that are given in Eq (8.8). As
T —> oo (or 7"), the quantity rfT will be assumed to go to oo. Accordingly all
exponentials will decay to zero. The slowest decay corresponds to the terms
with the lowest energy in the exponentials, ensuring that those survive.
From the ensuing cancellation between numerator and denominator, we
get the desired expression Eq. (8.11) when taking this limit for Eq. (8.8).
The expansion for G+ is thus obtained by inserting Eq. (8.7) for U which
finally yields

i J?L / - A " 1 /-+°°(l-«7) r + oo(l-in)
G(a,/3;t-t') = --J2(-r) - 7 / dh... dtn (8.17)

h n ^ k ' nl J-oo(l-if,) J-oo(l~iv)

x (^\T[Hl(t1)...H1(tn)aai(t)af0i(t1)] | < )

~ / _ A m 1 r+<x(l-iv) f+oo{l-ir))

/E(T) h dt[- dt'm($»\T[H1(t<1)...Hl(O}K).
m \ n ) m\ y_oo(i-i»j) J-OO(I-IJJ) L J

Since the result also holds for the hole part of the propagator, the + has
been dropped in Eq. (8.17). The critical point in the last step of this deriva-
tion is the nonvanishing of ($£ |*j^), expressing the assumption that a
nonvanishing overlap exists between the simple state |$^) and the cor-
related ground state \^o)- No specific properties of the sp propagator G

(8.15)
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were used in obtaining Eq. (8.17). The procedure can therefore be repeated
for the expectation value of an arbitrary operator in the Heisenberg picture

°° / _ , - \ n 1 r+oo(l-in) r+ce(l-in)

<*ri<5iKt)l*ft = x ; ( y ) -w dh... dtn (8.i8)
„ V " / n- J-oo(l-ir,) J-oo(l-iv)

x($^|r[ffi(ti)...^i(tn)d/(*)]|O
«2L / _ , " \ m 1 /•+o°(l-t7j) /.+oo(l-ij))

/ E i r ^ / <"/ <«|7'Hi(f1)...H1(O K>-
„ \ " / ml y_oo(l-i))) J-oo(l-ir)) L J

8.3 Lowest-order contributions and diagrams

Equation (8.17) for the sp propagator does not yet clarify how to generate
each relevant contribution in the perturbation expansion, since important
cancellations between numerator and denominator occur. This goal can be
achieved by employing a technique, referred to as Wick's theorem, discussed
in the next section. As motivation we consider a few low-order terms,
contributing to the numerator and denominator of Eq. (8.17). We simplify
the notation by eliminating the I subscript from the particle addition and
removal operators occurring Eq. (8.17). No confusion can arise since the
Heisenberg picture operators will still be labeled by the subscript H.

Consider the n = 0 term in the numerator

n = 0 -» - I « | T [aQ(t)4(t')] | O = G^(a,0;t- *'), (8-19)

which just gives the noninteracting propagator, as given explicitly in
Eq. (7.32). This result is physically reasonable since without interaction
one should obtain the noninteracting result for the propagator. The first-
order contribution to the numerator in Eq. (8.17) requires evaluating

n = 1 -> (^) r l ly Kl T [#i(tiKW4(t')l | O (8.20)
/ - \ 2 poo(l-iri) -i

x « | T [a^alitJaeihfaMaaWaltf)] |<)

- ( -T / dh^^U \S) « | T K(ii)a,(ti)aQ(04(t') |<),
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where Hi has been inserted with the inclusion of a contribution from an
auxiliary one-body potential, in addition to the two-body interaction

Hi(h) = lYl W\ V W) 4(*i)°J(*i)a«(*iK(*i)
ySee

-£<7|tf|a>4(*i)a«(*i)- (8.21)

For an explicit calculation of the U term in Eq. (8.20) for example, a choice
for the time-ordering of t and t' must be made. Subsequently, the expecta-
tion value of the four operators with respect to the noninteracting ground
state, must be evaluated. The time dependence of the particle addition and
removal operators is given by Eqs. (A.16) and (A.15), respectively. So for
t > t' and the part of the integration over t\ for which t' > t\, one requires
the calculation of

{*»\aaa\a\as\*») =

8{a - F)0(F - S) « | (Sa,fi - alaa)(Sy,s - asa\) « )

= 6{a - F)9{F - 5) ( 5aS5lt6 - 60tS6a,y ) . (8.22)

a) b)

The same strategy as in Ch. 3 has been used, which involves moving oper-
ators that give zero when acting on $$) to the right, and operators that
have the same effect on (3>^ to the left. Before taking these steps, we
assert that no contribution is obtained unless both a > F and F > 6, for
the same reasons. The first term in Eq. (8.22) leads to

Ua^-[Ti dh Efriw (8-23)

x | l-6(t+ - h)S^s0(F - 7)e*
e'(tf-'*) | h

x i-lj8(t - t')6a,t,6(a - F)e-ie"^-t'Ah

= \ f ^ ^2(-y\U\6)Gl°\s,r,h-tt)\Gf(a,P;t-t').
[J-oo(l-W) l5 J

This contribution has been written such that particle and hole parts of
noninteracting propagators can be identified, even if the time arguments
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Fig. 8.1 Diagrammatic representation of Eqs. (8.23) and (8.24), respectively.

are identical. The order of the operators for this G_ term is dictated by
the ala form of U, uniquely determining the sequence of the times involved.
Similar steps for the second term yield

Ub=*-0(t-t') [ dh 2<7l^l«J>Gio)(a,7;t-«i)GLO)(<J,)9;ti-t')-
J-ao(l-iv) 7(;

(8.24)
These contributions have a simple graphical representation shown in
Fig. 8.1. In each picture the three times t,t' and ix are indicated with
time increasing in the vertical direction. Such diagrams are therefore re-
ferred to as "time-ordered". Each propagator term is represented by a line
with an arrow that starts at its second argument, accordingly labeled with
appropriate sp quantum numbers, and ends at its first (also labeled). The
beginnings and ends are indicated by a dot to which, where appropriate, a
zigzag line ending in another black dot can be attached, representing the
action of U. The interactions are also labeled with corresponding sp quan-
tum numbers where the final state is shown above, and the initial state
below the zigzag. Diagram a) in Fig. 8.1 is "disconnected" since it consists
of two separate pieces that appear in product form in Eq. (8.23). This us-
age of language implies that the second term is "connected" since all parts
are linked to each other and no factorization occurs in Eq. (8.24). The
propagator in diagram o) closing on itself, starts and ends at the U vertex.
It is the result of addition and removal operators from the same interaction
operator "contracting" with each other. Since interactions always have ad-
dition operators to the left of removal operators, such contributions involve
the hole parts of the corresponding sp propagator.

Diagram a) can now be read as folllows: before time t\ the system is
represented by the ground state of the noninteracting system $$) which
is not explicitly shown. At time t\ the U interaction acts by removing a
particle from this state, simultaneously returning it, necessarily in the same
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sp level. Later, at time t' a particle with quantum numbers /? is added to
the noninteracting ground state; at a later time t, this particle is removed
again, leaving the system in the ground state of the noninteracting system.
In turn, this implies that a = /? since these quantum numbers correspond
to the basis associated with HQ. Diagram b) represents a different physical
process: before t\ the system is again in the noninteracting ground state;
at t\ the U interaction now creates a particle-hole state with the "particle"
in an unoccupied state (7) and the "hole" indicated by 6. The particle
line is drawn with the arrow pointing towards increasing time, whereas the
arrow of the hole line points towards decreasing time. At time t', this hole
is filled again by adding a particle with quantum numbers /? (equating 6
and /3). It can therefore also be considered as a particle going backward in
time from t' to ti, just as an antiparticle in relativistic field theory. From
t' to t one particle propagates above the noninteracting ground state until,
at t, it is removed, returning the system to its original state. The complete
equivalence of the diagrams and the expressions given in Eqs. (8.23) and
(8.24) still requires a set of simple rules that will be discussed later in more
detail.

Other diagrams can be generated for different time-orderings requiring
similar evaluations of the expectation value for the resulting order of parti-
cle addition and removal operators. The procedure can also be applied to
the two-body operator V. This tedious process can then be continued for
higher-order terms contributing to the numerator of Eq. (8.17). Similar pic-
tures can also be generated by evaluating the denominator of that equation,
order by order. Clearly, in each order, a set of noninteracting propagators
will be generated, complemented by a product of matrix elements of U and
V terms. In addition, relevant integrations over time variables and sum-
mations over internal sp quantum numbers are to be performed. Wick's
theorem can be used to avoid all this work, as shown in the next section.

8.4 Wick's theorem

We will follow the presentation of [Fetter and Walecka (1971)] to establish
Wick's theorem. We introduce the notion of the normal-ordered product in
which the operators are organized in such a way that the ones that give zero
when acting on \$$) are placed to the right of those that don't. Normal
ordering therefore rearranges a product of operators with the property that
the usual interchanges of fermion operators are accompanied by appropriate
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minus signs, as in time-ordered products. For aa(t) and aUt') this normal
ordering yields

' -a^{t')aa{t) a> F, 0 > F

N \a ftW (t1)] - J a»W°^*') a>F, 0<F
N [aa(t)a0(t )j - aa ( t ) f lt ( i / ) a<F,p>F (8-25)

, aa(t)aj(t') a<F, P<F,

where the order in the second and third term could be changed (with an
attendant extra sign) since both operators have the same effect. In the first
and last term in Eq. (8.25) the sequence is essential. In words, one simply
moves removal operators of empty states to the right, addition operators
of those same states to the left, removal operators of occupied states to the
left, and, finally, addition operators of those states to the right. The exten-
sion to normal ordered products of other or more operators is defined in a
similar fashion. It is now possible to define the contraction of two operators
as the difference between their time-ordered and normal-ordered product.
This contraction is identified by two identical symbols (e.g. bullets) used
as superscripts attached to the operators involved.

aa(t)'al(*')" = T [aa(t)al(t')] - N [aa(i)a£(O] • (8-26)

For t > t' one then obtains

aa(tyal(ty = aa{t)a]
0{t') - N [aa{t)a\{t')\ . (8.27)

When a > F and /? > F, this time-ordering and the definition of the
normal-ordered product yields

aa(t)'al(t')' = 9(t - t1) (aa{t)a\{t') + o^(t')oa(t)) 0(a - F)0(0 - F)

= 6(t - *') (aaal + a^oQ) 0{a - F)6{(1 - F)e~^e-te^'3t'

= ih (Y) 0{t - t')6a,(,6{a - F)e^^'-^

= iHG$\a,P;t-t'). (8.28)

Applying the definitions of the time-ordered and normal-ordered product,
it is straightforward to show that for all other combinations of quantum
numbers (a > F, /? < F, etc.) the contractions vanish for t > t'. For
t < t', one finds only a nonvanishing contribution when both a and /?
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correspond to an occupied level in the noninteracting ground state with
the result

aQ(t)*4(«T =ihG^(aJ;t-t'). (8.29)

This implies that for all quantum numbers a and /? and all time orderings,
we can write

aa(t)'al{t')' =ihG(0){a,/3;t-t'), (8.30)

where the particle or hole part is automatically selected by the choice of
occupied or empty quantum numbers and the result is simply a c-number.
Other pairs of operators, like two removal or two addition operators, have
vanishing contractions. This is to be expected since the corresponding
anticommutation relations yield zero.

The strategy to rearrange a time-ordered product of operators accord-
ing to the properties of the individual addition and removal operators with
respect to their action on the noninteracting ground state, can be accom-
plished in one stroke by invoking the following form of Wick's theorem:

T \abc...xyz\ = N \abc...xyz\ + N \a*b'c...xyz\ + N \a*bc'...xyz\

+ ... + N [a*bc...xyz*} + N \ab'c\..xyz] +... + N [a#6"c...V.."£j/z]

+... + N [a*b"£"•...xoy°°z°°°]

— N \abc...xyz\ + N [sum over all possible pairs of contractions] .(8.31)

A time-ordered product of operators is the sum of all normal-ordered prod-
ucts, formed by applying any number of contractions among the operators
in all possible ways.

We still have to define the contractions inside the normal-ordered prod-
ucts, appearing in Eq. (8.31). Changing the order of operators inside a
normal ordered product, requires an appropriate sign change according to

N \abcd..] = -N \bacd..] , (8.32)

where o, b,... represent either particle removal or addition operators. The
contractions in Eq. (8.31) should therefore be interpreted in the following
way

N [a'bc'J...] = -N [&a'c'd...] = -a'c'N [M...] . (8.33)
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For completeness we repeat the strategy of moving operators depending on
their character. An operator like a^ with a > F must be moved to the
left and will be considered an operator of type I. If a < F this operator
must be moved to the right and will be labeled type 77. Similarly, aa is
a type / operator when a < F, and type 77 when a > F. Note that the
distinction is related to the choice of sp basis as its lowest levels are filled
in the noninteracting ground state \$Q)- This choice of basis is convenient
and will be employed here. Such a choice is not mandatory, since removal
and addition operators with other sp quantum numbers, can also be used.
Ultimately, Wick's theorem requires the decomposition of these operators
into type I and 77, which is accomplished by a basis transformation ac-
cording to Eqs. (2.58) and (2.59). The decomposition automatically yields
two terms, one referring to occupied states, the other to empty states in the
summations of Eqs. (2.58) and (2.59), which immediately identify the type
/ or / / character. Normal ordering is a distributive operation, implying
that the results discussed below, are also valid in another sp basis.

Several steps are involved in demonstrating the validity of Eq. (8.31).
First one can prove the following: if N a6c...£y is a normal-ordered prod-
uct and the operator z has a time earlier than any occurring in this product
then

N \abc...xy] z = N \abc...xy'z''\ + N \abc...x'yz*'\ + ...

+ N \a'bc...xyz'] + N \abc...xyz\ . (8.34)

Note the following points to prove Eq. (8.34). If z is of type 77, then all
contractions vanish with each operator i in the set a...y, since

i'z* = T \lz\ - N [zi] = i z - iz = 0, (8.35)

where in the last equality the earlier time of the operator z and its type 77
property were used. So in this particular case Eq. (8.34) follows, since one
obviously has

N \abc...xy] z = N \abc...xyz~\i . (8.36)

Assume that the operators ab...y are already normal ordered. If they are
not, Eq. (8.34) may be reordered accordingly on both sides, using the sign
conventions introduced in Eqs. (8.32) and (8.33). Consider first the situa-
tion where the operators a,b,c, ...x,y are all of type 77, giving zero when
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acting on j^o'), and z is of type I. The next step is an induction procedure.
For two operators Eq. (8.34) is valid since

N\y]z = yz = T [yz] = y'z' + N [yz] = N [fz*] + N [yz], (8.37)

where the second equality applies on account of the chosen time-ordering.
The third equality invokes the definition of the contraction, and the last one
is correct since a contraction is a c-number. We now assume that Eq. (8.34)
is valid for n operators. To prove its correctness for n + 1, we can multiply
Eq. (8.34) by a type / / operator d on the left (also with a time later than
that off), yielding

dN \abc...xy] z = N \dabc...xy"z'~\ + N \dabc...x*yz*} + ...

+ TV [da#6c...iyi'l + dN \abc...xyz\ . (8.38)

Since all operators abc..xy are also of type 77 and the contraction of d with
£ is a c-number, d can be taken inside the normal ordering except for the
last term in Eq (8.38), as z is still an operator there. For this last term,
however, one can write

dN \abc...xyi\ = N \<frabc...xyz*\ + N \dabc...xyi\ , (8.39)

since

dN \abc...xyz\ = {-l)pdzdbc...xy = {-l)pT \dz\ abc...xy

= (-l)pd'z'abc...xy + (-l)pN \dz] abc...xy

= (-l)2pd'abc...xyz* + (-l)2pN [dabc...xyz]

= N \d'abc...xyz*] + N \dabc...xyz\ . (8.40)

We have used p to denote the number of times z has to be exchanged to
place right after d. This completes the proof of Eq. (8.34) for the chosen set
of operators. Additional type / operators can be included by multiplying
them in on the left of Eq. (8.34); the additional contractions generated in
this manner vanish and can therefore be included on the right side.

Equation (8.34) can be extended to include normal-ordered products,
already containing contractions. This point can be understood by multi-
plying both sides of Eq. (8.34) with the contraction of the operators d and
w (c-number) and making the appropriate sign changes on both sides which
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then cancel on account of the sign conventions

N \abcd°...woxy] z = N \abcd°...w°xy'zm] + N \abcd°...w°x*yz'] + ...

+ N [a'bcd°...w°xyz'~\ + N \abcd°...w°xyz\ . (8.41)

This result also holds when additional contractions are included in
Eq. (8.41).

With these preliminary items out of the way, Wick's theorem can now
be proven by induction. Equation (8.31) is clearly correct for two operators

T [afo] = a'b' + N [afo] = N [a'S*] + N [aft] . (8.42)

Again, assume that Eq. (8.31) is valid for n operators and then multiply it
by A from the right, where A has an earlier time than the others.

T [abc...xyi] A = T \abc...xyzA] (8.43)

= TV [a6c...iyzl A + N \a*b'c...xyz\ A + N \a'bc*...xyz\ A + ...

+N \a'bc...xyz*] A + N \ab'c'...xyz\ A+ ... + N \a*b"c..:..."xyz\ A

+... + N [a^"c#"...i°j>ooioo°] A

= N \abc...xyzA\ + iV[sum over all possible pairs of contractions].

The first equality in Eq. (8.43) is generated directly from the left-hand
side of Eq.(8.31) since A has a time earlier than any of the other oper-
ators. The second equality reflects the multiplication of A on the right
side of Eq. (8.31). To obtain the last equality, one uses Eq. (8.41) and its
generalization with more contractions, to arrive at the last line. This com-
pletes the proof for the particular time-ordering where A is earlier than any
other operator. The restriction can be removed by reordering each term in
Eq. (8.43) without changing the outcome. The sign conventions introduced
earlier, ensure that Wick's theorem is valid in these other situations also.
The proof of Eq. (8.31) is now complete.

The usefulness of this result which holds as an operator identity, be-
comes abundantly clear when the expectation value of a time-ordered prod-
uct of operators is taken with respect to the noninteracting ground state
|$^) . Only those terms in Eq. (8.43) that contain fully contracted con-
tributions give nonvanishing results. If there are 2n operators in the time-
ordered product, n! terms with n noninteracting propagators, and a factor
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(ih)n are generated, together with an overal sign, to be discussed below.

8.5 Diagrams

The introduction of a graphical representation greatly facilitates the anal-
ysis of the perturbation expansion of the sp propagator. We will start by
considering the first few contributions to the numerator of Eq. (8.17). The
term with n = 1 containing the auxiliary potential U in the numerator of
Eq. (8.17), generates the following time-ordered product

« | T [atfrMtiJMtJâ f)] | O =
-aa{tYal{tra5{hra\(t+)a + oi(«i)#o^(t')#oa (t)°a\(tt)°

= - (ih)2 G<°> (a, /?; t - t')GW («5,7; h - t+)

+ (ih)2 G^{8,P;h-t')G^{a,r,t-h), (8.44)

by direct application of Wick's theorem. The extra + superscript has been

added to the propagator with two t\ arguments, referring to the original

ordering, as discussed in connection with Eq. (8.23). The two contributions

have a graphical representation, shown in Fig. 8.2, with corresponding ex-

pressions

/ dh Y, <7l U \S) G<°> (6, r,h-tt)\ G<°> (a,0;t-t')

J-oo(l-tr) 7(5 J

(8.45)
and

/•Oo(l-tT))

Ub=>- dh Y,^\u\5)G(O)^r,t-h)G^\8,p-h-t'). (8.46)
J-oo(l-iri 7<5

It is important to realize that the time-orderings in these diagrams are not
fixed. For this reason they are referred to as Feynman diagrams. It is
important to keep in mind that both time-orderings t > t' and t' > t are
represented by the same diagram. In addition, the internal time integrations
range over all times so that t\ can be in any position relative to t and t' in
Fig. 8.2. By separating these different cases, all time-ordered diagrams can
be generated. An example is given in Fig. 8.1.

The first-order term in the numerator of Eq. (8.17) involving V, yields
a time-ordered product of three particle addition and three removal opera-



Perturbation expansion of the single-particle propagator 155

t => t a «a

7 7

^ S

« =* ' " a) ^ ft)

Fig. 8.2 Part a) shows the disconnected contribution given by Eq. (8.45). Part b)
represents the graphical representation of Eq. (8.46). Note that the three times indicated
by horizontal arrows are not time-ordered.

tors, and therefore involves 3! terms, each containing three noninteracting
propagators. As a result,

/.Oo(l-iTj) 1

y_cx)(i-i7,) * lSl6

x JG<°>(a, ft t - t') [^(O.^t-tDG""(c,7; ti - ̂ )
a)

-G^je,^ -t+lG^jcd-h -t+)\

+ G^(a, 7; t - h) [ G W ^ , ^ ! -QGW(e, 5; t2 - t+)

d)

- G^\9,5-M-t+)G^ (e, /?; tx - t')]

c)

+ G(0)(a^;t-*i)[G(0)(g.7;*i-*J')yG
(0)(e,^;*i-0

/)

- G ^ M - ^ G M t e j ; * ! - ^ ) ] ! . (8.47)

These six terms are graphically represented in Fig. 8.3. As the topology
suggests, diagrams c) and e) are identical, as are d) and / ) . This can be
verified by exchanging dummy summation variables and using the prop-
erty of Eq. (2.43). It is customary to consider only diagrams c) and d) and
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t => t a fa fa

O
7 Sj^\ i/^~\6 7 6/~\

.....p ..^s ......p
f =» ^ a) ^ b) ^ c)
t ^ fa fa fa

-^ 7 r\6 /~\7 s V\ *

* => ^d) ^ e ) 'P f)

Fig. 8.3 Six diagrams corresponding to the six terms in Eq. (8.47). Note that diagrams
a) and 6) are disconnected and will be canceled by contributions from the denominator
of Eq. (8.17).

multiply the corresponding expressions by a factor of 2. The first two dia-
grams are disconnected, as is the one that represents Eq. (8.45), illustrated
in part o) of Fig. 8.2. As will be shown shortly, they cancel corresponding
terms in the denominator of Eq. (8.17), leaving only connected diagrams.
Anticipating this result, the true first-order contribution to the propagator
can be written as

G(l){a,p;t-t') = - f dhYsdW^G^^^t-t^GW^p-M-t')

-ih f dh^2(>y5\V\e6) (8.48)

x {G<°>(a,T,t- h)GW(6,6;h - i+)G<°>(c,/?;h - t')

- G^(a,T,t -t^G^icS;^ -t+)G^(e,p;h -t1)} .

The time integration limits have been suppressed in this expression. The
first-order correction to the propagator therefore includes diagram b) from
Fig. 8.2 and diagrams c) and d) from Fig. 8.3. It is often practical to reduce
the number of diagrams even further by combining the matrix elements
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of the two-body interaction V as in Eq. (2.47). Using this symmetrized
version, the contribution from the two-body interaction to G'1' can then
be formulated as

G$)(a,0;t-t') = -ih f dti ^ {jd\ V \e0) (8.49)

x G(°)(a,7; * - *i)GfW(0,<5; h - t+)G™(e, /?; h - *')•

For systems that have comparable contributions for the direct and exchange
contribution in Eq. (2.47), this strategy is particularly appropriate. If it
is adopted, only diagram c) in Fig. 8.3 will have to be considered in first
order in V. The labeling of the interactions, which is represented by a
dashed line in Fig. 8.3, is usually done by reserving the two top locations
for the final two-particle state and the two bottom ones for the initial state.
This convention is not applied for diagram b). No ambiguity should arise
however, since one can identify initial and final states by the directions of
the arrows associated with the attached propagators.

The absence of the factor \ in front of the matrix element of V in
Eq. (8.48), is due to the appearance of equivalent diagrams and remains also
valid in higher order, as can be checked explicitly by the reader. In addition,
for any contribution in higher order there is an identical one from so-called
topologically equivalent diagrams that differ only in the permutation of the
time labels ti,t2,—,tn, since one can move the Hi(ti) at will under the
T sign. As there are n! such terms, this generates a factor of n! which
conveniently cancels the 1/n! term in the numerator of Eq. (8.17).

We now turn our attention to the denominator of Eq. (8.17) to clarify
the mechanism of its cancellation with terms in the numerator, as alluded
to above. This denominator is sometimes written in the notation of the
<S-matrix, familiar from scattering theory (see Ch. 6)

«|5«>= (8-50)

£ ( T ) ^_ J<-Jdt'm(^\r[H1(t'1)...H1(t'm)} K) .

When considering contributions to Eq (8.50), one can proceed in a simi-
lar fashion in generating a diagrammatic representation for each order rn.
Clearly for m = 0 this contribution is 1. By direct application of Wick's
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theorem the first-order term yields

«|J?W|<)= fdti 5>|E^>G(0)(<*,7;tf-*i)

-ih fdh \ £ W\V\d) {G(0) (*, S; h - t+)GW(e, 7; h - t+)

- G<°>(61,7;h - t+)GW(c,S-h-tt)}. (8.51)

The numerator of Eq. (8.17) contains a contribution in first order of the
type G^ x ( $ ^ | «S(1) | $^) , as can be verified from the results of Eqs. (8.45)
and (8.47). Taking the corresponding lowest order contribution to the nu-
merators and denominator of Eq. (8.17) into account, we can therefore write
schematically

G(a,p;t- t') = {G(°)(a,/3;i - t') x (1 + (^\S^ \^) + ...)

+ G^(a,P;t-t')x(l + ...) + }

/(l + KI^K)+ ...). (8.52)

We recognize the incipient cancellation that will occur between the numer-
ator and denominator of Eq. (8.52). When analyzing higher-order contri-
butions, one always encounters connected terms, linked to both aa(t) and
a^(i'), possibly multiplied by disconnected ones, leading to a factorized
contribution to the numerator of Eq. (8.17). This implies that in nth or-
der, one is able to write for this numerator contribution [Abrikosov et al.
(1975)]

. 00 00 , . N l+m . ,

r(n) , o, , '\__lVrfl!l A l n-
Enumerators P<* l ) ~ fi 2 ^ 2 ^ I ft ) °n'l+m

 n\ l\m\

xy"dti..|d*ro«|r[ffi(ti)..Hi(tm)aa(t)4(0]|$^>connected

x Idtm+l.. j dtn($»\T[H1(tm+1)..H1(tn)'] K ) . (8.53)

The result may be verified by applying Wick's theorem to both sides of
this expression. The second factor contains many disconnected parts. The
factor n\/l\m\ in Eq. (8.53) represents the number of ways to distribute the
n Hi operators into the two groups. To evaluate the complete numerator,
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one simply has to perform the sum over n which yields

Gnumerator(aJ;t-t') = -l-J2[Y) ^

x j'dh.. J' dtm{^\T[Mh)-Mtm)aa{t)a\{t')]\^)connected

X E ( Y J Jij dt[..J dt'l(^\T[H1(t[)..Hl(t
>

l)}\^)- (8.54)

The denominator of Eq. (8.17) can now be identified as the second factor
in this expression. We therefore obtain the important result that only con-
nected diagrams appear in the perturbation expansion of the sp propagator.
This cancellation then yields the final expression for the sp propagator in
terms of quantities that can, in principle, be calculated order by order from
the noninteracting propagator and the Hamiltonian H\

x « | T [&i(e-ffi(*m)aa(i)4(t')] \<)connected • (8.55)

Only contributions to the sp propagator that are completely linked and
connected to the operators aa(t) and a^(t') need be considered in this
expansion. As indicated above, each term in Eq. (8.55) can be uniquely
associated with a Feynman diagram.

8.6 Diagram rules

Equation (8.55) and Wick's theorem facilitate a systematic study of the
sp propagator. The expansion can be depicted in a graphical manner,
accompanied by a small set of rules that allow the construction of the
corresponding expressions from the diagrams.

8.6.1 Time-dependent version

In the time-dependent formulation of the expansion, we may first consider
the rules in the absence of an auxiliary potential U. Only diagrams involv-
ing the two-body interaction V are encountered. The following rules apply
for an mth-order contribution:
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Rule 1 Draw all topologically distinct and connected diagrams
with m horizontal interaction lines for V (dashed) and 2m 4- 1
directed (using arrows) Green's functions G^

Rule 2 Label external points appropriately. For example, the labels
a,t and /3,t' apply for Eq. (8.55)
Label each interaction with a time and sp quantum numbers

*=• •---• =» hS\V\€6)

For each full line one writes

U => */•«

Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal times

Rule 4 Include a factor (ih)m and ( -1) F where F
is the number of closed fermion loops

Rule 5 Interpret equal times in a propagator as G^°\fj,,v;t — t+)

If it is unclear whether diagrams are topologically distinct, one can
always resort to a direct application of Wick's theorem. Fermion lines
either close on themselves yielding a closed loop, or run continuously from
the external label a to /?. The closing of a fermion line generates a minus
sign. The corresponding contractions can be reordered without changing
the sign into (using symbolic notation)

a\hya{h)"a\t2ya{t2)°...cJ{tmy°a{tmy, (8.56)

requiring one additional sign change to contract the outermost operators
according to the convention. The factor | appearing in the second quan-
tized form of V can be omitted, provided only diagrams of the type c) and
d) are included for Fig. 8.3, and those of type e) and / ) are discarded.
Similar considerations apply in higher order. The factor (ih)m in Rule 3
results from the prefactor —i/h in Eq. (8.55), the factor {-i/h)m appearing
there under the sum, and finally, a factor (ih)2m+1 from the number of con-
tractions in mth order. The latter number corresponds to each interaction
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t =>• f a

=»(-l)tft/dt! E 7 ^(7^M)G(°)(a , 7 ; t - i i )

*i => ""-fO xG(°>(M;ti-tf)G(0)M;*i-*')

t' = • * / 3

Fig. 8.4 Diagram V1D representing the first-order "direct" contribution from the two-
body interaction V to the sp propagator in the time formulation. The minus sign in
front comes from the closed fermion loop.

contributing two contractions, plus one coming from the external operators.
The first-order contributions generated by applying these rules are dis-

played in Figs. 8.4 and 8.5. The diagram shown in Fig. 8.4 will be labeled
"V1D" for the first-order "direct" contribution from V to the propaga-
tor. The exchange diagram in first-order is accordingly labeled "VIE" and
shown in Fig. 8.5. In the literature one encounters different ways of drawing
this exchange diagram. Here, the choice has been made to identify clearly
how the propagators enter and leave the two-body interaction V. In ad-
dition, all two-body interactions are drawn horizontally to emphasize that
those studied in the many-particle problem are usually static, i.e. occur
at one time. It is possible to generate nonstatic interaction terms between
particles by including higher-order contributions in the medium. Examples
of such interactions will be discussed in Ch. 13. It appears more appro-
priate to reflect the static nature of the interactions in drawing diagrams

^"jr^S =*tf/<fci E7^(7W<0G<°>(a,7;*-<i)

0^e xG(°)(0,<Mi-ii~)G(o)(6,/3;*i-O

f =* h

Fig. 8.5 Diagram VIE representing the first-order "exchange" contribution from the
two-body interaction V.
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=* (-i)2(tt)2J*J^E7)WE(,a/(c)(«,7;(-ti)

A ^

t' =>l/3

Fig. 8.6 Diagram V2a representing one of the ten second-order contributions to the sp
propagator in the time formulation.

and not use the field-theory version where the interaction lines represent
propagating bosons, allowing for nonstatic interactions. The latter choice
of diagrammatic representation was e.g. made by [Fetter and Walecka
(1971)]. All diagrams up to second order in V are shown in Figs. 8.6 -
8.15, together with the corresponding expressions obtained from the rules.
These diagrams clearly separate into different categories. The first four,
shown in Figs. 8.6 - 8.9, are simply repeats of the first-order contributions
displayed in Figs. 8.4 and 8.5. All four will be categorized as reducible in
Ch. 9, since they can be generated by iterating lower-order contributions.

t => „ i 3 r > x (7<5|y|e(?) G(o) (e> C; h ~t2)Gi0) {e'S] h ~ ̂
£ 0 ^G^(n,^t2-t+)(^\V\^)G^(X,0;t2-t')

^ A

f => ip

Fig. 8.7 Diagram V2b, representing a second-order contribution to G.
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t =^t a

1 ^ e x (78\V\9e) G<°) (e, (; *x - *2)G(0) (0, «5; «x - t+)

"C £ x G<°) (/x, ;̂ t2 - i+) (tf |V|M) G(°) (A, /3; t2 - t')

Fig. 8.8 Diagram V2c, representing a second-order contribution to G.

For future reference these diagrams will be labeled V2a through V2d.
The next four contributions in second order can be obtained from each

other under exchange. They are labeled V2e through V2h and shown in
Figs. 8.10 - 8.13. These terms are also related to the first-order contribu-
tions as V2a through V2d. They are generated by replacing the propagator
that leaves from and returns to V in the first-order diagrams (implying equal
time arguments), by the corresponding G^ represented by V1D and VIE.
Especially for the last four diagrams the topological equivalence with the
corresponding terms, drawn according to the field-theory convention (see
Fig. 9.8 in [Fetter and Walecka (1971)]), may not be immediately obvious.

=> ( - l ) ( iS)7*/*2E i A f l«E a i / (°)(Q ,7 ; t -«i)

" 7 ^ x (7<OTe)G<0>(c,C;ti-*2)G<0>(M;ti-*+)
1 ^6^ e x Gr(0)(M) £ t2 _ t+) (£Z\v\\n) G<°>(A, /?; t2 - f)

A ^

Fig. 8.9 Diagram V2d, representing a second-order contribution to G.
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t =• .a =>(ih)2fdt1fdt2'ZySfg'E(iXllGW(a,r,t-t1)

x (7<J|V|cfl)G(°)(A)(J;t2-ti)

«' =» ^

Fig. 8.10 Diagram V2e, representing a second-order contribution to G.

The present convention, clearly emphasizing the static feature of the inter-
action V, may be helpful in visualizing the successive dressing of internal
propagators that will be explored in Ch. 9.

The final two diagrams, representing second-order contributions, are
shown in Figs. 8.14 and 8.15. They are labeled by V2i and V2j respectively,
and are also related to each other by the exchange operation. Note that
there are only two such terms, as can be checked explicitly by applying the
relevant algebra of Wick's theorem and relabeling of dummy indices. It
will be shown in Ch. 11 that the inclusion of these types of diagrams in the
propagator will cross the boundary of a mean-field description. All eight
terms represented by Figs. 8.6 - 8.13 (and many more) are included in this
mean-field description to be discussed in detail in Ch. 10.

Third and higher-order contributions can be obtained in a similar fash-
ion. The reader should realize however, that in practice it is almost never
necessary to consider such higher-order terms individually, unless they are
part of infinite sums of diagrams. Nevertheless, it is useful practice to draw

/ " ^ x hS\V\e9)G^(\,S;t2-t1)

tl => u7.j£j?\Jt ^t2 xG(°>(0,C;ti-t2)(£C|V|A/i)

xG(0)(M)fri2-t+)G<°>(e,/8;ti-i')

f =» J /9

Fig. 8.11 Diagram V2f, representing a second-order contribution to G.
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^ = * " Q => W/dti/dt2E7,Sl^Ea,e,9G(o)(a)7;t-ti)

' \ , 9 xG(0)(«,{;(!-f1)G(°)(e,(;l2-(+)

7 J x («|^|cfl)G(°)(A,/9;ti-<')

V^ A

f => */3

Fig. 8.12 Diagram V2g, representing a second-order contribution to G.

examples of higher-order diagrams, as will be suggested in the exercises
concluding this chapter. Having learned to write down every term in the
expansion of the sp propagator, it is by no means clear how to proceed
making relevant approximations for a particular system under study. In
fact, it will be shown in Ch. 9 that one requires infinite summations of
diagrams to obtain sensible results even if the two-body interaction is quite
weak.

So far only terms involving the two-body interactions have been dis-
cussed. While these determine the general structure of the diagrams, it is
sometimes necessary to introduce the auxiliary potential U as in Eq. (8.21).

=> ( - i ) ( i f i ) 3 /<f t 1 /<f t 2E 7 M ( 1E a . ,«G ( ( l ) ( '> ,7; t -«i )

^C ir~\ * (76\v\n\)GW(»,C,h-t2)
t2^" / 6 x G(°>M;t2-ti)G(°>(«U;t2-t+)

7 "d x (tt\V\e6)GW(\P;h-t')

^ A

Fig. 8.13 Diagram V2h, representing a second-order contribution to G.
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1 ^"a => ( - l )^)2 /*I*E i A £ ,JEc, { ,A/(°)(a,7it-t i )

7 * x (7<5|V|̂ )G(°)(e,C;ti-i2)
€ y \ xG<o>(M,tf;i2-ti)GW(0,£;ti-t2)

"c i / x (a|K|A/i)G(°)(A,/?;*2-0
A M

Fig. 8.14 Diagram V2i, representing a second-order contribution to G.

We then encounter additional diagrams and corresponding rules, to deal
with the contributions of this one-body interaction. The inclusion of a
static external potential proceeds in similar fashion. The inclusion of U
does not lead to further difficulties, but requires a few additional consider-
ations, given below. In first order, the corresponding diagram is shown in
Fig. 8.26) and the accompanying expression is given in Eq. (8.46).

7 r^S x W\V\tO)GW{e,<;;tx-t2)

t f x (tt\V\»\)GW(\,P;t2-t')

f^ A

t' => *P

Fig. 8.15 Diagram V2j, representing a second-order contribution to G.
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In second order, one encounters the contribution to Eq. (8.55) of the
form

G«»U..ft.-O = - J ( ± ) ' ± / * / * ,
x « | T [ff,(l,)tf.(<2K(<>4e'>] K),mn,a,d • (8 57)

Inserting the two contributions to each H\ term, requires the evaluation of
the following expectation value

=> {<\T [{V{h) - U{h)) (V{t2) - Ufa)) aa(t)al(t')} \<)connected

= «\T[(-Lf(ti)) {-Uit2))aa(t)al(t<)} K)connected

+ « | T [v(h)V(t2)aa(t)4(f)] \K)connected

+2 « | T [(-U(tl)) V(t2)aa(t)4(t')] M)connected , (8.58)

where the factor of 2 in the last term originates from relabeling the dummy
time integration variables in one of the UV products. The factor of 2 arises
also in the other two contributions to Eq. (8.58) resulting from the two
identical terms associated with interchanging the two internal time variables
t\ and £2- In second order, the corresponding 1/2! factor in Eq. (8.55) is
cancelled as well, when U terms are included. This result is repeated for all
higher-order terms. Two additional rules then have to be added to include
these U terms. In particular, when k such U contributions appear in the
diagram one has to:

Rule 6 Label each U according to

=> ti *\AAP => (a\U\P)

Rule 7 Include a factor (—1)* and k additional propagators G^

When k U contributions appear in a diagram, it leads to k additional
contractions, representing a factor (ih)k since U is a one-body operator.
Together with the factor (—l)k(—i/h)k this yields the factor (—l)k quoted
in Rule 7. It is straightforward to generate the additional diagrams when
these U terms are included. They will be analyzed in the next chapter,
where the inclusion of U occurs quite naturally. A one-body external field
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Uext will generate similar terms but doesn't require the factor (—l)k in
Rule 7. It is also wise in this case to select another symbol than the
"zigzag" chosen for U.

A different diagram strategy may be employed, when the relative im-
portance of direct and exchange terms is similar. This happens in nuclear
problems, for example. It is then convenient to employ the symmetrized
version of the two-body interaction as in Eq. (2.46), which involves the
combination of direct and exchange matrix elements of the interaction as
in Eq. (2.47). This result can be obtained by considering the unsymmetrized
diagrams as studied in Figs. 8.4 and 8.5 for the first-order contribution and
all second-order terms displayed in Figs. 8.6 - 8.15. By relabeling the sec-
ond term involving V in Eq. (8.48) and combining the two, the first-order
term is given by Eq. (8.49). Clearly, when the antisymmetrized version of
V is used, we only need to consider the direct diagram of the first-order
contribution shown in Fig. 8.4. The same result is generated by applying
Wick's theorem using the symmetrized version of V and applying appropri-
ate relabeling of dummy variables. In second order, one can add the first
four terms shown in Figs. 8.6 - 8.9 accordingly, by replacing in the expres-
sion for V2a, the two matrix elements of V by the antisymmetrized terms
and only keeping Fig. 8.6. Similarly, we can collect the next four terms
(Figs. 8.10 - 8.13) of the unsymmetric version and use the symmetrized
matrix elements keeping only diagram V2e. The last two second-order di-
agrams shown in Figs. 8.14 and 8.15 can be combined, but require a factor
of | to get the correct expression. These changes lead to a modified and a
new diagram rule when antisymmetrized matrix elements of the interaction
are used.

Rule 1' Draw only all topologically distinct and connected, direct
diagrams with m horizontal interaction lines for V (dashed)
and 2m + 1 directed (using arrows) Green's functions G^

Rule 8 Include a factor | for each pair of equivalent lines, which
both start at the same interaction and end at another

The notion of equivalent lines introduced in Rule 8 originates from the
restriction encountered when a pair of lines start and end at the same inter-
action. This leads to only two diagrams of the type V2i and V2j, whereas
four diagrams occur of the type V2a~V2d and V2e-V2h, respectively. This
feature also appears in higher-order terms, resulting in the new rule Rule
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8 in the symmetrized version. As discussed above, certain parts of higher-
order diagrams contain expressions that correspond exactly to lower-order
terms. This is very helpful in resumming contributions to the perturbation
expansion of the sp propagator. A systematic presentation is pursued in
Ch. 9.

8.6.2 Energy formulation

For formal manipulations and the development of the perturbation expan-
sion, it is useful to employ the time formulation for the propagator. How-
ever, as demonstrated in Ch. 6, for practical results it is usually preferable
to use the energy formulation. The relevant FT has already been given in
Eq. (7.9) leading to the important Lehmann representation of the sp propa-
gator. A corresponding FT can then be performed on all the contributions
to Eq. (8.55). It is therefore clear that a similar diagrammatic framework in
the energy formulation can be constructed. For the noninteracting propaga-
tor we use Eq.(7.35) or directly Fourier transform G^0' (a, /3; t — t') according
to

G{0\aJ;E) = f° d(t - t') e^^G^a./M - 0
J — oo

= < J g " ' ' - f ) . + •,"*'""• 1- <8-59>
>p\E-ea + iT) E-ea-ir,j

The results of Eq. (8.44) were obtained with the integration limits —oo(l —
irj) and oo(l — irj). Employing the integral representation of the step func-
tion, as given by Eq. (7.9), already removes the unwanted contributions
when the difference between the time limits approaches oo, as discussed
in [Mattuck (1992)]. For this reason we can use the integration limits given
in Eq. (8.59). While it is possible to Fourier transform each contribution
directly, a useful strategy is to consider the inverse transform for all of
the time-dependent unperturbed propagators in every term. The inverse
transform is given by

/•oo J rp

G(°)(a,/3;r) = / ^ e~iET'h G<°>(a>/W (8.60)

Inserting Eq. (8.59) into Eq. (8.60) yields the proper expression for the
noninteracting propagator in the time formulation given by Eq. (7.32). In
order to obtain this outcome, one has to extend the energy integral in
Eq. (8.60) to complex contour integrals in the lower half (for the particle
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part of the propagator) and upper half (for the hole part). Application of
the residue theorem then yields the correct result. A special case occurs for
the noninteracting propagators with equal time arguments. Then, one has

G<°>(a,/J;t-t+) = ^ ^-e-<E0-/nG(0){aj.E)
7-oc 27r«

= J ^Gl°Ha,(l;E), (8.61)

where the symbol C t indicates a contour integral involving the real axis
and closed in the upper half plane. In fact, the presence of the 0~ in the
first line of Eq. (8.61) forces the contour to be closed in the upper half of
the complex energy plane and therefore only picks up the contribution of
the hole part.

With these preliminary considerations it is now possible to Fourier trans-
form each expression for the diagrams in the time formulation, thereby
obtaining corresponding ones in the energy formulation. Subsequently, re-
placing each unperturbed propagator by appropriate expressions, according
to Eq. (8.60) or (8.61), leads to effortless time integrations. As an example,
consider the FT of the first-order contribution in Eq. (8.49) and Fig. 8.4,
using the symmetrized convention,

G<£> (a, /?; E) = [°° d(t - t') e ^ - ^ G ^ a , 0; t - t1)
J —CO

/

OO />OO

d(t - t1) e*£('-''> / dtx J2 <7<*l V \eO)

*{/OfS
Gl01<«E'>}

x{£is'-*"-o /"c ( D )"'**>}
= ->£<7<5[F|d>)G(0>(a,7;-E)

*{J ^G{0)V,6;E')}GW(e,fi;E). (8.62)

The last result is obtained by first performing the integration over tx yield-
ing a factor S(E1 - E2), then integrating over E2, and finally, executing the
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1' a

"y-'OE' x -^eMVmSc^G^W^E')
o v

Fig. 8.16 Diagram VIDE for the symmetrized version in the energy formulation.

integration over t — t'. While it is clear that the structure of the diagram re-
mains intact, there are some changes with respect to labeling. Unperturbed
propagators now must be labeled by a single energy. The above example
also clarifies that such labeling is consistent with energy conservation by
all two-body interactions. The arrows of the propagators can then be used
to represent the flow of energy in each diagram so that every interaction
has the same energy coming in as flowing out. The diagram representing
the first-order contribution in the energy formulation is shown in Fig. 8.16.
If only diagrams with V are considered, then for an mth-order diagram
we have originally m time integrations (internal times) plus the external
one over t — t'. Each of these leads to an energy conserving ^-function.
Replacing each time-dependent G^ had already provided 2m + 1 factors
of 2rch in the denominator. From these factors m + 1 are used for time
integrals, leaving m independent energy integrations and a corresponding
number of factors of 2-irh in the denominator. When U terms are included,
nothing changes since for k U terms there are k extra time integrations and
propagators, and hence all factors of 2nh cancel. Note that the example,
illustrated above, involved a closed loop. For such loops one simply obtains
an independent energy integration (to be closed in the upper half of the
corresponding energy plane) which doesn't disturb the energy flow pattern.

The resulting diagram rules mimick closely those obtained for the time
formulation. They are written below for the symmetrized version and il-
lustrated up to second order by the diagrams shown in Figs. 8.16 - 8.19.

Rule 1 Draw all topologically distinct (direct) and connected
diagrams with m horizontal interaction lines for V (dashed)
and 2m + 1 directed (using arrows) Green's functions G^
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T a

iT"e^E
 x ( - i ) 2 i 2 E £ X £ M / c t i £ < ^ m ^ > G ( 0 ) ( M ; £ ' )

E \ * _ H x G<°> (e, C; £) EClM /ct ^ <Cel f IM G<°> (/x, f; £?")

"<5 M ^ E xGW(8,P;E)
E-

Fig. 8.17 Diagram V2a in the symmetrized version of the energy formulation

Rule 2 Label external points only with sp quantum numbers,
e.g. a and 0
Label each interaction with sp quantum numbers

• " - 4 => <a/?|F|7<J) = (a/3|V|7<J)-(a/8|F|J7)
7 d

For each arrow line one writes

' E => G^\ii,v;E)

• v

E
>a =>ElS £

(0) (a, 7; £) x i» Ee, EAC /at €

\ tKx ^ x <7C|7|^>G(°)(A)£;E')G(°)((9)C;£;')

" y j y ^ - j O ^ " x E|i€/ot^l(«|V|V>G(°)(/i,ftJB«)
x GW{8,P;E)

•P

Fig. 8.18 Diagram V2e for the symmetrized case in the energy formulation
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" Q

Ei.. £2/ p i +E2-E

,(C.iV x G(o)(e,C;E1)G(°)(^A;E1+E2-E)

£.. xGW(9,t;E2)(Ct\V\6n)

< • / ? xGW(5,0;E)

Fig. 8.19 Diagram V2i for the symmetrized version in the energy formulation

but in such a way that energy is conserved for each V
Rule 3 Sum (integrate) over all internal sp quantum numbers and

integrate over all m internal energies
For each closed loop an independent energy integration
occurs over the contour C t

Rule 4 Include a factor (i/2ir)m and (-1)F where F
is the number of closed fermion loops

Rule 5 Include a factor of | for each equivalent pair of lines

The diagrams shown in Figs. 8.16 - 8.19 have been purposely accompanied
by expressions that emphasize their structure. In particular, it is clear that
in the energy formulation, all diagrams can be written with an unperturbed
propagator G^(a,r,E) at the top, and G(o)(<*,/?;#) at the bottom (while
summing over 7 and 5). The same structure of the sp propagator was
encountered in Ch. 6 for the one-body problem, and will be employed in
Ch. 9 to organize the perturbation expansion.

So far, only terms involving the two-body interaction are included. Ad-
ditional diagrams with U terms can be easily added by noting that on ac-
count of their one-body character, the energy associated with the incoming
propagator must be equal to that of the outgoing one. Similar statements
(and rules) hold when an external potential is included. When in a diagram
k U contributions are involved, we have to add the following rules:

Rule 6 Label each U according to
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* V * v ^ =>• (a\U\P)

Rule 7 Include a factor (—l)k and k additional propagators G'0'

By now it should be clear how to generate the rules for the unsym-
metrized version of the diagrams in the energy formulation.

8.7 Exercises

(1) Evaluate the expectation value of the first-order contribution to the
numerator in Eq. (8.17) of the U term for the time-orderings not con-
sidered here. Construct the corresponding time-ordered diagrams in all
these cases.

(2) Evaluate the expectation value of the first-order contribution to the
numerator in Eq. (8.17) for the V term for all possible time-orderings.
Construct the corresponding time-ordered diagrams in all these cases.

(3) Construct all Feynman diagrams in third order, including only contri-
butions of the two-body interaction, and write down the corresponding
expressions from the diagram rules (in the unsymmetrized version).

(4) Same as the previous problem but now in the energy formulation and
the symmetrized version.



Chapter 9

Dyson equation and self-consistent
Green's functions

The results of Ch. 8 represent an important link between the sp propagator
of a correlated system, and the two known ingredients provided by the two-
body interaction V and the noninteracting ground state l*^)- The latter
state may require the introduction of an auxiliary one-body potential U.
We assume the relevant sp problem of Ho — T + U to be solvable. The
lowest levels of this Hamiltonian may therefore be filled in accordance with
the total number of particles and the Pauli principle. The corresponding
noninteracting ground state is represented by | ^ ^ ) , as discussed in Chs. 3
and 5. In Ch. 8 the complete perturbation expansion of the exact propa-
gator was established in terms of known quantities. A proper way to select
contributions for a meaningful description of the system under study was,
however, not obtained.

It is the purpose of this chapter to develop a systematic approach based
on perturbation theory, to describe physically interesting many-particle sys-
tems. All these require a treatment that goes beyond the usual perturba-
tion theory developed for the sp problem [Messiah (1999)]. Indeed, it is
important to note that adding the first-order contribution Gv , given by
Eq. (8.62), to the noninteracting propagator G^, does not represent a use-
ful approach to the problem even if the two-body interaction V would be
small in some way. The reason for this inadequacy is that the resulting
approximation does not have important properties that pertain to the ex-
act propagator. For example, the sum of G^ and Gy does not have a
Lehmann representation and can therefore not be interpreted as containing
information describing the removal and addition probabilities of particles
with respect to the ground state of the system. Also, the energies of the
states with one added or removed particle cannot be extracted from this
approximation. This becomes clear when one realizes that the diagonal ele-
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ments of G^ have a double pole at the sp energy corresponding to the one
of G^, whereas the exact sp propagator has simple poles (at different en-
ergies). To obtain approximations that share such features, it is necessary
to reorganize the perturbation expansion in such a way that it automati-
cally sums infinite sets of diagrams. The relevant analysis is described in
Sec. 9.1 and leads to the so-called Dyson equation with the introduction of
the self-energy of a particle in the medium.

At this stage, one has a tool in hand to generate interesting descrip-
tions of the sp propagator by making approximations to the self-energy.
There is however, one more ingredient missing in this strategy. It is re-
lated to the notion that the evaluation of the self-energy, as presented in
Ch. 8, involves the use of noninteracting propagators. Physically it makes
more sense to let the particle, considered explicitly in the Dyson equation,
interact with particles in the medium. In turn, these also experience the
same correlations as one is trying to include for the particle under study.
This democratic notion leads to the important concept of self-consistency
between the solution of the Dyson equation and the ingredients which make
up the corresponding self-energy. The concept is best developed formally
by considering the equations of motion for the sp propagator as presented in
Sec. 9.3. This study reveals a dynamic coupling between the sp propagator
and the two-particle propagator in the medium, presented in Sec. 9.4. The
perturbation expansion of the two-particle propagator can be analyzed in
exactly the same way as was done for the sp propagator. This leads to the
introduction of the vertex function, which can be interpreted as the effec-
tive interaction between fully correlated particles in the medium, described
by exact sp propagators. The results are combined at the end of Sec. 9.4
to obtain the self-energy of a particle in terms of this vertex function.

The Dyson equation can be regarded as the Schrodinger equation of a
particle in the medium, subject to the self-energy as the potential. This
interpretation is further developed in Sec. 9.5 and the relation with the anal-
ysis of experimental data from particle knockout experiments is emphasized
(see also Ch. 7). At this point, the stage is set to study many-particle sys-
tems of interest, since all relevant ingredients like the Dyson equation and
self-consistency are available. It is then possible to choose approximation
schemes based on information concerning the two-body propagator in the
medium. This information is provided by considering relevant experimental
data, sometimes in the form of two-particle scattering results. The sim-
plest case, involving a rather weak interaction, generates the Hartree-Fock
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scheme to be discussed in detail in Ch. 10. Its extension to include the next
higher-order contribution is discussed in Ch. 11. Systems with stronger cor-
relations require other schemes, involving infinite summations as relevant
approximations to the effective two-body interaction in the medium. These
applications will be discussed in subsequent chapters.

9.1 Analysis of perturbation expansion, self-energy, and
Dyson's equation

In the last section of Ch. 8, the energy formulation of the expansion of the
propagator was introduced. From the discussion in the last part of Sec. 8.6.2
one can infer that it is possible to obtain a diagrammatic representation
of the propagator as shown in Fig. 9.1. It introduces the convention that
the exact sp propagator is represented by two parallel, arrowed lines. The
observation that any term in the perturbation expansion of G, except in
zero-order, has a noninteracting propagator at the top and at the bottom of
the diagram, makes it possible to introduce the self-energy S, which repre-
sents the sum of all the intermediate contributions. The decomposition of
the sp propagator in the noninteracting propagator G^0' and the sum of the
other terms defining the self-energy, is graphically represented in Fig. 9.1.
The expressions for the lowest-order contributions to the propagator in the
energy formulation displayed in Figs. 8.16 - 8.19, allow for an immedi-
ate identification of the corresponding contributions to the self-energy. In
Fig. 9.2 the first-order term of the self-energy is generated from Fig. 8.16 by
removing the top and bottom noninteracting propagators. Note that the

G(o)

G I = G(°)'. + ( s )

Fig. 9.1 Diagrammatic representation of the sp propagator introducing the reducible
self-energy E.
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<0 u

Fig. 9.2 Diagram SE1 for the self-energy in first order.

symmetrized version of the diagram is employed and therefore both the di-
rect and exchange contribution of V are included. In Figs. 9.3 - 9.5 similar
expressions for the self-energy are obtained in second order, by applying the
same procedure to the sp propagator diagrams shown in Figs. 8.17 - 8.19.
In all these self-energy diagrams, small arrowed lines have been included
to indicate the location where these noninteracting propagators should be
attached to generate the corresponding contribution to the sp propagator.
In addition, the arrows act as a reminder that the energy flow is still rep-
resented by the same energy E going in and out of these diagrams.

This process of clipping the top and bottom noninteracting propagators
can obviously be continued for all higher-order contributions, leading to an
unambiguous definition of the self-energy as illustrated in Fig. 9.1. Addi-
tional terms in first and second order occur when the auxiliary sp potential
U is employed. These diagrams are illustrated in Fig. 9.6. Based on the
rules developed for the diagrams of the sp propagator, it is straightforward
to generate the self-energy expressions given in Figs. 9.6a) - 9.6e).

It is now possible to divide the self-energy contributions, shown in
Figs. 9.2-9.6, into two categories. The first contains terms that are called

E ' C ^ x G(0) (£> C; E) £<,„ / c t C <«l V | J/i) G<°> (/,, fc E")
\-8-^jE"

Fig. 9.3 Diagram SE2a for the self-energy in second order.
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~? h I^e8 2̂ AC J e t 2TT

17 A Mp. „ x (7e|^|^)GW(A,£;£;')G(o)(0,C;£;')

* * " » V ^ ' " * ' X SMJctC(«|V |A/x)G(°) (M;£")

Fig. 9.4 Diagram SE2e for the self-energy in second order.

irreducible. The sum of all these contributions to the self-energy includ-
ing all the higher-order terms, is denoted by S*. The diagrams depicted
in Figs. 9.2, 9.4, 9.5, 9.6a), and 9.66) belong to this category. The word
irreducible means here that such diagrams do not contain two (or more)
parts that are only connected by an unperturbed sp propagator G^. All
other contributions to the self-energy are called reducible. Together with
the irreducible ones they comprise all contributions to E. Analysis of the
structure of the diagrams contributing to the sp propagator, makes it clear
that the irreducible self-energy suffices to obtain the propagator. The cor-
responding diagrammatic result is shown in Fig. 9.7. The figure illustrates
how successive iterations of the irreducible self-energy £*, linked by the
unperturbed propagator G^°\ will generate all terms contributing to the
sp propagator. The irreducible self-energy diagrams like Figs. 9.2 etc. con-
tribute to the sp propagator in the term with one insertion of the irreducible
self-energy on the right side of Fig. 9.7. The second-order reducible self-
energy diagrams like Figs. 9.3, etc. appear in the next term with two

Ei. E2t JEi +E2-E

; £ - A / x G<°)(e,C;£i)G<°)(M,A;£i + B 2 - £ )

xG(°He,t;E2)((Z\V\5ri

Fig. 9.5 Diagram SE2i for the self-energy in second order.
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i\AA* i\AA)i '<> Q

;\AA* ;> {^) <f\AA*

a) 6) c) d) e)

Fig. 9.6 Additional diagrams contributing to the self-energy up to second order when
an auxiliary potential U is employed.

irreducible self-energy insertions. Higher-order self-energy contributions
distribute themselves over the terms, schematically indicated in Fig. 9.7, in
a similarly unique fashion.

This analysis indicates that all contributions to the sp propagator can
be obtained from the irreducible ones by summing the following expression:

. G{a,p;E)=G(°\a,P;E)

+ Y,G{0H<*,r,E) E*(7,«5;£) G^(S,0;E)

+ J2 G<°>(a(7;iJ0E'(7,e;£) G^(e,d;E) ^(9,6;E)G^(d,fi;E)
7,<5,e,0

+ (9.1)

Equation (9.1) exactly represents the diagrams shown in Fig. 9.7. In Ch. 6
such an equation was encountered for the propagator in the sp problem.
Possible resummations of the corresponding Eq. (6.19) for the operator
form of G were discussed there. Identical resummations will be considered
here for Eq. (9.1). To visualize the resummation strategy, several lines
have been drawn in Fig. 9.7. Consider first the short-dashed lines; they
help identify two ways of obtaining the so-called Dyson equation for the sp
propagator. Indeed, by identifying all terms below the short-dashed line
with the positive slope as the sum of all contributions to the sp propagator,
one may rewrite Eq. (9.1) according to

G(a,0;E) = GW(a,P;E) + J2G{O)(a,r,E)X*(7,5;E)G(8,p;E). (9.2)
7,<5

Alternatively, we identify all contributions above the short-dashed line with
the negative slope in Fig. 9.7, with the full sp propagator, so that

G(a, p- E) = G<°) (a, /?; E) + £ G(a, 7; £)£'(7 ,6; E)G™ (6, (3; E). (9.3)
7,*
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Fig. 9.7 Decomposition of the sp propagator in terms of irreducible self-energy contri-
butions.

Equation (9.2) is illustrated diagrammatically in Fig. 9.8. A similar dia-
grammatic representation can be obtained for Eq. (9.3) by interchanging
G^ and G in the second term on the right side in Fig. 9.8. As in the
sp problem, the infinite summation form of Eqs. (9.2) and (9.3) makes it
possible to construct eigenvalue equations with discrete solutions for the
energy. The nonperturbative aspect of the Dyson equation generates ap-
proximate solutions to the sp propagator which can be interpreted in the
same way as the exact one. This includes the presence of simple poles at
the approximate energies of states with one particle more or less than the
ground state (with respect to the approximate energy of the ground state).
The numerator of this approximate propagator then contains correspond-
ing approximate addition and removal amplitudes, as the exact propagator
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Fig. 9.8 Diagrammatic representation of the sp propagator in terms of the irreducible
self-energy E* and the noninteracting propagator G^0' representing Eq. (9.2).

(see the discussion in Ch. 7).
Comparing the reducible self-energy, represented in Fig. 9.1, with the

expansion shown in Fig. 9.7, clarifies that it is the sum of all terms inside
the boundaries of the two long-dashed lines in that figure. A similar result
was obtained in Ch. 6 for the T-matrix in the sp case. This identification
leads to

E(7, ($;£) = E*(7,<5;£)

+ Y,s* (7, c; E) G<°) (e, 9; E) S* (0,6; E)

+ Y, Z'h,r,E)GW(t,O;E) E*(0,C;£) G<0>(C,fcE)E*(£,<i;E)

+ (9-4)

Equation (9.4) can also be summed in two ways, reminiscent of the Dyson
equation with its two equivalent forms given by Eqs. (9.2) and (9.3). Making
use of the symmetry of Fig. 9.7, we find

E(7) 6; E) = E*(7,8; E) + £ E*(7, e; E)GW (e, 6; E)Z(6,6; E) (9.5)

or

S(7,£;£) = S*(7^;£) + ]rE(7, e ;£)G(oHe,0;£)E*(M;£). (9.6)

They are the equivalent of the Lippmann-Schwinger equation for the T-
matrix in the case of a sp problem [see Eqs. (6.20) and (6.21)] and can
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therefore be used for problems involving a continuous spectrum. The irre-
ducible self-energy E* thus plays a similar role to the potential in the sp
problem. Note however, that in the many-particle problem, the influence
of the medium leads to an energy-dependent complex potential represented
by the irreducible self-energy.

9.2 Equation of motion method for propagators

The present analysis of the diagrammatic expansion introduces the concept
of the self-energy, but it does not yet provide a clear strategy for making
approximations that realistically describe the correlations present in the
system. The importance of the Dyson equation is related to the infinite
summation it represents. The latter allows for results that are not possible
to obtain using order by order summation of perturbation contributions.
An example is provided by the possibility of generating bound states from
a noninteracting propagator representing a continuous spectrum.

An algebraic method for deriving the Dyson equation also ex-
ists [Abrikosov et al. (1975)]. It gives a better insight into the possible
strategies available for dealing with the most important correlations in the
system and subsequently, taking those correlations into account in the self-
energy. The approach starts with the equation of motion for the sp prop-
agator. It requires a return to the time formulation. The study of the
time derivative of the sp propagator is facilitated by considering the corre-
sponding derivatives of the addition and removal operator in the Heisenberg
picture [see Eq. (A.38)]. For the removal operator for example, we find

ih~aaH(t) = [aaH(*),#] = exp {iHt/h} [aa,H] exp {-iHt/h}. (9.7)

The Hamiltonian H includes the auxiliary potential in HQ and will therefore
be decomposed according to

H = Ho - U + V. (9.8)

Using the sp basis that diagonalizes Ho, one has

H0 = Y,£Aa-f- (9-9)
7

The three commutators required for Eq. (9.7) then yield

aQ,Ho = eaaa, (9.10)
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[aa,l/]=5]Htf|<*>a* (9-11)
5

using the conjugate of Eq. (2.34), and

[°«. V] = \ E <a<Jl V \°0 4aW (9.12)

applying the conjugate of Eq. (2.42) for the symmetrized version of V given
in Eq. (2.46). Inserting the results of Eqs. (9.10) - (9.12) in (9.7) yields

ih-^aaH (t) = eaaaH (t) - ] T {a\ U \6) aSll (t)
OT s

+ \ E <aS\ V \0O a\H (t)a(H (t)a6H (t). (9.13)

It is now possible with the help of Eq. (9.13) to establish the time derivative
of the sp propagator, but first we use the step function decomposition of
the time-ordering operation to write

ihjG{a, p-t-t') = ^t (*» | T[aaH {t)a]
0H (*')] | ^ > (9.14)

= « | ^ {(?(* - t')aaH(t)alH(t') - 6{t' - t)alH(t')aaH(t)} | < ) .

Evaluating all the time derivatives contributing to Eq. (9.14), and substi-
tuting Eq. (9.13), one finds

ihjG{a, P; t-t') = S(t - t')6a0 + (*»\ Ti^^a^(t1)} | < > (9.15)

= S(t - t)6af> + eaG(a, p-t-t')-^ (a\ U \&) G(5, /3; t - t')
s

+ i E W V 1̂0 « | T[al(t)aiH(t)aeH(t)alH(t')} | < ) .
3(0

Equation (9.15) represents the first step of a hierarchy in which the N + 1-
particle propagator is related to the iV-particle propagator [Martin and
Schwinger (1959); Migdal (1967)]. In the present example, the coupling is
established between the sp and the two-particle propagator, contained in
the last line of Eq. (9.15). This two-particle propagator is in turn related
to the three-particle propagator, etc. Before continuing the construction
of the irreducible self-energy, it is necessary to analyze the diagrammatic
content of the two-particle propagator, as developed in the next section.
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9.3 Two-particle propagator, vertex function, and self-
energy

The two-particle (tp) propagator is defined in analogy with the sp propa-
gator [Eq. (7.1)] and given by

Gu{ata,pt0,7*7,6ts) = - \ « | T[a0H{t0)aaH(ta)a\H (t>JH (ts)} « ) .

(9.16)
The steps taken for the sp propagator, leading to Eq. (8.55), may now be
repreated for the tp propagator. In attaining this expression for the tp
propagator, the Heisenberg picture addition and removal operators have to
be replaced by corresponding interaction picture operators. The resulting
expectation value is taken with respect to the noninteracting ground state
l^oO- We then apply Wick's theorem to the equivalent of Eq. (8.17), for
every term in the perturbation expansion. This again reveals a cancellation
between the numerator and the denominator, leading to a corresponding
set of connected contributions (diagrams). The result may be written as

GII(ata,pt0,1t^dt5) = -~J2{Y) ri.ldtl~ldtm (9-17)

x (^\T[H1(t1)..H1(tm)a0(t0)aa(ta)a\(t1)al(t6)\ \K ) cmnected •

and is indeed the equivalent of Eq. (8.55). The details of the intermediate
steps require only minor changes and will be left to the reader. The notion of
connected diagrams in the context of Eq. (9.17) requires a little clarification
that follows.

In zero order, one obtains the noninteracting tp propagator

Gf}(ata,pt0,m,5t5) = ~l-(^\T[a0(t0)aa(ta)a\(t7)al(t5)} | < )

= ih [G<°> (a, 7; ta - ty)G^0) 03,6; t0-t&)

-G<°>(a, 8; ta - t5)G^0)(0,T, h ~ M]- (9-18)

This combination of unperturbed sp propagators is shown diagrammatically
in Fig 9.9. Also here, no time-ordering is assumed since we are dealing again
with Feynman diagrams. Clearly, "disconnected" should not apply to the
two noninteracting propagators shown in Fig. 9.9. Similarly, higher-order
contributions, which have attachments to these lines, but do not link them,
are still "connected" as long as there are no other disconnected parts.
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Fig. 9.9 The two contributions to the noninteracting tp propagator in the time formu-
lation as given by Eq. (9.18).

For the analysis of the two-particle propagator in higher order, it is
useful to rewrite the V contribution in Hi in a more general way. It allows
for a generalization of V that includes these higher-order corrections. By
including additional time integrals, one can rewrite the interaction picture
V as follows

(̂*i) = \ E <a/?|F|7^)4(^(*iK^iK(*i)
al3-y6

= jdt2 fdt3 Jdt4 -^ £ (ap\ V(ti,t2,t3,t4) |7£)
a0-y6

x 4(*i)o^(t2)o,5(t4)a7(t3), (9.19)

where

(aj3\ V(h, h,t3,U) |7<5) = 8(h - t2)6{t2 - t3)6(t3 - U) (a/?| V M ) . (9.20)

The analysis of the first and higher-order contributions to Eq. (9.17) can
now proceed. Using the formulation of V given in Eq. (9.19), the corre-
sponding first-order contribution yields

G$(ata,0t0,>yty,6ts)=s>

[T) Idtt Idk Idtr> Idte \ ̂ <eCI v(*e'*«'*"'te) ̂ e)

($o\T [aj(te)a5(«c)a9(*9)^(^)a/3(^)aa(*c)4(*7)o«(**)] | $^>

= (ih)2 fdte fdtQ fdtr, fdte ^2(eC\V(tt,t(,tr,,te)\T]9)

xG<0>(a,e;ta-OG(0)(j8,C;*,J-*c)

x^lMj^-yGC'tMltj-ij). (9.21)
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Fig. 9.10 First-order connected contribution to the tp propagator, linking two nonin-
teracting propagators in the time formulation.

In establishing this result, Wick's theorem and the symmetry of V was
used while only the connected contributions were kept. In addition, those
contributions that link the interaction to one of the sp propagators, (cor-
responding to a self-energy insertion) have been suppressed. Diagrammat-
ically, one may replace the dashed line for V by a box to represent the
additional time arguments, thus anticipating the subsequent discussion of
higher-order terms. Such a diagrammatic representation of Eq. (9.21) is
given in Fig. 9.10.

In the analysis of the sp propagator two types of diagrams were encoun-
tered. The first kind contained the diagram representing G'0'. The second
contained all other connected diagrams involving higher-order self-energy
insertions, as illustrated in Fig. 9.1. The tp propagator also contains two
types of diagrammatic contributions. The first group includes the diagram
with two noninteracting sp propagators shown in Fig. 9.9. In higher or-
der, additional terms are generated, which contribute to the same group.
These terms insert all possible self-energy corrections to these noninteract-
ing propagators, but never link the two. The sum of all these contributions
generalizes the noninteracting propagators in Fig. 9.9 to exact ones. The
extension of Fig. 9.9 is shown in part a) of Fig. 9.11. Note that the dressing
will include both the generalization of part a) and b) of Fig. 9.9.

The other group of diagrams in higher order, generalize the first-order
contribution shown in Fig. 9.10. Each of the four noninteracting prop-
agators will receive all possible self-energy insertions, turning them into
exact sp propagators. This however, is not the only possible extension of
Fig. 9.10. In addition to dressing the propagators, more complicated con-
nections appear, which link the incoming two propagators, with the two
outgoing ones. Examples of such generalizations are shown in Fig. 9.12.
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Fig. 9.11 Two contributions to the exact tp propagator in the time formulation. In
part a) the dressed, but noninteracting, tp propagator is shown including both direct
and exchange contributions. In part b) the four-point vertex function F is introduced to
represent the sum of all higher-order contributions, generalizing Fig. 9.10.

In this figure the usual dashed line for the interaction V has been used to
emphasize the actual time structure of these diagrams. Also, no additional
insertions were included in the four external sp propagators. In the dia-
grams shown in Figs. 9.12a) and 9.126), the interaction between the two
incoming and two outgoing sp propagators, is characterized by two times,
whereas the corresponding interaction in Fig. 9.12c) has four different times.
The latter term is an example illustrating the necessity to generalize V to
a four-point vertex function F, when higher-order contributions are taken
into account. The four-point vertex function includes all possible terms
that connect the two incoming lines with the two outgoing ones. All inter-
mediate sp propagators will correspondingly become fully dressed, as well
as the four external ones in the diagrams shown in Fig. 9.12. The same
holds for all other higher-order contributions.

Fig. 9.12 Higher-order connected contributions to the tp propagator which generalize
the first-order term in Fig. 9.10, to the four-point vertex function.



Dyson equation and self-consistent Green's functions 189

By replacing the unperturbed sp propagators by dressed ones, and re-
placing V by the sum of all diagrams that connect these particle lines
represented by the box labeled F in Fig. 9.11, one obtains the other group
of contributions to Gu [Abrikosov et al. (1975)]. F is referred to as the
four-point vertex function, since it has four external points. This quantity
can be considered as the effective interaction between dressed particles in
the medium. Often experimental information is available about some of
the features of F, helping to devise approximation schemes. It is now pos-
sible to summarize the discussion by writing Gu in terms of dressed sp
propagators and F as follows

Gn{ata,/3t0,jtj,5ts) —

ih[G{a, 7 ; ta - ty)G(/3,6; t0 - ts) - G(a, 8; ta - ts)G{(3,7; t0 - t7)]

+(ih)2 fdtt fdtc fdtn fdU ̂ 2 G(a' e> f« - U)G{&, C; t0 - t()

x (e<;\T(te,t(:,tTI,te)\r,6)G(71,r,tri-ty)G(9,5;te-ts). (9.22)

The result is shown diagrammatically in Fig. 9.11. It is useful to transform
this result to the energy formulation for later applications. The first two
terms in Eq. (9.22) give the independent, or free, propagation of pairs of
particles, described by exact sp propagators, yielding

Gf
II{aEa,pE0,1Ey,6Es)= (9.23)

fdta fdt0 /dt7 fdts et^ei^e-i^e-i^

x ih [G(a, r, ta - ty)G(0,6; t0 - ts) - G(a, 6; ta - ts)G{/3,7; t0 - ty)}

= 2nh S(Ea + Ep-Ey- Es) ih

[2ITH S(Ea ~ £7) G(a,T,Ea) G(p,5;E0)

-27rh S(E0 - E7) G(a,S;Ea) G(/3,r,E0)].

The energy conserving (5-function is put up front, since it will also appear
for the FT of the remaining term in Eq. (9.22). To perform the latter
transform, it is helpful to note that the transform of Eq. (9.20) is given by

(Q/9| V(Ea,E0, Ey,E«) \<y6) = fdh fdt2 fdt3 fdt4

x e^Ec'tleiE'3t2e-iE-'tse-iEsU(al3\V(t1,t2,t3,t4)\jS)

= 2irh 6{Ea + E0-E^- Eg) <a/3| V |7<5). (9.24)
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Since the vertex function conserves the energy too, ,the same prefactor and
6-function can be factored out, leading to the definition

(aP\r(Ea,E0,E^Es)\>y8)= (9.25)

2wh S(Ea + E0-Ey- E8) (a/3\ T{Ea,E0, Ey,Ea.+ E0 - Ey) \j8).

Using Eq. (9.25), it is straightforward to perform the FT of the term in
Eq. (9.22) containing the vertex function, so that one finally arrives at

Gn(aEa, /3E0, jE-y,6ES) = fdta (dtp fdty jdt6 (9.26)

x ei
E°t°ex

Betee-i
Eit-,e~iEsU Gn{ata,ptp,'yt^,8U)

= 2-rrh 6{Ea + E0 - £ 7 - Es)

x {ih 2nh [8(Ea - Ey) G{a, 7; Ea) G(0,8; E0)

-8(E0-Ey) G(a,8;Ea) G{P,T,E0)]

+(ih)2 J2 G(a, c; Ea) G(/3, C; E0)G(0,8; Ea + E0 - Ey)

x (e(\r(Ea,E0,Ey,Ea+ E/3 - Ey)\ri6) G(r,,T,E^)}.

This result will be used in the analysis of Sec. 14.6.

9.4 Dyson equation and the vertex function

We now come back to Eq. (9.15) to complete the analysis of the equation
of motion for the propagator G, leading to an important relation between
the vertex function F and the irreducible self-energy S*. The expression
for the tp propagator in Eq. (9.22) can be inserted into Eq. (9.15), yielding

ih—G(a, 0; t-t') = S(t - t')Sa0 + eaG(a, f3; t - t')

-Y,(a\U\S)G(S,P;t-t')

-ih ^2 (<*6\ V \6() G((, 8; t - t+)G(6, /?; t - t')

-\(ih)2Y, E ldt- ldt^ ldt» [dt» (a6\v\°o
x G(0, K; t - tK)G((, A; t - tx)G(v, 8; tv - t)

x ( K A i r ^ . t A . ^ . t ^ l ^ G ^ / S ; «„-«')» (9-27)
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using the symmetry of V and F under exchange. We return to the energy
formulation, to show that Eq. (9.27) is equivalent to the Dyson equation. It
is then useful to consider the inverse FT of all the contributions to Eq. (9.27)
separately. First the time derivative of G can be written as

ihjG{a, ftt-t') = J ^ e"*^-'') {E G(a,/?;£)}, (9.28)

employing Eq. (8.60). The term with the ^-function can be written in a
similar way as

S(t - t')6at0 = I g e-i^-n {Sa,0} . (9.29)

Continuing with the next two contributions, one finds

eaG(a, f3-t-t')-J2 <"l U \S) G(S, /3; t-t')= (9.30)

/ H e-*^-*') l^G^ frE)-H <"l U \6) G(S,0;E)\.

The first term with a two-body interaction can be written as

-ih Y, (aS\ V \6Q G(C, 6; t - t+)G(6,0; t - t') = (9.31)

r dE e_^(t_o f _ . ^ { a d { v m I d_v s_E,)G{e^ \
J 2nh | jj 7ct27r j

where Eq. (8.61) has been used for the sp propagator with the equal time
arguments. The last term in Eq. (9.27) can be written as

-\{ihf Y, E jdt- Jdt* jdt» jdt» (a5\v \°o
XG{0, K; t - tK)G((, A; t - tx)G{u, 5; tv - t)

x (K\\ T(tK, tx, t»,tv) |/ii/> G{n, f3; t» - *')

k SCO K\HV

x f^r- [d^G(6,K;E1)G((,\;E2)G(v,6;E1+E2-E)
J 2ir J Zir

x {K\\T{E1,E2,E,E1+E2-E)\IJIV)G{H,P;E)\, (9.32)
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Fig. 9.13 Diagrams representing the irreducible self-energy as given by Eq. (9.34).

where Eq. (9.25) has been used. The combination of Eqs. (9.28) - (9.32)
demonstrates that Eq. (9.27) can be written as the inverse FT of an ex-
pression, where several factors multiply G(a,f3;E). Adding these factors
and dividing this expression by the sum, one arrives at the inverse FT after
some minor relabeling of dummy indices

G(a, p-E)= G<°> (a, /?;£) + £ G^ (a, 7 ; £)£* (7,6; E)G(S, (3; E). (9.33)

This result obviously is identical with the Dyson equation, when one iden-
tifies the irreducible self-energy with

j:*{-r,S;E) = -{y\U\6)-ij ^ £ <7/i| V \Su) G{v, w E')

4 / f r / I T S {w\V\ev)G{e^Ex)G(v,P;E2)

xG(a,n;E1 +E2-E) (Cp\T(EuE2;E,E1 + E2 - E) \5a). (9.34)

Equation (9.34) is diagrammatically shown in Fig. 9.13. In this figure the
incoming line at the bottom of each self-energy diagram is represented by
a short double line to signify a dressed propagator, whereas the outgoing
line corresponds to a noninteracting propagator denoted by a single line.
These last two contributions to the irreducible self-energy can easily be
identified as the product of the dressed, but noninteracting, propagators
in Gn, giving rise to the second term in Eq. (9.34) (middle diagram) and
the contribution containing Y yielding the last term (and last diagram).
The first one refers to the auxiliary sp potential. An equivalent expression
can be developed by starting the study of the equation of motion of G
with the time derivative with respect to t' (see also Ch. 21). In that case,
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Fig. 9.14 Diagrams representing the irreducible self-energy as obtained by considering
the equation of motion of G as a function of t'.

the alternative form of the Dyson equation emerges [Eq. (9.3)] and the
corresponding self-energy is shown in Fig. 9.14.

The present formulation is important, since together with the Dyson
equation itself, it provides a nonlinear description of the many-particle
problem. At the same time, some very intuitive notions have been de-
veloped. These relate to the idea of a particle with modified properties in
the medium (Dyson equation), which stem from its interaction with the
others as given by Eq. (9.34). The interaction in turn takes place between
particles immersed in the medium, and therefore involves dressed ones. The
nonlinearity is visible in the Dyson equation [Eq. (9.2)] for the sp propaga-
tor. It contains the self-energy [Eq. (9.34)], which contains sp propagators
that solve the Dyson equation. Self-consistency is therefore essential and
a plausible strategy in developing calculational schemes. It also appears
reasonable that for stronger correlations in the system, this self-consistency
concept or, equivalently, the degree of nonlinearity, will be more impor-
tant. Using the structure of the theory as outlined above, it becomes possi-
ble to develop nonlinear approximation schemes, which take the dominant
physical characteristics of the system into account. By identifying suitable
approximations to Gu, we have through Eq. (9.34) an appropriate calcula-
tional scheme that takes the corresponding physics into account. In many
cases, the interaction between the particles V dictates a certain minimum
approximation to have a chance of realistically describing the many-body
system under study. In other instances, the size of the system and the form
of the interaction, combine to dictate a "minimum" approximation scheme.
In its simplest form, the diagrammatic version of the Hartree-Fock method
is generated, as discussed in the next chapter.
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9.5 Schrodinger-like equation from the Dyson equation

It is possible to demonstrate that the Dyson equation generates a
Schrodinger-like equation, as was promised in Ch. 7 where experimental
data, related to removal probabilities were discussed. Indeed, we only have
to follow the same steps as in Sec. 6.3. We will discuss here the case when
the spectrum for the N ± 1 system near the Fermi energy involves discrete
bound states, which mostly applies to finite system like atoms and nuclei.
An appropriate form of the Lehmann representation in such a system is
similar to Eq. (6.25) (allowing for hole propagation) and is given by

G(Q' * E) = ? E-^-ED+iT,

+ r .^+ i(^ioai^+ ix^+ i i°M^>
U " E - E"*1 + m

W\al\*»-i)(^\aa\*»)
+ ^ E-(E»-E^)-ir,

+ / ^ - . t e M i ! ^ * , (9.35)

where the continuum energy spectrum for the N ± 1 systems has been in-
cluded, and the corresponding energy thresholds are denoted by e^. A
change of integration variable was also used to obtain this form of the
Lehmann representation, introducing the integration variables for the con-
tinuum energies in the form E^+l = E^+1-E$ and E^~l = E^-E^~\
respectively. For the unperturbed propagator one will encounter sp ener-
gies associated with Ho, that are different from those of G, for any ap-
proximation made to the self-energy. This feature can be used to take the
appropriate limits of the Dyson equation, in complete analogy with Sec. 6.3.
The only difference that must be considered is associated with the energy
dependence of the self-energy. By exploring the equations of motion of the
two-body propagator, it is possible to show that a Lehmann representation
exists for the exact self-energy that has different poles from the one for G.
In the subsequent chapters we will introduce approximation schemes to the
self-energy that conform to this property. As a result, one may proceed
with taking the following limit of the Dyson equation for the case of the
hole part of the propagator without generating contributions from the poles
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in the self-energy, or the noninteracting propagator

lim (E-s~) \G(a,p;E) =

G^(a,P;E) + J^G^(a,T,E)i:*(j,6;E)G(S,P;E) }. (9.36)
7(5

The short-hand notation

e-^E^-E^-1 (9.37)

has been introduced here. As for the sp problem, this limit process gener-
ates an eigenvalue equation of the following kind (in complete analogy with
the development in Ch. 6)

zn- = J- G^(a,r,e-) S'(7)<J;e-) z^, (9.38)

where

z2-= <*?->„ < ) . (9.39)

Since the Dyson equation can be written in a sp basis different from the one
associated with Ho, one may choose the coordinate representation. Using
r for the position and m for the spin projection in solving Eq.(9.38), one
finds

zrm = E [ ^ [ ^ G^(rm,rimi;e-) S*(r1m1,r2m2;£-) z^mr

(9.40)
To obtain this result, the unperturbed propagator, G^0', and the self-energy,
S*, require a sp basis transformation on both indices, as originally the basis
associated with HQ was employed. Equation (9.40) can be rearranged by
inverting the unperturbed propagator according to

E d3r{r'm'\e- - Ho \rm) G{0)(rm,rimi;e-) = 8m.<mi5(r' -ri),

(9.41)
using Eq.(7.39). The corresponding operation on z™^ yields

/

r /?2V'2 1

d3r (r'm'\e- - H0\rm) z?~ = \e~ + - ^ - - U{r')\ z?rm,, (9.42)
in *• '

where U is assumed to be local and spin-independent for simplicity. Com-
bining these results, yields the explicit cancellation of the auxiliary potential
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U and the following equation

~^T*"™ + ̂  h^1 S " ( r m ' r ' m l i £ » ) C 1 = « m > (9-43)
mi

where the notation £'* has been used to signify that the U contribution has
been removed. This has the form of a Schrodinger equation with a nonlocal
potential, which is represented by the self-energy £'*. Note that an eigen-
value e~ can only be generated when it coincides with the energy argument
of the self-energy. An important difference with the ordinary Schrodinger
equation is related to the normalization of the quasihole "eigenfunctions"
z"^. The appropriate normalization condition is obtained by performing
the same steps that lead to Eq.(6.39). This result is most conveniently
expressed in terms of the sp state which corresponds to the quasihole wave
function z™~. In other words, one can use the eigenstate which diagonalizes
Eq. (9.43), to express the normalization condition. Assigning the notation
aqh to the sp state, one finds the spectroscopic factor

5=|<-J^(1-8g-'yE'[_)". (9.44,

The subscript qh refers to the quasihole nature of this state and the fact
that for those very near to the Fermi energy with quantum numbers cor-
responding to fully occupied mean-field levels, the normalization yields a
number of order 1. As discussed in Ch. 7, the quasihole eigenfunctions and
related spectroscopic factors are experimentally accessible in (e, 2e) and
(e,e'p) reactions.

9.6 Exercises

(1) Determine the expressions for the self-energy contributions in Fig. 9.6
using the energy formulation.

(2) Generate all self-energy diagrams for the self-energy in the unsym-
metrized version and determine the corresponding expressions.

(3) Perform the steps that lead to the diagrammatic version of the irre-
ducible self-energy, shown in Fig. 9.14. Start by considering the deriva-
tive of G(a, (3; t — t') with respect to t'.

(4) Determine the form of-the irreducible self-energy in the time formula-
tion, starting from Eq. (9.27).

(5) Derive Eqs. (9.31), (9.32), and (9.44).



Chapter 10

Mean-field or Hartree-Fock
appr oximat ion

In the previous chapter the formulation of many-body theory in terms of
self-consistent Green's functions was developed. The present chapter deals
with the implementation of the theory in lowest order, which is equivalent to
the so-called mean-field or Hartree-Fock (HF) approximation. The formal
HF equations are derived in Sec. 10.1 together with detailed considerations
of the HF propagator. These results are then immediately contrasted with
the conventional derivation of the HF equations, by means of the variational
principle. Section 10.1 also contains a formulation in coordinate space, to-
gether with a discussion of restricted and unrestricted implementations. In
Sec. 10.2 the application to atoms is presented. The section includes a
discussion of closed-shell atoms, a comparison with experimental data, and
some consideration of numerical details necessary for a successful implemen-
tation. Suggested steps to develop a numerical procedure for solving the
relevant equations are also presented. The application to molecules is pre-
sented in Sec. 10.3. It includes a brief discussion of the Born-Oppenheimer
approximation, the use of finite, discrete basis sets, and a discussion of
the hydrogen molecule. The relevant considerations for infinite systems are
presented in Sec. 10.4. Application to the electron gas (10.5) and nuclear
matter (10.6) complete this chapter.

197
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10.1 The Hartree-Fock formalism

10.1.1 Derivation of the Hartree-Fock equations

The HF equations will be derived here in the general context established
in Sec. 3.1, for a Hamiltonian

H = f + v=(f + u^ + (y-us)> (io.i)

which includes an appropriately chosen (but in principle arbitrary) auxiliary
potential U. The sp basis that we use is the one where the noninteracting
Hamiltonian

H0 = f + U = Y,£aa«a" (10-2)
a

is diagonal. The unperturbed sp propagator G^ therefore corresponds to

Gm(aJ,E) = Sa,e f J f c Z L + J f f ^ L ] . (10.3)
'p[E-ea+irj E-ea-vq\

We start by considering the general expression in Eq. (9.34) for the
(irreducible) self-energy E* in terms of the 4-point vertex function F. The
simplest thing to do at this stage is to set F = 0. Note that this corresponds,
according to Eq. (9.22), to replacing the tp propagator Gn with the an-
tisymmetrized product of two sp propagators, an approximation which is
exact for a non-interacting system. Clearly, this implies that for the system
under study the tp propagator is dominated by the noninteracting contri-
bution in Eq. (9.22). Having made the present choice of self-energy, it will
be shown shortly that it leads to a mean-field description. The quality
of the approximation for the self-energy can be tested by comparing the
corresponding results with the relevant experimental data. The results in
Sec. 10.2.2 e.g. indicate that it is a reasonable approximation for electrons
in atoms, as was anticipated in Ch. 3.

Setting F = 0 leads to the so-called HF approximation, and the resulting
self-energy reads [see Eq. (9.34)],

XHF(r6;E) = -(1\U\6)-i —YJ{l^\V\5v)GHF{v,^El).
•̂  ct in/

(10.4)
In keeping with the self-consistent formulation of Sec. 9.4, the HF propaga-
tor GHF appearing in Eq. (10.4) is not the noninteracting propagator G(°),
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Fig. 10.1 Part a) shows the diagrammatic representation of the Dyson equation in the
HF approximation. In part b) all diagrams up to second order contributing to the HF
(irreducible) self-energy are displayed.

but rather the solution of the corresponding Dyson equation,

GHF(a, (3; E) = G^{a,P; E) + £ G<°>(a, T, E)ZHFh, 6)GHF(S, 0; E).

(10.5)
Here the energy argument of T,HF has been dropped; this is appropriate,
since inspection of Eq. (10.4) clearly shows that the HF self-energy has
no ^-dependence. The diagrammatic equivalent of Eq. (10.5) is shown
in Fig. 10.la). It is evident that a particular, infinite class of self-energy
diagrams is retained in the HF self-energy, of which the lowest-order ones
are shown in Fig. 10.16). We emphasize that the symmetrized version of
the diagram method is employed, so that both a direct and an exchange
contribution are implied for each interaction V.

Further analysis of the HF self-energy Y,HF in Eq. (10.4) requires the
energy-dependence of the (as yet unknown) HF propagator, but we may
assume that it has the same simple pole structure as the exact propagator,
and write its Lehmann representation (see Sec. 7.2) as

GHF(a,(3;E) = Y-^4? + V -^Ji . (i0.6)

The (approximate) z amplitudes are defined in analogy to Eq. (9.39) by

7n- _ /rt/W-ll \-$>N\ MO 7)
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and

zn
a+ = {^\aa\^

+l), (10.8)

respectively. The energies e^ are defined in accord with Eq. (9.37) and
given by

e-=E$-E%-1 (10.9)

and

e+ = EZ+1-E». (10.10)

The assumption implied by the form of Eq. (10.6) will be correct if it is
subsequently found that the Dyson equation is indeed solved by this form
of the HF propagator.

Using Eq. (10.6) the HF self-energy can be readily, evaluated,

EHF(7, S) = - (7| U \S) + J2 <Wl V \6v) Y, *T*T' • (10-n)

Recalling the relationships of Sec. 7.4 between the one-body density ma-
trix of the system and the removal amplitudes in the sp propagator [see
Eq. (7.20)], the HF one-body density matrix njff may be defined as

< / = E^n^r*' (io-12)
n

and the HF self-energy is written in a transparent form as

XHF(1,S) = -(7\U\6) + Y,(lv\V\Sv)n»f. (10.13)

This expression shows that the HF self-energy really represents a "mean
field" or average potential, in the sense that it contains the interparti-
cle interaction V, averaged over the one-body density matrix. The latter
quantity takes into account the occupancies of the different sp orbitals in
the ground state.

The fact that T,HF is just a static (energy-independent) sp poten-
tial, also implies that the Dyson equation Eq. (10.5) is equivalent to an
independent-particle problem. The bound sp eigenstates of Ho + ?<HF can
therefore be obtained by transforming the Dyson equation to an eigenvalue
equation, using the standard limit procedure of Sees. 6.3 and 9.5. The limit

lim {E - e") {GHF = G<°> + G<°> S H F GHF\, (10.14)
E-*sn
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leads to the HF eigenvalue equations

£ Ls6a,s - (a\ U\5) + Y, M V \Su) nHj\zr = e"^"- (10-15)
S { tiv )

The HF equations determine the unknown removal energies e~ and
amplitudes z™~. The latter should be normalized to unity,

5>n2 = i, (10.16)
a

because of the energy-independence of the HF self-energy, as was discussed
in Sec. 6.3. The particle-number sum rule

net a

then dictates that there are exactly iV removal states in the Lehmann repre-
sentation of Eq. (10.6), which should be identified with the N lowest-energy
solutions z™~ {n = 1, . . . , N) of the HF equations. This is just what we
expect for the propagator of an independent-particle system as discussed
in Sec. 7.5.

While the HF eigenvalue equations in Eq. (10.15) may look like a sp
Schrodinger equation corresponding to a noninteracting many-body system,
there is one complication. Due to the self-consistency condition Eq. (10.12)
they are actually nonlinear in the amplitudes z™~ and therefore usually
solved by iteration. Starting from the N lowest-energy sp orbitals a =
l,...,NofHo one sets

(Initial guess) ->• z^~ = Sn<a, (10.18)

using this first approximation to construct the corresponding self-energy
T,HF through Eq. (10.11). Then the N lowest-energy solutions of the Hamil-
tonian HQ + T,HF are determined (which is equivalent to solving a noninter-
acting system), yielding new z£~. This cycle is repeated until convergence
is achieved and the amplitudes z£~ no longer change during successive it-
erations. A more detailed look at practical methods for solving the HF
equations in the case of atoms can be found in Sec. 10.2.

Finally we note that the derivation up to now, has used the sp basis
that diagonalizes the Hamiltonian Ho = T + U, i.e.

(a\T\5) + (a\U\6)=es6at5. (10.19)

(10.17)
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Substituting this result into Eq. (10.15) we see that the matrix elements of
the auxiliary potential U cancel, and the HF equations become

W <a| T |<J) + £ (a»\ V \Sv) n"J 1 z^ = « " . (10.20)
S I M" J

They are therefore independent of the auxiliary field U — as it should be in
the framework of self-consistent Green's function theory — and Eq. (10.20)
represents the HF equations in an arbitrary sp basis. Of course, a suit-
able choice of the auxiliary field may speed up convergence of the itera-
tive solution. In the nuclear case, e.g., one can start with an auxiliary
potential which provides localization of the nucleons, as was discussed in
Sec. 3.1. The HF method was first studied by [Hartree (1928); Slater (1930);
Fock (1930)].

10.1.2 The Hartree-Fock propagator

The HF self-consistency problem consists of the determination of the
removal amplitudes z%~ and energies e~ (n = 1,...,JV) which solve
Eqs. (10.12) and (10.20). After this is achieved we can construct the re-
maining eigenstates (n = N + 1, N + 2,...) in Eq. (10.20) that have higher
sp energies. These correspond to the particle addition amplitudes z%+ and
energies e+ in Eq. (10.6), so we write

£ j(a| T \6) + £ <a"l V M </" W + = 4-C+- (10-21)
6 (. ixv )

Note that Eq. (10.21) is an ordinary eigenvalue problem since the one-body
density matrix,

JV

< / = £*r*;r*» (10-22)
7 1 = 1

is determined by the removal amplitudes and therefore fixed. No additional
self-consistency steps are thus required.

The construction of the HF propagator of Eq. (10.6) is now complete,
and all physical observables contained in the sp propagator (see Sec. 7.3 -
7.4) can be evaluated in the HF approximation. We observe e.g., that the
excited states l*^"1) in the ./V - 1-particle system, which can be reached
by the removal of one particle from the iV-particle ground state 1*^), have
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a spectrum

(HF:) E^-E^-^e-, (10.23)

and removal amplitudes

(HF:) <^- 1 | a a |O=zr - (10-24)

The interpretation of the HF sp energies e~ as removal energies follows
naturally from the propagator formulation. It is less obvious in a variational
context (see Sec. 10.1.3), where it is called Koopman's theorem. For the
excited states of the N+l particle system we have likewise for the spectrum

(HF:) E%+1 - E? = 4 , (10.25)

and the addition amplitudes

(HF:) ( * ^ | a a | * ^ + 1 ) = z 2 + . (10.26)

The hole part of the spectral function denned in Eq. (7.11) reads

N

(HF:) Sh(a; E) = £ K~\*HE - e~), (10.27)
n=l

and the corresponding mean removal energy is

_ rs~F N

(HF:) RHF = Y, dE ESh(a;E) = Y/£n- (10-28)
a J-°° n=l

The HF result for the ground-state energy then follows from Eq. (7.26),

(HF:) 2^ = i | 5 > | r | f l nHJ + j^e-\,
[ a/3 n=l J

= \{THF + RHF}. (10.29)

Obviously, THF represents the expectation value of the one-body part of
the Hamiltonian (the kinetic energy and, if present, the external potential),
since according to Eq. (7.19) we have

(HF:) ( * 0 " | f | < ) = ]T(Q|T|/?) n»0
F=THF. (10.30)

a/3
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The contribution of the two-body interaction V to the ground-state energy
can now be expressed in terms of the HF quantities RHF and THF ,

(HF:) (*£\V\VI?) = VHF=EF-THF

= \(RHF-THF). (10.31)

An alternative expression for RHF = Sn=i £n is obtained by multi-
plying Eq. (10.20) with z™~*, followed by a summation over a and over
n = 1 , . . . , N. The resulting expression,

f; e- = J2 { H T \s) + £ M y M </"} C (10-32)
n=l aj I M" )

= THF+Y^ (M v \H </«»/> (10-33)

when substituted in Eq. (10.31), implies that

VHF = \Y, M v i^) C C - (10-34)

As a consequence, the HF ground-state energy can also be expressed as

(HF:) Eg = RHF - VHF (10.35)
N 1

= E £n ~ 2 E ^ l ^ l^) ""/""a/- (10-36)

Clearly, Eg is not just the sum of the HF sp energies of the occupied
orbitals, as it would be for an independent-particle problem. The correction
term —VHF in Eq. (10.36) is sometimes called the rearrangement energy.

Up to now the HF propagator GHF(a,/3;E) and all related quantities
have been expressed in an arbitrary sp basis. However, once the removal
amplitudes z%~ have been fixed, Eqs. (10.20) and (10.21) constitute an
(Hermitian) eigenvalue problem. The solutions z™* therefore define an
orthonormal basis set of HF sp states,

|"±) = E ^ ± I « > - (10.37)
a

For clarity we will continue to label the HF sp states with roman letters,
but we drop the (±) superscripts. From the propagator context it is obvious
that the HF sp states corresponding to the N lowest sp energies (the hole
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states) should be interpreted as corresponding to removal amplitudes. The
HF sp states with higher-lying energies (the particle states) correspond to
addition amplitudes.

Expressed in the HF basis, the HF one-body density matrix is simply
(using the step function for the case when its argument is true or false)

n?F = Sitj 0{l<i<N), (10.38)

and the defining equation [see Eqs. (10.20) and (10.21)] for the HF basis
becomes

TV

(n\ T \rn) + ] T (ni\ V \mi) = 6m%nen. (10.39)

The HF propagator is also diagonal in the HF basis,

G-(m, n; E) - *„,,„ \»^L + ! M ^ > 1 . (10.40)
• [E-en + ir] E-en-ir)\

Eq. (10.40) is recognized as the propagator of a noninteracting system with
sp Hamiltonian

HHF = Y,£naW, (10.41)
n

= £ > | T \m) aiam + ^Z ( S ^ V lmi^ ) a«a™' (10'42)
mn nm \ i= l /

and this would seem to imply that the HF ground state can be identified
with the Slater determinant

(HF:) | * ? > - > ! * £ * . > = 1 1 a} |0>. ( 1 0 - 4 3 )

It is readily checked that Eqs. (10.30) and (10.34) are indeed consistent
with the HF ground state in Eq. (10.43), i.e.

VHF = (*HF V\*%F). (10.44)

That this interpretation is correct is also borne out by the variational deriva-
tion in the next section.
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10.1.3 Variational content of the HF approximation

The eigenstates for a system of N noninteracting fermions have been dis-
cussed in Section 3.1. They have the simple form of antisymmetrized prod-
uct states and may generically be written as

I * " > = I R I ° > . (io-45)
i=l

in terms of N orthonormal occupied sp orbitals a\.. The orthonormality
condition ensures a proper normalization, ($N\ $N) = 1.

The product states in Eq. (10.45), also called independent-particle states
or Slater determinants, of course far from exhaust the complete ./V-particle
Fock space. Nevertheless, there is considerable freedom in the set of all
$JV), since the shape of the occupied sp orbitals can be chosen at will.

If we now consider an interacting system with Hamiltonian H = T + V,
we may approximate the exact interacting ground state by determining
the independent-particle state \$N) which minimizes the expectation value
($N\ H \$N) of the Hamiltonian. In the case of weak interparticle interac-
tions V this is usually a good starting point.

The expectation value is easily evaluated as

N N

E = (*N\H \t>N) = £ (hi\T\hi) + -J2 (MA V \hihj), (10.46)
t=l i,j=l

in terms of the occupied sp orbitals. Expanding the unknown occupied
orbitals in terms of a fixed sp basis,

a l = J2z™aic (10-47)
a

the energy becomes

N N
E = E E 4**0 <aiT \P)+2 E E *i<**hw w\v w) • (10-48)

«=1 a/3 i,j=l u0yS

This expression should be minimized with respect to variations in the
expansion coefficients Zia, subject to the orthonormalization constraints for
the occupied sp orbitals,

Y,zi°Zi<*=Si'i- (10-49)
a
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The condition for a constrained extremum reads

f) ' N

^T E~Yl£^J2Z*JcZi- = °> (10-5°)

where the Lagrange multipliers e%j form a Hermitian matrix. Working out
the derivative, yields the set of nonlinear equations

N N

Y H T |/9) zi0 + Y (a/?! V |7<5) C£ z*0z]5)zn = Y eijZja, (10.51)
0 0t6 j=l j=l

which should be solved together with the constraints in Eq. (10.49).
Without loss of generality we may assume the matrix eij to be diagonal.

If a solution is found where it is not, one can consider a unitary mixing of
the Zi-vectors,

N

Zia = / jUijZjg,

N

The expression in Eq. (10.48) for the energy is invariant under such a trans-
formation, so the set of Z{a is only determined up to a unitary transforma-
tion by the minimalization problem. The underlying solution, of course, is
always the same, since the independent-particle state in Eq. (10.45) does
not change (apart from a global phase) under a unitary mixing of the oc-
cupied orbitals. Equation (10.51) transforms as

N N

Y H T |/3) z'i0 + Y W?l V W> ( £ zfc'jsK = Y £'iiz'i*, (10-53)
0 PjS j=l j=l

where

TV

4" = E uki£uUu = [U*eU]... (10.54)
k,l=l

From Eq. (10.54) it follows that U can be chosen such that e'^ = SijEi is
diagonal. This is the so-called canonical representation of the HF basis, and
with this choice Eq. (10.53) becomes identical to the HF equations (10.20)
derived in Sec. 10.1.

(10.52)
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The variational nature of the HF ground state has two important conse-
quences. Firstly, the HF ground-state energy in Eq. (10.29) is always larger
than the exact ground-state energy, as it is the minimal expectation value
of the Hamiltonian with respect to a restricted class (the Slater determi-
nants) of TV-particle wave functions. A second consequence is Brillouin's
theorem, which can be formulated as

(*%F\Ha),ah\*%F)=0, (10.55)

where h (hole) labels denote HF sp states that are occupied in $HF and p
(particle) labels denote unoccupied sp states. Note that the Slater deter-
minants

|< f t) = aja* |*£F) , (10-56)

formed by replacing a hole with a particle state in the HF determinant, are
called one-particle-one-hole (lplh) excitations. Brillouin's theorem asserts
that the HF ground state is stable with respect to such lplh excitations,
which can therefore be regarded as first approximations to the excited states
of the ./V-particle system. To prove the theorem it is sufficient to note that
small variations of the occupied HF orbitals a'h are by necessity of the form

1̂ = E^4' (10-57)
p

since they have to be orthogonal to all hole states. The corresponding
variation in 3>#f can therefore be written as

\s<F)=4IK i°)| = E H) <* KF)=£ wW \KF).
I h ) h ph

(10.58)
Since the energy is an extremum with respect to such variations, we have

0 = (*£F | H \6^F) = ]>>p / l < $ ^ | Ho)pah \$
N

HF) , (10.59)
Ph

for arbitrary coefficients r/p/,, and the theorem in Eq. (10.55) results.
Alternatively, one can show (Exercise (1) of this chapter) by direct eval-

uation of the matrix element in second quantization that

($%F| Ha\ah \*»F} = (p\ T\h) + J2 (ph'\ V \hh>)
h'

= (p\ HHF \h) = 0, (10.60)
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where the zero result follows from the fact that HHF is diagonal in the HF
sp basis1.

The interpretation of the HF energies e^ of the occupied sp states follows
from the observation (Exercise (2) of this chapter),

eh = <<*£F| H \$»F) - ($%F\a[Hah \*»F). (10.61)

This is Koopman's theorem, which states that the £/, can be identified
as removal energies [see Eq. (10.23)], if one identifies the one-hole states
$^r~1) = an \$HF) a s approximate eigenstates in the N - 1-system.

10.1.4 HF in coordinate space

We consider here a general system of spin-| fermions in a local external
sp potential U(r) and interacting with a local and spin-independent tp
potential V{r\ — r2) (this is applicable to electrons in atoms or molecules).
As the HF equations in Sec. 10.1.1 are valid in a general sp basis, the
coordinate space representation is easily derived from Eq. (10.20) by taking
sp labels a = rms. We also introduce the more familiar wave-function form
for the removal amplitude

s? m .=&,(r ,m,) . (10.62)

Recalling [see Eq. (2.54)] the matrix elements of the kinetic energy op-
erator in coordinate space, the first term in Eq. (10.20) becomes

J2 /rfr'(rms|T|r'm's)0n(r-',m's) = -|^-V2<An(r,ms). (10.63)

The second term in Eq. (10.20) involves the tp interaction. For the present
local and spin-independent tp interaction the direct matrix element is

(rimSl,r2mS2\V \r3mS3,rimS4) = (10.64)

Smsl,ma3Sm,2,m,J(ri - r3)S(r2 - rA)V{ri - r2).

Upon substitution, the HF equations (10.20) in coordinate space therefore

'Note that Brillouin's theorem does not imply that in general lplh excitations are
absent when expanding the exact ground state ty^ in a series of lplh, 2p2h,... excitations
on the HF ground state: they can still be mixed in through the coupling between lplh
and 2p2h states.



210 Many-body theory exposed!

read,

en<t>n(r,ms) = --— V20n(r,m s) (10.65)
2m

+ f drlV(r-r')Y/n
HF(r'm's,r'm's) <f>n(r,ms)

- E / dr'V(r -rl)nHF(r'm's,rms)4>n(r',m's),

where
N

nHF(r'm's,rms) = ^ (f>n(r,ms)(t>*n{r',m's) (10.66)
n=l

is the HF one-body density matrix in coordinate space.
In Eq. (10.65) the first term involving the tp interaction is called the

direct or Hartree contribution to the mean field. It can be written in terms
of a local potential in coordinate space

vH(r) = f dr'nHF(r')V(r - r1) (10.67)

which represents the tp interaction averaged over the HF density,

nHF(r) = ^ nHF(rms,rms). (10.68)

The second term is the exchange or Fock contribution, and is obviously
nonlocal in coordinate (and spin) space.

It may be surprising that the Hartree potential VH{T) contains the total
density of the iV-particle system; in a mean-field picture one would expect
a particle moving in orbital </>„ to interact with the TV — 1 other particles
in orbitals (pi (i ^ n), and not with itself. In fact, the HF approximation
is free from such spurious self-interaction. This can be seen by isolating in
Eq. (10.65) the contribution from 4>n to the HF one-body density matrix:
the Hartree and Fock terms cancel each other.

10.1.5 Unrestricted and restricted Hartree-Fock

At this point it is useful to analyze the spin dependence of the HF equa-
tions. The Hamiltonian we adopted has no spin dependence and obviously
commutes with the total spin operator S corresponding to J2i-i s« f°r N
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particles. Yet we see that the general HF equations (10.65) and (10.66) de-
rived from this Hamiltonian do not reflect this symmetry: in principle both
spin-up and spin-down components may be present in the HF sp states,

Mr,ms) = <Jm.,+ iun(r) + <Jroji_it>n(r), (10.69)

because the Fock term mixes them. The HF Slater determinant built with
such sp states, would not even be an eigenstate of the Sz operator; a typical
example where the mean-field approximation may break a symmetry of the
exact Hamiltonian.

In fact, the most general two-component sp states in Eq. (10.69) are
almost never used in a molecular context. One imposes from the beginning,
that each HF sp state is either a pure spin-up or a pure spin-down state.
The two types of HF sp states corresponding to ms = ± | will be denoted
by 4T s ) , where n = 1, . . . , TV*"1*) so that J ] m > N^ = N. The single spin
component structure implies

(rm'3\ ̂
m*)> = Jm . ,m :^

m-)(r) . (10.70)

A Slater determinant with such sp states is an eigenstate of the Sz operator
(but not necessarily of S2) with eigenvalue 52 = ^[N^+^ - N^~i^], and
the resulting one-body density matrix is diagonal in spin,

n Vr m s i r m s ) — Om,,m'anHF [T , V) — 0m> > m ^ 2_^ <Pn VrlYn \ r ) -

n = l

(10.71)
Using the ansatz (10.70), the HF equations for the spin-up and spin-down
type of orbitals become

- fdr1 V{r - O n ^ ' V . r ^ ' V ) . (10.72)

This incarnation of HF goes under the name of unrestricted HF or UHF
(though it is not the most general mean-field treatment), in order to dis-
tinguish it from restricted HF discussed below. Note that in Eq. (10.72)
the Fock term acts only between same-spin particles, and that the only
coupling between the two spin types occurs through the total density in
the Hartree term.

In restricted HF or RHF, one assumes that the HF sp states come in
pairs of opposite spin, both members of the pair having the same spatial
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wave function. RHF is eminently suitable for most neutral molecules, which
have an even number of electrons and a spin-singlet (S = 0) ground state.
In this case the ground state is well-approximated by a closed-shell configu-
ration: a single Slater determinant consisting of 7V/2 spatial orbitals which
are doubly occupied by a spin-up and a spin-down electron. Such a RHF
closed-shell configuration is then automatically an S = 0 eigenstate of S2.
The RHF ansatz

ct>^-)(r) = 4>n{r), forn=l JV/2 and m, = i ^ , (10.73)

when substituted in Eq. (10.72), leads to the RHF equations for the spatial
orbitals,

h2

en<Pn(r) = - — V20n(r) +vH{r)<pn(r)

- i fdr' V(r - r')nHF{r', r)0n(r ' ) , (10.74)

where the spin-integrated one-body density matrix is related to Eq. (10.66)
as

N/2

nHF(r',r) = £nHF(r'ms,rms) = 2 £<^(r)<(r'). (10.75)
m, n=l

There is of course a trade-off to be made going from the most general
Eq. (10.69) to UHF and RHF: less restrictions on the allowed HF sp states
means a lower HF energy, but also worse symmetry properties of the HF
ground state. The UHF Eqs. (10.72) are commonly used for situations with
unpaired electrons (e.g. ionic or radical molecular species with a non-singlet
ground state), and can be combined with projection techniques to cure pos-
sible spin contamination of the HF ground state. However, when a serious
break-down of RHF stability occurs (as happens e.g. in the molecular dis-
sociation limit discussed in Sec. 10.3.3), this usually signals the inadequacy
of a description in terms of a single Slater determinant, and it is better to
give up such a starting point altogether.

For electrons in atoms there is a higher symmetry, since the external
potential is spherically symmetric and the Hamiltonian also commutes with
the total orbital angular momentum operator L corresponding to J2i^i-
Similar considerations can be made as in the molecular case. In unrestricted
HF the radial parts of the HF sp states are allowed to depend on the
projection quantum numbers me and ms, and the HF ground state is an
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eigenstate of Lz and Sz, but not of L2 and S2. Restricted HF, where the
radial part of the HF sp states does not depend on mi and ms, provides a
good approximation to describe the L = S = 0 ground state of closed-shell
atoms. All n^-shells are assumed to be filled with 2(2£ + 1) electrons, and
the HF Slater determinant is an L = 5 = 0 eigenstate.

10.2 Atoms

10.2.1 Closed-shell configurations

The HF equations for an atomic closed-shell configuration can be derived
from the RHF equations in Eq. (10.74) with the spherical ansatz

&(r) = ¥ W ( r ) l W r ) , (10.76)

for the HF sp states. Multiplying Eq. (10.74) with Y£mi(f) and integrating
over f leads to equations for the radial wave functions <pnt{r),

emVratr) = JdfY^f) j [~V2 - | +vH(r)} fnl{r)Ytmt{f)

-\jdr'^f^^{r')Ytmi{f')), (10.77)

provided the right-hand side of Eq. (10.77) is independent of mi. This
independence is obvious for the kinetic and central potential term, e.g.

V2 [<pnt(r)Ytmt(f)] = ^ ~ r - ^ J ^ ) <Pnt(r)Ytmt(f), (10.78)

but the Hartree and Fock terms require a bit more explanation.
Since each (nt)-she\\ is fully occupied, the spin-integrated one-body den-

sity matrix in Eq. (10.75) can be expressed as

i

nffHr',r) = 2 5>n<(O¥w(r') £ Yi^^Y^f')

= 2£¥>n/(r)¥w(r')- iJ-iMcosw)1 (10.79)
nl

where Pi{x) is the Legendre polynomial of order i, and u> is the angle
between f and f. The electron density is the diagonal part of riHF(r,r')
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and becomes [note that P((l) = 1],

nHF(r) = nHF(r,r) = ̂  ^2(2£+ l )^ ( r ) . (10.80)
n£

The closed-shell density in Eq. (10.80) is spherically symmetric, only de-
pending on r = \r\. We now evaluate the Hartree potential [Eq. (10.67)]

To work out the angular integration, one needs the following expansion for
the reciprocal distance between r and r',

1 °° rL

u T 3 H = E 3 f T P ^ C 0 S W ) ' (10-82)
1 ! i=or>

where r< is the smaller and r> is the larger of the pair (r, r'). Only the L —
0 contribution in Eq. (10.82) survives the angular integration in Eq. (10.81),
because of the orthogonality properties of the Legendre polynomials,

/ df'PL(COSUJ) =2ir I dxPL(x) = 4x6Lfi. (10.83)

As a consequence, the Hartree potential is spherically symmetric,

VH(r) = 4TT f dr'r'2nH^V'\ (10.84)

and the Hartree term in Eq. (10.77) is seen to be independent of mi.
Finally, the Fock term in Eq. (10.77) becomes, with the aid of expres-

sions (10.79) and (10.82),

(vFVne)(r) = lj drY;me (f) J dr> ̂ ^ <fm{r')Ytmi (f')

n't' L=0 J r>

(10.85)

where the angular integrations have been combined into coefficients

C"'L= E ^Tl I dryLe(r)YLML(f)Ye,m,(f)
m'eML •

I dr'Y;,m, (T')YIML (r')Ylmt (?). (10.86)

(10.81)
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The integrated product of three spherical harmonics is a real number, which
can be expressed as

[j'V C\v t-\v C\ V / ^ + l ) ( 2 ^ + l)(2L+l)/ drY(me(r)YLML{r)Yt'm't{r) = -j==

in terms of the 3j-symbols of standard angular momentum algebra (see
App. B). This implies that the summation over L in Eq. (10.85) is restricted
to the finite interval \£-1'\ < L <£ + £'. Using the normalization property

one arrives at

C«' i = (2^ + l ) ( o o o ) , (10-89)

which is indeed independent of me.
Combining all of the above results, the HF equations for an atomic

closed-shell configuration become

. . f 1 [1 d2 1(1+1)] Z \
entfntir) = |~2 y-Q^r — j - - + vH(r)^nt{r)

- {vFVm){r). (10.90)

This represents a set of non-linear integro-differential equations, which can
be solved by a variety of methods.

Near r = 0 the HF orbitals have the usual behavior for a central po-
tential problem, i.e. <pni{r) ~ r<- The asymptotic behavior (r —>• oo) is
a bit more tricky [Handy et al. (1969)], due to the presence of the non-
local Fock potential and the long range of the Coulomb force. One can
show that for occupied HF orbitals the asymptotic potential behaves as
(N — Z — l ) / r + w(r), where Z is the central charge, ./V is the number of
electrons, and w(r) is a residual contribution, decreasing faster than 1/r.
Moreover, all occupied orbitals have the same decay, <pnt(r) ~ e~Kr, where
K — \/2e is determined by the largest occupied HF sp energy e. For un-
occupied orbitals there is no cancellation between the Hartree and Fock
contributions. The asymptotic potential is less attractive and behaves as

(10.87)

(10.88)
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Fig. 10.2 The HF Is, 2s, and 2p orbitals in the Ne atom (Z = 10), represented by full
lines, are compared with the corresponding hydrogenic orbitals (dashed lines).

(N - Z)/r + w(r). As a result, HF typically cannot predict bound unoccu-
pied states for neutral atoms (N = Z).

In Fig. 10.2 the occupied HF sp orbitals in the Ne atom are compared
with the corresponding hydrogenic orbitals. The most deeply bound or-
bitals (Is) are very similar. In contrast, the HF valence orbitals 2s and
2p are pushed outward compared to the hydrogenic 2s and 2p, because the
central charge is screened by the Is electrons.

10.2.2 Comparison with experimental data

In Table 10.1 experimental results for the binding energy and the removal
energies in a number of L = S — 0 closed-shell atoms are compared with
the HF predictions. It is clear that HF in atomic systems is a good starting
point, which is able to explain the bulk of the binding energy. In accordance
with Koopman's theorem, the removal energies are in reasonable agreement
with the data as well. Results are somewhat worse for Be and Mg, for which
a representation as a pure closed-shell system is less adequate. Yet there is
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Table 10.1 Hartree-Fock results and experimental data

Removal energies Total energy
HF Exp. HF Exp,

He Is -0.918 -0.9040 -2.862 -2.904
Be Is -4.733 -4.100 -14.573 -14.667

2s -0.309 -0.343
~~Ne IT" -32.77 -31.70 -128.547 -128.928

2s -1.930 -1.782
2p -0.850 -0.793

Mg Is -49.03 -47.91 -199.615 -200.043
2s -3.768 -3.26
2p -2.283 -1.81
3s -0.253 -0.2811

Ar Is -118.6 -117.87 -526.818 -527.549
2s -12.32 -12.00
2p -9.571 -9.160
3s -1.277 -1.075

I 3p I -0.591 -0.579 |

Hartree-Fock results for a number of L = S = 0 atoms,
compared with experimental data. All energies are in
atomic units (Hartree). Experimental removal ener-
gies taken from [Martin et al. (2002)], total energies
from [Veillard and Clementi (1968)].

little reason to be smug about the performance of HF. The total energy, e.g.,
is dominated by the rather inert core electrons. Chemical binding between
atoms however, is determined by the valence electrons and is sensitive to
small energy differences. In electronic systems the deviations from HF can
therefore be crucial, and one often defines the correlation energy as the
difference between the exact and the HF energy.

The spectroscopic factors associated with the removal states also point
to the presence of small but nonnegligible deviations from the HF picture.
As discussed in Ch. 7, experimentally one finds in (e,2e) reactions spectro-
scopic factors 5 « 0.90 - 0.95 for the valence states, whereas HF predicts
5 = 1. The (e,2e) reaction also exhibits a considerable fragmentation of
more deeply bound sp states, like the 3s in argon, which is not described by
the HF results. To explain these discrepancies higher-order contributions
to the self-energy must be included, as discussed in Ch. 11.

10.2.3 Numerical details

In a numerical solution of the HF equations (10.90) one usually chooses
a grid of radial points n, in order to convert the continuous equations to
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a discrete (matrix) problem. Since the sp wave functions vary much more
rapidly near the central charge (the region of small r) than in the tail region,
an equidistant ri grid is not practical. Defining a new independent variable
through a logarithmic transformation u = ln(r) is therefore quite useful
in atomic problems. The w-variable, which has a range — oo < u < +00,
can then be sampled on an equidistant grid. In practice, one takes a finite
interval [umin,umax]j supplemented with suitable boundary conditions.

In combination with new dependent variables hni{u) is defined as

hnt{u)=r$<pnt(r), (10.91)

the HF equations (10.90) transform as

f 1 fl d2 1 (^4- -)21 Z 1

enthne(u) = | - - 1̂ - — - ^ - J - - +vH(u)j hne(u)
- (i>Fhni)(u). (10.92)

The sp wave functions hni(u) are now normalized as
/•OO

/ duhnt{u)hn>v{u)=8n,n,6i,t'. (10.93)
J—00

The Hartree term in Eq. (10.92) reads

vH{u) = Idu'—Y, 2(2i + X)hl'V («'). (10-94)
•̂  V> n't'

and the Fock term can be written as

(vFhni)(u) = 22hn,e,(u)Y, / du'-^Cu'Lhn'i'{u')hnt{u').
n't' L J r>

= du'v{p\u,u')hne(u'), (10.95)

in terms of a nonlocal potential

v(P{u,u') = J2h"'f(u)J2^Cu'Lh^^u'^ (10-96)
n't' L V>

Tackling the nonlinear equations (10.92) with iterative methods, implies
that one has to repeatedly solve equations of the form

\T - - + vH(u) - vF h(u) = sh(u), (10.97)
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where T is the kinetic energy, and the local Hartree potential VH (U) and the
nonlocal Fock potential vF'(u,u') are fixed by the sp wave functions {h^j1}
of the previous iteration step. The eigenvalue problem in Eq. (10.97) then
determines both the new energy e and the new wave function h(u). After
transposing Eq. (10.97) on the discrete u-grid, this is simply a matter of
matrix diagonalization. However, the presence of the nonlocal Fock poten-
tial vF (u,u') would require diagonalization of a matrix with a dimension
equal to the number of grid points. It is technically much easier to treat
the Fock term as an inhomogeneous term. This can be done by replacing
Eq. (10.97) with the following consistency loop:

h{1)(u) = h°ld(u) (Initialization) (10.98)

yW(u) = (vFh^)(u) (10.99)

e(i) = f duh{i)(u) \(f -^+vH{u)\h^{u)-y(i\u)\ (10.100)

(f-^+vH{u)-e(-A x(i){u) =y(i){u) (10.101)

h{i+1)(u) = xW(u)/J f du'lx^iu1)]2. (10.102)

After convergence of the sequence (h^\h^2\ ...), this is obviously equiv-
alent to Eq. (10.97). The advantage is that Eq.(10.101) only involves the
kinetic term and purely local contributions. On a grid this gives rise to a
tridiagonal matrix structure, and the resulting linear system can be easily
solved by recursion techniques (see also the computer exercise in Sec.10.2.4).

10.2.4 Computer exercise

Reproduce the HF results in Table 10.1 using the ideas in Sec. 10.2.3,
combined with the (quick and dirty) discretization techniques explained
below.

• Introduce boundaries rmin = 10~7/Z and rmax = 25 for the radial
distance r, and a corresponding grid for u = ln(r),

Ui=c+(i- i ) A , i = l,...,M, (10.103)

where M « 1000, c = ln(rm;n) and

A = jriln (r^) • (10-104)
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• For integrations use the crude approximation

r M
I duG{u) -> A ^ G ( u i ) . (10.105)

•̂  »=i

As a result, integral transformations of the type

r rL
F(u) = / du'-j^G(u'), (10.106)

J r>

which appear in the Hartree and Fock term, can be done in only O(M)
operations by means of the following recursion relations:

Vo = 0; Vi = Vi-i+G(ui)rf:,i = l,...,M (10.107)

W0=0; Wi = Wi-1+G(ui)/rf+\ i = l,...,M (10.108)

F(ui)=A\-^T+rf(WM-Wi)^, i = l , . . . , M (10.109)

• Approximate the second-order differential operator in Eq.(10.92) on
the grid as

\rdu2rj V ri rin+i nri-x J A 2 '

which gives rise to a symmetric tridiagonal matrix. Corrections at the
boundaries can be neglected.

• If Aij is a symmetric tridiagonal matrix with nonzero elements

Aii=a,i, i-1,..., M; Aiii+1 = A i + M - bi, i = 1 , . . . , M - 1, (10.111)

then linear systems of the type

M

J2AijXj = Yi, i = l,...,M, (10.112)
. 7 = 1

can be solved for Xi by means of the following recursion relations:

UM = aM; Ui = at- --—, i = M - 1 , . . . , 1 (10.113)
Ui+l

VM = ~ ; Vi = (Yi - biVi+1)/Ui, i = M - 1 , . . . , 1 (10.114)

X1=V1; Xi = Vi-^Xi-!, i = 2,...,M. (10.115)

(10.110)
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• Between successive iterations an orthogonalization step should be per-
formed for the sp wave functions having the same t. For a given set of K
nonorthogonal vectors {X^l\X^2\ ..., X ^ ' ) construct the K x K overlap
matrix

M

S^^X^X™, (10.116)

and define the new orthonormal set (X'(1), X'{2\ ..., Xl{-K)) as

K

X'M = Y^[S~^VXW. (10.117)

• The complete program flow should look like this:
1. Initialize the sp wave functions {h^Jf(u)} with hydrogenic orbitals.
2. With a fixed set of {/i°',d(u)}:
(a) For each nl: construct a new orbital hn[(u) as a solution of Eq. (10.92),
with VH and VF evaluated, using the set {/î ';d(w)}- To do this, iterate
the consistency loop in Eqs. (10.99) - (10.102) until hni(u) has converged.
Supplement Eq. (10.101) with an extra statement, setting the sp energy e to
zero if the value, obtained through Eq. (10.101), is positive. This is needed
to guide the solution through the rough terrain of the first few iterations.
3. Orthogonalize the set of new {hni(u)}
4. Monitor the convergence of all wave functions. If needed, set {/i°'/*(u)} =
{hni(u)} and repeat step 2.

While the above implementation has the advantage of simplicity, it
should be noted that speed and accuracy can be greatly enhanced us-
ing more sophisticated numerical techniques. A good book on dedicated
coordinate-space HF programs is [Froese Fischer et al. (1997)]; the corre-
sponding atomic HF code is also publicly available on internet.

10.3 Molecules

10.3.1 Molecular problems

The total (electrostatic) Hamiltonian for a molecular system consisting of
M atomic nuclei and N electrons is

M , M

(10.118)
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N N N M „

where MA, ZA,TA {A — 1> • • •, M) are the mass, charge and position vectors
of the nuclei (considered as point particles), and r* (i = 1, . . . , N) are the
electron coordinates.

The nuclear masses are much larger than the electron mass, and the
velocities of the nuclei are consequently much smaller than the electronic
velocities. It is therefore usually a very good approximation [Born and
Oppenheimer (1927)] to assume that the electrons move in a static field,
generated by the nuclei at fixed positions TA,TB, • • •• This is the so-called
Born-Oppenheimer approximation, which decouples the nuclear and elec-
tronic motion into separate problems.

First one has to find the electronic ground state for fixed nuclear posi-
tions {r^}, which are considered as external parameters for the electronic
problem. Let's denote with \Pei({'*,4}) the ground state of the many-
electron Hamiltonian

1 JV N N M

*-«~» = -*£* + E . ^ V g E ^ . uo.n9,
corresponding to the ground-state energy

Eel({rA}) = {Vel({rA})\Hel({rA}) |*e/({r,i})>. (10.120)

The motion of the nuclei is then governed by the nuclear Hamiltonian

M M
ff-« = - £ ^ + £ w=^\+Eel{{rA]l (10-121)

where the electronic ground-state energy Eei({rA}) plays the role of a (3M-
dimensional) potential surface for the nuclei. The Hamiltonian (10.121) can
be treated classically or quantummechanically, and determines completely
the rotational and vibrational properties of the molecule, or the dynamical
behavior in chemical reactions.

In a general situation, a complete scan of the multidimensional poten-
tial surface is out of the question, but it is possible to perform geometry
optimization, i.e. to find the set of nuclear positions {r^} which minimize
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the potential energy

Vnuc{{rA})=(Eel{{rA})+ £ ZAZB Y (10.122)

This is the classical equilibrium geometry, which determines the spatial
structure of the molecule (bond lengths and bond angles). Moreover, it
provides a good starting point to describe intramolecular motion in terms of
small departures from the equilibrium geometry, using the standard normal
mode approximation.

10.3.2 Hartree-Fock with a finite discrete basis set

Finding the electronic structure in the complicated external potential, gen-
erated by the nuclear charges, can be exceedingly difficult. In fact, except
for some simple cases like diatomic molecules, even the single-electron prob-
lem is impossible to solve in coordinate space. One therefore introduces a
finite number of (well-chosen) basis functions of known analytic form, usu-
ally resembling the orbitals of the isolated atoms present in the molecule.
The adopted basis set, which determines the sp space in the problem, is by
nature nonorthogonal, as it contains atomic orbitals centered on different
nuclei.

Expanding the RHF spatial orbitals (f)n(r) of Eq.(10.74) in such a
nonorthogonal basis set {Ca(r)}, one gets

<t>n(r) = YJxna(a(r), (10.123)
a

where we may assume (without loss of generality) that all spatial electron
orbitals are real functions. The RHF equations become, after projection on
Ce(r),

£n^2xnaS/3a = ^2xna[HHF]/3a- (10.124)
a a

The nonorthogonality of the basis set is reflected in the presence of the
overlap matrix,

S0a = Jdr(a(r)(p(r), (10.125)
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and the matrix elements of the HF Hamiltonian,

[HHF]8a = Jdr fc(r) ( " ^ - E | 7 ^ ) &(»•)

7(5

-Ur')(0(r)^(r)Cs(r')}, (10.126)

can be expressed in terms of spatial integrals involving only the basis func-
tions. The equations (10.124) are called the Roothaan equations [Roothaan
(1951)], and represent a set of nonlinear algebraic equations in the unknown
expansion parameters xna. Obviously, the Roothaan equations with any
finite basis set will yield a HF energy higher than the exact HF energy
(usually called the HF limit in this context), but quite reliable results can
be obtained by a careful choice of a limited number of basis functions.

A basis function centered on atom A has the generic from

ar) = v(r-rA). (10.127)

Two choices are commonly adopted for the shape of the atomic orbital if:

ip(r) - P(x,y,z)e~Kr (Slater type) (10.128)

<p(r) =P(x,y,z)e~ar2 (Gaussian type). (10.129)

Here P(x,y,z) is a polynomial, representing the symmetry character {t
value) of the orbital. The global shape is either exponential (Slater type) or
Gaussian. The Slater type is more physical, as atomic orbitals do decrease
exponentially, and have a cusp at the position of the central charge. The
Gaussian type therefore has an unphysical behavior, both at r = 0 and at
large r.

In practice, the numerical advantage of Gaussian-type wave functions
is so great, that these are used in most of the present-day applications in
quantum chemistry. This is because the use of Gaussians allows a fast
computation of the matrix elements of the Coulomb interaction, even when
orbitals centered on four different nuclei are involved. Moreover, the un-
physical behavior of the single Gaussian orbital in Eq. (10.129) can be
largely overcome by representing the orbital by a sum of (minimally three)
Gaussians with different exponents, chosen so as to mimic a Slater-type
orbital (see e.g. [Szabo and Ostlund (1989)]).
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Fig. 10.3 A surface of equal electron density in the C6o buckminsterfullerene molecule.

Tremendous effort has been put into the determination of optimum basis
sets for molecular calculations. Together with the availability of increased
computing power, such techniques have led to the present-day ability of
performing ab-initio modeling of quite complicated molecules, within HF
or within the framework of density functional theory. An example is shown
in Fig. 10.3, representing the electron density of the buckminsterfullerene
Ceo molecule, obtained in the HF approximation and using a standard
Gaussian basis.

10.3.3 The hydrogen molecule

As an example of molecular problems we discuss a highly simplified — but
very instructive — model of the hydrogen molecule. The two protons Pi and
P2 are at fixed positions Ri and R2 (Born-Oppenheimer approximation).
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The two-electron ground state will be a spin singlet, and the 5 = 0 spin
part from the wave function can be split off,

V(x1mSl,x2mS2) = $ ( n , r 2 ) - ^ (<5mji>+i<Smj2,_i - <Jm<i,_i<5mii2i+iJ •

(10.130)
Since the spin part is antisymmetric, the spatial part $(r i , r2) must be
symmetric under rj o r2 interchange.

The finite sp basis set we consider, consists of atomic Is orbitals centered
on either one of the two protons Pi and P2, i.e.

Mr) = Vis{r-Ri)- (10.131)

The following three symmetric combinations can be formed

0i(ri)&(r2); 02(ri)tf2(r2); [ ^ ( r i j & t e ) + <fe(n)0i(r2)]. (10.132)

Because of an additional spatial symmetry (the mirror plane between the
two protons), the two-electron wave function should be symmetric under
Pi *~* P2 interchange as well. Consequently there are only two two-electron
states in the problem,

*/(r i , r 2 ) =0i(r i )0i(r 2) + 02(ri)02(r2), (10.133)

$u( r i , r 2 ) = 0i(ri)02(r2) + h(r 1)^1(^2). (10.134)

The $/ configuration is called ionic, since both electrons are on the same
atom, and has a higher energy than the $// configuration. The ground
state will nevertheless be a mixture of <J>/ and $//, due to the interaction
between both configurations. In the dissociation limit (for large distances
I ill — R2\ between the two nuclei) we do expect to reach a pure $// con-
figuration, because it is energetically more favorable to have two isolated
neutral hydrogen atoms, than a H~ negative ion.

Of course we have the freedom to use, instead of the $/ and $// two-
electron states, any pair of linear independent combinations. Since $/ and
$// have equal norm, their sum and difference will be orthogonal,

$B(rur2) = $/(ri,r2) + $ii(rur2) (10.135)

$A(ri,r2) = $ / (n , r 2 ) - $/ /(r i , r2) . (10.136)

Looking in detail at the spatial two-electron wave functions $ s and
$A, one can easily check that they have the structure of a doubly occupied
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molecular sp orbital,

$Et{ri,r2) = (t>b{ri)^>b{r2), $A(ri,r2) = (j)a(ri)<f>a(r2). (10.137)

The sp orbitals

<f>b{r) = Mr) + fa(r), <t>a{r) = <h(r) ~ <h(r), (10.138)

are the bonding and antibonding orbital, familiar from the description of
the single-electron hydrogen molecular ion H^. The "exact" solution of
the two-electron problem in this two-dimensional model space, then follows
from diagonalization of the Hamiltonian matrix in the ($A, $B) tp basis.
The ground-state energy is

* = ^ - / ( ^ ! ^ ) ' + A > , (10.39)

where

EA = < * ^ > ' ̂  = <*B|*B> ' ( 1 0 ' 1 4 0 )

A = <»*l*l«*> . ( 1 0 1 4 1 )
V{*A\$A)($B\$B)

In order to obtain the RHF results we would now have to solve the
Roothaan equations (10.126) in the adopted sp space by means of an iter-
ative procedure. Fortunately, the present model is so simple that we can
skip this. The sp space contains merely 4>i and <fo, and the only spatial
sp wave functions, which are compatible with the symmetry requirements,
are precisely the bonding and antibonding combinations of Eq. (10.138).
These must therefore coincide with the RHF sp basis, the bonding orbital
being the doubly occupied orbital, and the antibonding orbital being unoc-
cupied. As a consequence, the RHF ground state is the $ s configuration
of Eq. (10.135), which together with the 5 = 0 spin wave function can be
written as a single Slater determinant, and the RHF energy is given by EB
in Eq. (10.140). This implies immediately that the molecular dissociation
limit, where the spatial wave function is

$jj(r i , r2) = [$ j3 ( r i , r - 2 ) -^ ( r i , r 2 ) ] , (10.142)

cannot be described in RHF, since $// is an equal mixture of two closed-
shell Slater determinants $A and $ B .
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For a numerical illustration we approximate the atomic Is orbital by
means of a single Gaussian2

<Pi.(r) = e-ar*, (10.143)

with a = 0.42. The matrix elements EB, EA and A in Eq. (10.140),
which are functions of the internuclear distance R = \Ri - R2\, can all be
expressed in terms of exponentials and the function

i(x) = f due~xu2 = ^ E r f ( v ^ ) , (10.144)
Jo %VX

related to the error function

Erf(z) = ~^= f dye~y\ (10.145)
V* Jo

Taking symmetries of the spatial integrals into account, the one-electron
integrals needed for the evaluation of EB , E& and A are

<&|02>= fdre~a(-r-R^e-a^-R^2

= (£)Vt* (10-146)

foil - ^V2 I*,) = ( ^ ) f | ( 3 - ai?2)e"f * (10.147)

^ i l ^1T7 1^) = - e - t f l 2 f (2aR2), (10.148)

r - Hi I a
and the two-electron integrals are

(cf>i<f>i\V\(f>2(t>2) = I' drldr2e~a{ri-Rl)2e-^r2-Rl)2

1
 c-a(7.1-R9)2

c-qfr,-fl,-l2

|n -r2\

= \(l)**-* (10-149)

(</>i<h\ V \fafa) = \(~Y f (<*R2) (10.150)

tti^V \<h<h) = \ ( ^ ) § e-t*2f(^R2). (10.151)

2A single Gaussian is sufficient for illustrative purposes, but should of course never
be used in genuine calculations.
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Fig. 10.4 Dissociation curves for the H2 molecule with the minimal basis set of Gaussian
form of Eqs. (10.131) and (10.143). Full and dashed line correspond to the exact solution
and the R.HF approximation, respectively.

The potential energy V of the H2 molecule is the sum of the electronic
ground-state energy Eo and the Coulomb repulsion between the protons,

V(R) = E0(R) + i (10.152)

The dissociation curve D{R), defined as

D(R) = V(R) - 2£(H-atom), (10.153)

is the potential energy minus the energy of the dissociation products (in this
case twice the energy of the H-atom). The position Re of the minimum in
V(R) or D(R) determines the equilibrium geometry, i.e. the bond length
of the H2 molecule. The depth of the minimum, De = D(Re), is the
dissociation energy.

The dissociation curve obtained in the present model, using
Eqs. (10.129) and (10.140), and the Is Gaussian orbital in Eq. (10.143),
is shown in Fig. 10.4. It contains all the essential features of a more ex-
act treatment: strong repulsion as R -> 0, a minimum corresponding to
the equilibrium geometry of bound H2, and a correct dissociation limit
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Fig. 10.5 Composition of the H2 ground state corresponding to Eq. (10.139). In order
to guide the eye, the 50% curve is indicated by the dashed line.

D(R) -> 0 as R -> 00. Note that the use of a single Gaussian (having
no cusp and bad asymptotics) for the Is orbital, leads to an energy of the
hydrogen atom,

£(H-a.om) = W~fm'W = £ - » , / ? = "0-404, (10.U4)

which deviates 20% from the exact value, EH = -0.500. Since similar errors
are made for the H2 electronic energy, the final result for the dissociation
curve is very reasonable: a bond length Re — 1.51 and dissociation energy
De = -0.184, to be compared with the exact values3 Re = 1.40 and De =
-0.175.

Also shown in Fig. 10.4 is the RHF dissociation curve,

DRHF(R) = EB{R) + 4 - 2£(H-atom), (10.155)
R

obtained in the present model. Since DRHF(R) does not vanish for large
3The experimental value for the dissociation energy of H2 is £>o = —0.164. The

difference with the equilibrium value De = —0.175 comes mainly from the zero-point
energy of the vibrational mode.
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R, RHF has an incorrect dissociation limit. This can be traced back to the
fact that, in the R -> oo limit, EB(R) reduces to the energy of the H~
ion. Near the equilibrium distance Re, however, the RHF curve provides a
good approximation to the full D(R). This is also seen in Fig. 10.5, where
the occupation of the $ B and $A configurations in the ground state are
plotted. Up to R = 2.5 the true ground state is for more than 90% the
RHF configuration $ B - For large R, the ground state goes to $// , which
is an equal mixture of $4 and $>B and cannot be described in RHF.

10.4 Hartree—Fock in infinite systems

In the case of homogeneous infinite systems a considerable simplification
occurs: from the discussion on the Fermi gas in Sec. 5.1 it is clear that
only plane-wave states of definite momentum are appropriate sp states in
a translationally invariant system. Determination of the HF orbitals is
therefore not needed, because the HF basis coincides with the plane-wave
basis. In fact, it is easy to see that also the exact sp propagator4,

is automatically diagonal in momentum space, because total momentum

P — 5Zi=1 Pi is conserved by the Hamiltonian,

[H,P] = 0, (10.157)

and the ground state of the system has definite (zero) total momentum.
Therefore the propagator in Eq. (10.156) is only nonzero when the same
momentum is added and removed from the ground state,

G(p,p';E)=6PtP,G(p;E). (10.158)

We introduce the notation G(p; E) for the diagonal part of the sp propa-
gator. Also note that because of the isotropy of the system (there is no
preferred direction in space), the sp propagator can only depend on the
magnitude p = |p| of the sp momentum p. As an example, the propagator

4For brevity of notation the discussion is restricted to fermions of a single species,
but the considerations in Sec. 10.4 hold in general.

(10.156)
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for a noninteracting system with Hamiltonian

Ho = f + U = Y, ^al>aP + E U(PK°P, (1 0-1 5 9)
P p

becomes,

G^toE) = JiP:"F). + JiPF~P). , (10-160)
v ; £ - e{p) +17} E- e{p) -vq

with sp energy e(p) = p2/2m + U{p). Prom Eq. (9.2) it follows that also the
(irreducible) self-energy is diagonal in momentum space. As a consequence,
the Dyson equation becomes an algebraic relationship,

G(p;E) = GW(p;E)+G(p;E)i:*(p;E)G(p;E). (10.161)

The derivation of the HF approximation for homogeneous infinite sys-
tems therefore becomes extremely simple. Since the HF basis coincides
with the plane-wave basis, the HF one-body density matrix is according to
Eq. (10.38),

np>F
p = 6p,P>0(PF-p), (10.162)

equal to the Fermi gas step function.
As a result, the HF self-energy in Eq. (10.13) is given by

XHF(P) = -U{p) + Y, 0(PF - P') (PP'\ V \PP'). (10-163)
p'

and the HF propagator is

U (P,J^) = -^ uvi \ : (" Tl ~HWT\ ~> (10.164)

E-sHF(p) + ir) E -eHF(p) -IT}

where

eHF(P) = ̂  + U(P^+^(P)

= f^ + E eto - p1) (pp'\v ipp1)' (10-165)
p'

is the HF sp energy, independent of the auxiliary potential U(p).
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The total energy is, according to Eq. (10.29),

s" = il>*-P>[£+«"M]
= T™ + \*£(>(PF ~ P)O(PF - P1) (PP'\ V \pp'), (10.166)

pp'

where TFG = ff^; is the free Fermi-gas kinetic energy. Upon inspection,
the same result is also obtained in first-order perturbation theory, with the
kinetic energy f as unperturbed Hamiltonian, and the interaction V acting
as perturbation. This is not surprising, since the translational invariance
dictates that the HF ground state and the Fermi-gas ground state coincide,

|*FG> = \$HF) = I ] aP l°>' (10.167)
P<PF

so the first-order correction to the energy of the free Fermi gas is

(*FG\ V |$FG> = \ £ % F - p)0{PF - p') (pp'\ V \pp'). (10.168)
pp'

The HF energy in an infinite system therefore does not go beyond first-order
perturbation theory, in contrast to finite systems where the determination
of the shape of the HF orbitals already includes terms to all orders.

10.5 Electron gas

We assume, for simplicity, that we are dealing with the spin-unpolarized
electron gas, where equal numbers of spin-up and spin-down electrons are
present, or p(m'=+2) — p(m'=-z) = Ip. The generalization to the spin-
polarized case is straightforward (see Exercise (4) of this chapter). Since the
electron-gas Hamiltonian conserves spin, the sp propagator and self-energy
are diagonal in the spin projection quantum number ms.

According to Eq. (10.163) the HF self-energy for the electron gas is

Y;HF(pimSl) = ^2 0(PF-P2){pimSl,p2mS2}V'\pimSl,p2mS2),

(10.169)
with Fermi momentum PF = [3?r2p]3.
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The antisymmetrized matrix element in Eq. (10.169) is given by

(pimSl,p2mS2\V' \p1mSl,p2mS2) = (pimSl,p2mS2\ V \p\mSl,p2mS2)

- (PimSl,p2mS2\V' \p2mS2,p1mSl)

--S-'^V\PT^- (10"170)

The first (direct or Hartree) term in Eq. (10.170) is zero, according to
the definition in Eq. (5.28) for V (no relative momentum is transferred).
Only the second (exchange or Fock) term remains and the HF self-energy
becomes

*HFM = ~p(w ~P2)y j ^ ^ p (10-171)

which (as was also clear from symmetry arguments) is independent of ms.
Taking the thermodynamic limit and replacing the discrete sums over

momentum with integrations leads to,

I rPF r+1
 I

= - - / dp2 pi / dx^-—2 7,
T Jo 7-1 Pi + P2 - ^Xp2P2

= _ ^ f r f u 2 U 2 l n ! ^ , (10.172)
TTMi Jo U2 - Ml

where the angular integration has been performed and dimensionless vari-
ables u2 = P2/PF and u\ = PI/PF were introduced. The remaining integral
in Eq. (10.172) can be calculated using the standard primitives

d fxn+1 1 1
xn\n\x\ = f- ^ — (ln|a:| -) , (10.173)1 dx [n + V ' n+l'\ v '

and after some algebra, the HF exchange potential becomes

^(P) = -P^(l+
1-^ln1-±^). (10.174)

n \ 2u 1 - u )

Special values are £ ^ ( 0 ) = -2f and Y,HF{pF) = -^-. The HF sp
energies eHF(p) are obtained by adding the kinetic energy contribution,

eHF{p) = ^ + VHF{p). (10.175)
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The HF potential ZHF{p) and sp energy eHF(p) are plotted in Fig. 10.6
as a function of u = P/PF- The HF potential is negative, monotonically
increasing, and goes to zero like

^(P)->-|?^. (10-176)

in the p —> oo limit. Its main effect is a lowering of the sp energies eHF(p)
compared to the free sp spectrum.

The HF ground-state energy is, according to Eq. (10.29),

E"F = \ £ 0fo -p^K + eHFw\ = TFG + E^ (10-177)
and consists of the Fermi-gas kinetic energy TFG

TFG = J V ^ . (10.178)

to which the (negative) exchange energy Ex has been added,

E* = \T, °^F ~ P)EHF(P) = N (-^Pr) • ( 1 ( U 7 9)

Obtaining the last equality, again requires the use of the primitives (10.173).
In Fig. 10.7 the density dependence of the HF energy for the spin-

unpolarized electron gas,

EHF/N = ±PF - ^PF (10.180)

is displayed. Following convention, we do this as a function of

n = [ j L f = py ' -L (10.181)
[47T/9J [ 4 J pF

being the radius (in atomic units) of a sphere containing one electron. Note
that because of the variational nature of HF, the exact energy lies below
this curve, so the electron gas is definitely bound for densities lower than
rs « 2.5. This may seem surprising in view of the repulsive Coulomb
force between the electrons; the repulsion is globally compensated, however,
by the attractive interaction with the positive background. The residual
effect is dominated by the attractive exchange potential, which provides an
explanation for the cohesion energy of metals, where the valence electrons
move in the (lattice) background of the positive ions. As a matter of fact,
the equilibrium point in the HF description of the electron gas corresponds
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Fig. 10.6 HF potential (dashed line) and corresponding sp energy in the electron gas
with pp = 1.

to the minimum at r3 = 4.82 and E/N = —0.0475 in the energy versus
density curve in Fig. 10.7. It roughly agrees with the experimental situation
in solid Na with rs — 3.96 and cohesion energy E/N = —0.0415.

The HF energy becomes exact in the limit of large densities, as can be
seen on the basis of simple scaling arguments: taking the Fermi momentum
as the natural scale, the electron gas Hamiltonian in Eq. (5.27) can be
rewritten as

T^plW^aU^J (10.182)

Sf, _ [1 ' o 4TT 1
~PF[2 ^ (Vp3

F)[(p/PF)-(p'/pF)}i

m31mi,2

XalP+p>m3i
aiP-p,m32

a^-p',"i,2
aif>+p',m,1J'

where the operators inside the brackets contain only dimensionless quanti-
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Fig. 10.7 Binding energy per particle for the electron gas, in the HF approximation.

ties. As a consequence, in the limit of large density (PF —> oo), the kinetic
term dominates and the system approaches a free Fermi gas. The Coulomb
interaction acts as a small perturbation, and first-order perturbation the-
ory leads precisely to the HF result (see Sec. 10.4). One can show that
all higher-order terms in a perturbation expansion in powers of V are di-
vergent, and that an infinite set of higher-order terms must be summed in
order to get a finite result. In a large-density expansion of the electron-gas
energy the dominant term beyond HF is in fact logarithmic, a result that
will be further discussed in Sec. 14.4.

10.6 Nuclear matter

The HF approximation leads to miserable results for nuclear matter, when
realistic nucleon-nucleon (NN) potentials with strong short-range repulsion
are used. It is nevertheless instructive to derive the HF expressions, as it
is an ingredient in more elaborate theories (and provides a good exercise in
handling isospin and spin degrees of freedom).

We consider symmetric (equal numbers of protons and neutrons) and
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spin-unpolarized nuclear matter, which is a Fermi gas with degeneracy equal
to four. The expression for the HF self-energy is

EH F(P l) = (10.183)

^2 0(PF - P2) (Pirnslrntl,p2rnS2Tnt2\V \p1rnSlTntl,P2mS2mt2) •
P2m32mt2

The NN interaction is usually known in the form of a partial-wave de-
composition. Introducing center-of-mass momentum P and relative mo-
mentum p, we have

(Pp(LS)JT\ V IP'p'iL'S^J'T') = 5p,p,dj,r6T,T'6Sts'yVil,J(p,P').
(10.184)

These matrix elements correspond to the two-nucleon basis defined in
Eq. (7.10), including the coupling to total spin 5, isospin T, and total
internal angular momentum J. With the aid of the basis transformation in
Eq. (7.10) one can express the HF sp potential as

ZHF(pi) = - L 3 jdp2e(pF - P2) £ '(2T+ 1)(2J + 1)

x VflJ (|pi - pal, |pi - pal), (10.185)

where the primed summation is restricted to odd values of L+S+T. The HF
ground-state energy for nuclear matter can be evaluated using Eq. (10.185),
and typically does not even predict binding for nuclear matter. For the
CDBonn potential [Machleidt (2001)] e.g., one finds an energy per nucleon
of 4.64 MeV, and for the old Reid Soft Core potential [Reid (1968)] (which
has a much stronger repulsive core) even 176.25 MeV.

The underlying reason is the Slater-determinant nature of the HF
ground state, which allows two nucleons to come close together and ex-
perience the strong short-range repulsion of the NN potential. A more
reasonable description requires the inclusion of additional short-range cor-
relations between the nucleons, which is the subject of Sec. 16.3.1.
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10.7 Exercises

(1) Prove Brillouin's theorem in Eq. (10.60) by direct calculation of the
matrix element {$HF\ Ha\ah |$#f) , with \$HF) - f L 0 ! |0) a nd

H=Y/(a\T |7) aUy + J £ M V W) 44a*°7-
ay afiyS

(2) Prove Koopman's theorem in Eq. (10.61) by direct calculation of the

matrix element {$HF ah^ah | ^ H F ) -
(3) Generate the dissociation curve in Fig. 10.4 for the H2 molecule using

the two-dimensional model in Sec. 10.3.3.
(4) For the spin-polarized electron gas one can define the asymmetry pa-

rameter £ as

_p(+h)-p(-k)

P

where p(m») is the density of the spin-up or spin-down electrons and
P = Em p(m'> is the total electron density. Show that:
(a) The Fermi momenta of the spin-up and spin-down electrons are

p^ . ) = [ 6 7 r 2 p ( m . ) ] l = ( 1 ± O p F j

where pi? = [3?r2p]3 is the Fermi momentum of the unpolarized electron
gas at the same density.
(b) The Fermi-gas kinetic energy is

TFG(0 = 2>G(0)i[(l + 01 + (1 - 0 1 ] ,

where TFG(0) is the kinetic energy in Eq. (10.178) for the unpolarized
electron gas at the same density.
(c) The HF self-energy is

s-(»..K;p) = _ EL L±Qi + <i±f^,n 0±fit±l ) ,
n \ lu ( l ± ( ) 3 - u y

where u = P/PF-
(d) The HF exchange energy is

sa(O = ̂ (0)^(1 + 0*+ ( i -0 f ] ,
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where Ex(0) is the exchange energy in Eq. (10.179) for the unpolarized
electron gas at the same density.

(5) Derive the expression in Eq. (10.185) for the HF potential in nuclear
matter.



Chapter 11

Beyond the mean-field approximation

In this chapter we examine correlation effects beyond the mean-field or
HF picture, by considering the next higher-order contribution to the self-
energy of a particle in the medium. We recall that in the self-consistent
formulation of Ch. 9 the self-energy is related to the vertex function F
through the master equation Eq. (9.34). The HF approximation in Ch. 10,
was obtained directly from Eq. (9.34) by setting the vertex function F = 0.
In terms of diagrams, we had to consider the lowest-order contributions
to the self-energy in Fig. 9.2 [and Fig. 9.6a) if an auxiliary potential U is
employed]. The self-consistent treatment of these diagrams, indicated by
the Dyson equation in Fig. 10.1, was shown to be equivalent to the HF
formalism.

The HF self-energy does not depend on energy, and on several occa-
sions we pointed out the shortcomings of such an approach: some specific
features of interacting many-body systems cannot be explained by a static
self-energy, but require explicit energy-dependence. The latter appears in
the self-energy for the first time when contributions of second order in
the interaction are considered. These are listed in Figs. 9.3 - 9.5 and in
Fig. 9.66) - e). Upon inspection, the diagrams in Fig. 9.3 and Fig. 9.6c) -
e) are all reducible, whereas the diagrams in Fig. 9.4 and Fig. 9.66) are
already generated by the HF approximation. So the diagram in Fig. 9.5 —
sometimes called the second-order diagram, or the Born approximation to
the self-energy — is the only genuinely new contribution.

The present chapter deals exclusively with this second-order diagram,
mainly because its energy-dependence is archetypical for all higher-order
contributions and therefore warrants a careful analysis.

241
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11.1 The second-order self-energy

The second-order diagram was evaluated in the caption of Fig. 9.5, on the
basis of the Feynman rules for the sp propagator developed in Ch. 8. The
intermediate fermion lines in the diagram of Fig. 9.5 represent sp prop-
agators G^ corresponding to a noninteracting system with Hamiltonian
HQ = T + U, where U is an arbitrary auxiliary potential.

In keeping with our self-consistent formulation, we should now replace
the propagators Ĝ 0^ with interacting propagators in the self-energy

=mh.'̂  = -5/^/^SEWI"H(«H'IM

x G(e,C,E1)G(v,£;E2)G(v,\;El + E2 - E). (11.1)

Note that G is the sp propagator that solves the Dyson equation illustrated
in Fig. 11.1:

G(a, /?; E) = G<°>(a, /?;£) + £ G ( a , 7 ; £)£(7 ,6; E)G™(6, /?; E). (11.2)

The irreducible self-energy

ni,5;E) = -{1\U\5) + rt1\1,5) + ^\1,6;E), (11.3)

now contains the second-order self-energy £(2) from Eq. (11.1), in addition
to the static first-order contribution

F f\ E1

Z{1)(l,S) = -i ^-^(^\V\6V)G(u,^,E'), (11.4)

already analyzed in Ch. 10 [see Eq. (10.11)].
The self-energy1 in Eq. (11.3) corresponds precisely to the expression

one obtains by setting in Eq. (9.34) the vertex function F equal to the free
interparticle interaction V,

(Cp\r(E1,E2;E3,Ei)\Sa) = (Cp\V\Sa). (11.5)

The approximation in Fig. 11.1 thus corresponds to replacing the dressed
interaction F (which includes all in-medium scattering processes) with the
free interaction V, and hence is sometimes called the Born approximation
in this context.

1 Note that we have dropped the * superscript, since all self-energies in this chapter
correspond to irreducible terms.
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Fig. 11.1 Diagrammatic representation of the second-order Dyson equation.

By now it should be clear that the self-consistent formulation in
Eqs. (11.1) - (11-4) is independent of the auxiliary potential U, since the
first term in Eq. (11.3) cancels the {/-dependence of the unperturbed prop-
agator G^°\ Also note that the first-order contribution in Eq. (11.4) will,
in general, be different from the HF mean field, since the propagator G
solves the second-order Dyson equation in Eq. (11.2) rather than the HF
equation (10.5).

For a further analysis of the self-energy in Eq. (11.1) the same procedure
as for the HF self-energy in Sec. 10.1.1 can be used: we introduce the
Lehmann representation of the sp propagator G as

rm+~ro+* n— rn-'

G(a,/?;E) = V + V + E F -" • • ("-6)
^ E - £+ + IT] *-£ E-en -iv

and evaluate the double energy integration in Eq. (11.1) by complex contour
integration.

The integrals2 one encounters are of the form

I(E) = r ° ° *® ( Fi + Bi )
{£J) J^ 2iri \E'-f1+ir, + E'-h-ir,)

X \E> - E - h + iV
 + E< - E - b2 - irj) ' ^U'^

The integration contour along the real axis can be closed by including a
large semicircle in the upper or lower complex E' half plane. Since the
integrand behaves as |-E'|~2 for \E'\ —> +oo, such a semicircle (in the limit
of infinite radius) yields a vanishing contribution to the integral, and its

2The contour integrals required in this book, are seldom more complicated.
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inclusion does not change the result. The product in Eq. (11.4) contains
four terms. However, the F1F2 and B1B2 terms have two poles in the same
(upper or lower) half plane and do not contribute to the integral, as can
be seen by closing the contour with a semicircle in the opposite half plane.
The F1B2 and F2B\ terms have a pole in both half planes and contribute,
according to the residue theorem, as

r/Fx _ FlB2 B-LFI

K} E - ^ - b2) + it, E + (f2-h)-iv'

The self-energy in Eq. (11.1) is now easily evaluated by repeated use of
Eq. (11.8) and reads

s(2)(7,<S;£) = ̂ E £<7A|V|ei/)«£|V|<W (11.9)

„ ze z<. zv z^ z^ zx

~ni— - H i - * ~n2 — ~«2—* ~m3 + , "13+ ' \

+ y ^ zt zc zv zj z» z\ \

We recall (see Sec. 7.3) that the poles of the sp propagator in Eq. (11.6)
belong either to the particle addition (e^) or removal (e~) domain,

Vrn,n:£- < Ep <eF < e% < £+, (11.10)

which are separated by the Fermi energy

eF = ±(£- + £+}. (11.11)

As a consequence, the poles appearing in the second-order self-energy of
Eq. (11.9) obey the inequalities

Vmum : e-nx + £~2 - e+3 < eF < e+i + e+2 - e~3. (11.12)

This feature also holds in higher orders. In general, the energy-dependent
part of the self-energy has the same analytic structure as the sp propagator
G: a sum of simple poles, shifted slightly off the real axis into the lower
(upper) half plane for poles corresponding to the addition (removal) do-
main. Similarly to the propagator in Eq. (9.35), the self-energy contains in
many cases (whenever the energy spectra of the N - 1 or N + 1 systems
have a continuous part) branch-cuts starting at some threshold energy, in
addition to a set of isolated simple poles.

(11.8)
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11.2 Solution of the Dyson equation

Before proceeding in Sec.11.5 with the full self-consistent treatment indi-
cated in Fig. 11.1, it is instructive to examine how the Dyson equation is
modified by the presence of energy-dependent terms in the self-energy. To
simplify matters we evaluate the self-energy in Eq. (11.3) with HF prop-
agators and set the auxiliary potential U equal to the HF potential [i.e.
G^ = GHF in Eq. (11-2)]. In fact, this can be considered as a first iter-
ation step when solving the full self-consistency problem. We also choose
the HF sp basis, so the HF propagator,

G-(cft£) = U / ^ + ] ^ L ] , (in*)
[E - ea +ir] E - ea-ir)\

is diagonal in the sp labels.
To find the corresponding second-order self-energy we simply have to

set

Za+ = Sm>ae(a - F); zna~ = 6n,a6(F - a), (11.14)

in the general expression (11.9). The resulting self-energy reads

£(2) (T, S; E)=\Y1 ^ V W H V \SX>

x f6{e-F)9{v-F)0{F-\) ^ 6(F - e)9(F - i/)fl(A - F)\
V E - (ee + ev - ex) + it] E + (eA - ee - ev) - ir) J ' l

or, in a more compact notation,

v(2)r x r\ X ( ^T (-Yh3\V\1np2) {piP2\V\Sh3)

+ V- (TPsl ^ |Aifta> <ftift2| V IJps)^ f n i 6 )

J b s E + ( e P 3 - e h l - e k 2 ) - i V ) ' {

where labels identifying particle (p) and hole (h) states in the HF approxi-
mation have been introduced. We will proceed to examine the solution G
of the equation

G(a, fr E) = GHF(a, /?; E) + £ G(a, T, E)Z^ (%6] E)GHF{5,0; E).
7(5

(11.17)

(11.15)
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11.2.1 Diagonal approximation

It is clear from Eq. (11.16) that the second-order self-energy in principle has
non-diagonal contributions, even when evaluated with the diagonal HF sp
propagator. However, in some cases it is a good approximation to neglect
the off-diagonal terms. This happens e.g. in closed-shell nuclei, where off-
diagonal elements would require mixing between major shells having a large
energy separation.

Within this diagonal approximation, the self-energy (11.16) reads

E('>(a;S) = l ( V i W ^ ) ! 2

+ £ p i ^ m w i ' ), (11.18)

and the Dyson equation (11.17) becomes

G(a;E) = GHF(a;E) + G(a;E)Y,^(a;E)GHF\a;E). (11.19)

The latter has a simple algebraic solution,

For the last identity we used the inverse of the HF propagator in Eq. (11.13)
[the infinitesimal ±ir] are irrelevant when they do not appear in the denom-
inator of a pole term],

G^E)=E-£°- <U-2 1>

Extracting physical information from the sp propagator in general re-
quires the knowledge of its poles and residues (see Sec. 7.3). We will assume
throughout Sec. 11.2 that the self-energy Ŝ 2̂  has poles at a set of discrete
energies (i.e. a, set of isolated simple poles), and treat the case when branch-
cuts are present in Sec. 11.3, where infinite Fermi systems are discussed.
Of course, most realistic finite systems have branch-cuts as well, but since
practical calculations are usually performed by introducing a finite and dis-
crete sp basis, the self-energy is then automatically restricted to a discrete
pole structure.

For the propagator G(a;E) given by the formal solution in Eq. (11.20),
the discrete poles Ena obviously correspond to the roots of the nonlinear

(11.20)
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equation

Ena = ea + £(2)(a; Ena), (11.22)

with S(2)(a; E) defined in Eq. (11.18). The residue Rna at the pole Ena of
the propagator follows from

R™ = AB
(* - *««)* *> = A . E-t-^E)

= 1 - ^ - • (11.23)
V dbj E=Ena)

Note that, when determining the roots of Eq. (11.22), the infinitesimal
rkir] appearing in the denominator of Eq. (11.18) can simply be omitted.
In principle the ±ITJ generate, according to Eq. (7.15), an imaginary part
of the self-energy, consisting of a sequence of ^-functions located at the
discrete poles of the self-energy. Since discrete solutions to Eq. (11.22) can-
not coincide with a pole of the self-energy, the ^-functions do not influence
the position of the roots of Eq. (11.22), which are all real. This does not
hold when the self-energy has a continuous distribution of poles (which is
equivalent to a branch cut), as will be clarified in the discussion on infinite
systems in Sec. 11.3.

To gain insight into the location of the roots of Eq. (11.22), a graphical
solution of the Dyson equation is often helpful. In Fig. 11.2 the energy-
dependence of the self-energy T,^(a;E) of Eq. (11.18) is shown. The case
on display is for a typical confined finite system, having a discrete HF sp
spectrum. The hole and particle HF energies are separated by the particle-
hole gap, which has a width A = £™m — e™1 and is centered on the HF
Fermi energy,

SF = \(efn + £r
x). (H-24)

Since the poles in Eq. (11.18) all have positive residues, £'2)(a; E) is mono-
tonically decreasing where defined. There is a sequence of simple poles in
the addition domain, located at the unperturbed HF 2plh energies, and
another sequence in the removal domain, located at (minus) the unper-
turbed HF Ip2h energies. The poles of the addition and removal sequence
are separated by a gap of (at least) three times the HF particle-hole gap.

The roots of Eq. (11.22) are simply the intersection points of the self-
energy T,^(a; E) with the straight line E — ta. It is obvious from the graph
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Fig. 11.2 Graphical solution of Eq. (11.23). The second-order self-energy £(2>(a; E) of
Eq. (11.18) is indicated by the dashed line. The roots of Eq. (11.22) are given by the
intersections points with the straight line E — ea, drawn here as dots for two values of

Ea-

rn Fig. 11.2 that between any two successive poles of the self-energy a root

is located. In addition, there is a root to the left and right of the sequence

of self-energy poles. When a finite sp basis set is used, this implies that a

self-energy having D poles leads to a sp propagator with D + 1 poles.
The interpretation of these roots should by now be straightforward.

The poles Ena in the removal domain (below the Fermi energy) must be
interpreted as approximate energies of the eigenstates in the N — 1 system,

EnaKE?-E%-\ (11.25)

that can be obtained by removing a particle in the sp state a from the
TV-particle ground state. The residue then corresponds to the (squared)
removal amplitude,

iC^K^KK)!2- (11.26)
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Similarly, the poles Ena in the addition domain (above the Fermi energy)
correspond to eigenstates in the N + 1 system,

Ena « E»+1 - Ej?, (11.27)

having addition amplitudes

Rna*\(y»+l\at\*»)\*. (11.28)

Note that since dH^(a;E)/dE < 0, the residues Rna that follow from
Eq. (11.23) obey

0 < Rna < 1, (11.29)

in accordance with their relation to the physical addition or removal am-
plitudes.

All of this means that adding the energy-dependent second-order self-
energy to the static HF self-energy produces quite dramatic effects. The
removal from the ground state of a particle in an occupied HF sp state a
no longer leads to a unique TV — 1 state, as predicted in the HF picture,
but rather to a large number of N — 1 states, each having a finite removal
amplitude. Moreover, the removal from the ground state of a particle in an
unoccupied HF sp state a, clearly impossible in HF, is now allowed. Similar
statements hold in the addition domain. Of course, any more sophisticated
treatment of the self-energy will also include these fragmentation effects on
the sp strength. Experimental information on physical spectral functions
indicate that such features are indispensable for a meaningful comparison
with data, as discussed in Sees. 7.7 and 7.8.

As a final remark on Fig. 11.2, we note that if the unperturbed sp energy
ea is not too far removed from the Fermi energy, the root of Eq. (11.22)
lying in the interval which separates the removal and addition domain, has
a special character. Since the self-energy T,(2\a;E) has no poles in this
interval, the energy derivative is relatively small here, and as a consequence
the residue corresponding to the solution will be quite close to (but still
smaller than) unity. Such a solution represents a quasiparticle or quasihole
excitation in a finite system, and corresponds to a A" ± 1 eigenstate which
has a rather pure sp character. On the other hand, if the sp energy ea

is far from the Fermi energy, it is in a region where the density of 2plh
or Ip2h states is high, and the strength of this sp state will be strongly
fragmented over many N — \ states. The different fragmentation pattern
observed for valence holes and deeply-bound hole states in finite nuclei is
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readily understood by these elementary considerations and explains the
qualitative behavior of the data discussed in Sec. 7.8.

11.2.2 Link with perturbation theory

As shown in Ch. 10, the HF formalism assumes that the JV-particle ground
state is the HF Slater determinant,

N

(HF:) | O ~ K F } = IKl0>> (U-30)

and that the eigenstates of the N + 1 system are simple lp excitations,

(HF:) \9%+1) * 4\*%F). (11.31)

Corrections to this picture can be obtained by allowing admixtures with
2plh excitations,

K+1)«arat|$£F)+ J2 HXV^AA^KF)- (11-32)
Pi<P2 h3

The eigenstates in this basis are found by diagonalization of the Hamilto-
nian matrix,

where V contains the coupling between lp and 2plh configurations,

VPlP2k3 = (KF\aPHalalahs \*HF) = (P^l V | f t f t ) • (11.34)

Under the assumption (typical in perturbation theory) that the 2plh con-
figurations do not interact among themselves, we have

£PlP2h3,p'lP'2h'3 = {^HF\a{'3aP2O'PiHallal2ah3 \$%F)

« 6Pi,p'1SP2,PlJh3,h's(£p1 + £P2 - eh3). (11.35)

Elimination of X from Eq. (11.33) then leads to

X = -^Zs^x, (11.36)

Ex = (ep + V^r^V^ x. (11.37)

(11.33)
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According to Eq. (11.37), the eigenenergies for states with x ^ 0 [i.e. states
that have a nonvanishing overlap with the lp state aj, |$# F ) ] are therefore
the roots of

E = Cp+ E B ' < * y r .. (11.3S)

This is seen to be analogous to Eq. (11.22), but only the forward (2plh)
term of the self-energy in Eq. (11.18) is generated, as a consequence of the
unperturbed HF ground state (11.30) appearing in the ansatz of Eq. (11.32).
In contrast, the Green function formalism which led to Eq. (11.22) automat-
ically builds in ground-state correlations, in a single coherent framework for
both the N + 1 and JV — 1 excited states [Blaizot and Ripka (1986)].

11.2.3 Sum rules

The analytic structure of Eqs. (11.18) - (11.22), generated by the second-
order diagram, is in fact quite general and also appears in more complicated
cases, when higher-order diagrams or an infinite resummation of a subclass
of diagrams are included in the self-energy. Hence, it is worthwhile to
examine the properties of the generical expression

G(E) = E _ £
l _ n E y (11-39)

where both the propagator G(E) and the self-energy £(£?) are a sum of
simple poles,

=w = ? ^ . G<£> = £ ^ v <"•«»
Analogous to Eq. (11.22), the fijv are the roots of

^ - £ = E?^V' (1L41)

whereas the sp strength at UN follows [see Eq. (11.23)] from

s " = i , y 1 . . • (1 L 4 2)

However, without explicitly solving Eq. (11.41) it is possible to derive sum
rules which relate the distribution of sp strength (CIN,SN) with the self-
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energy strength (cun,sn) and which are often useful as a numerical check
on calculated spectral functions.

Considering the leading order in a (1/E) expansion of Eq. (11.39) im-
mediately leads to

£->oo=> ^ 5 J V = 1. (H-43)
N

This means, in accordance with the fundamental sum rule in Eq. (7.18),
that the summed sp strength is always equal to unity, irrespective of the
values of the poles and residues appearing in the self-energy.

If we let the energy E in Eq. (11.39) coincide with one of the poles ujn

of the self-energy we get

E->un^ 0 = T _ SN , (11.44)
*-£ UN ~ L0n

whereas the limit E -> fijv leads back to Eq. (11.41). Combining
Eq. (11.44) with Eq. (11.41) leads to the result

T,SN(nN-e) = Ytj:rr1~=O, (11.45)

which implies that the centroid of the sp strength distribution is the sp
energy e.

In a similar way, general recursion formulas for the higher-order central
moments of the sp strength distribution are obtained. Denning

Mk = ^2(nN - e)kSN ; mk = J2^n-e)ksn, (11.46)
JV n

we have according to Eqs. (11.43) and (11.45) that Mo = 1 and Mi = 0,
and for k > 2 we can derive

Mk = J2 sN(nN - e)'-1 V Sn

= V s V ? \{nN - e)"-1 - (Un - e)"-1 (un-e)k-']
^ " V M (njv-eJ-K-e) + SlN-tJn \
k-2

= YlMimk-i-i- (11.47)
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In particular we find M2 = m0, i.e. the second central moment, describ-
ing the width of the spectral function, is equal to the summed self-energy
strength.

The moments of negative order M_^ (or inverse energy-weighted sum
rules) can be obtained by recursion as well. Considering, for k > 0,

M'k = E j^W = £ W^F* ? ^ ^ ' (1L48)

and using the identity

* = I V - (1149)
a;*+i(x-2/) / + 1 ( z - y ) 4 ^ ylxk~l+2' U-1-^;

with x = Ojv — e and y = uin — e, one arrives at

Af_(fc+1) = — ( M_fc + Y"M_/m_(fc_(+i) J . (11.50)

11.2.4 General (nondiagonal) self-energy

We now drop the simplification introduced in Sec. 11.2.1 and include also
the nondiagonal contributions to the self-energy in Eq. (11.16). We will
again assume that the self-energy has a set of isolated simple poles and
omit the ±ir) in the denominator. The Dyson equation can then generically
be rewritten as (we use square brackets to emphasize the matrix structure)

\G{E)\ = (E-\B\-\£.{E)\y\ (11.51)

where both the propagator and the self-energy are sums over discrete simple
poles,

[̂ )i = E ^ . Pwi = E ^ i - (1L52)

Note that all matrices have sp labels as indices, and that the matrices [SN]
and [sn] are hermitian and positive (having real eigenvalues > 0).

The analysis proceeds in much the same way as in Sec. 11.2.1, but
some care has to be taken because of the possibly noncommuting matrix
quantities. From Eq. (11.51) it is clear that a pole $IN of the propagator is
a zero eigenvalue appearing in the nonlinear eigenvalue equation

QNXN = ([e] + [X(nN)])XN. (11.53)
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We allow for the possibility that flj^ is a degenerate eigenvalue, and write
the spectral decomposition as

[e] + [E(njv)] = nN[PN] + ^ A M [ P M ] , (11.54)
M

where the AM (7̂  fijv) are the other eigenvalues of ([e] + [S($7iv)]) and
the matrices [PN] and [PM] are projection operators on the corresponding
eigenspaces.

The residue of the propagator [G(E)] at the pole fijv is given by

[SN]= lim (E-tlN)[G(E)]

= lim i) {nN + v - [s] - [S(fiiv)] - ^ [ S ' ^ ) ] ) " 1 , (11.55)
77—>-0

where the energy-derivative of the self-energy is the negative hermitian
matrix

Using the spectral decomposition Eq. (11.54) one can verify that the matrix

[A]=ilN+v- [e] - [£(*!*)] = V[PN] + 52({IN - AM + rf)[PM] (11.57)
M

is invertible for 77 ^ 0, the inverse being

M" ^ I + E ^ . ^ I P M ] . (11JB)

The residue [S^] in Eq. (11.55), rewritten in terms of [A]"1, reads

[SN] = lim 77 (1 - vlAr^'iilN)])'1 {A}-1. (11.59)
77->0

The limit 77 —>• 0 can now be safely taken, and since

YirnrjlA]-1 = [PN], (11.60)

the residue matrix at the pole CIN is

[SN] = (1 - [PjvHE'Cnjv)])-1^"]- (11-61)

It is now always possible to choose eigenvectors X/w, corresponding to
a degenerate eigenvalue FIN in Eq. (11.53), in such a way that [PN] =

(11.56)
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J2v^Nv^Nu a nd [£'(fi/v)] is diagonal in the [PAr]-subspace,

Xlfv[i:'(nN))XNv. =-6vyu2Nv. (11.62)

Using this basis, Eq. (11.61) can be reexpressed as

[^ = E nh&XN"x»>" (11-63)
which clearly shows that the residue matrix [SN] is indeed a positive her-
mitian matrix.

At this point it may be helpful to mention that the above analysis
is given primarily for the purpose of mathematical completeness. In the
majority of practical applications, the eigenvalues fijv in Eq. (11.53) are
nondegenerate, i.e. [PN] — XNXN, and Eq. (11.61) simplifies to

[SN] = 7—^ XNXI. (11.64)
J l-xlf[V(nN)]XN N { '

Graphically, the situation is also a bit more complicated than in the
diagonal case. The poles of the propagator in Eq. (11.51) can be found by
plotting the eigenvalue curves \V(E) of the matrix [e] + [E(E)] as a function
of E, and determining the intersection points XU(E) — E. As an example,
the eigenvalue curves of the matrix

are shown in Fig. 11.3 as a function of energy. The dimension of the matrix
(corresponding to the dimension of the sp space) is 4. The residue matrices
[sn] at the poles wn have rank one, except for the pole at W3 = 0 which has
rank 2.

The eigenvalue curves in Fig. 11.3 are all monotonously decreasing where
defined. This is easily understood by realizing that the energy derivatives
follow from first-order perturbation theory,

K(E) = Xl{E)V{E)]Xv{E) = _Y/XlfJlSn]X;iE) < 0. (11.66)

Also note the curious behavior of the \V(E) near a pole un of the self-
energy. Some of the eigenvalues curves have an asymptote, whereas others
are regular at uin. It turns out that, if dn is the rank of the residue matrix

(11.65)
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Fig. 11.3 Energy-dependence of the four eigenvalues \v(E) of the nondiagonal second-
order self-energy as in Eq. (11.65). The dots correspond to the roots of the equation
E = \v(E).

[sn] in the self-energy, then dn of the eigenvalue curves have an asymptote
at E = u)n. This can be seen by introducing the spectral decomposition

[e] + [E(£)] = 2 K{E)[PV{E)) (11.67)

and expressing [sn] as

[*„] = lim (E - u,n)[X(E)])
E-iUn

= lim J2 i(E ~ ^n)Xu(E)} [PV{E)]. (11.68)
V

It follows that one of the eigenvalues \V{E), say A0(.E), must behave as
Arj(.E0 —> E_u in the limit E —> wn, whereas the other eigenvalues are
regular at uin. The eigenspace corresponding to the singular eigenvalue AQ
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then has a projection operator [Po] = ^[sn], its dimension being equal to
the rank of [sn].

Prom the graphical analysis it is clear that the total number of poles OAT
of the propagator in Eq. (11.51) is M + J^n dn, where M is the dimension
of the sp space. Applied to the second-order self-energy, J2n dn is the
dimension of the combined 2plh and Ip2h space, where the dn take possible
degeneracies in the spectrum of 2plh or Ip2h energies into account. The
number of poles in the propagator therefore agrees with what we expect
from an eigenvalue problem describing the mixing of M sp states with the
2plh and Ip2h states.

11.3 Second order in infinite systems

The second-order problem treated in Sec. 11.2 can be repeated for (ho-
mogeneous) infinite systems. Taking the thermodynamic limit then leads
to a vanishing particle-hole gap and the appearance of branch-cuts in the
second-order self-energy. The analysis of the resulting energy-dependence
is used here to introduce, without mathematical rigor, some properties of
the exact propagator and self-energy.

11.3.1 Dispersion relations

In the case of a homogeneous infinite system the sp propagator and self-
energy are automatically diagonal in the plane-wave basis, as was discussed
in Sec. 10.4. The second-order self-energy in Eq. (11.18) becomes3

rt2\p;E) = \ J2 \(PP3\V\PiP2)\2x (11.69)
P1P2P3

/6{Pl -pF)0(p2 -PF)0(PF -PS) | 9{PF -PI)0(PF -P2)8{P3 - PF)\

\E~ [e{Pl) + e(p2) - e{p3)} + «j E + [s(p3) - e(Pl) - e{p2)] -it])'

The e(p) represent HF sp energies, and SF = S(PF) is the HF approximation
to the Fermi energy.

The interaction matrix elements in Eq. (11.69) have the form

(PlP2\V\p3p4) = ^ Spi+p2tP3+p4w{p1,p2,P3,P4), (11.70)
3For notational simplicity we consider fermions of a single species. The inclusion of

spin or isospin degrees of freedom does not change the present considerations.
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where w is a continuous function of the sp momenta, V is the normalization
volume, and momentum conservation is expressed through the Kronecker-<5.

At this point the thermodynamic limit can be taken, resulting in

ZM(p;E) = Z?(p;E) + ̂ )(p;E), (11.71)

with

Si2)(p; E) = \ JdPi JdP2 JdP3 s(Pi +P2-P3-P)

X K P ' P l ) l E-ieM+eM-eWHir,' (1L72)

SL2) (p; E) = ̂  jdpx Jdp2 Jdp3 6{Pl +P2-P3-P)

v , ^20(PF ~ PlWJPF ~ P2)0(P3 -PF) , „ ?ON
X Ul(p, p«) — j — ; -; —. (11.73)

E - [e(p3) - e(pi) - e(p2)] - it)
As a consequence of replacing discrete summations with integrations

over continuous sp momenta, the discrete poles in Eq. (11.69) have merged
into the branch cuts which appear in Eqs. (11.72) and (11.73). The energy-
dependent self-energy ^2\p;E) is therefore an inherently complex quan-
tity, and the real and imaginary parts are found by direct application of
Eq. (7.15).

As an example, consider the real part of S^ (p; E),

ReEf (p; E) = \v JdPi \dPi fdP* S(Pi +P2~p3-p)

v I i M2^(PI -PFW(P2 -PF)0{PF ~P3) n i 7A,
X H ^ ) I E-leW + eM-ete)] ' (1L74)

This is a continuous function of p and E, which can be calculated directly
from Eq. (11.74) by performing the integration over the sp momenta. The
singularities in the denominator, which appear for E > Sp, should then be
regulated by the principal-value procedure, as indicated by the V symbol.

In many cases, however, it is more convenient to consider only the imag-
inary part

lmZ{l\p;E) = -7T- dpi dp2 dp3 <5(pi + p 2 - p 3 - p)

x Kp,Pi ) | 2 0(p i -PF)0(P2 ~PF)O{PF ~PS)

xS(E- [e(Pl) + e(P2) - e(p3))). (11.75)
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This is again a continuous function of p and E, and the presence of the
additional (energy-conserving) (̂ -function makes the imaginary part some-
what easier to calculate than the real part. Once the imaginary part is
known, the real part can be obtained by the following dispersion relation,

K^\PiE) = -lvUl-?f^, (11.™,
7T j hi — hi

as may be readily verified from Eq. (11.74).
From Eq. (11.75) one also concludes that ImE^' (p; E) is negative, and

vanishes for E < ep due to the presence of the energy-conserving ^-function.
Similar relations hold for ImE+ {p; E) and we may summarize:

lmYi(l\p;E) = 0, ImSL2)(p;E) > 0 for E < eF,

ImE(_2)(p;£) = 0, ImT,^ (p;E) < 0 for E > eF. (11.77)

The dispersion relation obeyed by £_ reads

R^\p-E) = \vjdE>lmf}P
E

E\ (11.78)

and may be combined with Eq. (11.76) into the single relation4

M«M a>/glMy. (11.79)

A characteristic behavior for the real and imaginary part of the self-energy,
connected by a dispersion relation, is shown in Fig. 11.4. The energy-
dependence of the second-order self-energy in Eqs. (11.76) - (11.79) is typi-
cal for all contributions to the (irreducible) self-energy, as discussed further
in Sec. 11.4.4.

11.3.2 Behavior near the Fermi energy

The analysis of the second-order self-energy in Sec. 11.2.1 made it clear
that for finite systems having a particle-hole gap, E'2' has no poles (or
equivalently: ImE*2) = 0) in a region centered on the HF Fermi energy
(11.24). In normal infinite Fermi systems there is no gap, but the imaginary
part of the self-energy E^2' still vanishes at SF, as can be seen (by continuity

4The self-energy in a finite discrete sp basis (as in Sec. 11.2) also obeys these dispersion
relations, but only in a trivial way: the imaginary part is a discrete sum over energy
5-functions with no connection to an integration over continuous sp labels.
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Fig. 11.4 Top left panel: illustrative energy dependence of the imaginary part of the
self-energy |ImS'2)(p; E)\. In the other panels, also the corresponding real parts from the
dispersion relations in Eqs. (11.76), (11.78), and (11.79), are displayed (dashed lines),
respectively.

requirements) from the energy dependence in Eq. (11.77). In fact, the
energy-dependence of ImS^2) near £p is entirely governed by phase-space
restrictions, and it is easy to show that for E —» EF,

|ImE(2) (p;E)\^Cp(E-eF)\ (11.80)

where Cp is constant [Luttinger (1961b)].

As an example, we investigate in Eq. (11.75) the limit E -^ EF- Taking
the step functions into account the sp energies can be written as

E(PI) = £ F + « I , e(p2) =eF + u2, e(p3) = eF - u3, (11.81)

where Ui > 0 (i = 1,2,3). The energy-conserving <5-function in Eq. (11.75),

with E = SF + u, requires tha t u = u\ + u2 + u3. The limit « 4 o then
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clearly implies that all m -̂> 0, and the magnitudes pi = |p,| of the internal
sp momenta in Eq. (11.75) are by necessity close to PF- To lowest order in
u, we can therefore set pi = pp in the interaction w, leaving w as a function
of the angles only. Moreover, for p < 3pF it is always possible to find angles
fulfilling momentum conservation p\ +p2 = P+P3 with magnitudes pi = pp
for the internal momenta5. As a result, for u -^ 0 the angular part of the
integration in Eq. (11.75) is just a proportionality factor

- f / d n p i JdnP2Jdnp3 \w(p,Pi)\
26(Pl +P2-p3-p), (11.82)

evaluated with p, = pp, and the energy-dependence is contained in the
phase-space integral

/•+OO p+co rpF

F(u) =pF I dpi I dp2 / dp3 6{u - m - u2 - u3). (11.83)
Jpf JPF «0

We may assume that the sp energy e(p) is monotonous near €F, and change
the integration variables from pi to m. The result,

6 /•« /•« /•«

• F ( u ) = r >̂  F \ i s / rfui / du2 / d"3 <5(u - ui - U2 - "3)
[e ( P F ) ] 3 JO JO JO

- wh1^ <1L84)

proves the quadratic dependence of ImS+ on u = E - Ep near the Fermi
energy. The same reasoning, applied to Im£_ , also leads to the quadratic
behavior in Eq. (11.80), with the same proportionality constant Cp. As
shown by [Luttinger (1961b)], similar arguments hold to all orders in per-
turbation theory, and the property (11.80) can be extended to the exact
self-energy of a normal Fermi system.

11.3.3 Spectral function

The spectral function is in general determined (see Sec. 7.3) by the imagi-
nary part of the propagator,

S(p;E) = ~\ImG(p;E)\. (11.85)
IT

5This is not true for one-dimensional systems, and in this case ImS would be propor-
tional to (E -eF) [Luttinger (1961b)].
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In the static HF approximation the propagator in Eq. (10.164) therefore
implies that the spectral function is a single delta-peak,

SHF(p;E) = 6(E-e(P)), (11.86)

located at the HF sp energy e(p).
In analogy with the previous discussion on finite systems, we expect that

dynamic (energy-dependent) contributions to the self-energy will provide a
broadening of this peak. Indeed, one finds in normal Fermi systems that
the spectral function (at least for sp momenta close to PF) is dominated
by a quasiparticle peak with a certain finite width. The latter represents
a region of "most likely" energies of the residual system when a particle
with momentum p is added or removed, and which can be considered as
a remnant of free-particle propagation when the interparticle interaction is
turned on.

To see how this works in practice, we turn again to the second-order
problem. From the Dyson equation

G(p;E) = GHF(p;E)+GHF(p;E)XW(p;E)G(p;E) (11.87)

and its algebraic solution [see Eqs. (11.19) and (11.20)],

the spectral function is immediately obtained as

(11.89)
Obviously S(p; E) is a continuous function of p and E and, due to the
magic of complex analytic functions, it automatically obeys the sum rule
[see Eq. (11.43)]:

JdES(p;E) = l, (11.90)

when Im£(2) and ReE^2) are connected by the dispersion relation in
Eq. (11.79).

Near the Fermi energy, Imll^ (p; E) varies proportional to (E - ep)2

(see Sec. 11.3.2) and hence is quite small. Upon inspection of Eq. (11.89),
the same must hold for the spectral function unless the term [E - e(p) —

(11.88)
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ReS^2' (p; E)]2 in the denominator becomes simultaneously small. We there-
fore expect S(p; E) to be peaked near the energy EQ(P) which is a root of

EQ(P) = e(p) + Re^(p;EQ(p)). (11.91)

Eq. (11.91) is an implicit relation between the sp momentum p and energy
E, and defines the quasiparticle spectrum6 EQ(P) of the present approxi-
mation.

At this point the lack of self-consistency in Eq. (11.87) gives rise to a
contradiction. As the quasiparticle peak can be thought to evolve adiabat-
ically from the noninteracting spectral function, it is clear that for p < PF
the peak must contribute to the removal strength and thus Eq(p) < ep.
Likewise, for p > pF one must have EQ(P) > £F- SO the Fermi energy,
which separates the removal and addition domain, plays a double role in
the exact theory: firstly, the imaginary part of the self-energy switches sign
at SF, and secondly, the Fermi energy is equal to the quasiparticle energy
at the Fermi momentum, EF — EQ(PF)-

In the present non-self-consistent approximation these definitions are
clearly incompatible: the self-energy is evaluated with HF propagators,
and switches sign at the HF Fermi energy S(PF), which will in general be
different from the Fermi energy EQ(PF) defined in Eq. (11.91). Obviously,
only the self-energy determined in a self-consistent approach will share this
property with the exact self-energy.

11.4 Exact self-energy in infinite systems

After the preceding study of the second-order self-energy, we are now in
a position to discuss the energy-dependence of the exact (irreducible) self-
energy, as expressed in Eq. (9.34) or diagrammatically in Fig. 9.13. For
simplicity the auxiliary potential U is omitted here, as its inclusion presents
no real difficulty.

6This is the most appropriate definition of the quasiparticle spectrum, but other
definitions also exist, see e.g. the review papers [Mahaux et al. (1985); Mahaux and
Sartor (1991)].
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11.4.1 General considerations

We begin with some general considerations that also hold for finite systems.
The self-energy can usually be split up7 according to

S(7,5; E) = S,(7,5) + Sd(7,5; E), (11.92)

where the static part Es (the dynamic part Sd) corresponds to the second
(third) term in Eq. (9.34), or to the second (third) diagram in Fig. 9.13.

The static self-energy £ s in Eq. (11.92) is real and independent of en-
ergy. In terms of diagrams, S s contains all possible contributions to the
self-energy where the external propagators are attached to the same inter-
action line. According to Eqs. (10.12) - (10.13) Es equals

Zs(-y,6) = Y,('W\V\6v)nltv, (11.93)

which is the expression for the HF potential, but evaluated with the exact
one-body density matrix n^, of the system.

The energy-dependence of the dynamic self-energy E^ has been worked
out in Sec. 11.1, upon replacement of the vertex function F with the tp
interaction. The exact F is itself energy-dependent, but the structure of S^
remains the same: a sum of simple poles, possibly merged into branch cuts,
shifted slightly off the real axis into the lower (upper) half plane for poles
corresponding to the addition (removal) domain. As a consequence, the
dynamic part vanishes at large energy, and only the static part remains,

S.(7,5)= lim £(7,<S;E). (11.94)
E—»oo

11.4.2 Self-energy and spectral function

We now continue to discuss the case of (homogeneous) infinite systems.
The static part of the self-energy,

Vs(p) = Yjn{pl){pp'\V\pp'), (11.95)
p'

is expressed in terms of the exact momentum distribution n(p), which re-
places the Fermi-gas step function 6{pp —p), appearing in the HF result of

7In some cases, e.g. a hard-core potential becoming infinitely repulsive when the
interparticle distance is smaller than some finite hard-core radius, the separate terms in
Eq. (11.92) are both divergent; in that case the dispersion relation in Eq. (11.96) must
be replaced by so-called subtracted dispersion relations.
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Eq. (10.163).
As in Sec. 11.3.1, the dynamic self-energy £d(p;£) is a complex func-

tion, whose analytic properties can be simply taken over from Eqs. (11.76) -
(11.79), by replacing E'2) with Ed. The dispersion relation (11.79), e.g.,
becomes

ReX(P;E) = S((p) + \v jdE> ^ f ^ , (11.96)

where one should take into account that

Re£(p; E) = T,s{p) + ReT,d(p; E). (11.97)

Prom the results in Sec. 11.3.2 it can be inferred that, as E —> £p,

\lmV{p;E)\^Cp{E-eF)2, (11.98)

with Ep the exact Fermi energy. Since the spectral function can be ex-
pressed as [see Eq. (11.89)]

S(P;E) = , - | I m S f e E ) l , (11.99)

[E - L - R e S f e E)\2 + ( ImSfe EW
also S(p; E) [for p ̂  pF] vanishes quadratically at Ep,

S(p;E) ~ (E-eF)2 as E-)• eF. (11.100)

11.4.3 Quasiparticles

We again expect, for the same reasons as explained in Sec. 11.3.3, that
the spectral function S(p; E) is peaked near the root of the quasiparticle
equation

EQ(P) = e.(p) + Re£d(p; EQ(p)), (11.101)

where £s(p) = ^ + Ss(p). In a normal Fermi system the self-energy
E(p; E) is smooth and can be linearized around p = PF and E = ep- One
can then show that, at least for momenta p near PF, Eq. (11.101) has a
unique quasiparticle root EQ (p), which coincides with the Fermi energy at
p = pF, i.e.

EQ(PF) = eF = es(pF) + ReSd(pF ;£ F) . (11.102)

The behavior for E —» EQ{P) of the spectral function S{p\E) in
Eq. (11.99) is easily analyzed. A first-order expansion of ReS(p;E) in
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[E-EQ(p)\ leads to

E - es(p) - ReEd(p;E) -> [E - EQ{p)} (l - d R ^ E ) \
V OE J E=EQ(p)

(11.103)
Defining the quasiparticle strength ZQ(P) as

the spectral function in Eq. (11.99) can be decomposed as

S(p;E) = SQ(P;E) + SB(p;E), (11.105)

where the strongly varying part (the quasiparticle peak) is isolated in
SQ(P;E),

1 (n-F) iZ*Q(p)\ImX(P;EQ(p))\

SQ{P'E) = [E-EQ(PW + [ZQ(P)l^(P;EQ(P))r (U-106)

and the remainder SB{P', E), called the background contribution, is slowly
varying near EQ (p).

The energy-dependence of SQ(P; E) in Eq. (11.106) has the well-known
Breit-Wigner shape,

£A(E) = ^ ^ , (11-107)

which is a distribution normalized to unity and having a full width at half
maximum equal to 2A. We may rewrite

SQ(P;E) = ZQ(P)CAQ{P)(E - EQ(p)) (11.108)

and interpret Eq. (11.105) as a Breit-Wigner shaped quasiparticle peak
with strength ZQ(P) and width parameter

&Q(P) = ZQ(P)\Imi:(p,EQ(p))\, (11.109)

superimposed on a smooth background.
In Fig. 11.5 the typical energy-dependence of the spectral function for

various sp momenta is shown. Note that, as p —>• pp, the quasiparticle
energy approaches the Fermi energy, EQ(P) -» eF, and the imaginary part
of the self-energy vanishes,

ImS(p; EQ(p)) -> Im£(p; eF) ->• 0. (11.110)

(11.104)
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Fig. 11.5 Evolution of the energy-dependence of the spectral function S(p;E) for in-
creasing values of the sp momentum p. The dashed line represents the Breit-Wigner
approximation in Eq. (11.108). The middle panel is for p = pp, where the quasiparticle
peak is a (5-spike, indicated by the vertical line at EF-

From Eq. (11.109) it follows that the quasiparticle peaks become narrower
as we approach the Fermi momentum, and at p = pp the peak has zero
width, or AQ(pF) = 0. Since limA-+o£&{E) = S(E), the quasiparticle
peak for p = pF is a <5-spike, located at the Fermi energy and with strength
ZF — ZQ{PF). The decomposition of the spectral function in a quasiparticle
peak and background, is only exact and unambiguous at p = pp. The
background contribution is the smooth curve in the middle panel of Fig. 11.6
and can be expressed as

&&«*) = ,—i^^iB . („.„!>
[ £ - £ ; - ReS{pF;E)]' + [ImSbr;E)l2
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Note that SB(PF',E) is in general nonzero at E — EF, as can be seen by
expanding the numerator and denominator of Eq. (11.111) in u — (E — ef).
To leading order in u one gets

and SB{PF;£F) = ^CFZ2F.

11.4.4 Migdal-Luttinger theorem

The so-called Migdal-Luttinger theorem [Migdal (1957); Luttinger (1961a)]
states that the momentum distribution n(p) in a normal Fermi liquid has
a discontinuity at p = pp with magnitude equal to Zp,

l im [n{pF -v)~ n(pF + v)] = ZF. (11.113)
77^0

This can now be understood from the relation

n(p)= fFdES{p;E), (11.114)
J — oo

and the behavior of the spectral functions in Fig. 11.5. A decomposition of
S(p;E) in Eq. (11.114) according to Eq. (11.105) leads to n(p) = nQ(p) +
H,B(P), where

nB{p) = [ FdE SB(p;E) (11.115)
J—oo

is a smooth function of p, which cannot contribute to the discontinuity.
The contribution of the quasiparticle peak is

nQ(p) = f "dE SQ(p;E) = ZQ(p) [ 'dE CAQ{P)(E - EQ(p)). (11.116)
J—oo J—oo

In the limit p —»• pp the peak position EQ(P) approaches SF- However, the
width A Q ( P ) of the peak decreases quadratically like [EQ(P) — ep]2- As a
consequence, the integration in Eq. (11.116) will, for p —> pp, sample the
peak either completely [for p < pp and EQ(P) < Ep], or not at all [for
p > pF and EQ(p) > eF], i.e.

nQ{p) -> ZQ(p)8{pF - p), (11.117)

and the theorem follows.

(11.112)
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11.4.5 Quasiparticle propagation and lifetime

A further interpretation of the width AQ(P) of the quasiparticle peak follows
from the fact that the spectral function Sq(p;E) in Eq. (11.108) can be
derived, through the relation SQ(P; E) = ^\lmGQ(p; E)\, from the following
quasiparticle propagator

In Eq. (11.118) the structure of a noninteracting propagator (10.160) can
be recognized, but with a reduced strength ZQ(P) < 1 and a complex sp
energy EQ(P) ± iAg(p). Going back to the time domain by a FT,

GQ(P;t) = ^JdEe-iEtGQ(P;E), (11.119)

= ^ELe-iEQ(P)te-*Q{P)%[0(p_pF)0{t) _ 9{pF_p)e{_t%

we can see that the imaginary part of the sp energy introduces an expo-
nential decay in time of the propagator, i.e. the excitation created by the
addition or removal of a particle has a finite lifetime, which is inversely
proportional to the width AQ(P). This is in contrast to a noninteracting
system, or the mean-field treatment of an interacting system, where these
sp excitations are eigenstates in the N ± 1 system, and hence have an infi-
nite lifetime. The quasiparticles in an interacting system are the remnants
of this free-particle propagation. While the quasiparticle excitations are
only unambiguously defined (and long-lived) near the Fermi momentum
and energy, it is usually possible to extend the concept to all sp momenta.
Some care must be taken for momenta far from pp, e.g. multiple roots may
appear in Eq. (11.101), or the definition of the quasiparticle strength in
Eq. (11.104) may break down.

The fact that at the Fermi surface the propagator is completely dom-
inated by its quasiparticle contribution, also helps to understand why the
equality in Eq. (11.102) must hold: the reasoning in Sec. 11.3.2 can be
repeated for the second-order diagram, evaluated with the exact propa-
gator. This represents the leading energy-dependent term in a so-called
skeleton diagram expansion of the exact self-energy in terms of the prop-
agator. The role of the HF- sp energies in Sec. 11.3.2 is now played by
the exact quasiparticle energies EQ(P), and lmE,(p;E) therefore vanishes
at E = £F = EQ(PF).

(11.118)
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11.5 Self-consistent treatment of S<2)

We now return to the fully self-consistent treatment of the second-order self-
energy, as contained in Eqs. (11.1) - (H-4) and indicated diagrammatically
in Fig. 11.1. For clarity the discussion is restricted, as in Sec. 11.2.1, to the
case of a finite system with discrete poles and a diagonal approximation for
the sp propagator,

|~m+|2 lr™-|2

G(a;E) = y 1\^ + T ^ ' a ' . (11.120)

This covers most of the practical applications that have been performed for
nuclei and atoms.

The second-order self-energy in Eq. (11.3) now reads

ZW(a;E) = l^\(a\\V\ev)\* (11.121)

»ni-|2|rn2-|2|.m3+|2 \

The (static) first-order self-energy in Eq. (11.3) is given by

£W(a) = J2 M V \aP) (^ \znfA , (11.122)
/3 \ n /

and can be absorbed into new sp energies £„ , by rewriting the Dyson
equation (11.2) as

z ^ b ) = G4^) ~s(a; E) = {E~40)) -S(Q; E) (1L123)

= (i?-4s))-E(2)(a;£;),

where

4°) = (a\T\a) + (a\U\a)

E(a; £7) = - <a| C/ |a) + E'1 ' (a) + £<2>(a; £?)
45> = ( a | T | a ) + E(1)(a). (11.124)
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Based on the results of Sec. 11.2.1, it should also present no difficulty
to write down the corresponding set of equations for the unknown poles
6ma> £na a n d residues z™+, z%~, which appear in Eq. (11.120). The poles
correspond to the roots Ena of the equation

Ena = e^+Y,W{a;Ena), (11.125)

where the Ena smaller (greater) than the Fermi energy are removal energies
e~a (addition energies e+Q), and the corresponding residues Rna follow
from Eq. (11.23).

However, unlike the treatment in Sec. 11.2.1, the self-energy should
now be consistent with the sp propagator, and E'1 ' and £(2) themselves
depend on the poles and residues of the propagator. Just as in the HF
case the resulting nonlinear equations can be solved iteratively, by starting
with a guess for the propagator, using it to evaluate the self-energy in
Eqs. (11.121) - (11.122), and applying the Dyson equation in Eq. (11.125)
to construct an updated propagator.

Note that strictly speaking, when applying a finite and discrete sp basis
set, an exact solution does not exist because of the dimensionality argu-
ments presented in Sec. 11.2.1: if the propagator of a certain iteration
step has M poles, the self-energy constructed with it has [of the order
of] O(M3) poles, since H1-2^ contains three propagators. Consequently, the
Dyson equation will lead to a new propagator also having O(M3) poles, and
convergence cannot be achieved. The difficulty arises because the number
of poles in the propagator and self-energy should in principle be restricted
by the dimension of the Fock space corresponding to N fermions. In an
expansion of the exact self-energy there will be cancellations, due to the
Pauli principle, between diagrams containing an intermediate state with
more than iV simultaneous hole-lines. A truncation to the second-order
self-energy spoils such delicate cancellations. In practice, all this is not
too important: when iterating the second-order equations the increase in
the number of poles is limited to regions far from the Fermi energy, where
the density of states is high. In that case individual states in the N ± 1
system cannot be resolved anyway, and one is rather interested in averaged
distributions of sp strength.

The simplest way to circumvent the dimensionality problem, mentioned
above, is the single-pole (or quasiparticle) approximation, where only the
dominant solution of Eq. (11.125) [having the largest residue or sp strength]
is retained as a single pole in the updated propagator G(a;E). In order
to include the width of a realistic spectral function, one has to go beyond
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the single-pole approximation. Basically two methods are in use to cut
down the number of poles after having obtained a set of energies Ena and
residues Rna of Eq. (11.125). One is to divide the energy axis into a number
or narrow bins, sum the strength Rna in each bin, and update the propa-
gator G(a; E) by taking the center and the summed strength of each bin
as new poles and residues. Alternatively, one replaces the spectral distri-
bution {Ena,Rna) by a smaller number of poles, chosen so as to reproduce
the lowest-order energy-weighted moments (see Sec. 11.2.3) of the spectral
function. Both methods have been used to describe properties of atoms
and nuclei.

11.5.1 Schematic model

The following model problem is quite transparent and useful to illustrate
the additional effects caused by a self-consistent treatment of the second-
order diagram. We consider in Eq. (11.121) M particle states p, and M
hole states hi, with sp energies e^ = —ePi. The sp energies are kept fixed
(i.e. the first order self-energy E^1) is neglected), and we assume a constant
interaction strength,

|<a/3|V|7(J)|2 = |u|2. (11.126)

These model assumptions lead to a self-energy which is state-independent
and antisymmetric, £(—E) = — £(.E), and to exact particle-hole symmetry,
G(Pi;E) = ~G{hi;-E).

In the example below we took M = 6, \v\ = 0.75 MeV, and

ePi = 2,3,4,8,9,10 MeV, for i = 1, . . . , 6, (11.127)

mimicking a nuclear shell structure with two main shells above and below
the Fermi level. Eqs. (11.121) and (11.125) were solved iteratively, with a
division of the energy axis into 0.1 MeV wide bins.

Figure 11.6 contains the changes that occur in the self-energy and spec-
tral functions when the system is iterated to convergence. The histograms
shown, are the self-energy strength ^|Im£(.E)| and the spectral functions
S(pi;E) and S(pe;E), integrated over 1 MeV wide histogram bins. The
first-iteration self-energy, which is evaluated with unperturbed propagators,
simply reflects the regular shell structure of the 2plh density of states. The
propagator that solves the corresponding Dyson equation shows the frag-
mentation of sp strength as discussed in Sec. 11.2.1: the spectral function
for the pi valence state has a dominant, isolated quasiparticle peak carrying
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Fig. 11.6 First iteration result (left panels) and the converged self-consistent result
(right panels) for the self-energy strength and the spectral functions in the model problem
of Sec. 11.5.1.

most (64 %) of the sp strength. In addition, a background appears with sp
strength located near the unperturbed 2plh and Ip2h energies, with the
strength near the Ip2h energies indicating a nonzero occupation of pi in the
correlated ground state. For the p§ state, which is farther from the Fermi
energy, stronger fragmentation occurs, and the main peak is less dominant.

During subsequent iterations, this fragmentation of sp strength is in-
cluded in the propagators building up the self-energy. When the solution
has converged, the resulting self-energy has drastically different features.
The self-energy strength is no longer concentrated exclusively at the 2plh
and Ip2h energies, but is spread out to larger excitation energies, and the
minima corresponding to the shell-structure are filled up. This is due to so-
called many-body damping: the self-consistent "second-order" self-energy
actually contains higher-order diagrams, allowing the sp strength to be dis-
tributed over more complicated configurations. At high energies, where
the density of states is large, the shell structure of the first iteration self-
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energy has therefore completely vanished. Near the Fermi energy however,
the shell-structure peaks remain, as the isolated quasiparticle peaks of the
valence states dominate in this region.

The self-consistent spectral functions show similar features: for the p\
valence state the isolated quasiparticle peak remains, whereas the higher-
lying pe state has a broad distribution, representing the pe quasiparticle
state. Such features agree with the data discussed in Sec. 7.8. In addition,
a smooth background is present in all spectral functions, stretching out to
high excitation energies in both the N + 1 and N — 1 system.

11.5.2 Nuclei

A direct calculation of the second-order diagram using realistic nucleon-
nucleon interactions is not meaningful, as explained in Sec. 10.6: the strong
short-range repulsion of the bare force must first be neutralized by pre-
venting nucleons in the correlated system from coming close together. In
principle this must be achieved through the construction of an effective NN
interaction (see Sec. 15.2) consistent with the sp propagator.

Nevertheless, self-consistent second-order calculations have been per-
formed for some nuclei, using approximate effective interactions, e.g.
parametrizations of the Skyrme-type [Waroquier et al. (1987)], which are
suitable to describe NN correlations in a limited model space. As an ex-
ample we compare in Fig. 11.7 the spectral function for proton removal
from 48Ca with experimental data derived from (e,e'p) reactions. In the
independent-particle model the proton hole orbitals OsJ, 0p§, 0p|, 0d§,
Odf and l s | (listed in order of increasing sp energy) are assumed to be
completely filled in the ground state of the (doubly-closed shell) nucleus
48Ca. The second-order calculation of [Van Neck et al. (1991)], is able to
describe the global evolution of the fragmentation pattern, going from the
valence hole states to the deeply-bound orbitals. Especially for the £ = 1
deep-hole states, the self-consistent formulation (as opposed to the first
iteration result also shown in Fig. 11.7) clearly improves the description.

A more detailed study reveals several discrepancies, e.g. all spectro-
scopic factors appear to be overestimated. This is partially due to the ne-
glect of short-range correlations: in principle the energy-dependence of the
true effective interaction would provide an additional depletion of about
10%. Another reason for the discrepancies is that the second-order self-
energy is just too simple: it can indeed be shown that more sophisticated
approximations for the vertex function [Rijsdijk et al. (1992)], which in-
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Fig. 11.7 Spectral function for proton removal from 48Ca. Left panel: result of a
self-consistent second-order calculation (see text). For the deeply bound Op states, the
first-iteration result is also shown (dotted line). Right panel: experimental spectral
function adapted from [Kramer (1990)], obtained in a study of the 48Ca(e,e'p) reaction.

elude the coupling of sp degrees of freedom to low-lying collective states,
provide significant improvement for both the location and the fragmenta-
tion of sp strength. This is particularly true for the £ = 3 removal strength,
originating from the proton 0 / | and 0/f orbitals, which lie just above the
Fermi energy and are unoccupied in a mean-field treatment. Short-range
correlations not included here, also provide a global depletion of the sp
strength below the Fermi energy. A detailed discussion of the influence of
long and short-range correlations on the spectral strength distribution in
nuclei is given in Ch. 17.

11.5.3 Atoms

It was already clear from the quality of the HF results in Sec. 10.2 that elec-
trons in atoms constitute a rather weakly correlated many-body system.
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Table 11.1 Second-order results and experimental data

Removal energies Spectroscopic factors
HF £(2> Exp. HF £(2> Exp.

He Is -0,918 -0.906 -0.9040 1.0 0,972
Be Is -4.733 -4.620 -4.100 1.0 0.873

2s -0.309 -0.320 -0.343 1.0 0.950
Ne 2s -1.930 -1.750 -1.782 1.0 0.876 0.85(2)

2p -0.850 -0.763 -0.793 1.0 0.904 0.92(2)
Mg 2p -2.283 -2.146 -1.81 1.0 0.882

3s -0.253 -0.274 -0.2811 1.0 0.962
Ar 3s -1.277 -1.159 -1.075 1.0 0.876 0.55(1)

3p -0.591 -0.585 -0.579 1.0 0.938 0.92(2)

Second-order results (taken from [Van Neck et al. (2001a); Peirs
et al. (2002)]) for a number of L = S = 0 atoms, compared
with experimental data [Samardzic et al. (1993); McCarthy et al.
(1989); Brunger et al. (1999)]. All energies are in atomic units
(Hartree).

Including the second-order self-energy and performing the self-consistent
calculation, one typically recovers more than 90% of the correlation en-
ergy [Dahlen and von Barth (2004); Van Neck et al. (2001a)]8. Additional
results for the closed-shell atoms are collected in Table 11.1, where the re-
moval energy and spectroscopic strength for the hole orbitals nearest to the
Fermi energy are listed. The second-order diagram obviously generates a
shift of the HF removal energies to the experimental ones. The spectro-
scopic factors, typically 95 % for the highest occupied state and somewhat
smaller for the next, are also in better agreement with (e, 2e) results.

The numbers in Table 11.2 for the open p-shell (second row) atoms B, C,
N, 0, and F, were obtained using a spin-unrestricted formalism and a suit-
able angular averaging of the self-energy [Peirs et al. (2002)]. As is evident
from Table 11.2, the electron correlations contained in the second-order
diagram also lead to a reasonable, simultaneous, description of ionization
energies / = E^/~1-Eg and electron affinities A = Eg -EQ+1. Note that
HF for a neutral atom does not lead to bound unoccupied HF sp levels.
As a consequence, the stable negative ions B~, C~, O~ and F~ cannot be
described with HF (on the neutral atom), but explicitly require correlations
beyond HF. The second-order diagram correctly predicts the existence of
these negative ions, as well as the absence of a stable N~ ion, which is
indeed not observed experimentally.

The results in Tables 11.1 - 11.2 are obviously an improvement over the
8The sp basis set for the unoccupied HF states in [Van Neck et al. (2001a)] was not

sufficient to ensure full convergence for the total energy.
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Table 11.2 Second-order results for open p-shell
atoms

Ionization energies Electron affinities
HF £(2> Exp. ~HF £(2) Exp.

B 0.311 0.305 0.305 - 0.008 0.010
C 0.435 0.415 0.414 - 0.046 0.046
N 0.571 0.537 0.534 -
O 0.510 0.484 0.500 - 0.032 0.054
F 0.674 0.619 0.640 - 0.126 0.125

Second-order results (taken from [Peirs et al. (2002)])
for the open p-shell atoms, compared with experimen-
tal data. All energies are in atomic units (Hartree).

HF results, but still show some serious deviations from the experimental
situation. A case in point is the 3s level in Ar, which is experimentally
known (see Fig. 7.4) to be strongly fragmented, with the main fragment
carrying only 55% of the strength, but which remains rather pure in the self-
consistent second-order calculation. This discrepancy can be traced back
to the absence of screening diagrams in the second-order self-energy [Amu-
sia and Kheifets (1985)]. In the above calculations the HF spectrum for
the unoccupied sp states has only a continuum part, and had to be dis-
cretized by adding a confining potential at large distances. The resulting
HF particle-hole spectrum is obviously but a poor representation of the true
low-lying excitation spectrum of the neutral atom, which is dominated by
Rydberg series of the type shown in Fig. 3.4. An improvement in the N — 1
(removal) domain of the spectral function is therefore intimately connected
with a more realistic description of the excited states in the iV-electron
system, as will be further discussed in Sec. 13.5.

11.6 Exercises

(1) Use the dispersion relation Eq. (11.96) to prove the "once subtracted"
dispersion relation

Re£(p; E) = ReE(p; Eo) + (E - E0)~V jdE' ^^y^'-EoV

for arbitrary energies E, EQ.
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(2) Given that EF = 0 and

Im^(p;E) = -c0(E)^-^,

use the dispersion relation Eq. (11.76) to show that

ReEf (p; E) = ̂ ~ (^ln(|§|) - ^[A3 + V^(A* - E2)]) .

Assuming symmetry around the Fermi energy,

lm^\p;E) = -ImSf (p;-E),

calculate ReT,_(p;E), the total real part ReT,^(p;E), and generate
figures similar to Fig. 11.4.
Calculate the corresponding spectral function S(p; E) through
Eq. (11.89) and check by numerical integration that the normalization
condition in Eq. (11.90) holds for arbitrary sp energies e(p).

(3) Reproduce the first iteration results in Fig. 11.6 for the schematic model
of Sec. 11.5.1. Use a root-finding algorithm (bisection is the most conve-
nient) to find numerically the solutions of Eq. (11.125) in each interval
between successive poles of the self-energy.



Chapter 12

Interacting boson systems

In a fermion system, any sp state can be maximally occupied by one par-
ticle because of the Pauli principle. The ground state of a noninteracting
fermion system is therefore characterized by filling the Fermi sea consisting
of the N sp states with lowest energy. As is clear from Chs. 10-11, this fea-
ture persists for normal systems even in the presence of interparticle forces,
i.e. N sp states have occupations smaller than, but of order, unity, whereas
the other sp states have a small but nonzero occupation probability. Bo-
son systems behave rather differently than analogous fermion systems with
similar external fields and/or interparticle forces. The many-boson wave
function is symmetric under permutation of particle coordinates and mul-
tiple occupation of the same sp level is allowed. Hence a noninteracting
system of N bosons in its ground state will have all particles in the sp state
corresponding to the lowest energy, and the occupation number correspond-
ing to this state is N. Such a macroscopic occupation (proportional to the
particle number) of a particular sp state is called Bose-Einstein condensa-
tion (BEC). The condensed phase is the ground state of the many-boson
system at zero temperature. However, at finite temperature the particular
role played by the lowest-energy sp state can disappear, as other sp states
acquire nonzero occupations due to thermal fluctuations. The critical tem-
perature for BEC in a noninteracting Bose gas was examined in Sec 5.6.

This chapter deals with the inclusion of interparticle interactions in or-
der to describe realistic Bose systems at T=0. The formalism of Green's
functions, developed so far, is well suited for this, but requires some mod-
ifications to deal with the special role of the condensate. Sec. 12.1 begins
with some considerations about the general structure of the boson sp prop-
agator in noninteracting and interacting systems, and the definition of the
condensate orbital in nonuniform systems. The Bose condensate acts as

279
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a reservoir, and particles can be easily removed from or added to it. In
Sec. 12.2 we explain why this leads to fundamental difficulties with the
perturbation theory developed in Ch. 8, as Wick's theorem breaks down
in the presence of a condensate. However, the counterpart of the HF ap-
proximation for fermions can easily be constructed by replacing the bo-
son problem with an equivalent fermion one. The resulting mean-field or
Hartree-Bose (HB) theory is developed in Sec. 12.3. Since most realistic
interactions are too strong for HB to be applicable, one needs to consider
an effective in-medium interaction. As shown in Sec. 12.4, this turns out
to be very simple for dilute (low-density) systems, since the details of the
interaction do not matter, and the interaction can be replaced with a zero-
range pseudo-potential, only dependent on the 5-wave scattering length.
This replacement leads to the Gross-Pitaevskii equation, which is also dis-
cussed extensively in Sec. 12.4 in the context of BEC in ultracold vapors of
bosonic atoms.

12.1 General considerations

The boson Hamiltonian has the usual form H = t + V, where T is the
one-body part of the Hamiltonian,

f = J2(a\T\P)ala0, (12.1)

containing the kinetic energy and (if any) the external potential, and V is
the tp interaction,

a/3-r6

The angular brackets in Eq. (12.2) denote symmetrization, i.e.

(a/3\ V |7<J> = (a/3\ V \jd) + (a/3\ V \Sy), (12.3)

in terms of direct matrix elements.

12.1.1 Boson single-particle propagator

In Eq. (7.1) the sp propagator was generally denned (for bosons as well
as fermions), as an expectation value in the exact TV-particle ground state

(12.2)
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ihG(aJ;t,t') = <*?| T[aaH(t)alH(t')] \9») , (12.4)

of a time-ordered product T[...] of a particle removal operator aaH (t) and
an addition operator OpH(t'), both taken in the Heisenberg picture [see
Eqs. (7.3) and (7.4)]. Unless mentioned otherwise we will assume the exact
ground state to be normalized to unity.

In the boson case, the time-ordering is simply an interchange of the
operators to get the later time to the left (without adding extra minus
signs). Without explicit time-dependence in the Hamiltonian, the propa-
gator in Eq. (12.4) depends only on the time difference T = t — t', and can
be written as

ifiG(a,P;T) = (*»\9(T)aae-i(»-E^al+e(-T)ay^-E^aa\^)

= 6{r) £ e-t<^+1-*SV (*N| aa \^+l) ( ^ + i 1 flt | ^ }

m

+0(-T) £ e i ^ " 1 - ^ W | flt | ^ - i ) { ^ - i | aa | ^ ) f ( 1 2 5 )

n

where the last identity is obtained by inserting a complete set of N ± 1
eigenstates of H. The propagator in the energy representation then follows
by means of a FT,

r+oo
G{a,0;E)= dTe$ETG(a,(3;T)

J — OO

_ (*»\aa\*Z+1)(^+1\alW)
^ E-(E»+1-E»)+ir,

(*»\al\$^)(*»-i\aa\*»)

\ E + iEZ-i-ED-ir, • ( 1 2 ' 6 )

12.1.2 Noninteracting boson propagator

For a noninteracting boson system (H = f) the ground-state wave function
is the simple product state

w = wM)N]0) (12J)
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where aj is the addition operator for the condensate, i.e. the sp eigenstate

of f = J2a
 eaalcaa with lowest energy ea.

The corresponding noninteracting sp propagator is easily derived from
Eq. (12.5), using the basic boson commutation rules of Sec. 2.2. The prop-
agator is diagonal in the sp basis of the eigenstates of T and reads

ihG^(a,p;r) = ba0<T^T {0(r)(iV<5a,o + 1) + 0(-T)NSa,o}

= 5a0e-ie°T{6(T)+N6a,o}. (12.8)

Note that propagation in a noncondensate state only has a forward going
component, whereas propagation in the condensate can be both forward
and backward going.

In the energy representation of Eq. (12.6) the noninteracting propagator
becomes

v ; ap i E _ £a + irj E_£a_lrjj

= ^ ( - = 1-—-2i7rN6afid(E-e0)\. (12.9)
{ & — ea + irj )

The noninteracting ground-state energy is

E? = (*Z\f\*»)=Ne0, (12.10)

and the chemical potential /z of the system,

H = E»- ^ ^ = E»+1 - < = e o , (12.11)

coincides with £o.

12.1.3 The condensate in an interacting Bose system

For a finite, but large, number of ./V bosons the normal situation (i.e. when
perturbation theory from the noninteracting system can be applied) implies
that the boson propagator in Eq. (12.6) is dominated by the contribution
from the iV± 1 ground states, as these have an overlap with normalization
5C± of order O(N). More explicitly, the corresponding addition and removal
amplitudes can be written as

«-1 |oa|0 = v/sT^-, (12.12)
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where the sp wave functions (pc± referring to the condensate, are normalized
to unity: J2a|<Aa+|2 = J2a Wa [2 = 1- The other contributions to the
propagator are of order 0(1) or smaller.

For finite N one has in general Sc+ ^ Sc_ and (j)c+ ^ <f)c-. In the limit
of large N, which is the situation of most interest, the properties of the
system can hardly change when a single particle is added. The differences
between the <fic± and the Sc± are negligible (being of higher order in a 1/N
expansion) and one has

«|aa K+1) « (Cla,, |O « v^^, (12-13)
< + 1 - E» » ^ - JS^"1 » /* (12.14)

where /Lt is the chemical potential. The dominant part of the propagator in
Eq. (12.6) then becomes

G(a, /?; E) « -2mSc<j>c
a4>$*6(E - (i), (12.15)

analogous to the structure of the noninteracting propagator in Eq. (12.9).
However, rather than using the </>c+ or 4>c~ overlap functions, the con-

densate orbital is often defined as the natural orbital with the largest eigen-
value [Yang (1962)]. The natural orbitals $W a r e the orthogonal sp wave
functions that diagonalize the density matrix, i.e.

n0a = «|a£aQ |<) = J^d^^Uf*. (12.16)
i

Again, normally one1 of the occupation numbers cfil\ say for i=0, is of
order O(N). The associated orbital <̂>(0^ is the condensate orbital, and
JVC = d^ is the condensate occupation. In the large-iV limit one can again
expect that to leading order, ^°) ss <fic and Nc « Sc. Differences between
(pc- and the natural orbital </>(°̂  were studied numerically for droplets of a
few hundred 4He atoms by [Lewart et al. (1988)] and found to be small;
they vanish in the thermodynamic limit and at the mean-field level, but
the precise relation appears not to have been studied in detail [Dalfovo et
al. (1999)].

1In some special cases more than one natural orbital with an occupation of order
O(N) occurs; the condensate is then said to be fragmented. See e.g. [Nozieres and Saint
James (1982)] and [Baym (2001)].
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12.1.4 Equations of motion

The equation of motion obeyed by the boson propagator can be obtained,
as in Sec. 9.2, by considering the time derivative of Eq. (12.4),

i^G(a, /3; t-t')= 6(t - t')5aj (12.17)

+ «\0(t-t')^^al(t') +6(t> -t)a\H{t')d-^ |<).

The first term on the right in Eq. (12.17) arises from the derivative of the
step function

±-B{t - f) = 5(t - t1) = -U{1f - t), (12.18)
at at

and application of the equal-time boson commutation relation

(^\aaH(tW0H(t) - alH(t)aaH(t)) |tf0") = 6a,0. (12.19)

The equation of motion for the boson removal operator in the Heisenberg
picture reads

i h ^ ^ = {aaH(i),H\ (12.20)

= ^2(a\T |7> alH (t) + i £ (a7 | V \6e) a\H {t)atH (t)aStl (t).

Substitution of Eq. (12.20) into Eq. (12.17), immediately leads to

ih^G(a, 13; t-t')= S(t - t')Sa,0 + £ (a\ T |7) G(7,0; t, t') + P2, (12.21)
7

where P2 represents the terms containing the interaction V,

P2 = 2 ^ E (a^l V M fa ~ *WH (*)oeH (t)a5H {t)a\H (f)
7<5e

+ 6(t'- t)a\s (t')a\H (t)aeH {t)a&H (t)} . (12.22)

Upon inspection P2 is seen to involve the two-particle propagator GJI,

ifiGu{a.ta,ptp,7ti,5ts) =

« I T[HH ih)aaH (ta)a\H m)a\H (ts)} |*^>, (12.23)
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allowing to rewrite Eq. (12.21) as

ih^G{a, J3; t-t')= 5(t - t')8a,0 + £ (a| T |7> G(7, P; t, t')
7

+ \ £ <«7l V \6e) Gn(8t, et, (It1, ~,t+). (12.24)
-yi5e

Clearly, the equation of motion (12.24) for the sp propagator connects it
with the two-particle propagator Gu. In a similar way equations can be
derived connecting Gu with the three-particle propagator, etc.

12.2 Perturbation expansions and the condensate

12.2.1 Breakdown of Wick's theorem

Up to now the treatment of Bose systems has proceeded in complete analogy
to the Fermi case. Obviously, the next thing to do would be to repeat
the analysis of Sec. 8.2, set up a perturbation expansion in powers of the
interaction V, and arrive at an expression for the exact boson propagator as
given by Eq. (8.17), in which only the noninteracting ground state appears.

In the fermionic case it was possible to use Wick's theorem (the true
engine of propagator perturbation theory) in order to evaluate the differ-
ent contributions in the perturbation series in terms of noninteracting sp
propagators. In the case of bosons however, a direct application of Wick's
theorem is no longer possible.

As one recalls from Sec. 8.4, Wick's theorem requires that any product
of sp removal and addition operators can be put in normal order, leading
to a vanishing expectation value in the noninteracting ground state. For
the noninteracting boson ground state in Eq. (12.7) this clearly cannot be
done, since neither of

aoK> = V3v|<-1>, a J | O = yivTTK+1>, (12.25)

are zero. In fact, both are rather big if TV is large.
As a consequence, the condensate orbital must receive special treat-

ment (compared to the other sp states), before the usual perturbative
machinery can be used. How this is done in a genuine boson pertur-
bation theory, the Bogoliubov formalism, will be presented at length in
Ch. 18. For the purpose of quickly generating the boson mean-field
equation, we will first explain the conversion of the boson problem into
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an equivalent fermion problem [Brandow (1971); Jackson et al. (1982);
Wettig and Jackson (1996)], an alternative treatment that is sometimes
useful.

12.2.2 Equivalent fermion problem

In the discussion on the hydrogen molecule in Sec. 10.3.3, it was noted that
the two-electron ground state, having total spin 5 = 0, could be factorized
as

^(r1mSl,r2mS2) = $(r1 )r2)S(mS l ,mS 2) . (12.26)

The spin part represents a Slater determinant, given by

~(mSl, mS2) = - ^ (Smsi ,+ i«m .2 ,_i - <*„,.,,-i<*roj2,+i) , (12-27)

and already carries the full fermion antisymmetry. Consequently, the spa-
tial part $(ri ,r2) must be symmetric under r\ -B- r<i interchange, and
represents a wave function for two spinless bosons.

This observation can be easily generalized and extended to an arbitrary
number of particles. Considering a system of N interacting bosons, the
conversion to a fermion problem is achieved by introducing an additional
(fictitious) quantum number A that can take on N values. Each original
boson sp state a is now iV-fold degenerate and generates N fermion sp
states (a\a) with Aa = 1,...,N. The fermion Hamiltonian is taken to be
diagonal in A, i.e. for the sp part we have

{a\a\T\/3\0) = {a\T\/3)6Xa,X0, (12.28)

and likewise for the tp interaction,

(a\a,p\0\ V |7A7 , <JA*) = (a/?| V \-y6) 6XaX^5XpXl. (12.29)

The noninteracting ground state of this ./V-fermion problem is given by

JV

I O = I N A I 0 > , (12.30)
A = l

where the fermion operators aox all refer to the underlying boson sp state
4 of Sec. 12.1.2. The |$^ ) denned in Eq. (12.30) is a closed-shell or singlet
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state in the A quantum number, and factorizes into the product

r N i i
(aiA1,...,aJVAjv|*^>= JJ«a i io -j=Det[6i,Xi]i,}=i,...,N. (12.31)

It contains a symmetric part, which represents the noninteracting boson
ground state, and an antisymmetric Slater determinant, containing the
A-dependence of the closed-shell configuration. When the interaction is
turned on, the ground state of the interacting fermion problem remains a
A-singlet state, and still factorizes into the product of the closed-shell Slater
determinant and of the true, symmetric iV-boson ground state.

As far as perturbation theory and diagrams are concerned, the rules of
Sec. 8.6 remain unchanged, but we now have to include A in the summation
over internal quantum numbers. Since A is conserved at each vertex, this
simply amounts to a factor N for each closed fermion loop in the diagram.
The only other modification is that a sum over occupied fermion states
must be restricted to the condensate orbital.

12.3 Hartree—Bose approximation

12.3.1 Derivation of the Hartree-Bose equation

As an example of the equivalent fermion technique in Sec. 12.2.2, we con-
sider the HF self-energy for fermions,

N

^HF (7, S) = £ [(jh\ V\Sh)- (7/i| V \kS)], (12.32)
h=l

as given by Eq. (10.11), with h referring to the occupied sp (hole) states
in the HF determinant, i.e. \h) = ^2^z^ |/i). The boson counterpart, the
HB mean-field, is derived according to the prescriptions in Sec. 12.2.2 by
the introduction of A-quantum numbers and the restriction of the hole
summation to the contribution from the condensate orbital c,

E"B(7A7,tfAa) = £[(7A7)cAc|V|<SA<)CAc)

-(yX^c\e\V\cXc,6Xs)]. (12.33)

Taking the A-independencC of V into account [see Eq. (12.29)] one has

EBB(y\^6\s) = HHB{1,6)6XiM, (12.34)
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and performing the summation over Ac in Eq. (12.33) results in

Z"B (7,6) = N (jc\ V\Sc)- (7c| V \cS). (12.35)

Note that the first term in Eq. (12.35) has a factor N and the second does
not, in agreement with the diagram rules at the end of Sec. 12.2.2 and the
fact that the Hartree diagram in Fig. 8.4 has one closed loop, whereas the
exchange (Fock) diagram in Fig. 8.5 has none.

The (as yet unknown) condensate orbital,

|c) = £<!<">> (12-36)

then follows as the lowest-energy solution of the HB equation,

J2{(j\T\6) + ZHB(%6)}zc
s=ecZc, (12.37)

which is the boson counterpart of Eq. (10.20) determining the occupied HF
sp states. Like HF, this is a self-consistent approximation: the HB mean
field following from Eqs. (12.35) - (12.36),

ZHB(l, S) = J2{N (7/4 V \8u) - (7/x| V \vS)}zc;zl, (12.38)

represents the interaction averaged over the condensate density, and itself
determines the condensate orbital through Eq. (12.37). Note that the or-
bital \c) in Eq. (12.36) is normalized to unity, J^M \z^\2 = 1.

The HB mean-field term in Eq. (12.37) can also be written as

J2xHBh,6)zc
s = Y,WHB(l,8)zc

s (12.39)
5 S

with

WHB(l, 6) = (N-1)J2 (7Ml V \8u) zc;zc
v. (12.40)

An equivalent form of the HB equation determining the condensate wave
function, reads

£{<7|r|<J) + WffB(7,*)K = ec<. (12.41)
s
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12.3.2 Hartree-Bose ground-state energy

The HB ground-state energy may be similarly derived from the HF en-
ergy for fermions, given by the two equivalent expressions in Eqs. (10.29)
and (10.36),

(HF:) < = X>|T|/i) + i £ [(hxWVlhht)

-(fti^l^Mi)] (12.42)

(HF:) E^^lWTW+eh). (12.43)
h

Restricting the summations over h to the condensate contribution and in-
troducing A quantum numbers leads to the HB energy

(HB:) £tfr = £)<cAc |r|cAc> + ! ^ [(cXCl,cXC2\ V \cXCl,cXC2)
Ac AciiAco

-(cXCl,cXC2\V\cXC2,c\Cl)] (12.44)

(HB:) E? = \ J2 [Mel T \cXc) + ecXc]. (12.45)
Ac

After the A summation is performed (note that ec is independent of Ac),
one arrives at the corresponding expressions for the ground-state energy in
the HB approximation,

(HB:) Eg = N (c\ T \c) + N(N~~ ̂  (cc| V \cc) (12.46)

(HB:) E? = j((c\T\c)+ec). (12.47)

12.3.3 Physical interpretation

The HB approximation clearly assumes that all N particles are in the con-
densate sp state. Once Eq. (12.37) has been solved and the zc are deter-
mined, the mean field T,HB{^,S) generated by the condensate, is fixed and
can be considered as an additional sp potential determining a noninteract-
ing boson system. Equation (12.37) then has (apart from the condensate)
other solutions

£{<7|T|<5) +^HB{1,6)} z£ = enz«, (12.48)
<5
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with £„ > ec, which describe the sp excitations of the system and, together
with the condensate, constitute the HB sp basis. Since all particles are in
the condensate, these excitations (n ^ c) can only be made by adding a
particle to the ground state, whereas a particle in the condensate can be
both added to, and removed from, the ground state.

In accordance with Eqs. (12.6) and (12.9) the HB solutions with n ^ c
should therefore be interpreted as addition amplitudes to the excited N +1
states,

(HB:) ^ = « M * n + 1 > , en = E»+1-E£, (12.49)

whereas the condensate zc is both a removal and an addition amplitude

(HB:) 4 = l « - i | a a | ^ ) = _ L _ ( ^ | a Q | ^ + i ) , (12.50)

and the sp energy ec coincides with the HB chemical potential,

(HB:) ec = < - E^1 = < + 1 - E? = fi. (12.51)

12.3.4 Variational content

The mean-field description for fermion systems, as shown in Sec. 10.1.3,
can be obtained by a variational search for the noninteracting wave function
(the HF Slater determinant) which minimizes the energy expectation value.
Following the same procedure for the boson case, we should now find the
condensate sp orbital for which the product state

« ) = M |̂0> (12.52)

has minimal energy E = ($ff\f + V\$ff). With the boson second-
quantization results of Sec. 2.2 the energy can be worked out as

E = N (c\ T \c) + N<>N~ ^ (cc| V \cc). (12.53)

Upon expansion of the unknown condensate orbital in a fixed sp basis,

al = Y,z>l (12-54)
the energy per particle E/N is written as

E/N = X > l r \V) zc;zi + ̂ 1 ]T z?ziz?zi (H v \*\). (12.55)
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Minimizing this expression with respect to variations in the expansion
coefficients z£, subject to the normalization constraint ^T |z£|2 = 1, leads
to

eczl = E { M r \v) + (^ - !) f E (H V 1̂ ) « ) | *£, (12-56)

which is identical to the previously derived HB result in Eqs. (12.40) -
(12.41).

The HB energy in Eq. (12.53) coincides with Eq. (12.46). Multiplying
Eq. (12.56) with z " and summing over /j, one has

ec = (c\ T \c) + (N-1) (cc\ V \cc). (12.57)

Elimination of the potential energy from Eqs. (12.53) and (12.57) then leads
to Eq. (12.47). Note that the variational nature of the HB ground state
ensures that the HB energy is a strict upper bound to the exact energy.

The interpretation in Eq. (12.51) of ec as the chemical potential in the
HB approximation can be confirmed by considering the derivative of the
HB energy (12.46) with respect to particle number, which for large N can
be considered a continuous variable. One finds (for N —» oo)

fi = ̂ ~ = [(c\ T\c) + N (cc\ V \cc)} + R2 + R*2, (12.58)

where the first (bracketed) term is the HB sp energy ec of Eq. (12.57) and
the remaining terms can be written as

R2 = N(^\T\c) + N^c\V\cc)

Bo Be
= N( — \T + WHB\C) = NSC(—\C). (12.59)

As a result, R2 + R*2 = Nec-J^(c\c) = 0 and Eq. (12.58) implies /z = ec.

12.3.5 Hartree-Bose expressions in coordinate space

The coordinate space representation of the HB equation can be derived
straightforwardly using the results of Sec. 10.1.4. For a system of spinless
bosons in a local external potential U(r) and interacting with a local tp
potential,

(rir2| V \r3rA) = 6{n - r3)S(r2 - rt)V{ri - r2), (12.60)
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one simply takes sp labels a = r in Eqs. (12.40) - (12.41). Introducing
the wave-function notation <f>c(

r) — z% f°r the condensate orbital, the HB
potential in Eq. (12.40) reads

WHB{T) = (N-1) fdr1 V(r - r')|^(r')|2, (12.61)

and the HB equation (12.41) has the form

[ - ^ V 2 + U(r) + WHB{A (j>c{r) = eccf>c{r). (12.62)

The coordinate space representation of the HB ground state in Eq. (12.52)
is

{ri,r2,..,rN\^) =<pc(ri)<l>c(r2)~4>c(rN), (12.63)

and the condensate orbital <?i>c(**) minimizes the energy functional in
Eq. (12.55),

i # * = | d r # ( r ) [ - ^ + tf(r)

+ N{N
2~

 1] Jdr' V(r - r')|<Ac(r')|2] <k(r), (12.64)

under the constraint f dr\4>c(r)\2 = 1.

12.4 Gross—Pitaevskii equation for dilute systems

12.4.1 Pseudopotential

The HB equation (12.62) is only applicable for weak and nonsingular in-
teractions. This is not fulfilled in most practical applications, e.g. in BEC
of ultracold vapors of alkali atoms2, which have already been introduced
in Sec. 5.6.2, excluding the effects of the atom-atom interactions. The
interatomic interaction, usually modeled by a Lennard-Jones type of po-
tential, has a strong repulsive core when the atoms come close together
and the electron clouds start to overlap. The integrand in Eq. (12.61) then
becomes very large or diverges as \r — r'\ —> 0.

2 The trapped atomic vapors made in the laboratory are actually in a metastable
state: at these ultracold temperatures the true (thermodynamically stable) ground state
would be a solid. Because of the diluteness of the vapor however, the collision rate is so
low that it takes a time of the order of seconds or minutes, for the atoms to cluster and
reach thermodynamical equilibrium, which is long enough to do experiments.
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Obviously, this is again a shortcoming of the mean-field wave function
in Eq. (12.63), since the true TV-boson wave function will tend to vanish
whenever two atoms are closer together than the radius of the repulsive
core. To include these short-range correlations between two particles, it
is necessary to go beyond the mean-field approximation and construct a
more realistic tp propagator. A similar problem occurs in the fermion case
and will be extensively discussed in Ch. 15. The relevant class of diagrams
consists of the repeated scattering of two particles in the presence of the
medium. The bare interaction V, which is singular at short distances, can
then be replaced by the resulting in-medium effective interaction F, which
is well behaved. Apart from medium corrections, the relation between V
and F is therefore the same as the well-known relation, studied in Sec. 6.4,
between V and the T-matrix for scattering of two particles in free space.

In the limit of a very dilute system, however, the difference between
scattering in the medium and scattering in free space, is negligible: the col-
lisions happen almost in vacuum since very few other particles are around.
In Sec. 18.6 we will look more closely at the effect of medium corrections;
for the moment it makes good sense to replace the bare potential by the
(free-space) T-matrix.

Moreover, at ultracold temperatures the bosons move overwhelmingly
with momenta close to zero. As a result, only S-wave scattering survives,
and the T-matrix becomes independent of the scattering momenta. In fact,
it can be characterized by just one number, the 5-wave scattering length a,
which is the only parameter needed to describe ultracold dilute Bose (and
Fermi) gases.

The simplest way to incorporate these physical arguments is to replace
the bare interaction by a so-called pseudopotential of zero range,

V(r - r') ->• gd(r - r '), (12.65)

where the strength of the J-function is related to the scattering length a of
the true potential V as

9= • 12.66)
m

Before applying Eqs. (12.65) - (12.66) to the HB formalism we will justify
the form of this pseudopotential in the next Sees. 12.4.2 - 12.4.3, which
contain a brief overview of scattering length theory and the low-energy
limit of the T-matrix.
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12.4.2 Quick reminder of low-energy scattering

Phase shifts and scattering length

For identical particles of mass m and a central tp potential V(\r\ — r2 | ) ,
the relative scattering wave function tpa (r) with angular momentum I and
energy E = ^ - is the solution of

(_£[!* <£ + !>] +V(,)-BW,)= 0, (12.67)

which is regular at the origin (see also Ch. 6).
The phase shift 8^. is defined through the asymptotic behavior of V>« (r):

assuming that for r -> oo the potential V(r) drops sufficiently fast, the wave
function ipik{f) becomes (outside the range of V) a linear combination of
the free solutions,

iptk(r) -> Ctk[cos8ek h(kr) - sm5ek ne(kr)], (12.68)

where Cek is a constant. The free solutions j({x) and ne(x) are spherical
Bessel and Neumann functions respectively, with asymptotic behavior

sin(a:-£f) , ^ cos(a; - ^f)
it(x) -> —i ^ , n/(a;) -> ^ ^ . (12.69)

In the low-energy limit k -4 0 it can be shown, under quite general
conditions for V(r) (see e.g. [Landau and Lifshitz (1977)]), that the phase
shift of the £th partial wave has a leading term proportional to

8ek~k2e+1[l + O(k2)}, (12.70)

and only 5-wave scattering (I — 0) survives. The scattering length a, de-
fined as

- - = lim kcot80k, (12.71)
a *-+o

therefore completely characterizes the potential V(r) in the limit of zero-
momentum scattering3.

3More generally one can expand fccot^o/c — ~\ + ̂ k2 + .... The next-order term,
containing the effective range ro, is not needed for the present purposes.
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Square-well potential

As an example we consider a square-well potential of radius it, i. e. we take
V(r) = V08(R - r) in Eq. (12.67) and examine the solution for 0 < E «
\VQ\. In the inner region r < R the solution is

4>tk(r) = }t(kvr), with kv = y/m(E-V0)/h (12.72)

for an attractive potential (Vo < 0), or

ip(k(r) = it(kvr), with kv = y/m(V0-E)/h (12.73)

for a repulsive potential (Vo > 0). In the latter case i((x) = (—i)e3e(ix) is
the modified spherical Bessel function, regular at the origin.

Smoothly joining at r = R with the asymptotic solution in Eq. (12.68)
yields

]t(kR)kv^lk - k]e(kR)

where )'((x) = d)l(x)/dx, n't(x) = dni(x)/dx, and 7« is the logarithmic
derivative of the inner solution at r = R,

7« = % § foryo<0 ; 7« = ̂ § for VO > 0. (12.75)
]e(kvR) ie(kvR)

The leading term in the low-energy limit k -> 0 of Eq. (12.74) can
easily be obtained from the behavior of ]t(x) and ne(x) at small values of
the argument x,

r( io£ _ -nil

Mx)-*W£w' »*&-+—IF^1' (12J6)

where (21 + 1)!! = 1 • 3 . . . • (21 + 1), and from the observation that the
quantity kv^ik in Eq. (12.74) can be replaced with its value for k = 0 since

kv -+k0 + O(k2), with k0 = y/m\V0\/h. (12.77)

Hence the leading term in k is given by

cotfo -> - * (2£+ l ) ! ! (2 l -1) ! ! 7 ' " + fcf, (12.78)

in accordance with Eq. (12.70). Note that the phase shifts (and hence the
scattering length) are always defined, no matter how strong the interaction.

(12.74)
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Fig. 12.1 Scattering length a of a square-well potential V(r) = VQ6(R — r). On the plot
a/R is shown as a function of sign(Vo)(koR) [see Eq. (12.79)].

The special situation of a hard-sphere potential can be generated by taking
the limit Vo -* +oo, with 7̂ 0 -> 00 in Eq. (12.78).

For the dominant S-wave scattering one has jo(z) = [sini/a:] andio(x) =
[sinhz/z] in Eq. (12.75), and as a consequence 700 = cot(h)(k0R) - Y^,
where the hyperbolic function must be taken for VQ > 0. The scattering
length then follows from Eqs. (12.71) and (12.78),

a = R[l ^ - ~ for Vo < 0
\ koR )

a = R(l- ^ b E ) for Vo > 0. (12.79)

In Fig. 12.1 the scattering length a in Eq. (12.79) is shown as a function of
Vo- For small Vo as 0 one has positive (negative) a for a repulsive (attrac-
tive) interaction. As Vo becomes more attractive, the potential starts to
support a bound state at koR = TT/2. The scattering length has an asymp-
tote, reflecting a zero-energy resonance in the cross section. This behavior
is repeated at the values of — |Vo| where further bound states appear. Near
a resonance, all values can be obtained for the scattering length.
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Values for scattering lengths in atomic collisions

Recent experimental values for o are 2.75 nm for 23Na, 5.77 nm for 87Rb,
-1.45 nm for 7Li, ~ -23 nm for 85Rb and 3.45 nm for 133Cs, where positive
(negative) a correspond to repulsive (attractive) interactions in low-energy
collisions. As will be shown in Sec. 12.4.5, a positive scattering length a
leads to stable condensates, whereas atomic condensates with negative a
are inherently unstable against collapse. In the presence of a confining
potential, a metastable condensate with negative a can nevertheless exist,
but with a limited number of condensed particles.

It is sometimes possible to tune the scattering length by applying a
strong magnetic field and exploiting the atomic hyperfine structure. The
so-called Feshbach resonance is a coupled-channel effect, occurring when
two atoms in the lowest-energy hyperfine state collide, and the interatomic
potential in other hyperfine states supports a bound state near zero energy.
Since these have different spin configurations and magnetic moments, vary-
ing the strength of the magnetic field can tune this bound-state energy into
resonance with the energy of the colliding atoms. When the field strength
is swept over a Feshbach resonance, a behaves as in Fig. 12.1.

This manipulation of a by means of a Feshbach resonance has been
experimentally confirmed, when a 85Rb condensate was suddenly brought
from the regime of positive a to the unstable regime of negative a, by
changing the magnetic field strength. The condensate collapsed on itself
and then blew off a large fraction off its mass [Cornish et al. (2000)]4 .

12.4.3 The T-matrix

Low-energy approximation

The T-matrix has already been discussed in Sec. 6.4, in the context of a
particle scattering off an external potential. For the present scattering of
two identical particles in free space we must simply replace the mass m
with the reduced mass m/2 in the expressions of Sec. 6.4.

In order to examine the low-energy limit we recall the integral equa-
tion [see Eq. (6.60)] for the general off-shell (energy-dependent) T-matrix
(fc'| Tf(-B) |fc) in the £th partial wave. The half-on-shell T-matrix can be
denned by setting the energy equal to the on-shell energy of the incoming

4The inventors of this phenomenon — presumably also fond of Latino dancing —
dubbed it a Bose-nova explosion, in analogy to an astrophysical supernova.
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state,

n2h2
(k'\ te \k) = (k'\ T\E = ) |ife), (12.80)

Tfh

and the integral equation for T is given by

On the diagonal (k — k') are the elements of the on-shell (physical) T-
matrix, which are related to the phase shifts by [see also Eq. (6.74)]

Ofe2

{k\ t e \k) = -eU(ksmSlk. (12.82)
mirk

From the discussion of the phase shifts in Sec. 12.4.2, it follows that the
low-energy limit of the on-shell T-matrix is simply

Ifr2
(k\Te\k)^ a6t0, forfc->0, (12.83)

TO7T

i.e. vanishing for i ^ 0 and given by a ^-independent constant for 1 = 0.
The low-energy limit of the half-on-shell T-matrix must, in principle, be

determined by examining the limit k,k' -* 0, with k ^ k', in Eq. (12.81).
However, it is clear that it is fully controlled by the on-shell behavior
(12.83), since an expansion of (fe'|Tf|/c) around k = 0, k! = 0, has a
leading term which is necessarily the zero-energy on-shell value. In general,
one therefore finds

in2
{k'\fl\k)^—a5eo (12.84)

run

as k -> 0, k' ->• 0, with k ^ k'.
The S'-wave dominance also implies isotropic scattering. The half-on-

shell T-matrix in a plane-wave basis is

(fc'|f|fe)= £ (k'l'm'\t\k£m)Ye,m,(k')Y;mCk)
imV m'

= J2(k'\te\k)'^Pe(u) (12.85)

where rotational invariance

{k'(.'m'\t\Um) = 8t,i>8m,m' (*'| t e \k) (12.86)

(12.81)
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has been used. Substituting Eq. (12.84) into Eq. (12.4) one finds the low-
energy limit

(fe'|r|fe)^^a, (12.87)

which is independent of the angle between k and k'. The approximation in
Eq. (12.87) will be used in subsequent work as the effective interaction in
momentum space for dilute Bose systems.

Contact force

The corresponding effective interaction in coordinate space is obtained from
Eq. (12.87) in the usual manner,

. , , . - . . . f dk\ dk2 dk\ dkn

x ei(fciT1+k2T2-fc'1.r'I-fci.ri) ( f c ^ f jfelfc2) .

Introducing CM and relative momenta

K = k, + k2, K1 = k[ + k'2, k = ̂ - ^ , k! = ^ - ^ , (12.89)

and using momentum conservation, one has

{k'1k'2\t\k1k2) =5{K-K'){k'\t\k). (12.90)

Substitution of the low-energy limit (12.87) then results in

(r[r'2\ t \rir2) = ̂ ^ ( n - r'^r, - r'2)6(n - r2). (12.91)
Tit

This has the form of a local zero-range or contact interaction

f ( r i - r 2 ) = f l < S ( r i - r 2 ) , (12.92)

with g - i2L~1, thereby justifying the replacement in Eqs. (12.65) - (12.66).

Ultraviolet divergencies

The pseudopotential in Eq. (12.92) was generated by a FT, involving all
relative momenta, of the constant T-matrix in Eq. (12.87), which is an
approximation only valid for small relative momenta. Use of Eq. (12.92)
as an effective interaction therefore causes no problems at the HB mean-
field level of Eq. (12.61), since only small momenta are sampled in the HB

(12.88)
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ground state. However, when a contact force is used to calculate a ground
state quantity in higher orders of perturbation theory, the integrals over
momentum k of intermediate states will typically be ultraviolet divergent
(as k -> oo). This is to be expected, since a constant T-matrix (which is
an approximation for small k) couples with equal ease small and very large
momenta, whereas the exact T-matrix would provide a natural cut-off at
large momenta.

It is nevertheless still possible to perform higher-order calculations with
a simple contact force (instead of the complicated exact T-matrix) by means
of renormalization techniques. The same divergencies, occurring in the
context of many-body perturbation theory, are already present at the level
of free-space scattering from a general contact force

Vs(r-r') = g6(r-r'), (12.93)

where g is now considered to be a free parameter. The corresponding (half-
on-shell) Ts should follow from

where the last line gives the formal series expansion in powers of Vs • Since
(fe'| Vs \k) = g/(2ir)3 is a constant, the integral equation (12.94) has no
solution, unless an upper bound qmax for the momentum integration is
introduced. Taking the limit k,k' -» 0, one can now demand that Vs has
the same scattering length a as the true interparticle interaction V, and
Eq. (12.95) becomes

— = f f - 2 ^ / 0 d q + - 12.96

Restricting the series to the first term on the right-hand side corresponds
to the Born approximation and reproduces Eq. (12.66). The higher-order
terms in the series are divergent when qmax ~^ oo, and can be used to
cancel similar divergencies occurring in many-body perturbation theory to
the same order. It is then possible to eliminate g, take the limit qmax —* oo,
and express the result in terms of the physical scattering length a. An
example of this will be given in Sec. 18.7.

(12.94)

(12.95)



Interacting boson systems 301

General 7 -matrix

The scattering solutions which behave asymptotically as an incoming plane
wave

Mr) = ̂ 4 7 n V ^ * ( r ) ^ m ( f c ) y ; m ( f ) (12.97)
£m

^Jkr--^(^\T\k)e—, (12.98)

form a complete set if the interaction has no bound states. In that case
it is possible to express the general (energy-dependent) T-matrix solely in
terms of the half-on-shell T-matrix elements. Starting from Eq. (6.20) in a
plane-wave basis

(fc'| T(E) \k) = (k'\ V \k) + (k'\ VE_H + ir]VW . (12.99)

and inserting the complete set of scattering solutions, leads to

Since (fe| V \ipq) = (k\T\q) [this follows e.g. from the Lippmann-Schwinger
Eq. (6.52)] one has

{k'\ T(E) I*) = (fc'| V |ib) + j d q ^ ^ . f , (12.101)

and subtracting the same equation for E = ~ - leads to the desired ex-
pression

(k'\ T(E) \k) = {k'\T\k) + ^Jdq{W\T \q) (k\ T W

which will be of use in later applications.

12.4.4 Gross-Pitaevskii equation

A system can be considered dilute when the average interparticle spacing
p-1/3 j s iarge) compared to the magnitude \a\ of the scattering length or,

(12.100)

(12.102)
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equivalently, when p\a\3 << 1. The preceding Sec. 12.4.3 made it plausi-
ble that, even when the bare interaction V is strong, the HB mean-field
formalism can be applied to dilute systems by simply replacing the bare
interaction with the pseudo-potential, according to Eqs. (12.65) - (12.66).

With this replacement the HB potential in Eq. (12.61) becomes

WHB(r) = g(N - l)|<£c(r)|
2 « gN\<pc(r)\2. (12.103)

Note that from now on we will approximate N — 1 by N in the HB expres-
sions, which is convenient and harmless, since we will be dealing with large
numbers of particles.

The HB equation (12.62) simplifies to

[ - ^ V 2 + U(r)} Mr) + gN\<j>c(r)\2<t>c(r) = ̂ c{r), (12.104)

where we explicitly made the identification (i = ec of Eq. (12.51).
Eq. (12.104), which has the form of a "nonlinear" sp Schrodinger equa-
tion, is called the (time-independent) Gross-Pitaevskii (GP) equation.

The GP condensate orbital 4>c{r) also minimizes, according to
Eq. (12.64), the following energy functional

EoP/N = Jdr (^lV^c(r-)l2 + U(r)\4>c(r)\2 + ^ | < M r ) | 4 ) , (12-105)

under the constraint /<ir|</>c(r)|
2 = 1.

It is easy to generalize Eq. (12.104) to the time-dependent version,

[ - ^ V 2 + U(r;*)] Mr;t) + gN\<t>c{r,<)|2<Ac(r;t) = ih^-<t>c(r;t),

(12.106)
when the external potential explicitly depends on time. Equations (12.104)
and (12.106) are able to explain most of the present data on atomic BEC.

12.4.5 Confined bosons in harmonic traps

The first observation of atomic BEC in 1995 has triggered many new ex-
perimental and theoretical developments. We will only cover the basic
physics of the BEC ground state in a confining trap, and refer to a review
paper and recent books [Dalfovo et al. (1999); Pethick and Smith (2002);
Pitaevskii and Stringari (2003)] for more material and additional references.
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Estimate of interaction effects

For the magnetic traps used in atomic BEC experiments, the confining
potential U(r) in Eq. (12.104) is well approximated by a harmonic oscillator
(HO) potential,

U(r) = j(u,lx2 + coy + u?zz\ (12.107)

In the most general case, it is completely anisotropic (tox ̂  ojy ̂  u>z), but
usually has cylindrical symmetry (uix — ujy), with cox = UJZ corresponding to
a spherically symmetric, u>x > UJZ to an elongated (cigar-shaped) and ux <
LOZ to a flattened (pancake-shaped) trap. The behavior of noninteracting
atoms in such magnetic traps has already been discussed in Sec. 5.6.2.
We now examine what changes occur when the interatomic interaction is
included at the level of the GP equation (12.104).

It should be stressed that, even when the system is dilute in the sense
that p|a|3 is small, the effects of the interaction can still be large. To make
an estimate, let us assume that the condensate wave function 4>c(r) can be
approximated by the noninteracting HO ground state $000(1') of Eq. (5.55).
The central density is given by

,(0) = N\M0)\> « AT ( ^ ) 3 / 2 = - ^ L - , (12.i08)

where the the average oscillator frequency UJHO and length aHO have been
defined in Eq. (5.56) and Eq. (5.59), respectively. Typical values for ex-
perimental conditions are 103 < N < 106, \a\ ~ 10~9m and aHO ~ 10~6m,
which leads to values 10~6 < p\a\3 < 10~3, indeed corresponding to very
dilute systems. The interatomic interaction generates the mean-field po-
tential in the GP equation, which in the center of the trap has a value

WHB(0)=gN\<j>c(0)\2~N-^-^j=, (12.109)
ano n^V71

and which should be compared to the HO energy scale hujHO — —T—• The
maHO

ratio is seen to be proportional to the dimensionless quantity

u = N—, (12.110)
aHo

and can be taken as a measure of the strength of the interaction effects.
Filling in the above values for N, \a\, and aHO one finds 1 < |u| < 103, i.e.
typically exceeding unity and one can expect strong deviations of the GP
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Fig. 12.2 Column density p(z) = f dyp(O, y, z) of a condensate of 8xlO4 23Na atoms
(m = 21.415 GeV/c2 « 23 a.m.u.) in a harmonic trap with u)x = uiy = 2050 rad/s and
uz = 170 rad/s. The experimental atomic density shown in the figure is proportional to
the optical density data by [Hau et al. (1998)], who directly observed the condensate as
an absorption image by shining through the condensate with near-resonant laser light.
With a = 2.75 nm and aHo =1.76 (im one has u « 125. The experimental data are
compared with the HO prediction (dashed line) and the GP prediction (solid line).

condensate density from the noninteracting Gaussian profile. An example
is shown in Fig. 12.2 where an experimental condensate density with u as
125 (see caption) is compared to the HO and the GP ones. The interaction
effects, included in the GP approach, reduce the central density by a factor
of 12 compared to that of the noninteracting HO. The GP result is in very
good agreement with the experimental density profile.

Scaling relations

The GP energy in Eq. (12.105) with the harmonic oscillator external po-
tential of Eq. (12.107), can be split up as E^p = T + U + Eint in terms of
its kinetic, HO and interaction parts. Since E§p is stationary with respect
to small variations in <j>c{r), one can e.g. consider a scaled replica (£ > 0)

&(»•)= f3/Vc(fr), (12.111)
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which is a normalized wave function. Evaluating the energy functional in
Eq. (12.105) with </>?(r) instead of <fic(r) = </>£=i(r), it is easy to see that
all components have simple scaling properties, and the energy becomes

E°p(0=eT+^U + eEmt. (12.112)

The energy in Eq. (12.112) must be minimal for the GP solution with £ = 1,
and one has the relation

dEGP(£)
0 = — ^ - ^ = 2T - 2U + 3Eint (12.113)

between the GP kinetic, HO, and interaction energy. Similar relations can
be derived by considering scaling in the x, y or z direction [see Exercise (1)].

Attractive interactions

It is also obvious from Eq. (12.112) that for attractive interactions a solution
of the GP equation cannot represent the global minimum of the GP energy
functional: the negative interaction energy Eint < 0 for g < 0 implies that
EQP(0 ~* ~°° f°r £ ~+ +00- The system is globally unstable against
collapse, as it can always find a lower energy by shrinking in size and
increasing the density5. It is possible however, to trap the system in a local
minimum, and condensates of atoms with negative scattering lengths are
routinely observed. A local minimum for a < 0 clearly requires the presence
of the confining trap potential [second term in Eq. (12.112)]. At the same
time, a collapsing condensate must have its increase in negative interaction
energy, at some point balanced by a rise in the kinetic energy due to its
decreasing size. This turns out to be impossible when the coefficient in front
of the interaction energy becomes too large in magnitude or, equivalently,
when the number of particles exceeds some critical value. All this can be
neatly visualized by studying a spherical trap and a one-parameter family
of wave functions, e.g. Gaussians with variable width [Fetter (1998)],

Mr) = | ! ^ e ~ ? V / 2 - (12-H4)

5Physically, of course, the condensate will be destroyed by recombination processes,
as the density increases.
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Fig. 12.3 Total energy E^p(£)/(JVhuHO) in a spherical trap with the Gaussian ansatz
of Eq. (12.114), as a function of aHo£, for the values u = -0.3, -0.4, -0.5 , and for u = uc.

Evaluating the different components of the energy functional (12.105) with
the Gaussian ansatz ip^(r) leads to

T(Q = 3 2 2 U(Q = 3 1
NtkoHO 4 H O ? ' NhuHO 4a%oe'

In Fig. 12.3 the total energy EQP(^) is shown as a function of £ for various
values of u < 0. For small |u| one observes the presence of a local minimum,
corresponding to a condensate of smaller size and higher density than the
HO one. The minimum becomes shallower as \u\ increases, and vanishes
completely at a critical strength \uc\ = 2V/2TT5~5/4 « 0.671. The exact GP
solution (not restricted to a Gaussian ansatz) has the same behavior, but
with a critical strength \u\ as 0.575 (see Sec. 12.4.6).

(12.115)
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Thomas-Fermi limit

Apart from the noninteracting limit (u -> 0), the GP equation (12.104) has
a new interesting regime when u —> +oo in case of repulsive interactions.
This so-called Thomas-Fermi6 (TF) or large-iV limit is exactly solvable.
Considering the three terms on the left-hand side of Eq. (12.104), it is clear
that both the kinetic term and the repulsive interaction term try to expand
the atomic cloud, whereas the confining potential acts as a counterbalance
by providing the necessary repelling force to the expansion. In the TF
limit the interaction term completely dominates the expansion, and one
can neglect the kinetic energy term in Eq. (12.104). As a result, one has a
purely algebraic equation

{U(r) + gN\<pc{r)\2 - fi} <f>c{r) = 0, (12.116)

having the simple solution

y/gN<t>T
c
F{r) = 9 (/z - U(r)) v V - U(r). (12.117)

Substitution of Eq. (12.117) in the normalization condition

/

I / 9 \ 3/2 rVv
drWc

F{r)\2 = ——- - 47r/ dRR2{fi-R2), (12.118)
9N^lo \mJ Jo

allows to calculate the corresponding chemical potential,

MTF = (15u)^^f- (12.119)

which is much larger than the HO quantum in the present limit u —> +oo.
The interaction energy Eint can now be easily obtained,

E% = j-gJdr6(Li- U(r)) [/x - U(r)}2

= *NfiTF, (12.120)

and likewise for the trap energy

UTF = ^NMTF. (12.121)

6In analogy to the Thomas-Fermi approximation for the electron density in atoms,
where the kinetic term is replaced by the kinetic energy of the noninteracting electron
gas at the local density. Since the kinetic energy of a noninteracting boson gas is zero,
the kinetic term is simply omitted in the present application.
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The TF condensate density, according to Eqs. (12.117) and (12.119),
obviously has a sharp boundary, given by the ellipsoid

2^TFlm = Lulx2+uy+u2
zz

2, (12.122)

beyond which the density is strictly zero. The volume of the ellipsoid
is equal to |7ra^o(15u)3//5 and grows with increasing N as N3/5. This
is compensated by a decrease in the normalized density p(r)/N, e.g. the
central density pTF(0)/N = nTF/{gN) decreases for large N as iV~3/5.

The TF density provides an easy and accurate approximation to the ex-
act GP density for systems with a large number of atoms, except near the
boundary, where the unphysical sharp edge of the TF density is rounded off
in the true GP density. In fact, the kinetic energy calculated with the TF
expression (12.117) diverges, since the normal derivative at the boundary
becomes infinite. This has been analyzed for spherical traps in [Dalfovo et
al. (1996)], where it was shown that this divergency can be eliminated by
a universal extrapolation of the TF density near the boundary. It turns
out that the kinetic energy in the u —> +oo limit has a leading term pro-
portional to T ~ N(\nu)u~2/5, vanishingly small compared to the other
contributions U and Eint which have a leading term [see Eqs.(12.120) -
(12.121)] proportional to ~ iVu2/5 in the TF limit.

Of interest is also the change in shape of the condensate (in case of an
anisotropic trap), when going from the noninteracting to the TF limit. The
shape can be defined through the root-mean-square radii Rx, Ry, Rz with
Rx — [Jdr x2\(t>c{r)\2}1/2 and similarly for Ry and Rz. In the noninteract-
ing limit with the HO wave function (5.55), one has R2

X = h/{2mujx) and
the shape is determined by

RxsJU; = Ryy/UJy-= RzvfcTz. (12.123)

The TF wavefunction in Eq. (12.117), on the other hand, leads to

R7 = —-Ul5«) 1 / 5a*o (12.124)
ux v7

and therefore

RT
x
Fwx = RT

y
Fioy = RT

z
Fiuz. (12.125)
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Table 12.1 GP results for spherical traps.

~ u II n I HTF I Eo/N I E%F/N I T/JV 1 E//JV I Eint/N~
0 1.500 - 1.500 - 0.7500 0.7500 0
1 2.066 1.477 1.811 1.055 0.5876 0.9692 0.2544
10 4.016 3.710 3.072 2.650 0.3561 1.772 0.9440

102 9.473 9.320 6.875 6.657 0.1898 4.087 2.598
103 23.48 23.41 16.83 16.72 9.615xlO"2 10.08 6.655
104 58.84 58.80 42.05 42.00 4.704xl0-2 25.22 16.78
105 147.7 147.7 105.5 105.5 2.238X10-2 63.31 42.19
106 371.0 371.0 265.0 265.0 1.040xl0~2 159.0 106.0
-0.5 0.8497 - 1.238 - 1.105 0.5220 -0.3886
-\uc\ II 0.3640 1 - I 1.168 I - I 1.589 | 0.3830 | -0.8042

Chemical potential n and the GP ground-state energy per particle Eo/N, obtained
by solving the spherical GP equation (12.128) for various values of the interaction
strength u, compared with the corresponding Thomas-Fermi approximations /J,TF
and EQF (where the TF kinetic energy has been set equal to zero). Also in the
Table are the components of the GP ground-state energy: the kinetic energy T/N,
trap energy U/N and interaction energy Eint/N.

12.4.6 Numerical solution of the GP equation

The coordinate space GP equation (12.104) can be solved using grid-based
techniques. We only examine the simple case of a spherical trap,

[ - ^ V 2 + ^ m ^ r 2 ] <Ac(r) + gN\4>c{r)\2cf>c(r) = ec0c(r), (12.126)

which already allows most of the relevant observations. The lowest-energy
solution of Eq. (12.126) will be spherically symmetric, and can be rewritten
as

4>c(r) = -^=a-~Hl'\(w)lw (12.127)
V4TT

in terms of the dimensionless variable w = r/aHO and a new function <p(w)
normalized as 1 = /dw\tp(w)\2.

With this replacement Eq.(12.126) transforms into

-\<P"M + fV(««) + u[\v(w)\2/w2}v(w) = fMp(w) (12.128)

with fi = /j,/(hbJHO), and everything has been expressed in terms of the HO
length and energy scales. In the representation of Eq. (12.128) it is obvious
that the only relevant parameter is the interaction strength u defined in
Eq. (12.110).
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Fig. 12.4 GP wave functions for a condensate with repulsive interactions in a spherical
trap. The wave functions are obtained by solving Eq. (12.128) for various values of
u. Left panel: tp(w)/w for u=0,1,10,100,1000, where the central value decreases with
increasing u. Right panel: comparison of the GP wave functions (full line) with the TF
approximation (dashed line) for u=10,100,1000.

Figure 12.4(a) shows how the solution of Eq. (12.128) evolves as a func-
tion of u > 0 (repulsive case), while the energy and its various components
are listed in Table 12.1. When u increases, the atomic cloud reacts by
expanding and becoming less dense so as to minimize the increase in the
repulsive interaction energy Eint. As a consequence of the growing size,
the trap energy U increases and the kinetic energy decreases. The exact
GP wave function is compared to the TF approximation in Fig. 12.4(b).
One observes that already at u « 100 the TF approximation is quite good,
except near the TF edge. For attractive interactions (u < 0) the opposite
happens: compared to the noninteracting HO wave function the system
contracts and increases its central density so as to optimize the negative
interaction energy, as illustrated in Fig. 12.5. As a consequence, the ki-
netic energy increases and the trap energy decreases. At a critical value
uc\ « 0.5750, corresponding to a critical particle number iVc = l^d^110-,
the interaction energy becomes too dominant and the spherical GP equa-
tion no longer has a solution. An overview of the energy and the chemical
potential as a function of u is provided by Fig. 12.6.
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Fig. 12.5 GP wave functions for a condensate with attractive interactions in a spherical
trap. The wave functions (p(w)/w are obtained by solving Eq. (12.128) for «=0,-0.3,-0.5
and the critical value u = —\uc\ m —0.5750. The central value rises with increasing |u|.

12.4.7 Computer exercise

Reproduce the results for spherical traps in Sec. 12.4.6 by numerical so-
lution of Eq. (12.128). The simple discretization techniques developed in
Sec. 10.2.4 can again be put to good use here. In this case an equidistant
grid

Wi = {i-±)A, i = l,...,M (12.129)

works fine. Use M « 1000 and a cut-off at wmax = 5 or, for u > 0, at
wmax = 1.5i?TF if the latter value is larger. Here RTF — (15M)1/5 is the TF
edge.

The second-order derivative in Eq. (12.128) can be approximated on the
grid as

(p"(wi) -> (-2<p(wi) + viwi-!) + ip(wi+1)) £ j , (12.130)

for i > 1, with the boundary condition at the first point

?"(*)!) -> (-3(^(^0 + <p(w2)) ^ , (12.131)



312 Many-body theory exposed!

Fig. 12.6 Overview of the Gross-Pitaevskii total energy EGP/N, the chemical potential
//., the kinetic energy T/N, trap energy U/N and interaction energy Eint/N, as a function
of the interaction strength u in a spherical trap.

in order to select solutions odd in w.
The nonlinearity is treated by iteration, choosing as an initial guess for

u < 0 and small values of u > 0 the noninteracting HO wave function

^ H - w e " 1 " 2 / 2 , (12.132)

or for u > 0 the TF approximation

ipi0)(w) ~ w6(RTF - w)y/B*F - w2, (12.133)

where (p^ (w) should be normalized on the grid as

M

l = ^ A V ° ) ( W i ) | 2 . (12.134)
z = l

Choosing the initial guess of Eq. (12.24) will lead to faster convergence for
all but the smallest values of u > 0.

The iteration cycle looks like:
1. Use <p(°) to evaluate the HB potential -u[\^(w)\2/w2} in Eq. (12.128).
This leads to an eigenvalue equation for a symmetric tridiagonal matrix
Ai3.
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2. An improved wave function ipW can be found by solving the linear
system

M

2 ^ V ( 1 ) K ) = ¥'(0)(«'0, » = 1,...,M, (12.135)
3=1

by means of the recursion formula in Sec. 10.2.4, and then normalizing the
solution <p^ to unity according to Eq. (12.134).
3. At this point one can monitor the difference between tpW and <p^ and,
if needed, set tp^ = i//1) and go back to step 1.

Note that at each iteration step the weight of the lowest-energy solution
of the current eigenvalue equation is increased in ip^ as compared to ip^.
While not optimal, the above method converges with minimal overhead
and reasonably fast to the desired solution of the nonlinear GP equation in
Eq. (12.128). One may also convince oneself that for values of u < —\uc\
the method fails to converge.

12.5 Exercises

(1) Write the GP energy of Eq. (12.105) in an anisotropic harmonic trap
as

E$p = (Tx + Ty + Tz) + (Ux + Uy + Uz) + Eint

with the evident notation

T^Nfdrf^ir)2

J 2m ox

[ / x = i v | d r ^ ^ | « A c ( r ) | 2 ,

etc. Introduce [analogous to Eq. (12.111)] a scaling of the z-coordinate
only, i.e. <j>^{x,y,z) — £l/2(f>s(£x,y,z), and show that the GP solution
obeys 2TX - 2UX + Eint = 0 .

(2) Within the Gaussian model of Eq. (12.114), find the critical attraction
strength uc beyond which an atomic condensate in a spherical trap
becomes unstable against collapse. Note that for the critical strength uc

the local minimum at £min has zero curvature, which can be translated
by requiring both the first and second derivative of JBQ?P (£) to vanish at
£min. The resulting solutions are fmjn — 51/4 and uc = -2V^TT5~5 / /4 S=S

0.671.





Chapter 13

Excited states in finite systems

After studying various approaches to describe the sp propagator in a many-
fermion system in Chs. 10 and 11, it is now time to discuss the description
of excited states of the system with N particles. In Sec. 13.1 the relevant
limit of the tp propagator GJI will be introduced, which is appropriate
for the calculation of these excited states. It is possible to develop all
the details of the corresponding diagrammatic expansion of this so-called
particle-hole (ph) or polarization propagator. Assuming that the reader
is now sufficiently familiar with the procedure, a somewhat different ap-
proach will be applied here. We will identify in Sec. 13.2 the minimal set
of diagrams generating a pole structure similar to the one of the exact
polarization propagator. The resulting approximation to the polarization
propagator is widely used, and while the name is not too illuminating at
first, it is historically called the random phase approximation (RPA)1. Later
on RPA will be linked to the Hartree-Fock description of the sp propaga-
tor in Sec. 21.4. In Sec. 13.3 a simple model is employed to illustrate the
scope of the RPA in a finite system. Many of the observed properties of
excited states in many-fermion systems can be interpreted in terms of this
schematic model. Especially the appearance of collective states in relation
to the character of the ph interaction, whether on average attractive or re-
pulsive, can be illustrated fruitfully. Collective features also appear in the
transition strength to the ground state. The energy-weighted sum rule for
the RPA transition strength is the subject of Sec. 13.4. Excited states of
atoms are discussed in Sec. 13.5. The summation of diagrams, involved in
calculating excited states, can also be applied to the determination of the

1This term was first introduced in the study of the electron gas, treating the collective
properties associated with the divergent Coulomb interaction [Bohm and Pines (1953);
Pines (1953)].
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so-called correlation energy. This topic is briefly discussed in Sec. 13.6. The
chapter concludes with the derivation in Sec. 13.7 of the RPA equations in
the angular momentum coupled representation.

13.1 Polarization propagator

The relevant limit of the tp propagator to study excited states in many-
fermion systems is given by

Gph{a,p-l;i^~l;t-t')= lim lira Gn{at,6t',~ptp,jt^)
t@—>t t-y—>t

= -l- (*£\ T[alH(t)aaH(t)a\jt')alH(t')) | < ) . (13.1)

The "bar" over sp quantum numbers indicates the time-reversed state, i.e.

7 » = |a) , (13.2)

where T is the time-reversal operator2. It is useful to emphasize that the
action of this operator depends on the sp basis that is chosen [Sakurai
(1994); Messiah (1999)] and requires the selection of a particular phase
convention. For a particle with momentum p, spin ^ (not explicitly shown),
and spin projection ms, we employ the convention

T\p,ms) = |p7m7) = (-1)*+™. \-p,-ms). (13.3)

It implies that in this basis, time reversal is equivalent to the product of
the parity operator and the spin-space operator (iay), corresponding to a
rotation by n around the y-axis [Sakurai (1994)]. Note that we follow the
phase convention in Eq. (13.3) of [Bohr and Mottelson (1998)].

Whenever appropriate, the relevant phase convention and character of
the time-reversal operator will be explicitly given. For the more general
expressions in this chapter, time-reversed states are simply indicated with
a bar over sp quantum numbers, and have the property (for fermions) that

T\a) = \W) = -\a). (13.4)

For later applications we also need to be able to properly couple ph
excitations to good total angular momentum states. It is then convenient
to introduce operators b and tf, where the operator

bl = aw (13.5)
2Not to be confused with the scattering quantity or the time-ordering operation.
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produces a hole with sp quantum numbers a, corresponding to the removal
of a particle in the time-reversed state 57. In the basis specified in Eq. (13.3),
e.g., one has

&P,m. = aww7 = (-l)*+™.a_pi_m<. (13.6)

The presence in Eq. (13.1) of only two times in this limit of the tp
propagator, implies that only one energy variable is required upon FT.
In order to prepare for this FT, one may substitute the explicit form of
the Heisenberg removal and addition operators [see Eqs. (7.3) and (7.4)]
and the definition of the time-ordering operation in terms of step functions
into Eq. (13.1). Inserting complete sets of iV-particle states at appropriate
places then yields the following expression for Gph in the usual way

Gph(^/3-l;7,S-1;t-t') = -^{^\ataa\^)(^\a\aJ\^) (13.7)

n^tO J

The contribution of the ground state has been explicitly isolated in the first

term in Eq. (13.7), and involves matr ix elements of the one-body density

operator [Eq. (7.21)] tha t are already contained in the sp propagator. It is

conventional to introduce the so-called polarization propagator, which only

includes the contribution of excited states (n ̂  0) in Eq. (13.7):

+ l- « | alaa | O « | a\aj « > . (13.8)

With this preparation one can now perform the FT of the polarization
propagator to obtain its Lehmann representation by employing the integral
formulation of the step functions given by Eq. (6.7),

v.(^|qfa,|^)(^lalaa[^)

^ E + (E»-E»)-ir, - ( 1 3 ' 9 )
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As in the case of the sp propagator, the polarization propagator contains
important information in its denominator, related to the position of excited
states, here of the TV-particle system. The numerator contains transition
amplitudes, connecting the ground state with those excited states. In the
case of a one-body excitation operator (summing over /3 is equivalent to
summing over 0)

6 = ^(a|0|^)4a^, (13.10)
a/3

the transition probability from the ground state to an excited state is given
by

|(^IOIO|2=X:E^OF)(QIOI^
a0 -yd

x ^ t ^ O ^ ^ K ) * . (13.11)

This result demonstrates that the numerator of the first term in Eq. (13.9)
contains the relevant transition amplitudes for a given state n to evaluate
this transition probability. Examples of cases where this type of one-body
excitation mechanism plays an important role, are given by inelastic elec-
tron scattering off nuclei, and neutron scattering off condensed-matter sys-
tems. Note that the information contained in the second term of Eq. (13.9)
is a repetition of that in the first term.

It is instructive to evaluate the noninteracting limit of the polarization
propagator. This limit can be directly obtained from Eq. (13.8) by replacing
H by Ho and \^Q) by the noninteracting ground state |$^) ,

n<°> (a, / r l ; 7, <r *; t -11) = G<$> (a,p-l-%s-l
;t-t')

+ j«l4a-|*S r>«Kay|*S r>. (13.12)

By employing the sp basis in which HQ is diagonal, the states that can be
excited also correspond to eigenstates of Ho, as discussed in Sec. 3.1, with
the following result

Ho a\aj\*g) = 0{i - F)9(F - 5) {e7 - es + E*»} a\a7\*Z), (13.13)

where Kramer's degeneracy has been used in putting e-g = £$. One may
leave out the bar over quantum numbers in the step functions for the
same reason. Rewriting the interaction picture operators, according to
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Eqs. (A.15) and (A.16), and evaluating the relevant expectation values
with respect to the noninteracting ground state, yields

n(°)(a,r1 ;7,<J~1 ;*-t ' ) =

- i {d(t - t')6{a - F)6(F - 0)aai7<J/Me-<<e«-e"W-t'>/ft

+ 9(t' - t)9(F - a)Q(p - FlScySfsje-^'-'-W-W} , (13.14)

where time-reversed quantum numbers can again be suppressed. The first
term in Eq. (13.14) corresponds to the independent propagation of a particle
with quantum numbers a (7) from t' to t and a hole with j3 (5) from t to
t'. The second term exchanges the role of t and t', as well as that of the sp
quantum numbers, and can be referred to as independent hole-particle (hp)
propagation. This is illustrated in Fig. 13.1, using time-ordered diagrams.
It is customary to refer to part a) of Fig. 13.1 as forward propagation,
and part b) as backward propagation. This graphical representation in
terms of noninteracting sp propagators is totally appropriate, since a look at
Eq. (7.32) demonstrates that up to a constant the two terms in Eq. (13.14)
correspond exactly to such a product, i.e.

Yl{0) ( a , / T x ; 7 , < T : ; t - *') = -ihG(0)(a, 7 ; t - t')Gi0) (5, fc t'-t). (13.15)

Note that when evaluating Eq. (13.15) one may put to zero the terms
containing a product of step functions with opposite time arguments.

Using the integral representation [see Eq. (6.7)] of the step functions in
Eq. (13.14), it is straightforward to evaluate the FT of n£°\

n(°)(a,r1;7,«"1;£) =
rg(a-F)fl(F-fl 0(F-a)0{0-F)\

6^'S\E-(ea-e0)+irl-E + (e0-ea)-ir)}> (13"16)

t=» •<* 9/3 t' => t 7 t<5

t' => * 7 *S t=> ia 1/3
a) b)

Fig. 13.1 Diagrammatic representation of the ph and hp propagation terms in
Eq. (13.14), representing the unperturbed polarization propagator in the time-ordered
formulation.
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T a T @

" 7 *<5

Fig. 13.2 Diagrammatic representation of the unperturbed polarization propagator in
the energy formulation. Note that this Feynman diagram includes both ph and hp
propagation terms as in Eq. (13.16).

shown graphically in Fig. 13.2. This simple structure of the noninteracting
polarization propagator confirms that the location of its poles corresponds
to ph states that are obtained by removing a particle from an occupied
level and placing it in an empty level of Ho- It should also be noted that
the location of the poles in Eq. (13.16) is symmetric around E = 0, which
is a reminder that a pair of fermion operators have certain properties in
common with bosons (see Ch. 18). The numerator of Eq. (13.16) reflects
that the ph pair, added to the noninteracting ground state, must propagate
without change for the chosen pair of quantum numbers. In general the
exact polarization propagator in Eq. (13.9) does not share this property,
and may have nondiagonal contributions, as well as several excited states
that can be reached by adding a ph pair with quantum numbers 7<5-1 to
the ground state.

The product of sp propagators appearing in the time representation of

Eq. (13.15) becomes a convolution product, when performing a FT to the

energy representation. It is a useful exercise to confirm that the nonin-

teracting polarization propagator in Eq. (13.16) can also be obtained by

considering the following convolution of noninteracting sp propagators,

^GW(a,r,E + E')GM(6,0;E')

= 5a^80^°\a,p-l;E). (13.17)

The integral in Eq. (13.17) for each of the four terms, representing the
product of the two noninteracting sp propagators, can be evaluated by
considering the distribution of the poles as a function of E'. When both
poles occur on the same side of the real iJ'-axis, the contour integral can
be closed in the opposite half, thereby rendering the corresponding con-
tribution zero. For this reason, only two terms survive the convolution
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in Eq. (13.17), representing ph or hp contributions as shown explicitly in
Eq. (13.16). It is customary to refer to the first part of Eq. (13.16) as the
forward-going term, and to the second term as the backward-going one.
Nevertheless, both terms are represented by only one diagram in the usual
Feynman diagram convention, as indicated in Fig. 13.2.

13.2 Random Phase Approximation

Higher-order contributions to the polarization propagator can be evaluated
by straightforward application of Wick's theorem. The relevant connected
contributions have already been discussed in Sec. 9.3 for the more general
case of the four-time tp propagator. As in the analysis of this more general
tp propagator, there are terms that represent an interaction between the
initial and final ph state, and terms that dress the noninteracting sp prop-
agators. Both types of corrections appear in the first-order contribution
given by

/— i \ 2 r°° 1

\ n ) J-oc 4 KX^

in the time formulation. If the HF basis is employed, these self-energy
terms will vanish in first order. A scheme to calculate excited states, us-
ing noninteracting sp propagators, is therefore obtained by keeping only
those contributions to Eq. (13.18) which link the propagators, and by dis-
carding those with first-order self-energy insertions (as well as the truly
disconnected terms). Using the symmetrized version of V, then yields

/

OO 1

dh i Yl (^\V\H (13.19)
x G ( o ) (a, K; t - t!)G(0){fi, 0; h - t)GW(„, 7 ; tl - t ' ) G ( 0 ) (8, X;t'-h),

illustrated in Fig. 13.3. For some systems it is useful to separate the di-
rect and exchange contribution of the interaction V, and treat them sepa-
rately. Both terms are displayed in Fig. 13.3. The physical interpretation
of Eq. (13.19) is now clear. Taking into account that the unperturbed sp
propagators in Eq. (13.19) are diagonal in the sp basis, one obtains for the
particular time-ordering t > t\ > t' that a ph pair is added at time t' with
quantum numbers 7<S~1, then propagation to t\ takes place. At this time
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h =>

Fig. 13.3 Diagrammatic representation of the first-order correction to the polarization
propagator in the time formulation. The time ordering t > t\ > i! has been chosen for
this picture. In part a) the direct contribution of the matrix element of the interaction
is employed, whereas in part b) the exchange part. The labels for the interaction have
been suppressed for clarity.

an interaction changes the propagation to a ph pair with quantum numbers
a/3"1 which ends at t when the pair is removed. Since V contains both di-
rect and exchange contributions, different diagrams can be associated with
these two processes as shown in Fig. 13.3.

It is now convenient to introduce the ph version of the two-body matrix
element of V as follows

(a/T11 Vph ^S-1) = (aS\ V |07). (13.20)

The definition emphasizes the physical process, illustrated in Fig. 13.3, in
which the interaction connects one ph pair with another. Using Eq. (13.20)
and performing a FT of Eq. (13.19), one obtains the first-order term in the
energy formulation. The transformation is facilitated by using the inverse
transforms of the sp propagators, as given by Eq. (8.60). If the definition
given in Eq. (13.17) is employed, this FT simplifies to

U^(a,p-1;i,6-1;E) = U^(a,p-1-E)(ar1\Vph\-f6-1)U^(7,6-1;E).
(13.21)

The corresponding diagrammatic representation is shown in Fig. 13.4,
which is naturally similar to the one shown in Fig. 13.3. The analysis
of this expression [or the equivalent one in the time formulation, given by
Eq. (13.19)], shows that there are four different terms. In the language
of the diagrams shown in Fig. 13.1, these correspond to forward-forward,
forward-backward, backward-forward, and backward-backward contribu-
tions. The Feynman diagrams in Fig. 13.4 represent all four, whereas
Fig. 13.3 represents the forward-forward term in the time formulation. The
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pole structure of these first-order terms (in the interaction Vph), clearly does
not reflect the Lehmann representations of either the exact [Eq. (13.9)] or
unperturbed propagator [Eq. (13.16)], since the expression in Eq. (13.21)
contains a double pole on the diagonal. This problem has been encountered
earlier when analyzing higher-order contributions to the sp propagator. In
that case, the analysis produced the Dyson equation which generates for
appropriate choices of the self-energy, like those discussed in Chs. 10 and
11, a formulation that contains the correct analytic properties associated
with the Lehmann representation. The resulting Dyson equation is there-
fore a more appropriate vehicle to calculate sp properties. In addition, it
may be interpreted as a Schrodinger equation for a particle in the medium.
Such an analysis also holds for the polarization propagator, which requires
a similar infinite summation, likewise leading to a Schrodinger-like equation
for ph propagation. One must therefore regard the sum of all contributions,
in which Vph is iterated with II^0), as a minimum to obtain a polarization
propagator, which can be interpreted with a valid (though approximate)
Lehmann representation. The analogy then requires the identification of
Vph for example, with the lowest-order self-energy, and IÎ 0) with G^0'. The
summation of all these terms can be accomplished by rewriting the right-
hand side of Eq. (13.21) as follows

U^(a,r1;E)(ap-1\Vph\1S-1)U^(7,5-1;E)^ (13.22)

nw (a, r ^£) E (a/?" ̂  I £ O n (%,0-^ 7, <r ̂ £)

-+UW(a,(3-1;E)J2(aP-1\Vph\ee-1)nRPA(e,e-1;1,6-1;E).

E
1\

Fig. 13.4 Diagrammatic representation of the first-order correction to the polarization
propagator in the energy formulation for both the direct a) and exchange 6) process.
The energy E labels both diagrams, as indicated on the left side by the double arrow.
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Fig. 13.5 Diagrammatic representation of the second equality in Eq. (13.24). Note that
the dashed line represents Vp/, as denned in Eq. (13.20).

When the last expression is added to the noninteracting polarization prop-
agator, one obtains the corresponding approximation to the exact polar-
ization propagator, in which the ph interaction Vph is iterated to all or-
ders with the noninteracting polarization propagator. This is in complete
analogy with the Dyson equation that iterates the lowest-order self-energy
contribution. The present approximation yields the following equivalent
formulations [see Eq. (13.17)]

nRPA(a,r1;7,S-1;E) = rt°Ha,p-1;i,S-1;E) (13.23)

+ tfo\a,!3-1;E)Y,(<*0-1\VPh\ee-1)llRPA(e,6-1
]'Y,6-1

]E),

and

URPA(a, /3"1; 7, S-1; E) = n<°> (a, /T ' ; 7, S'1; E) (13.24)

+ Y,n(0H<*,P-1;C,C1iE){{c1\vPh\te-1)nRPA(e,o-1-,'y,6-1
]E).

eea

By successively replacing URPA on the right side of Eq. (13.23) [or
Eq. (13.24)] by the given expression, all higher-order terms are generated,
in which unperturbed ph propagation is interrupted zero, one, two, three,
etc. many times by the action of Vph- This particular sum of terms is
known in the many-body literature as the random phase approximation
(RPA) and the corresponding label has been used in Eqs. (13.22) - (13.24).
The diagrammatic representation of Eq. (13.24) is given in Fig. 13.5.
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The diagrams that are generated by this approximation to the polar-
ization propagator have various names in the literature, having been called
ring, bubble, or sausage diagrams. This name calling becomes clear when
the direct contribution to Vph is used to generate the higher-order terms
implied by Eq. (13.24). Examples of such diagrams are shown in Fig. 13.6.
The bubbles or rings emerge when the direct part of the interaction is
used to connect the unperturbed ph propagation as shown in Fig. 13.6.
It should be emphasized again that the diagrams displayed in Fig. 13.6
represent Feynman diagrams in the energy formulation. Each bubble, for
example, represents the sum of a forward- and a backward-going term cor-
responding to the first or second term of Eq. (13.16), respectively. The ex-
istence of both terms implies an interplay between these components when
Eq. (13.24) is solved. It generates the possibility of intermediate states, in
which many ph states are present at the same time. If no backward-going
contributions are included, only one ph pair propagates at each time. An
example of a term with more intermediate ph states is generated by taking
one of the bubbles in Fig. 13.6 and flipping it upward. These contributions
imply that some higher-order terms with more ph intermediate states are
present. Others are however neglected, in particular those in which parti-
cles (or holes) in different parts are exchanged with each other. It has been
argued that these Pauli exchange terms add up with random phases and
might therefore be rather small, hence the appearance of the name random

Fig. 13.6 Diagrammatic representation of a few higher-order diagrams generated by
Eq. (13.24) when only the direct contribution to VVH is employed, as shown in Fig. 13.4.
Note that the dashed line in this figure represents the direct contribution to Vph, as
denned in Eq. (13.20).



326 Many-body theory exposed!

phase approximation. General features of the solutions of the RPA equa-
tion for the polarization propagator in finite systems, will be presented in
the next section.

13.3 RPA in finite systems and the schematic model

The solution to Eq. (13.23) starts by assuming that URPA also has a
Lehmann representation, just as the unperturbed and the exact polariza-
tion propagator. This assumption implies that the transition amplitudes
and excitation energies, in principle, require a distinct notation, since they
refer to a specific approximation (RPA) to the polarization propagator. It
is convenient to define

X^ = (^\aia^y, (13.25)

y ^ = <*?| 4«« \<Y = -*L> (13-26)

which are related under time reversal, and

e* = E%- E?, (13.27)

keeping in mind that these quantities refer to the RPA description of the
polarization propagator. With this notation the Lehmann representation
becomes

YlRPA(a,f3-';j,5-i;E) = V y ^ ' [ - y ^ y* , (13.28)

In the case of a finite system it is natural to consider bound excited states,
and consequently, the summation in Eq. (13.28) indeed involves some dis-
crete states3 As a result, this Lehmann representation includes simple poles.
For simplicity we assume that all excited states correspond to discrete ex-
citation energies. With this assumption it is possible to exploit a technique
that was introduced in Ch. 6 (and used several times since) to solve propa-
gator equations with discrete poles. The procedure involves the calculation

3Unbound excited states, which behave asymptotically as a free particle on top of
a bound N — 1 state, can be described by "continuum RPA" techniques. For atoms,
see [Amusia (1990)] and the brief discussion at the end of Sec. 13.5. For applications in
nuclei, see e.g. [Ryckebusch et al. (1988)].



Excited states in finite systems 327

Of

\imn(E - ei){nRPA = n<°> + n(°) vph nRPA}, (13.29)

where Eq. (13.24) has been rendered in a schematic fashion. As in Ch. 6, one
proceeds by considering the limits for the three terms in Eq. (13.29). Using
the Lehmann representation for URPA, immediately generates the product
of two transition amplitudes, associated with excited state n for the left
hand side of Eq. (13.29). The limit yields no contribution when it is taken
for the first term on the right side which involves I I ^ . This conclusion can
be drawn whenever the interaction Vph is nonvanishing, since its action will
imply that the RPA excitation energies will differ from the unperturbed ph
ones. Using similar arguments for the final term, we arrive at the following
eigenvalue equation, after cancelling a common factor (AT )̂* on both sides

Xn
a& =U^(a,r1;el)Y,(^-1\Vph\ee-1)^e. (13.30)

£0

The summation over the quantum numbers e and 9 is restricted to either
ph or hp combinations, as can be inferred from the contributions that are
obtained by iteration employing II^0'. The external quantum numbers a
and f3 similarly can correspond to a ph or a hp combination. In the case
that a > F > /?, one may write Eq. (13.30) as follows

K - tec ~ e0)} Kss = E (ar11 Vph \c8^)XX (13.31)
£0

whereas in the case a < F < j3 one has

{el + (e0 - ea)} X2P = - J2 {<*r11 Vph [ed-1)^. (13.32)

The normalization condition for each solution n (with e£ > 0),

E ra2- E ra2 = l> (l3-33)
a>F>/3 a<F<0

can then be obtained in the usual fashion explained in Sec. 6.3.
Equations (13.31) and (13.32) together form a nonhermitian eigenvalue

problem. In many cases it is appropriate to consider a truncated ph space
with finite dimension D so that this eigenvalue problem has the double
dimension 2D. The nonhermiticity has important consequences, since there
is no guarantee that all eigenvalues e1^ will be real. In order to illustrate the
circumstances of the appearance of complex eigenvalues and their physical
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relevance, it is quite instructive to consider the simplified case of a separable
ph interaction.

Assume that the ph interaction is separable in the following way,

(a/T11 Vph \e9~l) = \Qa0Q*ee, (13.34)

where A is a coupling constant and \Qap\ — |Q/3a|- Substitution of
Eq. (13.34) into Eqs. (13.31) and (13.32) then yields

{el - (ea - e0)} X^ = \Qa0 E Q*eexpg, (13.35)

for a > F > /?, and

K + (ep - £«)} K& = -AQa/3 E Q*exPe (13-36)

for the case a < F < (3. This implies that

for a > F > /?, but

V, - -«^-QC-cey <1 3'3 8>
when a < F < p. The constant J\f is given by

AT = A ^ Q ^ £ ; (13.39)

where the sum extends over both ph and hp combinations. One may now
insert the solutions for the transition amplitudes given by Eqs. (13.37) and
(13.38), into Eq. (13.39) to obtain

after cancelling the common factors on both sides and dividing by A. The
only unknown quantities in this equation are the eigenvalues e^ that yield
its solution. The number of these solution corresponds to 2D. The proper-
ties of the eigenvalues can be understood by plotting the right hand side of
Eq. (13.40) as a function of the energy variable en. Assuming, for illustra-
tion purposes, only 3 ph states, a corresponding plot is given in Fig. 13.7.
The structure of this plot is very illustrative and follows a specific pat-
tern. The location of the poles in Eq. (13.40) is illustrated by the vertical

(13.37)

(13.40)
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Fig. 13.7 Graphical representation of the right hand side of Eq. (13.40).

asymptotes, which are located symmetrically about 0 at ± the ph ener-
gies. At negative energies smaller than the location of the leftmost pole,
the second sum in Eq. (13.40) dominates (since its poles are closer) and
yields a positive contribution, which increases from zero to oo when the
leftmost pole is reached. Beyond this first pole, but before the next one,
the function traverses all values, starting from —oo to oo. This type of
behavior continues for any number of discrete poles, until one passes the
last pole at negative energies. Towards the first pole at positive energies,
the function approaches -oo. After it and before the second one, the func-
tion goes from oo to -oo, and so on. After the last pole the function is
again positive definite, and approaches zero for large energies. One can also
verify that the maximum of the function at zero energy is negative. The
location of the eigenvalues is very easy to obtain graphically by drawing
the horizontal straight line corresponding to I/A, which represents the left
side of Eq. (13.40). The eigenvalues are found at the energies where this
straight line intersects with the dashed curve in Fig. 13.7. It is useful to
distinguish between a repulsive (A > 0) and attractive interaction (A < 0).
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In the former case, the solutions at positive energy will initially be found
between the unperturbed ph energies. These first D-l solutions are there-
fore trapped between them. The last solution is found above the final ph
energy. In the limit that the interaction becomes weak, I/A becomes large
and all solutions will tend to the original ph energies. If the interaction is
very strong, the straight line representing I/A, will approach zero and the
energy of the last solution may become very large. The latter state will
have very collective features, to be discussed below in more detail.

For an attractive interaction, one also finds D-l solutions in between the
unperturbed ph energies. For a small value of |A| another solution will be
found below the lowest unperturbed energy. However, if the strength of |A|
is increased, this solution will tend to zero excitation energy. Increasing |A|
further, this solution will disappear when the straight line representing I/A,
no longer crosses the dashed line between zero and this first ph energy. At
this critical point two complex eigenvalues (a conjugate pair) will emerge.
The appearance of these complex eigenvalues, identifies a characteristic
instability that is inherent in the RPA eigenvalue problem. The resulting
time evolution of these solutions has a component that will exponentially
increase and cannot represent a true excited state. Indeed, it indicates that
the ground state is unstable with respect to this type of collective excitation.
This situation can often be repaired by considering the contribution of such
collective excitations to the self-energy as discussed in Chs. 16 and 17.

The instability does not appear if the backward-going part of the unper-
turbed ph propagator is neglected in the eigenvalue problem. This simply
corresponds to eliminating the summation over hp states in Eqs. (13.35),
(13.36), and (13.40). In that case, the poles at negative energy in Fig. 13.7
disappear and the dashed line approaches zero from below, at negative
energies. The lowest solution to the eigenvalue problem for an attractive
interaction can then be found at a negative excitation energy, a physically
unrealistic situation. This approximation to the polarization propagator
is known as the Tamm-Dancoff approximation (TDA). It is completely
equivalent to a diagonalization of the Hamiltonian in the chosen basis of ph
states, as can be inferred from Eq. (13.35) or the more general Eq. (13.31).
We note that the contribution of the backward-going terms becomes as
important as the forward-going terms, when en approaches zero, which is
reflected in the values of the corresponding X coefficients.

The character of the RPA eigenvectors, associated with the solutions
discussed above, can be inferred by considering Eqs. (13.37) and (13.38).
While these solutions still require normalization, it is clear that for a weak
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interaction, when the eigenvalues remain close to the unperturbed ones,
the eigenvector will be dominated by the corresponding unperturbed ph
state belonging to that energy. In addition, the admixture of hp ampli-
tudes is also small, since the corresponding amplitudes [see Eq. (13.38)] are
even further removed in energy. These amplitudes are strictly zero for the
unperturbed case.

Explicit results for the collective state can be generated when one takes
the limit in which all unperturbed ph energies are degenerate. Denning

c= J2 I ^ I 2 = E I ^ I 2 (13-41)
oF>e «F<e

and denoting the degenerate ph energy by eph, the eigenvalue problem
simplifies to

A \ e* - eph e^ + Eph)  

Again D-l of the positive-energy solutions will remain trapped at e£ = eph.
They have X^ = 0 for a < F < 0, whereas the a > F > j3 amplitudes are
orthogonal to the (^-amplitudes,

E QUXa0 = O. (13-43)
a>F >(3

The remaining solution has an energy e*c corresponding to the positive root
of Eq. (13.42),

e«=[2\Ceph + e2ph]1/2. (13.44)

This collective state, which moves up or down from the unperturbed ph
energy £ph according to the sign of A, can have a very different energy from
ePh, depending on whether |A| is large or not. Only in the case A < 0
can an imaginary root appear, since C is a positive definite quantity. The
amplitudes of the collective state are given by Eqs. (13.37) and (13.38),

X*=NA ^--"SjTk- (13'45)
where the normalization constant follows from Eq. (13.33) and can be
worked out explicitly as

M = \r^- (13-46)

(13.42)
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The notion of a collective state can be further elaborated on by consider-
ing the transition probability for the operator Q that sets up the schematic
interaction,

Q = Y,Q^W (13-47)
a/3

The corresponding transition amplitude to an excited state n reads

<^|Q|<) = £Qa/3(W, (13-48)
a/3

and vanishes for a noncollective state, by virtue of Eq. (13.43). The tran-
sition probability to the collective state with energy E* in Eq. (13.44), is
nonzero and given by

(^|Q|<)|2 = ̂ C, (13.49)

a result following directly from Eqs. (13.46) and (13.39). In this extreme
limit all the transition strength combines into one collective state. In par-
ticular in the case of strong attraction when e* approaches zero, one may
have an extremely large transition probability. Nuclei with even numbers
of protons and neutrons in the middle of major shells, exhibit enhance-
ments of the quadrupole transition probability that exceed the sp estimate
by more than the number of nucleons. Indeed, it is clear from Eq. (13.49)
that the size of this constructive interference is not limited in principle.

13.4 Energy-weighted sum rule

The RPA transition strengths can also be discussed in the context of the
so-called energy-weighted sum rule (EWSR). For some operator Q this may
be expressed by the following quantity

S(Q) = £ « - O \(*Z\Q |<) |2 . (13.50)
n

If Q is Hermitian, one can express the result as follows

S(Q) = \W\[Q,[H,Q]]\*») (13.51)
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upon replacing the energies occurring in Eq. (13.50) by the Hamiltonian in
the appropriate places. Equation (13.51) expresses the EWSR in terms of
the ground-state expectation value of a double commutator.

It is sometimes stated that RPA fulfills the EWSR; this holds in the
sense that for a genuine HF+RPA calculation (with the same underlying
tp interaction) the RPA result for Eq. (13.50) equals the expectation value
of Eq. (13.51), evaluated with the HF ground state [Thouless (1972)]. For
a hermitian operator Q = ]TQ/3 Q^a^a-p, where Qa0 = (a\ Q \~J3) = - Q | s ,
this implies that

E £ n | E ^ T O f = \(^F\ [Q, [H,Q]] \*%F), (13.52)
n>0 a/3

where the sum on the left side is over all positive energy RPA solutions.
In order to analyze this property, it is useful to rewrite the RPA eigen-

value problem of Eqs. (13.31) and (13.32) in a standard matrix notation.
One hereby prefers to have X£p amplitudes with a < F < /3 replaced by
y^p variables with a > F > /?, as introduced in Eq. (13.26). This allows to
have only ph labels as matrix indices, and the eigenvalue problem in terms
of Xph and y™h amplitudes reads

G^XHG-.XS)- <™>
Note that Eq. (13.4) has been used to write the equivalent form (13.53) of
the RPA equations. The hermitian matrix A has elements

Aph,p<h' = <WSh,h>(eP -£/,) + (ph'\ V | V ) , (13.54)

whereas the symmetric matrix B is given by

Bph,plh. = {pp'\V\hhJ). (13.55)

One can easily see that if {e£, Xn, yn} is a solution of Eq. (13.53) with
el real, then so is {-el, CF1)*, (#")*}; this reflects the structure of the
polarization propagator in Eq. (13.28). Other properties of this type of
eigenvalue problem are discussed more extensively in Sec. 19.3.1. For the
present purpose we assume that the Hamiltonian matrix on the left side
of Eq. (13.53) is positive-definite. This ensures that complex instabilities
are absent and that all eigenvalues are real and come in pairs ±e£. The
corresponding eigenvectors can be normalized [following Eq. (13.33)] as

(XnyXn' - (yn)^yn' = 8n<n,sgn{el). (13.56)
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With this normalization convention, completeness of the solutions is ex-
pressed as

(J _!) = E^(el) (_*" ) ((*»)* -(y»)t) , (13.57)

whereas the decomposition of the Hamiltonian matrix becomes

(£ A") = Sl£nl ( ^ ) ((*")* - ^ t ) • (13'58)
\ / n V /

Using the matrix notation introduced above, the RPA result for the left
side of Eq. (13.52) can now be written as

s(0) = Een|E^TO*+Eww|2

n>0 ph ph
2

= ££n ((*")t-(;yW ^ ) , (13.59)

and a straightforward (but tedious) calculation yields for the right side of
Eq. (13.52),

(*%F\[&[H,Q]]\*ZF)

- E {2Q*phQp'h'APh,p'h' -QPhQP'h'B*hp,h, -QphQ*p>h>Bphiplh,}
ph,p'h'

= W-QT)(B-1<)(-Q*)- < 1 3 - 6 0 )

Note that Brillouin's theorem (see Sec. 10.1.3) can be used to omit terms
of the form {§"F \ Ha)pa^\$"F). Inserting the decomposition (13.58) into
Eq. (13.60) one arrives immediately at the conclusion that the sum rule
equality of Eq. (13.50) and Eq. (13.51) is fulfilled in RPA, at the level of
Eq. (13.52). Note that this is not the case for the TDA result, which misses
the terms involving the B matrix in the HF result of Eq. (13.60).

In some cases the double commutator appearing in Eq. (13.51) is a
simple operator or even a number, and the EWSR becomes a model-
independent quantity. An example of this is provided by the electric dipole
operator in the absence of velocity-dependent interactions. For atoms, this
leads to the Thomas-Reiche-Kuhn (TRK) or dipole sum rule, which arises
as follows. The wavelength of the electromagnetic radiation emitted or
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absorbed in atomic transitions is typically much larger than the size of in-
dividual atoms. As a consequence, one can ignore the spatial dependence of
the vector potential A(r) ~ elfere, where e is the polarization vector, and
approximate A(r) ~ e. This is known as the dipole approximation. The
transition operator coupling the vector potential to the convection current
of the electrons4, is in general given by

z 1
Hint ~ ( - e ) J2 ^ A ^ •«< + «*• A(n)}, (13-61)

i= l

where Vi = ^{H,ri\ is the velocity operator. In the dipole approximation,
the electromagnetic transition operator can therefore simply be written as

Hint~
%-e-[H,D], (13.62)

in terms of the dipole operator D — (—e) Yli=\ r»> an<l a n atomic transition
probability from state i to state / is characterized by the (dimensionless)
oscillator strength parameter,

1mF^ = ^2^(Ef-Ei)\(f\D\i)\2. (13.63)

The summed oscillator strength (determining e.g. the total photoabsorption
cross section) is recognized as an EWSR and can be expressed as,

S ^ = 3W ( i | [ j D ' ' [ F 'D 1 ] | i ) - (13-64)

In the case of atoms, velocity-dependent interactions are not present. The
double commutator in Eq. (13.64) only receives contributions from the
kinetic term in the Hamiltonian, and in fact becomes a constant since
[r,-[V2,r]] = —6. As a consequence, the sum rule for the total dipole
strength reads

TRK=Y^Ffi = Z, (13.65)
/

where Z is the number of electrons, and is known as the Thomas-Reiche-
Kuhn sum rule. The TRK sum rule (experimentally confirmed for atoms,
see e.g. [Piech (1964)]) is fulfilled in RPA calculations. It holds in general
for any system of pointlike charges interacting with velocity-independent

4 The current related to the intrinsic magnetic moment of the electrons can be ne-
glected in the dipole approximation.
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forces; a similar sum rule in the nuclear case receives corrections due to
mesonic exchange currents.

13.5 Excited states in atoms

The bound excited states in atoms do not have the strong collective struc-
ture discussed in Sec. 13.3, but can usually be described as rather pure ph
excitations. However, a "collective" feature does appear, in the form of
an important change in the mean field for the sp states above the Fermi
level [Amusia (1974); Amusia (1990)]. The sp energies appearing in the
RPA equations (13.53) for a neutral atom are the HF sp energies corre-
sponding to the neutral atom [see Eq. (10.39)],

6p,p,ep = {p\ T \p') + J2 (P^\ V W) . (13.66)
ft"

As mentioned in Sec. 10.2.1, the HF potential for the unoccupied sp states
in a neutral atom is too short-ranged and does not support bound parti-
cle orbitals. The HF ph spectrum is consequently also purely continuous
and does not support Rydberg series of bound excited states. This unsat-
isfactory situation is cured in both the RPA and TDA, where a series of
discrete excited states does appear. To see this in detail, one must consider
the time-forward diagrams represented by the A-block in the RPA matrix
equation. The diagonal sub-block characterized by ph excitations with the
same hole orbital reads

Aph,p'h = <W(ep -
 £h) - (ph\ V \p'h)

= Spysh + (p\ T \p'} + Y, (P&\ V \p'hT) . (13.67)

This matrix can be diagonalized with a unitary transformation among the
unoccupied orbitals,

iP(k)) = E C i p ' ) . (13-68)
V'

such that

(pW\T\P'W) + Y, (P^WMP'^W) = 8p,p,ep
h\ (13.69)
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hereby defining new sp energies ep for the unoccupied orbitals. Obviously,
this is equivalent to the sp eigenstates of a modified mean field, sometimes
called the VN~l potential, obtained by omitting in the HF mean field the
contribution of the hole state under consideration. While in some cases
(like in heavy nuclei) the removal of one particle hardly matters for the HF
mean field, the change is crucial for electronic systems like atoms: the VN~l

potential is ion-like, with a potential that decays like 1/r and therefore
supports a Rydberg series of unoccupied states, in addition to a continuum.
An important part of the electronic correlations (the sum of all time-forward
diagrams with the same hole orbital) can therefore be included simply by
changing the basis of the unoccupied states. Expressed in terms of the
pWh~l basis the RPA matrix in Eq. (13.53) becomes,

Aph,p>h> = 6PtP,6hth.(eW - eh) + (1 - ^ ' X P ^ " 1 ! ^ ! / * ' ^ 1 " 1 )

BphlP,h. = <pwpHhl)\V\W), (13.70)

where in the A-matrix the interaction term must be omitted for h = h'
to avoid double-counting. Note that the eigenstates in Eq. (13.69) should
be found in the subspace orthogonal to all occupied HF states, so that the
modified mean-field operator in coordinate space should be supplemented
with a projection operator. This is not needed when only one hole state
with the relevant quantum numbers is present, since the p^ states are
automatically orthogonal to the h orbital.

As an example of this procedure we consider the lowest excited states
in neon (see also Fig. 3.4), which involve a promotion of a 2p electron to an
unoccupied orbit. In Fig. 13.8 the experimental levels are compared with
the modified mean-field ph spectrum ep — £h, where (in atomic units)
eh = -0.850 is the HF 2p energy. The ep are obtained as eigenvalues of
the HF mean field, where the contribution of one of the 2p electrons has
been omitted. In order to keep spherical symmetry an average has been
taken of the me and ms quantum numbers of the omitted 2p electron; this
amounts to changing, from a value of 3 to a value of 2.5, the degeneracy
factors (2£+l) in Eq. (10.80) and (2£' + l) in Eq. (10.89) in the contribution
of the 2p orbital to the Hartree and the Fock field. The bound sp energies
for the unoccupied 3s, 3p, 4s, 3d and 4p levels that are generated in this way,
already lead to a reasonable ph spectrum, with the right spacing as com-
pared to the experimental spectrum. The agreement becomes even better
when shifting the spectrum over A = .057, which is equivalent to replacing
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Fig. 13.8 The lowest energy levels of the Ne atom can be interpreted as the promotion
of a 2p electron to the empty orbitals 3s,3p,4s,3d,4p... On the left is the experimental
spectrum, taken from [Martin et al. (2002)]. The second column shows the modified HF
ph spectrum, which is shifted in the third column so as to reproduce the experimental
ionization energy. On the right the Coulomb interaction energy is added for the different
LS configurations.

the 2p HF energy with the experimental ionization energy5 ee^p
p = -0.793.

Finally, the degeneracy can be lifted by calculating the interaction energy
in each LS configuration. Note that in Eq. (13.70) the terms correcting
for the omitted me,ms value break the rotational symmetry. To be con-
sistent one must take a similar spherical average, leading to the following

5 The shift from the HF value to the experimental ionization energy should arise
dynamically in a correct description of the self-energy. The second-order self-energy
diagram in Sec. 11.5.3 generates a shift of about the right magnitude but somewhat
overshoots the experimental value (see Table 11.1). What is still lacking is the incorpo-
ration of the present RPA correlations into the self-energy.
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Fig. 13.9 Photoabsorption of xenon, adapted from [Amusia (1996)]. Dashed curve is
the experimental cross section, the solid curve is the RPA prediction.

expression

ELS = 4h) ~eh + {p^h-lLS\Vph\^
h'^ti~lLS) (13.71)

The ph matrix elements in Eq. (13.71) are coupled to total orbital angular
momentum L and spin 5; their explicit expression will be given in Sec. 13.7.
The additional splitting observed in the experimental spectrum of Fig. 13.8
is due to spin-orbit coupling terms and involves configurations with good
total angular momentum J.

As a final remark we note that RPA collectivity does lead to important
effects, when transitions to the continuum are considered. An extensive
overview on ionization cross sections and atomic giant resonances can be
found in [Amusia (1990)]. An example is provided by the photoabsorption
spectrum of xenon in the threshold region for ionization of the 4c?10 elec-
trons, shown in Fig. 13.9. The HF prediction for the width of the giant
resonance peak would be too broad; solving the continuum RPA equations
leads to a concentration of the strength in reasonable agreement with the
experimental cross section.
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13.6 Correlation energy and ring diagrams

In Ch. 7 we have related the energy of the correlated ground state to the sp
propagator by Eq. (7.26). There exist alternative ways to express the energy
of the ground state. We will study one of these in the present section, since
this method has been used to determine the contribution of ring diagrams
to the energy of the ground state. We start with deriving an expression
that is known as the HeOman-Feynman theorem, but was apparently first
derived by Pauli [Pines (1962)]. Write the Hamiltonian as a function of a
variable coupling constant

H(X) =H0 + XHi (13.72)

so that H(l) = H and H(0) — Ho. We assume that for each A it is possible
to solve

H(X) K(A)) = <(A) K(A)>, (13.73)

where the eigenstate is normalized according to

« ( A ) | < ( A ) ) = 1. (13.74)

From Eq. (13.73) it is clear that

< ( A ) = « ( A ) | H(X) K ( A ) ) . (13.75)

Taking the derivative with respect to A yields

^ = {^«(A)|}F(A)|<(A)>

+ «(A) | HX |<(A)) + «(A) | H(X) {A K(A))}

= (*5r(A)|H1|*5r(A)), (13.76)

since the other two terms combine to

E?(X)~(^(X) K(A)> = 0, (13.77)

on account of Eq. (13.74). By integrating the final expression in Eq. (13.76)
from 0 to 1, we find

E$ - E** = / ^ « ( A ) | XH, K ( A ) ) , (13.78)
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which is the desired result. Equation (13.78) expresses the shift in the
ground-state energy in terms of the interaction Hamiltonian \H\. This
implies that Eq. (13.78) is only applied in special situations, e.g. when
analytic results can be obtained, since the many-body problem must be
solved for all values6 of A. The expectation value of the potential can also
be related to the polarization propagator of Sec. 13.1 by writing

(*»\V\*») = \ £ (a;g|V|7<5)KK4^K) (13-79)
a/376

= \ E (o^\vm{(^\a^a5ala^\^)-6a5(^\^\^)},
a~0y5

where time-reversed states have been used (not required) in the summations
to prepare for the development in Sec. 14.4.1. For the second equality in
Eq. (13.79), we moved the cfia operator to the right of as in the expectation
values, using the appropriate anticommutation relation. By employing the
complenetess of the states with N particles, the first expectation value in
the last line of Eq. (13.79) can be written as

« | 0^,4^1*0 = 53«|4a4 |O «|4oTK) (13.80)
n

= -~]/Elm £ E_{E»_E»)+lr) + »*»«*.

where the one-body density matrix elements were defined in Eq. (7.19).
Inserting Eq. (13.80) in Eq. (13.79) and using the definition in Eq. (13.20),
we obtain the relation between the potential energy and the polarization
propagator, given in Eq. (13.9), in the following form

« | V K) = \ £ (ay11 Vph \80-1) (13.81)
a/37<5

(If00 I

By using Eq. (13.78), it is possible to rewrite this result in terms of a
coupling-constant integration. Application of Eq. (13.81) usually entails
the use of the RPA in describing II. Since the RPA sums all ring diagrams,
Eq. (13.81) shows that the corresponding energy shift contains all closed

6In practical situations the integral over A is discretized, requiring only a finite number
of A-values.
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ring diagrams, on account of the presence of the VPh matrix element. The
correlation energy of the electron gas in the RPA is discussed in Sec. 14.4.1.

13.7 RPA in angular momentum coupled representation

It is useful to work out the RPA equations (13.53) for the important case
of rotationally invariant interactions and a spherical system, with ground
state l*^) having total angular momentum J = 0. This applies e.g. to
closed-shell nuclei and atoms. The general sp quantum number takes on
the form a = ama, where ma denotes the third component of the sp angular
momentum j a , and a the remaining quantum numbers. An uncoupled ph
excitation operator can be written as

Ai0 =
 a% (13-82)

with bg = (-l)-76+m6O6i_mi). We note that both a) and 6+ behave under
rotation as spherical tensor operators (see App. B). As a result, there is no
difficulty in coupling the ph excitation to good total angular momentum,
yielding

Ait(JM) = £ (jamajbmb\ JM)A^ = [a\ ® b%. (13.83)
marrib

The coupled version of the polarization propagator in Eq. (13.9) is likewise
obtained as

n(a6-1 ;cd-1 ;JM) (13.84)

= X] (Ja'm-ajbmb\JM)(jcmcjdmd\JM)U(a,/3~1;f,5~1;E).
mambmcmd

It should be clear that only excited states with total angular momentum J
contribute to the polarization propagator (13.84), which can be rewritten
as

Tl{ab-l;cd~l;JM) (13.85)

_ V (KJM\ AJb(JM) \9»)' (*»JM\Aid(JM) |<lff)
£ T O E-(EZj-E») + iT,

v (*»\ AJb(JM) \9%j_My « | A\d{JM) \KJ-M)

£f0 E + {ENj-E$)+ir,
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The summation index n in Eq. (13.85) does not include the M values of
the (2J + l)-fold degenerate multiplets. Denning the coupled version of the
RPA amplitudes in Eq. (13.25) and (13.26) as

<C/ = «JM\AUJM) \^Y = -^== (*£, || [ale>b\]J || ̂  ,

y:bJ = (-i)J-M (*Z\AI(JM) \*%j_M)

= -=L== ( < || [at ® b\]J || **j) , (13.86)

the RPA polarization propagator describing excitations with angular mo-
mentum J reads

Note that the X and y amplitudes in Eq. (13.86) are independent of M.
They can be expressed in terms of reduced matrix elements, and are related
by a phase,

yii = {-lY'-»{-l)JX?aJ. (13.88)

The noninteracting polarization propagator of Eq. (13.16) in the coupled
representation simply becomes,

I l ^a fc -^cd - 1 ;./;£;) (13.89)

x A TT(O)/ fc-i 7 ^ 0(a>F> b) 6(a<F< b)
= SacSbdW >(ab X]J;E) = - • — — • - ,

E - ea + Eb + ir] E - ea + Sb - IT]

and does not depend explicitly on J [with the understanding that {ja,jb, J)
must fulfill the triangle inequalities]. Applying the transformation (13.84)
to Eq. (13.24), we also require the coupled version of the ph interaction,

(ab-lJM\ Vph \cd-lJ'M') (13.90)

J2 Uamajhmb\JM)(jcmcjdmd\J'M')(a/3-1\Vph\j5~'1}.

With the definition in Eq. (13.20), the tp states in the conventional interac-
tion matrix elements can now be coupled to good total angular momentum,

(ad| V |^7> - J2 {-l)jb+mb{-\)jd+md (13.91)
JPMP

x(jamajd - md\JpMp)(jb - mbjcmc\JpMp) (adJp\ V \bcJp),

(13.87)
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where rotational invariance of the interaction has been used. Substitution
of this result into Eq. (13.90) allows to write

(ab'1 JM\ Vph \cd-lJ'M') = ] T C(abcd, JM, J'M', Jp) (adJp\ V \bcJp).
JP

(13.92)

The C-factor is recognized as a geometrical recoupling coefficient,

C(abcd,JM,J'M',Jp)= ] T {-iyh+mb+jd+md{jamajbmb\JM)
7YI a fTl b m c 1W> d Mp

x{jcmcidmd\J'M')(jamajd -md\JpMp)(jb -mbjcmc\JpMp), (13.93)

involving a 6j-symbol (see App. B), and is nonzero only for J = J' and M =
M'. The latter statement reflects that the ph interaction is a rotational
scalar, and can only connect ph configurations with the same total angular
momentum. The formula is known as the Pandya relation [Pandya (1956)],

(ab-1j\Vph\cd-1J) =

^ ( 2 J p + i)(_l)«+>c+J, / 3a 3b J \ {adJpl y lbcJp) ^ ( 1 3 9 4 )

, \Jc 3d Jp )

which expresses the interaction matrix elements between ph configurations
in terms of the conventional tp matrix elements, in an angular momentum
coupled representation.

After these preliminaries it is now straightforward to derive the RPA
equation of Eq. (13.24) for the coupled polarization propagator,

nRPA(ab-1;cd-1;J;E)=6ac6bdn(°\ab-1;J;E) (13.95)

+ n(°)(a6-1; J; E) £ (afc"1 j \ Vph \ef~lJ) I ^ e / " 1 ; aT1; J; E).
ef

The RPA eigenvalue equation determining the amplitudes [see Eqs. (13.31)
and (13.32)] becomes

KJ ~ tph} X^ = E (Ph~lj\ Vph \c<i~lJ) *cl
cd

{elj + eph) Xtf = - Y, ihP~l I VPh led"1) Xtf, (13.96)
cd

with either c>F>d or c<F<d. To make the symmetry of the
RPA equations more transparant, it is again customary to replace the X^J

with the y$ amplitudes denned in Eq. (13.86), and keep only ph labels as
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matrix indices. The final result in matrix notation has the usual form of
Eq. (13.53), with hermitian A and symmetric B submatrices given by

^Wfc' = {ph~lJ\ Vph \p'h-lJ) , (13.97)

Bphjv = (-l)V-i*- (-1)J {ph~lj\ Vph Itip'-1 J) . (13.98)

The above form of the RPA equations is directly applicable to the case
of double-closed shell nuclei, where j — j coupling is the most relevant (see
Sec. 4.2). For light atoms it is more appropriate to use sp quantum numbers
a = a,/am;o, (i/2)mSo, and the L — S coupling scheme. Since we need a
separate recoupling of the orbital angular momenta and spins, the Pandya
relation (13.94) must be used twice,

(ab-'LS] Vph \cd^LS) = £(2LP + 1)(-1)^+U J- J» ^ }

x£(2S p + l ) ( - l ) 1 + 5 4 ; ^ S }(adLpSp\V\bcLpSp). (13.99)

Due to the spin independence of the Coulomb force, the matrix element
between antisymmetric and LS'-coupled tp states reads

(adLpSp\ V \bcLpSp) = (adLp\ V \bcLp) (13.100)

_ (-i^+'c+L,, (_i)i+Sp (adLp\ V \cbLp),

in terms of the direct spatial matrix elements. Substituting the numerical
values for the spin 6j symbols,

f 1/2 1/2 5 | (S,SP)= (0,0) (0,1) (1,0) (1,1) , 1 3 1 0 1>

\ 1/2 1/2 Sp J =4> -1/2 1/2 1/2 1/6

the ph matrix element in Eq. (13.99) becomes

(o6-1L5| Vph \cd~lLS) = £ (2L P + 1) | ^ \c ̂  J (13.102)

x [25sfi{-l)h+lc+Lr (adLp\ V \bcLp) - (adLp\ V \cbLp)} .

The explicit expression for the spatial matrix element of the Coulomb force
reads

(abLp\V \cdLp) = f dTl dr2 .<Pa(ri)Pc(ri)yt(r2)yd(r2) (13.103)
J Fi - r2\

x ([F;.(fii) ® ^(f ia)]^,)* [Ylc{^i)®Yld{n2)}
L^,
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and, with the expansion (10.82), can be worked out further as

(abLp\ V \cdLp) = £ ( - l ) L " + z / | [° j* ^ } Rfa bd, L1). (13.104)

in terms of the coefficients

R{ac,bd,L) = V^+IV^+iV^+iV^+I^ £ ^ (jj '* j ) (13.105)

x / drxr\ I dr2rl^T^a(r1)ipc(r1)^b(r2)'fid(r2)-

Exploiting the properties of the 6j symbols in App. B, the final result for
Eq. (13.102) becomes quite simple,

(—l)h+id
(ab^LSlVph \cd~lLS) = 26s,o ' -R{ab,cd,L) (13.106)

Note that the quantities in Eq. (13.105) have the symmetries R(ac, bd, L) =
R(ca, bd, L) = R{bd, ac, L)\ the radial integrals are known as Slater integrals
in atomic structure calculations.

13.8 Exercises

(1) Determine the normalization condition for the X amplitudes, given in
Eq. (13.33), that solve the RPA eigenvalue problem.

(2) Solve the RPA eigenvalue problem numerically, employing a separable
interaction, as discussed in Sec. 13.3. Vary the number of ph states and
their energies, to obtain insight into the properties of this eigenvalue
problem. Use the normalization condition, given in Eq. (13.33), to
study the amplitudes of the collective states (adjust A appropriately),
both for an attractive and repulsive interaction.

(3) After numerically constructing (see Sec. 10.2) the HF mean field for
the neon atom, generate the neon spectrum in Fig. 13.8 using the steps
outlined in Sec. 13.5.

(4) Reformulate Eq. (13.81) in the form that employs a coupling constant
integration.

(5) Use the angular momentum algebra of App. B to derive the expressions
in Sec. 13.7.



Chapter 14

Excited states in infinite systems

The study of excited states continues in this chapter, by considering infinite
systems. In Sec. 14.1 the RPA integral equation is introduced with special
attention to the correct coupling of the ph states to good total spin (isospin).
The calculation of the noninteracting polarization propagator is presented
in Sec. 14.2. This so-called Lindhard function [Lindhard (1954)] exhibits
various properties that are helpful in assessing the features of excitations in
infinite systems. The important collective state of the electron gas, known
as the plasmon, is discussed in Sec. 14.3. The issue of the correlation energy
of the electron gas in the RPA approximation is addressed in Sec. 14.4.
The response of nuclear matter with quantum numbers corresponding to
the pion and rho meson, is presented in Sec. 14.5. It illustrates some of
the features associated with attractive interactions in an infinite system.
The presentation concludes in Sec. 14.6 with a general discussion of excited
states in the limit of small momentum and excitation energy, based on an
analysis by Landau, which relies on the use of exact sp propagators. It
presumes further that the correlated ground state still maintains some of
the properties of the Fermi gas and does not correspond to a superfluid or
superconductor.

14.1 RPA in infinite systems

The polarization propagator in an infinite system with translational invari-
ance, is diagonal in the total momentum of the ph pair. This is similar to
the situation for the sp propagator, which is also diagonal in momentum
space as discussed in Ch. 10. The creation of a ph pair in an infinite system
corresponds, for example, to the addition of a particle with momentum pa

and a hole with pp. When this pair is added to the noninteracting ground

347
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state, one writes

= o t a i m a ( - l )^+^ o _ P / , , - r a f l K ) • (14-1)

Since removing — pp is equivalent to adding momentum pp and the initial
state has no momentum, the ph state has total momentum

Q=Pa+P0- (14-2)

The Hamiltonian commutes with the total momentum, so interactions will
not be able to change the momentum Q (note: Q — hq). As a result, the
polarization propagator can be labeled with this conserved quantity, since
after propagation the return to the ground state will have to correspond
to the removal of another ph pair carrying the same total momentum. It
is therefore convenient to rewrite the polarization propagator, given by
Eq. (13.9), using the following momentum variables

Q'=Pi+P6 (14.3)

p' = i(p7-ps), (14.4)

corresponding to 7$~1, with Q' being necessarily equal to the total mo-
mentum given by Eq. (14.2). Introducing also

P = h(Pa~ Pp)> (14-5)

we may consider the momenta p and p' as the relative ph momenta cor-
responding to a/3"1 and ry8~l, respectively. Using this convention for the
noninteracting polarization propagator, we can write

Jl^(aJ-l
;i,S-l;E)=>

n(0)(pamQ,(p/3m/3)""1;p7m7,(p(5mi)~1;E)

= <W,m 7 ^n / 3 , r a j <WW n ( 0 ) (p ;Q,£) , (14.6)

where

nWr nr\-\e{lp + Q / 2 1 ~ PF)6{PF ~ | p ~ Q / 2 | )

l P ' ^ ' ' \E-[e{p + Q/2)-e(p-Q/2)} + ir,

9(PF-\p + Q/2\)9(\p-Q/2\-PF)}

E + [e(p-Q/2)-e(p + Q/2)]-iri}- [ ' ]

The remaining sp quantum numbers like spin (and/or isospin) have been
kept explicitly in Eq. (14.6) and are denoted collectively by ma,m0, etc.
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The Kronecker deltas identify all the relevant conserved quantities, includ-
ing the relative momentum. In general, the interaction can change spins
(isospins) and the relative momentum. So for the exact polarization prop-
agator one may only make the replacement

II(a,/T1;7,(T1;E) => U(pama, {P0m0)~
1;p7m7, {psmsy

l\E)

= SQ^Yl(p,ma,m^1;p',my,mJ1;Q,E). (14.8)

Such considerations also apply for the RPA approach to the polarization
propagator, thus one may write Eq. (13.23) as

URPA(Pl ma,m^;p', m 7 , mjl ;Q,E)= <5m c t ,m./m,3 ,m,<Wn ( O ) (P> Q > E )

+ U^(p;Q,E)^2 J2 (Q,P;mam^\Vph\Q,p";memJl)
p" m€mQ

x n f lPA(p",m£)me-1;p' ,m7 ,m71;Q,E), (14.9)

where momentum conservation has been taken into account.
Uncoupled ph states correspond to Eq. (14.1) and can be written in

terms of the momentum variables Q,p as

\Q,P;ma,m-0
1)=al+Q/2myQ/2_p^\^). (14.10)

Specializing for now to the case of spin only, the coupled states are obtained
by employing the usual Clebsch-Gordan coefficients

\Q,p;S,Ms)= Y, (ima±mp\S Ms) \Q,p;ma,m-1). (14.11)

The polarization propagator with good total spin also requires the usage of
the corresponding hole operators combined with the appropriate Clebsch-
Gordan summations. The coupled propagator can then be written as

U(P,S,Ms-p
l,S',M's;Q,E)= £ (j ma \ rn0 | S Ms)

171 a jWl/3 ,Tn-y ,TUs

x (i m7 i ms\ S' M's) n(p )ma ,m^1;p / ,m7 ,m71;Q )£?). (14.12)

The possibility of changing the total spin, or its projection, has been kept
open in Eq. (14.12). It depends on the character of the ph interaction.
Before considering the RPA equation in more detail, it is therefore useful
to construct the relevant ph matrix elements of the interaction in a coupled
spin (isospin) basis. The matrix elements can be coupled to total ph spin
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in the following way

(Q,p;S,Ms\Vph\Q,p';S',M's) =

]T (i ma i m0 | S Ms) (1 my i m5 \ S' M's)
ma ,Tri0 ,m7 ,ms

x (Q,p;ma,m^1\Vph\Q,p';mJ,mJ1). (14.13)

The evaluation of the matrix element depends on the operator character
of the two-body interaction V. It is instructive to evaluate Eq. (14.13)
using Eq. (13.20) and express the latter matrix elements also in terms of
good total spin. We will proceed by assuming that V corresponds to a
local, central interaction without spin dependence but the restriction is
by no means necessary, as shown in Sec. 14.5. The Coulomb interaction,
given in Eq. (10.182), corresponds to such a choice, exhibiting a simple
dependence on the momentum transfer. For the contribution of the direct
term in Eq. (14.13), the momentum transfer is equal to Q, the conserved
total ph momentum. The direct matrix element therefore does not generate
any dependence on the momentum variables p and p'. Factoring out the
volume for later convenience, Eq. (14.13) then yields

{Q,p;S,Ms\Vph\Q,pl;Sl,M's)D =

V 5Z ^ {h ma h ™& \ S Ms) (j m7 j m6 \ S' M's)
ma,m^,m1,ms SP,MP

x ( j m t t j - ms | Sp Mp) (i - mp i m7 | Sp Mv)
X (_l)l/2+™fl(_l)l/2+m, V(Qy (1A.U)

For the Coulomb interaction e.g. V(Q) = 4-7re2/i2/Q2. In arriving at
Eq. (14.14), we have used that the coupled direct matrix element is di-
agonal in, and does not depend on, the total spin and its projection. We
label the latter coupling scheme by particle-particle, to contrast it with the
ph coupling in Eq. (14.13). Hence the subscript p is employed in Eq. (14.14).
The m summations in Eq. (14.14) yield a so-called 6j-symbol (see App. B
and Sec. 13.7) while forcing 5 — S' and Ms = M's. The 6j-symbols also
occur in the recoupling of three angular momenta and some are tabulated
in [Lindgren and Morrison (1982)]. The final result is given by

(Q,p;S,Ms\Vph\Q,p';S',Ml
s)D =

~SStS'SMstM,s ^ ( -1 ) S »+ 1 (25 P + 1) { * * | 1 V(Q), (14.15)
v
 s I i s ^P )
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where the summation over Mp yields the factor 2SP +1. The 6j-symbols for
the 5,Sp combinations involve the pairs (0,0), (1,0), (0,1), and (1,1). The
relevant 6j-symbols are given by, — | , | , | , and | , respectively. Inserting
these and performing the sum over Sp, we finally obtain

(Q,p;S,Ms\Vph\Q,p';S',Ml
s)D = ^5s,s>SMs,M>s *S,O 2 V(Q), (14.16)

showing that the direct contribution of the interaction only contributes
when the ph spin 5 = 0. Prom a diagrammatic perspective, this makes
sense, since the total spin of the initial ph state must be carried over to the
final one by the interaction, which does not contain spin operators, therefore
selecting only the 5 = 0 channel. In the case of a spin-spin interaction,
considered in Ch. 5, the direct ph matrix element only contributes when
5 = 1, as can be verified by performing similar steps.

The exchange term can be handled in similar fashion, but it yields a
contribution to both 5 = 0 and 1. Combining the results and noting that
only ph matrix elements survive, which are diagonal in the total spin and
its projection, we find

(Q,P\ Vp
s
h

Ms \Q,p') = i [5s,o 2 V(Q) - V(p - p1)}, (14.17)

adapting the notation slightly. The exchange term of the Coulomb inter-
action is the sole, attractive contribution when the ph spin is 1. For other
types of interactions that include spin (isospin) dependence, identical steps
can be followed. In general, the total ph spin is conserved although for
a tensor interaction, one must choose the quantization axis judiciously to
ensure that the different projections do not mix, as discussed in Sec. 14.5.

It is now possible to present the RPA equation in the coupled spin
format. By performing the relevant coupling of the ph spins, we find

n§™(p,p';Q,E) = 6p,p.rt°Hp;Q,E) (14.18)

+ n^(p;Q,E)J2(QMVp
S

h
Ms\Q,p") U§%(p",p';Q,E),

p"

where the conservation of the total spin and its projection has been incor-
porated (also in the notation). The integral equation can be simplified con-
siderably when the direct ph matrix element dominates the exchange term.
This occurs for the Coulomb interaction, where the direct term involves the
Q~2 divergence, whereas for the exhange term it is removed by the implied
p" integral in Eq. (14.18). Most applications of the integral equation there-
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fore involve simplifications, which include only the Q-dependence of the ph
interaction. Equation (14.18) is then no longer an integral equation. The
simplification is facilitated by considering

ngjft(Q,J5) = ^ £ £ n f £ > , p ' ; Q , £ ) (14.19)
p P'

and

IlW(Q,E) = ±^2nW(p;Q,E), (14.20)
p

where volume factors have been extracted to anticipate ensuing cancella-
tions. Using these definitions, Eq. (14.18) can be transformed into

n§MA
s(Q,E) = IL<°HQ,E)+rf°HQ,E) Vp

s
h
Ms{Q) U^(Q,E), (14.21)

where the interaction term no longer includes the volume dependence. Ap-
plications will be discussed in Sees. 14.3 and 14.5.

14.2 Lowest-order polarization propagator in an infinite
system

Clearly, the first task, before studying Eq. (14.21), is to evaluate the quan-
tity (sometimes called the Lindhard function) U^ (Q, E). Replacing the
sum over p by an integration, according to Eq. (5.6), we must calculate

n(°)ro F) = f dp
 (9(\P + Q/2\-PF)0(PF~\P-Q/2\)

{Wt > J {2nh)*\E-[e(p + Q/2)-e(p-Q/2)]+ir,
6(pF-\p + Q/2\)e(\p-Q/2\-pF)\
E + [e(p-Q/2)-e(p + Q/2)]-ir]j-[ ' *>

Equation (14.22) can be calculated analytically, as will be illustrated here
for the imaginary part explicitly. For the description of excited states, only
the case E > 0 need be considered. Using the identity of Eq. (7.15), the
first term in Eq. (14.22) solely contributes to the imaginary part

hnUW(Q,E) = -^Jj^ (14-23)

x 0( |p + Q/2\ - pF)8(PF - \ p - Q/2\)S(E - [e(p + Q/2) - e(p - Q/2)] ) .
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We first consider the momentum dependence of the ph energy difference in
the argument of the 5 function

e<p + Q/2) - s(P - 0/2) = *£ = P - ^ - , (14.24)

including only kinetic energies. If Q is chosen along the z-axis, pcosQ = pz

and energy conservation yields

E = P~^-, (14.25)
m

showing that it (and the accompanying imaginary part of I I^ ) corresponds
to a fixed value of pz. It is useful to distinguish two cases for the total
ph momentum, arising from the properties of the two step functions in
Eq. (14.23). In the space corresponding to the integration variable p, these
conditions are represented by two spheres with radius pp, one displaced
from the origin by Q/2, the other by -Q/2 . The step function pertaining
to the hole then restricts the values of p to be inside the first sphere, while
the other one only allows values outside the second sphere, as indicated
in Fig. 14.1. Since these two spheres are displaced from each other by
Q, they no longer overlap for Q > 2pF, and the step functions allow all
values of p inside the top sphere in Fig 14.1. Energy conservation in the
form of Eq. (14.25), shows that a minimum and maximum energy exist,
corresponding to pz touching the bottom with pz = Q/2 — pp, and the top
of the allowed sphere with pz = Q/2 + pp, respectively. These conditions
translate to a nonvanishing of the imaginary part of II^0' when

31 _2E< £ <fi l + 2K. (14.26)
2m m 2m m

It is now straightforward to perform the integrations in Eq. (14.23). The
integration over the azimuth angle gives a factor of 2n, while the cos 6 inte-
gration is taken care of by the 6 function, employing the following property

S(E~P^-coSe)=^-s(r^-- cos e) . (14.27)
V m ) pQ \PQ )

The final integration over the magnitude of p is then given by

T TT(O),O ^ 7T 2irrn fp+ 1 m I" 2 (mE Q\2~

(14.28)
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a) b)

Fig. 14.1 Illustration of the constraints imposed by the step functions in Eq. (14.23).
The condition |p + Q/2| > PF corresponds to the area outside the lower sphere in both
figures, while the condition \p — Q/2\ < PF only allows contributions from inside the
top sphere. Part a) illustrates the case Q < 2pF, with overlapping spheres, while b) is
appropriate for Q > 2pF, when there is no overlap. The gray area indicates the allowed
region for the integration over p. The dashed lines in part o) and 6) identifies possible
energy values for which a nonzero imaginary part is obtained. This condition is expressed
by Eq. (14.25), which shows that the only contributions to Eq. (14.23) correspond to
the part of the dashed line inside the gray area of the top sphere. Limiting values of the
integration variable p in Eq. (14.28) are indicated by the arrows with the corresponding
labels.

where the lower limit is given by

V- = !f, (14-29)
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and the upper limit by

p+ = [p2
F - Q2/4 + mE]1/2. (14.30)

This limit reflects that \p - Q/2\ < pF.
The case Q < 2pF involves two overlapping spheres, illustrated in

Fig. 14.1a). For energies E, such that 9 = 0 is allowed (when the dashed
line is above the lower sphere), the same result as in Eq. (14.28) is obtained,
since one retraces identical steps. This energy domain also involves the up-
per limit given in Eq. (14.26). Since the excitation spectrum, associated
with Eq (14.24), starts at zero energy (for Q < 2pF), the remaining energy
domain is given by

0<E<9PL_f, (14.3i)
m 2m

where the upper limit is equal to the energy for which the dashed line in
Fig. 14.lo) is no longer constrained by the lower sphere. The integrations
proceed as before, except that the lower limit in Eq. (14.28) is now replaced
by

P- = [p2
F-Q2/4-mE}1/2, (14.32)

corresponding to \p + Q/2\ > pp. The final result for the imaginary part
of the noninteracting polarization propagator then becomes (for Q < 2pF)

Mtf°HQ,E) = -±r^mE. (14.33)

A comparison of the imaginary parts for Q below and above 2pF is shown
in Fig. 14.2. The imaginary part of IÎ 0^ can be interpreted as being pro-
portional to the probability density for the absorption of momentum Q and
energy E by the noninteracting Fermi sea. Its shape, as a function of energy
for Q > 2pF, is given by an inverted parabola, the width being proportional
to the Fermi momentum. Data for inelastic electron scattering from nuclei
in this high-momentum domain, can be likewise interpreted and lead to
reasonable values of the Fermi momentum [Moniz et al. (1971)]. Still, it
should be kept in mind that the response of a finite system, calculated with
the appropriate sp potential well, yields quite similar shapes.

The real part of n(°>, shown in Fig. 14.3, can be calculated by straight-
forward integration of Eq. (14.22), as shown in [Fetter and Walecka (1971)].
An alternative procedure uses Eq. (14.23) and the identical result for the
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Fig. 14.2 Different shapes associated with the imaginary part of fl(0' depending on the
magnitude of Q. Im n'°) is plotted as a function of the energy in units of SF and is
divided by the constant factor —rapp/{Sixh3). In the left column several Q values less
than 2pp are considered. When the maximum is located at the end of the straight line
given by Eq. (14.33), it occurs at 2 — Q/PF otherwise at (Q/PF)~1 determined by the
inverted parabola given by Eq. (14.31). The second column displays values of Q larger
than 2PF and has different scales for both axes as compared to the first column.

imaginary part for E < 0, to rewrite Eq. (14.22) in the form of a dispersion
integral (see Ch. 11)

where the energy limits are given by

f 0 Q < 2pF

E- = { Q2 QPF „ „ (14.35)
I 2m m

(14.34)



Excited states in infinite systems 357

Fig. 14.3 Illustration of the contributions in Eq. (14.34) to the real part of n'°) for four
values of Q. The first term is represented by the short-dashed and the second one by
the dotted line. The imaginary part is also shown (full) together with the total real part
(long-dashed), given by Eq. (14.37). Both the real and imaginary part of il(°) are plotted
as a function of the energy in units of eF. A constant factor ±mpp/(87rft3) multiplies
all functions, where the plus sign is for the real and the minus sign for the imaginary
part of n(0). In the left column two Q values less than 2pF are considered. The second
column displays two values of Q larger than 2pp. Different scales are employed in the
four panels.

and

Q^_ + QPL ( 3 6 )

2m m v

for any value of Q. By simply inserting the imaginary parts of II^0' for

E > 0 and E < 0 from Eq. (14.22) into Eq. (14.34), one recovers the

original equation (14.22), confirming the validity of Eq. (14.34). Using the

expressions for the imaginary part obtained in Eqs. (14.28) and (14.33) one

can evaluate the real part of II'0) by employing Eq. (14.34). The resulting
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expression for the real part is given by

HenW(Q>JB) = i ^ (14.37)

x / _ i + EL [i _ (UtE. _ A V I In 2QPF + 2mE " Q2
\ 2Q [ VQPF 2pFy J 2QpF-2mE + Q2

_ P F [ / m £ J 9 \ 2 1 , 2QpF + 2m£ + Q2|l
2Q [ W P F 2 P i J J n 2QpF-2mE-Q2\j '

A plot for the real part of I I ^ is shown in Fig. 14.3 for four values of
Q/PF, corresponding to 0.4, 1.6, 2.8 and 4. In each of the four panels the
imaginary part is also indicated by the full line. The short-dashed line
in every panel corresponds to the first dispersion integral in Eq. (14.34),
requiring a principal value integration for energies where the imaginary
part of n'0) doesn't vanish. The dotted line corresponds to the second
integration in Eq. (14.34). This contribution increases monotonically to
zero with increasing energy. At E — 0 both terms in Eq. (14.34) yield
equal contributions. The sum of these contributions is given by the long-
dashed line and corresponds to Eq. (14.37).

Special limits of the polarization propagator are required to discuss
relevant applications of the RPA equation (see Sec. 14.6). For fixed Q, the
limit for E —> 0 yields no imaginary part as illustrated in Fig. 14.2, whereas
the real part is given by

Re u"'(Q,0) - 1 SE (_, + E f, _ ( A ) 2 | to j f c 5 ! 1 .
h? AT:2 y Q [ \2pFJ J 2QpF + Q2 J

(14.38)
For fixed energy E, the limit Q -t 0 also yields no imaginary part, since the
upper limit of the allowed energy domain, given by Eq. (14.36), will become
smaller than any finite E in this limit. For the real part one obtains for
Q->0

Additional results will be discussed in Sec. 14.6.

(14.39)
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14.3 Plasmons in the electron gas

The solution of the RPA equation for the electron gas has substantial rel-
evance for the global properties of this system. The Coulomb interaction
must be used in Eq. (14.17), yielding1

(Q,p; S, MS\ Vp
c
h \Q,p'; S', M's) (14.40)

= ^6Sls>6MsiM.s {6s,o 2V(Q) - V(p - p1)}

= ZS,S'SMS,M'S - y - j ^ , 0 Q J - ^Z^fj •

Since the momentum Q is conserved, the direct term completely dominates
the ph interaction at small values of Q, since the exchange contribution
is integrated over in Eq. (14.18). A similar situation was encountered in
the evaluation of the Fock contribution to the self-energy, as discussed in
Sec. 10.5. It is therefore reasonable to expect that the implementation of
the RPA equation, which neglects the exchange contribution, represents
the dominant physics for small values of Q. As a result, it is permissible
to use Eq. (14.21) to solve for the polarization propagator. Neglecting the
exchange term, the solution to Eq. (14.21) is given by

n s =° ( Q ' E ) - i-2V{Q)uW{Q,Ey ( 1 4 - 4 1 )

where only the magnitude of Q is kept in the notation. The factor of 2
comes from the spin matrix element for S = 0 states [see Eq. (14.15)]. The
probability density for the absorption of momentum Q and energy E is
again given by the imaginary part of URPA. A contribution will be found
in the energy domain, where the numerator has an imaginary part. It is
given by Eqs. (14.35) and (14.36). These boundaries are plotted in Fig. 14.4
as a function of Q. The special character of the Coulomb interaction, its
divergence for Q —> 0, requires further scrutiny. To appreciate what is hap-
pening, it is useful to remember the schematic model with attractive and
repulsive ph interactions, presented in Sec. 13.3. The discussion for the re-
pulsive case obviously applies here, and one may conjecture that a collective
state could appear above the region of "trapped" ph energies, given by the
boundaries of the imaginary part of II'0). Such a collective state, usually

1We will not use atomic units in this section to avoid switching notation from
Sees. 14.2 and 14.5.
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Fig. 14.4 Boundaries of the ph continuum are indicated by the full lines. The plasmon
energy as a function of Q is shown by the dashed line for a value of rs = 2.

referred to as a plasmon, will turn up in the Lehmann representation of the
polarization propagator as a discrete pole. The condition for the appear-
ance of a pole for a fixed value of Q, requires for E > Q2/2m + QPF/ITI

that the denominator of Eq. (14.41) vanishes for a certain Ep

1 - 2V(Q) Re n(°> (Q, Ep) = 0, (14.42)

where the real part indicates that in this energy domain the imaginary
part of n(°) vanishes. In the language of the solution method, previously
discussed for propagator equations, one proceeds by assuming a pole in the
Lehmann representation for U§=o

n s = ° ( 0 ' E ) = E-Ep + iV ~ E + Ep-iV
 + c o n t i n u u m - (14-43)

Inserting this result in Eq. (14.21) and considering energies near the pole Ep,
leads to the eigenvalue equation for Ep, which can be written as Eq. (14.42).
Using the small Q limit for the real part of the noninteracting polarization
propagator for a fixed energy Ep, given by Eq. (14.38), yields the classical
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plasmon energy, when the former is inserted in Eq. (14.42)

\3n ma6 J \ m )

Note that the Coulomb divergence has been exactly cancelled by the Q2 in
Eq. (14.38) and the density p has been substituted. The appearance of a
collective state above the continuum in the Q —> 0 limit, is therefore unique
for the Coulomb interaction. The root of Eq. (14.42), for nonzero values
of Q, can be found by using the full expression for the real part, given by
Eq. (14.37). The location of the plasmon as a function of Q is indicated in
Fig. 14.4 by the dashed line for a value of rs —2. Energies are plotted in
units of Ep, given by Eq. (14.44). The energy of the plasmon at Q = 0 can
also be written as a function of rs by dividing by ep

^ « 0 . 9 4 ^ - (14.45)

For rs = 2 the plasmon merges into the continuum at Qc, corresponding to
a value of QC/PF ~ 0.73 and immediately acquires a width. This feature
is illustrated in Fig. 14.5 for rs — 1, which yields QC/PF ~ 0.56. Until
Q = Qc the plasmon is a discrete ph state, well isolated from the continuum.
The comparison for rs = 1 with the noninteracting limit, indicated by the
dashed lines in Fig. 14.5, shows that the plasmon carries essentially all
the transition strength at small values of Q. This feature has also been
encountered in Sec. 13.3 for the schematic model in a discrete ph basis,
when the interaction is repulsive. The continuum part of the response in the
RPA limit, is therefore not visible in the top-left panel for Q/PF = 0.1. For
the panel corresponding to Q/pp = 0.5, the plasmon has almost reached the
continuum and some transition strength already resides there, representing
a sizable fraction of the sum rule strength.

The sum rule is referred to as the /-sum rule and plays an important
role in analyzing the properties of the plasmon in the electron gas and in
real metals. We will proceed by establishing the sum rule, and by relating
it to the properties of the response of the electron gas, to an external probe
that transfers momentum Q to the system. This can, for example, be
achieved by the inelastic scattering of high-energy electrons, which interact
sufficiently weakly with the sample, so that time-dependent perturbation
theory (Fermi's golden rule) can be be applied. The relevant excitation

(14.44)
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Fig. 14.5 Imaginary part of the polarization propagator for the noninteracting case
(dashed lines) and RPA (full lines) for different values of Q/PF with rs = 1. The
same units for the polarization propagator were used as in Fig. 14.2. The location of
the plasmon energy at Q = 0 corresponds to EP/EF = 0.94, given by Eq. (14.45). At
QC/PF — 0.56 the plasmon merges into the continuum, illustrated by the bottom-left
panel (Q < Qc) and the top-right panel (Q > Qc).

operator which transfers momentum Q to the system is given by2

JV

PN(Q) = J2 eiQr'/h> (14-46)
1 = 1

in first quantization. This operator was already encountered in Sec. 7.6

in the discussion of knock-out experiments. In second quantization, the

corresponding operator is given by

p(Q) = J2 aipm,aP-Qm,. (14-47)
pma

The sum rule can be obtained by studying the energy-weighted transition

2It is tradition to use the notation q for this variable. We prefer to avoid this confusing
switch here.
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strength to all excited states, denned by (see Sec. 13.4)

S(P(Q)) = Y,(En~ Eo) \(*U\P(Q) | O f • (14-48)
n

The expression can be rewritten in the form of the expectation value in the
ground state of a double commutator [see Eq. (13.51)]

S(KQ)) = « | \ [fiHQ), [HJ(Q)]\ \*%) • (14-49)

It is generated by replacing the energies in Eq. (14.48) by the Hamiltonian
in appropriate places. Either time reversal or parity invariance must also
be employed to yield S{p(Q)) = S{p{-Q)), noting that p*{Q) = p(-Q).
The double commutator in Eq. (14.49) can be evaluated explicitly, when
the Hamiltonian does not contain velocity-dependent interactions. The
contribution of the interaction V vanishes, since it commutes with p(Q) in
that case. The remaining term from the kinetic energy is easiest to evaluate
in first quantization, yielding

S(p(Q)) = N^-. (14.50)

The relation with the polarization propagator is obtained by rewriting the
excitation operator, given in Eq. (14.47), as

p(Q) = V2J2 E (1 ™p i mh I 0 0) «UbQ-pmh- (14-51)
p mpmh

which shows that it excites ph states with total spin (and projection) zero.
We therefore obtain the following identity

5(/5(Q)) = 2 V V ] / dEE \—lmU{P,p';S = 0]Q,E)\, (14.52)
P P>

 Jo l * >

using the Lehmann representation of the polarization propagator given in
Eq. (13.9), adapted for the present case. A combination with Eq. (14.50)
finally yields

S(P(Q)) = [°°dE E SS=O(Q,E) = N^-. (14.53)
Jo 2 m

The dynamic structure function for S = 0 is defined by

Ss=o(Q,E) = --ImUs=o(Q,E), (14.54)
7T
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where Us=o(Q,E) is given by Eq. (14.19). The /-sum rule in Eq. (14.53),
can also be written in terms of the dielectric constant3 e(Q,E), which
relates the Fourier transforms of the displacement field D(Q,E) and the
electric field E(Q,E) vectors. By considering the response to an infinites-
imal charge perturbation, one can show that [Pines (1963)]

I m ^ ) = - ^ S ( Q ' £ » - ( 1 4 - 5 5 )

Equation (14.53) can therefore be rewritten as

-LdEElm^E)'^El- (1456>

where Eq. (14.44) was used to introduce the classical plasmon energy.
To determine the transition strength to the plasmon excitation, it is thus

necessary to calculate the numerator terms AP(Q) and BP(Q) in Eq. (14.43).
This can be done in the standard fashion, yielding

MQ) - - « . n<»>«,£P«3)) Uv(Q) " ^ }"'
[ °E E=EV(Q)\

(14.57)
where EP(Q) denotes the location of the plasmon for a given Q (for which
an isolated plasmon state exists) and a similar expression holds for BP(Q).

When Q —> 0, the plasmon exhausts all the strength of the /-sum rule,
given in Eq. (14.53), using the RPA method, discussed here. Returning now
to Fig. 14.5, we note that the plasmon in the top-left panel for Q/PF — 0.1
still carries almost 100% of the strength and practically exhausts the /-sum
rule. For Q/PF — 0.5, shown in the bottom-left panel, already 22% of the
sum-rule strength resides in the continuum, whereas for Q/PF = 0.6 the
plasmon has merged into the continuum and all the transition strength now
resides there. The decreasing difference between the RPA and the noninter-
acting limit, due to the weakening Coulomb interaction with increasing Q,
is illustrated in the bottom-right panel for Q/PF — 1. Figure 14.5 therefore
illustrates similar features to those of the schematic model with a repulsive
interaction, discussed in Sec. 13.3.

The experimental results from inelastic electron scattering on metals
are consistent with the global features of the properties of the plasmon, as
described by the RPA method. In Fig. 14.6 inelastic electron scattering

3The sp energy e{p) is also denoted by this symbol. No confusion should arise, since
the dielectric constant has an extra argument.
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Fig. 14.6 Data for inelastic electron scattering from lithium, adapted from [Gibbons et
al. (1976)]. The indicated momentum values are in units of A—1. The plasmon peak
is sharp and moves slightly up in energy for the first three momentum values. For the
last two, a substantial broadening is observed, indicating that the plasmon has merged
into the continuum. All plots have been normalized to have the same maximum. The
corresponding factors are also identified.

data from lithium are collected for different values of Q [Gibbons et al.
(1976)]. For lithium the value of rs = 3.25 is appropriate, yielding a Fermi
energy of 4.74 eV, according to Sec. 5.2. Using these values, Eq. (14.45)
produces an estimate of the plasmon energy of 8 eV, in reasonable, but not
perfect, agreement with the maximum at Q = 0 in Fig. 14.6. The narrow
peak and slight increase in the plasmon energy with larger Q are observed
as well. The transition of the plasmon to the continuum is expected around
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0.9 A"1. The width indeed increases dramatically for higher Q-values, as
shown in Fig. 14.6. The data at zero momentum also exhibit a peak below
the plasmon, corresponding to a so-called surface plasmon, associated with
an excitation of the surface. Double scattering is present in the data too,
reflected by the peaks at twice the plasmon energy. The general properties
of the plasmon are therefore understood. Nevertheless, the width of the
plasmon at small Q-values has not been explained satisfactorily and requires
a more sophisticated treatment. In [DuBois (1959)] it has been shown that
the plasmon acquires a width at all values of Q, when higher-order terms
are taken into account. Additional experimental data related to plasmons
are reviewed in [Raether (1980)].

Screening of the electron-electron interaction

An important consequence of taking the polarization of the medium into
account, is reflected in the resulting modification of the electron-electron
interaction. By summing all divergent contributions, the Fourier compo-
nent V(Q) of the Coulomb interaction becomes

W(o) (Q, E) = V{Q) + V(Q)2U(0) (Q, E)V(Q) (14.58)

+V{Q)2U^0)(Q,E)V{Q)2U^(Q,E)V(Q) + ...

= V(Q) + V(Q)2n*HQ,E)W«>HQ,E) = 1 _ 2 yff , ) ( q > £ ; ) •

The renormalization of the interaction dramatically changes the Coulomb
interaction, as can be seen in the limit for small E, using Eq. (14.38). In
this limit one finds

wlo)(Q,0) = n- 4fhL, v (14-59)
where

2 4rs(97i74)1/3 2
PTF = PF (14.60)

and

The resulting interaction is similar to a Yukawa interaction. In coordinate
space it is screened with a characteristic length given by H/PTF- For ener-
gies, small compared to the plasmon energy, and momenta, small compared

(14.61)
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to pp, the interaction is predominantly real, but in general W^ is retarded
with a corresponding energy dependence.

14.4 Correlation energy

14.4.1 Correlation energy and the polarization propagator

In Sec. 13.6 the potential energy was linked to the polarization propa-
gator for the general case. Specializing to an infinite homogeneous sys-
tem, leads to some simplifications of the corresponding expression, given
in Eq. (13.81). We will first study the two contributions that contain one-
body density matrix elements in Eq. (13.81). It is not necessary to use
ph notation for these terms, so we will employ the usual second-quantized
form of V. Translational invariance suggests the use of momentum space
for the sp basis. When a spin-independent, central and local interaction is
employed, the second-quantized form reads

^ = 2V E E V(P ~ P ' ) aP/2+pm1
aP/2-pm2

a*72-p'm2ap/2+p'm1,
Ppp' roim2

(14.62)
where we consider a system with spin degeneracy v — 2. The generaliza-
tion to include isospin is straightforward. The corresponding result for the
Coulomb interaction is given in Eq. (5.28).4 We have used the version of V
that does not employ antisymmetrized matrix elements. It slightly simpli-
fies the following presentation, but is not necessary. No substantial effort is
required to study the case for the most general two-body interaction, but
this is left for the reader as an exercise.

Starting with the expression, containing two one-body density matrix
elements in Eq. (13.81) (hence the subscript nn), we find

« l V K>«n => ^7 E E V<P - P') (14-63)
Ppp' mimz

X «\aP/2+pmi
aP/2+p'mi |O«|ap/2-pm2

aP/2-p'm2 | O

= WV{0) £ W K ^ P ^ | O E «\<m2aP2m2 | O
Pimi P2ii2

4 In the general case, the constraint p ̂  p1 does not apply.
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since momentum conservation implies p = p' • A return to individual mo-
menta pi and p2, allows the identification of the expectation values of the
number operator in the last part of Eq. (14.63). Only momentum conser-
vation and the fact that the ground state has zero total momentum have
been used here. The same outcome is obtained when the correlated ground
state |*o"') is replaced by the noninteracting one [${?)•

We proceed with the adaptation of the term with one density matrix
element in Eq. (13.81). Using the n subscript for this contribution, we find

« | ^ K > n = » - ^ E E V(p-p')8P/2+p,P/2_p,6mim2 (14.64)
Ppp' mi 7712

x (*o\ aP/2_pm2aP,2+p,mi \*$)

= ~ E V(2p)(K\^P/^pmiaP/2.pmi\^) = -^P'£v(2p)N.

Again, the same ingredients were used as for Eq. (14.63), ensuring that the
same result is obtained when \^^) is replaced by $$)•

Keeping the ph notation with corresponding momenta (see Sec. 14.1)
for the remaining term in Eq. (13.81), we couple the ph matrix element and
the polarization propagator to good total spin (and its projection). Adding
and subtracting the same expression involving the noninteracting form,
allows to identify the sum of the former term and the one corresponding to
Eqs. (14.63) and (14.64) as the expectation value of V, with respect to the
noninteracting ground state \$o)- Combining all these ingredients yields
the expectation value of the potential energy in the correlated ground state

« | vK> = K | v|*O - ^ E E (QMvPlM° \Q,P>)
Qpp' SMS

f°°
x J dE {lmnSMs(p',p;Q,E)-SPtplImU^(p;Q,E)Y (14.65)

Adapting the result for the energy shift, given in Eq. (13.78) with Hi = V,
we thus find the following useful expression for the correlation energy

Ecorr = E^-(^\H\^) (14.66)

Qpp' SMS
 Jo

f°°

x j^ dE {lmnx
SMs(p' ,p;Q,E) - 5PtP,Imrt°\p;Q,E)} .
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The subtraction of the II^0' term ensures that the correlation energy starts
with contributions from second-order terms in the interaction.

14.4.2 Correlation energy of the electron gas in RPA

The general results of Eqs. (14.65) and (14.66) can now be applied to the
electron gas by applying the RPA to the polarization propagator II. The
results of Sec. 14.3 make it abundantly clear that the divergent character
of the Coulomb interaction can be remedied by summing all ring diagrams.
A similar statement is appropriate for the diverging contributions to the
potential or correlation energy, when second or higher-order ring diagram
contributions are considered. The RPA approach for the electron gas incor-
porates this important feature and suggests further that it is permissible to
neglect the exchange contribution to the ph matrix element of the Coulomb
interaction in Eqs. (14.65) and (14.66). If this approximation is made, only
the 5 = 0 contribution remains. Keeping the magnitude of Q in the nota-
tion, the summations over p and p' in Eq. (14.66) can be incorporated as
in Eqs. (14.19) and (14.20), yielding

* = -££/„ TA-OT-
 (1467)

x / dE |lm nX
s'*0

PA(Q,E) - Im U^{Q,E)j

= - ^ T / dQ / dX / dE \lmUx
s^0

PA{Q,E)-Imn^(Q,E)\.
ft n Jo Jo Jo ( }

The direct ph matrix element of the Coulomb interaction [see Eq. (14.40)]
was substituted in the first line of this equation. To arrive at the last ex-
pression, the remaining summation over Q has been replaced by the usual
integration, with its angular part (over Q) performed. The notation Er

signals that Eq. (14.67) involves the ring contribution to the correlation
energy. Equation (14.67) clearly demonstrates that the ring summation
eliminates the divergence of the Coulomb interaction, leaving a finite re-
sult. Indeed, keeping the lowest and first-order contribution to nA>flPj4, it
is possible to show that Eq. (14.67) yields the logarithmic divergence, as-
sociated with the second-order ring contribution to the correlation energy
(see also [Mattuck (1992)]). It is also clear that Eq. (14.67) is purely real,
as it should be. The expressions for Im II^0) can be found in Sec. 14.2.
Calculations for Im nA 'H P A can easily be performed by employing the in-
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formation from Sec. 14.3. The RPA correlation energy is compared with
other approximations in Sec. 16.2.3. We note that the expectation value of
the electron gas Hamiltonian at the mean-field level was already calculated
in Sec. 10.5 [see Eq. (10.180)].

Important analytic results for the ring diagram contribution to the cor-
relation energy can be obtained when rs is small, as discussed in detail
in [Fetter and Walecka (1971)]. This correction represents the dominant
deviation from Eq. (10.180), when rs —> 0, and was first studied by [Macke
(1950)]. The correct expression was given by [Gell-Mann and Brueckner
(1957)] (see also [Sawada et al. (1957)]). In atomic units it reads

^ = i [A ( i _ in 2) lnrs - 0.094 + ...] . (14.68)

This last expression includes the second-order exchange contribution. The
latter can be studied directly, but can also be obtained from Eq. (14.66)
by including the 5 = 1 contribution, while including only the lowest and
first-order contribution to Ug'^fA. Terms of order rs In rs were studied
by [DuBois (1959)] (see [Carr and Maradudin (1964)]). Some of the original
papers on the high-density electron gas are collected in [Pines (1962)].

14.5 Response of nuclear matter with TT and p meson quan-
tum numbers

In the previous section excited states in an infinite system were studied
for a strongly repulsive interaction. For the unique case of the Coulomb
interaction, a collective state, the plasmon appears in the electron gas above
the ph continuum for a range of momenta Q, including the limit Q -» 0.
Application of the RPA method to other infinite systems exhibits certain
similarities for the case of repulsive interactions. Quite different behavior
is observed for an attractive interaction. In this section we will study the
excitations of nuclear matter with quantum numbers corresponding to pions
and rho mesons, covering both possibilities.

In Sec. 4.4 we encountered the basic Yukawa-type interaction, appro-
priate for the exchange of finite mass mesons between nucleons. A more
complete description of this exchange mechanism involves the propagation
process of e.g. the pion, as it travels from one nucleon to the other. Since
the pion is a boson, the energy structure of the pion propagator in free
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space has a pole at ± the relativistic energy

EQ = v/ft2c2/4 + Q2c2, (14.69)

where [i^kc = m^c2 corresponds to the rest mass of the pion. While we
will not pursue the appropriate analysis for a relativistic particle, one may
point to the analogy with boson propagators to be studied in Sec. 18.3, to
realize that something of the form

G*(Q,E) oc * 1

E- v W ) 4 + W + iv E+ \A2c2/4 + Q2c2 - ti7

= 2-EQ (14 70)
£ 2 - {h?c2nl + Q2c2) + iri K ' '

must be expected. The denominator of the last result reflects the free
energy-momentum relation for the pion, which is the basis for the Klein-
Gordon equation, describing the pion. The proportionality factor in
Eq. (14.70) is therefore simply 2EQ, SO that

GAQ,E)=E2_{h2c2J+Q2c2) + tv. (14.71)

The intrinsic quantum numbers of the pion dictate the character of the
operator that couples a pion to a nucleon. Since the pion is a scalar particle
with intrinsic negative parity, the operator must be a pseudoscalar. The
only (pseudo) vectors, available for the pion and the nucleon, that yield this
combination, are the momentum of the pion and the spin of the nucleon.
A cr • Q coupling can therefore be expected. In addition, the pion has
three charge states, indicating that it has isospin T = 1. It implies that
an operator carrying isospin 1, must be attached to each vertex as well,
but in such a way that the total operator acting on the two nucleons is an
isoscalar. The isospin dependence of such an operator is therefore T\ • T%.
The generalization of the Yukawa interaction for pion exchange between
nucleons, can then be written as

V*tn V) f*NN <Tl QC<T?QC _ (1A7<>\
V {I4,hj} = — — , T\ • T2, (14. II)

[i\ E2 - (h2c2^l + Q2c2)+ ir]
where the coupling strength is given by f2

NN/4n = 0.08 he and the pion
mass, averaged over its charge states, corresponds to 138 MeV/c2. Equa-
tion (14.72) must be considered as a matrix element in momentum space,
depending only on the momentum transfer, as discussed in Sec. 4.4. In
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low-energy, elastic nucleon-nucleon (NN) scattering, the Born contribu-
tion, associated with Eq. (14.72), forces the energy transfer E to be zero.
In this limit (and in a similar way for E ^ 0), one may decompose the
operator structure of the pion-exchange interaction in the following way

1 ,2 fc2 2 al ' a1

+ \^fL<T1-a2Tl-n. (14.73)

The first term in Eq. (14.73) contains the so-called tensor force, since the
operator is the scalar obtained by coupling a rank two tensor, composed
out of <j\ and er2, with a rank two tensor proportional to the spherical
harmonic Y2M(Q)- The operator can be written as (see also App. B)

Si2(Q) = 3 <ri • Q <r2 • Q - ax • cr2 = V24TT |JCTI <g> a2] ® y2j

= y/2to J2 (2 A* 2 - /i | 0 0) [<n ® <72]J r2 ,_M(Q). (14.74)

The spin operators are coupled to a spherical tensor of rank 2 as follows

[o-i ® ^ £ = E (! m i X m2 I 2 ^) (o-Om. (^2)^ , (14-75)

explaining the use of the ® symbol. In the last equation the spher-
ical components of the spin operators are employed, given by a\.x =
=Fl/v2(0a: ± iffy) and <j\ = uz, respectively. It is the tensor component
of the nuclear interaction that is responsible for the quadrupole moment of
the deuteron, since it couples the 3S\ to the 3Z?i partial wave, leading to a
D-state admixture in its ground state. The second term in Eq. (14.73) has
the momentum dependence of the Yukawa interaction, discussed in Ch. 4,
but also contains an explicit spin and isospin dependence. The final term
in Eq. (14.73) corresponds to a ̂ -function upon FT to coordinate space.

The relevant ph configurations, which sample the influence of this TT-
exchange interaction in nuclear matter, are characterized by specific spin
(and isospin) quantum numbers, as for the response to a density fluctuation,
discussed in the previous section. The relevant excitation operator in the
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present case is given by

0<TQTZ = H Yl YJ (m»m«l <r-QTz \m'sm't) a\>msmt
ap-Qm;m't,

p mam's mtm'f

(14.76)
where the z-component of the isospin operator is appropriate for the case of
symmetric nuclear matter. Choosing Q along the z-axis, one can show in a
similar way as in the previous section (see also Sec. 14.1) that the total spin
and its projection of the ph states must be 1 and 0 respectively, while the
total isospin equals 1. The presence of the tensor force in Eq. (14.73) (and in
the general case when E ^ 0), makes the evaluation of ph matrix elements of
the interaction somewhat more involved, but nevertheless straightforward
in terms of angular momentum algebra [Dickhoff et al. (1981)] (see also
App. B). These details conspire to yield the simple result that the direct
contribution to the ph matrix element with S = 1,M = 0 and T = 1, is
given by

{Q,P\Vph \Q,P)D~ ^2 £2_( f i 2 c 2 / i 2 + Q2 c 2 ) + i j ? >

(14.77)
with Q along the z-axis. The tensor force of Eq. (14.73) contributes 2/3
and the central part 1/3 to this matrix element. The expression for the
exchange contribution is more complicated and will not be derived here. It
is not permissible to neglect such exchange contributions outright, as in the
case of the Coulomb interaction. Nevertheless, it is possible to represent
their main effect as well as other corrections, for example related to the
proper treatment of short-range correlations, by a constant interaction5,
which has the simple form

y,S=lT=1 = / ^ v gl CTi . ̂  n . T^ ( 1 4 7 8 )

The parameter g1 is used to mimic all relevant correlations, which need to
be included to correct the ph interaction in this spin-isospin channel. A
plot of the Q-dependence of Eq. (14.77) combined with the matrix element
of Eq. (14.78) for several values of g', is shown in Fig. 14.7 for E = 0. The
figure clarifies that within the range of values, commonly considered for
the parameter g', the effective interaction turns from repulsion to attraction
rather rapidly, as a function of Q. This has interesting consequences for the
Q-dependence of the response with the corresponding ph quantum numbers.

5 A slight Q-dependence is obtained in detailed calculations of this quantity.
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Fig. 14.7 Effective interaction (dimensionless) in the spin-isospin channel 'With pion
quantum numbers for three values of g1 corresponding to 0.4 (short-dashed), 0.55 (solid),
and 0.7 (long-dashed), respectively, plotted as a function of Q/PF- The density corre-
sponds to normal nuclear matter, which is equivalent to kp — 1.33 fm"1.

For small values of Q the effective interaction is repulsive, whereas for larger
values it can become quite attractive, depending on the value of g'.

Before discussing the consequences of this ph interaction in the so-called
spin-longitudinal channel (spin along the quantization axis parallel to Q),
it is necessary to introduce one additional ingredient into the discussion.
The latter can be motivated on the basis of experimental data, associated
with pion-nucleon scattering. For pion kinetic energies below 300 MeV
the interaction is dominated by a p-wave resonance, corresponding to an
excited state of the nucleon with total spin and isospin | , the so-called A-
isobar [Ericson and Weise (1988)]. In vacuum, the mass of this resonance is
approximately 1232 MeV/c2 and its width, at resonance, is 115 MeV. Very
successful descriptions of pion-nucleon and pion-nucleus scattering can be
constructed, using the A-isobar as a separate baryonic species, without re-
quiring knowledge of its intrinsic structure. This is not unlike the use of
nucleons in the description of nuclei and nuclear matter. It simply reflects
the identification of the relevant degrees of freedom at low energy that
dominate the physics (see the discussion of the NN interaction in Sec. 4.3).
In the present context, the strong coupling between pions, nucleons, and
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A-isobars can be taken into account by introducing pion-exchange interac-
tions, which convert a nucleon into a A-isobar or vice versa. In complete
analogy with Eq. (14.72), such an interaction can be written as

(14.79)
for the transition from an NN to a AN state with fnNA ~ ^I-HNN- Note
that the operators <T\ and T\ of Eq. (14.72) have been replaced by so-called
transition spin and isospin operators, which carry spherical tensor rank
1 in spin and isospin space, respectively. These operators have spherical
components with matrix elements between spin and isospin \ and | states
that are given by

( |mA | {S\)\ Ijmjv) = (i mN 1 A | § mA) (14.80)

and

(!*A| (T\)\\itN) = (i tN 1 A | | tA). (14.81)

In the opposite process, 7r-exchange de-excites a A-isobar to a nucleon. It
is simply given by the adjoint of Eq. (14.79). A combination of the two
processes occurs in the interaction, which takes a iVA to a AN state

\n m p\ — f*NA $i • Qc S2 • Qc t / U S 9 l

VNA^AN(Q,E)- ^ Ei-(hic^l+Q^) + ir>T^r2- ( 1 4 ' 8 2 )

The corresponding diagrams, representing the interactions in Eqs. (14.79)
and (14.82) in ph coupling schemes, are shown in Fig. 14.8a) and b), re-
spectively. Only direct contributions to these interactions are shown with
the A represented by a double-arrowed line.

To include the coupling to these A-isobar states in the RPA approx-
imation to the response, Eq. (14.21) must be generalized into a coupled
problem between ph and Ah polarization propagators, given by

njf(Q,E)=n<g)(Q,E) (14.83)

+ n<°)(Q,£) V5N{Q,E) WN(Q,E)+rt°\Q,E) V£A(Q,E) UA(Q,E)

and

Ul(Q,E) = U{°)(Q,E) (14.84)
+ l40)(Q,£!) V£N(Q,E) njf(Q,E) + U{£)(Q,E) V£A(Q,E) IIA(Q,£).
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Fig. 14.8 Diagrammatic representation of ph diagrams involving Ah excitations, gener-
ated by employing the interactions of Eqs. (14.79) [a)] and (14.82) [6)]. The A-isobar is
represented here by the customary double-arrowed line. No confusion with fully dressed
sp propagators should arise in this section, since nucleons will be treated only at the
mean-field level. Some higher-order diagrams, generated by Eq. (14.83), are shown in c)
and d).

The interaction between nucleon ph states is denoted by VfiN and repre-
sents the sum of Eq. (14.77) and the matrix element of Eq. (14.78), which is
simply given by if%NNg'/[%. The direct contribution to the ph-Ah matrix
element has an identical energy and momentum dependence as Eq. (14.77),
but the factor ^f^NN must be replaced by SfnNNfnNA/3- In analogy to
Eq. (14.78), one also includes the matrix element of

,S=1T=1 _ UNN/TVNA , -f „ Tt _ (\A9X\
v NA - 2 3A * i ' ^2 / i • r2, (14.85)

which yields &fnNNfT\NAg&l?>Vn\. A similar result is valid for the adjoint
interaction, needed for V£N in Eq. (14.84). Finally, the direct matrix ele-
ment of Eq. (14.82), contributing to VAA, again has the same momentum
and energy dependence as Eq. (14.77), but requires the factor 16/^NA/9 to
replace 4f%NN in Eq. (14.77). An interaction of the kind

i2
v AA - — — 9AA S \ • S2 T1 • / 2 (14.86)

is also included, which can be handled in the same way. The evaluation of
these matrix elements requires the decomposition of the relevant interac-
tions into central and tensor contributions as in Eq. (14.73) and the subse-
quent use of standard angular momentum algebra [Dickhoff et al. (1981)]
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(see also App. B).
To complete the information included in the coupled equations, given

by Eqs. (14.83) and (14.84), the noninteracting polarization propagator
involving Ah states is required

nWfO F)- f dp { 6(PF-\p-Q/2\)
* W > ' J(2nhr\E~[eA(p + Q/2)-e(Q/2-p)} + ir1

« ( W - I P + Q/2|) \ ( 1 4 8 7 )

E+[eA(Q/2-p)-e(p + Q/2)}-ir,j- { ^

It is appropriate, for low-energy considerations, to neglect the width of the
A-isobar, so that

eA{p) = 7r— + K - m ) c 2 (14.88)
2mA

includes the kinetic energy and the mass difference with the nucleon (about
300 MeV). An important difference with Eq. (14.22) is that the A-isobar
does not experience the Pauli principle for nucleons. The corresponding
step functions are therefore absent in Eq. (14.87). The evaluation requires
similar considerations as for Eq. (14.22) and will not be given here.

The polarization propagators can now be evaluated by performing the
2x2 matrix inversion that solves Eqs. (14.83) and (14.84), using the known
ingredients 11^', Yl£ , and the various interaction terms. Little is known
about the parameter gAA and insofar as the effects simulated by this pa-
rameter are associated with short-range correlations, one may argue that
numbers similar to g' (also denoted g'N) may be appropriate. This does
not apply to the interaction that links nucleon ph with Ah states. An ex-
ample of such an interaction is given by Eq.(14.79) for the pion-exchange
contribution. Due to the spin and isospin | character of the A-isobar,
it is not possible to construct partial-wave matrix elements between S-
wave initial and final states, when the usual particle-particle coupling is
performed. Considerations related to the magnitude and relevance of the
exchange matrix elements of Eq. (14.79), nevertheless suggest a value of
about g'A - | [Dickhoff et al. (1981)].

The imaginary part of 11^ is shown in Fig. 14.9 at normal nuclear mat-
ter density for different values of Q with, and without, the inclusion of
Ah propagation. The results including only nucleons, precisely reflect the
behavior of the interaction, shown in Fig. 14.7, for a value of g' = 0.55.
For Q/PF — 0.2 the interaction is sufficiently repulsive to yield a solu-
tion above the ph continuum, also indicated in the figure. This discrete
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Fig. 14.9 Response of nuclear matter at a density corresponding to PF = 1-36 fm"1

for different values of Q/pp- The imaginary of the polarization propagator for pionic
modes with nucleons only, is given by the dashed line, including also isobars (only for
Q/pF = 0.9) by the dotted line, and for comparison the noninteracting propagator by the
full line. Where appropriate the location of the discrete state above the ph continuum is
indicated by the dotted vertical line. The imaginary part of the polarization propagator,
divided by the constant factor —mpF/i^nh3), is plotted as a function of the energy in
units of ep • Vertical scales are not all the same.

state carries 71% of the energy weighted strength. The repulsive charac-
ter of the interaction is sufficiently reduced to remove this bound state
at Q/PF = 0.3, although the response in the continuum clearly displays
the removal of strength to higher energy. At Q/PF — 0.55 the interac-
tion basically vanishes, as shown by the corresponding panel, where the
response can hardly be distinguished from the noninteracting result. The
interaction has turned quite attractive for Q/PF = 0.9, as demonstrated
by the appearance of a peak in the strength distribution at much lower
energy than for the noninteracting case. The inclusion of the Ah states
is particularly important for this value of Q and has been left out in the
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other panels of Fig. 14.7, where it plays no role for the chosen values of
the parameters. For Q/PF = 0.9 however, a substantial enhancement of
the response at low energy is observed, over the already enhanced one
for nucleons only. The inclusion of the A degree of freedom in nuclear
matter therefore has important consequences for excited states with pionic
quantum numbers. The strength moves to lower energy at this Q-value
and it is easy to visualize it moving down further with increasing den-
sity. Ultimately, a critical density occurs, at which this excitation mode
becomes unstable, at least when the RPA is applied. Such an instability,
referred to as pion condensation, is basically identical to the appearance of
complex eigenvalues, when the RPA eigenvalue problem is solved, as dis-
cussed in Sec. 13.3. The possibility of pion condensation was pointed out
by [Migdal (1972)]. Several scenarios have been developed, which pursue
the possible consequences of collective pionic modes that develop into a new
ground state of nuclear or neutron matter at higher density [Migdal (1978);
Ericson and Weise (1988)].

It is also possible to study the other isovector meson, the rho meson,
within the same framework. The interaction between two nucleons exchang-
ing such a meson is given by

vp(n F\ f2pNN o-i x Qc • <T2 x Qc n i scn
VH(Q,h) =—5"T^—/» 2 2 i n n \ i • T l ' T 2 - (14.89)

fj,% E2 - (h2c2(i2
p + Q2c2) + IT}

In the static limit (and in a similar way for E •£ 0), the decomposition of
the rho-exchange interaction is given by

MPin n\ X ff>NN 3<Tl QC(T2- Qc-cri- a2Q
2c2

V [Q,V) = 77 n fc2 2 2 i r>2 2 Tl "T<1

2 1 2 t-2-2 a i ' a 2 -r-
-3f»NNh ° Vc2n2

p + Q2c2 T l ' T2

+ lf-^~crl-a2Tl-T2. (14.90)

The tensor component has the tendency to cancel the one from pion-
exchange. By applying the same tensor algebra as for the pion, one may
show that the direct matrix element of Eq. (14.89) only yields a contribution
(for Q parallel to the z-axis) when \Ms\ — 1. One therefore obtains

{Q'P Ph
 W,P)D- M2 E2-(h2c^2+Q2c2)+iV'

(14.91)
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Fig. 14.10 Response of nuclear matter at a density corresponding to PF = 1-36 fm"1

for different values of Q/PF- The imaginary of the polarization propagator for 5 =
1,|Ms| — 1,T = 1 modes with nucleons only is given by the dashed line, including
isobars by the dotted line, and for comparison the noninteracting propagator by the full
line. Where appropriate the location of the discrete state above the ph continuum is
indicated. The imaginary parts of the propagators are plotted as in Fig. 14.9.

similar to Eq. (14.77).
The rho meson mass is about 770 MeV with the coupling constant to

nucleons corresponding to fpNN/n2
p = 2.18/%NN/IJ%. This implies that,

at small Q, the contribution of the g' term is more important than in
the pion case. The rho response in Fig. 14.10 (for for the same values
of Q/PF as in Fig. 14.9) reflects this feature. The collective mode above
the continuum, due to the overall repulsive interaction, now survives to a
value of Q/PF = 0.50, whereas it vanishes for Q/PF = 0.23 in the pionic
case. The amount of strength in the discrete state corresponds to 85%
for Q/PF = 0.2 and 78% for Q/PF = 0.3. When A-isobars are included,
these values decrease to 81% and 72%, respectively. Small changes can be
observed in the continuum response in Fig. 14.10, when the Ah coupling is
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present. Even for Q/PF = 0.9 the response testifies to the repulsive nature
of the interaction in both cases, since the peak of the strength still moves
to higher energies, as compared to the noninteracting case.

The marked difference between the IT and p response function, was
first studied by [Alberico et al. (1982)] for nuclear matter. Experi-
mental investigations [Carey et al. (1984); Taddeucci et al. (1994);
Wakasa et al. (1999)] of the enhancement of the spin-longitudinal (pion),
as compared to the spin-transverse response (rho), have not yielded the
predicted effect. When the finite size of the nucleus is taken into account, a
reduced, but still significant, enhancement remains [Alberico et al. (1986)].
The resolution of this issue remains a subject of further investigation, since
it touches on the fundamental problem of identifying signatures of the pion-
exchange interaction between nucleons in the medium. The influence of A-
isobar configurations in nuclear matter will also be discussed in the context
of the saturation properties of nuclear matter (see Sec. 16.3.4).

14.6 Excitations of a normal Fermi liquid

The last section of this chapter is devoted to an analysis, based on
Green's function theory, developed by Landau on the properties of Fermi
liquids. We will confine ourselves mostly to a discussion of the last
of a series of three seminal papers [Landau (1957a); Landau (1957b);
Landau (1959)], which explored the possible excitations of the 3He liquid,
leading to the prediction of the so-called zero sound mode. The analysis
in [Landau (1959)], employed the properties of exact sp propagators in an
infinite homogeneous medium, as they have been partly explored in Ch. 11.
In addition to the quasiparticle properties, discussed for fixed momentum
in that chapter, it is necessary to consider the properties of the exact sp
propagator for energies and momenta close the Fermi energy and Fermi mo-
mentum. To this end, we generalize the result of Eq. (11.103), by expanding
the self-energy near the Fermi momentum and energy in the following way

E(p;£) = E (p, ; e , ) +M|££)[ ( p _ p F ) + ^ | ^ ) ^ {E_ep).

(14.92)
We note that the imaginary part of the self-energy behaves as Im E(p; E) -*•
CP(E — £F)2 and hence does not appear in the present first-order expansion
around pp and ep. Including the corresponding expansion of the sp kinetic
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energy, one may write the exact sp propagator as follows

1

* (E-eF)(l-$§)-C£ + %)(p-pF)

= T; } —s ; • (14.93)
E -eF-(p- PF)PF/m* ± ir)

The effective mass receives distinct contributions, labeled p-mass and E-
mass

^ = ^ ^ (14.94)
m mm

which are defined by

rn; J 1 + - n ^ ) V1
m \ PF dp pFJ

and

m*E _ dX(pF;E)
— = 1 Q ^ ~ EF=ZF > (14-96)

respectively. The sign of the infinitesimal imaginary part in Eq. (14.93) is
determined by whether p is above (+) or below (—) pF. It is also customary
to replace PF/TTI* by the Fermi velocity vF. The form of Eq. (14.93) is
appropriate for the case of a normal Fermi liquid, where there is a jump in
the occupation number at pF, given by the value of ZF- In a superfluid or
superconductor, no such jump is present in the occupation number at PF
as discussed, in Ch. 22.

Ultimately, the present analysis is intended to make statements about
possible collective excitation modes in the limit of small momentum and
energy transfer, the so-called Landau limit. This information is contained
in the tp propagator, or, equivalently, the four-point vertex function, both
discussed in Ch. 9. Since such collective states appear as poles in the tp
propagator, they must also appear in the vertex function F, according to
Eq. (9.26). It is therefore possible to carry out the analysis by studying the
properties of F in the Landau limit. The additional advantage is that useful
relations for the vertex function can be obtained, as explored in some of the
exercises at the end of the chapter. In the Landau limit, we identify different

(14.95)
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Fig. 14.11 Second-order contributions to the four-point vertex function F. The points
labeled 1 and 2, correspond to the final state, whereas 3 and 4 refer to the initial state
in the notation of Ch. 9. The direction of the corresponding short-arrowed lines is in
accordance with the ph coupling representation, discussed in Sees. 13.2, 13.3, and 14.1.
Diagram a) corresponds to the second-order contribution to the polarization propaga-
tor, shown in Fig. 13.6 without the external propagators. Note also that for the present
discussion the propagators inside the contributions to F refer to exact ones. The inter-
actions in these diagrams correspond to the symmetrized version and the representation
has been chosen such that greatest clarity is achieved.

types of contributions to F. Figure 14.11 illustrates the relevant second-
order terms in F, which are shown using the ph format discussed in Sec. 14.1.
Since we are interested in results that identify properties of excited states
of the liquid, it is diagram o) of Fig. 14.11 that deserves special attention.
Indeed, the corresponding contribution to the polarization propagator is
displayed in Fig. 13.6, with external propagators attached. In the present
context, the internal lines correspond to exact sp propagators, but double-
arrowed lines have been suppressed for simplicity. No external lines are
attached to Fig. 14.11a). Nevertheless, it is possible to identify this term as
the one obtained by iterating a lower-order (i.e. first-order) contribution to
F, with a ph propagator in complete analogy with the second-order diagram
of Fig. 13.6. The labels 1 and 2 of the diagrams correspond to the final
state of the corresponding contribution to F in the usual particle-particle
(pp) formulation, employed in Ch. 9. Similarly, the labels 3 and 4 refer to
the initial state.

In Sec. 13.2 we have seen that the determination of excited states re-
quires a coupling scheme in which the lines, corresponding to labels 1 and
3, represent the final ph state, and 4 and 2 the initial one [see Eq. (13.20)].
The identification further facilitates the characterization of diagrams b) and
c) in Fig. 14.11, as irreducible contributions with respect to ph propagation
in this coupling scheme. For the same reason diagram a) is reducible with
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respect to the iteration of the exact, but noninteracting ph propagator,
identified by the bubble with the corresponding antiparallel lines. Diagram
c) also contains a bubble but the coupling scheme employed here, makes
it irreducible with respect to iterating in the 1,3 or 2,4 direction. Clearly,
the diagram is the exchange of diagram a) (by exchanging 3 and 4). This
equivalence demonstrates that it is also possible to consider diagram c) as
reducible with respect to 1,4 and 3,2 ph propagation. Conventional identifi-
cation in relativistic descriptions of scattering processes, refers to diagrams
a), b), and c) as t~, s-, and u-channel iterations in terms of the Mandelstam
variables. They identify the three four-momentum invariants, characteriz-
ing such processes [Halzen and Martin (1984)]. In the present case, 1+2
corresponds to a conserved energy (equal to 3+4) but also 1-3 or 1-4. It
is convention to use the "i-channel" formulation to discuss the generation
of excited states, corresponding to iterating in the 1,3 or 2,4 direction, as
illustrated in Fig. 14.11a).

We proceed with the analysis, by introducing the momentum variables
for the four-point function F. As in Eq. (9.25), we remove the energy con-
serving (5-function from F and consider three independent energy variables.
Since F also conserves total momentum (as does the bare interaction V),
one can extract a corresponding factor 6ptp> as in Eq. (4.40), and employ
three independent momentum variables. We note that the interaction no
longer contains the volume factor in the denominator, since it is compen-
sated by a corresponding factor from the integration over each momentum
variable. In keeping with the ph coupling for the momenta, introduced
in Sec. 14.1, one can generate expressions for the integrations that need
to be performed for each of the contributions, shown in Fig. 14.11. The
momentum assignments for the matrix element of V in Eq. (14.9), iden-
tify the momenta associated with the labels 1-4 in the figure, the label 1
corresponding to p + Q/2, 3 to p — Q/2 (with this momentum leaving the
interaction as appropriate for a hole), 4 with p' + Q/2, and, finally, 2 with
p' - Q/2 (as a hole). We will choose the energy variables associated with
the three independent energies, based on those associated with the labels
1-4 by first identifying: E\ with 1, -E3 with 3, E4 with 4, and -E2 with
2. The negative signs conform with the hole character and indicate that
these energies are flowing away from the corresponding vertices. One can
then define the three independent energy variables as

Et = E1-E3 = E4- E2 (14.97)

Es = El+E2 = E3 + E4 (14.98)
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Eu = Ei - £4 = E3 - E2 (14.99)

which can be inverted to yield

E1 = i (E. + Et + Eu) (14.100)

E2 = i (Es - £ t - £„) (14.101)

E3 = \ (Es - Et + Eu) (14.102)

E* = \ (E* +Et- Eu). (14.103)

We note that in the previous sections of this chapter Et was denoted by E.
With these identifications one can construct the appropriate momentum
and energy variables for the intermediate states in the three diagrams of
Fig. 14.11 and, as a result, the arguments of the two exact sp propagators.
For diagram a) we obtain schematically

/

dP1

^r ...G(Pt + O/2; E't + Et/2) G(Pt - Q/2; E't - Et/2)...,
vt

(14.104)
where the spin (isospin) labels (and the corresponding summations) should
be included for the matrix elements of the interactions (not explicitly
shown). As discussed in Ch. 11, the spin (isospin) degrees of freedom do not
affect the propagators in the case of an unpolarized homogeneous system.
The intermediate state in Eq. (14.104) has special singular properties when
Et and Q go to zero, to be discussed shortly in more detail. For now, it suf-
fices to note that in this limit the arguments of both propagators coincide.
Special care will be required for intermediate momenta and energies near
the Fermi momentum and energy, due to the singular character exhibited
by the sp propagators, as shown in Eq. (14.93).

In contrast, diagram 6) in Fig. 14.11 yields a schematic result given by

& ) ^ E / f | :G(PS + (P+P')/2;E'S+ES/2) G(p.-(p+p')/2;E./2-E'a)..,

(14.105)
which exhibits no such singular behavior in the limit when Et and Q go to
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zero. This is also true for diagram c) given by

c ) ^ E / f | ..G(Pu + (p-p')/2;K+i5u/2) G(pu-(p-p')/2;E'u-Eu/2)..

(14.106)
From the expressions in Eqs. (14.105) and (14.106), we infer that it is
permissible to put Et and Q to zero, since no singularities of the kind shown
in Eq. (14.104), occur. It should be noted that although these variables do
not appear explicitly, they must be included in the matrix elements of the
interactions as external variables.

Similar statements hold for all higher-order contributions to F. These
contributions are either t-channel irreducible as diagrams b) and c) in
Fig. 14.11, or reducible as diagram a). In the former case, it is permis-
sible to put Q and Et to zero. Having separated the contributions to F in
this way, allows one to obtain F by iterating the irreducible contributions
to all orders in the ̂ -channel, as in the example of diagram a). Denoting
the irreducible contributions to F by Tlr, one obtains

(Q,P;af3-1\r(Et,Es,Eu)\Q,p';16-1)= (14.107)

toa0->\r"{E.,B.)W) + -Ef0ji f§
x (p; a/3"11 Tir((EB + Eu)/2 + E't, (E, + Eu)/2 - E[) \pt;e0~l)

x G(Pt + Q/2; E't + Et/2) G(pt - Q/2; E[ - Et/2)

x (Q,pt;e0-l\r(Et, (Es - Eu)/2 + E[,E't - {Es - Eu)/2) \Q,p';-/8-1),

where the spin (isospin) quantum numbers are indicated by greek letters to
compress the notation. Note that for T'r only two energy arguments have
been kept, corresponding to the appropriate values of Es and Eu.

The next several steps are all geared to transform the result of
Eq. (14.107) into an equation for the collective excitations in the limit
of small excitation energy and momentum transfer, where the dominant
contribution of quasiparticle-quasihole propagation is singled out. The lat-
ter propagation mode corresponds to the product of exact propagators that
appears in Eq. (14.107) and involves the limit of the sp propagators given
by Eq. (14.93). In this limit, the product of the propagators is singular, but
can be evaluated explicitly. It is therefore essential to extract the singular
behavior and study the energy integration contained in Eq. (14.107) involv-
ing this product of sp propagators in the Landau limit, as in Eq. (14.104).
One may write a sp propagator, using the result of Eq. (14.93), for momenta
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in the vicinity of the Fermi momentum as [see also Eq. (11.105)]

G(p;E) = GQ(p;E) + GB(P]E)

= P / ZF \ / « • • +GB{p;E). (14.108)
E - eF - (p-pF)pF/m* ±ir)

Here the background part represents those contributions from the spectral
functions, shown in Fig.11.5, that do not lead to singular contributions
for the propagator. With this decomposition it is possible to perform the
energy integration associated with the quasiparticle-quasihole contribution
to Eq. (14.107). We write schematically

/

JPI

^ f(E't) G(Pt + Q/2; E[ + Et/2) G(pt - Q/2; E[ - Et/2) =

/

flip'

-^ f{E[) GQ{Pt + Q/2- E[ + Et/2) GQ{Pt - Q/2; E't - Et/2) + ...,

(14.109)

where f(E[) represents the dependence on E[ of Tlr. Although this term
also yields contributions to the energy integral, since it contains poles in
both the upper and lower half of the complex £^-plane, they are well be-
haved in the Landau limit and will be considered separately. The other
terms indicated by the dots in Eq. (14.109) contain at least one factor
involving the background part of the propagator. These terms are well
behaved in the Landau limit. Each propagator in Eq. (14.109) contains a
quasiparticle and a quasihole component, depending on the magnitude of
\pt ± Q/2\, which is determined by the magnitude of pt and its angle with
respect to Q. In the limit Q —> 0, the magnitude of pt will be close to pF

in order for the singular nature of GQ to contribute. From these consid-
erations it is clear that the product of the two quasiparticle contributions
to the integral, yields four terms involving pp, ph, hp, and hh products.
For the pp and hh terms one realizes that the corresponding poles lie on
the same side of the real E't-axis in the complex plane. These terms will
not yield divergent contributions, since one can close the contour in the
opposite half-plane, picking up contributions from the well-behaved parts
of f(E't). The only terms that require special attention are the ph and hp
quasiparticle contributions. Introducing

EQ{p) =eF+ PF^1— =eF + vF(p - pF), (14.110)
77Z
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as in Eq. (11.101), the ph product can be written as

ZF (1 - 6(pF - \TH + Q/2|)) ZF 6(pF - \pt - Q/2\)
P E[ + Et/2 - EQ(Pt + Q/2) + iv E't- Et/2 - EQ(pt - Q/2) - ir,'

(14.111)
where the step function identity

6(p - pF) = 1 - 9(PF - p) (14.112)

was used for the first propagator. The limit Q -» 0 has already been taken
for the Z-factors, since these are smooth functions of momentum. By using
the identity

— - — = 2m 6(E) + _, l . (14.113)
E-ir) K ' E + ir]

which can be obtained from Eq. (7.15), one can isolate the (̂ -function con-
tribution to Eq. (14.111) in the following way

, 72 (1 ~ 8(PF ~ \pt + Q/2|)) 6{pF - \JH - Q/2|)
P F E't +Et/2-EQ(JH +Q/2)+iri

x S(E't - Et/2 - Eqipt - Q/2)) + ...(14.114)

The dots again indicate a nonsingular contribution, since the corresponding
product of qp propagators has poles on the same side of the jE -̂axis. The
integration over E't pertaining to the singular term can be performed with
the result

u , o ^ 72 (1 ~ OJPF ~ \Pt + Q/2|)) 6(pF - \pt - Q/2|)ph - 2« ZF ^ _ {EQ[pt + Q / 2 ) _ ^ ^ _ Q / 2 ) ) + .^ . (14.115)

After establishing the singular behavior in the energy, one can also iden-
tify such behavior in the magnitude of the momentum pt, represented by
Eq. (14.115). The result is obtained by noting that the step function re-
strictions in that equation imply 0 < 6Pt < TT/2 for the angle between pt

and Q, ensuring that the magnitudes of \pt±Q/2\ remain in the respective
particle and hole domain. This implies that the product of the two step
functions in Eq. (14.115) reduces to

0(PF - \Pt + Q/2|)0(pF - \Pt - 0/2|) = 8(PF - \pt + Q/2|), (14.116)

since the first step function is more restrictive, when integrating over the
magnitude of pt. We continue by expanding the step functions for Q -> 0
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in the following way

0(pF - \pt ± Q/2|) = 9(PF -Pt)±j- VPt0{PF - Pt)

= 6(PF -pt)±-^-pt Q~t
e(PF ~Pt)

= 0(PF -Pt)T~-pt S(PF - pt) (14.117)

so that the numerator of Eq. (14.115) reads

0{PF - \Pt - Q/2|) - 9(PF - \JH + Q/2\) =Q pt 8(PF - Pt) (14.118)

in the limit Q —> 0. A similar expansion of the difference of the quasiparticle
energies in the denominator of Eq. (14.115) yields

EQ(pt + Q/2) - EQ{Pt - Q/2) = Q^- = Q • ptvF. (14.119)
m

Inserting Eqs. (14.118) and (14.119) in Eq. (14.115), one finally obtains,
upon performing the integration over the magnitude of pt,

ph -> 2m pFZ2
F- Q'f* (14.120)
t Et-Q- ptvF + ir)

with the restriction of the angle between 0 and TT/2. An identical analysis
of the hp contribution to the product of the two qp propagators yields the
following complementary result for the angular range TT/2 < 6Pt < TT

hp -»• 2wi p2
FZF-= ^ P - . (14.121)

e Et-Q-ptvF -iV
The last two equations indicate that there is considerable subtlety involved
when the Landau limit is approached. In fact, these results depend on
whether the energy Et or the momentum Q is taken to zero first. As a
consequence, the exact four-point vertex function F, being a function of
Et and Q, is ill defined at the point Et = 0, Q = 0, as its value depends
on how this point is approached in the (Et,Q)-plane. This should not
be a surprise: the same feature is also observed for the real part of the
unperturbed polarization propagator, studied in Sec. 14.2. In the latter
case, one encounters the same singularity structure and the results can be
worked out exactly. We now return to Eq. (14.107) and substitute the
decomposition of the product of sp propagators into its singular structure
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and the remaining contribution. The outcome is given by the following
bulky expression

(Q,p;ap-l\r(Et,Es,Eu)\Q,p';75~1)= (14.122)

(p; a/?"111*(£?., Eu) \p'- 7-5"1) + pFZF £ / ^ s

x (p; a/3"11 Pr((£s + £u)/2 + eF, (E. + Eu)/2 - eF) \pFpf, t6~l)

x ±h
Et-Q • PtVF ± it]

(Q,PFPf, ee-11 T(EU (E, - Eu)/2 + eF, (Eu - E.)/2 + eF) I Q . P ' J T * " 1 )

eu

x (p^/3"11 r i r ( (£ s + Eu)/2 + E[, (Es + Eu)/2 - E't) \pue6~l)

x {G(Pt + Q/2; E't + Et/2) G(Pt - Q/2; E[ - Et/2)}reg

x {Q,Pt-e9-l\T{Et,{Es - Eu)/2 + E[,E't ~ {Es - Eu)/2)\Q,pl;15-1).

In the second term on the right side, only the integration over an-
gles remains for a relative momentum with magnitude PF according to
Eq. (14.118). The last term in Eq. (14.122) represents all contributions
from the product of propagators that do not yield singular terms.

The next step in the analysis is to sum all the contributions from the
last term in Eq. (14.122). Since this involves a general principle, it can
be discussed in the following generic fashion. If one encounters an integral
(propagator equation) of the kind

x = u + u{gx + g2)x, (14.123)

where X is obtained by iterating U in schematic notation with Q\ and Qi,
representing separate contributions to the intermediate propagator, like the
real and imaginary part or the separation encountered in Eq. (14.122), the
problem may be solved in two stages. First

Y = U + UG2Y (14.124)

is solved and then X is obtained from

X^Y + YGiX. (14.125)

The result can be checked by comparing higher-order terms from
Eq. (14.123) and the combination of Eqs. (14.124) and (14.125), also in
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higher order.
The application to Eq. (14.122), identifies Gi as the singular term which

appears in the second part of the right-hand side of that equation. Only
iterating the last term is however, also equivalent to taking the following
limit of the singular part of the propagator: first take Q -> 0 and then
Et -> 0 in which case Eqs. (14.120) and (14.121) yield no contribution.
Denoting this limit of the vertex function in the Landau limit by F°, we
see that the result corresponding to Eq. (14.125), applied to Eq. (14.122),
yields

(Q,p;a/3"1 | r (£; ( ,£; s , JBu) |g,p ' ;7^1)= (14.126)

(nap-^^EJlp'nS-^+tizjr ]T f^%

x (p; a/?"11 r°((Es + Eu)/2 + eF, (Es + Eu)/2 - eF) \pFpt; efl"1)

x 9ih
Et~Q- PtVF + ir\

(Q,PFpue6-l\Y{Eu (Es - Eu)/2 + eF, (Eu - E.)/2 + eF) \Q,p'; 18'1).

The result is valid for all momentum variables p, p' and energy variables
Es, Eu- Since the integral equation is restricted to intermediate states with
both the particle and the hole at the Fermi surface, we may formulate a
closed equation for the vertex function on the Fermi surface by considering
the external momentum variables p and p' at pF, together with placing the
associated energies, corresponding to the labels 1-4, on the Fermi energy.
The values for Es and Eu then become 2eF and 0, respectively. Leaving
out these redundant energy variables, we obtain

(Q,p; a(3-11 T(Et) \Q,p';-/S'1) = <p;a/3"11 F° \p'; 7 ^ ) (14.127)

•'a-qqft*, + i,<q-fcrf"'w)lq-<|fi^'>-
where the external and internal momentum variables are only indicated
by their direction, since their magnitude is equal to pF. Various limits
can be studied and we will focus on the determination of the possible pole
associated with F in the Landau limit. The pole corresponds to the location
of the sought after collective state and will be denoted by EQ. The first term
in Eq. (14.127) is not singular near the pole of F and the usual eigenvalue
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equation emerges, although now in a form involving the vertex function

{Q,p]ar
l\nEt « Eo) \Q,i>';i5-1) = (14.128)

It is convenient to take advantage of the rotational symmetry of F° in the
limit Q ->• 0, which implies that the only dependence on the directions is
of the form p • p'. In addition, one must consider the possible spin (and
isospin) degrees of freedom. We will discuss here the case of the 3He liquid.
One may then introduce a parametrization of the interaction on the Fermi
surface of the following form

T° = f(p • p') + g(p • p') tn • o-2

= /(cos9ppl) + g(cos9pp>) ax • a2

oo oo

= ^2 ft Pe(cos6pp.) + Y,9e Pe(cosepp,) *x • <r2. (14.129)

This representation of the interaction still requires to take the direct ph
matrix elements of the spin-space operators. Equation (14.129) assumes
that predominantly central forces operate in the 3He liquid. In that case
only the two operator invariants 1 and <Ji • cr2 need to be considered. In
Sec. 14.1 we have seen that for a two-component fermion system with cen-
tral interactions only the total ph spin 5 is required to characterize the
different possible excitation modes. This feature is equivalent to the cor-
responding separation based on Eq. (14.129), since the first term will only
contribute for 5 = 0 and the second only for 5 = 1, when the direct ph
matrix elements are taken. In each case, a factor of 2 must be included
upon taking the appropriate matrix element, as shown in Sec. 14.1.

We now proceed by assuming that the full vertex function near Eo can
be written as

in r, • <7i r(F ~ w \ \n */• «?\ - a(Q>p;£o>-SV(Q>p';£o,S)

(14.130)
The assumption is based on the Lehmann representation of the correspond-
ing ph propagator, which takes on a form like the one given in Eq. (13.9).
The corresponding reducible ph interaction F must have identical poles,
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noting that the vertex function in the Landau limit is also the Fourier
transform of a corresponding two-time quantity. The dots in Eq. (14.130)
simply represent all the other nonsingular contributions that are negligible
near Eo. We will assume that we are looking for a collective state with
5 = 0 and use the corresponding notation Qo(Q,p). An identical analysis
may be pursued for the case 5 = 1. Using Eq. (14.130), one may write
Eq. (14.128) in the following way

ao{Q,P) =

where the common factor depending on p' has been eliminated and the
only remnant of the spin variables is the extra factor of 2. Even though
this eigenvalue equation couples different ph orbital angular momenta
on the Fermi surface, it is nevertheless useful to consider an expan-
sion of the angular dependence in the corresponding eigenstates. In the
following we will only consider the azimuthally symmetric case, imply-
ing that ao depends exclusively on the angle between Q and p. The
more general case is considered in [Abrikosov and Khalatnikov (1959);
Baym and Pethick (1978)]. For convenience one may also take Q paral-
lel to the x-axis. With these assumptions, Qo can be expanded as follows

ao(Q,p) = J2aepe(cos0Qp)' (14.132)
i

where 6QP is the polar angle of p with respect to the Q-(z-)axis. Inserting
this expansion and the one, given by Eq. (14.129) for / , in Eq. (14.131),
one may perform the integration over the azimuth angle </>£ by expanding
Ptip " Pt)i using the addition theorem for spherical harmonics. Since the
^-dependence is associated with the corresponding Y/»TO(pt), the integral
over (j>t ensures that only terms with m = 0 contribute. Using the relation

111 4- 1
Vim=o(p) = \ /—r^Mcos f l ) , (14.133)

V 4?r

one finally obtains the following eigenvalue problem

ae = Fe^2^U'{s)al,, (14.134)
v

where the orthogonality relation of the Legendre polynomials has been used.

(14.131)
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In addition, the dimensionless constants

Ft = Nofi, (14.135)

with

No = ^ ^ , (14.136)

are introduced, which are referred to as Landau parameters. In addition,
the quantities

s = £L = U™9. (14.137)
QvF PFQ

and

n«-(s) = n / ( /(a) = I I d(cos9)Pe(cos9) C ° S ° Pc (cos6>) (14.138)
2 y_i s — cost?

have been used. The first few 0, are given by

noo = - l - | l n ( ^ j ) (14.139)

and

nn =-hn + sfleo (14.140)
o

for values of s > 1. Real values for these quantities are obtained only for
s > 1. For values of |s| < 1, Eq. (14.138) also yields a complex contribution.
We note that the eigenvalue problem given by Eq. (14.134) yields solutions
for s —>• — s, just as the RPA eigenvalue problem, discussed in Sec. 13.3.
We note that QQO is positive for s > 1 and monotonically decreasing as a
function of s. If only Fo is taken into account, this shows that Fo must be
positive in order to solve Eq. (14.134). No solution is found for negative
values of Fo. The result is similar to the collective plasmon or the discrete
states discussed in Sec. 14.6, which occur in energy above the ph continuum
for a given value of q.

Solutions to Eq. (14.134) can be obtained if knowledge of the parame-
ters F( is available. Landau showed that relations exist [Landau (1957a)]
between the first two parameters Fo and Fi and the speed of ordinary
(first) sound and the effective mass (specific heat), respectively. In Ch. 21
general relations between the self-energy and the irreducible ph interaction
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Fig. 14.12 Graphical representation of the eigenvalues (full and dashed lines) of
Eq. (14.134) as a function of s using the empirical values of Fo and F\. The loca-
tion of the collective state is identified by the crossing of the upper eigenvalue with the
dotted line.

will be studied. As shown in Sec. 21.3, Landau found the following relation
between the effective mass on the Fermi and the parameter i<\

- = l -*4- (14.141)

For the speed of ordinary sound C\ he obtained

Assuming the corresponding measured quantities in 3He for the specific
heat [Greywall (1986)] and the speed of sound [Wheatley (1975)], one may
deduce values for Fo = 9.30 and f\ = 5.40. If one assumes that higher
Landau parameters are negligible, as is commonly done, one can solve
Eq. (14.134) as a 2-dimensional eigenvalue problem depending on s. For
the value of s for which one of these eigenvalues equals 1, denoted by so,
a solution to Eq. (14.134) is obtained. The two eigenvalues of Eq. (14.134)
are graphically shown as a function of s in Fig. 14.12, with the above val-
ues of FQ and F\ as input. The solution for so from the intersection with 1

(14.142)
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yields so = 3.22, which gives the velocity of the collective excitation as

c0 = sovF (14.143)

in agreement with the measured velocity of this quantity [Abel et al.
(1966)]. We note that the collective excitation, commonly referred to as
zero sound, has a bosonic dispersion relation (see Ch.18), given by

Eo = c0Q. (14.144)

We emphasize that this result pertains to the Landau limit, i.e. small en-
ergy and momentum transfer. Nevertheless, the empirical values of the ex-
tracted Landau parameters indicate that one may expect a continuation of
the mode at higher energy and momentum transfer above the correlated ph
continuum. This is indeed observed experimentally, although the presence
of two-particle—two-hole (2p2h) states that can mix with ph states gives
the zero sound excitation a substantial width at finite values of Q [Glyde et
al. (2000a)]. While the interaction in the 5 = 0 channel is strongly repul-
sive, the opposite is true for the 5 = 1 channel. The corresponding lowest
order Landau parameter can be related to the spin susceptibility [Landau
(1957a)] and is given experimentally by Go = -0.710 [Greywall (1983)].
For an undamped collective mode it is necessary that the interaction is
repulsive, so for 5 = 1 one finds a behavior that corresponds more to the
results, discussed in the previous section, for an attractive ph interaction.
Keeping only Go for the interaction in the 5 = 1 channel, one may confirm
the impossibility of solving Eq. (14.134) in the Landau limit, by noting that
the corresponding quantity J7Oo becomes complex for values of s < 1.

14.7 Exercises

(1) Evaluate the double commutator in Eq. (14.49).
(2) Calculate the plasmon dispersion relation for several values of rs.
(3) Determine the Ah-polarization propagator and perform similar calcu-

lations to those that lead to the results of Figs. 14.9 and 14.10.
(4) Use the integral equation, given in Eq. (14.127), to obtain the relation

between the following limits of the vertex function (E -> 0 then Q -> 0)
and the other way around, to generate the sum rule conditions on the
Landau parameters.

(5) Develop the expansion of the effective ph interaction in terms of Landau
parameters for nuclear matter.



Chapter 15

Excited states in N ± 2 systems and
in-medium scattering

In the previous chapter we have studied the excited states of the system
with the same number of particles as the ground state. That discussion
complements the study of the sp propagator, which probes states with one
particle added or removed. In the present chapter, we will study the states
that can be reached by adding or removing pairs of particles. When the sp
propagator is regarded with respect to the vacuum state, one recovers the
quantum mechanics of one particle as discussed in Ch. 6. Similarly, the tp
propagator studied in this chapter can be considered for the vacuum state
and then describes the quantum mechanics of two particles (fermions in
this chapter). The case of two particles in free space is treated in Sec. 15.1.
The subject is introduced by defining the general two-time tp propagator
in the medium, and then replacing the correlated TV-particle ground state
by the vacuum. We will point out that the diagrammatic content of the
full solution of the tp problem, corresponds to summing all the so-called
ladder diagrams. Both scattering and bound-state results for two particles
will be developed. When interactions have strong short-range components,
a perturbative expansion is not an option and the complete sum of ladder
diagrams must be included. Such diagrams also play an essential role in
the medium, when dealing with two-body interactions, which exhibit such
strong short-range repulsion.

Medium modifications with respect to the interaction in free space are
considered in Sec. 15.2. These effects include the new possibility to re-
move pairs of particles, resulting in hole-hole (hh) propagation, and the
restrictions that occur due to the Pauli principle. Summing ladder dia-
grams in the medium, therefore leads to the combined propagation of both
particle-particle (pp) and hh intermediate states. Since at low density the
phase space for hh propagation is small, it has been customary to include,

397
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for practical applications, only pp propagation, leading to the so-called G-
matrix effective interaction, frequently used for nuclear and neutron matter
calculations, as discussed in more detail in Ch. 16. We will study the con-
sequences of medium effects for the description of the scattering process,
associated with pp and hh propagation in the medium. The inclusion of
hh terms may lead to difficulties, when interactions are encountered that
are effectively attractive on the Fermi surface. These so-called pairing in-
stabilities can already be identified from the behavior of the corresponding
phase shifts.

Such behavior is further explored from a different perspective in
Sec. 15.3. The study of the pairing instability is preceded by a discussion of
the Cooper problem. This involves the addition to the Fermi sea of a pair
of particles that experience a mutual attraction. We will see that it corre-
sponds to the bound-state problem, associated with only pp propagation.
The inclusion of pair removal (hh propagation), then leads to the necessity
of opening up a gap in the sp spectrum to accomodate the resulting bound
states that may occur for attractive interactions. This discussion therefore
serves as preparation for a more in-depth treatment of pairing correlations
presented in Ch. 22.

15.1 Two-time two-particle propagator

Since the full 4-time tp propagator is not required in this chapter, we take
from the start the relevant two-time limit of Eq. (9.16)

Gpphhfaa'iP^ih-tz)^ lim \im Gn(ah,a1 t[,pt2,/3
11'2)

t\-yti t'2^t2

= —(Klna^Jt^a^^a^^al^)]^). (15.1)

It is particularly suited to study excited states that can be reached by
adding or removing pairs of particles in a many-fermion system. The label
pphh is used here to include the possibility of hh propagation as well. We
will refer to Eq. (15.1) as representing the pphh propagator. The ordering of
the operators in Eq. (15.1) should be noted, since it inverts the order of the
first pair as given by the left-hand side of the equation. The noninteracting
limit is obtained in the familiar manner, i.e. by replacing {*&$) by l^oO
and by using interaction picture operators instead of the Heisenberg picture
ones, employed in Eq. (15.1). The resulting noninteracting pphh propagator
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Fig. 15.1 The two contributions to the noninteracting pphh propagator in the time
formulation, as given by Eq. (15.2).

reads

Gj,°U(«."';/3^';*i-*2) = -^<*or|'naa'(ti)aa(<i)aJ,(t2)4,(t2)]|$Sr)

= ih[G(°\a,p;tl-t2)G(°Ha',pl;t1-t2)
-G^{a,P';t1-t2)G^\al,p-tl-t2)], (15.2)

by direct application of Wick's theorem and in agreement with the 4-time
result given in Eq. (9.18). The corresponding diagrammatic representation
is given in Fig. 15.1.

In this chapter we will only employ sp propagators, which have a mean-
field character, as for free particles or in the HF approach. It is therefore
possible to consider diagonal sp propagators, which can be written as

G(0)(a,a'; h - t2) = 6aa,G
(0\a; h - t2). (15.3)

Equation (15.2) then changes into

G^ h (a ) a ' ; /3 , /3 ' ; t 1 - t 2 ) =

ih [Sa0Sa.p,-Saff.Sa.0]G^(a;t1-t2)G^(a';t1-t2). (15.4)

For practical purposes it is again useful to employ the energy formulation.
Performing the usual FT, yields

/•OO

G^hh(a,a'-J,P';E)= / d(h - t2) e^^-^G^^a,a';/?,/?';*! - t2)
J — OO

poo

- ih [<WiV/3< - 5*f}>5a'0] / d(h - t2) e^^-1^
J — OO

x /~^Le""*<*>-*'>/* G<°>(a;£i) r—e-^^-'^G^ia'-E,)
J_002irh J_002-Kh

f°° dF
= ih[6afi6alf,.-6a(),6a.()] —iGW(a;JSi)G (0 )(a';J5-Ei). (15.5)
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The inverse FT of the G(0)s, given by Eq. (8.60), was used to obtain this
formulation. The convolution integral in Eq. (15.5), can be evaluated by
contour integration in the usual way, according to Eq. (11.8), and yields

^ 0(a - F)6(a'- F) 6{F - a)d{F - a')\
[<W<W - 6*0.60.0] [E_£a__£ai+ir} ~ E_£a_£a,_ir}) •

We define a noninteracting pphh propagator without the Kronecker deltas
by

GWhh(a,a';P,ff\E) = [Safi5a.p, - 6apiSa.0] G^hh(a,a';E). (15.7)

Using Eq. (9.21) for the two-time case, or applying directly Wick's theorem
to the first-order contribution to Gpphh, we will consider this contribution
without the self-energy terms. As in Ch. 13 these terms are included sepa-
rately. The corresponding result can be written as

G^hh{a,a'^^'-M -ta) = ( y V / * \ £ W\V\66')
\ n J J 4 7 7 W

«|r[at(i)at,(t)a(5,(t)a5(t)aQ-(i1K(t1)a^(i2)4,(t2)]|O

^(ih)2 fdt Y, {ii\V\&&') (15-8)
J 77'W

x G(°'(a,7;ii -t)G(°'(a' ,y;t1 - O G f ' ^ / I j t - t j J G C ' ^ ^ j t - t j ) .

Since the present discussion is focused on two-time quantities, we will em-
ploy the static nature of the interaction, instead of the form given by
Eq. (9.20). The FT of Eq. (15.8) yields the first-order contribution to the
pphh propagator in the energy formulation, written in various equivalent
forms

Gp1Xk(a,a';l3,l3';E)=GipOp)hh(a,a';E) {aa'\V\M') Gp°p\h(/3,/3';£)

= G(X{a,a';E)\Y,{aa'\V\1i) G^hh(-y,j';P,P';E), (15.9)
77'

where Eq. (15.7) can be used to verify the last equality. Equation (15.9) is
graphically illustrated in Fig. 15.2. It lends itself to an immediate exten-
sion, yielding a summation of an infinite set of diagrams, in analogy to the
procedure discussed in Sec. 13.2 for the polarization propagator.

(15.6)
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Fig. 15.2 Two equivalent representations of the first-order contribution to the pp prop-
agator, as given by Eq. (15.9). Pairs of parallel lines, without the accompanying crossed
term, refer to Gplj without the Kronecker deltas, as defined in Eq. (15.7).

The extension of Eq. (15.9) exhausts all contributions to Gpphh for two
particles in free space, which we denote by Gpp. While all contributions
are not included in the case of the medium, the equation remains critically
important on account of its nonperturbative character. In the present sec-
tion, we will consider the iteration of the interaction to all orders for free
particles represented by Gpp . Nevertheless, all results discussed here have
immediate application in the medium and can be generated by using the
corresponding Gpphh in the medium. For the case of two free particles both
|\t^) and 1$^) become the vacuum state |0), since no hole propagation is
possible, and the step functions for the particles are replaced by 1, yielding

GW(a,a';l3,l3';E) = [6a06a,p, - Sap,6a,p] j — — L - _ _ j . (15.10)

Only forward propagation occurs and the lack of holes implies that no self-
energy terms can appear in any order.

In higher order one continues to encounter only forward-going terms
which occur sequentially after each two-body interaction. This implies that
so-called ladder diagrams are generated, where the rungs of the ladder are
represented by the interaction. The complete sum of ladder diagrams can
be obtained by combining the lowest-order contribution of Eq. (15.10) (or
Eq. (15.6) for the case of the medium) and the first-order term given by
Eq. (15.9) where the last Gpp is replaced by the full sum itself as follows

Gpp{a,a';p,pl;E)=Gp
o
p\a,a';P,p'-E)

+ G$(a,a';E)±J2(aa'\VW) Gpp(in'; (J,(3';E). (15.11)
77'
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Fig. 15.3 Diagrammatic representation of the ladder equation for Gpp given by
Eq. (15.11).

Iterating the equation generates all possible higher-order diagrams that can
be obtained in perturbation theory for Gpp in the case of two free particles.
It is therefore equivalent to the Schrodinger equation. In the medium, one
still sums the same set of ladder diagrams, which form only a subset of
all possible contributions. Additional terms arise in the medium in the
form of self-energy insertions and more complicated ways in which the two
particles can interact, as discussed in Sec. 14.6 and Ch. 9. The sum of
ladder diagrams in the medium also deviates from the corresponding one in
free space, due to the possibility of hh propagation between the interactions
and the different sp spectrum that must be included. The solution becomes
more difficult when the full dressing of the sp propagators is included, as
in fully self-consistent formulations. This will be taken up in Ch. 20.

The diagrammatic version of Eq. (15.11) is shown in Fig. 15.3. The
labeling with the sp quantum numbers a and a' in the last term, identifies
a contribution of GPJ without Kronecker deltas, as denned in Eq. (15.7).
The factor of \ that appears in Eq. (15.11) has the following origin for
higher-order contributions. For each V a factor of | comes from using the
symmetrized version of the interaction. For each unperturbed propagator
one has two options: either one uses the version with two, or the one
with four quantum numbers. The terms with two quantum numbers are
generated by using the symmetry of the interaction and yield a factor of 2
for each of them. The first line of Eq. (15.9) therefore yields 1 in this case.
In nth order however, we find i "x2 n + 1 . The | in Eq. (15.11) automatically
generates the correct number of factors ^ in higher order.
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Fig. 15.4 Diagrammatic representation of the relation between Gpp and the correspond-
ing vertex function, yielding Eq. (15.12).

An equivalent summation is obtained by arranging the contributions to
the ladder equation for Gpp, according to Fig. 15.4,

Gpp(a,al;p,P';E)=G<$(a,a'-p,pl;E)

+ Gp
0J(a,a';E) (aa'\rpp(E)\P(3') Gp°J(P,/3';E), (15.12)

where the corresponding vertex function is given by

(aa'\rpp(E)\pp'} (15.13)

= {aa'\V\fip')+l-Ys(aa'\V\ri) G$(7,7';£) (TT'I TPP{E) \0/3').
77'

We can relate Tpp back to Gpp by noting that all the intermediate terms in
Fig. 15.4 can be resummed to Gpp, if an extra \ is included

(aa'\rpp(E)\/3f3') (15.14)

= (aa'\V W) + ^ £ < a a ' | V | 7 7 ' ) GPP(7,7';S,S';E) (55'\V\P0').
77' 66'

The pole structure of Gpp, to be discussed shortly, is therefore identical
to the one for Tpp. Such a feature was also employed in Sec. 14.6. Both
resummations, given in Eqs. (15.13) and (15.14), follow similar patterns,
already discussed in Ch. 6 for the sp case. The only difference occurs in
the numerical factors of | or ^ that occur in the present case. The sum
of ladder diagrams for the vertex function is shown in Fig. 15.5 for both
Eqs. (15.13) and (15.14).
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Fig. 15.5 Ladder equation for the vertex function Tvr, illustrating the equivalent results
contained in Eqs. (15.13) and (15.14).

15.1.1 Scattering of two particles in free space

As discussed in Ch. 6, the equation for the propagator, given by Eq. (15.11),
is suitable for studying bound states. Many practical applications involv-
ing continuum solutions, related to the two-body scattering process, can
be approached with the ladder equation for the vertex function, given by
Eq. (15.13). We will first consider the latter case for scattering in free space.
The natural choice is momentum or, equivalently, wave-vector space for the
sp states. As usual the total wave vector (momentum) is conserved by the
interaction and therefore also by the vertex function, which is normally re-
ferred to as the T-matrix in free space1. The conserved total wave vector
is given by

K = ka + ka< =kp + k0:, (15.15)

and we extract a factor SK,K>/V (V ->• volume), where K' = kp + kp*,
from the matrix elements of the bare interaction and the vertex function.
We define relative wave vectors, according to

k'=l-{kp-kp,) (15.16)

Transforming the summation over the relative wave vector in the resulting
equation by the corresponding integration, according to Eq. (5.6), we obtain

'We will use the Fpp notation for this quantity in the present chapter.
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the integral equation

{kmama'\Tpp(K,E)\k'mgm/3') = (kmama>\V \k'm$mp)

+ 2 E /72^3 (fem«m«'lykm7«V>

x G<p
oJ(K,q;E){qm^mY\rpp(K,E)\k'm0m0l), (15.17)

where the volume factor from the integration cancels with the extra volume
factor in the denominator in the second term. With the present choice of
variables, the noninteracting propagator in free space is given by

Gp°J(K,q;E) = ~ 1 — - , (15.18)
^ E-e{^K + q) - e(\K - q) +ir)

where e(k) = h2k2/2m represents the kinetic energy of a particle. No spin
(isospin) dependence needs to be included in Gpp , as in Ch. 13 for the
noninteracting polarization propagator. Spins (isospins) naturally require
explicit consideration in the matrix elements of the interaction and the
vertex function. Since E represents the total energy of the two particles,
one can isolate the available energy in the center of mass, denoted by Eo,
by writing

t, = — 1- h,0 — — 1 , (15.19)
4m 4m m

where &o is introduced, which identifies the magnitude of the wave vec-
tor that corresponds to Eo- Since the sum of the sp kinetic energies in
Eq. (15.18) is given by

fc2lf2 t2 2

£(iK + q) + e(iK-g)=-^- + ^ - 1 (15.20)

the denominator of Eq. (15.18) displays no dependence on the total wave
vector and consequently, the integral equation does not depend on it either,
as expected. The variable can therefore be dropped for two free particles.
This is not true for particles in the medium, as will be discussed in the next
section. It is helpful to make a partial wave decomposition of the scattering
equation, if a numerical solution in wave-vector space is contemplated. It
is also recommended if the interaction contains short-range repulsion and
has a finite range, as for nucleons or atom-atom potentials. One typically
proceeds to couple to good total spin (and isospin) and, for a tensor in-
teraction, to add the orbital angular momentum of the relative motion to
the total spin, to generate states with good total angular momentum. The
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relevant steps were given in Sec. 4.1 and can be applied to the present sit-
uation without further complications. The integral equation can then be
written as

(kt\ rJJT(k0) \k'() = {kl\ VJST \k't) (15.21)

+ ^ E / H <«l yJST I"'") T^z^- <*r\ ri"<*>) !«'> •

For an uncoupled channel, the diagonal (on-shell) matrix element of Tpp

at wave vector k0, is related to the phase shift. The relation is equivalent
to Eq. (6.70) for the sp case. This is hardly surprising, since Eq. (15.21)
is almost identical to Eq. (6.60), apart from angular momentum coupling.
Indeed, the analysis given in Sec. 6.4.1 can be repeated step by step for
an uncoupled channel. The only significant difference occurs in the use of
twice the kinetic energy in the denominator of the unperturbed propagator
in wave-vector space. The relation between the on-shell matrix element and
the phase shift therefore becomes

(k0e\sJST(k0)\k0£) = [I - 2« ( ^ ) <Mrp
J

p
ST(MIM] = e2UjS\

(15.22)
where an extra factor of 2 has appeared in the denominator of the density of
states as compared to the sp problem, given by Eq. (6.71). Equation (6.72)
continues to hold as well

JST_MWfWM
t&nd( -Re(kol\r}ST(k0)\k0l)-

 {15"23)

As noted in Ch. 6, it shows that a nonvanishing imaginary part of the
on-shell matrix element of rp p is necessary for a nonvanishing phase shift.

The numerical solution of Eq. (15.21) requires knowledge of the relevant
two-body matrix elements of the bare interaction, which can e.g. be ob-
tained by applying the results of Sec. 4.4, together with standard angular
momentum techniques (see App. B). The discretization of the integral in
Eq. (15.21) is straightforward and a matrix inversion suffices to calculate
the vertex function [Haftel and Tabakin (1970)]. We will mostly discuss
results for nucleons here as an example of a rather complicated two-body
interaction. Similarities with atom-atom interactions will be pointed out
along the way. The results for the phase shifts in the l So channel for the
potential, shown as the full line in Fig. 4.3, are given in Fig 15.6. They illus-
trate the attractive nature of the interaction at low energy, indicated by the
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Fig. 15.6 Phase shift in radians of the 1SQ nucleon-nucleon interaction as a function of
the on-shell wave vector ko.

positive phase shifts. At higher energy the attraction turns into repulsion
(negative phase shifts), demonstrating the increasing dominance of the re-
pulsive core. While the phase shifts were obtained numerically by working
in wave vector space, it is always illuminating to turn to coordinate space
and solve for the scattering wave function by integrating the Schrodinger
wave equation directly [see e.g. Eq. (12.67)]. The treatment of the repulsive
core by an all-order summation of ladder diagrams, has the expected effect
on the relative wave function of two particles, i.e. making it vanish inside
the core. In Fig. 15.7 the free wave function is compared with the solu-
tion of the wave equation at an energy corresponding to fco = 0.25 fm-1.
The interaction is also plotted in the figure (scaled by a factor 1/100), as
the thin dashed line, in order to visualize this feature. The enhancement
of the wave function in the domain, where the interaction is attractive, is
transparent in the figure.

The analysis of the asymptotic behavior of the scattering wave function
doesn't change appreciably in the case of coupled channels (see e.g. [Dick-
hoff et al. (1999)]). Instead of diagonal contributions in £ in Eq. (6.59),
nondiagonal terms are possible when a tensor interaction contributes, al-
though only when the total spin is 1. It leads to additional, nondiagonal,
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Fig. 15.7 Wave function in coordinate space for the 1 So interaction at an energy cor-
responding to ko = 0.25 fm"1. The solid line is the free wave function, given by
sin(fcor)/fcor. The correlated wave function is given by the long-dashed line and clearly
exhibits the suppression, at short distances, expected for the repulsive core. The latter
is indicated by the dashed line and divided by a factor 100.

5-matrix elements, which are therefore given by

(koi\s
JST(ko)\kon = \&i,v - 27ri (j^j <Mr^ S T (MM')] • (15.24)

The unitarity of the <S-matrix and the symmetry property of the rpp-matrix,
allow the diagonalization of S by an orthogonal real matrix A

(koe\SJST(ko)\kot')= J2 WAJ(k0)\a)e2<ST(a\AJ(k0)\l'), (15.25)
a=l,2

where 5J
a
ST are called the (real) eigenphase shifts. One may choose [Blatt

and Biedenharn (1952)]

«*»*> = (-~lw)' «"•>
where tJ is referred to as the mixing angle and the related mixing parameter
is given by

/ = sin2e7. (15.27)
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Fig. 15.8 Phase shifts in radians of the 3 SI - 3 JDI nucleon-nucleon interaction, as a func-
tion of the on-shell wave vector k(y. While substantial mixing occurs, it is customary to
continue to use the original designation of 3Si and 3£>i to identify the eigenphases.

Note that the three real parameters 5{ST, &fST, and eJ can be used to rep-
resent the 5-matrix2. Phase shifts and mixing parameters can also be con-
structed from the on-shell 7£-matrix elements [Haftel and Tabakin (1970)].
The 7?.-matrix corresponds to the solution of Eq. (15.21), when only the
real part of GPp is employed. While the 1So phase shift indicates that the
interaction is almost sufficiently attractive to support a bound state, it is
in the coupled 3Si-3Di channel that the sole two-nucleon bound state, the
deuteron, emerges. Its presence can be inferred from the eigenphase shifts
for this coupled channel, as shown in Fig. 15.8. Since at low energy the
scattering wave function is orthogonal to the bound state, its presence re-
quires the phase shift to start at n radians. In general, Levinson's theorem
states that the phase shift starts at nix for zero energy, if n bound states
are present [Gottfried (1994)].

It is instructive to compare the NN phase shifts, shown in Figs. 15.6
and 15.8, with those for 3He atoms, using the potential from [Aziz et al.
(1979)]. The latter phase shifts are given in Fig. 15.9. From Fig. 4.4 it is
clear that the interaction has a weak attraction and a huge repulsive core.
This is reflected in slightly attractive phase shifts at low energy, turning
over into a steep dive at larger energy, reflecting the strong repulsion. We

2 The relation of the eigenphase shifts and corresponding mixing parameter with the
so-called bar phase shifts can e.g. be found in [Brown and Jackson (1976)].
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Fig. 15.9 Phase shifts in radians of the S-wave 3He—3He interaction, as a function of
the on-shell wave vector fco.

will return to the effects of this repulsion on the phase shifts in the medium
in Sec. 15.2. A comparison of scattering results for nucleons in free space
and in the medium will be presented in Sec. 15.2 as well (see also Sec. 20.3).

15.1.2 Bound states of two particles

We now consider the calculation of bound states. A Lehmann represen-
tation corresponding to Eq. (15.1) can be obtained in the usual way. It
includes both bound states for the N ± 2 systems, as well as continuum
states [see Eq. (9.35) for the sp case] and is given by

Gpphh(a,a-J,P;E) = Y; _ _ p _ _ _

A J " E - E^2 + iv

^ E- ( ^ - E»->) - in

l-J v E - E^ - ir, ' (15'28)
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The continuum thresholds e^ and relative excitation energies are denoted
by £^+ 2 = E%+2 - E0

N and E^~2 = E? - E?+2 , respectively. Equation
(15.28) pertains to all possible situations. Suitable modifications may occur
for a particular system under consideration. In case of two free particles,
for example, there are naturally no N — 2 states and the reference state
corresponds to the vacuum. Two-particle bound states can be written as

\*Z=2) = \Kn), (15.29)

where K [see Eq. (15.15)] describes the motion of the center of mass and
n is used to label the intrinsic quantum numbers. The relation with the
amplitudes in the numerator of Eq. (15.28) for K — 0 then reads

(0| akmaa-kma, \K = 0 n) = (K = 0 k; mama> \K = 0 n)

= ipn(k;mama>), (15.30)

where k is the wave vector describing the relative motion, as in Eq. (15.16).
The possibility of one (or more) bound state(s) can be studied in the stan-
dard way, by turning Eq. (15.11) into an eigenvalue problem, using the
Lehmann representation (15.28). As usual, the (possible) bound state ap-
pears as a discrete pole at negative energy in Eq. (15.28), whereas the
noninteracting propagator in Eq. (15.18) only has poles (branch-cut) at
positive energy. Using the notation of Eq. (15.30), we find

h2k2 1 v-^ f d3q
ipn(k;mQma-) + - J2 / 7 ^ ? (kmamal\ V \qm1m^) %l>n{q; m7my,)

Tfl A J [Z7T]
m-tm1i

 v '

= En ipn(k;mama>), (15.31)

where En denotes the energy of the bound state and K = 0 is chosen.
Simple manipulations have been applied to generate the usual form of the
Schrodinger equation in wave-vector space. The rotational invariance of the
interaction makes it possible to write the Schrodinger equation in a basis of
good total angular momentum by coupling orbital angular momentum to
total spin for noncentral forces. Since this applies to nucleons, one can also
couple the states to good total isospin. The resulting eigenvalue equation
in the presence of a tensor force, therefore allows the coupling of different
orbital angular momenta, as in the scattering problem, and is given by

^iPn(k(£S)JT) + \ £ 1 ^ (k£\ VJST \qt') 1>n{q(l'S)JT)

= En MWS)JT). (15.32)
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Fig. 15.10 Wave functions components in fc-space multiplied by k for the 3Si-3£>i
deuteron bound state. The presence of the D-state component is due to the nuclear
tensor interaction. The high-momentum components of the wave function are associated
with the short-range repulsion of the potential.

The coupled 35i-3Z?i channel exhibits a bound state for two nucleons, the
deuteron, with a sizable D-state component. The tensor force is there-
fore crucial in generating the binding, as can be inferred by comparing the
central parts of the 1So and 35i interaction, shown in Fig. 4.3. Since the
J5o is clearly more attractive, but does not support a bound state, it is
the coupling to the {1 = 2) D~state by the tensor force that is responsi-
ble for the binding of the deuteron. The solution of Eq. (15.32) can be
obtained by discretizing the integral with a finite set of points and, subse-
quently, performing the diagonalization of the resulting matrix. Working
in wave-vector space has the added benefit that it allows for the treatment
of interactions that are nonlocal in coordinate space. The binding energy
for the deuteron is fitted to experiment for realistic interactions. The wave
functions for the 5 and D state components are shown in Fig. 15.10 for
the Reid soft-core interaction. The £>-state component of the normalized
wave function corresponds to about 6.5% for this interaction [Reid (1968)].
To illustrate the effect of the short-range repulsion on the wave function,
we include an illustration of these wave functions in coordinate space in
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Fig. 15.11 Wave-function components in r-space for the 3Si-3£>i deuteron bound state.

Fig. 15.11, by employing the following Fourier-Bessel transform

ipn{r(ZS)JT) = \ - dkk2 je(kr) ^n(k(£S)JT). (15.33)
V 7T Jo

While a comparison with a noninteracting wave function is not as useful
as for the scattering case, it is nevertheless clear that the repulsive core
suppresses the S-wave function at short distances. Proper treatment of
these short-range correlations requires an all-order procedure, like solving
the Schrodinger equation for two particles. Since the solution is equiva-
lent to summing the complete set of ladder diagrams, we conclude that
the same set will provide a minimum choice to deal with short-range cor-
relations in the medium. All nuclear systems and all quantum fluids have
basic interactions of this kind. Green's function or other methods based on
perturbation theory, must therefore include ladder diagrams, when dealing
with these systems.

15.2 Ladder diagrams and short-range correlations in the
medium

There are several perspectives to the summation of ladder diagrams in the
medium. As already mentioned in the previous section, their summation to
all orders for two free particles ensures a proper treatment of short-range
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correlations. This feature will be preserved in the medium, which makes
ladder summations essential for systems with short-range repulsive inter-
actions. Quantum liquids, neutron and nuclear matter, finite nuclei, all
require detailed consideration of these correlations. Even for electrons in
the electron gas it may be necessary to treat the Coulomb repulsion at short
distances accordingly. When such correlations are present, their influence
on the properties of the particles in the medium requires detailed consider-
ation. Indeed, the self-consistency formulation of Sec. 9.4 suggests that a
proper starting point in the medium is to approximate the vertex function
by the ladder sum. Self-consistency then requires the use of fully dressed
propagators. In the case of a low-density system, full dressing most likely
will not involve a substantial modification of the properties of the particles
from their free behavior, since the constituents of the system do not "meet"
each other frequently. They are therefore not expected to experience im-
portant medium effects, associated with the Pauli principle, or changes in
the location of their spectral strength. The propagation of dressed particles
in solving the ladder equation, at a density where this dressing is impor-
tant, will be presented in Ch. 20. The consequences of treating short-range
correlations for the sp propagator, including self-consistency, are illustrated
in Sec. 16.3.1.

In the present section we will focus on the solution of the ladder equa-
tion in the medium using mean-field sp propagators. It is possible to extend
the analysis for the low-density limit for bosons, given in Ch. 12, to the case
of fermions that interact by means of purely repulsive forces. This was first
done by [Galitskii (1958)] and a full discussion of the analysis can be found
in [Fetter and Walecka (1971)]. Since the fermion systems emphasized in
this text, typically also have attractive interactions, leading to self-bound
systems, we will forego the topic here. In addition, we will address the con-
sequences that simple medium effects, like the Pauli principle and changes
in sp energies, have on the scattering process. This is the other perspec-
tive, associated with summing ladder diagrams in an infinite system: for
energies above 2ep, it corresponds to the N + 2 continuum that can be cast
into an equivalent description in terms of pp scattering in the medium. For
energies below 2ep, hh propagation represents the scattering process of two
holes in the continuum of the N — 2 states.

The ladder equation in the medium for mean-field particles has the same
form as Eq. (15.17). The essential difference is contained in the noninteract-
ing propagator. Since we will concentrate on homogeneous infinite systems,
this propagator takes the form of Eqs. (15.6) and (15.7). Employing wave



Excited states in N ± 2 systems and in-medium scattering 415

vector quantum numbers, the in-medium form generalizes Eq. (15.18) for
free particles to

r(0) (K n p , _ g(|JC/2 + q| - fcjr) 8(\K/2 - q\ - kF)
^PPhh{",Q,*)- E_ e ( K / 2 + 9 ) _ e ( A y 2 _ g) + i7?

^ F - [ f r / 2 + g | )^( fc F - |A: /2-g | )
£ - e(JC/2 + g) - e(JT/2 - g) - ir, ' l j

The presence of the medium in this propagator is expressed in the appear-
ance of the step functions that either allow two particles to propagate when
both are above the Fermi wave vector, or two holes to propagate when their
wave vectors are smaller than kF- For future reference, it is helpful to write
Eq. (15.34) as a convolution of sp propagators

GfXh(K,q-,E)=iJ^GW(K/2 + q-,E/2 + E')G(°\K/2-q-,E/2-E').
(15.35)

This formulation yields Eq. (15.34), after employing Eq. (11.8) in the usual
contour integration. The propagator of Eq. (15.34) is sometimes referred
to as the Galitskii-Feynman propagator. In [Galitskii (1958)] the conse-
quences of the medium were studied by employing the propagator given in
Eq. (15.34). Equation (15.17) continues to hold, with the replacement of
Gpp by G Jhh. Also Figs. 15.3 - 15.5 are identical. The scattering equa-
tion in the medium therefore continues to generate the ladder diagrams.
The ladders now also contain terms that go backward in time (Feynman
diagrams), since hh propagation is included in Eq. (15.34).

The medium effect, due to the Pauli principle, introduces an important
dependence on the center-of-mass wave vector K. It can be illustrated by
considering Fig. 15.12. Part a) of the figure displays the situation when
K < 2h,F, which allows the two spheres that represent the step functions of
Eq. (15.34) to overlap. The region outside both spheres, corresponds to pp
propagation, whereas hh propagation can only occur when q is inside both
spheres. This region is bounded from below by the dashed line and from
above by the corresponding segment of the lower sphere. For center-of-mass
momenta above 2&F, the situation is illustrated in part b). There is now
no phase space for hh propagation. It is indeed impossible to remove two
particles from the Fermi sea, each having a wave vector less than kF, and
construct a total wave vector larger than 2kp • The phase space dependence
on the magnitude of K leads to an optimal situation when K -> 0. In that
case, the two spheres in part a) overlap completely and pp propagation is
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Fig. 15.12 Illustration of the contraints imposed by the pairs of step functions in
Eq. (15.34). The condition \q ± K/2\ > k,F corresponds to the area outside both the
upper and lower sphere. The condition \q ± K/2\ < kF only allows contributions that
must be inside both spheres. This area is bordered below by the dashed line in part a)
which illustrates the case when K < 2kp when these two spheres overlap. Part 6) is
appropriate for K > 2kp when there is no overlap and therefore no hh propagation is
possible.

represented by the phase space outside the common sphere and hh by the
phase space inside. This result takes on even more significance, when pos-
sible bound states are considered in the next section. Another consequence
of the medium, is the possibility that the sp spectrum e(q) deviates from
the kinetic energy appropriate for particles in the Fermi gas.
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15.2.1 Scattering of mean-field particles in the medium

We now illustrate the consequences of the presence of the medium on the
properties of the phase shifts. For this purpose, we assume that the sp
spectrum is still described by the kinetic energy (only appropriate for low
density), or contains an additional potential energy contribution. The latter
will be a monotonically increasing function of wave vector, appropriate for
nuclear systems. For simplicity, we consider the case when the center-of-
mass wave vector is zero. The resulting noninteracting propagator then
simplifies to

Gpphh(K - 0,q,E) - E _ 2£{q) + ^ - E_2e{q)_.v, (15-36)

requiring only the magnitude of q, denoted by q. To obtain the phase shifts
for particles propagating in the medium with mean-field sp energies, one
can follow the analysis of Sec. 6.4, although some steps require a numerical
treatment. A useful reference is [Bishop et al. (1974)], where the introduc-
tion of the phase shift for hh propagation was first discussed in considerable
detail. The sp energy e(q) can deviate from the simple kinetic energy spec-
trum. This may therefore yield a different relation between the energy E
and the on-shell wave vector ko than given in Eq. (15.19), resulting in

E = 2e(k0). (15.37)

Nevertheless, the uniqueness of ko, for a given energy, is still preserved.
Although one can no longer evaluate the noninteracting propagator in co-
ordinate space completely analytically from Eq. (6.63) (even for kinetic
energies), the separability of the propagator is maintained for the contri-
bution of the pole term, as in Eq. (6.66) (with possibly a different constant
prefactor). The remaining term vanishes asymptotically for r sufficiently
different from r', as discussed in one of the exercises of this chapter. As a
result, one preserves the integral equation for the wave function in a partial
wave basis, as in Eq. (6.68), for mean-field propagators. The only differ-
ence with free scattering, involves the use of the mean-field equivalent of
the noninteracting propagator in coordinate space in Eq. (6.69). As stated
above, this is due to the uniqueness of the on-shell wave vector at a given
energy, which guarantees that the noninteracting wave function is a plane
wave or spherical Bessel function (in a partial wave basis). One can there-
fore proceed with a similar asymptotic analysis as for free particles, yielding
a corresponding definition of the phase shifts, as in Eq. (15.22) in terms
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of the on-shell scattering matrix. Equation (15.23) also remains valid. For
coupled channels Eq. (15.24) holds, and eigenphase shifts are obtained by
diagonalizing the 5-matrix. The presence of a nonvanishing phase shift
continues to be linked to the nonvanishing of the imaginary part of the
noninteracting propagator. For mean-field particles, the domain therefore
corresponds to all energies above 2e(q = 0), which identifies the lowest
energy of two occupied states.

As for particles in free space, the presence of bound states has specific
consequences for the behavior of the phase shift at the corresponding thresh-
olds in the energy variable [Bishop et al. (1974)]. In free space, this thresh-
old corresponds to zero energy (in the center of mass) and the presence of
one bound state is reflected in the phase shift going to n when the scattering
energy goes to zero. The corresponding threshold in the medium is 2EF- If
the interaction is sufficiently attractive, the phase shift may approach TX on
both sides of 2ep, as will be illustrated shortly. This feature is intimately
related to the presence of a pairing solution or bound-pair states in Fermi
systems with attractive, effective interactions at the Fermi surface, as dis-
cussed in Sec. 15.3. The phase shift can also approach —TT when a bound
state below the hh continuum (i.e. below 2e(q = 0)) appears, due to a re-
pulsive interaction. This possibility is realized in liquid 3He at sufficiently
high density when propagating mean-field particles [Bishop et al. (1974);
Glyde and Hernadi (1983)]. Both situations (phase shifts going to TT or -TT)
will be illustrated here by employing modifications of the 1SQ interaction
of the Reid potential, as well as the actual Reid 1S0 and 3S1-

3D1 inter-
actions [Reid (1968)] in the medium. If the interaction is not sufficiently
attractive to yield pairing, the phase shift will be zero at 2ep on account
of Eq. (15.23) and the vanishing phase space at this energy, which makes
the imaginary part of the interaction F vanish.

The results, discussed here, involve the propagation of mean-field par-
ticles in nuclear matter at zero temperature, but are otherwise completely
general. The aim is to exhibit some characteristic changes that occur in the
medium for the phase shifts of I = 0 channels in the NN interaction with
respect to their behavior in free space. In Fig. 15.13 the phase shift for
the 1 So channel is shown as a function of the on-shell wave vector for vari-
ous densities, and compared with the result in free space (solid line). The
long-dashed, dashed, and dotted lines correspond to Fermi wave vectors of
0.8, 1.36, and 1.8 fm~ , respectively. For simplicity and ease of comparison
a sp spectrum of kinetic energy was assumed. The on-shell wave vector
was used as the plotting variable in Fig. 15.13, instead of the energy, since
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Fig. 15.13 Phase shift for the 1 So channel of the Reid potential at various densities, as
a function of the on-shell wave vector. Both for free particles (solid line) and mean-field
particles in the medium, corresponding to kp = 0.8 (long-dashed), 1.36 (dashed), and
1.8 fm"1 (dotted line), a kinetic energy spectrum was used.

it allows a direct comparison between free and mean-field particles at dif-
ferent densities. While the nuclear interaction in the ^ o channel is not
sufficiently attractive to generate a bound state in free space, it yields a
pairing solution in a wide range of densities (see e.g. [Chen et al. (1986)]).

The presence of a pairing solution can be inferred from the behavior of
the phase shifts. The properties of the associated bound-pair states will be
discussed in the next section. Suffice it to note here that the occurrence
of bound-pair states in the effective interaction, implies that the phase
shift at the corresponding energy threshold (in this case 2EF) will tend
to 7T [Bishop et al. (1974)]. This outcome is indeed exhibited for the
phase shifts corresponding to &F = 0.8 and 1.36 fm"1. In both cases, the
phase shift on either side of 2EF (or, as in Fig. 15.13, on either side of /CF)
approaches n. It is also clear from Fig. 15.13 that the phase shift tends
to 7T more abruptly for &F — 1-36 fm"1 than for 0.8 fm~ , while it no
longer does so for k,F — 1.8 fm"1. These features correspond closely to the
appearance and the strength of bound pair states. The latter acquire the
largest binding at k,F = 0.8 fm^1, almost no binding at 1.36 fm^1, and no
bound states exist at 1.8 fm"1, as discussed in Sec. 15.3. Indeed, the density
range for the appearance of bound-pair states, exactly corresponds to the
appearance of a phase shift of TT at &F • This observation is commensurate
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Fig. 15.14 Sensitivity of the ^ o phase shift in the medium to a gap in the sp spectrum
at the Fermi momentum for kp = 0.8 fm"1 (top panel) and the inclusion of a realistic
sp spectrum for kp = 1.36 fm - 1 (bottom panel). The solid line represents the phase
shift for free particles. The long-dashed line in the top panel employs the propagator
G Jhfl with kinetic energies, whereas the dashed line includes a gap in the spectrum at
kp. In the bottom panel, the dashed line again employs Eq. (15.34) with kinetic energies
at kp = 1.36 fm"1. The dotted line includes a realistic sp spectrum for this density.

with the notion that positive phase shifts in the medium near JZF (2£F)> and
therefore implying an attractive effective interaction, indicate the presence
of bound-pair states. The general behavior around k,F is then an indication
of the amount of correlation: strong attraction is indicated by a phase shift
that is already large and positive quite far away from ftp-

The sensitivity of the 1SQ phase shift to the sp spectrum, or a gap in
the sp spectrum at kp, is explored in Fig. 15.14. In the top panel, the
kinetic energy spectrum at RF — 0.8 fm-1 was modified by including a 7
MeV gap between sp states above and below the Fermi momentum. The
gap ensures that the eigenvalues of the bound-pair states fall inside the
corresponding 14 MeV gap in the two-particle spectrum (see next section)
and are therefore real. When a pure kinetic energy spectrum (without
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gap) is used, these eigenvalues acquire complex values, indicating a pairing
instability which is quite similar in nature to the RPA instability, discussed
in Chs. 13 and 14. The dashed line in the top panel refers to the kinetic
energy spectrum and the short-dashed line includes the gap in the spectrum.
In order to understand these results, it is important to remember that the
ladder equation, including both pp and hh propagation, is similar to an
RPA summation. While the phase shift in the top panel of Fig. 15.14 still
tends to n at RF, when the gap in the sp spectrum is introduced, it is
clear that a reduction of the RPA-like collectivity occurs on account of the
introduction of a gap between particle and hole states, resulting in less
attractive phase shifts around HF- A similar reduction of the attraction,
exhibited by the phase shift, is observed in the lower panel of Fig. 15.14,
corresponding to kp = 1.36 fm"1, when a realistic sp potential energy
taken from [Vonderfecht et al. (1993)], is added to the kinetic energy. The
dashed line in the bottom panel of Fig. 15.14 corresponds to the kinetic
energy spectrum, while the dotted line includes the sp potential energy.
Also in this case the average distance between particle and hole energies is
enlarged by the sp potential energy, which reduces the RPA-like collectivity
in the ladder equation.

Another illustration of the connection between the behavior of the
phase shift near kp and bound-pair states, is provided in the top panel
of Fig. 15.15. The panel demonstrates the behavior of the phase shifts for
the same set of densities as in Fig. 15.13, but for a modified version of
the Reid ^ o interaction. By multiplying the intermediate-range attraction
of this interaction with 3 Yukawa terms by a factor 1.1, one generates a
bound state in free space, reflected by the phase shift going to TT at zero
momentum in the top panel of Fig. 15.15 (solid line). The other three
curves correspond to the same set of Fermi wave vectors as in Fig. 15.13
(again using a kinetic energy sp spectrum in the medium). Comparing the
phase shifts for the two interactions at the same density, we observe, as
expected, a substantially more positive phase shift for the more attractive
interaction. For the highest Fermi momentum (k,F = 1.8 fm~ ), the more
attractive interaction now has a phase shift of TT at kp, unlike the actual
Reid 1So interaction (shown in Fig. 15.13), demonstrating that the range
of densities where bound-pair states occur, is enlarged.

It is also instructive to illustrate the condition under which the phase
shift from the Galitskii-Feynman integral equation tends to — ir. In [Bishop
et al. (1974); Glyde and Hernadi (1983)] it was shown that this occurs
when a hh bound state exists below the hh continuum, which corresponds
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Fig. 15.15 Phase shifts obtained for modified versions of the Reid 1So interaction. In
the top panel the intermediate range attraction is increased by 10%. Phase shifts for the
same densities as in Fig. 15.13 illustrate that the modified interaction yields a bound
state for free particles, which is illustrated by the corresponding phase shift going to n
at zero momentum (solid line). For the highest density (kp = 1.8 fm"1), the phase shift
at kp tends to TT, in contrast to the result shown in Fig. 15.13. In the bottom panel,
the shortest-range Yukawa of the Reid ^ o interaction is multiplied by a factor of 10 to
simulate an atom-atom like interaction. Results are shown for the same set of densities
as in the top panel.

to higher excitation energies than can be obtained by just removing two
mean-field particles. Such a spectrum is generated by propagating mean-
field 3He atoms in the medium, interacting by means of a realistic atom-
atom interaction (see Fig. 15.9). This type of interaction can be simulated
by increasing the strength of the short-range repulsion of the Reid 1S0

channel by a factor of ten. The phase shifts for the same set of densities,
are shown in the bottom panel of Fig. 15.15. The phase shift for free
particles now always indicates a repulsive effective interaction (negative
phase shift) and is quite similar to Fig. 15.9. For HF = 0.8 fm"1, the phase
space of the hh continuum is not yet large enough to yield a bound state,
whereas for UF = 1-36 and 1.8 fm"1, it is, yielding a phase shift of — IT
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at the corresponding energy threshold at zero momentum. The latter is
associated with the highest two-hole excitation energy that the mean-field
picture allows.

While it is numerically straightforward to generate the results obtained
in this section, the interpretation, given above, requires a better insight
into the appearance of bound-pair states. The following section covers this
topic.

15.3 Cooper problem and pairing instability

The discussion in this section requires a reminder of the appearance of
bound states for the case of two free particles. To this end, we return to
Eq. (15.31), which can also be written as

V»n(fc;mamQ-) = (15.38)

E -H2k2/m 2 ^ jj^^km^m^\V\<imirni')'4>n{q-,rn1mll).
myTn^i

For two electrons or two 3He atoms with spin | , the requirement of antisym-
metry, discussed in Sec. 5.1, incorporates antisymmetry for spins coupled
to total spin S, when the orbital angular momentum £, associated with the
relative motion, is such that £ + S is even. If the interaction is sufficiently
attractive for £ = 0, this implies that the spins must point in opposite di-
rections, so that the total spin 5 = 0. For £ = 1 the total spin must be 1 to
obey the Pauli principle. Writing the eigenvalue equation in the basis with
good total spin and orbital angular momentum, we find

*"(*;lS) = En - kym \ / § £ <*' ̂  ^ ̂  ^ <15-39>
It is helpful to visualize the appearance of a bound state by considering

Fig. 15.16. The continuum spectrum in the figure corresponds to the ener-
gies, associated with the propagation of noninteracting particles, and this
kinetic energy spectrum therefore starts a E = 0. When a sufficiently at-
tractive interaction is involved, a bound state emerges below the continuum
at negative energy.

For two particles, interacting in the medium, we first consider the case
when the two particles are added on top of the Fermi sea. If the total wave
vector of these particles is zero, the most favorable situation for bound
states as the phase space argument from the previous section shows, the
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0
Energy (arbitrary units)

Fig. 15.16 Illustration of the spectrum of the unperturbed problem for free particles,
indicated by the thick line starting at zero energy, and the possible location of a bound
state at negative energy.

noninteracting propagator is given by

which excludes the propagation of two holes [compare Eq. (15.36)]. The
equation for propagating two particles on top of the Fermi sea is given by
Eq. (15.11) in the appropriate basis, with G Jhh replaced by Eq. (15.40).

By considering the spectrum of GpJ, one realizes that it is similar in nature
to the free case, illustrated in Fig. 15.16, with the threshold of the contin-
uum now given by 2ep. The situation is illustrated in Fig. 15.17. The
corresponding eigenvalue problem is obtained in the usual way and yields

*C(MS> = | N S ) \fj$W>to*ctr,tS), (15.41)
where the subscript C has been used to identify that this problem was first
considered by [Cooper (1956)] in the context of understanding supercon-

bound state
I
l
i pp continuum

2eF

Energy (arbitrary units)

Fig. 15.17 Illustration of the spectrum of the unperturbed problem for two particles
on top of the Fermi sea, indicated by the thick line starting at 2ep, and the possible
location of a bound state below the continuum.

(15.40)
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ductivity. We use the notation ipc for the pair addition amplitude, since it
has obvious similarity to the wave function of a bound state of two parti-
cles, given by Eq. (15.32). For a separable interaction, it is easy to show
that the eigenvalue problem always has a solution for a so-called bound-pair
state, when this interaction is attractive. We select a separable interaction,
similar to the schematic interaction used in Ch. 13, but now of the form

(k\Ves\q)=\twe(k)w}(q), (15.42)

where 5 is implied by £, as discussed above. Upon substitution in
Eq. (15.41) we obtain

where

M=l^J^vUMc(q-JS). (15.44)

Substituting Eq. (15.43) back in Eq. (15.41), then yields

1 _ 1 [dq q2 6(q - kF)\we(q)\2

\ t - 2j (2n)3 Ec - 2e{q) ' ^Ai>)

The right-hand side of the eigenvalue equation is a negative definite quantity
for Ec < 2ep. As a function of Ec, it will approach zero for Ec => — oo.
Conversely, when Ec approaches the boundary of the pp continuum the
right-hand side diverges to —oo. It means that for this type of separable
interaction, there is always a solution to Eq (15.45) for any Â  < 0. When
the interaction is repulsive (Xe > 0), there is no solution to Eq. (15.45)
for Ec < 2sF- These arguments were also presented for excited states in
finite systems in Ch 13. While in a finite system the location of the lowest
excited state can still be above the ground state, in the corresponding
Tamm-Dancoff approximation, in an infinite system there is an immediate
peculiarity associated with the location of the energy Ec of the bound-pair
state. Indeed, it should be realized that it resides in the continuum of hh
states that is reached by removing two particles from the Fermi sea!

This observation immediately points out a difficulty with the inclusion
of hh propagation. We first note that its inclusion in the eigenvalue equation
is, strictly speaking, not allowed without first checking that the propagator
equation actually leads to such a result. Postponing this examination, one

(15.43)



426 Many-body theory exposed!

hh continuum i pp continuum

Energy (arbitrary units)

Fig. 15.18 Illustration of the spectrum of the unperturbed propagator, involving both
pp and hh propagation. The pp continuum is indicated by the thick line starting at 2EF
and the hh continuum is identified by the thick dashed line, ending there. The conclusion
is therefore inevitable that there is no room for bound-pair states, associated with an
attractive interaction. The boundary is indicated by the dotted line.

may be tempted to replace Eq. (15.41) by

when hh propagation is included in the unperturbed propagator GpJhh.
Considering the spectrum of the unperturbed propagator to identify the
location of possible bound-pair states, one obtains the result illustrated in
Fig. 15.18. Clearly, a bound-pair state, originating from the pp continuum,
will not find a location below 2EF, because the hh continuum occupies it,
and vice versa. It is thus not possible to have discrete (real) eigenvalues,
when the interaction is attractive. In the case of a repulsive interaction,
the hh continuum is bounded on the left by the value 2e(0), and for a large
enough hh phase space, it is possible to find discrete hh bound states below
this continuum. This was mentioned in the previous section, where the
behavior of hh scattering phase shifts was discussed for an interaction with
very strong short-range repulsion (see Fig. 15.15). We will see below that
for an attractive interaction the eigenvalue problem of Eq. (15.46), yields a
pair of conjugate complex eigenvalues, unless special precautions are taken.
This signals a similar instability as was discussed in the context of excited
states in the RPA approach and it is common to refer to the present one
as a "pairing instability". Clearly, pairs of particles (and holes) are trying
to take advantage of their mutually attractive interaction, but run into an
instability, when the problem is posed in the form of Eq. (15.46). The
instability is quite serious, since any time dependence involving a pair of
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complex conjugated eigenvalues, inevitably leads to one exploding solution,
as a function of time.

Bound-pair states

Returning to the original propagator equation, we note that it is actually
not possible to obtain Eq. (15.46) in the usual way. The obstacle has its
origin in the spectrum of the unperturbed propagator, which represents a
continuum from 2e(0) to 2ep for hh states, and from 2ep to oo for pp states.
This implies that there is no room to place a bound state below the pp con-
tinuum, or above the hh continuum, since these energies already correspond
to unperturbed states of the other kind. The situation is different if a gap
in the sp spectrum occurs at k = kp. This gap will emerge from a more
complete description of pairing developed in Ch. 22. We will now employ
the freedom of choosing an auxiliary potential U, which includes such a gap,
to illustrate some of its consequences. A simple constant energy shift A for
all k below kp, suffices to introduce a gap in the sp spectrum at kp. In
principle, this auxiliary potential can then be subtracted when the Dyson
equation is considered, which takes the effect of bound-pair states into ac-
count. Here, we will employ the gap only to illustrate the appearance of
bound-pair states, when the ladder equation is studied. The more in-depth
study of pairing, leading to the famous gap, and presented in Ch. 22, also
generates an important deviation from the mean-field propagator employed
in the present discussion. With a gap present in the sp spectrum, a corre-
sponding gap of 2A occurs between the hh and the pp continuum. It allows
a legitimate derivation of the eigenvalue equation from the ladder equation
for eigenvalues inside this interval. With this observation, Eq. (15.46) now
becomes a valid result. Repeating the analysis for a separable interaction,
given by Eq. (15.42), we obtain for the pp and hh transition amplitudes

and

p̂(fc;/5) = V g f - * ^ ) , (15.48)
EBp - 2e{k)

respectively. The label BP has been introduced to represent "bound pair."
Upon substituting these results in Eq. (15.46), one obtains after a slight

(15.47)
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Fig. 15.19 Illustration of Eq. (15.49). The vertical dotted lines indicate the boundaries
of the hh and pp continuum. The solid line shows the dependence of the right side of
Eq. (15.49) on EBP between these boundaries. Finally, the dashed line represents l[\t
for a properly chosen negative value of this quantity. Bound-pair solutions are obtained
where the dashed line intersects the solid line, as indicated by the arrows.

rearrangement

1 = 1 fdq g2 % - kF)K(g)|2 1 fdq q2 9(kF - q)\We(q)\2

Xe 2j(2nY EBP-2e(q) 2 J (2TT)3 EBp - 2e(q) ' (^Ay)

The right side of this equation is plotted as a function of the parameter EBP
as the solid line in Fig. 15.19. In the figure, the dotted lines identify the
boundaries of the hh and pp continuum, given by 2e^ and 2t\. The location
of the bound-pair states is therefore confined to the domain between these
two regions. Both terms on the right side of Eq. (15.49) yield negative
contributions for energies EBP between the hh and pp continuum. This
implies that actual solutions will only be possible when the left side given
by 1/Â  is also negative. For a particular choice of 1/Xe, given by the
horizontal dashed line, these solutions correspond to the intersection points
with the solid line indicated by the arrows. From the figure it is also clear
that such bound states will occur even for very small absolute values of
Xe, yielding solutions very close the hh and pp continuum. Increasing the
magnitude of Xe from the value in the figure will ultimately lead to equal
eigenvalues for the hh and pp bound-pair states. Any further increase, leads
again to the previously identified pairing instability, which generates two
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complex conjugate eigenvalues. An additional increase of the gap in the
spectrum, can be used to avoid the instability and so on. This leads to the
important insight that obtaining real binding energies for the bound-pair
states, is strongly correlated with the size of gap in the sp spectrum at the
Fermi surface. It should be clear that one can always make the gap large
enough, so that these bound states have real energies.

Bound-pair states in nuclear matter

An illustration of these ideas is provided by considering the attraction in the
nucleon-nucleon interaction in nuclear matter. As discussed in Sec. 15.1,
the interaction in free space is sufficiently attractive in the coupled 35i-
3.Di channel to sustain one bound state. Solutions to the corresponding
scattering problem in the medium, discussed in Sec. 15.2, indicate that the
attraction is also quite substantial in the medium. The relevant eigenvalue
problem is given by

iPBP{k; {iS)JT) = (15.50)

where a gap in the sp spectrum must be assumed, in order to derive it
from the propagator equation, as discussed above. Equation (15.50) con-
tains the necessary coupling of orbital angular momentum and spin, to
total angular momentum J and the total isospin T. When the eigenvalue
problem is studied as a function of density [Vonderfecht et al. (1991b)],
one realizes that the required gap in the sp spectrum to avoid the pairing
instability, is a sensitive function of the density. The minimum gap for
the 3Si-3Di channel, but also for the 1So channel, is plotted as a function
of fcf in Fig. 15.20. The limit of zero density in the deuteron channel,
yields half the binding energy of the deuteron. This can be anticipated,
since at very small, but nonzero, density, one expects to recover the bind-
ing energy of the deuteron for the pp bound-pair state. A gap in the sp
spectrum, corresponding to one half this binding energy, is then required
to make room for the bound-pair state. Fig. 15.20 also shows that a sp
gap is required all the way to about UF — 2.8 fm"1 in this channel. For
the 1 SQ channel, which does not support a bound state in free space, it
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Fig. 15.20 Minimum gap between sp states at kp necessary to avoid a pairing instability
in the ladder equation as a function of kp. For the 3Si-3£>i case the limit of zero density
yields half the binding energy of the deuteron.

appears that the interaction in the medium, is sufficiently attractive to
generate a pairing instability from UF = 0.1 to about 1.5 im~x. The in-
stability is clearly overshadowed by the much stronger one in the deuteron
channel. In the latter channel, the largest gap required to avoid the pair-
ing instability, occurs around k,F = 1.2 fm"1. The required gap in the sp
spectrum at this density is a little larger than 15 MeV. The presence of
bound-pair states clearly signals an attractive interaction near the Fermi
surface. It is therefore no coincidence that the density range where these
bound states occur for the ^ n channel, coincides with estimates of the den-
sity regime where pairing is expected in neutron matter [Chen et al. (1986);
Baldo et al. (1990a)].

Keeping the gap fixed for all densities at the largest value required for
the 3Si-3Di channel (see Fig. 15.20), it is possible to illustrate the behavior
of the eigenvalues obtained by Eq. (15.50) as a function of kp- The result
is displayed in Fig. 15.21. The eigenvalue associated with the pp spectrum
(solid line) starts at the binding of the deuteron in the limit of zero density.
The hh eigenvalue (dotted line) does not appear until a certain minimum
density has been reached. As observed earlier, the pairing instability is
just avoided for the density corresponding to fcjr = 1.2 fm"1 where the
largest binding occurs for both pp and hh bound states. For comparison,
the solution to the eigenvalue problem when hh propagation is excluded, is
also contained in the figure as the dashed line. The latter has the same limit
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Fig. 15.21 Assuming the maximum gap between sp states found in Fig. 15.20 for 3 5i-
3£>i coupled channel for all densities, the eigenvalues of Eq. (15.50) are plotted as a
function of kp using solid (pp) and dotted (hh) lines. Solving the eigenvalue equation
without hh propagation (Cooper problem) yields the dashed curve. The limit of zero
density yields the binding energy of the deuteron in both cases.

at zero density, where hh propagation disappears. At higher density the
difference between the pphh and pp solution, corresponding to the Cooper
eigenvalue problem, becomes very large. This feature signals the important
coherence, or collectivity, that is associated with an RPA-like procedure, as
discussed in Chs. 13 and 14.

Similar, but less extreme, results are obtained for the 1S0 chan-
nel as shown in Fig. 15.22. In both cases, the amount of binding
found in these simple bound-pair calculations is similar in magnitude
to gaps in the sp spectrum that are found in a more advanced treat-
ment of pairing correlations [Chen et al. (1986); Baldo et al. (1990a);
Baldo et al. (1992)] following the Bardeen-Cooper-Schrieffer insights dis-
cussed in Ch. 22. To understand qualitatively why these interactions appear
more attractive in the medium than in free space, it should be pointed out
that the lowest unperturbed pp and hh states in the medium correspond to
having sp states with k = &F, whereas k = 0 for free particles. This leads
to a different sampling of the interaction in the medium, accounting for the
observed differences. This feature is particularly strong for the deuteron
channel, which receives important contributions from nondiagonal terms,
related to the tensor force, which couples £ — 0 and 2. The coupling is
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Fig. 15.22 Similar results as in Fig. 15.21 are shown for the 1So case. Solving the
eigenvalue equation without hh propagation (Cooper problem) yields the dashed curve.

increased in the medium, since finite values of k are now emphasized at
low energy, whereas the k = 0 state in free space, has vanishing matrix
elements to other states through the tensor force.

The present discussion shows that the propagation of pp and hh states
with mean-field properties, leads to the possibility of bound-pair states for
an attractive interaction, which can be accomodated by opening a gap in the
sp spectrum. The properties of the phase shifts near 2CF for an attractive
interaction, also reveal the existence of a pairing instability or bound-pair
states by generating a limiting value of IT. For a repulsive interaction, there
is the possibity to generate a bound-pair state below the lowest energy of
the hh spectrum, which corresponds to 2e(0). As discussed in Sec. 15.2,
the presence of such a bound state leads to the behavior of the phase shift
going to — 7T, when the continuum boundary is reached.

15.4 Exercises

(1) Check the appearance of the factors of § in Eqs. (15.11) and (15.13),
by analyzing Wick's theorem in second and third order.

(2) Calculate the phase shifts of the ^ o NN interaction, given in Eq. (4.53),
by applying the Numerov method in coordinate space for the range of
energies, illustrated in Fig. 15.6.

(3) Obtain the same phase shifts, as in the previous problem, by employing
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a matrix inversion technique [Haftel and Tabakin (1970)] in wave-vector
space for the 11- or T-matrix (Tpp).

(4) Adjust the intermediate range attraction of the interaction in
Eq. (4.53), to obtain a bound state at -2 MeV.

(5) Study the center-of-mass wave vector dependence of the phase shifts
of the interaction in Eq. (4.53) at kp = 1-36 fm""1, by employing the
propagator in Eq. (15.34) with kinetic sp energies. Perform an angular
average of the propagator to justify the use of a partial wave basis.
Compare to the case with K = 0.

(6) Calculate the phase shifts for the potential of [Aziz et al. (1979)] in the
medium (and free space, illustrated in Fig. 15.9).

(7) Analyze the eigenvalue problem of Eq. (15.45) numerically, by making
a suitable choice of the function we.





Chapter 16

Dynamical treatment of the
self-energy in infinite systems

The second-order self-energy contribution was studied in Ch. 11. The con-
sequences of including this dynamic term in the solution of the Dyson equa-
tion were profound, leading to a fragmented strength distribution in the sp
propagator. This is true both in finite and infinite systems. The self-
consistent inclusion of the second-order term already yields quite a good
description of the properties of atoms. For other systems higher-order terms
must be included and a second-order approach can only serve to illustrate
the possibilities of treating a dynamical (energy-dependent) self-energy. In
this chapter we will review the consequences of higher-order effects on the
sp properties. Systems with prominent short-range correlations, like nu-
clei, neutron and nuclear matter, and quantum liquids, require the inclu-
sion of all ladder diagrams in the vertex function. The resulting effective
interaction is well-behaved, allowing a meaningful calculation of the self-
energy. When special coherence is associated with certain excited states
of the systems, it is necessary to include their influence on the properties
the self-energy. The simplest case involves the RPA treatment of excited
states.

In this chapter we emphasize the sp propagator in an infinite system. We
begin in Sec. 16.1 with a brief preparation concerning the use of diagrams.
In Sec. 16.2.1 we study the spectral functions of the electron gas with the
inclusion of RPA correlations. We have seen in Ch. 14 that they lead to a
prominent collective state, the plasmon, at small values of q1. The plasmon
contribution to the self-energy is indeed dominant and largely determines
the properties of the particles in the electron gas, as discussed in Sec. 16.2.1.
A fully self-consistent treatment of these ring (or RPA) diagrams in the
self-energy has recently become available. Some of the consequences of

1We will use wave vectors in this chapter, so that Q = hq, etc.
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a self-consistent approach will be discussed in Sec. 16.2.2. We will also
pay attention to the energy per particle of the system, comparing different
approximations in Sec. 16.2.3. Since a self-consistent treatment of ring
diagrams has both beneficial as well as detrimental consequences, when
compared with data, some issues that remain unresolved, will be pointed
out.

An example of the inclusion of ladder diagrams in the self-energy is
presented in Sec. 16.3. Nuclear matter will be studied with the apparatus,
developed in Ch. 15, for dealing with short-range correlations. We will start
with the calculation of the self-energy, when ladder diagrams are summed
in Sec. 16.3.1. Spectral functions based on the use of a pphh propaga-
tor with mean-field particles and holes are presented in Sec. 16.3.2. The
self-energy and corresponding spectral functions exhibit many illustrative
examples of the effects of short-range correlations on the properties of nu-
cleons in the medium. The pairing instabilities that are encountered, when
mean-field nucleons are employed, make a self-consistent treatment all the
more relevant, as discussed in Sec. 16.3.3. The related topic of scattering
involving dressed particles in the medium is postponed to Ch. 20. We close
the chapter with a discussion of the saturation problem of nuclear matter
in Sec. 16.3.4.

16.1 Diagram rules in uniform systems

The diagram rules, introduced in Chs. 8 and 9, can be used to write down
expressions for the propagator and self-energy in the case of a homogeneous
infinite system. Examples were worked out in Chs. 10 and 11, for example.
Simplifications arise in uniform systems on account of momentum conserva-
tion, which translates into a sp propagator that is diagonal in this variable.
The propagator lines can then be labeled by the momentum (or wave vec-
tor) , making sure that momentum flowing in and out of an interaction is
equal. A similar result emerged for the energy variables in the diagrams. It
allows the removal of a factor, which contains the corresponding Kronecker
5 divided by the volume V, contained in each two-body matrix element.
In nth order in the interaction V, we find n independent integrations over
wave vectors. The associated n volume factors exactly cancel those from
the interaction terms. In addition to being diagonal in the spin (isospin)
projection, the sp propagator will not depend on this quantum number,
when the ground state is spin (isospin) saturated. We can therefore label
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Fig. 16.1 Labels for the first-order Hartree-Fock diagram in an infinite homogeneous
system in the energy formulation.

the sp propagators with wave vectors, while the beginning and end point
should be marked by the same spin (isospin) quantum number. In lowest
order, it leads to the labeling in Fig. 16.1. The resulting expression for this
diagram is given by

Gf(k;E) = G<V(k;E)

x j - i - Y^ -7^-^(kmak'Tnp\V\kmak'm0)
mamp •' v /

x / ==^G^(k';E')} Gl°\k;E). (16.1)
Jet 27r J

An additional summation over the external spin (isospin) quantum numbers
has been included, it explicitly uses the fact that the propagator does not
depend on this quantity. To compensate for the summation over equal
terms, the expression is divided by the degeneracy factor v. The wave
vectors in the bra and ket of the two-body interaction refer to the two in
or outgoing lines, while ensuring that the total wave vector is conserved.

Higher-order self-energy diagrams in infinite systems can also be trans-
formed, accordingly. In second order, the labeling given in Fig. 16.2 applies.
The corresponding expression is given by

x (kmak' - q/2mfj\ V \k - qm^k' + q/2ms)

x G<°> (*' + q/2; Ex + E2)G^ (k1 - q/2; E2)G^ (k - q; E - Erf

x (k-qm-yk'+ q/2m5\V\kmak'-q/2mp) . (16.2)



438 Many-body theory exposed!

Fig. 16.2 Diagram SE2i for the self-energy in second order for an infinite homogeneous
system.

We emphasize that the labeling of the internal wave vectors can be chosen
to simplify the calculation. The complete self-energy, including the exact
vertex function of Eq. (9.34), follows a similar pattern, yielding

Z(k;E) = -U(k) (16.3)
1 f rl3]?' r HF'

-i- X! ~^{krnak'rn0\V\kmak'rn0) ?±-G(k';E')
m a m p • ' * • • ' JC-\

_.2 i rdEi rdEz r A f d3k' 1 ^
% 2 2n J 2ir J (2TT)3 J (2TT)3 V ^

x (kmak' - q/2mp\V \k - qm7k' + q/2ms)

x G{k-q;E- E{)G{k' + q/2; Ex + E2)G{k' - q/2; E2)

x (k - qm^k' + q/2ms\T(E,E1,E2)\kmak' - q/2m0).

Several approximations to the self-energy will be discussed in the following
sections. For each of these, the Dyson equation can be solved. For a uniform
system, it has the simple form, given by

G(k; E) = G(o) (k; E) + C(o) (Jfc; E)X(k; E)G(k; E)

E-e(k)-ReX(k;E)+iIm'£(k;E) .1C A.
= T. K, (lo.4)

(E - e(jfc) - Re E(fc; E)f + (Im E(fc; E)f
where only the magnitude of fc was kept, since the propagator does not de-
pend on the direction of the vector. The explicit form of the noninteracting
propagator,

G(o) (k. E) - OJk-kF) 6{kF-k)
G {k'h>- E-e(k) + ir, + E-e{k)-ir,' ( }
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is used to generate the result of Eq. (16.4), together with

h2k2
e(k) = — + U(k). (16.6)

The inclusion of U is of course optional and the results do not depend on
the choice of U, when a fully self-consistent calculation is undertaken.

The spectral functions are proportional to the imaginary part of the
propagator according to Eq. (11.89), [see also Eqs. (7.11) and (7.12)] and
are given by

SP{k;E) = =± I m S f e f -2 (16.7)
K (E-e(k)-ReS(k;E)f + (ImZ(k;E))2

for energies above ep, and by

Sh(k;E)=1- Im^f s (16.8)
7T (E - e(jfc) - Re E(jfc; E)f + (Im E(Jfe; E)f

for energies below ep. The connection between the sp propagator and the
spectral functions can also be written in the form of a dispersion relation

By taking the imaginary part, the orginal relation between the spectral
functions and the imaginary part of G is recovered [see Eq. (11.89)]. The
real part of G therefore has a similar connection to its imaginary part as
the self-energy [see Eq. (11.96)].

The energy per particle can be calculated from the hole spectral func-
tion. The result was first obtained by [Galitskii and Migdal (1958)]. It can
be generated from Eq. (7.26) by using the simplifications of the uniform
system

where p is the density related to the Fermi wave vector by

' = & • ( 1 6 1 1 )

It is also possible to relate the density to the occupation number by

v f00
P=^2J dkk2n(k), (16.12)

(16.9)

(16.10)

(16.11)
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where

n(k)= f "dE Sh(k;E), (16.13)
J-oo

is the occupation number. We will see in Ch. 21 that a self-consistent prop-
agator, even when it corresponds to an approximation, guarantees particle
number conservation so that Eqs. (16.11) and (16.12) should be identical.
One may also separately study the kinetic energy per particle

- = AT \ dkk2 —n(fc). (16.14)
N 2n2pJ0 2m w y '

The potential energy can then be calculated from the difference between
Eqs. (16.10) and (16.14). For normal Fermi systems at T = 0 the pressure
P can be calculated directly from the density derivative of the energy per
particle, or alternatively, on the basis of the Fermi energy ep = dE/dN:

P = P
2^P- = p[eF-(E/N)}. (16.15)

The equality follows directly from the density derivative of E/N — E/(pV),
and should hold in thermodynamically consistent many-body theories. It
implies in particular that at equilibrium density (corresponding to a min-
imum in E/N, so at zero pressure), the Fermi energy should equal the
binding energy per particle, a relation which is known as the Hugenholtz-
van Hove theorem [Hugenholtz and van Hove (1958)].

16.2 Self-energy in the electron gas

16.2.1 Electron self-energy in the G^W^ approximation

The discussion of the second-order self-energy contribution in an infinite
system, given in Sec. 11.3.1, does not apply directly to the case of the
Coulomb interaction. This can be anticipated by considering the Coulomb
interaction in wave-vector space, as in Eq. (14.40). In particular the direct
contribution with the q~2 term, leads to a divergence, when included in
the second-order self-energy. The direct matrix element of the Coulomb
interaction in Eq. (16.2) is given by

{kmak' - qmp\ V \k - qm1k'ms)D =>• 5marny8mpmsV{q), (16.16)
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Fig. 16.3 Higher-order ring diagrams contributing to the self-energy,

where

V(q) = ~ ^ , (16.17)

using the result of Eq. (5.22). Performing the integral over E2 as in
Eq. (16.2), one can identify, after also integrating over fc', the noninteract-
ing polarization propagator U^(q;E\). Performing the spin summations,
we find2

V$(k;E) = 2ijd^J^v'MGVHk-q-.E-WUWtoEk), (16.18)

where II^0) corresponds to Eq. (14.22). It is now clear that the integration
over q leads to an infrared divergence, due to the presence of the </~4

term, while taking into account the behavior of II^0', discussed in Sec. 14.2.
The worrisome conclusion is that the second-order diagram with the direct
Coulomb interaction is infinite! Such a conclusion was also reached in
Sec. 14.4.2 for the correlation energy of the electron gas in second order.
The divergent behavior continues in higher order. Indeed, one can replace
n(°) by n^VII'-0) to generate the third-order self-energy diagram shown
in Fig. 16.3a). The interaction terms in this diagram contribute a factor
q"6 making the divergence worse. One can repeat the procedure by making
further replacements of II^0) in the second-order self-energy, starting with
n(°Vn' 0)Fn( 0) , which leads to the fourth-order term shown in Fig. 16.3b)
and so on. In each next order the divergence turns uglier (see e.g. [Mattuck
(1992)]). This feature and its remedy have already been encountered in
Sec. 14.4.2. The solution is to sum all the divergent terms, yielding the RPA

2It is simpler to employ the unsymmetrized version of V here.
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Fig. 16.4 Diagrammatic representation of the self-energy in the ring approximation.
This is often referred to as the G^W^ approximation where iy(°) corresponds to the
screened Coulomb interaction of Eq. (14.58), indicated by the wiggly line.

result for the polarization propagator. The procedure completely removes
the unwarranted divergencies and yields the plasmon collective state at
small values of q, in agreement with experimental data. It is therefore
necessary to perform the same summation for the self-energy. This result
is instantly obtained by replacing IT̂ 0^ in Eq. (16.18) by the corresponding
YlRPA from Eq. (14.41). The sum of the divergent terms turns into the
well-behaved self-energy contribution given by

(16.19)
The so-called ring approximation to the self-energy is thus given by the

sum of all bubble diagrams combined with the Fock term, which was already
discussed in Sec. 10.5 (see Eq. (10.174)). This summation of self-energy dia-
grams is frequently represented by the diagram in Fig. 16.4 and includes the
Fock contribution. The wiggly line identifies the screened Coulomb interac-
tion jy(°) of Eq. (14.58) that sums both the Fock contribution [Eq. (10.174)]
and the terms in Eq. (16.19). The corresponding self-energy is known as
the G(°'W(°' approximation. The latter refers to a lowest-order sp prop-
agator and the ring approximation to the screened interaction, evaluated
with noninteracting sp propagators. The formulation of the Green's func-
tion method presented in Sec. 9.4, suggests a self-consistent formulation of
this approach, referred to as the GW approximation. The physical argu-
ment notes that medium modifications of the particles should be included
if they are important, in generating the ring approximation to the polar-
ization propagator. This is counterbalanced by the observation that such
a treatment will not conserve the /-sum rule, and thus no longer yields a
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good description of the plasmon. A conserving treatment, based on the
ring approximation, will be discussed in Ch. 21. These issues are revisited
after presenting the results for the GW approximation to the self-energy in
Sec. 16.2.2.

The evaluation of Eq. (16.19) is facilitated by employing the Lehmann
representation of the polarization propagator, which can be written as

As discussed in Ch. 14, the polarization propagator URPA has a Lehmann
representation with discrete poles, the plasmon contribution, and a contin-
uum part, associated with the remaining ph strength. The former term is
given by Eq. (14.43). It is therefore convenient to split the self-energy into
a part arising from the plasmon poles and one from the remaining contin-
uum ph pairs. Figure 14.4 illustrates the region in wave vector and energy
where the two parts are nonvanishing.

If the plasmon contribution to URPA along with G^ are inserted in
the expression of the self-energy [Eq. (16.19)] and the energy integration is
carried out, we obtain the following imaginary part of the self-energy for
energies above ep

Im £f^( fc ; E) = \ j-j^jL 6{\k - q\ - kF)6(qc - q)

xS(E- Ep(q) - e(k - g)) ( dIlRP^E) ] .(16.21)

We note that qc is the cut-off wave vector of the plasmon branch, i.e. the
wave vector at which it merges with the continuum. A similar result can be
obtained for energies below EF- The above expression can be further sim-
plified by using the explicit expression of the derivative of the polarization,
using Eq. (14.37). The algebra is lengthy but straightforward.

Before attempting any numerical calculation using Eq. (16.21), one must
consider in more detail the structure of its integrand. Whenever the limits
of integration include the q — 0 point, it is necessary to expand the denom-
inator of the integrand to facilitate an analytic treatment of its singular
part. Consequently, whenever the limits of integration include this point,
the imaginary part exhibits a logarithmic singularity. This property of the
electron gas within the present approximation seems to have been first no-
ticed in [Hedin et al. (1967)]. From the ^-function in the imaginary part of

(16.20)
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Fig. 16.5 Real and imaginary part of the self-energy for three different wave vectors,
corresponding to k/kp = 0.2,1 and 1.6 at rs = 2. Only the plasmon contribution to the
self-energy is included in the results.

the self-energy, one can see that this occurs at energies

E = ±Ep(0)+e(k), (16.22)

where the plus sign is for k > UF- The behavior of the imaginary of the self-
energy yields a singularity in the real part for k = kp- For other values of
k, the real part has a jump discontinuity at the location of the logarithmic
singularity in the imaginary part.

The remaining contribution to the imaginary part of the self-energy is
associated with the excitations in the ph continuum. One may employ the
corresponding dispersion relation for these terms

RRPA(a E)__l [E+
dE, lmUrA(Q,E')

+ nJ_E+
dE E-E'-ir, ' (16-23)
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Fig. 16.6 Imaginary part of the self-energy for the same wave vectors as in Fig. 16.5.
The three values k/kp = -2, 1 and 1.6 are given by the solid, dotted and dashed line,
respectively. Only the continuum contribution to the self-energy is included in these
results.

as in Eq. (14.34). The limits E± of the ph continuum were discussed in
Sec. 14.2. Using Eq. (16.23) in Eq. (16.19), performing the integration over
Ei, and taking the imaginary part, one obtains for energies above ep

Im S?™(fc; E) = 2 j - ^ V2{k) (16.24)

x f +dE'lm UfPA{q,E') 6{\k - q\ - kF)6{E - E'- e(k - q)).

A similar result is generated for energies below ep. To complete the evalu-
ation of the self-energy, we may employ the dispersion relation that relates
the real and imaginary part of the self-energy, given in Eq. (11.79). Includ-
ing the HF contribution, we find

Re *•«(* E)=B»W+* rv ' i m s ; y . iUM)
n y_oo h, - t,

We display some results for the electron self-energy at a density corre-
sponding to rs = 2 in Fig. 16.5. The real and imaginary part of the self-
energy for the three values k/kp — 0.2, 1 and 1.6 are shown [Amari (1994)]
(see also [Bose et al. (1967)]). As mentioned above, the imaginary part
has a logarithmic singularity at energies E = —Ep(0) + e(k) for kjkp < 1
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Fig. 16.7 Spectral function for the wave vectors k/kF = 0.2, 1 and 1.6 at a density
corresponding to rs = 2. Only the plasmon contribution to the self-energy is included.

and E = Ep(0) + s(k) for k/kp > 1. Also, the imaginary part vanishes
for energies -Ep(0) < E < Ep(0). For k/kF = 1, the self-energy exhibits
two sharp peaks located symmetrically about the Fermi energy. The sharp
discontinuity in these two peaks implies an infinite value in the correspond-
ing real part, when Eq. (16.25) is applied. For other wave vectors, the real
part has a jump discontinuity at the position of the logarithmic singularity
in the imaginary part [Hedin and Lundqvist (1969)]. The rapidly varying
real parts lead to an unusual sp strength distribution, discussed below. The
continuum contribution to the imaginary part of the self-energy is shown in
Fig. 16.6. These contributions are much better behaved, but substantially
smaller, than the plasmon terms.

The RPA self-energy has quite dramatic consequences for the sp
strength distribution, as represented by the spectral functions. Figure 16.7
shows typical results for spectral functions corresponding to the same wave
vectors and density as those in Fig. 16.5. The spectral function for wave
vectors deep inside the Fermi surface, has two distinct structures. Since
the imaginary part of the self-energy is nonvanishing only in certain energy
regions, it is possible to have multiple solutions to

h2k2

EQ(k) = - — + Re VRPA(k; EQ(k)) (16.26)

outside these domains. It implies that at those energies for which
Eq. (16.26) holds, the solution to the Dyson equation yields a ^-function
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Fig. 16.8 Occupation number in the RPA. The solid curve corresponds to rs = 1 and
the dashed to r, = 2 .

term, with the strength given by

W ) = ( . - ^ H r (1,2r)
V dE E=EQ(k)J

This situation is almost realized for k/kp = 0.2 in Fig. 16.7. The peak
with the higher energy corresponds to the usual quasiparticle, whereas the
second one is not present in other Fermi systems. It is referred to as the
"plasmaron" peak [Hedin and Lundqvist (1969)]. It can be interpreted
as a resonance between a cloud of real plasmons and a hole excitation,
reflecting the intermediate state of a hole and a well-defined plasmon in
the self-energy. When the continuum contributions to the self-energy are
included, the <5-function peaks become slightly spread out. The main peak
for k/kF = 0.2 contains a strength of 0.78, as indicated in Fig. 16.7. For
small wave vectors, the strengths add up to about 1. Approaching the
Fermi wave vector, only one peak in the strength distribution remains, as
illustrated for k/kF = 1 in Fig. 16.7. The strength is 0.82 in this case. For
values of k/kF > 1, only one peak is generated, as illustrated in Fig. 16.7
for k/kF — 1-6. The occupation number is calculated by integrating the
spectral function up to the Fermi energy. We illustrate results for two
densities, corresponding to rs = 1 and 2, in Fig. 16.8. The occupation of
states above kp increases with the parameter rs. The jump discontinuity
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Fig. 16.9 Diagrammatic representation of the self-energy in the ring approximation,
known as the GW approximation. The screened Coulomb interaction W is represented
by the double wiggle and consists of summing all rings that contain the dressed sp
propagator G, shown as the double line.

is equal to the quasiparticle strength or ZF. It is given by 0.92 and 0.82
for rs = 1 and rs = 2, respectively.

16.2.2 Electron self-energy in the GW approximation

In keeping with the discussion of Ch. 9, it is natural to consider the self-
consistent formulation of the inclusion of the polarization propagator in
the electron self-energy. The resulting self-energy is known as the GW
approximation, shown diagrammatically in Fig. 16.9.

We will now develop the necessary tools to study the GW self-energy.
First we rewrite the noninteracting ph propagator in Eq. (14.7) in the form
of a convolution

n(°> (k; q,E) = J ^G<°> (fc + q/2; E + E')G^ (k - q/2; E'), (16.28)

which can be checked in the usual way. For dressed propagators we gener-
alize to

n'(fc;q,E) = J ^-.G(k + q/2;E + E')G(k - q/2;E1). (16.29)

Using the spectral representation of G, given in Eq. (16.9), we can perform
the E' integration by using the appropriate contours, thereby obtaining

nf(k;q,E) = HE HE' S,(k + g/2;S)Sh(k-q/2;E')
JeF J-oo E-(E-E')+iT)

-rdErdE'S^ + ̂ ^{k~^&\ (16.30)
7-oo JeF E + (E'-E)~iTI
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For E > 0 the imaginary part of IT/ can be written as

lmYif{k\q,E) =

-7T f dE f FdE'Sp(k + 9 /2 ; E)Sh(k - q/2; E')5(E - {E - E'))
JCF J — OO

fE+eF

= -7r/ dE Sp{k + q/2;E)Sh{k-q/2;E-E). (16.31)

The upper limit of the integration in the last equation, reflects the condition
that the energy argument for the hole spectral function must remain smaller
than EF- A similar result holds for E < 0. By integrating over k, the dressed
version of the Lindhard function emerges

Ilf(q,E) = J-0[nf(k;q,E). (16.32)

The usual dispersion relation is valid for 11̂  [as in Eq.(14.34) for 11̂ °)]

The imaginary part of the self-consistent 11^, for two different values of
rs, is compared to the noninteracting term in Fig. 16.10. The difference
is particularly striking, but hardly surprising. The spreading of the sp
strength in the spectral functions, as discussed in the previous section and
even more so for self-consistent results, leads to a reduction in the original
energy domain, corresponding to noninteracting ph states. The removed
strength is found in a large energy range above the usual energy threshold.
For the lower density, a larger tail is calculated by [Holm and von Barth
(1998)]. As in Eq. (14.41) the polarization propagator is given by

Employing II ' , the screened Coulomb interaction becomes

W(q, E) = V{q) + V(<?)2II% E)V{q)

+V{q)2rt{q,E)V(q)2rt{q,E)V(q) + ...

= V(q) + 2V(q) {Uf(q,E) + &(q,E)2V(q)rf(q,E) + ...} V(q)

= V(q) + 2V2(q)n(q,E), (16.35)

(16.33)

(16.34)
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Fig. 16.10 Imaginary part of the noninteracting dressed polarization propagator II-̂  for
rs = 2 (dashed) and rs — 4 (solid) at q/kp = 0.25, as a function of energy. The figure
has been adapted from [Holm and von Barth (1998)]. For comparison the imaginary
part of the noninteracting propagator (dotted) is included, using the same scale as in
Fig. 14.2.

demonstrating that the screened interaction has the same analytic proper-
ties as II. We can therefore write

W(q, E) = V(q) + AW(q, E) (16.36)

- V(ri\ l r*F> l^W^E') , ! [° AF> ^W(q,E')
-V{q)-nJ0

 dE E-E' + ir,+nJJE E - E> - ir,'

since the imaginary part of W is given by

Im W(q, E) = 2V2{q)Im U(q,E) (16.37)

= 2V*(a) lmUf(g,E)
W (1 - 2V(q) Re Uf(q, E)f + (Im Uf(q, E)f '

using Eq. (16.35). As AW = 2V2U, Eq. (16.19) can be modified to include
the dressing of the sp propagators as follows

£AW(fc; E) = iJ^jj^Gik -q;E- BijA^fe Et). (16.38)

When the spectral representation of G [see Eq. (16.9)] and AW, given in
Eq. (16.36), are inserted, the integration over E\ can be performed with
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the usual contour integrations, yielding

*W{ ' W (27r)3y0 JSF E-E'-E + ir,

TV J (2TT)3J_OO J ^ E-E'-E-irj

The first term contributes an imaginary part for E > EF, of the form

Jm^w(k;E) = j j^J dE'Sp(k-q;E-E')lmW(q,E'). (16.40)

For energies E < ep, the second term of Eq. (16.39) yields

f d3a f°
Im SAVv(fc; E) = - ^ / dE'Sh(k -q;E- E')lm W(q, E').

J \^) JE-SF

(16.41)

We still need the contribution to the self-energy in lowest order, correspond-

ing to first term in Eq. (16.35). The generalization of the HF self-energy in

Eq. (10.171), reads

±JLv(k-k')n(k'), (16.42)

where n(k) is the occupation number, given in Eq. (16.13). Combining the
last three equations, the self-energy in the GW approximation becomes

XGW(k,E) = Xv{k)---JJE E_E, + ir] +-Jjf -E_E,_ir] •
(16.43)

With the solution of the Dyson equation [see Eq. (16.4)], the self-consistency
loop is now complete.

Numerical implementation can proceed from a reasonable starting point
for the spectral functions. In [Holm and von Barth (1998)], a small set of
gaussians was used to represent the spectral strength

S(tE)-T Wnik) c::J{E-En{k))2) (16 44)

where Wn,Tn, and En are parameters. A previous calculation [von Barth
and Holm (1996)] in the GW^ approximation, was used to initiate the
parameters. The GW^ approximation keeps the screened Coulomb inter-
action in Eq. (16.38) fixed to the original result of Eq. (14.58), but includes a
self-consistent determination of the dressed sp propagator G. Starting from

(16.39)
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Fig. 16.11 Absolute value of the imaginary part of the self-energy for k = 0 (left panel)
and k = kp for rs = 4, as a function of (E — £F)/^F- The dashed lines represent the
GW^ approximation and the solid ones correspond to the GW result [Holm and von
Barth (1998)].

Eq. (16.44), the first step is to calculate the imaginary part of II ' , given in
Eq. (16.32). The gaussian representation of the spectral functions allows an
analytic evaluation of the convolution. Fast Fourier transform techniques
can also be applied [Garcfa-Gonzalez and Godby (2001)]. The real part can
be obtained from the dispersion relation in Eq. (16.33). The imaginary part
of AW is thereby also determined [see Eq. (16.37)]. The main numerical
effort is the solution for the imaginary part of SAW, given in Eqs. (16.40)
and (16.41). The correlated HF term in Eq. (16.42) is straightforward,
computationally. The real part of the self-energy requires the dispersion
integrals of Eq. (16.43). The subsequent solution of the Dyson equation
yields the spectral functions, which closes the self-consistency loop. The
parameters, used to fit the spectral strength in Eq. (16.44), must now be
adjusted, and the whole cycle can be repeated until they no longer vary.

The most dramatic consequence of the self-consistency feature, is the
disappearance of a well-defined plasmon excitation in Eq. (16.34). Indeed,
the approximation to II including dressed sp propagators, no longer fulfills
the /-sum rule. Fig. 16.10 illustrates that the noninteracting n^ contains
an imaginary part in a very large energy domain. The appearance of ph
strength, where the plasmon resides when noninteracting sp propagators
are employed, is the main reason for its disappearance. When sp dressing
is included, the response becomes a broad distribution, with a peak super-
imposed, but not at the location of the original plasmon [Holm and von
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Fig. 16.12 Spectral functions for k = 0 (left panel) and k = kp for rs = 4, as a function
of (E — sp)/EF- The dashed lines represent the GW^ approximation and the solid ones
correspond to the GW result [Holm and von Barth (1998)].

Barth (1998)]. The absence of a well-defined plasmon excitation changes
the self-energy of the electron substantially, as illustrated in Fig. 16.11 for a
density corresponding to rs = 4. The dashed lines reflect the intermediate
GW^ approximation, which yields self-energies that are not too different
from the RPA (or G{0)W^), shown Fig. 16.5. The solid lines in Fig. 16.11
no longer exhibit this structure, which is associated with the presence of
the plasmon component of the response.

The self-consistent real and imaginary part of the self-energy lead to
qualitatively different spectral functions, as illustrated in Fig. 16.12. The
satellites in the G^W^ approximation, shown in Fig. 16.7, are retained
in the partially self-consistent GW^ approach, given by the dashed lines
in Fig. 16.12. When full self-consistency is achieved, the satellites have
completely vanished, reflecting the disappearance of the plasmon as a well-
defined component of the response. Satellites are observed in Na [Steiner
et al. (1979)], suggesting that the improved treatment of self-consistency
leads to a deterioration of the description of certain features observed in
experiment. The spectral functions in the GW approximation exhibit a
reduction of correlations with respect to the less self-consistent implemen-
tations. This is confirmed by the properties of the quasiparticle strength,
defined in Eq. (16.27), and plotted in Fig. 16.13 for the different approxima-
tions. The rising value of ZQ with increasing self-consistency, confirms that
the system becomes less correlated. At &F, the quasiparticle strength corre-
sponds to the jump in the occupation number, as shown in Sec. 11.4.4. At
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Fig. 16.13 Quasiparticle strength as a function of kjkp in the GW (solid), GW(0)
(dashed), and G(o) VK(0) approximation (dotted) for rs = 4 [Holm and von Barth (1998)].

rs = 4, it increases from 0.645 in the RPA (G^W^), via 0.702 (GW^),
to 0.793 in the fully self-consistent GW calculation [Holm and von Barth
(1998)]. These observations are further confirmed by the occupation num-
bers, as shown in Fig. 16.14. The figure demonstrates that the depletion of
the Fermi sea decreases with increasing self-consistency.

Another important observation is related to the change in the band-
width for the various approximations. For the noninteracting electron gas
it is given by the difference in energy between the k = 0 and k = kp sp
state. In units of the Fermi energy, the bandwidth is therefore 1. When
correlations are included, it can be defined by the difference between the
quasiparticle energies [see Eq. (16.26)], associated with the peaks in the
spectral functions, for k = 0 and k = kp. Figure 16.12 illustrates that the
effect of more self-consistency is to increase the bandwidth. A complete pic-
ture of the quasiparticle energies with different degrees of self-consistency is
plotted in Fig. 16.15. Experiments on simple metals [Jensen and Plummer
(1985)] suggest that the bandwidths are narrower than those obtained from
band-structure calculations, employing energy-independent potentials. The
Q(°)\Y(°) approximation exhibits narrowing (not enough), whereas the
bandwidths increase substantially with increasing self-consistency. The
conclusion that the properties of the self-energy do not improve for the
GW approximation are therefore justified.

We are now faced with an interesting situation. On the one hand there
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Fig. 16.14 Occupation number as a function of k/kp in the GW (solid), GW'0 '
(dashed), and G ( % ( ° ) approximation (dotted) for rs = 4 [Holm and von Barth (1998)].

is no doubt that self-consistency is a physically appealing concept. Fur-
thermore, the exact formulation of the self-energy includes precisely the
self-consistent sp propagators. On the other hand, essential features of the
self-energy like the bandwidth and the presence of satellite structures in
the sp strength, deteriorate when the self-consistent formulation is imple-
mented. A remedy to the situation is not trivial, but we offer some remarks.
First we note that improvements over the GW approximation have been
proposed that are known as vertex corrections, modifying one of the ver-
tices in Fig. 16.9 to represent higher-order exchange contributions to the
self-energy. Results are not unambiguous [Mahan (1994)] and a fundamen-
tal problem with the GW approximation remains. From our studies of the
properties of the electron gas, it is clear that the plasmon is a critical in-
gredient of the relevant physics. The screened Coulomb interaction W does
not contain the correct properties, since it does not conserve the /-sum rule,
let alone yield a proper plasmon. It is quite well known how to construct
a (sum rule) conserving approximation for the response, for example based
on the GW approach to the self-energy. We will discuss such techniques
in Ch. 21. An actual implementation of this method for the electron gas
is however not available. Assuming that the conserving approach yields
physically relevant plasmons, it still remains to be clarified how such a de-
scription of the response can be included in the self-energy. The recent
development of the Faddeev technique to calculate the self-energy [Dick-
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Fig. 16.15 Quasiparticle energies at rs = 4, as a function of k/kp in the GW (solid),
GW(0) (dashed), and G ^ W C ) approximation (dotted) [Holm and von Barth (1998)].
The noninteracting result is given by the dashed-dot line.

hoff and Barbieri (2004)], may shed some light on this problem, since it
addresses the unequal treatment of the Pauli principle in the self-energy of
the GW approximation. Indeed, inspection of Fig. 16.9 shows that the sp
propagator G is not "Pauli aware" of the (parallel) sp propagators inside
the W interaction, except for the first and last contribution in the ring
summation. Improving the treatment of the self-energy in the electron is
therefore an unresolved issue and requires further studies that provide a
systematic improvement of the GW results.

16.2.3 Energy per particle of the electron gas

Finally we discuss the correlation energy of the electron gas in the various
approximations that are available. First we note that an essentially exact
calculation of the energy per particle of the electron gas is available em-
ploying the quantum Monte Carlo (QMC) approach of [Ceperley and Alder
(1980); Ortiz et al. (1999); Ortiz and Ballone (1994)]. Several calculations
of the energy per particle are available in the various GW implementa-
tions [Holm and von Barth (1998); Garcia-Gonzalez and Godby (2001)]. It
is therefore useful to gauge the quality of these Green's function calcula-
tions by comparing with exact Monte Carlo results. The RPA correlation
energy calculation, based on Sec. 14.4.2, will also be included.
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Table 16.1 Minus XC energies per particle (in Hartrees) for the electron gas

rs 1 2 4 5 10 20
QMC 0.5180 0.2742 0.1466 0.1198 0.0644 0.0344

0.5144 0.2729 0.1474 0.1199 0.0641 0.0344
GW 0.5160(2) 0.2727(5) 0.1450(5) 0.1185(5) 0.0620(9) 0.032(1)

0.2741 0.1465
GWW 0.5218(1) 0.2736(1) 0.1428(1) 0.1158(1) 0.0605(4) 0.030(1)

CC'l^ '0) 0.5272(1) 0.2821(1) 0.1523(1) 0.1247(1) 0.0665(2) 0.0363(5)
RPA 0.5370 0.2909 0.1613 0.1340 0.0764 0.0543

-Ex/N 0.4582 0.2291 0.1145 0.0916 0.0458 0.0229

QMC results are from [Ceperley and Alder (1980)] (first row) and [Ortiz et al. (1999);
Ortiz and Ballone (1994)] (second row). Second row of GW results are from [Holm and
von Barth (1998)]. All other GW results are from [Garcia-Gonzalez and Godby (2001)].
Also shown are the correlation energy in RPA and the HF exchange energy per particle.
Parentheses identify the numerical uncertainty in the last significant figure.

Table 16.1 contains results for the negative of the so-called exchange
correlation (XC) energy per particle for different values of rs • The XC en-
ergy represents the difference between the true energy of the ground state
and the energy of the noninteracting system. It therefore includes the HF
or correlated HF contribution [see Eq. (16.42) for the self-energy]. The for-
mer is given by Eq. (10.179) and included as the last row in Table 16.1 for
reference. The QMC calculations from different groups are consistent with
each other. This also holds true for the GW numbers from [Holm and von
Barth (1998)] and [Garcia-Gonzalez and Godby (2001)]. The agreement
between the QMC and GW results are remarkable in the limit of high den-
sity. It remains good for intermediate and low densities, although it is not a
priori clear why other physical effects, not included in the GW approxima-
tion, apparently do not contribute. Partial self-consistency in the GW^
approach yields slightly worse agreement. Even the G^W^ numbers are
quite respectable, but less accurate. The RPA response is identical to the
one used in the G^W^ method, but the energy is calculated differently,
yielding a substantial discrepancy.

An important supplementary consideration is the reconstruction of the
number of particles, according to Eq. (16.12), in the different GW imple-
mentations. We will see in Ch. 21 that only self-consistent approximations
to the self-energy, like the full GW implementation, guarantee the conser-
vation laws, like the one for particle number. The C?(o) w(°) approximation
exhibits a negligible violation up to rs = 4 [Garcia-Gonzalez and Godby
(2001)]. At rs = 5 the violation is 0.3 %, reaching 6.1 % for rs = 20.
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We are therefore confronted with a rather fundamental puzzle. While
the energy per particle is quite well described in the GW approximation,
it exhibits inherent failures for the self-energy, or quasiparticle properties,
as discussed above. The development of an approach that reconciles these
two issues, remains a formidable challenge.

16.3 Nucleon properties in nuclear matter

16.3.1 Ladder diagrams and the self-energy

In this section we will study the properties of the nucleon sp propagator in
nuclear matter. We focus our attention on the dominant influence of short-
range correlations in determining the properties of a nucleon in the medium.
The correct treatment of these correlations was presented in Ch. 15. The
vertex function, or effective interaction, requires the complete summation of
ladder diagrams, if the two-body interaction V contains strong repulsion at
small relative distance between the particles. In this section we will explore
the consequences for the sp propagator, when the corresponding vertex
function is included in the self-energy. It is convenient to formulate this
treatment in the self-consistent form, originally introduced in Sec. 9.4. Since
we will see that the modifications of the sp propagator are substantial with
the inclusion of these correlations, one may expect that a self-consistent
treatment is important. The relevant summation of ladder diagrams for
the vertex function is given by

{kmamai | Tpphh(K, E) \k'mpmp>)

= (kmama<\V \k'mgm0,) + (kmama>\ ATpphh(K,E) \k'm^Tn^)

= (fcmama-|V|fc'ro3m^) + - ^ /T^rfs ( fem«wa ' | V |qm7my)
m1m1i *• '

x Gs
pphh{K,q-E) {qmymi,\Tpphh(K,E)\k'mem0,), (16.45)

where the first line serves to define the quantity ATpphh. The notation
includes the wave vectors of the relative motion, k and k', as well as the
total wave vector K. Discrete quantum numbers associated with spin and
isospin are indicated generically by m. The dressed version of the non-
interacting propagator is employed in Eq. (16.45). The evaluation of the
convolution integral corresponding to Eq. (15.5), using Eq. (16.9) for each
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of the sp propagators, yields

Cf (Q.K E] _ rdF, rdEllSp{q + Kl2-E')Sp{Kl2-q-E")Gvvhh{q,K,E) - JJE jJE _ _ _ _ _ _

y-oo •/-„ E-E' -E" -ir)

The diagrammatic form of Eq. (16.45) is identical to Fig. 15.5. Prom the
first equality of that figure, we recognize that the inclusion of short-range
correlations in the self-energy is accomplished by replacing the exact T in
Eq. (16.3), by the Tpphh, of Eq. (16.45). The first identity of Fig. 15.5 can
be used to identify the analytic structure of ATPphh = ^PPhh — V- This
information is essential to allow the proper construction of the self-energy,
as shown below. Inserting the Lehmann representation of Eq. (15.28), mod-
ified for the present case, enables us to write

{kmama, | Arpphh(K, E) \k'mi3m0,} (16.47)

" * LF E-E' + iV

^ 1 f26" , Im {kmama, \ ATpphh{K, _') \k'm0m^)
+ *LJE E-E'-ir,

= (kmama>\ Ar±(K,E) \k'mpmp) + (kmama>\ AT^(K,E) \k'mpmpi).

The notation with the arrows \- and t signals that the corresponding con-
tribution to ATpphh has poles in the lower or upper half of the complex
energy plane. Poles is the lower half plane are associated with forward (pp)
propagation or energies above 2sF , whereas the opposite applies for back-
ward (hh) terms with energies below 2sp. By identifying the contribution
of AFpphh as the last term in Eq. (16.3), it is possible, after some relabeling,
to write the corresponding self-energy contribution as

x (i(fe - k')mama.\ ATpphh(K,E + E') \\{k - k')mama.).

The integral over E' can now be performed analytically by using Eq. (16.47)
for AFpphh and the Lehmann representation of the sp propagator, given in
Eq. (16.9). As usual the contour integration can be performed, without
any difficulty, by carefully considering the pole structure of ATPphh and G.

(16.46)

(16.48)
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The result of the integrations then takes the form

ZAr(k;E)=1- £ / — / dE< (16.49)
mamai *• ' °°

x (i(k - k')mamal\Ari(E + E')\l(k- k')mama.) Sh(k', E')

1 v f d*k> f°°

x (i(fc - k')mama, | AI>(£ + £?') | J(fc - fc')"»ama/) Sp(fc', £')

= AHi{k;E) + AY,t(k;E).

The arrow notation for the self-energy is similar to the one for AF^/,/,. By
using the dispersion relation for AFpp/^ in Eq. (16.47) one may verify that
the usual dispersion relation for these self-energy contributions holds. The
total self-energy can then be written (discarding the auxiliary potential)

X(k;E) = Xv(k)--JjE E_Ei + ir]+-J_JEE_EI_ir]

= EV(A;) + AEi(A; £?) + AEt(Jb; £?), (16.50)

where the Hartree-Fock like term is given by

/

d?k' 1
, -3 - ^2 (h(k - k')mama'\V\±(k - k')mamal)n(k').
^ ' mamai

(16.51)
This expression can be obtained by using the Lehmann representation of the
sp propagator to perform the energy integration, and subsequently replac-
ing the integral over the hole spectral function by the occupation number.

16.3.2 Spectral function obtained from mean-field input

The first generation spectral functions for nuclear matter were based on the
solution of the ladder equation [Eq. (16.45)], employing mean-field propa-
gators in the construction of Gf

p hh. A semi-realistic interaction, based on
the Reid potential [Reid (1968)], was employed in [Ramos et al. (1989)].
Short-range correlations were properly treated but effects of the tensor force
were eliminated. The discussion below includes the full complexity of re-
alistic inteactions, including the tensor component. Employing mean-field
propagators, the spectral functions take the form of ^-functions. This sim-
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plification for the self-energy, given in Eq. (16.49), yields

x (i(fc - fe>amal| ArJ0)(E + e(fc')) IH*! - fc')"»a"»a'> ^(^F - k')

_I v /"d3k'
~v ^ ] (2TT)3

x (i(fc - k')mamal | Ar | 0 ) (£ + e(A')) |Kfe ~ k')mama,) 0{k' - kF).

A superscript (0) has been attached to £ and AF to identify that they
are obtained from a scattering equation with mean-field propagators. As
discussed in Sees. 15.2 and 15.3, a serious difficulty arises propagating such
particles, when they exhibit a continuous sp spectrum and a realistic NN
interaction is employed. Indeed, so-called pairing instabilities arise in the
zSi-3Di and 1So partial wave channels in certain density regimes [Vonder-
fecht et al. (1991b)]. Partial self-consistency with mean-field propagators
in the ladder equation can be achieved, while avoiding the above difficul-
ties. This is accomplished by linking the sp potential and the full S in the
following way [Vonderfecht et al. (1993)]. Below kp, let e{k) be the first
moment of Sh(k,E) with respect to energy (the contribution to the total
energy at that wave vector) divided by the number of particles in the sys-
tem with that wave vector. This intuitive prescription can not be extended
k > kF, by replacing 5^ with Sp, since Sp contains a significant fraction of
strength up to very large energies (illustrated below). Unrealistically large
values for e(k) would therefore be generated for k > kF- For this reason Sp

is replaced by the quasiparticle contribution SQ to Sp. It is equivalent to
setting e(k) equal to the quasiparticle energy. The sp spectrum then reads

and

•v-tfJwm-™ k>kF- (I654)
The above prescription for the sp spectrum requires calculation of the full
energy dependence of S in each iteration step and is therefore computation-
ally intensive. However, it naturally contains a gap large enough to prevent
the pairing instabilities. The quasiparticle energy alone has no appreciable

(16.32)

(16.33)
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Fig. 16.16 Imaginary part of the self-energy as a function of energy below the gap
for three wave vectors, k = 0.01 (solid), 0.51 (dotted), and 2.1 fm"1 (dashed). The
gap reflects the different definitions of the sp spectrum for particles and holes, given in
Eqs. (16.53) and (16.54).

gap, but near the Fermi wave vector there is considerable spreading of hole
strength to energies below the quasiparticle energy, thereby introducing a
gap at kp when Eqs. (16.53) and (16.54) are applied.

Results from this partial self-consistency scheme, establish the main ef-
fects of short-range correlations on the sp strength distribution. In addition,
they exhibit the limitations of employing mean-field sp propagators in the
ladder equation and the self-energy. A characteristic property associated
with the latter feature is shown in Fig. 16.16 for the imaginary part of the
self-energy, calculated from Eq. (16.52). Comparing different values of k
for these energies below the Fermi energy, indicates that ImS1" becomes
weak, while its energy range enlarges in a smooth manner as k increases.
The energy range for this ImS1' is determined by considering a phase space
analysis, which can be based on the discussion given in Sec. 11.3.1. It
shows that for each k there is a minimum energy above which 2hlp states
(of mean-field type) can mix in the self-energy. So momentum conservation
and the constraint on the location of 2hlp energies due to their mean-
field character are responsible for the energy range observed in Fig. 16.16.
This wide range of energies will be available to the hole spectral functions
discussed below.

For wave vectors near kF one finds that the energy dependence of Sh
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and Sp is dominated by the quasiparticle peak, characterizing the extent
to which noninteracting features are maintained. Each wave vector has an
associated quasiparticle energy which is the solution of

H2k2

EQ{k) = - — + ReS(fc; EQ(k)). (16.55)
2m

The spectral function displays a peak at EQ because of the vanishing term
in the denominator of Eq. (11.99). The peak itself is represented by

1 Z%(k) I W(k) I

* » < * • * > - ( E - W + «,(*)*(»))' (16'56)

where W(k) = Im T,(k;EQ(k)) and

^ , = { , . ( 5 5 1 ^ ) ) r (16.57,

is its strength. The first generation of these calculations have shown that
near kp the peak contains around 70% of the total sp strength, while an
extra 13% is contained in the background composing the remainder of hole
strength. The background is uniformly distributed across several hundred
MeV below EF corresponding to the range of Im S. The range depends
significantly on the value of A;, as shown in Fig. 16.17. The final 17% of
the strength has moved to energies greater than Ep, including a significant
high-energy tail in Sp, discussed momentarily. Farther below kp the pic-
ture breaks down as the peak melts into the background, resulting in hole
strength which is spread over a much wider range of energies. To the extent
that spectral functions are described by the quasiparticle approximation,
the excitations in nuclear matter are like those of a Landau Fermi liquid, as
illustrated in Fig. 16.17. The figure contains several hole spectral functions
for wave vectors below kp — 1.36 fm"1. Notice that as k ->• kp the peak
becomes 5-function-like, due to the vanishing of ImE in Eq. (16.56). The
infinite-lifetime character of such excitations is made possible by the loss
of phase space, available to the states in E near the Fermi energy. This is
essentially the same argument used by Landau in more general terms to de-
velop the microscopic foundations of Fermi-liquid theory [Landau (1959)],
discussed in Sec. 14.6.

In Fig. 16.18 the particle spectral function is plotted for three different
wave vectors, k — 0.79, 1.74, and 5.04 fm"1, as a function of energy. All
wave vectors below kp have the same high-energy tail as the dotted curve
for k = 0.79 fm"1 in Fig. 16.18. For k > kp, a quasiparticle peak, which
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Fig. 16.17 Illustration of the decreasing width of the quasiparticle peak in the spectra]
function for three wave vectors below kp given by k = 0.48, 0.79, and 0.93 fm"1.
The vertical lines indicate the position of the gap in the sp spectrum that results from
employing Eqs. (16.53) and (16.54).

broadens with increasing wave vector3, can be observed on top of the same
high-energy tail. The results therefore display a common, essentially wave
vector independent, high-energy tail. The location of sp strength at high
energy simply means that the interaction has sufficiently large matrix ele-
ments to compensate energy denominators encountered in the ladder equa-
tion. For this particular NN interaction [Reid (1968)], a significant amount
of strength is found at high energy, a result that was already anticipated a
long time ago [Brown (1969)].

A quantitative characterization of the missing sp strength for k =
0.79 fm"1, shows that the integrated particle strength accounts for 17%
of the sp strength. This is in agreement with the sum rule, since the inte-
grated hole strength provides 83% of sp strength. The strength in the inter-
val from 100 MeV above the Fermi energy to infinity amounts to 13%, with
7% residing above 500 MeV. To understand the influence of the tensor force
on this distribution, a calculation of the ladder equation was performed in
which the tensor coupling in the 3Si-3Di coupled channel was switched off.
The integrated sp strength above the Fermi energy then amounts to 10.5%
and should be regarded as resulting from pure short-range correlations.

3Ultimately, at very large wave vectors, the spectral functions become those of free
particles of course.
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Fig. 16.18 Particle spectral functions at k = 0.79 (dotted), 1.74 (solid), 3.51 fm"1

(dashed). All three spectral functions converge to the same tail at high energy.

In [Vonderfecht et al. (1991a)] it is shown that the tensor force moves the
additional 6.5% of strength to the first few hundred MeV above the Fermi
energy. The amount of strength is consistent with other calculations of the
occupation numbers, which show depletions of a similar size due to tensor
correlations [Fantoni and Pandharipande (1984)].

Figure 16.19 exhibits the graph of the occupation number n(k), or the
number of particles in the ground state of the system with k. Near k = 0,
n(k) becomes fairly constant with a value of 0.83. From the discussion of Sp,
roughly 1/3 of the 17% depletion is due to the effect of tensor correlations
in the ladder equation. Another 1/3 is due the to high-energy tail in Sp

at energies above 500 MeV. Results from other many-body methods such
as Brueckner theory [Grange et al. (1987)] and [Baldo et al. (1990b)] and
correlated basis functions (CBF) theory [Benhar et al. (1989)], using other
realistic interactions, give very similar occupation near k = 0. In the work
of [Grange et al. (1987)] and [Baldo et al. (1990b)], 0.82 is reported for the
Paris potential. Older CBF calculations for the Urbana V14 interaction, give
0.87, whereas more recent CBF results [Fantoni and Pandharipande (1984)]
give 0.83. All these calculations for different interactions, using different
methods, give a strikingly similar result for n(0). This is encouraging, since
it implies that nonrelativistic many-body calculations yield stable results
in the region, where one would like to compare to finite nuclei.

In contrast to n(0), the occupation at kF varies significantly between
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Fig. 16.19 Occupation probability for nuclear matter at equilibrium density calculated
by integrating hole spectral functions obtained with mean-field propagators as input
(solid line). Self-consistent determination of the sp propagators yields the dotted line.

methods. This variability is most easily expressed in terms of the discon-
tinuity in n(k) at kp, ZF = n(kp) - n(kp~). For the results shown by the
solid line in Fig. 16.19, ZF = 0.72 and for the CBF calculation ZF = 0.70.
However, for the Paris interaction, ZF = 0.35 and 0.47 has been obtained
in [Grange et at. (1987)] and [Baldo et al. (1990b)], respectively. The
extra depletion in n(k) as k -»• kF arises from the enhanced ability of the
sp state to couple to low lying 2plh excitations, as its energy approaches
these states. Also, the discontinuity depends on the level at which pairing
correlations are included in the calculation. In the case of a paired system
ZF is zero, as discussed in Ch. 22.

16.3.3 Self-consistent spectral functions

The essential difficulty in the self-consistency procedure is the handling
of the information, which describes the complete energy and wave-vector
dependence of the spectral functions over their relevant domains. For in-
teractions like the Reid potential, the energy and wave vector range needed
to store the relevant information, precludes a straightforward numerical
discretization of the spectral functions.

We briefly outline a method here that is able to deal with interactions
like the Reid potential [Roth Stoddard (2000)], implying that it will cer-
tainly work for softer interactions. The sp spectral function is completely
determined by Im T,(k;E). First, we note that its relation with the self-
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Fig. 16.20 Self-consistent spectral functions for three different wave vectors at kp =
1.36 fm"1 corresponding to 0 (full), 1.36 (dotted), and 2.1 fm"1 (dashed) as a function
of E — eF.

energy is given by Eqs. (16.7) and (16.8). The self-energy can be written ac-
cording to Eq. (16.50), which demonstrates that the spectral function can be
completely expressed in terms of Im S(/c; E), Re AE|(fc; E), Re AE-(-(fc; E),
and T,v(k). The contributions Re AH^k; E) and Re A£t(fc; E) can be ob-
tained from the Im T,(k;E) by performing the dispersion integrals given
in Eq. (16.50). The correlated Hartree-Fock contribution, Sy(fc), can be
calculated from the occupation numbers in a given iteration step towards
self-consistency. This allows the construction of a new Fermi energy and the
calculation of the next iteration for the spectral functions, closing the self-
consistency loop. The analysis indicates that it is sufficient to accurately
represent the imaginary part of the self-energy, for a complete determi-
nation of the spectral functions. Since this imaginary part is very well-
behaved as a function of energy and changes also smoothly as a function of
energy, Im £ can be represented in terms of a limited set of gaussians [Roth
Stoddard (2000)]. Two gaussians below the Fermi energy and two above,
appear to provide sufficient flexibility for a complete representation of the
imaginary part of the self-energy.

We now discuss some results of calculations that include a fully self-
consistent inclusion of ladder diagrams in the self-energy. We start with
the occupation numbers at a density corresponding to fc^ = 1.36 fm"1,
shown by the dotted line in Fig. 16.19. The occupation numbers from the
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calculation described in Sec. 16.3.2 are given by the solid line in Fig. 16.19.
Such results can be considered as belonging to the first iteration step in the
self-consistency procedure, since it is based on mean-field propagators as
input. The similarity of the occupation of wave vectors below kp between
the two calculations is clear. Indeed, only a slight increase in the occupation
of at most 3% is observed, when self-consistency is achieved. This implies
that the corresponding depletion due to short-range correlations is still
about 15% for nucleons deep in the Fermi sea. The increased occupation
below kp yields a small reduction in the occupation above kF. This is
further corroborated by the quasiparticle strength at the Fermi wave vector,
since it changes only slightly from 0.72 to 0.75.

Some spectral functions are shown in Fig. 16.20 around the Fermi en-
ergy, as a function of E - ep. A comparison with the results, reviewed in
Sec. 16.3.2, exhibits a striking difference for the strength distribution below
the Fermi energy. The spectral strength in Fig. 16.20 is essentially identical
at large negative energies for all wave vectors. It reflects a similar energy
distribution of the imaginary part of the self-energy for these wave vectors.
This could have been expected since the constraint imposed by mean-field
sp energies, no longer applies and all wave vectors have the same energy
domains, associated with the imaginary part of the self-energy. In the for-
mer case, the imaginary part of the self-energy has a fixed lower bound,
depending on the wave vector, as shown in Fig. 16.16. The appearance of
sp strength at large negative energies has important implications for the
binding energy of nuclear matter, as will be discussed shortly. The spectral
functions at high energy still include a common high-energy tail above ep
for all wave vectors, which is quantitatively similar to the one shown in
Fig. 16.18. Self-consistency therefore yields rather subtle changes in the
properties of the spectral functions.

The special role of short-range correlations in generating saturation be-
havior of nuclear matter, is illustrated in Fig. 16.21. There we plot the
integrand, corresponding to both terms in Eq. (16.10), as a function of
wave vector, after performing the energy integral over the spectral func-
tion. Results are shown for densities, corresponding to kp = 1.36 frn"1

and kp — 1.45 fm~ . At kp = 1.36 fm"1 the high wave-vector compo-
nents still provide attractive contributions, whereas for kp = 1.45 fm"1

a changeover occurs, suggesting that at an even higher density the high
wave-vector terms will provide only repulsion. From such an analysis it is
clear that the expected relevance of short-range correlations in obtaining
reasonable saturation properties of nuclear matter, is fully confirmed. The
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Fig. 16.21 The high wave-vector contribution to the energy per particle for kjr = 1.36
fm"1 (solid) and 1.45 fm"1 (dashed). It illustrates the source of the saturation process
when short-range correlations are considered self-consistently.

relation of this observation to the vast body of work on the nuclear-matter
saturation problem is taken up in the next section.

16.3.4 Saturation properties of nuclear matter

The nuclear-matter saturation problem has a long and colorful history.
Many-body calculations were initiated by Brueckner. The basic idea goes
back to the proper treatment of short-range correlations in the medium,
which requires the solution of an in-medium scattering equation, discussed
in Sees. 15.2 and Ch. 20. The solution must contain the sum of ladder
diagrams, as for the scattering of nucleons in free space [Brueckner and
Levinson (1955)]. Initially, only the propagation of particles above fcp was
included. The method is referred to as the Brueckner-Hartree-Fock (BHF)
approach. The in-medium scattering equation is solved with the noninter-
acting propagator of Eq. (15.34), excluding hh propagation,

(kmamai [ G(K, E) \k'm$mpi) — (kmama>\V\k'mpmpi)

+ 2 5Z /?2^)3 (km»m«'\v WmimY) (16.58)

6{\q + K/2\ - kF) 8(\K/2 - q\ - kF) , . . ,„ m | , ( .
X E - £(g + K/2) - e(K/2 -Q) + lr> ( g n W ' ' G{K'E) |fc " * " * ' > '
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The G notation for the effective interaction was introduced by [Bethe
(1956)] and has since then, been referred to as the G-matrix. Equa-
tion (16.58) is also known as the Bethe-Goldstone equation. The original
derivation of the corresponding linked contributions to the Brueckner the-
ory was developed by [Goldstone (1957)]. The G-matrix interaction also
obeys a dispersion relation between its real and imaginary part

(kmamai\G{K,E)\k'mpmi3i) = (kmama>\ V \k'mpmpi) (16.59)
1 f°° , Im (kmama,\AG(K,E')\k'm0m0,)

~*L; E-E'+iV

= (kmamai\ V\k'm0mpi) + (kmama,\AGi(K,E) \k'mpmp),

where we note that the imaginary part of the G-matrix only exists above
2ep. The self-energy from AG4., can be calculated by applying Eq. (16.48).
Since AG4. has poles in the lower half plane, only the hole part of the
sp propagator yields a nonvanishing contribution. Taking a mean-field sp
propagator, an equivalent result to the first term of Eq. (16.52) is obtained.
The combination with the HF contribution, then gives the BHF self-energy

VBHF(k;E))= f ^ l E O(kF-k') (16.60)
mamai

x (i(fc - k')mama,\G(k + k';E + e(k') ||(fc - k') mam&).

Using this self-energy in the Dyson equation for k < kp only produces
solutions at the energies given by

H2k2

EBHF(k) = —— + ZBHF(k; EBHF{k)). (16.61)
Im

since this self-energy is real for energies less than ep. The sp strength at
this energy requires application of Eq. (16.57). It is less than 1 and points
out a difficulty inherent in an approach that includes only pp propagation,
as in the G-matrix. Since the number of particles, with k < kp, will not
correspond to the original density, there is a violation of particle number.
This can be understood from the lack of self-energy terms, which corre-
sponds to 2hlp intermediate states that can put strength for k > kp below
the Fermi energy. These contributions are missing, since hh propagation is
excluded in the Bethe-Goldstone equation. One can avoid this problem by
only determining a self-consistent, HF-like, sp energy, hence BHF.

A critical point in the BHF approach is encountered, when the choice of
the auxiliary potential U is contemplated. Such a choice is necessary and
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relevant, since the final results will depend on this selection. A convenient
(standard) choice that has often been made in the past, is given by

U.(k) = ZBHF(k; eBHF{k)) (16.62)

for k < kF, without any self-energy contributions for k > kp, i-e. Us(k) —
0. This is a practical choice, as the Bethe-Goldstone equation needs only
to be solved once for a set of energies below 2eF = h2k2/m. One then still
needs to find the self-consistent solutions to Eq. (16.61). An alternative
choice of U is the so-called continuous choice where

Uc(k) = XBHF(k;eBHF(k)) (16.63)

for all values of k. This requires a more involved iteration scheme since
the Bethe-Goldstone equation must be recalculated, as knowledge of sp
energies for wave vectors above kF is required.

For either choice, one ends up with a sp propagator of the form

GBHF{kE) = 6(k-kF) 0(kF -k)

E-eBHF(k)+iri E - eBHF(k) - ir)

Using this propagator in Eq. (16.10) then yields for the energy per particle

By applying Eq. (16.60), one can rewrite this result as

E 4 f d3k h2k2 1 f d3k fd3k' ^ .., , , . . ,

(i(fc - k') mama'\G(k + k';eBHF(k) + eBHF(k')\\(k - k') mama').

(16.66)

The first term is simply the kinetic energy of the free Fermi gas with de-
generacy 4, appropriate for nuclear matter. The second term can also be
obtained from the potential energy contribution to Eq. (10.166) by replac-
ing the bare interaction V by the G-matrix, further strengthening the HF
character of this approach. The important replacement of V by the at-
tractive G-matrix, gives a simple explanation of the self-binding of nuclei
(nuclear matter), even though the bare interaction can be quite repulsive
at short distances.

From a quantitative perspective, the BHF approximation gives binding
that is typically within 10 MeV/A from the empirical volume term in the

(16.64)

(16.65)
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Fig. 16.22 Energy per particle as a function of the Fermi wave vector for different
realistic NN interactions. The circles indicate the minima of the saturation curve for
the BHF approximation when the standard choice of U is made. The symbols identify
the various interactions and in some cases the D-state admixture in the deuteron wave
function is also given. The star symbols are associated with the minima of the saturation
curve when three-body correlations are included. The box identifies the empirical region
suggested by experimental data. For the Argonne vl4 (AV14) interaction the saturation
curve in BHF approximation is given by the dashed line. The figure has been adapted
from [Baldo (1999)].

mass formula, given in Eq. (3.38). This in itself is encouraging, since there
are realistic NN interactions with a very repulsive HF contribution. In all
cases, the repulsion is completely compensated by the sum of the higher-
order ladder diagrams, yielding sizable binding. More problematic is that
the obtained minimum as a function of density never coincides with the
correct saturation point, when the amount of binding is near the empirical
number. These observations are corroborated by the calculations shown
in Fig. 16.22. The open circles in this figure indicate the minimum of the
energy per particle for different realistic NN interactions identified by the
appropriate abbreviations. For the AV14 interaction [Wiringa et al. (1984)]
the dashed curve gives the relevant part of the complete curve. All open
circles correspond to BHF calculations of the energy per particle. It was
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noted by [Coester et al. (1970)] that the minima of the BHF calculations
roughly lie on a band, now called the Coester band, that does not intersect
with the empirical point. Motion on this band is mainly governed by the
D-state probability of the deuteron that is generated by the interaction.
One finds that interactions with very strong tensor components (high D-
state probability), yield low saturation densities and underbind while weak
tensor forces yield high densities with overbinding. Some interactions in
the figure are also labeled by this Z)-state probability.

From the information collected in Fig. 16.22, one may draw the conclu-
sion that the BHF with the standard choice for U, given in Eq. (16.62) will
not yield the correct empirical result. At the end of the sixties [Backman et
al. (1969)] and early seventies [Pandharipande and Wiringa (1979)] several
variational calculations had already indicated that it was possible to get
different saturation properties for the same interaction in nuclear matter.
This discrepancy generated substantial interest in studying the convergence
properties of the Brueckner approach. Since most interest was focused on
the energy per particle and no nucleon knockout experiments had been
performed of sufficient quality to experimentally identify the limits of the
mean-field approach, an expansion was developed that identifies the BHF
approximation as it lowest-order contribution. This so-called hole-line ex-
pansion (sometimes referred to as Brueckner-Bethe method) emphasizes
the analysis of Goldstone (time-ordered) diagrams to the energy per par-
ticle. This method first involves replacing in all diagrams every V by the
well-behaved G-matrix interaction. With the choice of Eq. (16.62) one then
obtains the two hole-line contribution to the energy per particle in the form
of Eq. (16.66). This contribution contains the integration over two indepen-
dent hole lines. Phase space arguments then suggest that all higher-order
contributions involving more independent hole integrations should be or-
dered according to the number of independent hole lines [Brandow (1966);
Day (1967)]. A similar argument was used by [Galitskii (1958)] when con-
sidering the low-density limit for strongly repulsive interactions. Indeed, an
extra integration in higher order in the G-matrix over particle coordinates
does not appear to give rise to a "smaller" contribution. If the density is
small, however, it may be argued that the hole phase space is small and
that ordering contributions in terms of the number of independent hole
lines makes sense. The next contribution in the expansion includes all
terms which have three independent hole integrations (the three hole-line
contribution). It contains the summation of all diagrams in which three
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particles interact with each other any number of times by means of the G-
matrix interaction [Rajamaran and Bethe (1967)]. This requires a special
summation, first developed by [Faddeev (1961)] for the three-body prob-
lem. In the present case, two particles cannot repeat a G-matrix interaction
since that would involve a double counting of terms. The so-called Bethe-
Faddeev summation was first accomplished by [Day (1981)] for realistic
interactions.

Including all three hole-line terms moves the saturation points away
from the Coester band towards the empirical region, as illustrated in
Fig. 16.22 by the stars for three different realistic interactions [Baldo
(1999)]. The remaining discrepancy with empirical data is still substan-
tial, however. Nevertheless, it became clear in 1985 by the work of [Day
and Wiringa (1985)] that good agreement between three-hole-line calcu-
lations and advanced variational methods for the same interactions was
possible. The conclusion was further strengthened by the work of [Song et
al. (1998)] which showed that calculations employing the continuous choice
for the auxiliary potential U given by Eq. (16.63), agree extremely well with
the standard choice when three-hole-line terms are included. Moreover, the
continuous choice advocated by [Jeukenne et al. (1976)] is then already
converged at the two-hole-line level. The conclusion is therefore appropri-
ate that it is possible to obtain convergence for the energy per particle for
a given realistic interaction. This observation does not say much about the
quality of such calculations for other quantities like the spectral functions
and occupation number, which are easier to generate using e.g. the Green's
function method, as shown in Sees. 16.3.2 and 16.3.3.

So the nuclear saturation problem remains! Several remedies have been
proposed over the years and we will now consider some features of these
proposals. The first is closely associated with the presence of excited states
of the nucleon, in particular the A-isobar, discussed in Ch. 14. Its impor-
tance suggests that it may be necessary to include it on the same footing
as the nucleon. The disadvantage of this strategy is that a lot of informa-
tion is required about the interaction between nucleons and A-isobars for
which few experimental constraints are available. An alternative strategy
is to represent the influence of A-isobars and other nucleonic excitations
by including three- and perhaps higher-body interactions. The occurrence
of such interactions is inevitable if one restricts the quantum Hilbert space
to nucleons. This is illustrated by considering the A-isobar on the same
footing as the nucleon, as was done in Ch. 14. In Fig. 16.23 three nucleons
initially propagate in the medium. Two of these nucleons may exchange
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Fig. 16.23 Diagram illustrating the occurrence of three-body forces when the effects of
A-isobar degrees of freedom are taken into account in the Hilbert space of only nucleons.

a pion which excites one of them to a A-isobar. After another interaction
this A-isobar is de-excited returning to a three-nucleon situation. Only
two-body mechanisms are involved in such a process, but if one restricts
the Hilbert space to nucleons, it is possible to take the process of Fig. 16.23
into account by the introduction of a three-body interaction between nu-
cleons [Fujita and Miyazawa (1957)]. More elaborate versions of this type
of three-body force [Coon et al. (1979)] yield attractive contributions to
the energy per particle [Carlson et al. (1983)]. Since light nuclei require
additional binding beyond the contribution of two-body interactions, such
three-body forces help in getting better agreement for light nuclei. In nu-
clear matter, however, the situation is more complicated since the Coester
band properties suggest that a repulsive mechanism is needed to generate
lower saturation densities that are in accord with the empirical results. For
this reason an additional phenomenological repulsive three-body interac-
tion was introduced by [Carlson et al. (1983)], which was then adjusted to
force the correct saturation properties of nuclear matter, while also fitting
the binding of light nuclei. The procedure yields an improved Hamiltonian
for nuclei but gives up on a deeper insight into the saturation mechanism
of nuclear matter, especially since the origin of the effective repulsion is
somewhat unclear.

An alternative solution to the saturation problem has been pro-
posed, which includes aspects of the effects of relativity [Anastasio et
al. (1983)]. A detailed discussion is beyond the scope of the book and
only a few comments will be given here for completeness. By employing
a straightforward adaptation of the BHF approach, the so-called Dirac-
BHF (DBHF) method gives reasonable saturation properties for nuclear
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matter [ter Haar and Malfliet (1986); Brockmann and Machleidt (1990);
Amorim and Tjon (1992)]. The main physical effect appears to be the
change of the coupling of the so-called u-meson to the nucleons in the
medium. This scalar, isoscalar meson represents to a large extent the phys-
ical exchange between nucleons of two interacting pions, coupled to zero
angular momentum and isospin. Since the actual form of the scalar cou-
pling of the cr-meson to the nucleons is essential in obtaining the saturation
mechanism, it is unclear to what extent it represents the two pion-exchange
processes in the medium. An additional difficulty is the necessity to deal
with the properties of antiparticles and the so-called Dirac sea. Occupation
numbers in this approach tend to be higher [de Jong and Lenske (1996)]
than the ones discussed in the previous section, which are in better agree-
ment with the experimental data, discussed in Sec. 7.8. A positive feature of
relativistic approaches is the correct strength of the spin-orbit interaction in
nuclei when the exchange of the isoscalar vector w-meson is combined with
the cr-meson terms. Further study of higher-order (three hole-line) contri-
butions have so far not taken place to assess the convergence properties of
the scheme.

Experimental data of (e, e'p) reactions have stimulated yet another per-
spective that may be of relevance for the saturation properties of nuclear
matter. A recent analysis of the (e, e'p) reaction on 208Pb in a wide range
of missing energies (up to 100 MeV) and for missing momenta below 270
MeV/c produces information on the occupation numbers of all the deeply-
bound proton orbitals, as discussed in Sec. 7.8. The data indicate that all
the mean-field orbitals are depleted by the same amount of about 15% [van
Batenburg (2001)]. The properties of the occupation numbers suggest that
the main reason for the global depletion of these mean-field orbitals is the
presence of short-range correlations, in quantitative agreement with the
nuclear-matter results for occupation numbers, discussed in Sees. 16.3.2
and 16.3.3 (see also Fig. 16.19) . As we will see in the next chapter, the
effect of the coupling of hole states to low-lying collective excitations in
nuclei only affects occupation numbers of states in the immediate vicinity
of the Fermi energy. A characteristic feature of the short-range correlations
is that the depletion of the mean-field sp strength must be compensated by
the admixture of a corresponding number of particles with high-momentum
components. These high-momentum components have been discussed in
Sec. 16.3.3 (see also Sec. 17.3). Efforts are under way to study these high-
momentum components experimentally [Rohe et al. (2004)]. The admix-
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ture of high-momentum components must take place at energies far below
the Fermi energy. The argument is based on the observation that high-
momentum admixture involves self-energy terms with intermediate 2hlp
states. Two holes on average will have a small total momentum leaving the
intermediate particle state to compensate the external high-momentum of
the self-energy. One expects these components to be centered around an
energy corresponding to 2{eh) — £p- This expectation is completely met by
the results discussed in Sees. 16.3.2 and 16.3.3. We note that the presence
of high-momentum components is crucial in determining the energy per
particle according to Eq. (16.10) and shown explicitly in Fig. 16.21. Re-
sults for the momentum distribution and true potential energy based on the
spectral function show that enhancements as large as 200% for the kinetic
and potential energy over the mean-field values can be obtained for nuclear
matter [Vonderfecht et al. (1993)]. These large attractive contributions
to the potential energy of nuclear matter are mainly from weighting the
high-momentum components in the spectral function with large negative
energies in Eq. (16.10). The location of high-momentum components as a
function of energy is thus an important ingredient in the determination of
the energy per particle as a function of density. So far, the determination of
this location has relied only on quasiparticle properties in the construction
of the self-energy. A self-consistent determination of the spectral function
including the location of the high-momentum strength includes the domi-
nant physics of short-range correlations, as was discussed in Sec. 16.3.3. It
also appears consistent with the experimental observations of the nucleon
spectral function in nuclei as discussed in Ch. 17 and Sec. 7.8.

We now present an argument showing that short-range correlations are
the dominant factor in determining the empirical saturation density of nu-
clear matter. We recall that elastic electron scattering from 208Pb [Frois
et al. (1977)] accurately determines the value of the central charge density
in this nucleus. By multiplying this number by A/Z one obtains the rel-
evant central density of heavy nuclei, corresponding to 0.16 nucleons/fm3

or kp = 1-33 fm"1 as discussed in Sec. 3.3.1. Since the presence of nu-
cleons at the center of a heavy nucleus is confined to s-wave nucleons,
and, as discussed above, their depletion is dominated by short-range cor-
relations, one may conclude that the same is true for the actual value of
the empirical saturation density of nuclear matter. While this argument
is particularly appropriate for the deeply bound 0s± and l s i protons, it
continues to hold to a large extent for the 2s i protons which are depleted
predominantly by short-range effects (up to 15% ) and by at most 10%
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due to long-range correlations [Sick and de Witt Huberts (1991)]. These
considerations demonstrate clearly that one may expect short-range corre-
lations to have a decisive influence on the actual value of the nuclear-matter
saturation density

The implementation of the self-consistent treatment on the spectral
functions is a numerically difficult problem, especially for interactions with
strong repulsive cores. A continuous scheme was employed for the results
discussed in Sec. 16.3.3. In a discrete scheme a representation of the propa-
gator in terms of three poles [Dewulf et al. (2002)] was used, avoiding a full
continuum solution of the ladder equation. The latter approach is equiva-
lent to a continuous version as far as the energy per particle is concerned,
since it requires a reproduction of the relevant energy-weighted moments of
the hole and particle spectral function. This is substantiated by compar-
ing the outcome of the discrete scheme with the continuous self-consistency
scheme [Bozek and Czerski (2001)], employing the same NN interaction.

In Fig. 16.24 the saturation points obtained within the discrete scheme
of [Dewulf et al. (2002)] for the updated Reid potential (Reid93), the Nijml
and Nijmll interaction [Stoks et al. (1994)] and the separable Paris inter-
action [Haidenbaur and Plessas (1984)] are shown [Dewulf et al. (2003)].
The results demonstrate an important and systematic change of the satura-
tion properties with respect to continuous choice Brueckner-Hartree-Fock
(ccBHF) calculations, leading to about 4-6 MeV less binding, and reduced
values of the saturation density, closer to the empirical one. The binding
energy is also shown for the continuous scheme discussed in Sec. 16.3.3, at
two densities (A;̂  = 1-33 and 1.45 fm"1); the error bars are an estimate of
the remaining uncertainty due to incomplete convergence and the non-self-
consistent treatment of some higher order partial waves [Roth Stoddard
(2000)]. A substantial shift in the saturation density for the Reid68 poten-
tial, from the ccBHF value of about 1.6 fm"1, to a value below 1:45 fm"1,
is observed without seriously underbinding nuclear matter.

The present self-consistent treatment of short-range correlations differs
in two main aspects from the ccBHF approach, the latter giving satura-
tion properties essentially equivalent to converged three hole-line calcula-
tions [Song et al. (1998)]. Firstly, hole and particle lines are treated on
an equal footing which is important for thermodynamic consistency. Inter-
mediate hh propagation in the ladder diagrams is included to all orders.
This feature provides, compared to ccBHF, a substantial repulsive effect
in the k < kp contribution to Eq. (16.10), and comes primarily from an
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Fig. 16.24 Nuclear matter saturation points calculated with various realistic NN in-
teractions. The open symbols refer to the continuous choice Brueckner-Hartree-Fock
method. The filled symbols refer to self-consistent results and represent saturation points
calculated in the discrete scheme, except for the old Reid (Reid68) interaction where the
binding energy at two densities is shown in the continuous scheme.

upward shift of the quasiparticle energy spectrum from the inclusion of
E < SF contributions to the imaginary part of the self-energy. The effect
increases with density, and is the dominant factor in the observed shift of
the saturation point. Secondly, the realistic spectral functions, generated
from the self-consistent procedure outlined in Sec. 16.3.3 and used in the
evaluation of the in-medium interaction F and self-energy S, are in agree-
ment with experimental information obtained from (e,e'p) reactions. For
the Reid93 interaction at kp = 1.37 fm"1 Zp = 0.74 is found for the quasi-
particle strength at the Fermi wave vector, whereas the hole strength for
k — 0, integrated up to 100 MeV missing energy, equals 83%; similar val-
ues are found for the other interactions and confirmed by the calculations,
discussed in the previous section for the Reid68 potential. The depletion
of the quasiparticle peaks is primarily important to suppress unrealistically
large pairing instabilities around normal density. The improved treatment
of the high wave-vector components does affect the binding energy, through
the k > kF contribution to Eq. (16.10). This feature, studied in [Dewulf
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et al. (2002)], provides a sizable attraction, but is smaller than the afore-
mentioned repulsive effect. Self-consistent calculations, including pp and hh
propagation, also yield much better results for the Hugenholtz-van Hove
theorem [see Eq. (16.15)] than BHF results.

The above information indicates that a sophisticated treatment of short-
range correlations lowers the ccBHF saturation densities, bringing them
closer to the empirical one. It remains to be understood why apparently
converged hole-line calculations [Song et al. (1998)] yield higher saturation
densities. The three hole-line terms obtained in [Song et al. (1998)] seem
to imply reasonable convergence properties compared to the two hole-line
contribution. One may therefore assume that these calculations provide
an accurate representation of the energy per particle of nuclear matter, as
a function of density for nonrelativistic nucleons and two-body forces. At
this point it is important to identify an underlying assumption when the
nuclear-matter problem is posed. It asserts that the influence of long-range
correlations in finite nuclei and nuclear matter are commensurate. It has
been suggested in [Dewulf et al. (2003)] that this underlying assumption is
questionable. The argument is based on the special properties of the long-
range correlations associated with pion-exchange interactions as presented
in Ch. 14. These attractive long-range correlations contribute at transferred
wave vectors of about 1 to 2 fm"1, as illustrated in Fig. 14.7. Ring diagram
summations of attractive interactions yield a coherent sum (all terms are
attractive), and can be calculated by expressions similar to Eq. (14.67)
for the correlation energy of the electron gas. For interactions different
from the Coulomb one, the integral over Q generates no contribution for
small values on account of the dQ Q2 term. The pion-exchange terms do
not suffer this fate, since they occur at finite Q, and are amplified due to
momentum conservation in an infinite system. It is unclear whether these
terms are actually provide a similar physical consequence in finite nuclei,
where momentum is not a good quantum number. The nuclear matter
response with pion quantum numbers, discussed in Sec. 14.5, indicates that
low-lying strength should accumulate. The lack of such collective states
in nuclei with pionic quantum numbers suggests that the relation between
nuclear matter and finite nuclei, at least for these degrees of freedom, is far
from trivial. Experimental data exhibit no enhanced response of the pion
channel over that of the rho [Carey et al. (1984); Taddeucci et al. (1994);
Wakasa et al. (1999)], as demanded by nuclear matter calculations (see
Sec. 14.5). Given this inconsistency, it is not certain that binding-energy
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contributions of long-range pion-exchange terms play the same role in finite
nuclei. It may therefore be necessary to excise them from nuclear-matter
calculations to establish contact with finite nuclei. In other words, the
original nuclear matter problem may have been ill-posed and only the effects
of short-range correlations should be employed to connect the infinite with
the finite system. For more details we refer to [Dewulf et al. (2003);
Dickhoff and Barbieri (2004)].

The present overview by no means exhausts all the contributions that
have been made to the subject of the nuclear-matter saturation problem.
We have focused on giving an overview of some of the important historical
developments and included a somewhat more in-depth discussion of those
features that have come to light when using the Green's function method.

16.4 Exercises

(1) Evaluate the derivative of the real part of the polarization propagator,
as required in Eq. (16.21)

(2) Determine the real part of n / for rs = 2, based on its imaginary part,
as plotted in Fig. 16.10. A simple fit to the imaginary part can be made
to facilitate the numerical application of Eq. (16.33). A scaled version
of the noninteracting term should adequately represent the correlated
polarization propagator in the usual domain of the ph continuum. For
larger energies, the remaining strength can e.g. be represented by a
broad gaussian. Determine the polarization propagator and compare
with the calculation, which is based on employing U^(q,E).

(3) Verify Eq. (16.46) by performing the steps suggested in the text.
(4) The product of step functions in Eq. (16.58) .is sometimes referred to

as the Pauli operator Q. For practical calculations it is necessary to
eliminate the dependence of Q on the angle between K and q so that
a partial wave decomposition of Eq. (16.58) can be applied. This is ac-
complished by constructing the so-called angle-averaged Pauli operator

Q(K, q) = - 1 / dng 0(1*72 + q\- kF)8{\K/2 - q\ - kF). (16.67)
4TT J

Evaluate Q for values of \K\ larger and smaller than 2&F- Distinguish
also for different regions of \q\.





Chapter 17

Dynamical treatment of the
self-energy in finite systems

Some aspects of the sp propagator in a finite system have been presented
in Ch. 11. The second-order approximation to the self-energy, with its
self-consistent implementation, provides a good description of important
observables of atoms. In Sec. 13.5 we identified the main missing ingredients
in describing the spectral functions of atoms. In the present chapter we
concentrate on the spectral functions of nuclei.

Some properties of light nuclei can nowadays be calculated in an exact
manner with different techniques starting from a realistic NN interaction.
An example is the application of several methods to the calculation of the
ground-state energy of 4He, reported in [Kamada et al. (2001)]. The low-
lying states of nuclei up to A = 10 [Pieper et al. (2002)] can be obtained
with the Green's function Monte Carlo method [Pieper et al. (2001)]. Cal-
culations using the no-core shell-model approach, have yielded results for
12C [Navratil et al. (2000)]. This body of work is able to explain many as-
pects of the low-energy spectra of light nuclei, starting from a realistic NN
interaction. Many details are further improved by including a three-body
interaction between the nucleons. In all cases studied so far, the calculated
energy of the ground state is always above the experimental number when
only two-body interactions are included: a clear indication for the need of
an overall attractive three-body force. While great advances in this area
are reported, it should be pointed out that the reliance on large scale com-
putational efforts, precludes a detailed understanding of the physics that
makes nuclei "tick". Moreover, the difficulty of accounting for some of the
low-lying collective states in 12C [Navratil et al. (2000)] points to the need
for a better understanding of the physics ingredients that play a role at low
energy in these nuclei. A good perspective on the relevant physical ingredi-
ents can be gained from the Green's function approach, which can be quite
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easily applied to heavier nuclei as well. Such insights will be developed for
the sp propagator in the present chapter and for excited states in Ch. 21.

Compared to atoms, the explanation of the experimental data for nuclei,
related to the sp propagator, is considerably less straightforward. Experi-
mental data were presented in Sec. 7.8 and some qualitative features were
touched on in Sec. 11.5-2. When starting from a realistic NN interaction,
one can only arrive at meaningful results if short-range correlations are
properly treated. The proper diagrammatic procedure was given in Ch. 16
for nuclear matter. The self-energy in a finite nucleus should therefore also
include the set of ladder diagrams, with repeated interactions between par-
allel propagators. A completely self-consistent solution of this technically
difficult problem is not yet available. We will examine various intermediate
steps studied so far.

The low-energy spectral strength will be explored for "closed-shell" nu-
clei in Sec. 17.1. The influence of collective low-lying excitations is clar-
ified by employing various descriptions of the intermediate states in the
self-energy. The second-order method with the interaction given by the
G-matrix, ensuring a proper treatment of short-range correlations, is the
simplest one. Collective effects at low energy can be described by including
the interaction between the intermediate 2plh (Ip2h) states in the self-
energy. In Sec. 17.2 an illustrative study of open-shell systems will be
presented. For nuclei with either closed proton or neutron shells, the open-
shell nucleons of the other type exhibit properties that are very reminiscent
of the pairing properties of superconducting or superfluid systems. The self-
consistent inclusion of ladder diagrams with emphasis on their low-energy
properties, can describe many of these. We will transform pphh propaga-
tion in the finite system to an RPA-like eigenvalue problem. In turn, the
resulting self-energy and the corresponding solution of the Dyson equation
will exhibit interesting new features that are not encountered in closed-shell
systems. The interaction employed in the analysis is quite schematic, since
other features associated with the sp strength are expected to exhibit many
similarities with closed-shell systems.

The consequences of short-range correlations in finite systems are quite
similar to those in infinite systems. Their calculation is however, techni-
cally much more difficult. We will explain some of these issues and the
results of available Green's function calculations in Sec. 17.3. The chapter
is concluded with a brief overview of the emerging understanding of the
properties of protons in nuclei in Sec. 17.4. The summary is based both
on the available experimental data associated with the (e, e'p) reaction and
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theoretical calculations employing the Green's function method.

17.1 Influence of collective excitations at low energy

17.1.1 Second-order effects with G-matrix interactions

To understand the influence of the low-lying excitations, which are respon-
sible for the observed fragmentation of the sp strength in nuclei, we employ
a two-step procedure. First is the treatment of short-range correlations
by the summation of ladder diagrams. The inclusion of low-energy exci-
tations in the self-energy is expected to require only the consideration of
sp orbits in the immediate vicinity of the Fermi energy. For this reason, it
is convenient to exclude those states in the construction of the G-matrix
interaction. The space spanned by the latter states is referred to as the
model space. The effective interaction in the model space then reads

{ap\ G(E) |7«5) = {aft V |7tf)

^ ~ z° ~ £T

The step functions indicate that only sp states outside the configuration
space M should be included in the summation. The sp quantum num-
bers a — d are all inside the space M. In practical calculations, it has so
far been impossible to include self-energy contributions to the intermedi-
ate states. Although the energy dependence of the G-matrix is significant
for the calculation of the depletion of the mostly occupied orbits, as dis-
cussed in Sec. 17.3, the early calculations of the self-energy did not treat it.
Further simplifications were introduced by adopting a G-matrix, originally
calculated in nuclear matter. By extracting its operator structure [Dickhoff
(1983)], it is possible to employ this effective interaction inside the space M.
It should be confined to reasonable excitation energies in the vicinity of the
Fermi energy, [Brand et al. (1991)] in order to avoid the double-counting
that occurs, when M becomes too large1. In addition, the restriction of the
space M allows to avoid the treatment of the weak energy dependence of
the G-matrix.

1The precise effect of the Pauli principle in the finite system is not treated in this
procedure. Hence, it is wise to include only those states, which are not well treated in
nuclear matter, i.e. those near the Fermi energy, since the G-matrix is calculated with
a gap in the sp spectrum according to Eq. (16.62).

(17.1)
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The second step in the model-space approach employs the G-matrix
interaction in the second-order self-energy

£<2) (7,6; E) = i ^ (7/x| G \eu) (eu\ G \5fi) (17.2)

f 6(F - e)9(F - i/)l9(/i - F) 6{e - F)6{v - F)0(F - fi) )
| E - (ee -I- ev - eM) - IT] E - (e£ -I- £„ - eM) + irj J '

where the summation over the sp quantum numbers is restricted to the
space M. A harmonic oscillator basis can be employed to approximate the
mean-field sp propagators. The sp energies can be chosen such that, upon
solution of the Dyson equation, they generate the experimental energies
associated with the largest spectroscopic factors. The procedure should
only be used for states in the immediate vicinity of the Fermi energy. For
others a simple harmonic oscillator spacing with an oscillator length appro-
priate for the particular nucleus is adequate. Such a calculation solely fixes
the position of the major fragments. Their strength and the position and
strength of the other fragments are predictions.

The qualitative features of the solutions of the Dyson equation with an
energy-dependent self-energy, have been discussed in Ch. 11. Applications
of the self-energy in Eq. (17.2) will be presented for 48Ca. In Fig. 17.1 the sp
strength distribution for proton removal from 48Ca in £ = 2 states is com-
pared to the available experimental data [Kramer (1990)]. The theoretical
results are labeled by "Second Order" in the figure. The normalization is
such that if a single state carried all the strength, the peak height would be
2j +1. The first peak describes <i§ removal, whereas most of the other frag-
ments represent d| strength. The difference between the fragmentation of
these two sp orbitals characterizes the basic features found in experiment.
For an orbital which is very near the Fermi energy, like the d|, fragmen-
tation of strength to all 2plh and Ip2h-like states occurs such that the
distribution contains a single large fragment, and hundreds of tiny con-
tributions spread out over the whole energy domain covered by the 2plh
and Ip2h states. The result is related to the position of the df sp energy,
which lies in between the 2plh and Ip2h states with large energy denom-
inators in Eq. (17.2), and yields a large spectroscopic factor, according to
the discussion of Sec. 11.3.1 (the derivative in Eq. (11.23) is small). In the
example of the second-order self-energy calculation, the theoretical strength
in Fig. 17.1 for the df peak is 0.73 (peak height divided by 2j +1), whereas
experimentally it is 0.56. The total occupation number in the calculation
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Fig. 17.1 Distribution of sp strength for i = 2 proton removal from 48Ca. Exper-
imental data are from [Kramer (1990)]. Theoretical results are displayed for various
approximations to the self-energy, as discussed in the text.

is 0.89 with 0.80 residing in the experimentally accessible domain. This
implies the presence of a tail of about 10% of sp strength at higher missing
energy [Brand et al. (1991)].

For an orbital, which in mean field starts to overlap with the domain of
Ip2h states, like the d\ state, the situation is already substantially different.
The energy denominators in Eq. (17.2) are now smaller for the eigenvalues
near the (if sp energy. The derivative of the self-energy is typically large,
resulting in reduced strengths. As a result, the d§ orbital in 48Ca is strongly
fragmented, which is in accord with experiment. More deeply bound sp
orbitals acquire even more fragmentation and are correspondingly more
spread in energy [Brand et al. (1991)]. The calculations of the strength
distribution, using the Dyson equation for a finite nucleus, are thus capable
of explaining many of the qualitative features in the strength distributions
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that are observed in the (e,e'p) reaction.
To understand the implications of the quantitative comparison of theory

and experiment, it should be realized that the calculations of [Brand et al.
(1991)] used a sp space, which included all shells below the Fermi energy
and three major shells above. In this space all sp strength is assumed to
reside. Consequently, the spread of sp strength resulting from solving the
Dyson equation corresponds roughly to one hundred MeV above and below
the Fermi energy. Note that the effect of short-range correlations at the sp
level is not properly taken into account, since the coupling of the sp motion
is truncated at about 100 MeV above the Fermi energy, reflecting the size
of the model space. As a general conclusion of this work on 48Ca, it is
found that the total strength in the experimentally accessible domain in
the (e,e'p) reaction is overestimated by about 10-15%, while the shape of
the strength distribution is already reasonably described. The background
contribution to the hole strength, i.e. the strength which is not contained
in the area of the main peak, is of the order of 10%. This is in agreement
with the experimental data for the 2s\ in 208Pb, discussed in Sec. 7.8.

17.1.2 Inclusion of collective excitations in the self-energy

The comparison between the second-order results and experiment in
Fig. 17.1 also shows that stronger fragmentation in the theoretical cal-
culation, at low energy, is required. This can be achieved by improv-
ing the description of the intermediate 2plh and Ip2h states in the self-
energy [Rijsdijk et al. (1992)]. The second-order expression for the self-
energy [Eq.(17.2)] can also be graphically represented by the time-ordered
diagrams in Figs. 17.2a) and b). In these diagrams the lines represent the
mean-field propagators discussed above. We note that additional interac-
tions between the individual lines, which may produce collective pp, ph, or
hh pairs, are missing.

An improved description of these intermediate states can thus be at-
tempted by including the interactions between the three intermediate lines.
Examples are given by the diagrams in Fig. 17.2c),d) and 17.2e),/). The
simplest description of diagrams 17.2c) and d) allows the interaction be-
tween the two particles, or two holes, to act any number of times without
changing the direction of the propagators. This series is summed by the
TDA for the pp and hh propagator separately. For the pp propagator one
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Fig. 17.2 Second-order self-energy terms represented by time-ordered diagrams a) and
6). Extensions are made by including TDA or RPA correlations in the pp (hh) propagator
(diagrams c) and d)) or ph (hp) channel (diagrams e) and /)) . For nuclear systems, the
G-matrix inside the model space replaces the dashed lines.

obtains
rpA+2,n*rpA+2,n

G?n°,A7.^EE_ (^_^ )+ i [ ) a.fi.yOF

(17.3)
and for the hh propagator

rpA~2,mrpA~2im*

ffla,M,^ = - E £ "* ^ , a . a,0,y,6<F,
m h, - (£/0 - Him ) - IT]

(17.4)
according to one of the exercises at the end of the chapter. The energies
EA±2 - EQ are the solutions of a diagonalization of the interaction within
the space of two-particle or two-hole states respectively. The coefficients
Tag '" are the components of the corresponding n-th eigenvector. For the
interaction in this pp(hh)TDA calculation the same G-matrix interaction
was adopted as in the calculation with self-energy, given by Eq.(17.2). Such
an approximation should provide a reasonable estimate of the pp(hh) cor-
relation effects in the self-energy. By replacing the noninteracting pp(hh)
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propagators by the pp(hh)TDA ones of Eqs.(17.3) and (17.4), one generates
for the diagrams c) and d) of Fig. 17.2, the combined expression

-. ( pA+2,n*-pA+2,n
yTDAi o.F\_}L) V ^ L_^l ill

l i « F , n ' ' n ~ 0 I ~ K> ^

-pA-2,m-p^-2,m* ~\

^m--W-^-2)-^)-^/' ( }

with

r l+ 2 ' "= E <a«|G|H^+2>n (17.6)
H>F,u>F

and

r l" 2 'm= J2 {an\G\^)T^-2'm. (17.7)
lx<F,v<F

The Dyson equation is then solved with this approximation and the results
are labeled by pphhTDA in Fig. 17.1.

Alternatively, one may consider the collectivity in the ph channel, by the
summation of diagrams 17.2e) and / ) . Including only forward (backward)
diagrams in e) / ) , the ph(hp)TDA propagators are given by

(17.8)
and

rp A, m rp A, 771 *

-""'"""•'^-Ss-^-V*, -<"'•'>'•
(17.9)

It should be noted that three independent types of excitation can occur,
i.e. neutron particle - proton hole, proton particle - neutron hole, and a
mixture of neutron particle - neutron hole and proton particle - proton hole
with isospin components Tz = l, -1, and 0, respectively. In nuclei with even
N and Z, low-lying collective states are observed with angular momentum
and parity 2+ and 3~, which may be interpreted as surface vibrations of
quadrople and octupole type. These T2=0 collective phonons are especially
important as their coupling to the sp motion is an important source of
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fragmentation of spectral functions at low energies. Using the ph correlated
propagators of Eqs. (17.8) and (17.9), the self-energy becomes

1 f -nA+,n*-pA+,n
yTDA( o. T?\ - l ) ST ° M 0*

+ V — - ^ \ (17 10)

with

C = £ (<*«\G\i*>)T&n (17.11)
V>F,K<F

and

?t'm= £ (^\G\fiu)T^m- (17-12)
V<F,K>F

This self-energy is subsequently used to solve the Dyson equation, and the
results are labeled by phTDA in Fig. 17.1. Replacing I I ^ with UTDA

or HRPA in the second-order self-energy is somewhat ambiguous when ex-
change diagrams are included. The factor | in the second-order term re-
flects the pair of equivalent fermion lines in th diagram. This equivalence
no longer pertains in higher order. Keeping the factor of \ therefore under-
estimates the effect of third and higher-order terms, while eliminating it,
overestimates the second-order contribution. A solution to this conundrum
is possible, but requires the development of additional formalism related to
Faddeev's solution of the three-body problem. Such a method is reviewed
in [Dickhoff and Barbieri (2004)].

It is tempting to try to add up the effects of pp and ph correlations.
Unfortunately, this introduces a serious double-counting problem, which
cannot be remedied by subtracting the double-counted second-order con-
tribution. The latter term generates an incorrect energy dependence of the
self-energy in certain energy regions. This invalidates the solution process
of the Dyson equation. At energies close to the poles of the second-order
self-energy, the slope of the total self-energy has the wrong sign. On ac-
count of the sign problem it is not possible to arrive at solutions that can be
properly normalized. This can only be avoided by using self-energy contri-
butions, which have intermediate states that can be written as propagators
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themselves, as in the usual Lehmann representations. All terms considered
here (separately) fulfill this criterion.

A more complete description of excited states is provided by the RPA,
discussed in Ch. 13 and 14 for ph states and in Ch. 15 for pp and hh states.
It is well known, e.g. from analytic solutions of schematic models, that the
collectivity of excitations is more pronounced in the RPA than in TDA, as
illustrated in Sec. 13.3. For these reasons, and to obtain a better estimate
of correlation effects in E, calculations can also be performed with the pphh
and the phRPA propagators instead of the TDA ones. By proceeding in
the usual manner from the material in Sec. 15.1, it is possible to arrive at
the eigenvalue problem for the pphh RPA (see one of the exercises at the
end of the chapter). The pphhRPA propagator can be written as

r>J4-j-2,n* r>A-+-2,n r>A — 2,m r>A — 2,m#

I . E _ { E A + 2 _ EQA) + ir] 1 . E _ { E A _ E A - 2 } _ ir]^ <•*)

where the pairs a,/3 and 7,<5 refer to either both particle or hole states.
The self-energy is then given by

-, f \A+2,n*\A+2,n
yRPA(n a . m . 1 V ^ aK 0K

AA-2,mAA-2,m* ~\

*S.*-w-**)-«.)-«,}-(17-M)

with

Ai+2 '"= £ < H G M < + 2 ' n (17.15)
H,v>F,n,v<F

and

A£T2'm= £ (aK\G\^)RA-2'm. (17.16)
H,v>F,n,v<F

The energies E£±2 - EQ and amplitudes R^2'n are now the eigenval-
ues and the (RPA) normalized eigenvectors of the diagonalization of the
interaction in the combined space of two-particle and two-hole states.
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If, on the other hand, the ph correlations are improved, one employs
the phRPA propagator

URPA(a,p;1,8;E) =

^E-iEA-E^ + ir, 2^oE-(E£-EA)-iV' { ' >

where the pairs a, 7 and (3,5 refer to either ph of hp combinations2. The
corresponding self-energy reads

1 f AA+,n* \A+,n

A A —,m A-4 —,m* I

with

A«M'"= E MGMi&" (17-19)
J/>F,K<F;I/<F,K>F

and

A ^ ' m = E <aK|G|H^m- (17-20)
i/>F,K<F;i/<i;',K>F

The eigenvalues, ±(E£ - ^ ) , and eigenvectors R^'p, are obtained by
diagonalization of the interaction in the combined space of ph and hp states.

It should be noted that serious problems are encountered with these ex-
tensions of the second-order calculation. They arise, especially in phRPA,
when the RPA correlations are so strong that the lowest solution for some
angular momentum and parity, has imaginary eigenvalues and the ampli-
tudes cannot be properly normalized. This happens for the 3~ phonon,
which is crucial for the fragmentation of the \~ strength in 48Ca. As the
imaginary solution can not be included in Eq. (17.20), and has to be dis-
carded, the phRPA method is unsatisfactory here. For the same reason the
lowest 1+ states in 46K en 50Sc become unstable in pphh RPA and there-
fore must also be discarded in that method. Such problems would disappear
when a self-consistent approach is adopted. This seems physically obvious:

2We have slightly modified the notation from the previous chapters to label the TDA
amplitudes with T and the RPA ones with R for both the pp(hh) and ph propagators.
This should not lead to any confusion.

(17.18)
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Table 17.1 Occupation numbers for 48Ca

CJhpll y ( 2 ) yTDA yRPA yTDA yRPA

Oil .967 .968~ .963 " .965 .952

Opj .955 .956 ~ .944 ~ .950 .930
Opl .951 .951 .939 ,944~ .920
Orff ~ .920 .925 .915 .898 " .867
Odf .877 .885 .891 .842 .780
lg i .869 .860 .907 .818 .773
0/1 .060 .063 .048 .082 .120
0 / | .048 .044 .043 .064 .092
lpf .033 .031 .036 .049 .063
lpi .030 .02"8~ .035 ' .042 .050

Og Id 2s .014 .014 " .019 ~ .018 .026
~0/t 1/ 2p ~ .006 .006 .OPT" .007 .009

Total 20.053 20.093 20.125 20.165 20.370

Occupation numbers for relevant shells in 48Ca in various ap-
proximations.

the collectivity that is generated in RPA equations, using mean-field sp
propagators, will be damped when the fragmentation of the sp strength,
which is induced by the coupling to collective states in the self-energy, is
taken into account from the beginning. For extremely collective excitations,
which are prevalent in open-shell systems, only a completely self-consistent
approach seems viable, as illustrated in Sec. 17.2. One should thus keep
in mind that the results with the RPA extensions, are only meant to give
an indication as to how large the effect of collective correlations might be
beyond the TDA description.

At low energies, the relatively pure one-hole states with valence shell
quantum numbers are immediately identified by their large spectroscopic
factors. For protons in 48Ca this applies to the ls£ and ldf shells. For the
| ground state of 47K a spectroscopic factor of 1.07 was deduced from
the (e, e'p) data [Kramer (1990)] and a value of 2.26 for the 3/2~ state at
0.50 MeV. As discussed above, the calculation with the second-order self-
energy yields about 40% larger values. Within the whole experimentally
investigated energy region however, the total calculated strength for the s
and d shells was only about 10% larger then deduced from the data. In
Fig. 17.1 it is shown that indeed a more satisfactory fragmentation of I — 2
spectral strength in the low-energy region is obtained, when correlation
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Fig. 17.3 Proton shell occupation probabilities deduced from a comparison of the
present calculation and the (e,e'p) data [Kramer (1990)]. The figure displays the calcu-
lated values with the pphhTDA correlations in the self-energy, multiplied by a factor 0.9
to simulate the effect of short-range correlations.

effects beyond the second-order self-energy are included. The main peaks,
which still stick out clearly in the calculation with E'2 \ are further reduced
and the strength of the weaker fragments is increased by these correlations.
It appears however, that the effects are overestimated by the RPA approach
and underestimated in the phTDA results.

The occupation probabilities for the various orbitals can be obtained by
integration of the hole spectral function [see Eq.(7.16)]. Experimentally, the
hole strength has been determined within a limited energy region. For the
valence £ = 0 and 1=2 shells, the main portion of the total strength falls
within the experimental window. In all theoretical approaches discussed
here, the calculated extra hole strength at higher energies is only 5-10% of
the 2j +1 sum rule for the Is and only 10-15% for the Od shell. For the more
deeply bound shells a mere half, or less, of the total hole strength is within
the range of the experiment, and the total calculated strength within this
energy interval varies strongly with an energy shift of a few MeV in the sp
energy of the orbit. A comparison of total observed and calculated strength
for these orbits then becomes rather arbitrary.

As shown in Fig. 17.1, the primary effect of correlations in the self-
energy is a redistribution of the spectral strength at low energies, i.e. at
energies comparable to those of low-lying collective states in even nuclei. To
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what extent the total occupation numbers depend on the method of calcula-
tion is shown in Table 17.1. The occupation numbers for the deeply bound
orbitals do not significantly depend on the treatment of the low-lying col-
lective states, as was anticipated. Figure 17.1 suggests that the pphhTDA
calculation yields the best description of the experimental strength distri-
bution. A further overall reduction of about 10% of the occupation, due
to short-range correlations, must also be anticipated for these nuclei, as
discussed in Sec. 17.3. The overall picture that emerges when an overall
reduction by short-range correlations of 10% is applied to the calculated
occupation numbers with pphhTDA, is actually quite consistent and satis-
factory, as illustrated in Fig. 17.3. The occupation probability of the shells
just below the Fermi level is then about 75% and for the deepest lying
shells about 85%. This outcome is very similar to the analysis for the case
of 208Pb, as presented in Sec. 7.8.

For the major shells above the Fermi level the occupation probability
is about 5-10% and for more remote shells only 1-2%. Also included in
the table is the total number of protons. The violation of proton number
is a typical occurrence when calculations are performed that are not self-
consistent, as discussed in more detail in Ch. 21. A significant quantity
is the jump in occupation numbers at the Fermi level. It is 0.74 for the
pphhTDA. In an infinite Fermi system this jump is just the strength of the
quasiparticle pole which corresponds to the spectroscopic factor, apart from
the spin-factor 2j + 1, of the states at the Fermi level. The difference be-
tween low-lying states in finite nuclei and infinite nuclear matter makes this
comparison not too meaningful however, since the present results indicate
that this jump is very sensitive to the treatment of collective excitations
(see Table 17.1).

17.2 Self-consistent pphh RPA in finite systems

In the previous section, we have studied the influence of ladder diagrams at
low energy in closed-shell nuclei. As for a homogeneous system, the sum-
mation is of course necessary to treat the core of repulsive interactions. As
discussed in Sec. 15.3, the ladder diagrams are essential in describing the
coherence of low-lying pair addition and removal excitations. For finite nu-
clei these low-lying excitations play an essential role in systems with either
proton or neutron closed shells (but not both). These so-called semi-magic
nuclei, have properties that are very reminiscent of pairing correlations for
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infinite systems [Bohr et al. (1958)]. We will use a simplified description of
such open-shell nuclei to illustrate some of the features of a self-consistent
treatment of the sp propagator, which includes the summation of ladder
diagrams in a small configuration space. In turn, the sp propagators are
employed to solve the ladder equation. The scheme corresponds to the self-
consistent summation implied by the considerations of Sec. 9.4. We will
concentrate here only on the low-energy collective features of pair excita-
tions. The effects of short-range correlations are presented in Sec. 17.3.

For the treatment of pair addition and removal excitations we consider
the Sn nuclei (Z = 50). The results of proton removal experiments on
closed-shell nuclei exhibit important modifications of the simple shell-model
picture. Nevertheless, these nuclei only have large fragments of sp strength
(for removal) corresponding to the occupied states. That is no longer true
for semi-magic nuclei, where it is possible to remove as well as add particles
with the same sp quantum numbers with sizable probability to the ground
state. This suggests that the notion of a sharp jump in occupation numbers,
relevant for correlated closed-shell nuclei, becomes blurred in semi-magic
ones. We will see that the Cooper-pair like excitations, obtained from
summing ladder diagrams, leads to the smoothing of the Fermi surface.
For a finite system the Lehmann representation of the tp propagator can
be adapted from Eq. (15.28) by keeping only the discrete contributions

Gpphh{a,a,0,0,E) = ^ i E _ {EA+. _ EQA) + (r]

^(^\ay0,\^)(*t2\a«>aa\H) ,„.„
\> E-{E*-E*-*)-ir, • ( 1 7 - 2 1 )

The dressed but noninteracting approximation to this propagator can be
generated by a convolution as in Eq. (15.35). For the present case it can
be written in the following way

Gf
pphh(a,a';PJ';E) =

^ , E- {(££+1 - E£) + {Eit1 - E*)} + iV

^ E- {(E£ - E£~l) + (E£ - E*r1)} - ir,

- ( 7 <—><*)> (17-22)
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using the Lehmann representation of the sp propagator [see Eq. (7.10)] and
the usual contour integrations. The ladder equation for the propagator that
can be used to study the A ± 2 eigenvalue problem, is given by

Gpphh(a,a';P,pl;E)=Gf
pphh(a,al;P,/3l;E) (17.23)

+ i E Gf
pphh(a,a';7,1';E)(11'\V\6d')Gpphh(6,6';f3,f3';E).

The factor j appears because the full nondiagonal form of Ghh is used
instead of the clipped version, as in Eq. (15.11). Before deriving the eigen-
value problem associated with Eq. (17.23), it is instructive to complete the
steps that are required to construct the self-energy that includes these dia-
grams. The self-energy is diagrammatically given in Fig. 9.13. We recognize
that the last term in the figure merits further clarification. By consulting
Fig. 15.5, it becomes clear that it is generated by closing the second contri-
bution to Tpphh with a (dressed) sp propagator. In order to construct the
self-energy contributions from Eq. (17.23), it is therefore useful to write the
ladder equation for the vertex function [see Eq. (15.14)] as follows

(ata'\ Ypphh{E) |/3/?') = (aa'\ V \0) + (aa'\ ATpphh(E) |/?/J') (17.24)

= {aa'\VW) + \ E {<*<*'\V\i1) G^hi-y^'iS^E) (SS'\V \/3/3').

We will employ the second version in Fig. 15.5 of ATpphh since the inter-
mediate Gpphh has a Lehmann representation that can be used to perform
the energy integration for the self-energy. Indeed, we find from Eqs. (17.24)
and (17.21)

(aa'\ATpphh(E)\p/3') =

l- Y, (aa'\ V |ee') Gpphh(ee'; 6ff;E) (00'| V W) (17.25)
ee'00'

A n+ A n+ * Am- Am-*

-^E-{EA+2-E*)+iV ^E-iEA-E^-ir,'

where

Kt> = ^< a a ' l y l £ e '> (*o1 w | v ^ + 2 > (i7.26)
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and

Ka> = \ E (aa'\ V l«0 «~2\ ac'a* K) • (17-27)

The key to making the separation of ATpp^h into forward and backward
propagating parts, is thus provided by using the Lehmann representation
for Gpphh in the last equality of Eq. (17.25).

The self-energy can now be written as (see also Fig. 9.13):

ZL(7,5;E) = -(7\U\5) (17.28)

f dW

— E <7/4 ArppWl(£;') |^) G{y, K E'-E),
li,v

where the L superscript is a reminder that only ladder diagram contribu-
tions are included. Due to the decomposition of &Ypphh into parts with
poles in different halves of the complex iJ'-plane [see Eq. (17.25)], it is pos-
sible to perform the energy integrations for the self-energy in Eq. (17.28)
explicitly, when the corresponding decomposition for the sp propagator is
employed as well. Using a similar notation for the various self-energy con-
tributions as in Sec. 16.3.1, we find

EL(7,«5;£;) = Eu(1,8) + i:HF(1,S) + Ai:i(1,S;E) + A^(1,S;E), (17.29)

where the energy-dependent contributions are given by

/\n+ \n+* 1-* l-

i ( 7 > ^ ) \ ? B ,^ - { (^ + 2 -^ ) - (^ -^- 1 ) } + ^ (1?-30)

and

fcm- /\jn-* zk + zk+*

A^,S;E)= ^ E {{EA EA-1" "*£ EA)} , (17.31)
respectively. The notation for the addition and removal amplitudes is fa-
miliar e.g. from Eqs. (9.39) and (10.8). The derivation outlined above,
is quite general. Although it assumes, for simplicity, discrete sums in the
different Lehmann representations, it is straightforward to include the con-
sequences of a continuous distribution of poles, as in an infinite system.
The ingredients in the self-consistent scheme based on ladder diagrams,
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correspond either to amplitudes related to the removal (addition) of one or
two particles from the correlated ground state to the appropriate state in
the A - 2 or A - 1 (A + 2 or A + 1) system, or to the associated energy
differences between these states and the ground state energy E$.

The application of Green's function techniques to open-shell nuclei is
instructive for the following reason. We note that sp orbitals in closed-shell
nuclei exhibit substantial deviations from mean-field occupation numbers,
as discussed in Sec. 7.8. This raises the question whether there is any fun-
damental difference between closed-shell and open-shell nuclei. We have
learned that the sp strength distribution is influenced by different energy
scales. At low-energy, there is the mixing of sp states with collective excita-
tions (see Sec. 17.1.2). Mixing with high-lying excitations is facilitated by
the strong core in the nucleon-nucleon interaction, as discussed in Ch. 16.
The latter mixing takes place on an energy scale that is much larger than
the one relevant for distinguishing closed- and open-shell nuclei. Even the
mixing to collective giant resonances, detailed in Ch. 21, is not expected
to lead to significant differences. This expectation can be based on the
smooth dependence of the position and sum-rule strength of the observed
giant resonances. The true difference between open- and closed-shell nuclei,
involves the extreme forms of collective behavior at low excitation energy in
open-shell nuclei, like vibrations, rotations, and pairing phenomena, which
are mostly absent, or at least less prevalent, in closed-shell ones.

The self-consistent inclusion of ladder diagrams is also a logical exten-
sion of the discussion of bound-pair states in Sec. 15.3, since the effect of
the bound states must be included in the sp propagator through application
of the Dyson equation. For illustration purposes, it is sufficient to limit the
calculation to one major shell of sp orbitals. We will employ a very simple
pairing force, characterized by one coupling constant G, which acts only
between identical nucleons coupled to angular momentum zero. The space
for the neutrons consists of the Ogi, ldf, 2s±, ldf, and O/î - shells, which
are relevant for the low-lying neutron excitations in Sn nuclei.

Various simplifications of the above scheme can be applied with the
restrictions to a small space and a simple interaction. For the noninteracting
two-particle propagator, we can write

Gf
pphh(a,a';f3,p';E) = {5a05a,0, - <5a/3<<W) (17.32)

x Iv-y- I*S+PI#-T v^y- i*ri2i-#-|2 1
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where the sp amplitudes z and energies e correspond to solutions of the
Dyson equation. The relevant Lehmann representation of the two-particle
propagator reads [see also Eq.(17.21)]

Gpphh(a,a';pl3';E) =

^ [Y™+(aa')}*Y™+(0f3') ^ Y?~W)VT{<*<*')]* n _ _
2-, E-E?++ir, ^ E-Er-iri ' ( j

m+ li ' m— IJ i

where the two-particle amplitudes are denoted by

> T W ) = «+2\4a0- l*o > (17-34)

and

rL™-(aa') = < ^ | 4 4 ' K~2>- (17-35)

The corresponding relative energies are denoted by

Ern+ = EA+2 _ £A ( 1 ? 3 6 )

and

E?~ = E* - Ei~2 (17.37)

in Eq. (17.33). The subscript L serves as a reminder that the ladder ap-
proximation remains an approximate solution to the problem. Introducing
the notation a = {rialajama) = (ama) and a = (na£aja -m a ) = (a-ma) =
(ama). The Y amplitudes in Eq. (17.33) involve identical sp states that can
be coupled to angular momentum zero, yielding

GJ
p;h°h(aa;bb;E)= (17.38)

5 Z ] C ( J o ma Ja ma \0 0)( jb mb jb mi, | 0 0 )Gpphh(a,a; (3/3; E ) .
ma mp

We will then write the J = 0 component of Eq. (17.33) as

C (,, hh- n V [Y?+(aa)}*Y?+(bb) v Y?~(bb)[Yr(aa)}*Gpphh(aa,bb,E)-^ _ - ^ _ _ ,

(17.39)
suppressing the J = 0 label and slightly modifying the notation for the Y-
amplitudes. Inserting this form o£Gpphh and the noninteracting propagator
[see Eq.(17.32)] into the ladder equation [Eq.(17.23)], and proceeding with
the usual steps, one obtains an eigenvalue equation for the energies E^,
which correspond to the excitation energies of the (A ± 2)-particle system
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relative to the ground-state energy of the A-particle system. The resulting
eigenvalue equation reads

[ \zk+ 2| n+ |2
Z_/ / -* pm± _ k+ _ pn+
k+ n+ ^L(i+1) ta(i) ta{i)

£ £ J^ | 2 ' g ) 1 2 1 (aa\ V=° W YZfr^W
k- n- ^L(»+l) £o(«) ca(i)J

= yL7ti)M- (17-40)

The energies from the Dyson equation are denoted by £™±. A label i
has been included to emphasize that one has to proceed in an iterative
manner. One cycle involves diagonalizing the eigenvalue equation (17.40),
then calculating the self-energy (Eq. (17.29)), and subsequently solving the
Dyson equation, as discussed in Ch. 11. The process is continued until self-
consistency is achieved. A practical constraint, on the number of eigenval-
ues of the Dyson equation that are carried over to the next iteration, must
be imposed. Most of these eigenvalues carry little or no strength and it
makes sense to consider the binning procedure, also discussed in Ch. 11,
to keep the numerical implementation managable. The two-body matrix
elements required for this calculation are given by

(aa\ VJ=0 \bb) = -^GV(2ja + l)(2ji + l), (17.41)

where the coupling constant G can be adjusted to describe certain experi-
mental properties and typically has a strength around 20 MeV/A.

Self-consistent eigenvalues of Eq. (17.40) are shown in Fig. 17.4, while
corresponding solutions to the Dyson equation are shown in Fig. 17.5. Note
that for each value of the coupling constant G, a self-consistent result, as
outlined above, has been obtained. The solution of Eq. (17.40) can en-
counter a serious problem when the interaction is too attractive. If that
is the case for a given G*pphh, the eigenvalues corresponding to the ground
states of the A ±2 systems become complex, a well-known feature of RPA-
like equations encountered in Ch. 13. Hence, the iteration procedure must
take this possibility into account. If one starts the iteration by describing
Gf

pphh in terms of noninteracting sp propagators, a critical value of G exists
beyond which the above instability occurs as well. In most instances it is
necessary to start the iteration procedure with correlated propagators, for
example generated for a smaller coupling constant. Fig. 17.4 shows the
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Fig. 17.4 Eigenvalue solutions of the ladder equation for the levels with the largest pair-
amplitudes as a function of the coupling constant G. The position of the unperturbed
pair states is indicated by the diamonds to the left of the eigenvalue curves. The squares
on the right, drawn to avoid overlapping, represent the experimental data for 112Sn and
116Sn, respectively.

dependence of the self-consistent eigenvalues of the ladder equation cor-
responding to the dominant two-particle addition or removal amplitudes
for 114Sn. The original neutron sp energies are obtained from a standard
Woods-Saxon potential, as discussed in Sec. 3.3. These sp energies corre-
spond to the diamonds in the figure (multiplied by a factor of two). The
lowest experimental 0+ energies for 116Sn and 112Sn are indicated by the
open squares. The eigenvalues are smooth functions of the coupling con-
stant which can be varied to investigate the convergence properties and
sensitivity of the solution technique. Moreover, it is not evident that a stan-
dard value of the pairing constant is adequate for the analysis, although in
practice it turns out that a value of 20 MeV/A, corresponding roughly to
0.18, will already give reasonable results for both A ± 2 and A ± 1 nuclei.

Although the self-consistent solution becomes progressively more diffi-
cult to calculate with increasing coupling constant [Yuan (1994)], the final
collective bound pair states move only very slowly towards each other, as
shown in Fig. 17.4. The corresponding low-lying sp fragments will there-
fore have to move away from each other with increasing coupling constant.
This feature is illustrated in Fig. 17.5, which plots the results for the self-
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Fig. 17.5 Solutions of the Dyson equation with the largest sp strength, as a function
of the coupling constant G. The position of the unperturbed energies is indicated by
the symbols above the value G = 0 while those to the right of the curves represent the
experimental data for 115Sn and U 7Sn.

consistent solution of the Dyson equation for the largest fragments corre-
sponding to the involved orbits. From Figs. 17.4 and 17.5, one may further
conclude that it is rather easy to obtain even better agreement with the
experimental data, by slightly adjusting the mean-field sp energies. Com-
parison with spectroscopic factors in the A ± 1 nuclei yields satisfactory
agreement with experimental results as well [Yuan (1994)].

Pairing in finite systems can thus be studied with the self-consistent
Green's function method, when the self-consistent summation of ladder di-
agrams is incorporated. To illustrate the difference between the open-shell
systems and closed-shell nuclei, the occupation numbers of the five neutron
shells in 116Sn are shown in Fig. 17.6 for a value of G corresponding to 0.35.
The transition from mostly occupied to mostly empty levels, takes place in
a narrow energy domain and in a considerably smoother fashion than for
closed-shell nuclei, as discussed in Sees. 7.8 and 17.1.2. The jump in oc-
cupation from the 2s\ to the ldf orbit amounts to 0.38. It resembles the
value of the 2s A quasihole fragment, which has strength 0.42. It appears
that the jump in occupation in a finite system still corresponds approxi-
mately to the strength of the last quasihole fragment. The result cannot
be exact since different discrete sp quantum numbers will generate devia-
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Fig. 17.6 Neutron valence shell occupation probabilities for U 6Sn, illustrating a smooth
transition from mostly occupied to mostly empty sp levels.

tions, due to restrictions of parity and angular momentum. The smooth
transition in occupation numbers in Fig. 17.6, clearly distinguishes closed-
and open-shell nuclei. An even more definitive signature of the difference is
provided by the size of the particle and hole fragments corresponding to the
same orbit. The quasiparticle fragment of the 2s± in 116Sn, for example,
has the value 0.28 and is of similar magnitude as the quasihole fragment
(0.42). Obviously, the presence of comparable particle and hole fragments
close in energy, as in any system with pair correlations (see Ch. 22), rep-
resents a clear distinction between open- and closed-shell nuclei, where the
corresponding fragments differ typically by an order of magnitude and lie
farther apart in energy.

17.3 Short-range correlations in finite nuclei

The influence of short-range correlations can be quite well studied in nu-
clear matter, as discussed in Sec. 16.3.1. It is technically considerably more
difficult to establish the influence of short-range correlations on the spectral
function directly for finite nuclei. The main reason for this is that short-
range dynamics pertains to the relative motion of two particles, whereas
two-body matrix elements in the nucleus are required in the laboratory
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system. The transformation from relative and center-of-mass motion to in-
dividual coordinates is only straightforward with momentum or harmonic
oscillator quantum numbers. Neither of these basis sets completely cap-
tures the essentials of a finite nucleus. Nevertheless, a proper treatment
of short-range correlations can be obtained by constructing the G-matrix
interaction, which can be used as an effective interaction in shell-model cal-
culations in small model spaces. Only in the last decade have calculations
become available, for the self-energy and corresponding spectral functions,
that incorporate short-range effects.

We will sketch here the ingredients of an indirect approach that was
developed by [Borromeo et al. (1992)] to compute the self-energy for finite
nuclei in terms of a G-matrix, which is the solution of the Bethe-Goldstone
equation for nuclear matter

(kt\ GSJsKLT WO = (k£\ VsJsKLT \k't)

+ Y, fdk"(k")2 (k£\VSJsKLT\k"e")
I" J

p^-—^p7r(fc i \GsjsKLT\kl) . (17.42)
&NM 4^ 2^T

The variables k, k', and k" denote the relative wave vectors between the
two nucleons, £, £\ and £" the orbital angular momenta for the relative
motion, K and L the corresponding quantum numbers for the center-of-
mass motion, 5 and T the total spin and isospin, and Jg is obtained by
coupling the orbital angular momentum of the relative motion to the spin
S. We note that Q(K, k) is the angle-averaged form of the product of
step-functions in Eq. (16.58) that allows a partial wave decomposition of
that equation (see Exercise 4 of Ch. 16). The implied sole dependence
of the G-matrix on the magnitude of K, the center-of-mass wave vector,
also ensures that the solution of Eq. (17.42) does not depend on L. The
L-label is kept however, to facilitate the recoupling to individual orbital
angular momentum states, as discussed below. Equation (17.42) generates
an appropriate solution of two-body short-range dynamics but the resulting
matrix elements require further manipulation before becoming useful for
the finite nucleus. The choices for the density of nuclear matter and the
starting energy EMM are not critical when the proper corrections for the
finite system are taken into account. The calculation of the corresponding
BHF term is not very sensitive to this choice. Furthermore, the nuclear-
matter approximation is corrected by calculating the 2plh term, displayed
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Fig. 17.7 Graphical representation of the BHF a), the 2plh contribution b) and Ip2h
term c) to the self-energy of the nucleon. The G-matrix is indicated by the wiggly line.

in Fig. 17.76), directly for the finite system3. The second-order correction,
which assumes harmonic oscillator states for the occupied (hole) states and
plane waves for the intermediate unbound particle states, incorporates the
correct energy and density dependence characteristic of a finite nucleus G-
matrix. To evaluate the diagrams in Fig. 17.7, one requires matrix elements
in a mixed representation of one particle in a bound harmonic oscillator
while the other is in a plane wave state. Using vector bracket transformation
coefficients [Balian and Brezin (1969); Wong and Clement (1972)], one can
transform matrix elements from the representation in relative and center-
of-mass wave vectors to individual ones in the laboratory frame, in which
the two particle state is described by

\ki£ijiki£2J2JT). (17.43)

The quantum numbers hi, li and ji refer to the momentum and angular
momenta of particle i, whereas J and T define the total angular momentum
and isospin of the two-particle state. The relevant vector bracket is given
by

{klKL\\kie1k2t2>), (17.44)

where both pairs £, L and £1,̂ 2 a re coupled to A. Vector brackets can be
calculated following the method of [Kung et al. (1979)] for example. The
necessary recoupling of the angular momentum to complete the transfor-
mation from the states, employed in Eq. (17.42), to the ones in Eq. (17.43)

3While strictly speaking the genuine BHF approach involves self-consistent sp wave
functions, as in the HF approximation, the main features associated with using the
C7-matrix of Eq. (17.42) are approximately the same. Hence we will use the BHF abbre-
viation.
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can also be found there. Performing an integration over one of the fcj, one
obtains tp states in a mixed representation

rCO

\n1l1j1k2t2hJT) = / dk1k
2

1RniA(kl)\k1£1j1k2£2J2JT) . (17.45)
Jo

Here Rni i(l stands for the radial oscillator function, and the oscillator length
is chosen to achieve an appropriate description of the bound states of 16O.
Using the results of Eqs. (17.42) - (17.45) the BHF approximation4 for the
self-energy (see Fig. 17.7a) can be obtained in the wave vector basis

s?."F(*i.*i) = 272TTiT £ E ^ + ̂  + D

x {kli1j1n2t2J2\GjT\k[£ij1n2£2J2}, (17.46)

where the summation over projection quantum numbers has been replaced
by a summation over J and T. The summation over the oscillator quantum
numbers is restricted to the states occupied in the independent-particle
description of 16O. The BHF part of the self-energy is real and does not
depend on the energy.

The lowest-order terms in G, which yield an imaginary contribution to
the self-energy, are represented by the diagrams displayed in Figs. 17.76)
and 17.7c), referring to intermediate 2plh and Ip2h states. The 2plh con-
tribution to the imaginary part can be written as

im^(kuk[-E) = -^— Y: E E /r*a* I'K'dK (17-47)
V J1 > n2hj2 IL JSTJ J

x (2J+ 1)(2T+ 1) {hhjin^j^GjT^SKL)
f h2K2 h2k2\

x (k£SKL\GJT \k\hjxn2£2h) TT S (E + en^h - ^ - - ^-J ,

where the average experimental quasihole energies £n2(2J2 a r e used for the
hole states (-47 MeV, -21.8 MeV, -15.7 MeV corresponding to Osi, Opf
and Opi shells, respectively), while the energies of the particle states are
given in terms of the kinetic energy only. The plane waves associated
with the particle states in the intermediate states must be properly or-
thogonalized to the bound sp states employing the techniques discussed
in [Borromeo et al. (1992)]. The Ip2h contribution to the imaginary part
Im S^-j (pi, pi; E) can be calculated in the same way.

4Note that the energy dependence of G is not yet included at this point.
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The choice of pure kinetic energies for the particle states in calculating
the imaginary parts of Im £2plft [Eq. (17.47)] and Im £ lp2ft is not very real-
istic for the intermediate states at low energy. Indeed, a sizable imaginary
part in Im £ lp2ft is obtained only for energies E below the sp energy of the
OsA state. When the primary interest is to study the effects of short-range
correlations, the choice appears appropriate since these involve excitations
of particle states with high momenta. A different approach is required to
treat the coupling to the very low-lying 2plh and Ip2h states in an ade-
quate way, as discussed in the Sec. 17.1. The 2plh contribution to the real
part of the self-energy can be calculated from the imaginary part, using the
standard dispersion relation

Re ^{kuk[;E) = - / flg, ' dE', (17.48)

where V stands for the principal value integral. A similar dispersion relation
holds for Re S lp2 / l and Im E lp2/ l.

Since the BHF contribution Y,BHF has been calculated in terms of a nu-
clear matter G-matrix, it already contains 2plh terms of the kind displayed
in Fig. 17.76). In order to avoid this overcounting of the pp ladder terms,
one subtracts from the real part of the self-energy a correction term (Sc),
which just contains the 2plh contribution calculated in nuclear matter.
Summing up the various contributions one obtains the following expression
for the self-energy

S = T,BHF + AS (17.49)

= YBHF + (Re S 2 p U - £ c + Re S lp2") + i (Im S2 p l h + Im S lp2/l) .

The Dyson equation for this self-energy can now be solved in wave vector
space. Energies and wave functions of the quasihole states can be deter-
mined by diagonalizing the BHF sp Hamiltonian plus AE in the wave vector
basis. A discretization of the Schrodinger equation of Eq. (9.43) in this basis
can be written as

J2 <*<l 2 ^ " + ̂ "F + A*ejiE = e™~] lkn) w{kn)<ti =

n=l
&- z&i - (17-50)

where w(ki) is the weight associated with the discrete point fcj. In this ap-
proach AE only contains a sizable imaginary part for energies E below the
quasihole eigenvalues e^_ (m— identifying discrete solutions). The discrete



510 Many-body theory exposed!

solutions of Eq. (17.50) are thus separated in energy from the contribution
to the hole spectral function in the continuum. The eigenvector correspond-
ing to the discrete states yields the quasihole wave function z™tJ in wave
vector space, which still needs to be normalized by the spectroscopic factor
zm~Pi

 2 by means of Eq. (9.44), translating into

| _ m - |2 _ I JL. L.2 I m-\2 (-17 ci \

\z<xqhej\ - J ak k \zklj | . (lt.bi)

The quasihole contribution to the spectral function contains only one con-
tribution for each of the £j values that are occupied in the independent-
particle description. The term diagonal in k is given by

S"h(k£j; E) = \z™j\2 S(E - e«_) . (17.52)

In the calculations described in [Miither et al. (1995); Polls et al. (1995)],
the Bethe-Goldstone equation (17.42) was solved by employing for V the
one-boson-exchange potential Bonn-B, developed by [Machleidt (1989)]
(Tab. A.2). The Pauli operator Q was approximated by the so-called
angle-averaged approximation for nuclear matter with a Fermi wave vec-
tor kF = 1.4 fm"1. This roughly corresponds to the saturation density
of nuclear matter. The starting energy ENM for computing the G-matrix,
Eq. (17.42), was chosen to be -10 MeV.

The square of the quasihole wave function for the p\ state, normalized
to the spectroscopic factor, is shown in Fig. 17.8 as the solid line. For
comparison the result for the BHF wave function is illustrated by the dashed
line. From the comparison one can infer that at the quasihole energies no
substantial change in the shape of the wave function occurs, and that the
BHF wave function is a good approximation. It should be further noted
that the wave function of a Woods-Saxon potential, which is constructed
as the local equivalent of the BHF potential [Borromeo et al. (1992)],
is indistinguishable from the BHF wave function. This suggests that the
explicit inclusion of short-range correlations does not lead to the strong
suppression of the wave function in the interior of the nucleus, as had
been suggested by [Ma and Wambach (1991); Mahaux and Sartor (1991)].
These results also verify that the influence of high wave-vector components
in the quasihole wave function is of minor importance. Consequently, the
enhancement of the momentum distribution, as the expected signature of
short-range correlations, has to come from excitations at higher missing
energies.
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Fig. 17.8 Square of the quasihole wave function for the p j state in 16O (full curve),
normalized to the spectroscopic factor according to Eq. (9.44), compared to the BHF
result (dashed curve), adapted from [Miither and Dickhoff (1994)].

Figure 17.9 presents an example of the reduced cross section for the
(e,e'p) reaction on 16O, leading to the bound quasihole state of 15N at an
excitation energy of -6.32 MeV [Polls et al. (1997)]. In this picture the
effects of FSI have been calculated in the distorted wave impulse approxima-
tion (DWIA) [Born et al. (1996)] and the data points have been obtained at
NIKHEF for the so-called parallel kinematics [Leuschner et al. (1994)]. Us-
ing the quasihole part of the spectral function, computed from Eq. (17.50),
but adjusting the spectroscopic factor for the quasihole state contribution
to fit the experimental data, one obtains the solid line of Fig. 17.9. Com-
paring this result with the experimental data, one finds that the calculated
spectral function reproduces the shape of the reduced cross section as a
function of the missing momentum quite well. The absolute value for the
reduced cross section can only be reproduced by employing a spectroscopic
factor of 0.537, a value considerably below the one of 0.914 calculated using
the properly normalized solution of Eq. (17.50) [Miither et al. (1995)]. An
analogous result holds for the transition to the p\ ground state of 15N for
which the same analysis yields a spectroscopic factor of 0.644. For compar-
ison, the phenomenological Woods-Saxon wave functions, adjusted to fit
the shape of the reduced cross section, require spectroscopic factors rang-
ing from 0.61 to 0.64 for the lowest 0p± state, and from 0.50 to 0.59 for
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Fig. 17.9 Reduced cross section for the 16O(e, e'p) reaction in parallel kinematics, lead-
ing to the 3/2~ state at 6.32 MeV of the residual nucleus 15N. Results of the Green's
function approach (solid line) are compared to those obtained in the variational calcu-
lation of [Radici et al. (1994)] (dashed line) and the experimental data [Leuschner et
al. (1994)]. A spectroscopic factor of 0.537 was required for the Green's function re-
sult, while 0.459 has been used to for the variational calculation. The figure is adapted
from [Polls et al. (1997)].

the Opf state, depending upon the choice of the optical potential for the
outgoing proton [Leuschner et al. (1994)].

Figure 17.9 also contains the results for the reduced cross section derived
from the variational calculation of the overlap wave function [Radici et
al. (1994)] for the Argonne v14 potential [Wiringa et al. (1984)]. The
shape of the experimental data is globally reproduced with a slightly better
agreement for small negative values of pm but with a clear underestimation
at larger pm. The overall quality of the fit is somewhat worse than for the
Green's function approach and the required adjusted spectroscopic factor
is 0.459, below the value of 0.537 for the latter approach. It is not clear
however, whether the differences in the calculated reduced cross section
are due to the use of different interactions or to the methods employed in
calculating the spectral function.

Both the variational calculations of [Radici et al. (1994); Fabrocini and
Co' (2001)] and the Green's function approach give spectroscopic factors
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for the p-shell orbitals of about 0.90. This value should be compared to
the ~0.63 obtained from the NIKHEF experiment for these orbits. The
additional contribution, due to the proper consideration of the center-of-
mass motion, raises the theoretical value to 0.98, worsening the agreement
with data [Van Neck et al. (1998)]. Nevertheless, the observation that the
same results are obtained with two independent many-body methods but
including the same short-range physics, suggests that the effects of short-
range correlations on the quasihole strength are well under control. At
the same time, the discrepancy with the experiment is partly due to the
emphasis on the accurate treatment of short-range correlations, and one
should view the quasihole strength that has been discussed here to be due
exclusively to their influence. It is clear that a considerable renormalization
of the strength is to be expected, due to the coupling of the quasihole states
to the low-lying collective excitations, as discussed in Sec. 17.1.2.

The continuum part of the hole spectral strength is found at higher
energies and stems from the coupling to the continuum of Ip2h states. At
these energies, it is useful to proceed from the BHF propagator with states
| a) that diagonalize the corresponding self-energy

^ a ^ = E-^±i^ ( 1 7 ' 5 3 )

where the sign in front of the infinitesimal imaginary quantity irj is positive
(negative) depending on whether e^E is above or below the corresponding
Fermi energy. The two-step procedure is equivalent to the solution method
that was discussed in Sec. 14.6 for Eq. (14.123). The Dyson equation can
then be solved by iterating the AS component in Eq. (17.49) of the self-
energy to generate the reducible self-energy

(a\ ££"(E) |/3> = (17.54)

H ^tj(E) \P) + £ H £&tj(E) \l) G%\T, E) (7| ̂ f(E) \P)
7

and obtain the propagator from

Gej(a,P;E)=5a,0 G<$(a;E) + G^{a;E) (a\V%d{E)\P)G?){frE).
(17.55)

Using this representation of the Green's function, one can calculate the
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Fig. 17.10 The p\ spectral strength as a function of momentum at fixed energies corre-
sponding to -50, -150, and -250 MeV, adapted from [Miither and Dickhoff (1994)]. The
results demonstrate the increasing importance of high wave-vector components with
higher excitation energy in the A — 1 system.

spectral function in the wave vector basis from [see Eq.(7.11)]

Sc(k£j;E) = 1 lm(^2 (k\a)tj Gtj(a,0;E) (0\k)tj)- (17-56)

This spectral function is different from zero for energies E below the lowest
sp energy of a given BHF state (with £j), due to the imaginary part in Y7td.
This contribution involves the coupling to the continuum of Ip2h states
and is therefore nonvanishing only when the corresponding irreducible self-
energy AS has a non-zero imaginary part, which is given by Eq. (17.47).
The 2plh contribution to the self-energy is responsible for the depletion of
strength below the Fermi energy, moving it to high energy in the particle
domain. The Ip2h term instead, is essential for the accumulation of sp
strength below the Fermi energy from states (in particular those with high
momenta) which are empty in the independent-particle description. The
continuum contribution of Eq. (17.56) and the quasihole parts of Eq. (17.52)
can be combined to generate the complete spectral function

Stj(k;E) = Sc{klj;E) + S«h(k£j;E). (17.57)
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Fig. 17.11 The total momentum distribution of 16O, displaying the quasihole contri-
bution and those obtained with various energy cut-offs in the integration of the spectral
functions, adapted from [Miither et al. (1995)].

The spectral function Sc(k£j; E) for the p\ quantum numbers are shown
at three different energies in Fig. 17.10. The long-dashed curve corresponds
to -50 MeV, the full one to -150 MeV, and finally the dotted one to -250
MeV. From these results it is clear that an important change in the mo-
mentum content of the sp strength occurs with increasing excitation energy
in the A = 15 system. At higher excitation energy one finds more high-
momentum components. Moreover, these high-momentum components are
not observed in the quasihole states. This can be concluded from Fig. 17.11
where the total occupation numbers and the contribution from the quasi-
hole states, is compared with results for other energy cuts. The required
energy integration of the continuum hole strength for each k follows from
Eq. (7.16).

The quasihole part corresponds to the energy domain for (e, e'p) cross
sections with small energy transfer, i.e. leading to the ground state of the
final nucleus and excited states up to w 20 MeV. The curve denoted by
E > -100 MeV reflects the momentum distribution, including all states of
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the final nucleus up to around 80 MeV excitation energy, etc. As a con-
sequence, the high-momentum components of the momentum distribution
due to short-range correlations can be observed mainly in knockout ex-
periments with an energy transfer of the order of 100 MeV or more. The
total momentum distribution for 16O obtained with different approaches,
and different interactions, all of which properly include the effects of short-
range correlations, yield qualitatively similar results. The other approaches
include: local density approximation (LDA) [Benhar et al. (1994)], Fermi
hypernetted chain (FHNC) [Co et al. (94)] and Variational Monte Carlo
(VMC) [Pieper et al. (1992)].

To understand the results of Fig. 17.11, it is important to recall that the
appearance of high-momentum components at a certain energy in the A — I
system is related to the self-energy contribution containing Ip2h states at
that energy. From energy conservation it is then clear that at low energy it
is much harder to find such states with a high-momentum particle, than at
high energy. The same feature is observed in nuclear matter where the peak
of the sp spectral function for momenta above kp increases in energy as k2.
Hence, the hole strength in nuclear matter as a function of momentum,
shows the same tendency as the result shown in Fig. 17.10, i.e. higher
momenta become more dominant at higher excitation energy.

In order to demonstrate the importance of the continuum part of the
spectral functions as compared to the quasihole contribution, and to visu-
alize the effects of correlations, we have included in Tab. 17.2 the particle
numbers for each partial wave, including the degeneracy of the states

rep i-CO

h(j = 2(2j + l) dE dkk2S(k£j;E). (17.58)
J -oo JO

We have separated the contributions originating from the quasihole states
and those due to the continuum [as in Eq. (17.57)]. Only 14.025 out of the
16 nucleons of 16O occupy the quasihole states in this calculation (while
the experimental data suggests a possibly much smaller number). Another
1.13 nucleons are found in the Ip2h continuum with partial wave quantum
numbers of the s and p shell, while an additional 0.687 nucleons are ob-
tained from the continuum with orbital quantum numbers of the d and /
shells. The distinction between quasihole and continuum contributions is
somewhat artificial for the s.i orbital, since the coupling to low-lying Ip2h
states leads to a strong fragmentation of the strength, which is observed
experimentally [Mougey (1980)]. The depletion of the occupation proba-
bilities of the hole states, indicated in Tab 17.2, is larger for the sj orbit.
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Table 17.2 Occupation numbers for 16O

Ij nih nc(E<-WQ) hc h n/(2(2j +1))

si 3.120 0.244 0.624 3.744 0.936
pf 7.314 0.133 0.332 7.646 0.956
p i 3.592 0.086 0.173 3.764 0.941

d% 0.0 0.106 0.234 0.234 0.020
d\ 0.0 0.108 0.196 0.196 0.025
/§ 0.0 0.063 0.117 0.117 0.007
/§ 0.0 0.084 0.140 0.140 0.012

£ 14.025 0.824 1.816 15.841

Distribution of nucleons in 16O, adapted from [Miither et al. (1995)].
Listed are the total occupation number h for various partial waves
[see Eq. (17.58)] but also the contributions from the quasihole (nqh)
and the continuum part (nc) of the spectral function, separately. The
continuum part with contributions originating from energies E below
-100 MeV is listed as well. The last line shows the sum of particle
numbers for all partial waves listed.

This feature can be ascribed to the closeness of the s± BHF energy to the
Ip2h continuum, which yields more leakage of strength to the continuum
than for the p\ and j>% quasihole states. The sum of the particle numbers
listed in Tab. 17.2 is slightly smaller (15.841) than the number of particles
in 16O. This is due to the fact that only partial waves up to I = 3 were
taken into account. One must keep in mind that the approach to the sp
Green's function, discussed here, is not number-conserving. Indeed, the
Green's functions used to evaluate the self-energy, are not determined in
the required self-consistent way, as discussed in Ch. 21.

The contributions to the total energy, as derived from the energy sum
rule in Eq. (7.26), are displayed in Tab. 17.3 for different angular momenta.
The first two columns give the analogous results obtained from the solution
of the BHF and BHF+2plh terms. The latter includes the 2plh correction
to the nuclear-matter G-matrix. The BHF approach continues to describe
the nucleus in terms of fully occupied sp states as in HF. However, as
the sp states in BHF+2plh are more bound, the gain in binding energy
from BHF to BHF+2plh is accompanied by a reduction of the calculated
radius of the nucleon distribution. The inclusion of the Ip2h contributions
to the self-energy in the complete calculation, reduces the absolute values
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Table 17.3 Contributions to the energy per particle for 16O

BHF BHF+2plh Total
Ij t t AE e t AE t t AE

s i qh -36.9 11.8 -50.3 -42.6 11.9 -61.3 -34.3 11.2 -36.0
s\ c -90.4 17.1 -22.9

p§ qh -15.4 17.6 9.1 -20.3 19.0 -5.6 -17.9 18.1 0.4
p§ c -95.2 35.2 -10.0

p i qh -11.5 16.6 10.3 -17.1 18.5 2.8 -14.1 17.2 5.5
p i c -103.6 35.9 -5.8

I > 1 c -98.9 63.2 -12.3

E/A(MeV) -1.9 -4.0 -5.1
(r)(fm) 2.59 2.49 2.55

Ground-state properties of 16O, adapted from [Miither et al. (1995)]. Listed are the
energies e and kinetic energies t of the quasihole states (qh) and the corresponding mean
values for the continuum contribution (c), normalized to 1, for the various partial waves.
Multiplying the sum: ^(4 -|- e) of these mean values with the corresponding particle
numbers of Tab. 17.2, one obtains the contribution AE to the energy of the ground
state [as given by the energy sum rule, Eq. (7.26)]. Summing up all these contributions,
and dividing by the nucleon number, yields the energy per nucleon E/A. Results are
presented for the BHF, BHF+2plh and the complete calculation (Total). The particle
numbers for the qh states in BHF and BHF+2plh are equal to the degeneracy of the
states, all other occupation numbers are zero. All the energies are given in MeV.

of the quasihole energies (compare BHF+2plh and "Total" in Tab. 17.3).
Despite this reduction of the quasihole energies however, the total binding
energy is increased as compared to BHF+2plh. This is mainly due to the
continuum part of the spectral function. Comparing various contributions
to the integral in Eq. (7.26), one finds that only 37% of the total energy is
due to the quasiholes Eq. (17.52). The dominating part (63%) results from
the continuum part of the spectral functions, although it merely represents
1.8 nucleons (that is 11% of the total, see Tab. 17.2).

Summarizing, the calculation of the complete energy dependence of the
hole spectral function demonstrates that the presence of high-momentum
components in the nuclear ground state will show up unambiguously at
high excitation energy when probed by (e,e'p) reactions. These deeply
bound nucleons not only generate the enhancement of the momentum dis-
tribution for momenta > 400MeV/c, depicted in Fig. 17.11, but they are
essential in understanding the binding of nuclear systems. While the bind-
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ing energy doesn't yield the correct experimental value of the energy per
particle (-7.98 MeV/A), its origin is unambiguously related to the pres-
ence of high-momentum nucleons at large negative energies. Improvements
of the calculation of the binding energy in the present scheme, suggest
themselves in an obvious manner. The lack of self-consistency and the ne-
glect of low-energy correlations are clear candidates for such extensions. In
addition, three-body forces are expected to yield an important attractive
contribution.

17.4 Properties of protons in nuclei

Coincidence experiments involving electron beams have played a crucial
role in gathering pertinent information about the properties of protons in
the nucleus. We now proceed to summarize what has been learned in gen-
eral terms about the properties of these protons. Before embarking on this
overview, it is important to note that recent work on single-nucleon knock-
out with fast radioactive beams [Hansen and Tostevin (2003)] proposes to
extend the information for valence protons to neutrons and unstable nu-
clei. Some promising work in this direction has been reported in [Brown
et al. (2002); Enders et al. (2003)]. Indeed, there is a long tradition with
hadronic probes to study spectroscopic factors in nuclei. Due to the in-
herent complexity of hadron-induced reactions it has been more difficult
to establish absolute spectroscopic factors from corresponding experimen-
tal data. Nevertheless, it is possible to generate a consistent analysis of
(e,e'p) and (d, 3He) experiments, as shown in [Kramers et al. (2001)]. The
original discrepancies between these different experiments disappear, with
an improved analysis of the (d, 3He) reaction. The resulting spectroscopic
factors then appear to be quite consistent with those from the (e, e'p) re-
action. This observation demonstrates that, with proper care, it is possi-
ble to develop valuable information from hadron-induced nucleon knockout
experiments. It may therefore be possible to extend the extraction of spec-
troscopic factors to nuclei far off stability. This exciting new development
will allow the study of the properties of nucleons in the nuclear medium in
different regions of the periodic table and may provide new challenges for
our theoretical understanding. Our present knowledge of the properties of
protons in the nucleus may be summarized as follows. The consequences of
short-range correlations in nuclear systems appear to be theoretically well



520 Many-body theory exposed!

Fig. 17.12 The distribution of single-particle strength in a nucleus like 208Pb. The
present summary is a synthesis of experimental and theoretical work discussed in this
section. A slight reduction (from 15% to 10%) of the depletion effect due to short-range
correlations (SRC) must be considered for light nuclei like 16O.
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understood, while they are also now becoming available for experimental
scrutiny [Rohe et al. (2004)]. These results demonstrate that the effect of
short-range correlations is two-fold. First, it involves the depletion of spec-
troscopic strength from the mean-field domain as discussed in Sec. 7.8 for
the experimental data obtained for 208Pb. The data in Fig. 7.8 indicate that
the depletion in heavy nuclei corresponds to about 15% for all the deeply
bound proton levels. This was predicted more quite some time ago based
on nuclear-matter calculations, reviewed in Sec. 16.3.1. For lighter nuclei
all theoretical work suggests that this amount may be closer to 10%, as dis-
cussed in Sec. 17.3. Accompanying this information is the realization that
valence shells near the Fermi energy will not contain substantial amounts
of high-momentum components. This has been experimentally confirmed
and clarifies the other role played by short-range correlations in nuclei, i.e.
the admixtures of high-momentum components at high missing energy that
account for the missing protons removed from the mean-field location. The
location of these high-momentum components [Rohe et al. (2004)] broadly
conforms with the mechanism that admixes these correlations with Ip2h
states at large missing energies, as discussed in Sec. 17.3.

Being able to identify high-momentum components in addition to locat-
ing all the sp strength, associated with the mean-field orbits [van Baten-
burg (2001)], completes the identification of the properties of protons in
the ground state of the nucleus. The latter understanding is illustrated in
Fig. 17.12, where several generic diagrams are identified that have unique
physical consequences for the redistribution of the sp strength. The middle
column characterizes the mean-field picture that is used as a starting point
of the theoretical description. The right column identifies the location of the
sp strength of the orbits, just below the Fermi energy, when correlations are
included. One may apply this picture, for example, to the 2s± proton orbit
in 208Pb. The physical mechanisms responsible for the correlated strength
distribution are also identified. The strength of this orbit, remaining at the
quasihole energy, is about 65%. Long-range correlations are responsible for
the loss of 20% of the strength due to the coupling to nearby 2plh and Ip2h
states. This loss is symmetrically distributed above and below the Fermi
energy and is physically represented by the coupling to low-lying surface
modes and higher-lying giant resonances. The resulting occupation num-
ber of the orbit therefore corresponds to 75%. More deeply bound nucleons
have higher occupation numbers corresponding to about 85%. As discussed
in Sec. 7.8 this is true for all the deep-lying orbits, and is consistent with a
global depletion due to short-range correlations of 15%. The corresponding
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location of this strength is identified at very high energy in the particle
domain and is due to the short-range and tensor correlations induced by a
realistic nucleon-nucleon interaction, as discussed in Sec. 16.3.1. The left
column depicts the generic diagram that is responsible for the admixture
of high-momentum components in the ground state. The energy domain of
these high-momentum nucleons is at large missing energies, as discussed in
Sec. 17.3.

This rather complete picture of the properties of a proton in the
nucleus is unique to the field of nuclear physics. Indeed, unlike other
fields with strong correlations effects, like particle or condensed mat-
ter physics, it is possible in nuclear physics to state that the prop-
erties of the constituent protons inside the nucleus are identified ex-
perimentally and understood in global terms theoretically. For atoms
and molecules it is also possible to extract this information by employ-
ing the corresponding (e,2e) reaction [McCarthy and Weigold (1991);
Coplan et al. (1994)]. This reaction generates the best possible information
on the properties of individual electrons in these systems. Indeed, it was
shown in 1981 that one can "measure" the square of the Is wave function
of the Hydrogen atom in momentum space [Lohmann and Weigold (1981)],
as discussed in Sec. 7.7. Electron wave functions in the medium have been
measured for a wide range of atoms and molecules [McCarthy and Weigold
(1991)], as summarized in Sec. 7.7. Similar wave functions for nuclei are
given in Fig. 7.5 of Sec. 7.8. The technique may also become successful in
identifying the properties of electrons in solids [Vos and McCarthy (1995)].

17.5 Exercises

(1) Derive the TDA equations for the pp and hh propagators. Employ the
Lehmann representation of Eqs. (17.3) and (17.4) to generate the usual
eigenvalue equations from those for the propagators. Check Eq. (17.5).

(2) Do the same for the TDA equations associated with ph and hp propa-
gation, employing Eqs. (17.8) and (17.9). Check also Eq. (17.10).

(3) Check Eqs. (17.14) and (17.18).



Chapter 18

Bogoliubov perturbation expansion
for the Bose gas

In the present chapter the description of interacting Bose systems at T=0 is
continued. In the mean-field treatment (Hartree-Bose or Gross-Pitaevskii)
of Ch. 12 it was assumed that all particles are in the condensate. However,
even at T = 0 one expects that non-condensate sp states can be occupied
because of the interparticle interaction. Taking the quantum depletion of
the Bose condensate into account, requires going beyond the HB or GP pic-
ture with a genuine boson perturbation theory: the Bogoliubov formalism,
which is introduced in the present chapter and applied in some detail to
the Bose gas. Some general remarks concerning this system are given in
Sec. 18.1. In Sec. 18.2 the Bogoliubov prescription for dealing with the con-
densate, is discussed. The resulting perturbation expansion is constructed
in Sec. 18.3. An important theorem concerning the chemical potential, first
discussed by Hugenholtz and Pines, is the subject of Sec. 18.4. Sec. 18.5
deals with the first-order approximation of the theory, which can also be
applied — as shown in Sec. 18.6 — to the Bose gas in the dilute limit, after
some considerations about the low-density effective interaction. The lowest-
order results are then rederived in Sec. 18.7 by the important technique of
a canonical transformation to (Bogoliubov) quasiparticles.

18.1 The Bose gas

We examine in this section the homogeneous Bose gas1, mainly because it
is conceptually simpler to introduce Bogoliubov perturbation theory when
the limit of infinite particle number can be taken and particle-number non-
conservation is not an issue. Moreover, the shape of the condensate orbital

1With some minor adaptations, the discussion in this chapter will mainly follow the
reasoning in the pioneering paper by [Hugenholtz and Pines (1959)].

523
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is unambiguous in a uniform system. It should be noted at the outset that
no good examples are known of a weakly interacting Bose gas. The atomic
BEC presented in Sec. 12.4.5 involves weakly interacting systems that are
inherently nonuniform because of the trap confinement. Liquid 4He, which
will be examined in Sec. 19.1, is in fact a very strongly interacting system
and its description requires considerable effort, going far beyond the lowest
orders of perturbation theory discussed here.

Just as for the Fermi gas discussed in Ch. 5, we consider N bosons
(taken spinless, for simplicity) in a box of volume V with periodic boundary
conditions. In the end we are interested in the thermodynamic limit, when
V —> oo and N —> oo while keeping the density p = N/V fixed. The sp
states are plane waves due to translational invariance, and the Hamiltonian
under consideration is (with ep = p2/(2m)):

H = f + V (18.1)

= Y, ^apaP + 2 5Z (p i P 2 ' V \P3P*)aUaP2aP*aP*-
P P1P2P3P4

We assume a local and central interaction V(\ri — r?,\) in coordinate space,
so the interaction matrix elements in momentum space read

(P1P2I V \p3Pi) = ^ < W P 2 , P 3 + P 4 W(pi - p3), (18.2)

where

W(hq) = W(Hq) = I dreiqrV{r) (18.3)

is a real function.
According to Eq. (12.7), the ground state of the free Bose gas [only

kinetic energy in Eq. (18.1)] is

| O = -^(aJn0), (18.4)

and the condensate of Sec. 12.1.2 is the zero-momentum plane-wave state,
which is merely a constant in coordinate space

0(r) = (r|aJ|O) = - ^ . (18.5)

The condensate occupation in the noninteracting ground state of
Eq. (18.4) is equal to the particle number, ( ^ ajao \$Q) = N. When
the interaction is turned on, some of the particles are lifted out of the
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condensate and populate non-zero momentum states. This is the so-called
quantum depletion of the condensate, not to be confused with the thermal
depletion discussed in Sec. 5.6.1. For the occupation of the condensate in
the interacting iV-boson ground state * ^ ) we therefore have

(^\alao\^)=No<N. (18.6)

In the thermodynamic limit No grows proportional to N, i.e. NQ is a con-
stant finite fraction of the total particle number, the condensate fraction
zo = No/N < 1. The deviation of ZQ from unity is a measure of the strength
of the correlation effects.

The occupation of a non-zero momentum state,

( p^O: ) «|at,ap|O=n(p), (18.7)

on the other hand, becomes constant in the thermodynamic limit, and the
total particle number can be written as

N = No + E «(p) = N° + j ^ I dPh^- (18-8)

In an interacting Bose gas the momentum distribution n(p), normalized as

'= /(5)^' <18'9>
thus has the form

n{p) = (2nh)3zop6{p) + n{p) (18.10)

of a delta-spike superimposed on a continuous background. As shown
by [Gavoret and Nozieres (1964)], the background n(p) actually has a weak
divergence ~ p^1 in the limit p —> 0, making a negligible contribution to
the integral in Eq. (18.8). Note that here and in the following, we make
the assumption that the system has a meaningful thermodynamic limit, in
the sense that the energy per particle remains finite as TV -* oo.

18.2 Bogoliubov prescription

The zero-momentum sp state is special because its occupation NQ = ZQN is
the only one that grows proportionally to N as N —> oo. As a consequence
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one has e.g. that to leading order in an expansion of powers of TV,

« | aQal | O = 1 + No « No = « | ajao « ) . (18.11)

More generally

(*g\P\*ow)~Ngl (18.12)

when P is a product of m addition operators a0 and m removal operators
ao ordered in any way. Similarly, one has for the addition and removal
amplitudes

K^-^aol^l^K^^l^lOl^V^o, (18-13)
and by induction it follows that

| « - m | ( a o ) m K ) | « i V o m / 2 . (18.14)

We observe in Eqs. (18.11) - (18.14) that, to leading order in TV, aj and a0

behave just as ordinary numbers

al^a0^ y/No~. (18.15)

The replacement of the condensate operators with V^o m Eq. (18.15) is
called the Bogoliubov prescription?.

The special treatment of the condensate in the Bogoliubov prescription
lies in the fact that it is regarded as a classical field, commuting with all
remaining operators. More explicitly, it decomposes the removal operator
for a particle at position r according to

e^ p r /—
ar = 2^ —7=-aP « \/No<t>(r) + 6ar. (18.16)

The condensate wavefunction (j>(r) = l/\/V is a number and the remainder
is an operator

which is orthogonal to (f>(r),

fdr (f>*(r)Sar=0. (18.18)

2 The original idea of treating the zero-momentum state as a number is due to [Bo-
goliubov (1947)]

(18.17)
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18.2.1 Particle-number nonconservation

Application of the Bogoliubov prescription to the Hamiltonian H in
Eq. (18.1) leads to a new Hamiltonian HB(NQ) given by

HB{N0)=f + VB{N0), (18.19)

where the parametric dependence on NQ is made explicit. The unknown
occupation of the condensate iVo is an additional variable in the theory
which must be determined by minimizing the energy with respect to it.
The kinetic energy T receives no contribution from the zero-momentum
state.

A useful expression for VB(NO) can be found by classifying the contri-
butions to Eq. (18.1) according to the number of p ̂  0 operators,

2

VB(N0) = Y, Vu(
No), (18-20)

i,j=0

where Vij contains the interaction terms in Eq. (18.1) with i non-
condensate addition operators and j non-condensate removal operators.
Explicitly, we find

Vo,o = ^ o (00| V |00),

V2,o = ^Vo Y, (PiP2l^l°0)ak°k'
Pl>P2^0

V"o,2 = |jVo J2 mV\P3Pi)aPiaP3,
P3,P47^0

^1,1=^0 E [(Pi0|^IP30) + (pi0|y|0P3)]at)1ap3,
Pl,P3^0

V2,i = \^/No Y (PiP2|V|P30)a+,1at,2aP3,
Pl,P2,P3 5̂ 0

Vh2 = -\/No 5Z <S>P2\V\pzPi)ap2aPiaP3,
P2,P3,P49t0

2̂,2 = 2 Y (PiP2|^|P3P4)<aJ,2aP4aP3- (18-21)
Pl,P2,P3,P4^0

Note that in the Bose gas the terms V ô and Vo,i (with only one non-
condensate operator) are zero because of momentum conservation, and
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that Vo,o is just a number, which we recognize as the HB energy shift
in Eq. (12.46) but with the depleted occupation JVO instead of N.

The derivative with respect to JV0 of VB(NQ) in Eq. (18.20) also has a
simple expression in terms of the Vij. Since each Vij in Eq. (18.21) contains
a power NQ''3 , with pij = 2— i ^ i , one has the following important relation,

NOWO^B{NO) = 2T>B(iVo) ~ ? %~^2~Vi,j- (18-22)

In the new Hamiltonian HB(NQ) of Eq. (18.19) the remaining removal op-
erators ap [with p / 0] all annihilate the noninteracting ground state in
Eq. (18.4). Consequently, the difficulty mentioned in Sec. 12.2.1 is now
absent and Wick's theorem can be used to evaluate matrix elements. On
the downside, Eq. (18.21) also implies that the Hamiltonian HB(NQ) in
Eq. (18.19) does not conserve the number of non-condensate particles: ap-
plying the Bogoliubov prescription to the number operator,

NB(N0) = No + £ > P a p , (18-23)
p^O

it is clear that [JVB(JVO), HB{NQ)] / 0 and an extra condition on the expec-
tation value of NB{NO) will have to be imposed to fix the total number of
particles.

The Bogoliubov prescription has replaced the original problem of de-
termining the TV-boson ground state l^'o') of H by that of finding the
many-boson state \^!BO) o-nd the condensate occupation JVo for which the
expectation value

£BO = <*BO| HB(N0) |*BO> (18.24)

is minimal, subject to the particle-number constraint

N = (^BO\NB(NO) \SHBO) = NQ + Y^ (*BO| aPap |*BO> • (18.25)

The resulting solutions depend on JV and are denoted as | \PB0) and JVOJV.

Note that $^o) is n o t a n eigenstate of N and therefore does not co-
incide with the true VV-boson ground state *0

V)- Analogous to a familiar
argument from statistical mechanics however, one can expect that the fluc-
tuation from the mean particle number

AN = V ^ * B O | ^ B W > ) | * £ O > - ^ 2 (18-26)



Bogoliubov perturbation expansion for the Bose gas 529

only goes like vN, and the relative fluctuation AN/N vanishes as N —> oo.
Hence, \^BO) a n d 1*^) w m n a v e t n e same expectation values of number-
conserving operators in the thermodynamic limit. This corresponds to the
well-known equivalence (in the thermodynamical limit) of the grand canon-
ical and canonical ensembles for describing systems with a fixed number of
particles. In anticipation of the discussion in Sec. 18.3 one should also
keep in mind that | * B 0 ) ^ a s so-called anomalous matrix elements, e.g.,
(^BO\ al>a-p ^BO) ^ 0- An example of a many-boson wave function with-
out fixed particle number is given in Exercise (1) at the end of this chapter.

Instead of the constrained minimum search in Eqs. (18.24) - (18.25), it
is far more convenient to introduce a Lagrange multiplier and perform an
unconstrained minimization of the expectation value of

AB(JV0 ,M) = HB(N0) - fiNB(N0). (18.27)

This operator is in fact identical to the thermodynamical potential of the
grand-canonical ensemble at T — 0 [see Eq. (5.31)], with fi playing the
role of the chemical potential. We now have to find the many-boson state
|*so) a n d NQ for which the expectation value of Eq. (18.27) is minimal.
The particle number constraint in Eq. (18.25) can be used to find \i as a
function of N and eliminate fj, in favor of N. Alternatively, one may decide
to keep the chemical potential // instead of TV as an independent variable.

18.2.2 The chemical potential

We proceed by first determining, as a function of No and /z, the ground
state of (IB{NO,H) or equivalently, the state \^BO{NO, fi)) minimizing

fiflo(Wo,/i) = (*Bo(No,fi)\(lB(No,n)\*Bo(No,ri). (18.28)

This is a many-body problem for which the perturbative method of Ch. 8
can provide a(n approximate) solution. The variational property of the
state \i&Bo(No,fi)) then implies that with respect to small variations in 7V"0
or fi,

^(No,n) = (*Bo(NQ,ri\ (^(^o./i) j | * B O ( A W ) > (18-29)

and

^ ( 7 V O , M ) = (*Bo(iVO)/i)| f ^ f (iV0,M)J |*Bo(Wo,/i)>. (18.30)
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Introducing the expectation values

EBO(NO^) = ^BO(No,fi)\HB(No)\^Bo(No,fi)), (18.31)

NB0(N0,ri = (*BO(NO,H)\NB(NO)\9BO(NO,II)), (18.32)

UB0(N0,fi) = (9BO{No,n)\ I | ^ ( i V o ) ) |*BO(iVo,/x)), (18.33)
yoly0 J

and employing Eqs. (18.23) and (18.27), Eqs. (18.29) - (18.30) can be
rewritten more transparently as

^^(No,fi) = UBO(No,fi)-n, (18.34)

^•(N0ifi) = -NB0{N0,ii). (18.35)

In a next step one can impose the minimum condition for variations in
No, as well as the particle-number constraint,

^•(N0,n) = 0, (18.36)

Nm(N0,n) = N. (18.37)

The solutions /zyv and NON of Eqs. (18.36) - (18.37) then allow to express
all quantities as a function of particle number N and make contact with
the original problem in Eqs. (18.24) - (18.25), i.e.

^ 0 = flB0(N0N,nN), E^0 = EB0(N0N,fiN),... (18.38)

We now derive three important relations for the chemical potential,
which will be of use later on. First we calculate the total derivative

dft^0 _ dflBp dN0N dflB0 dfiN _ ATN dfiN ,
dN ~ dN0 dN + d(i dN ~ ! m dN ' ( 1 8- '3 9 )

applying Eqs. (18.35) - (18.36). The partial derivatives in Eq. (18.39) are
evaluated at Â o = NON and /x = /XJV. Comparing Eq. (18.39) with the
result following directly from Eq. (18.27),

T £ = I f " J f <"""«•>• (1840»
and using Eq. (18.37) leads to the expression for the chemical potential

,„ - ^f, (1141)
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which is familiar from thermodynamics.
Secondly, as follows directly from Eq. (18.34), the requirement in

Eq. (18.36) is equivalent to

»N = Ug0. (18.42)

Finally, it will also be convenient to decompose the operator CIB in
Eq. (18.27) as

ClB(No,fi) = fll + VB(No)-(iNo) (18.43)

where

Tn = J2^£P ~ vWpaP = Yl £p»alap- (18-44)

Since the constant term —fiNo in Eq. (18.43) does not change the eigenstate
of tin, we also have

^N^T^r(^Bo(No,n)\ffi + VB(No)\9Bo(NQ,fj,)) (18.45)

where the right-hand side is again evaluated at /J, — /J,JV and 7V0 = NON.
Note that the expressions (18.41), (18.42), and (18.45) are only implicit
equations for the chemical potential, since the right-hand side depends on
UN-

18.2.3 Propagator

The boson propagator pertaining to the many-body problem in Eq. (18.28)
can be defined exactly as in Sec. 12.1.1, but with 0,B(NO,(J,) and
\$Bo{No,fi)) playing the role of H and | * ^ ) , respectively. For notational
simplicity we drop from now on the explicit dependence on No and fi. The
propagator is then given by

ihGQ(p;t-t') = < * B O | T [0^(4)0^ (*')] |*BO> (18-46)

with the Heisenberg picture defined as

aj,o(t) =e*"fltaJ,e-*AB*. (18.47)

Applying the Bogoliubov prescription

4 = Vo\/JVo + (1 - <WK (18-48)
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to Eq. (18.46) yields

ihGnB(p;t- t') = (1 - Spfi)ihG(p;t - t') + 6P,ONO. (18.49)

The energy representation of Eq. (12.6) follows by FT,

GQB(p;E) = (1 - 6pfi)G(p;E) - 2mSp,0N08{E). (18.50)

The last term in Eqs. (18.49) - (18.50) represents the contribution from
the (depleted) condensate [see Eqs. (12.8) - (12.9)]. The noncondensate
propagator G(p; E) in Eq. (18.50) can be rewritten in the usual fashion, by
inserting a complete set of eigenstates of flB,

G ( p ; E) ~ \ E-(nBn-nB0) + iV

-Lu E + (nBn-nB0)-ir, • (18-51)

Note that flB commutes with the total momentum operator P [see
Eq. (10.157)]. Since the ground state \^BQ) has zero total momentum,
the eigenstates contributing to the first (second) term in Eq. (18.51) have
total momentum p (—p), but the dependence will not be written explicitly.
As the system is isotropic we have in addition that G(p; E) = G(p; E).

Analogous to Sec. 7.4 one can show that all relevant ground-state quan-
tities are contained in the propagator G{p;E). The expectation value of
any sp operator, e.g., can be obtained from the momentum distribution
n{p) denned in Eq. (18.10),

n[p) = <*BO| 4%, |tfBO> = No6p,o - I ~. G(P; E)^E (18.52)

where rj —>• 0+ picks up only the contributions from the second term of
Eq. (18.51). The kinetic energy, e.g., equals

T = ^ epn(p) = ~ £ / 7T-. zP G(P; E)^E. (18.53)

Also the expectation value of the potential energy can be written in
terms of the propagator. The following general formula is easily derived
from the basic boson commutation rules in Sec. 2.2:

n n

Sap[aP'IIapJ=nIIow- (18-54)
p t = l i = l
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As a consequence we have

p^O p^O

The average of both expressions in Eq. (18.55) leads to

\ E (al[°p^B] + [AB,ap]ap) =% + 2VB - NQJ^-VB, (18.56)
p^O

where use has been made of Eq. (18.22) and Eq. (18.43).
The expectation value of the left-hand side of Eq. (18.56) in the state

|\PBO) is recognized as the mean removal energy R, and can easily be ex-
pressed in terms of the propagator,

p^O n

= E E ^ s o - "B")i ^B"i ap i*s°) i2
p^O n

= -J2[^EG(p;E)e^E. (18.57)

Equation (18.56) therefore also implies

R = <*BO| TM + 2VB | * B O > - M^o = <*BO| T1 + 2VB |*BO> - A* ,̂ (18-58)

where Eqs. (18.33) and (18.42) have been employed.
The final expressions for the expectation value of VB, HB and &B in

terms of propagator quantities are now easily derived,

{*BO\VB\*BO) = \{I*N-T + R) (18.59)

£BO = (*BO|#B |*BO) = \{HN + T + R) (18.60)

nBo = <*BO| OB |*BO) = \(~»N + T + R). (18.61)

In spite of the apparent simplicity of the above equations one should keep in
mind that, as the propagator depends on n [see e.g. Eq. (18.51)], the same
holds for T and R. In principle the expression (18.60) for the energy, upon
substitution of Eq. (18.41), is therefore a complicated nonlinear differential

(18.55)
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equation in EBO(N). In perturbative calculations (e.g. the dilute limit stud-
ied in Sec. 18.6) the situation brightens up considerably: the propagator
quantity T + R in Eq. (18.60) can then be evaluated with a lower-order ap-
proximation for the chemical potential. One is left with a linear first-order
differential equation, determining the energy up to a quadratic solution of
the homogeneous part EBO - \^^ffl = 0. The latter solution, however,
corresponds to the absolute leading term in the low-density expansion and
is already known from the GP treatment of Ch.12, i.e. Eq. (12.105) applied
to the Bose gas with U(r) = 0 and (/>c(r) = 1/W yields

EBO = \gN2/V and /x = gp. (18.62)

18.3 Bogoliubov perturbation expansion

At long last we are in a position to take advantage of the perturbative
machinery developed in Ch. 8. In fact, the reasoning in that chapter can
be taken over completely, with &B — fio + ^i - UNQ in the role of the
Hamiltonian, which is split up in a noninteracting piece

Ao = TM (18.63)

defining the interaction picture, i.e.

4(t)=e*AotoJ,e-*Ao', (18.64)

and the interaction Cli — VB- Note that the constant term —/J,NQ plays no
role in determining the ground state at fixed /i and No.

As a consequence, the following perturbation expansion for the propa-
gator holds [see Eq. (8.55)]:

°° 1 f f

x (0|T [^{h).Mtm)ap(t)al{t')] \0)connected. (18.65)

The noninteracting ground state |0) in Eq. (18.65) is the vacuum state
(without noncondensate bosons). The zero'th order term is

ihGi0Hp; t-f) = (0| T [ap(t)at (*')] |0> = 9(t - t ' ) e- i e^(t-* ') (18.66)
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or, in the energy representation,

G(0)(P;E) = - 1-—-. (18.67)
E - £w + IT]

Wick's theorem can now be used in the usual manner [see Sec. 8.3] to
evaluate the matrix elements appearing in Eq. (18.65), and the resulting
terms are again represented by diagrams.

The diagram rules can be taken over from Sec. 8.6, with two important
modifications:
(1) The boson operators in a time ordered product commute, so we don't
have to worry about overall signs.
(2)The contractions in the T-product are necessarily between nonconden-
sate (NC) operators. A contraction will be represented by a directed NC
boson line. The condensate (C) operators have been replaced with num-
bers in the Bogoliubov prescription, but for bookkeeping purposes they are
graphically represented by short arrows entering or leaving a vertex. For
the mth order contribution to the propagator G{p; t — t1) in the time rep-
resentation the diagram rules of Sec. 8.6 then reduce to
Rule 1: Draw all topologically distinct and connected diagrams with m
horizontal interaction lines for V (represented by dashed lines). Each ver-
tex must have one ingoing and one outgoing element, which can either be
a directed NC line or a C arrow.
Rule 2: Label each interaction line with a time. Assign momenta to the in-
ternal NC propagators, making sure that momentum is conserved for every
interaction V. Each C arrow carries zero momentum. Assign propagators
G^°HPn',U - tj) to any directed NC line, e.g.

Pn •• => G^[pn;U-tj)

Assign (see the fermion case) a matrix element (piPj) V }pmpn) to an inter-
action line, filling in zero momentum if a C arrow enters or leaves a vertex.
Rule 3: Sum over the internal momenta and integrate over the internal
time variables.
Rule 4: Include an overall factor N™c(ih)m~mc where 2mc is the num-
ber of C-arrows in the diagram. The number of C-arrows must obviously
be even, since the contractions remove pairwise the NC operators from the
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Fig. 18.1 First-order diagrams for G.

original 4m+ 2 sp operators in the T-product. The number of NC lines (in-
cluding the two external ones) in the diagram is then mnc = 2m + 1 — mc.
The power of (ih) follows from the expansion (—m), from the definition
( — 1), and from the number of contractions (+mnc).

Note that the diagrammatic expansion for bosons is somewhat simpler
than in the fermion case. Looking at the structure of the contractions in
Eq. (18.65), it is clear that any internal contraction within a Vs{t) oper-
ator is zero, since the NC operators are already in normal order. As a
consequence, any NC line must have its start and end point at different
interactions. Moreover, the NC lines have only forward propagation, so in
a nonzero diagram all NC lines can be made to run in the same (upward)
direction. This automatically excludes closed loops of NC lines.

The diagram rules for the propagator G(p; E) in the energy representa-
tion are obtained with a few straightforward changes:
Rule 2: Assign momenta and energies to the internal NC propagators and
make sure that momentum and energy is conserved for each interaction
V. Each C arrow of course carries zero momentum and energy. Assign a
propagator G^ (pn; Ei) to a directed NC line.
Rule 3: Sum over the internal momenta and integrate over the internal
energy variables.
Rule 4: Include an overall factor N™c{^)m~m<:. Compared to the time
representation there is an additional factor (2?r/i)~m"c from the FT of the
propagators, and a factor (27rfi)m+1 from the energy-conserving (̂ -functions
when the time integrations are performed.

The diagrams for G to first and second order in V are shown in Fig. 18.1
and Fig. 18.2. As an application of the diagram rules we evaluate a few
examples. For the first-order diagrams in Fig. 18.1 one has m = 1, mc = 1,
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Fig. 18.2 Second-order diagrams for G.

and

G^ (p; E) = JV0G<°> (p; E) (pO| V |pO) G^ (p; E)

= [«opW(O)]G(°) (p; E)G(°) (p; £) (18.68)

G^ (p; E) = iVoG(°) (p; £) (pO| 1/ |0p) G^ (p; E)

= [ ^ O # ( P ) ] G ( O ) ( P ; £ ) G ( O ) ( P ; £ ) . (18.69)

For the second-order diagrams in Fig. 18.2e)/) one has m = 2, mc = 1, and

G^(p;E) = N0^^2 JdE'GW(p;E)(p,O\V\p',p-p')G(°\p';E')

xG^(p-p';£-S')(p' ,P-P'l^|P,O)C? ( o )(p;^)

(18.70)
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(18.71)

We now investigate whether it is possible to repeat the analysis which
proved so useful in the fermion case, and to identify an irreducible self-
energy T,(p;E), in terms of which an infinite class of diagrams is easily
summed. Obviously, the first-order diagrams in Fig. 18.1 are irreducible
as they cannot be disconnected by cutting a propagator, and the reducible
diagrams in Fig. 18.2a) d) are indeed just repetitions of Fig. 18.1a)
and b). The diagrams in Fig. 18.2e), / ) then define new irreducible second-
order contributions. The reducible diagram in Fig. 18.2#) however, spoils
the picture: it can be disconnected (by cutting the middle propagator) but
the two resulting pieces are clearly not diagrams for G.

Instead, they are the lowest-order contributions to two novel Green's
functions, the so-called anomalous propagators, which are defined as

ihG12(p;t-t') = (*Bo\T[apn(t)a-Pn(t')\yBo),

iHG21(p;t-t') = (*Bo|r[at,n(*)at_pn(OI*Bo>. (18.72)

In the energy representation G\% is given by

Gn{p;E) = (*j30 |ap——r — • - a _ p | * B 0 )
E - (ftB - HBO) + if]

- <*flo| a-P
 1 . ap | * B 0 > , (18-73)
E + (UB - "so) - IT]

and likewise for (?2i(p; E),

G2l(p;E) = (VBola* . * , alp |*B0)
h - {UB - iiBo) + IT)

~ <**o| a - P P j . , A * , • al \*BO) • (18.74)
E+ (UB -UBO) -IT]

The anomalous propagators describe the process of exciting (de-exciting)
two non-zero momentum particles with opposite momenta from (into) the
condensate. They arise in the theory as a consequence of the nonconserva-
tion of particle number and vanish in zero'th order, when replacing \^BO)
with |0).

Both G12 and G21 can be expanded similarly to Eq. (18.65), and are
represented by diagrams with two external lines leaving or entering the
diagram. We will therefore represent the exact anomalous propagators
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Fig. 18.3 First order diagrams for G21 (left) and G12 (right).

graphically as

P,E\ \-p,-E f\
G12(p;E)^ \J G21(P;E)^ p,El l-p,-E.

The diagram rules for G12 and G21 are exactly the same as for the
normal propagator G. In Fig. 18.3 the first-order contributions are shown,
which are easily evaluated as (note that TO = 1 and mc — I):

G$ (p; E) = JV0G
(0) (p; E)G^(-p; -E) (00| V \p, -p)

= [zopW(p)]GW (p; £)G(0) (-p; -E) (18.75)

G{\] (p; E) = No (p, -p\ V |00) G(°' (p; E)G™ (p; E)

= zopW(P)G{0){p;E)G{0){-p; -E). (18.76)

The second-order diagrams for G21 are shown in Fig. 18.4. The only irre-
ducible diagram is the one of Fig. 18.4e); it has m = 2, mc = 1 and its
value is

G™(p;E) = Noi- Y, fdE'(pl,~p'\V\P>~p)G^(p';El)

xGl°H-p';-E') x (00\V \p',-p')GW(p;E)G(°H-p;-E)

= U, f ^ % : f ( ^ 1 G^E)G^-P;-E).
[ J (2-KHY -2EPI + IT] J

(18.77)

It is clear that the corresponding second-order diagrams for Gu can be
obtained from the diagrams in Fig. 18.4 by rotating over 180 degrees and
reversing the direction on all arrows. This corresponds to the replacement
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Fig. 18.4 Second-order diagrams for G21.

(p; E) -> (—p; - £ ) , and as it obviously holds for all higher-order diagrams
as well, one has

Gi2(p;E)=G2l(-p;-E). (18.78)

In addition, Eqs. (18.73) and (18.74) imply that the anomalous propagators
are even functions when both particle coordinates are interchanged,

G12(p;E)=Gli(-p;-E); G2l(p;E) = G2l(-p;-E) (18.79)

and in the Bose gas one therefore has Gi2(p; E) = G21 (p; E).
At this point one can define the irreducible self-energies Y,\2(p;E) as

the sum of all irreducible diagrams contributing to G\2(p;E), stripped of
the external lines. An analogous definition applies to T,2i(p;E), and since
Gu(p;E) = G21 (p;E) one also has £12(p;.E) = S2i(p;.E). For reasons
that will become apparent shortly, it is in addition convenient to rename
the normal propagator G(p;E) as Gn(p;E) and the irreducible normal
self-energy T,(p;E) as Hu(p;E). With these new ingredients, one arrives
at closed expressions for Gn and G\2. The diagrammatic expansion for
both these propagator terms, consists of a chain of En, £12, and E2i,
connected by a single NC line. In Fig. 18.5 the lowest-order terms in such
an expansion are given. It is straightforward to verify by explicit order-
by-order substitution that the full chain is generated by the diagrammatic
equation in Fig 18.6.

The algebraic translation can be read off from Fig. 18.6 and yields

Gn (p; E) = G<°> (p; E) + G^ (p; E)Xn (p; E)Gn (p; E)

+ G^°\p- E)Ei2(p; E)G2i (p; E) (18.80)
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Fig. 18.5 Expansion of Gn and G21 in terms of the irreducible self-energies S n , £12
and £21-

and

G2i(p;E) = G ( 0 ) ( P ; - £ ) £ 2 I ( P ; £ ) G I I ( P ; £ )

+ G(°'(p;-B)E11(p;-£)G2,(p;£). (18.81)

These equations, first derived by [Beliaev (1958)], determine the propagator
in terms of the self-energy, and represent the boson counterpart of the
Dyson equation for fermions studied in Sec. 9.1.

Introducing G22{p\E) = Gn(p;—E) and S22(p;£;) = T,n(p;~E) one
can consider the subscripts as matrix indices and rewrite Eqs. (18.80)-
(18.81) more elegantly as a 2 x 2 matrix equation,

[G(p;E)} = [G^(p;E)} + [G^(p;E)}[^(p;E)}[G(p;E)}, (18.82)

where

[G ()^E)]=[ 0 G^P;~E)\-[ 0 -T^t-/
(18.83)
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Fig. 18.6 Integral equations for Gn and G21.

Applying a matrix inversion, yields the explicit solution of Eq. (18.82) in
the following form

[G(p;E)\ = ([G^fe^)]-1 - [Sfe^)])"1

1 [E + em + -L22(P;E) -X12(p;E) 1
D{p- E) [ - S 2 1 (p; E) -E + ew + S n (p; E) J '

(18.84)

where the determinantal function,

D(p; E) = [E- ew - S u {p; E)][E + ePlt + S22(p; £)] + S12(p; J5)S2i (p; S).
(18.85)

is easily seen to be even, i.e. D(p; E) — D(p; -E).

18.4 Hugenholtz-Pines theorem

The Hugenholtz-Pines theorem establishes an exact relation between the
chemical potential // and the (irreducible) self-energies at zero-energy,
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Sn(p; 0) and Si2(p; 0), in the limit p -> 0 of zero momentum.
A perturbation expansion for the chemical potential fi is obtained from

Eqs. (18.33) and (18.42) by considering in Eq. (8.18) the operator A =
OVE/ONO = dCli/dNo. One immediately arrives at the expansion

°° 1 f f
^0 m\(ih)m J J

x<0|T ^ . . S M u f e W \0)connected, (18.86)

where Eq. (8.18) has been used at an (arbitrary) fixed time t — 0. Note
that the operator | ^ (0) in the T-product provides a fixed external point
which allows to define connected and unconnected factors when contract-
ing according to Wick's theorem. With exactly the same reasoning as in
Sec. 8.5 one can show that the unconnected factors cancel the denominator,
resulting in a restriction to connected diagrams as indicated in Eq. (18.86).

In a more compact notation we introduce

/(*i)..,tm;o) = <o|r n i ( « i ) . . n i ( t m ) f | ^ j ( o ) \o)connected, (is.87)

and rewrite the integration over ti..tm in Eq. (18.86) as

Im — / dti..dtmf(ti,..,tm;O)

= dti..dtmdtm+iS(tm+i)f(ti,..,tm;tm+i). (18.88)

Since f(ti,..,tm;tm+i) only depends on relative times, it is possible to
rewrite this as

Im - ^(relative times of ti..£m+i)/(ii,..,i ro;i ro+i)

= j dtl..dtm+l6(Tm+l)f{h,.., tm; tm+1), (18.89)

where Tm+1 = T̂+i ' • Using the symmetry of the integrand in Eq. (18.89),
one therefore also has

Jm = — T T s I r [dti..dtm+18{Tm+i)g(t1,..,tm+1) (18.90)
m + 1 oiVo J
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Fig. 18.7 First-order (left) and second-order (right) ground-state diagram.

where

g(h,..,tm) = <0| T [n^.Aitm)} \Q)connected • (18 '91)

The expansion for ft thus becomes

» = i£r(ihY, ^FJ^ /d t l- / dt^(Tm)

dN0 \ ^ x m\{ih)m J J

x(O|T[f>i(ii).A(U] |0)connec(ed). (18.92)
The expression following the derivative in Eq. (18.92) is recognized [see
also Eq. (18.45)] as a perturbation expansion for the expectation value
K = (*BO |^o + fii |*so)- The matrix elements in Eq. (18.92) can be
worked out in the usual way with Wick's theorem, and the expansion for K
is represented by the sum of all connected diagrams without external lines
(ground-state diagrams).

The rules for the ground-state diagrams in the energy representation
are the same as before, but the overall factor for an mth-order diagram
with 2mc C-arrows is given by TgNg1'^)"1-"1'*1. The power of (i/2ir) is
readily checked by considering the number of NC lines mnc = 2m — mc and
the number (m — 1) of energy-conserving (5-functions arising from the m-
fold time integration. Note that this leaves one time argument unrestricted,
which is removed by the presence of the S(Tm) factor in Eq. (18.92). The
symmetry factor 5 of the diagram is the number of ways the vertices can
be permuted without changing the value of the diagram (see e.g. [Negele
and Orland (1988)])3.

3An appealing feature of Green functions is that one does't have to worry about
symmetry factors in the diagrammatic expansion; they are always 5 = 1 because of the
presence of the external points.
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In both first and second order there is only one ground-state diagram,
represented in Fig. 18.7. For the first-order diagram we have m = 1, mc = 2
and 5 = 2 leading to a value

DW = 1^ (001^100) . (18.93)

For the second-order diagram we have m = 2, mc = 2 and 5 = 2, and

D^ = i-U» fdEy ifo-piyi°°)ia

- ^ E ' ( P ' i r | 0 0 ) | 2 - («•")
One can now generate (in a unique way) all diagrams for En (0,0) by

replacing in the diagrams for K two condensate arrows by an incoming
and an outgoing NC line (which become the external NC lines). For the
external NC lines E — 0 and the limit p -> 0 is taken, so this does not spoil
the momentum and energy balance in the diagram. Note that the diagrams
thus generated are automatically irreducible, since blocks connected by a
single NC line cannot appear in the diagrams for K due to momentum
conservation. Similarly, one obtains diagrams for Si2(0,0) by replacing in
the diagrams for K two condensate arrows by two incoming NC lines.

Let's consider a diagram of order m for K, having n^ interaction lines
of type Vij. Since in the overall diagram as many NC particles must be
added as there are removed, one has

5>-J>o- = 0, (18-95)
ij

and the number of C arrows, 2mc, is given by

mc = 5}2 -\(i + J)Rj = E ( 2 - *)no' = I > ~ •?>^ (18-96)
ij ij ij

The value of the diagram for K is

vK = U^)m-mc+1N^D, (18.97)
S Z7T

where D contains the string of interaction matrix elements and internal
propagators. The corresponding contribution to the chemical potential be-
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comes

^ = M?" = hlr-^N^mcD = mc
VfQ. (18.98)

Upon replacement of two C arrows by NC lines in the diagram for K one
obtains diagrams for either £n(0,0) or £12(0,0), whose value will now be
shown to be related to nM in Eq. (18.98). First, the mth order E-diagrams
contain 2mc — 2 C-arrows and, according to Sec. 18.3, their overall factor
is the same as the one in Eq. (18.98) both for the power of (I/^TT) and
for the power of No. In addition, the evaluation of the interaction matrix
elements and internal propagators in the diagram does not change under the
replacement. As a consequence, all S-diagrams arising from a AT-diagram
have identical values, irrespective of which C arrows get replaced.

For the degeneracy of the diagrams we work step by step. First replace
one incoming C arrow by an incoming NC line in all possible places. The
number of ways this can be done is

5^(2-j>y=mc. (18.99)
ij

If the replacement is performed on an interaction line of type Vi> j<, the
resulting diagram will have one less interaction line of type VV ̂ 1 and one
more of type Vi>j>+i.

If we repeat this operation we get a total degeneracy factor

mc ]P(2 - j){riij - SijSjj- + 6i4:6jif+1) = mc(mc - 1) (18.100)
ij

for the contribution vu to Ei2(0,0) and hence

u i 2 = m c ( m c - l ) - j p . (18.101)

Note that when performing the replacement on all possible places of the
JC-diagram one generates each distinct S-diagram precisely 5 times. The
expression in Eq. (18.101) still contains the \ factor in vK to take care of
this, and is therefore the correct contribution to E12(0,0).

Alternatively, we may replace as a next step an outgoing C arrow with
an outgoing NC line, and get a degeneracy factor

mc ^ ( 2 - i)(mj - 6^8jti> + S^dj'j+i) = m2
c (18.102)

ij
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for the contribution

vn=m2
c^f (18.103)

to En(0,0). Combining Eqs. (18.98), (18.101) and (18.103) leads to vM =
^n — 1̂2 and since this has been derived for each specific diagram one has
in general

Ai = Si i (0 )0)-Ei 2(0 )0), (18.104)

which is known as the Hugenholtz-Pines theorem. It is left as an exercise
to check to second order that the above procedure indeed generates the
irreducible self-energy of the corresponding order [see Exercise (2) at the
end of the chapter].

The importance of the Hugenholtz-Pines theorem lies in the fact that,
when considering the p -» 0 limit of the determinantal function D(p; E) in
Eq. (18.85)

D(0;E) = [£ + / x - £ n ( 0 ; £ ) p - / J + £ i i (0 ; -£)] + pi2(0;£)]2 , (18.105)

the theorem ensures that D(Q; E) vanishes for E = 0. Since D(p; E) appears
in the denominator of Eq. (18.84), the exact boson propagator has a pole
at p = 0, E = 0, and the spectrum of the elementary excitations Ep of the
Bose gas is gapless, i.e. Ep —> 0 as p —> 0.

In fact, the spectrum vanishes linearly with p, as was shown by [Gavoret
and Nozieres (1964)] to all orders in perturbation theory. Provided that the
exact self-energies are regular at p = 0 and E = 0, one can see this e.g. by
expanding the determinantal function D{p;E) = D(p;—E) in Eq. (18.85)
for small values of p and E as D(p; E) sa D(0; 0)+a2E2-b2p2. Isotropy and
the even character have been used to exclude linear terms. The constant
term £>(0;0) then vanishes by virtue of the Hugenholtz-Pines theorem,
and a linear spectrum Ep ~ p results. This fact is strongly related to the
appearance of superfiuid properties, as will be discussed for liquid 4He in
Sec. 19.1.

18.5 First-order results

We now consider the limiting case of weak interactions, since even in lowest
order the Bogoliubov perturbation theory leads to some nontrivial out-
comes. It should be stressed immediately that "lowest-order" here means
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the expansion of the self-energy to first order in V. By solving the corre-
sponding Dyson equation (18.82) one automatically sums a infinite class
of diagrams and moves far beyond conventional first-order perturbation
theory for the propagator [as considered e.g. in Eq. (18.68) - (18.69)]. Nev-
ertheless, whatever the approximation for the self-energy, one knows that
the corresponding chemical potential is given by the Hugenholtz-Pines the-
orem.

The self-energies to first order in the interaction have already been de-
termined in Eqs. (18.68), (18.69) and (18.75):

Sn(p; E) = zoP[W(0) + W(p)] (18.106)

X12(p;E) = z0pW(p), (18.107)

and are independent of energy. The chemical potential is then, according
to Eq. (18.104),

ix = £n(0;0) - E12(0;0) = zopW(0). (18.108)

The normal and anomalous Green's functions can now be derived from
Eq. (18.84), with the function D(p;E), appearing in the denominator, re-
ducing to

D(p;E) = E2- {[ep + z0pW(p)}2 - [zopW(p)]2} = E2 - E2p. (18.109)

The last equality defines the singularities ±EP of the propagator, or the
excitation spectrum of the elementary excitations, given by

Ep = ^[ep + ZoPW(pW-{zopW(p)n (18.110)

In the low-momentum region the spectrum is linear in p,

EP -» p^[zopW(0)}/m (18.111)

like the dispersion relation for sound waves, with a constant veloc-
ity \/[zopW(Q)]/m. At large momenta the spectrum assumes its usual
quadratic form

which corresponds to almost free particles in a small potential ZopW(p)
arising from the interaction with the condensate. Note that Eq. (18.111)
implies that for W(0) < 0 one has unphysical complex poles in the propa-
gator as p -4 0. This reflects the instability of the present weak-interaction

(18.112)
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limit for a Bose gas with globally attractive interactions, and signals that
the starting point is not valid: e.g. clusters will be formed, or the Bose gas
will collapse and increase its density until the effective in-medium interac-
tion is positive for small momentum transfer [Pines (1962)].

The expressions for Gn and G12 in Eq. (18.84), in terms of the Ep

defined in Eq. (18.110), become

E + ep + zppWjp)
Gu(p,h) - £2 _£2

r (n F\ ZOPW(P) nsnT\
Gi2(p, t,) = ~ E2 _ E2- (18.113)

This can be rewritten in a representation with simple poles as

G i , ( p , E ) = £ . _ ^ + j , - £ + ^ _ i ,

G^£» = B^H " ETT^ < 1 8 1 1 4 >

where the coefficients up and vp are given by

_ \£p + z0pW(p) + Ep]
1/2

V p ^ ' * ^ - E ' \ ' \ (18,15,

and obey up - vp = 1. For small momenta one has to leading order

u\ « v2
p « upVp » V/^opVF(0)m/(2p). (18.116)

For large momenta, up RJ 1 and DP -> O(p~2) « 0, and the form of the free
propagator is retrieved.

The fact that the low-energy excitations in Eq. (18.111) show a linear
momentum dependence is one of the most outstanding differences between
fermion and boson systems. In a normal Fermi system the quasiparticle
spectrum near the Fermi energy is not qualitatively different from that of
the free system. In a Bose system the low-energy excitations are inherently
collective because of the presence of the condensate.
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18.6 Dilute Bose gas with repulsive forces

We now investigate the properties of the Bose gas in the limit of small
density p. Since the scattering length a provides the sole other relevant
dimension in the problem, the small dimensionless variable in a low-density
expansion (not necessarily a power series) must be e = pa3, and we will only
be concerned with quantities to leading order in e. Examining the first-order
self-energy, one notes that the matrix elements W(p) in Eqs. (18.106) -
(18.107) become very large, or diverge for a repulsive core. This again
reflects the need to replace the bare with an effective interaction. In the
dilute limit this is particularly clear: any interaction line can be extended
with repeated scattering between NC lines without altering the power of
NQ, so a low-density expansion in terms of the bare interaction does not
make sense. Fortunately, the summation of these diagrams is quite simple.
We consider the sum of the diagrams in Fig. 18.8, where fi is the energy of
the incoming pair. According to the rules of Sec. 18.3, the series reads

(p'lP'2\ r(fi) |pipa) = (p[p'2\ V \plP2) + E / dE3dE46(n - [E3 + E4})
P3P4

x (PiP2\V \P3Pt) ̂ -G0{p3; E3)G0{p4; E4) (p3p4\ V \pip2)
Z7T

+ S £ f dE3dE4 f dE5dE6S(n - [E3 + E4})5(Q - [E5 + E6})
P3P4 P5P6

x (pipil V \p3Pi) ^ G o ( p 3 ; E3)G0{p4; E4) (p3p4\ V \p5p6)

x ~G0(p5; E5)G0(p6; E6) (p5p6\ V \Plp2) + ..., (18.117)

and is generated by the integral equation

{p'lP'2\ r(fi) \plP2) = (p'lP'2\ V |p l P 2) + ^ J dE3dE4S{fl ~ [E3 + E4])
P3P4

X (p'iP2)V\p3p4)^Go(p3;E3)Go(p4;E4)(p3p4\T(n)\plP2). (18.118)

The energy integrals in Eq. (18.118) are easily evaluated as

jdE3 jdE48{a - [E3 + E4])G0(p3;E3)G0(p4;E4) =

n - A _ T + 2 / x + i •
 (18J19)

" 2m 2m + Z^ + lr>
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Fig. 18.8 Diagram series for the in-medium T-matrix r(O)

Introducing CM and relative momenta

p = P l + P a = pi+rt; P = E ^ 1 ; P' = ^ ^ (18.120)

and splitting off the factor for overall momentum conservation,

(pi^ |r(f i) |P l P 2) = Spi+P2
v
P[+p>r(p,p';P;n) (18.121)

the integral equation for the in-medium T-matrix F(p, p';P;fl) becomes

T(p,p;P;n) = W[p-p)+ / — 7̂  -772 ~ —•
J (2^)3 ft_£__E_ + 2 / i + ,??

(18.122)
We note that in the bosonic case the in-medium T-matrix obeys the same
equation as the free-space T-matrix in Eq. (12.100), apart from a trivial
energy shift involving the chemical potential and the CM kinetic energy. It
can thus immediately be expressed in terms of the free-space half off-shell
T-matrix [see Eq. (12.102)],

-^r{p,p';P;H) = {p\f\P') + J dp" {p'\t\p"){p\f\p")* (18.123)

In the low-energy regime of interest one has p,p',P,fl —>• 0, and one can
replace the matrix elements of T with the low-energy limit g/(2n)3 of
Eq. (12.87) [where g = ijI£SL]. The second term in Eq. (18.123) is then
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seen to scale as g2y/Ji. Since the leading term in the low-density expan-
sion for the chemical potential must be given by the GP result fi w pg in
Eq. (18.62), one notices that g2y/Jl ~ y/pa3. In a low-density expansion
the second term therefore represents a higher-order correction to the first
term in Eq. (18.123) and, to leading order, the effective interaction can be
treated as constant, F « g.

In the first-order self-energy diagrams of Fig. 18.1 and Fig. 18.3 one
can then replace the bare interaction V with the effective interaction T of
Fig. 18.8, leading to the ladder series for the self-energy. It is easy to infer
from Fig. 18.8 that all the second-order irreducible self-energy diagrams
in Fig. 18.2 and Fig. 18.4 are generated by this replacement. Moreover,
contemplating the higher-order contributions to the irreducible self-energy
leads to the conclusion that, in any order in V, the diagrams of the ladder
series contain the minimal number (two) of condensate arrows. As a result,
the third and higher-order self-energy diagrams that are not included in the
ladder series are necessarily of a higher power in the density.

The upshot of all this is that the leading-order term in a low-density
expansion can be simply obtained by replacing W(p) with g = 4ffh2a/m
in the first-order results of the previous Sec. 18.5. In the dilute limit,
Eqs. (18.110) and (18.115) then imply that

EP = V (£P + zoP9)2 ~ (zopg)2 = zopgxy/x2 + 2,
2 _ £P + zopg - Ep _ 1 r x2 + 1 _ j
p 2Ep 2 Uv^T^ J '

ep + Z0p9 + Ep 1 r ^ l 1

where a rescaled dimensionless momentum variable x = ,„ p has been
V2mzopg

introduced. The depletion of the condensate is expressed in terms of the
removal amplitudes [see Eqs. (18.52) and (18.114)] as

"-«> = £<« = vf <5^T* - V j ^ P m W A , (18.125)

where the integral h can be evaluated as

i^rdxx2i-\4^=-i\
Jo 2 Uy^T^ J

= l i m ( i /V)^i i4)=f . (18.126,z->oo \ 4 Jo J x 2 + 1 6 / 6\ /

(18.124)
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The condensate fraction ZQ = No/N, calculated from Eq. (18.126), reads

1 - z0 = ±=4l\pa^ (18.127)

and the resulting depletion 1 — ZQ is seen to be small in the dilute limit
(po3) —> 0. To leading order in pa3 the solution of Eq. (18.127) is given by

l - * 0 = r4=(pa3)1/2- (18-128)

While the kinetic energy in Eq. (18.54) and the mean removal energy in
Eq. (18.58) are separately divergent (as a consequence of the contact inter-
action the vp don't fall off fast enough), the ground-state energy determined
by their sum is finite, and according to Eq. (18.61) one has

£ ^ l ^ ( e p _ £ p ) = ̂ I ? ^ / 2 , (18.129)

where the integral can again be evaluated as

I2 = f+°° dxx2\ \ X' + l - l] (x2 - xy/xU^)
Jo 4 [xy/x^T^ J V V )

= lim - / d{x2) r—_=- - — - — = - ~ . 18.130)

In accordance with the discussion at the end of Sec. 18.2.3, the resulting
expression for the ground-state energy,

N~ 2~ 15 ma*Z° {pa > ' ( 1 8 - 1 3 1 )

is a simple linear differential equation in E and /x = dE/dN of the type

E ~ lN^~r = ~CN5/2, (18.132)
2 dN

because we have evaluated the propagator quantities with the lower-order
approximation /i = Zopg from the HP theorem. Note that C is an N-
independent constant and that it is permissible to keep only the lead-
ing term for z0 w 1 in Eq. (18.131), leading to the Af-dependence in
Eq. (18.132). It can be solved with a power-law ansatz

E(N) = ^yN2{\ + xN3/2) (18.133)
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involving an unknown coefficient x. Substitution in Eq. (18.132) leads to
x = 8CV/g, and the leading correction to the GP result pg/2 for the energy
per particle is given by

E/N = -pg(l + — ^ a 3 ) i / 2 ) , (18.134)

as was first proposed by [Lee and Yang (1957)]. The chemical potential
then becomes

on

fl = pg(l + —(pa3)1/2). (18.135)
ov71"

The late 1950's saw a flurry of activity on the dilute Bose gas, with other
important contributions by [Lee et al. (1957)], [Brueckner and Sawada
(1957)], and [Wu (1959)]. With similar techniques the next to leading
order correction to the GP energy has been calculated as E/N = ^pg[l +
y ^ ( p a 3 ) 1 / 2 + 8(4?r/3 - \/3)pa3\n(pa3) + ..]. The (unknown) next term
goes like (pa3) but cannot be expressed solely in terms of the scattering
length.

18.7 Canonical transformation for the Bose gas

The structure of the propagator in Eq. (18.114), containing a single re-
moval pole for each sp momentum p, is strongly reminiscent of a mean-
field treatment. It is in fact possible to derive the first-order results in
Sec. 18.5 directly, without applying perturbation theory. We return to the
grand-canonical potential &B of Eq. (18.27) and examine in Eq. (18.21) the
different terms in VB • It is clear that when the number of non-condensate
particles is very small it makes sense to drop all terms involving three or
four non-condensate operators , i.e. we neglect the terms V^i, ^1,2 and
^2,2- The resulting operator is

AB » Vo,o - nN0 + J2 { e P 4°p + -7r\aW-P
+aPa-p\ 1 ,(18.136)

where we introduced

ep = ePfl + zop[W(0) + W(p)}; Gp = zoPW(p). (18.137)

This operator is a quadratic form in the removal and addition operators
and can therefore be diagonalized by introducing suitable linear combina-



Bogoliubov perturbation expansion for the Bose gas 555

tions. However, it will obviously be necessary to mix removal and addition
operators and to consider operators of the type

b\, = upaP + Vpd-p, bp - upap + upaLp , (18.138)

where the up and vp are real coefficients. This is the most general linear
combination, taking isotropy and momentum conservation into account.
The commutators are

[bp, &„] = 0; [6P, b],] = (u2
p - vP)Jp,p,. (18.139)

One observes that the 6-operators obey the same commutator algebra as
the usual o-operators, provided that the normalization condition

u\-v\ = \ (18.140)

is fulfilled. We impose this relation between the coefficients in the trans-
formation in Eq. (18.138), which now has one degree of freedom left. The
inverse transformation can easily be worked out as

aP = upbP - up6_p; ap — upbp - vptf_p, (18.141)

and substitution into Eq. (18.136) yields CIB in the transformed basis,

&B = Vo,o -/J,N0 + Y^ {[vpP ~ upvpGp} + {(u2
p + v2p)ep - 2upVvGp\b\bp

PTLO

+ [~upvpep +\{u2
p + t^GpK&p&Lp + bpb^p) J . (18.142)

The last line of Eq. (18.142) contains the "off-diagonal" bb and 6+&+ con-
tribution, which can be made to vanish by choosing the up, vp as solutions
of

sPUpVp = -Gp(u
2

p + v2
p). (18.143)

This equation should be solved together with the normalization constraint
(18.140). It is somewhat easier to eliminate the latter by defining a new
variable Bp as

uv = cosh#p; t;p = sinh#p, (18.144)
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in terms of which u^ + vp — cosh2#p and 2upvp = sinh2#p. Eq. (18.143) is
now easily solved as 6P = |Arctanh (Gp/ep) or

cosh26> = . £p ; sinh20p = . p (18.145)

which implies

* 4 = £ ^ ' "2 = ^ ^ . where Ep = y/%^G>. (18.146)

This solution brings Eq. (18.142) to its diagonal form,

ClB = VOfi -fiNo + AQ + Y^ EP *>%. (18.147)

The operator part in Eq. (18.147), which describes the dynamics of
the non-condensate particles, clearly has the structure of a noninteract-
ing quasiparticle Hamiltonian with positive excitation energies Ep. Conse-
quently, the ground state is simply the vacuum |0) of the bp operators (with
no quasiparticles present), whereas all excited eigenstates are of the form

(^)ni(6k)n2-i°)-
The occupation of the non-condensate particles in the quasiparticle vac-

uum follows directly from Eq. (18.141) and the fact that bp |0) = 0,
<0 |4o p | 0>=^ , (18.148)

whereas the thermodynamic potential is given by the expectation value

fti?o = (0| ClB |0> = Vo.o - fiN0 + Afi (18.149)

where

Afi = 5 > P ^ P - upvpGp) = Y, \(EP - iP) = -J2EPVI- (18-15°)
pjtO p^O p^O

The quadratic approximation made in Eq. (18.136) is completely equiv-
alent to the first-order calculations of Sec. 18.5. The dominant condensate
contribution to the thermodynamic potential

(^BO)COU = Vofi ~ VNO = \NIW{0)/V - fiNo (18.151)

is minimized by Â o obeying /j, = N0W(0)/V - zopW(0). Substituting this
lowest-order solution for the chemical potential into Eq. (18.137) one sees
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at once that the excitation spectrum Ep = Ji2
p - G2 as well as the up and

vp amplitudes coincide with Eqs. (18.110) and Eq. (18.115), respectively.
As a consequence the present treatment leads for dilute systems to the

same condensate depletion as derived in Eq. (18.127). In order to calculate
the leading correction to the ground-state energy, one can again set z0 = 1
or iV0 = N, and Eqs. (18.149) - (18.150) lead to

EB0 = QB0 + ̂ N = VOfi + AQ = Y ~ + J^ \(EP ~ £»)• (18-152)

The second term in Eq. (18.152) is ultraviolet divergent, since (Ep — ep) —>
2 2

— mPJ> for p —> oo. In accordance with the discussion in Sec. 12.4.3 we
note that this is the same divergence that appears in the second term of
Eq. (12.96), and we expect a finite result when everything is reexpressed in
terms of the physical scattering length. We therefore cancel the divergence
by rewriting Eq. (18.152) as

- [w - g ~w)+ £ [2{E> -£p)+~w j 1 8 1 5 3 )

= Xi + X2 (18.154)

The second term X2 in Eq. (18.154) is now a convergent expression
which can be evaluated [similar to Eq. (18.129)] as

X 2 = y ( 2 W ^ [ 2 m W ] 5 / 2 / l (18-155)

with the integral / given by

I=jdx^ (V^T2-z 2 - l + ^ = ^ . (18.156)

As this outcome is finite we must replace in Eq. (18.155) the strength of the
contact force with the lowest-order term in Eq. (12.96), i.e. g = 4?r/i2a/m.

The divergent first term Xy in Eq. (18.154) becomes

Xl - ~W~ (27rfi)3 2 J dp-2V\9~ 2 ; r W h ) ' (18 '157)

and since the bracketed term is recognized as the formal expansion to second
order of the free-space T-matrix in Eq. (12.96) it can also be replaced with
4nh2a/m.
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The final result for the energy,

is in complete agreement with Eq. (18.134), which was obtained in a totally
different manner as the solution of a differential equation involving the
energy and the chemical potential.

The perturbative expansion of the dilute Bose gas studied in Sec. 18.6
has served as a conceptual model for the phenomenon of superfluidity in
liquid 4He, e.g. to justify the linear spectrum of low-momentum quasiparti-
cle excitations. It does not provide a quantitative model of 4He (as will be
further discussed in Sec. 19.1), since this quantum liquid is neither dilute
nor is the interaction purely repulsive. However, the experimental realiza-
tion of BEC in dilute atomic vapors, as discussed in Sec. 12.4.5, has led to
renewed interest in bosonic perturbation theory. These systems are ideally
suited for a treatment along the lines of Sec. 18.6, although the presence of
the confining external potential requires some modifications which will be
the subject of Sec. 19.3.

18.8 Exercises

(1) Consider the many-boson state

+°° \N-Nn\ (J\N

|*(iV0)>= X > ~ 2v^ ^ l 0 ) -
JV=O VJV.

Prove that, as iVo ->• oo, one has to leading order in No:

(¥(JVo)|*(iVo)> -»• 20Vo

^ _ ($(JV0)|JV|g(JV0))

{N) - i w w T "*"°

(N) ViVo

(18.158)
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Hint: Show that for a > 0 and NQ —> +00 the discrete sums can be
replaced by

+°° IN-Nnl a + 1 r + 00

(2) Check the Hugenholtz-Pines relation in Sec. 18.4 up to second or-
der in the interaction, by taking the derivative with respect to JVo of
Eqs. (18.93) - (18.94) and comparing with the p - 0, E = 0 limit of
Eqs. (18.68) and (18.71), and of Eqs. (18.75) and (18.77).





Chapter 19

Boson perturbation theory applied to
physical systems

In this chapter we explore (sometimes indirect) applications of the bosonic
perturbation theory studied in the previous Ch. 18. Sec. 19.1 contains a
discussion of liquid 4He, whose superfluid properties can be understood
using concepts of Bose gas perturbation theory in combination with more
phenomenological treatments. In Sec. 19.2 the dynamic structure function
of the 4He system is examined, and its asymptotic properties are derived
in a general context. In Sec. 19.3 we apply the canonical transformation
technique to nonuniform systems and retrieve the GP equation as a descrip-
tion of the depleted condensate, now supplemented with the Bogoliubov-de
Gennes equations describing the dynamics of the non-condensate particles.
The chapter concludes with some elements of number-conserving perturba-
tion theory in Sec. 19.4.

19.1 Superfluidity in liquid 4He

19.1.1 The Hell phase

The atoms of the most abundant helium isotope 4He are bosonic in nature,
being composed of an even number of fermions. The closed-shell (Is2)
electronic configuration makes for very weak van der Waals forces. In com-
bination with the small atomic mass this hinders the formation of clusters
and the transition to a liquid. Under atmospheric pressure the gas-liquid
phase transition occurs at a correspondingly low temperature T « 4.2K,
and it remains a liquid down to T — 0; it solidifies only under pressures of
at least 25 atm.

The phase diagram, represented in Fig. 19.1, demonstrates the existence
of two types of liquid 4He, the so-called He-I and He-II phase. Below

561
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Fig. 19.1 Phase diagram of 4He.

the boiling point the liquid is initially in the He-I phase and has no very
remarkable properties. When cooled further it undergoes a transition to the
He-II phase at a temperature T\ = 2.172K. This is the A-point for liquid in
equilibrium with its vapor; at larger pressures the transition temperatures
are somewhat lower and form the A-line separating the He-I and He-II
phase. The fact that the system undergoes a phase transition can be seen
e.g. by the behavior of the specific heat near T\, which has a logarithmic
singularity ~ ln|T — X\|: the corresponding curve resembles the Greek letter
A from which the transition derives its name. Note that this behavior of
the specific heat differs from the finite cusp predicted for the ideal Bose gas
at the BEC transition (see Sec.5.6.1).

Liquid He in the He-II phase has been found to exhibit perplexing "su-
perfluid" properties, such as the ability to flow without resistance even
through very narrow tubes (zero viscosity) and an extremely high thermal
conductivity. In 1938 it was suggested by [London (1938)] that superfluidity
could be a manifestation of BEC of the 4He atoms. The BEC temperature
for an ideal Bose gas of 4He atoms is 3.1 K (see Sec. 5.6), not too far from
the experimental T\ « 2.2 K, and the phase diagram for the fermionic
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isotope 3He is completely different (no A-point).
However, the strong repulsive interactions lead to difficulties in micro-

scopic calculations, and the precise relation between BEC and superfluidity
is still a subject for investigation. The fact that 4He is a strongly correlated
quantum liquid is witnessed by the small condensate fraction, which was es-
timated at about 10% [Penrose and Onsager (1956)], a value later confirmed
experimentally (see e.g. [Sears (1983)]) by neutron and X-ray diffraction ex-
periments. The failure of the perturbative treatment of Sec. 18.1 can also
be seen from the magnitude of the dilute gas expansion parameter in liquid
4He: with p « 2 x 1028m"3 and a « 2 x l(T lom one has (pa3)1/2 « 0.4
which makes the "correction" term in Eq. (18.134) considerably larger than
the leading GP term.

Ab-initio descriptions of the 4He liquid with quantitative results need
advanced many-body treatments using realistic He-He interactions [Aziz
et al. (1979)]. At T = 0 a Green's function Monte Carlo calculation
by [Kalos et al. (1981)] gave results in very good agreement with ex-
perimental data, both for the equation of state (energy versus density)
and for structural information such as the pair distribution function g(r)
(see Sec. 19.1.2), the condensate fraction z0 and the momentum distribu-
tion n(p). Similar outcomes for z$ and n(p) were obtained by considering
a variational ground-state wave function containing two-body and three-
body correlations [Usmani et al. (1982); Manousakis et al. (1985) and
(1991)]. The equation of state calculated by using diagrammatic pertur-
bation theory at the parquet level [Jackson et al. (1985)] is also in rea-
sonable agreement with the Green's function Monte Carlo numbers. For
finite temperatures, a numerical study in the A-transition range (1 K - 4
K) using path integral Monte Carlo methods [Pollock and Ceperley (1984);
Ceperley and Pollock (1986)], was able to reproduce the A-curve for the spe-
cific heat, while being consistent with the T = 0 Green's Function Monte
Carlo calculation. Quantum Monte Carlo applications to the 4He liquid
(mainly the path integral method) have been reviewed in [Ceperley (1995)].
In Fig. 19.2 the calculated condensate fraction ZQ is compared with the re-
cent experimental results of [Glyde et al. (2000b)]. The latter are consistent
with 20 = 7.25 ± 0.75 % at T = 0.

19.1.2 Phenomenological descriptions

Most of the properties of 4He can also be understood from more phenomeno-
logical theories, in combination with some ingredients of the imperfect Bose
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Fig. 19.2 Condensate fraction zo in bulk liquid 4He, as a function of temperature. The
filled circles are experimental data by [Glyde et al. (2000b)]. The up-triangles represent
path integral MC calculations by [Ceperley (1995)]. The down-triangle at T = 0 is a
diffusion MC result by [Moroni et al. (1997)].

gas treatment. A case in point are the two-fluid models proposed by [Tisza
(1938)] and [Landau (1941) and (1947)], where the He-II phase is assumed
to be a mixture of a normal and a superfluid, with densities pn,ps and
velocities vn,vs, respectively. The normal fluid should then be identified
with the thermal cloud (the thermally excited quasiparticle excitations)
and the superfluid with the contribution of the quasiparticle vacuum. The
superfluid component has no entropy, zero viscosity and is responsible for
the frictionless flowing through thin capillaries; the presence of the normal
component at T > 0 explains why a finite value is found when the viscosity
is measured by dragging an object through the liquid (e.g. with the oscil-
lating disk method). The two-fluid picture also leads to an extra mode for
wave propagation through the liquid. In the ordinary first sound the veloc-
ities vn and vs of both components oscillate in phase, resulting in a density
and pressure wave. The other possibility, an out of phase oscillation of vn

and vs, leaves the density constant and leads to a temperature and entropy
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wave. This phenomenon is called second sound, and heat transfer through
wave propagation (instead of diffusion) lies behind the abnormal thermal
conductivity in He-II.

In a celebrated argument based on simple Galilei invariance, Landau
has shown that frictionless superflow is strongly related to the shape of the
excitation spectrum at low energy. A slab of superfluid flowing through a
capillary with velocity v has total momentum P = Nmv and kinetic energy
E = P21 (2Nm). Friction occurs when part of the kinetic energy of the slab
can be converted into heat by the creation of quasiparticle excitations. Let's
consider a new configuration in which a quasiparticle with momentum p
(in the original rest frame of the liquid) and energy Ep is present. In the
new configuration the slab then has velocity v' = v +p/(Nm), momentum
P' = Nmv+p = P + p and energy E' = P'2/{2Nm) + Ep =E + p-v + Ep,

where the recoil energy p2/(2Nm) can be neglected. The most favorable
case is for p in the opposite direction of v, and creation of a quasiparticle
with momentum p is therefore allowed when E' < E or Ep < pv. We see
now that dissipation can occur only for velocities

v > vc = (^) , (19.1)

where vc is the Landau critical velocity. If the critical velocity vc is nonzero
there will be superflow for v < vc. This clearly depends on the form of the
excitation spectrum Ev. An ideal Bose gas has a purely quadratic spectrum,
and thus would not be superfluid since Eq. (19.1) leads to vc = 0. In
interacting boson systems the spectrum starts linearly in p (see Sec. 18.4),
and for p —> 0 one has Ep = up, where u is the macroscopic speed of sound.
As a result, vc < u holds in any Bose gas, but the precise value of vc depends
on the detailed shape of the excitation spectrum. Indeed, the minima in
Ep/p occur when E'p = Ep/p or, equivalently, whenever the tangent of the
Ep versus p curve passes through the origin.

The complete dispersion curve Ep as a function of p has been accu-
rately measured by inelastic neutron scattering. The spectrum at pres-
sure P « 0 and T = 1.1 K is shown in Fig. 19.3. It is representative
also for the situation at T = 0, since the temperature dependence of
the spectrum is insignificant below T w 1.5 K. The linear part of the
spectrum (phonon excitations) extends to about 0.75 A - 1 with a slope
equal to the measured sound velocity {vCtPh<m ~ 240 m/s). At larger
momenta the so-called roton minimum Erot ss 8.6 K at p/h KS 1.9 A"1
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Fig. 19.3 Spectrum Ep of quasiparticle excitations in He-II at T = 1.1 K. Experimental
data from [Woods and Cowley (1973)]. The straight lines indicate the Landau critical
velocities for the phonon and roton excitations. The spectrum for q > 2.5 A""1 has
recently been measured with high accuracy (see Fig. 19.5).

appears1. The precise nature of the associated excitations is still de-
bated; they are usually associated with microscopic vortex rings (a local-
ized rotation, hence the name2). In the roton region the spectrum can
be approximated by a quadratic fit, and applying Eq. (19.1) leads to a
Landau critical velocity vCiTOt ~ 60 m/s. This is in very good agree-
ment with experimental values for the drag experienced by negative ions
moving through 4He with various velocities: it is vanishingly small below
vCtrot and rises very steeply for velocities exceeding vc,rot [Rayfield (1966);
Ellis and McClintock (1985)]. In most other situations, e.g. flow through
thin capillaries, the observed critical velocities are orders of magnitude
smaller than the roton value vCtrot and are determined by other mecha-
nisms (the production and growth of macroscopic quantized vortices in the

'The maximum between the phonon and roton part of the spectrum is called — rather
tritely — the maxon region.

2More poetically, according to Feynman "a roton is the ghost of a vanishing vortex
ring" [Feynman (1955)]
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superfluid).
The above discussion was of necessity quite superficial. A thorough

discussion on the superfluidity of 4He can be found in books devoted
to the subject, e.g. [Wilks and Betts (1987); Nozieres and Pines (1990);
Khalatnikov (1965)]. A good recent review article is [Griffiths et al. (2003)].
In the following section we take a closer look at the analysis of inclusive
(n, n') scattering experiments which, apart from the dispersion curve, also
allow to extract the momentum distribution and the condensate fraction.

19.2 The dynamic structure function

19.2.1 Inclusive scattering

The elementary neutron-He interaction is rather weak, and the (n, n') cross
section for scattering off a 4 He target can therefore be expressed in the Born
approximation,

The incoming (outgoing) neutron has momentum pi (pf ) and energy Ei =
pj/(2mn) (Ef = p2f/(2mn)), the solid angle dQ, is the scattering direction,
and crn-He is the total elementary n-He cross section. All information on
the target system is contained in the dynamic structure function S(Q,E),
where Q = hq — Pi — Pf is the momentum transfer and E = E{ — Ef is
the energy transfer to the target.

The dynamic structure function S(Q, E) has already been introduced
for the electron gas in Sec. 14.3 [see Eq. (14.54)], but may be defined in
general as the response function to a scalar "probe" p(Q):

S(Q,E) = "£\(^\p(Q)\<l>»)\26(E + E?-E»)
n

= (^\ PHQ)S(E + E? - H)p(Q) |*^> . (19.3)

The operator p(Q) = £VetqTi transfers momentum Q to the system, as
can be seen by its second-quantized form p(Q) = ̂ 2p ap+qap; note that
p{—Q) is simply the Fourier transform of the familiar density operator

P(r) = T,is(r-ri)-
The structure factor F(Q) is defined as the energy-integrated structure

(19.2)
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function S(Q,E). Using completeness, one has immediately

F(Q) = JdES(Q,E) = <¥$V(Q)#Q) \*$)

= «|^ei^-^)|O. (19.4)

The last identity shows that F(Q) is the Fourier transform of the pair
correlation function g{r),

g(r)= [ j^ei^F(Q) = (y»\Y,6(r-(ri-rj))\*»), (19.5)

which represents the probability of finding two particles with relative posi-
tion r. For the present isotropic systems one has of course that S(Q,E),
F(Q) and g(r) depend only on the magnitude of Q and r (as indicated in
the notation), and g(r) is the probability to find two particles at a relative
distance r.

Provided that the interparticle potential is local, the energy-weighted
sum rule of Eq. (14.50) holds, and one has the result

JdEES(Q,E) = \ « | [pt(Q), [H,p(Q)] « ) = ̂ - , (19.6)

which is widely known as the /-sum rule.
Depending on the magnitude of the momentum transfer Q, the exper-

imental structure function S(Q,E) has some characteristic features in its
energy dependence [Woods and Cowley (1973)]. For 0 < q < 2 A"1 there
is a well-defined sharp peak (the quasiparticle3 peak) followed by a broad
background distribution extending to intermediate energies and a high-
energy tail. An example is shown in Fig. 19.4. The position of the sharp
peak defines the quasiparticle energy EQ, and the corresponding strength
NZQ is defined by energy-integration under the peak. The quasiparticle
strength Zq diminishes rapidly beyond q = 2 A""1, though it is still possi-
ble (see Fig. 19.5) to track the quasiparticle peak up to q ~ 3.6 A"1. In
addition to the quasiparticle peak, the broad background distribution rep-
resents multiphonon scattering. For large q (q > 4 A"1) the quasiparticle

3 It may be surprising to use the quasiparticle spectrum (being a property of the
sp propagator) for a description of the density response of the system. However, in
condensed Bose systems the spectrum of the density fluctuations is intrinsically linked
with the single-particle behavior, since for Q jt 0 and to leading order in N one has
p{Q) « ajjdo + ala-Q ftj \/7h>(a'Q + a_(p).
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Fig. 19.4 Neutron inelastic scattering data on superfluid 4He at pressure P = 20 bar
(where Tx = 1.928 K), adapted from [Talbot et al. (1988)]. The curves are proportional
to the dynamic structure function S(Q,E) near the maxon wave vector q = 1.13 A - 1 .
The solid curve represents data at T = 1.29 K, well within the superfluid region, and
the quasiparticle peak is clearly visible. For larger T, the quasiparticle peak decreases
rapidly in intensity. It has disappeared in the dotted curve at T = 1.90 K, very near T\.

peak has completely disappeared, and the structure function shows only
a broad peak near E K, Q2/(2m) (see Fig. 19.6). This is characteristic of
quasifree scattering and will be discussed in detail in the next section. At
intermediate Q the structure of S(Q,E) is more complex.

In the region of small Q the dominant quasiparticle peak exhausts the
bulk of the sum rules (19.4) and (19.6). This means that p{Q) | * ^ ) can be
interpreted as an (approximate) eigenstate, with the (̂ -function in Eq. (19.6)
generating a single peak at the corresponding eigenenergy EQ . If one as-
sumes that a single quasiparticle excitation exhausts the sum rules one has

S(Q,E)*NZQ5(E-EQ), F(Q) w NZQ, Q-XEQZQ (19.7)

and consequently,

which relates the quasiparticle spectrum to the structure factor. Such a

(19.8)
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Fig. 19.5 Spectrum Ep of quasiparticle excitations in the 4He liquid near zero temper-
ature and pressure (T = 1.35 K and saturated vapour pressure). The down-triangles are
data from [Donnelly et al. (1981)]. The up-triangles at larger q represent recent high-
accuracy data from [Glyde et al. (1998)]. Note that Ep saturates at twice the roton
energy Erot, indicated by the dashed line. Higher excitation energies would be unstable
for decay into two rotons, as predicted by [Pitaevskii (1959)].

picture provides the basis of the variational description of the excitation
spectrum by [Feynman (1954)] and is able to generate roughly the shape
of the dispersion curve in Fig. 19.3. A somewhat better description of
the spectrum is obtained by the inclusion of backflow (three-body correla-
tions) [Feynman and Cohen (1956)].

The analysis of the inclusive (n,n') scattering cross section at large mo-
mentum transfer allows to extract the momentum distribution of the 4He
atoms. The rationale behind this is quite general, and is also regularly
applied to inclusive electron scattering, in order to analyze e.g. the mo-
mentum distribution of protons in complex nuclei, or the quark momentum
distribution in nucleons. In Sec. 19.2.2 we therefore discuss this topic for
an arbitrary system.

19.2.2 Asymptotic 1/Q expansion of the structure function

In the large-Q limit (more precisely, q » 2n/d with d the average sep-
aration of the target constituents) the so-called Impulse Approximation
can be used to describe the inelastic scattering process: the wavelength of
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the probe is so small that the constituents of the target system are seen
as individual scatterers. As a result, the momentum Q is transfered to
only one constituent. In addition one may assume that the struck con-
stituent, moving with large velocity, has negligible final-state interactions
with the remaining N — 1 target particles. One can then show that in
this limit S(Q,E) is fully determined by the momentum distribution of the
constituents in the target.

To see this in detail we turn to a systematic expansion of S(Q,E) in
powers of 1/Q, as derived in [Gersch et al. (1972)]. The time representation
of the dynamic structure function is obtained by a Fourier transform of
Eq. (19.3),

S(Q,T) = fdEe-^ES(Q,E)

= WIPHQKW-^KQ)]*?)- (19-9)

Further manipulations are more convenient in the first-quantized form of
the operators:

S(Q, T) = e^< Y, (K\ e-iqr'e-^Heiqri |*^) (19.10)

= e f c < £ ( ^ | ei,-(r4-,v) Je-i,.r ie-^ffei,.r,J |$JV} _

The bracketed part of the operator represents a unitary transformation on
e~T#, generating a momentum shift for the ith particle. This can be seen
e.g. by applying the transformation to the momentum operator p,, leading
to e~iq'riPietqri — Pi + Q. As a consequence, the operator in Eq. (19.10)
becomes

[e-^^e- i f V > P i ] = e-^HiP^+Q) = e-^l»+s^+^]j (19.11)

where we used the fact that the only momentum dependence in the Hamil-
tonian is contained in the kinetic energy J2iPl/(^m)-

We now recall the manipulations that gave rise to the closed expression
(A.32) for the evolution operator U(t, to) in the interaction picture defined
in Eq. (A.22). Equations (A.22) and (A.32), with to = 0, may be rewritten
as

e_#(ffo+ffi) = e-t
HoTexp (-- f'dt'ei£HoH1e-i£H°) , (19.12)
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where T imposes the familiar time ordering in the integrals arising from
the expansion of the exponential. In the derivation no special properties
of the Ho and Hi operators were needed, and Eq. (19.12) is therefore an
identity holding for arbitrary operators.

Making the substitutions Ho ->• p; • Q/m and Hi -> H in Eq. (19.12),
then leads to

e-^H+^) =e-ix^7exp f^£dte^He^^ (1QJ3)

In the integrand of Eq. (19.13) we recognize the generator for a translation
fi —* fi + Qt/m, and the Hamiltonian is transformed as

p^tfe-* 2 ^ 9 ] =H+J2 [V(ri + x-rk)-V(n-rk)]

= Hl(x), (19.14)

in terms of a new length variable denned as x = Qt/m and a vector x = xQ.
Note that x is the distance traveled by a particle with momentum Q and
mass m in a time t.

Finally we replace in Eq. (19.13) the integration variable t with x, and
introduce the corresponding quantities £ = Qr/m, £ = £Q. The result is a
clear separation of all Q-dependence in S(Q,r):

S(Q,T) = e-i"^2Y/{^o\^iq'{r'~ri)e~jiPi'i

xTtexpL^^dxWto-E"]) | O (19.15)

= e-"«/2F(Q,O. (19.16)

A Fourier transform with respect to r takes one back to the energy
domain,

5W-E) = / SB'*'*«•') = | / 1 / " " ^ 0- <19'17'
where we have introduced the j/-variable as

mE q m , Q2.

Expanding the exponential in Eq. (19.15) one can now clearly generate a
series in powers oim/Q. However, Eq. (19.15) has additional Q-dependence
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in the factor e'q'(ri~r'\ One therefore separates the summation over i, j in
Eq. (19.15) into the incoherent part with i = j , and the coherent part with
i ^ j . In the incoherent part one tracks a single particle which absorbs the
momentum transfer of the probe, propagates, and re-emits Q, according
to the basic definition in Eq. (19.3). The coherent part contains the in-
terference terms where this process involves two different particles. In the
large (/-limit the coherent contribution to S(q, w) is severely suppressed as
a result of the fast oscillations involved in the eiq'(ri~r') factor, and one
can limit oneself to the dominant incoherent contribution.

The expansion of the structure function therefore becomes

£s(Q^ = £(-g)B/n(y), (19-19)

where

x rdx2(H'i(x2) - <) . . r~ldxniHUxn) - < ) } « ) . (19.20)

It follows that, in the large-<J limit, QS(Q,E) —> mfo(y) depends on the
single variable y. This asymptotic property of the dynamic structure func-
tion is usually referred to as y-scaling. The leading term or Impulse Ap-
proximation to the structure function is given by Soo{Q,E) = [m/Q]fo(y)
with

Z+OO Jf

N f dn

= jjT2^6iHy-p-QMp)- (19-21)

Here, n(p) = (i&gr\a)pap ̂ ^) is the momentum distribution in the sys-
tem and use has been made of the second-quantized form J2ie~*Pi £ ~*
^2pe^^p^a^pap. The (5-function fixes the longitudinal momentum p • Q
(along the direction of Q), and in the present isotropic system we get

N f+cv
My)=W«rpLdppn<p)- (19'22)
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Fig. 19.6 Quasifree neutron scattering off liquid 4He at T = 0.5 K and saturated
vapour pressure. The data shown are from [Glyde et al. (2000b)] and represent the
quantity J(Q,y) = (h/m)QS(Q,E) « tlfo(y), which is (approximately) independent of
Q [see Eq. (19.20)], for Q = 28.5 A - 1 . The analysis in [Glyde et al. (2000b)] of the
^-dependence, and a comparison to temperatures just above T\, allows to extract the
condensate fraction in Fig. 19.2, as well as the momentum distribution.

The n = 1 term in Eq. (19.19) represents the first correction to the
Impulse Approximation and takes into account the dominant final-state
interactions. The expression for fi(y) as given by Eq. (19.20) can be sim-
plified considerably, using the fact that

[H[{x) - E»] | O = £ [V(n -rk + x)- V(ri - rk)} | < ) (19.23)

and that e~*P i '^(T-J) = 0(T\ - £) acts as a generator of a translation for
the z-th particle coordinate r,, which appears both in the interaction terms
and in the wavefunction. Introducing the coordinate space representation
of the ground-state wave function and defining the two-body density matrix
as

P2(rur2;r[,r'2) = N(N-1) Jdr3..drN ^*(r[,r'2,r3..rN)

x^(r1,r2,r3..rN), (19.24)
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Fig. 19.7 Momentum distribution kn{k) in superfluid 4He (normalized as / dkn(k) = 1)
at the equilibrium density p — 0.0219A" . Adapted from [Manousakis et al. (1985) and
(1991)], with the experimental points based on [Sears (1983)].

one can show that

h(y) - / T^e<V / dx / dridr2 P2(ri + £,r2;rur2)

x [V(n - r2 + x - i) - V(n - r2 - 0]- (19-25)

This expression depends on the half-diagonal two-body density matrix
P2(fi,i'2;r'1,r2)- In general, fn(y) requires the (n + l)-body density ma-
trix, diagonal except in one set of coordinates. Finally, one can change
the integration variable x —> £ — x in Eq. (19.25) and exploit translational
invariance of the wave function to arrive at

My) = - / ^re«» / drP2(r-t0;r,0) / dx[V{r-x)-V(r-£)].
P J-oo ^h J Jo

(19.26)
In superfluid 4He the momentum distribution has the form of

Eq. (18.10). Substitution into Eq. (19.22) yields for the impulse approxi-
mation,

-U»(«,i5) = zo5 (E-f-)+£- F° ^%n(p). (19.27)
N \ 2m J hQpJhM (2nH)2
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The first term arises due to the condensate and produces (in principle) a
(5-peak in the spectrum of the scattered neutrons, the relative intensity of
which is a measure of the condensate fraction. The second term represents
Doppler-broadened quasifree scattering; the distribution is also peaked at
y — 0 or E = | ^ , and allows to derive n(p) by taking the derivative with
respect to y. In practice however, the analysis is complicated due to the
final-state interactions (which provide a broadening of both the condensate
peak and the background distribution) and residual coherent contributions.
Fig. 19.6 contains a typical experimental result. The momentum distribu-
tion in superfluid 4He (extrapolated to T — 0) can nevertheless be extracted
from the experiments and is shown in Fig. 19.7. Also shown is a theoretical
prediction by [Manousakis et al. (1985) and (1991)], based on a variational
ground-state wave function containing two- and three-body correlations. A
discussion of the liquid 3He momentum distribution can be found in [Maz-
zanti et al. (2004)].

19.3 Inhomogeneous systems

The perturbation techniques for the Bose gas, developed in Sec. 18.1, can
be extended to nonuniform Bose systems. We will limit the discussion on
inhomogeneous systems to the first-order results for dilute systems, as is
applicable to e.g. the atomic BEC of Sec. 12.4.5. This is the analog of
the Bose gas treatment in Sec. 18.7. Making similar approximations one
is again left [see Eq. (18.136)] with a thermodynamic potential, which is
quadratic in the boson addition and removal operators and can be solved
exactly by means of a Bogoliubov transformation to quasiparticles. For
nonuniform systems this is not entirely trivial and in Sec. 19.3.1 we first
discuss some mathematical properties of Bogoliubov transformations in a
general setting.

19.3.1 The bosonic Bogoliubov transformation

The general form of a quadratic Bose Hamiltonian, expressed in an arbitrary
sp basis, reads

H = J2 ( e ^ (a°aP + a0ai) + G*0aW0 + G*af3a0aa) . (19.28)
a0
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This may be recognized as a generalization of the Bose gas expression in
Eq. (18.136), which was automatically diagonal in momentum space be-
cause of translational invariance. Note that the symmetric form in the <Ja
and aaJ operators is sufficient; the difference a)aap — apa^ = 5a^ would
only give rise to a constant term.

As in Sec. 18.7 we consider a general linear transformation with mixing
of removal and addition operators,

b\ = £ Uyia\ - V7ia7, b^Y, t/>7 - V>t. (19.29)

7 7

The transformation coefficients are constrained by imposing boson commu-
tation relations on the new 6-operators,

7

[h, bj} = 0 = Y,(-UWi + Wi ) - (19-3°)
7

We now show that for stable systems it is always possible to choose a trans-
formation (19.29) such that the Hamiltonian takes on the simple diagonal
form

H^AiC&tfc + fc&J), (19.31)
i

with positive energies A; > 0.
It is convenient to introduce matrix notation and rewrite the Hamilto-

nian in Eq. (19.28) as

A = ( a + a ) (<?• ̂  ( a " ) =AiH*A> (19-32)

where e is a hermitian and G a symmetric matrix in sp space, so that Ha

is a hermitian matrix with doubled dimension. The transformation (19.29)
is written in matrix form as

( £ ) - (_yT ~JT) ( ; t ) , or: B = *Mi*A, (19.33)

where4 a = I 1, M = I ), and the commutation requirements

4 Unit and null matrices are denoted simply by 1 and 0, since no confusion is possible.
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(19.30) can be expressed as

(_yT^) (yr) = 1 ' °r: °M*°M = 1- (19-34)

It follows that aM^a = M~l, and the inverse of the transformation (19.33)
therefore becomes

00=(v£) (J )~*=™ <19-35)
Equation (19.35) allows to express the Hamiltonian in the 6-basis as

H — B^HbB, and it is easy to check that the transformed Hb keeps the
symmetries of the original Hamiltonian matrix Ha, i.e.

Hb = M^HaM = ^yT uTj ( ^ , £*)[vu,) = (G,. £,*) , (19-36)

with

e' = UhU + Vh*V + U]GV + V^G*U,

G" = U^GU* + V^G*V* + UhV + Vh*U*. (19.37)

Imposing on Hb the diagonal form of Eq. (19.31) implies that G" = 0 and
e' = e'* — A in Eq. (19.36), with A a real diagonal matrix. Left-multiplying
Eq. (19.36) with oMo then leads to the equivalent diagonality condition

feG\fUV*\ fUV*\f\0\ „ . . . . / A O N

(19.38)
Eq. (19.38) is recognized as a generalized eigenvalue problem with a playing
the role of a metric matrix: the columns of the transformation matrix M
must be solutions (*O of

(19.39)
Note that Eq. (19.39) has the same form as the RPA equations discussed in
Sec. 13.2. In particular one observes that if (Xi, Yi,Ei) is a solution then so
is (Y*,X*, —Ei), as is also clear from the structure of the right-hand side
of Eq. (19.38).
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Solution for positive-definite matrices

Mathematically, it depends on the signature of the matrix Ha whether
the diagonality condition in Eq. (19.38) can be fulfilled. At present we
assume a physically stable system, i.e. the matrix Ha is positive-definite5.
In that case it is easy to see that Eq. (19.39) is equivalent to the Hermitian
eigenvalue problem ±& = (Ha1/2aHa1/2Ki with & = # i / 2 ( £ ) , and
consequently all eigenvalues E{ of Eq. (19.39) are real and nonzero. The
corresponding eigenvectors automatically fulfill the orthogonality condition

X\Xj - Y?Yj = 0, for i ^ j , (19.40)

and from the positive-defmiteness of Ha in Eq. (19.39) it follows that

Ei(X\Xi - Y?Yi) = ( X\ Y} ) W ^ ) > 0. (19.41)

Since the eigenvalues of Eq. (19.39) come in pairs ±Aj (with all A, > 0),
it is clear from Eq. (19.41) that the positive-energy solutions should be
used to build up the transformation matrices U and V, in order to fulfill
the commutation relation WU - V^V — 1 implied by Eq. (19.34), and
to determine the new b operators according to Eq. (19.33). The negative-
energy solutions merely repeat this information, with the roles of bi and b\
interchanged.

From the above one concludes that the Hamiltonian (19.28) can indeed
be expressed in the diagonal form of Eq. (19.31). The diagonalization proce-
dure in addition yields the ground state, since Eq. (19.31) may be rewritten
as

H = J2 AMbi + bib\) = 2 J2 AMbi + Tr(A)> (19-42)
i i

and represents a noninteracting system of quasiparticles with positive en-
ergies A;. Obviously the vacuum state |0B) of the bi operators, defined

by

Vi : bi |0B) = 0, (19.43)
5 In many cases Ha also has zero eigenvalues, implying a zero curvature of the energy

in the direction of the corresponding eigenvector. These Goldstone modes arise whenever
a continuous symmetry of the underlying physical Hamiltonian is broken in the quadratic
approximation. A more general discussion for positive-semideflnite matrices is given at
the end of this section.
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has minimal expectation value (0B\H \0B) — Tr(A), and is therefore the
ground state of the Hamiltonian in Fock space.

The energy difference between the quasiparticle vacuum \0B) and the
real particle vacuum |0) is given by

AE = (0B| H | 0 B ) - (0| H |0) = Tr(A - e) = - 2 £ A ^ \Vai\
2. (19.44)

i a

The last identity is derived by taking the trace of the matrix identity

Ha = aM U A) Ma = [v u-) U A) U T UT) ' (19-45)

which follows directly from Eq. (19.38).

Canonical single-particle basis

The structure of the full Bogoliubov transformation in Eq. (19.33) and
of the quasiparticle vacuum can be greatly clarified by considering the
so-called canonical sp basis. Applying singular value decomposition (see
e.g. [Golub and van Loan (1996)]) to the (complex) transformation matri-
ces, one can write U = W{uW2 and V = W^vWi, where the Wi are unitary
matrices and both u and v are real and positive diagonal matrices. The
commutation relations in Eq. (19.34) imply that l/W - VW = 1. Hence
UW = W%u2W2 and VW = W\v2Wi commute, and can be brought
to diagonal form by the same unitary transformation. It follows that
u2 — v2 = 1, and a set of degenerate values among the u diagonal ele-
ments entails the same degeneracy block along the diagonal of v. In ad-
dition, one has that R2u

2 = u2R2 with R2 = W±W\, implying that the
unitary matrix R2 is block-diagonal and therefore commutes with the posi-
tive u and v. Changing the order of the matrix factors in Eq. (19.34) yields
UU^ — V*VT = 1 and by the same reasoning one has that i?i = W^w/
is unitary, block-diagonal, and commutes with u and v. We can there-
fore write V = W^RfvR2W2 = W?RvW2, with R = RfR2 unitary and
block-diagonal, and treat each degeneracy block separately. Finally, the
off-diagonal requirement in Eq. (19.34) implies that WV* - VW* — 0, i.e.
UW* must be symmetric, or equivalently, uv(R- RT) = 0. This condition
is automatically fulfilled for a block with v = 0, but in that case, of course,
the matrix R is irrelevant. In a block with v ^ 0, R must be unitary and
symmetric, and can be transformed by a real orthogonal matrix O into
diagonal form R = OTel9O, where 6 is real and diagonal. Since O is real,
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one can construct the final canonical form U — W{uW2 and V — W^vWi,
by redefining W-^. -> SOWX and W2 -> ei?OW2.

With this canonical form for U and V, the full transformation in
Eq. (19.33) can always be decomposed as a succession of three transfor-
mations,

UV = I 0 W?) {-v u ) { 0 Wi) (at J • (19-46)

The first transformation (involving W{) is an ordinary change of sp basis
a -» a' to the canonical basis o^ = ^ 7 (^ i )a7 a 7- The second transforma-
tion a' —• &' mixes particle addition and removal operators and defines the
quasiparticle operators

K = uaa'a - vaa'l (19.47)

These two transformations are sufficient to remove b'b' and &'*&'* terms from
the Hamiltonian. The final transformation b' —> b is again an ordinary uni-
tary transformation 6; = Sa(^2*)ai^o o n the quasiparticle operators and
brings the 6+6 block in the Hamiltonian to the diagonal form of Eq. (19.31).
Note that this last transformation does not involve the quasiparticle vac-
uum or its energy, since the defining relation (19.43) holds for any unitary
transformation among the quasiparticles and 6j |0B) = b'a |0B) = 0.

An explicit expression for the quasiparticle vacuum is most easily found
in the canonical basis. The coherent many-boson state \ipa) = e 2^ 0") |0)
obeys the identity

a'a \i>a) = Y, -~T-K, Kf)2"] |0> = ™Qa'at |Va). (19.48)
n=0

Using Eq. (19.47) and Eq. (19.48) with the choice wa = va/ua one sees
that b'a \tjja) = 0. The quasiparticle vacuum can then be expressed (apart
from a normalization constant) as

io B )~n e ^ K t ) 2 i ° )= e 5 t i o ) ' (i9-49)
a

which can be thought of as a coherent superposition of the bosonic pair
state

S^ = W-(4)2- (19-50)
1 a Ua
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Finally, it is also of interest to consider the generalized density matrix

R=(0B\AAU0B)=(1 + P*K*) (19.51)

where the normal density matrix of the quasiparticle vacuum pap —
(0s|a^a/3 |0B) is Hermitian and Kap = (0s| a^Og |0#) is a symmetric ma-
trix, the so-called anomalous density. The condition that \0B) be the vac-
uum of the 6-operators is equivalent to

R = M(0B\BBi |0B)Mt = M ( J ° ) Af* = ( ^ J ̂  ) , (19.52)

and as a result p = VV^ and K = VU^. Transforming to the canonical
basis,

therefore leads to simultaneous diagonalization of both the normal density

P'a/3 = ^aSv<1a anc^ t n e anomalous density K'Q/3 = 5a,puava.

Zero-energy solutions

In order to accommodate the presence of Goldstone modes, we still need
to examine the more general case when the Hamiltonian matrix Ha in
Eq. (19.39) is positive-semidefinite, i.e.

Z^HaZ>0, VZ=(*). (19.54)

It is easy to prove that for any solution of the generalized eigenvalue prob-
lem HaZ = EaZ the eigenvalue E is real; that two solutions Z\,Z2 with
different energies E\ ^ E2 are u-orthogonal (i.e. Z\aZ2 = 0); and that
a set of vectors Z{ which are mutually u-orthogonal and have nonzero a-
norm, are also linearly independent [Thouless (1961)]. The property that
any solution Z = ( J ) has an adjoint solution Z = (*t) which obeys
HaZ = -EaZ also still holds.

As a consequence, the eigenvectors Zi corresponding to nonzero eigen-
values Ei can be treated exactly like before: they come in pairs, and it is
possible to normalize them as

ZJaZj =sgn{Ei)Si>j. (19.55)

(19.53)
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The linearly independent Zj-vectors span a linear subspace C of (necessarily
even) dimension 2m, with a nonhermitian projection operator

2m

V^^sgniE^ZiZJa, (19.56)
i= l

obeying V2 = V, VZ = Z for any Z in £, and £>Z = 0 for any vector Z
£r-orthogonal to £.

In addition, we should now allow for the presence of zero-energy so-
lutions (HaN = 0). Note that any vector of the null space Af of Ha is
automatically c-orthogonal to all nonzero eigenvectors, N^aZi = 0. Diag-
onalizing a in Af, it is always possible to have a basis set for Af which is
both orthogonal and cr-orthogonal, i.e.

NlNn = <5m,n and N^oN* = An<5m>n. (19.57)

We note that the adjoint vectors Nm also form an orthogonal basis in which
a is diagonal:

N^Nn = NlNm = Sm,n; N^aNn = -NlaNm = -An<5m,n. (19.58)

As a consequence, the A ^ 0 come in pairs (An, — An).
In principle one should therefore distinguish two types of zero-energy

solutions Nn. The first type, having An ^ 0, can be paired off such that
N-\n = N\n (possibly after a unitary transformation if An is degenerate).
One may renormalize, Z° = ,A |i/2-/Vn, to obtain

(Z°J^Z°n = sgn(Xn)Sm,n. (19.59)

The normalizable zero-energy solutions Z° behave exactly like the eigen-
vectors Zi with nonzero eigenvalues. Such eigenvectors Z°, while mathe-
matically possible, can usually be discarded on physically grounds: they
would correspond to intrinsic excitations with zero excitation energy.

More important from a physical viewpoint are a second type of zero-
energy solutions N\. = Pj, having Xj = PJ&Pj = 0 or a zero c-norm. These
are the Goldstone modes corresponding to the generators of symmetries of
the underlying Hamiltonian which are broken by the mean-field treatment.
The Pj can always (possibly after a unitary transformation) be chosen self-
adjoint, i.e. Pj — Pj. Since any Pj is ^-orthogonal to all vectors previously
constructed, the set of the Zt,Z^,Pj cannot be complete: otherwise one
would have aPj = 0, which is clearly absurd. We see that in this case
the solutions of the eigenvalue problem do not span the entire sp space.
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In order to complete the basis, for any Pj the "missing" vector Qj can
be constructed (see [Thouless (1961); Thouless and Valatin (1962)]) as the
solution of

HaQj = -iaPj. (19.60)

This is solvable, since crPj is orthogonal to the null space Af of Ha; the
vector Qj can then be denned as the unique solution6 which is orthogonal
to AT.

Combining Eq. (19.60) with HaZi — EiaZi one finds in the standard
fashion that Q^aZi — 0 for all nonzero-energy solutions Z». Further ma-
nipulating Eq. (19.60), it is easy to see that the Qj = Qj are self-adjoint,
and that they form a linearly independent set. We may therefore conclude
that the vectors Zi,Pj,Qj span the entire space, and expand crPi as

aPi = Y, aijQi + $>™Z™' (19-61)
i "i

where a^ is an invertible matrix. Left-multiplying Eq. (19.61) with Qkcr,
and employing (cr-)orthogonality, leads to the result that QkcrQj = 0, for
all k, j . Finally, we can employ the fact that the matrix Aij defined as

An = Q\HaQj = -iQ\aPj = iP~]<jQi, (19.62)

is a real symmetric and positive-definite matrix. The matrix Aij can be
diagonalized with a real orthogonal transformation, which does not spoil
the self-adjointness property of the Pi and Qj. It is therefore always possible
to construct a set of self-adjoint Pi and Qi which obey

Q\aQj = P\aPj = 0, (19.63)

Q\aPj = iTidu, with T{ > 0, (19.64)

and which are decoupled from the excitations with nonzero energy,

P\aZj = Q\aZj = 0. (19.65)

Expressed in terms of operators, according to Eq. (19.29), it is clear
that iPj and iQjh/Tj represent Hermitian operators that obey the commu-
tation relations of canonically conjugate momenta and coordinates. Each

6The solution is defined up to an arbitrary vector of the null space A/"; this freedom
can be used to make the Qj cr-orthogonal to all 2° vectors. For simplicity we skip this
unnecessary complication, and assume in the remainder of the discussion that no Z°
solutions are present.
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momentum operator corresponds to the generator of a continuous symme-
try of the underlying system [Ring and Schuck (1980)], which is broken in
the mean-field Hamiltonian of Eq. (19.28).

The Pi and Qi span a linear subspace, with a projection operator

7>o = X>^-p^l]ftf, (19.66)
i Li

obeying V\ = Vo, V0Pi = Pi and V0Qi = Qi. Equation (19.56), together
with VQV — 0, allows to write the identity operator for the complete space
as

l = -p + -p0. (19.67)

The Hamiltonian matrix can likewise be expressed as

Ha = Y, \Ei\ZiZ\a + £ ^-°PiP}<r- (19-68)

This section on the mathematical properties of bosonic Bogoliubov
transformations was somewhat abstract, but can now be put to use in
a description of nonuniform dilute Bose systems.

19.3.2 Bogoliubov prescription for nonuniform systems

We consider (as in Sec. 18.7) a dilute system of spinless bosons, with the
Hamiltonian now containing a confining potential U{r) in addition to the
usual contact interaction between the particles,

H = fdr at \-^~ + U(r)} ar + | fdr a)r
2a2

r. (19.69)

The Bogoliubov prescription for the boson removal and addition oper-
ators,

ar ->• A/^O 4>{r) + Sar, 4 -> v^Vo <?!>*(r) + 6at, (19.70)

again amounts to splitting off the contribution of the (as yet unknown)
condensate, which is described by a normalized wave function ip(r) with a
macroscopic occupation iVo- The non-condensate part Sar only acts in the
sp space orthogonal to </>(r) [see Eq. (18.18)].

In the weakly interacting limit one has iV0 « N and the operators 5ar,
Sal represent but small fluctuations. Applying the Bogoliubov prescription
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to the thermodynamic potential ft = H — fiN and expanding to second
order in the operators SaT and Sal > results in &B — ̂ o + ^1 + ^2, where

n0 = No Jdr 4>*(r) - ~ + U(r) - M] 0(r) + ̂  | d r |<^(r)|4

Q, = 0 V Q /dr 5a+ - ^ - + U(r) - fi + N0 g\<t>(r)\2} <j>(r) + h.c.

Cl2 = fdr 8a\. f-^~ + U^r) -» + 2No 9\4>(r)\2] Sar

+ ~ jdr [4>*2{r){Sarf + 4>2(r)(Sal)2] . (19.71)

Compared to the homogeneous case in Eq. (18.19-18.20) a term Cli appears
which is linear in the fluctuation operators. The linear term vanishes when
4>{r) obeys

[~^~ + U{r) + No ff|0(r)|2] 4>{r) = ̂ ( r ) . (19.72)

This is recognized as the GP equation (12.104), but taking into account
the quantum depletion (./Vo < N) of the condensate. The choice of cf>(r)
as the ground-state solution of Eq. (19.72) also minimizes, for any No,
the dominant contribution QQ of the condensate to the thermodynamic
potential [see Eq. (12.105)].

The remaining potential ^2 is quadratic in the fluctuation operators and
the corresponding ground state can therefore be found using the general
results of Sec. 19.3.1.

19.3.3 Bogoliubov-de Gennes equations

In coordinate space the Bogoliubov transformation (19.29), upon the re-
placement a = r, takes on the form

bi = Jdr {U*{r)5ar-V*(r)Sal),

b\ = fdr (Ui(r)Sal - Vi(r)Sar) , (19.73)

with the amplitudes Uai = f/;(r) and Vai = Vi(r). These diagonal-
ize &B and are obtained as the (positive energy) solutions of the gen-
eralized eigenvalue problem of Eq. (19.39). Introducing the operator
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L = -h2V2/(2m) + U(r) the resulting equations read

[L-n + 2N0 g\<j>{r)\2} U^r) + No gf(r)Vi(r) = ̂ ( r ) (19.74)

[L-n + 2N0 g\4>{r)\2] V^r) + No g</>*2(r)Ui(r) = -EMir). (19.75)

Equations (19.74) and (19.75) are known as the bosonic Bogoliubov-de
Gennes (BdG) equations, in analogy to their fermionic counterpart dis-
cussed in Ch. 22. They should be solved consistently with the GP equa-
tion (19.72),

[L + No g\4>(r)\2\ cj>{r) = ^ ( r ) . (19.76)

The GP equation (19.76) describes the condensate. The BdG equa-
tions (19.74) and (19.75) describe the non-condensate particles: both the
structure of the vacuum and the elementary excitations of the system. For
fixed particle number one should of course add

N = N0 + J2 fdr \Vi{r)\2. (19.77)
i •*

Note that the condensate wave function itself [i.e. Ui(r) = <fi(r), Vi(r) —
— 0*(r)] is a zero-energy solution7 of Eqs. (19.74) and (19.75). The positive
energy solutions obey the orthogonality conditions contained in Eq. (19.34),

jdr (U:(r)Uj(r) - V;{r)Vj(r)) = Sid,

Jdr {Ui{r)Vj{r) - Vi(r)Uj(r)) = 0, (19.78)

and are also orthogonal to the condensate wave function,

fdr {U*{r)4>(r) + V*{r)<f>*{r)) = 0. (19.79)

All other results from Sec. 19.3.1 can be taken over as well, e.g. the "co-
ordinate" <J>(r) conjugate to the zero-mode momentum represented by the

7The appearance of a zero-energy solution is in accordance with the previous
footnote5: the continuous symmetry of the original Hamiltonian (19.69) is the invariance
under a U{\) global phase change a\. —> e^at, which is equivalent to particle-number
conservation. This symmetry is broken by the particle-number nonconserving terms in
Eq. (19.71) .
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condensate wave function <j>{r), is found by solving [see Eq. (19.60)]

[L-H + 2N0 g\<p(r)\2] *(r) + No <702(r)$*(r) = </>{r), (19.80)

and is needed to complete the sp space [Lewenstein and You (1996)], ac-
cording to Eq. (19.67).

There is equivalence between the Bogoliubov quasiparticle excitations
and the normal modes (small amplitude oscillations) of the condensate.
Consider the addition of a small time-dependent perturbation 6U(r,t) to
the confining potential U(r). The first-order response 8(f>(r,t) of the un-
perturbed time-dependent condensate wave function <j>(r,t) = <j)(r)e~'ztlt is
found by replacing U —>• U + 5U and <f> —> <f> + S<j> in the time-dependent GP
equation (12.106), and equating the first-order terms:

[L + 2iVo<;|0(r)|2]<J0(r)*) + iVo502(r)e-^'"<J0*(r>*)

+ 6U(r, t)0(r)e-*"* = ih— (<ty(r, t)). (19.81)

For a harmonic perturbation with frequency u> [i.e. SU(r,t) =
5U(r)e~luJt + 5U*(r)elwt], the time-dependence dictates a response of the
form

S<f>(r,t) = e"*"' ( i / i ( r)e- i u" + (J/2* (r)e i w t). (19.82)

Substitution into Eq. (19.81) yields the equation for the spatial parts Sfi(r)
and J/2 (r) of the condensate response:

[I + 2N0 g\4>(r)\2] (J/i(r) + No g<p2(r)6f2(r) + 6U(r)<fi(r) =

(M + M S / I M

[£ + 2iV0 g\ct>(r)\2] Sf2(r) + No g<t>*2{r)5h{r) + 6U(r)P(r) =

{n-hu)6f2{r). (19.83)

Resonances in the linear response appear for frequencies that yield zero for
the inhomogeneous part of Eq. (19.83). The final equations for the eigen-
frequencies and normal modes are seen to coincide with the BdG equations.

The energies predicted by the BdG equations (19.74) and (19.75) agree
quite well with the experimental frequencies of the low-lying collective
modes in atomic BEC, obtained by modulating the trapping magnetic
fields [Dalfovo et al. (1999)].
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19.4 Number-conserving approach

The Bogoliubov prescription, as was mentioned in Sec. 18.2, leads to exact
results only in the thermodynamic limit. While the grand-canonical en-
semble treats open systems in contact with a particle reservoir, its use in
describing systems with a fixed and finite particle number can be (and has
been [Leggett (2001)]) frowned upon.

It is therefore of interest to investigate particle-number conserving ver-
sions of bosonic perturbation theory. Such extensions are usually performed
by a non-linear transformation, which seems originally due to [Kromminga
and Bolsterli (1962)]. New operators ba are introduced as

bl = aaa0 JVo~1/2

ba = No~l'2a\aa, (19.84)

where a^ is the removal operator for a particle in the condensate. The
operator No — %ao *s the condensate number operator, and can be assumed
to have non-zero eigenvalues in the Fock space relevant for this problem.

Obviously, the ba operators do not change the particle number. More-
over, one can show that

b% = ala0, (19.85)

by using the identity

aof(No) = f(N0 + l)a0) (19.86)

which holds for any well-behaved function f(x). The identity is easily seen
to hold by applying Eq. (19.86) to the eigenstates (a'0)

m |) of No and replac-
ing, as the functional argument of f(x), the operator with the corresponding
eigenvalue; since an arbitrary many-boson state can always be decomposed
in the eigenstates of No, Eq. (19.86) holds in general. As a result of the
identity (19.86) one has e.g. that aoN^al = 1, and Eq. (19.85) follows.

The condensate operators are simply given by [see Eq. (19.84)]

bl = bo = y/fio, (19.87)

The non-condensate sp states will be denoted with Latin labels a, b,...,
while Greek labels a, / 3 , . . . are kept for the general case, e.g. N = Y^a Na =
No + 2 O -^a- Using Eq. (19.86) one can show that the non-condensate ba
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operators obey the boson commutation rules,

[ba,bl] = Sab ,[ba,bb] = Q ,[bl,bl] = O. (19.88)

Eq. (19.85) allows to re-express the Hamiltonian in terms of the 6^ and
ba operators. The condensate operators, as given by Eq. (19.87), can be
eliminated by replacing

^o = VN l-^Y,b"b«> (19-89)

leaving only non-condensate operators. Finally the square-roots, appearing
due to Eq. (19.89), are expanded in a series, which can be combined with
the usual perturbative expansion. The reader is referred to [Kromminga
and Bolsterli (1962)] and [Grest and Rajagopal (1975)] for a treatment of
the homogeneous system, and to [Gardiner (1997); Castin and Dum (1998)]
for recent applications of particle-number conserving approaches in trapped
dilute Bose gases.

19.5 Exercises

(1) Show that an alternative form of the Bogoliubov quasiparticle vacuum
in Eq. (19.49) is given by

|OB>=eiS.,»-[(- ' . t)2-K)a]|o),

where wa = Atanh(i>Q/uQ). Hint: use the fact that Qa — ̂ [ (a[J)2 —
(ajj)2] is antihermitian, that e®a is unitary, and the expansion

e-Q°aae
Q« = aa - [Qa,aa] + ^[Qa,[Qa,aa]] - ..

= (coslm>a)aa + (sinhwa)a^.

(2) Prove the commutation relations in Eq. (19.88).



Chapter 20

In-medium interaction and scattering
of dressed particles

Chapter 16 illustrated the influence of short-range correlations on the sp
propagator, one of their characteristic features being the depletion of the
Fermi sea. The inevitable consequence is the occupation of states above
the Fermi energy, which in an infinite system involves the presence of mo-
mentum components above the Fermi momentum in the ground state. The
occupation of high-momentum components thereby restores the density to
its proper value. The distribution of the sp strength exhibits the expected
broadening of the quasiparticle peaks away from the Fermi momentum.
Specific features, induced by short-range correlations in the distribution
of the sp strength, involve the presence of low-momentum components in
a wide energy domain above the Fermi energy. In turn, high-momentum
components are found centered around a ridge determined by the char-
acteristic 2hlp energy given by an the average two-hole energy with the
high-momentum quasiparticle energy subtracted. The latter term contains
a dominant kinetic energy contribution which pushes them to ever lower
energy as —p2/2m with increasing p.

It is the purpose of the present chapter to explore the consequences of
these modifications of the sp propagator on the properties of the vertex
function T. In Ch. 15 this vertex function was studied by propagating
mean-field particles in the medium, when summing the ladder diagrams.
We will now turn our attention to propagating particles that are dressed by
the same short-range correlations that are treated at the tp level when the
ladder diagrams are summed. This calculation is of course necessary when
the sp propagator is calculated self-consistently, in terms of a self-energy
that includes the contribution of ladder diagrams. The ladder equation
must then include the full off-shell behavior of the dressed particles and
exhibits significant differences with respect to its mean-field counterpart,
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discussed in Ch. 15.
Throughout this section whenever quantitative calculations are pre-

sented, the dressing of the sp propagator originates from ladder diagrams
for nuclear matter at a density corresponding to kp — 1-36 fm"1. We are
not aware of other discussions of the in-medium scattering process involv-
ing dressed particles. The contents of this chapter are therefore not as well
digested as some of the other topics covered in this book and can therefore
be omitted at a first reading.

The dressing incorporated in this chapter is qualitatively similar to that
displayed in Fig. 11.5, but differs in quantitative aspects. The results of
Sec. 16.3.2 form the quantitative basis for the present discussion. Consider
the occupation of k given by the integral over the spectral strength up to ep
[see Eq. (11.114)]. Around normal nuclear matter density this occupation
number for k < kF is about 0.85 for most values of k except near kp,
i.e. about 15% of the strength is depleted due to the inclusion of ladder
diagrams in the nucleon self-energy. The strength of the quasiparticle pole
at kp [see Eq. (11.113)] is about 0.75. In Sec. 20.1 we will examine the
consequences of this dressing on the propagator in wave vector space of two
noninteracting (but dressed) particles. In Sec. 20.2 we proceed to coordinate
space, since this analysis sheds light on how to frame the discussion of the
scattering process in the medium when dressing is taken into account. The
scattering process will then be discussed in Sec. 20.3 and compared to
conventional descriptions.

20.1 Propagation of dressed particles in wave-vector space

For a uniform system the tp propagator defined in Eq. (15.1) is conveniently
studied by employing wave vector quantum numbers

GpPhh{ka,ka>;k0,k0r,ti -t2) = (20.1)

-^(^|7-[afea,(f1)afea(t1)4/3fe)4,,(i2)]|*oA),

where we have suppressed additional quantum numbers like spin (and
isospin). These quantities can be reinstated where appropriate. We con-
tinue to study the ladder approximation to this propagator but allow for
the dressing of the particles in the medium. The diagrams contributing to
Eq. (20.1) are shown in Fig. 20.1.
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Fig. 20.1 Diagrammatic representation of the ladder equation for Gpp^h given by the
first equality of Eq. (20.5) using dressed sp propagators.

As usual, the FT of Eq.(20.1) is more relevant for practical calculations:

Gpphh{ka,ka>;k0,k0r,E)= (20.2)

/ d(ti-t2)eiE^1-ta)Gpphh(ka,ka>;k0,kpl;t1-t2).
J — OO

Since the total wave vector of the added and removed pair must be the same
on account of momentum conservation, it is more appropriate to consider
the propagator without the resulting ^-function as in Sec. 15.1. We continue
to employ the infinite summation of diagrams, shown in Fig. 20.1, provided
the proper substitution from G Jhh to Gpphh is made. The latter term
represents the free propagation of dressed particles and is given in analogy
to Eq. (15.35) by

Gf
pphh(q; K,E) = i j ~ G(K/2 + q; E/2 + E')G(K/2 - q; E/2 - E').

(20.3)
The Lehmann representation of G in Eq. (16.9) can the be employed to
calculate Eq. (20.3) by contour integration

Gpphh(Q,K,E) = JJE JJE ----——

- rdE< r y w y f f / 2 - ^ ) , (20.4)
J~ oo J—oc hi hj hi ir\

The integral equation for the tp propagator can be written in a similar way
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Fig. 20.2 Ladder equation for the vertex function Vpphh illustrating the equivalent
results contained in Eqs, (20.7) and the dressed version of (15.14).

as in Eqs. (15.11) and (15.12)

Gpphh(k, k'- K, E) = Gf
pphh(k, k'; K, E) (20.5)

+ Gf
pphh(k;K,E)l-j^(k\V\q)Gpphh(q,k';K,E)

= Gf
pphh(k,k';K,E)+Gf

pphh(k;K,E)(k\T(K,E)\k')Gf
pphh(k';K,E),

where

Gf
pphh(k,k';K,E) = [5(k-k')-S(k + k')}Gf

pphh(k;K,E) (20.6)

is the noninteracting tp propagator which, both in homogeneous matter
and free space, conserves the relative wave vector as expressed by the 5-
functions in Eq. (20.6). The appearance of two (̂ -functions is associated
with the exchange term contained in Gpphh. The relative wave vectors fc,
fc', and the total one K are defined in Eqs. (15.17) and (15.16), respectively.
The second equality in Eq. (20.5) links the tp propagator with the vertex
function, or effective interaction, F which contains the summation of all
ladder diagrams, as in Eq. (15.12). The integral equation for F can then be
written (reinstating spin-like quantum numbers as in Eq. (15.17))

(kmaTnai\Tpphh(K,E)\k'm0m0:) — (kmama>\V \k'mpmpi)

m-ym i

x GlPhh(K> 9;E) (qm^my I rpphh(K, E) \k'm0m0l}. (20.7)

This result is shown diagrammatically in Fig. 20.2 together with the dressed
version of Eq. (15.14).



In-medium interaction and scattering of dressed particles 595

The new ingredient in the scattering process in the medium is the oc-
currence of the dressed but noninteracting propagator G hh appearing in
Eq. (20.7). By returning to sp wave vectors for the removal or addition of
individual particles, we can write G hh(k; K, E) in terms of the sp spectral
functions as in Eq. (20.4)

nf <u u • r?\ — f°°Ai? f AT? Sp(ka,Ea)Sp(kai,Ea<)Gpphh(ka,ka>,E) - dEa dEa,
JEF JEF

 a a + "
fe" f'F Sh{ka,Ea)Sh{ka,,Ea.)- / dEa / dEa<— r—• (20.8)

J-oo J-oo E - Ea - ha, - ii]

Only the magnitudes ka and kai are indicated here since there is no depen-
dence of the sp spectral functions on the direction of the sp wave vector.
For the imaginary part we then find

lmGf
pphh(ka,kar,E) =

( /e~dEa Sp(ka,Ea)Sp{kal,E-Ea) E>2eF

-7T I . (20.9)
[Jl^dEo, Sh(ka,Ea)Sh{ka.,E-Ea) E < 2eF

Employing Eq. (20.9), one can generate the following two sum rules by a
change of integration variables

1 f00

I>(ka,ka.) = - - dEGf
pphh(ka,ka,;E) = (1 - n{ka)) (1 - n[ka,)),

"" JieF

(20.10)
and

I<(ka,ka.) = - - / dEGf
pphh(ka,ka,;E) = n(ka)n(ka,), (20.11)

^ J — oc

where n(k) refers to the occupation of the sp state k. The sum rule in
Eq.(20.11) may yield large deviations from the free Fermi gas result when
substantial correlations are present. Examples of such systems are nuclear
matter, neutron matter, and liquid 3He at densities corresponding to sat-
uration. Around nuclear saturation density Eq. (20.11) deviates from 1
(valid for the Fermi gas), when k < kp, by as much as 35%. For the 3He
liquid at saturation the deviation is at least 75%.

We start our discussion by pointing out that the scattering of dressed
particles does not yield a unique on-shell wave vector as in Eq. (15.37) for
mean-field and (15.19) for free particles. This is illustrated in Fig. 20.3,
where the real (dashed) and imaginary part of G hh (solid) are shown for
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Fig. 20.3 Real (dashed) and imaginary part (solid) of the dressed noninteracting tp
propagator for an on-shell wave vector of fco = 2.8 fm"1. The total wave vector of the
particles is zero.

an energy of about 280 MeV in nuclear matter at kF = 1.36 fm"1 with
K = 0. Equation (20.8) with ka = ka' (equal to the relative wave vector k)
can be used for this result. The imaginary part is calculated by performing
the convolution integral in Eq. (20.9) and the real part is constructed by
employing the usual dispersion relation between the real and imaginary
parts of propagators. In the present case, it reads

Gpphh(k,K,E)---jJE E_E,+ir]

1 f2^ Im Gf
nnhh(k;K,E')

+ - / dE' ™hhl . ' '. (20.12)
7T J_oo E-E' -IT)

The imaginary part of G* hh contrasts dramatically with the J-function
of the Galitskii-Feynman propagator in Eq. (15.34). In the dressed case
a broadened distribution over the relative wave vector k is found, which
precludes a unique definition of an "on-shell" wave vector. One can never-
theless generate an approximate result by recalling the discussion of the sp
propagator in Sec. 11.4.3. The spectral function for a sp particle (which is
proportional to the imaginary part of the sp propagator) exhibits a peak
at the quasiparticle energy. One may therefore expect that the peak in Im
Gpphh wu^ o c c u r a t the sum of the quasiparticle energies. This suggests
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Fig. 20.4 Comparison of the real part of the mean-field (dotted) and dressed (full line)
tp propagator at an on-shell wave vector of 0.8 fm"1 indicated by the vertical dotted
line. In the Galitskii-Feynman case a realistic sp spectrum was employed.

that for zero total wave vector an approximate "on-shell" wave vector can
be determined by

E = 2EQ(k0) = 2 | - ^ + ReZ(ko,EQ(ko)) } • (20.13)

Except for energies deep in the Fermi sea [Dickhoff (1998)], the on-shell
wave vector k0 coincides with the location of the peak in the imaginary part
of G* hh as a function of wave vector. In Fig. 20.3 the on-shell wave vector
is given by k0 = 2.8 fm"1, associated with the propagation of two dressed
particles above the Fermi sea. Also for the real part of the propagator,
there is a distinct difference between the mean-field and the dressed case.
While the former propagator jumps from +oo to -co around 2.8 fm~ , the
dressed one exhibits a characteristic wiggle around this energy.

For other wave vectors in Fig. 20.3, one finds a reduction factor of about
0.5 with respect to the mean-field result, while only for large values of k the
real parts approach each other. This reduction is illustrated in Fig. 20.4
for the real part oiGs

pphh. The noninteracting propagator in Eq. (20.8) be-
comes the familiar Galitskii-Feynman propagator [see Eq. (15.34)], when
spectral functions are inserted that are characterized by a J-function peak
of strength 1. The substantial spreading in the imaginary part of the prop-
agator, displayed in Figs. 20.3 and 20.4, alters the conventional picture of
the scattering process. Even small components with large wave vectors are
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present but not shown in these figures. In the partial wave decomposition
the integral equation reads

(kt\ TJ
p^h(K, E) \k'l>) = (ki\ VJST \k't) (20.14)

+ E jj5$ <*'l VJST I«O G L H ^ K, E) (ql"\ TJ
p

sJh{K, E) \k>l>).

To arrive at this equation, one may proceed by an angle-averaging procedure
of Eq. (20.12), similar to Eq. (16.67), to eliminate the dependence on the
angle between the relative and total wave vectors before performing the
partial wave decomposition.

For mean-field propagators one usually solves Eq. (20.14) by discretiz-
ing the integral equation, taking only the real part of the propagator into
account, as for two free particles. The solution to this integral equation
then yields the 7£-matrix by a real matrix inversion [Haftel and Tabakin
(1970)]. The contribution of the imaginary part of the propagator can
then be generated algebraically using the 7£-matrix elements [Trefz et al.
(1985)]. Employing dressed propagators, it is more convenient to discretize
the integral equation in such a way that the relevant sampling of both the
real and imaginary part of the propagator occurs simultaneously, leading
to a complex matrix inversion that yields V directly.

In order to perform the analysis of the scattering process employing
dressed propagators, it will be helpful to use an analytical approximation
to the noninteracting propagator in Eq. (20.8) that describes the essential
new features. For this purpose only the case of zero total wave vector of
the propagating pair will be considered in the following. As a result, the
noninteracting propagator contains equal and opposite wave vectors for the
two particles (holes). Since the spectral functions do not depend on the
direction of the wave vector, we can use Eq. (20.8) with ka = ka* = k.
Both the absolute value of the sp and the relative wave vectors are now
represented by k.

Since the imaginary part of Gpphh exhibits similar behavior as the sp
spectral functions, one may take some inspiration from this and introduce
an ad hoc tp self-energy for further analysis. We then attempt to write this
noninteracting propagator as

G^E) = E-C^Ey ^
where the sign is determined by whether the energy E is above (+) or
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below (-) 2sF- By assuming that this ad hoc self-energy T,pphh has a slowly
varying imaginary part as a function of the relative wave vector k, one can
expand the self-energy at ko for which

E = Rei:pphh(ko,E). (20.16)

We note that this expansion is in powers of the square of the wave vector
since odd powers of k cannot contribute. A complex pole approximation
(CPA) to the propagator emerges by only keeping the real and imaginary
part of T,pphh at k$, as well as the first derivative of the real part. The
resulting propagator has the form

Gpphh (k>^-Vk2_k2±ij> (20-17)

where the constant C is given by

c WSReZ^ V1

m \ dk2 ,2 /

and 7 by

^=\lmi;pphh(k0,E)\(dReg^phh ) . (20.19)

Typical values for C « 0.5 are found at low energies, whereas it rises slowly
to 1 for higher energies. This feature is closely related to the pattern of
the distribution of the sp strength. The quasiparticle pole strength at kp
— 1.36 fm^1 is about 0.7, so for a tp propagator close to these energies
a factor of (0.7)2 is expected. For larger wave vectors the strength in the
peak grows back to 1, yielding a propagator which is more of the mean-
field, or even free-particle, kind. It is also apparent that this factor of
about 0.5 can be identified from Fig. 20.4. The CPA is calculated after
first numerically calculating the noninteracting propagator of the dressed
particles. In Fig. 20.5 the quality of this CPA to the propagator can be
judged by comparing it to the numerically generated imaginary part of the
propagator, at an energy associated with an on-shell wave vector of 0.5
fm^1. Also for the real part of the propagator a satisfactory description for
wave vectors below kf- is found.

The CPA to the propagator cannot be used to solve the integral equa-
tion in Eq. (20.14), since it is only a good approximation close to the peak
of the imaginary part. The full solution of Eq. (20.14) also requires an

(20.18)
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Fig. 20.5 Comparison for the imaginary part of the noninteracting tp propagator of
dressed nucleons between the complete (numerical) result given by the full line and the
simple CPA [see Eq. (20.17)] given by the dotted line for values below kF. The energy
(below 2ep) corresponds to an on-shell wave vector of 0.5 fm~x.

accurate representation of the high-momentum components of the propa-
gator in order to properly include the effect of short-range correlations in
the interaction or wave function. The CPA result does provide a reason-
able representation of the long-range part of the propagator and therefore
can be profitably used to discuss the asymptotic analysis of the scattering
process.

20.2 Propagation of dressed particles in coordinate space

As discussed in Ch. 6, scattering problems require an analysis in coor-
dinate space. The CPA to the dressed propagator can easily be Fourier
transformed to coordinate space, and facilitates this study. In general, one
obtains the dressed but noninteracting propagator in coordinate space by
a Fourier-Bessel transform. Since we will only consider the case for total
wave vector equal to zero, we have to consider

Gf
p'Xh(ry;E) = - | dk k2 }e(krMkr')Gf

pphh(k;K = 0,E). (20.20)

For free particles the integral in Eq. (20.20) yields the product of a spherical
Bessel function and one of the spherical Hankel functions with k0 the real
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on-shell wave vector as argument [see Eq. (6.66) for the sp case]. This on-
shell wave vector is real since the corresponding noninteracting propagators
(Eqs. (6.41) and (15.18)) can only have a vanishing denominator for a real
wave vector. Since Eq. (20.20) can be calculated by a contour integral
for Eqs. (6.41) and (15.18) (at least for the long-range part), as well as
for Eq. (20.17), it is clear that a nonvanishing imaginary part for the pole
of Eq. (20.17), due to the presence of 7, will lead to a complex on-shell
wave vector that will be denoted by K0. Using the CPA (Eq. (20.17)) for
E < 2eF, Eq. (20.20) yields

GwfhAlrS\E) = " i C p K ° i^or<) hj(«or>). (20.21)

The wave-vector argument of the spherical Bessel and Hankel functions,
/«o, is now complex, its real and imaginary part, n(? and KQ, are easily
calculated from fco and 7 by determining the zeros of the denominator of
Eq. (20.17). Equation (20.21) contains the Hankel function h*t due to the
different boundary condition associated with hh propagation for energies
below 2EF • This leads to a pole in the upper half of the complex fc-plane
in contrast to the case of pp or free-particle scattering. Consequently, KQ is
negative for E < 2ep and its magnitude can become as large as 0.2 to 0.3
fm^tDickhoff et al. (1999)]. The propagator for (. = 0 can then be written
as (for r <r')

G^fPA{ry;E)= (20.22)

—iCm ( e*K° r(>~Kor (>—iKo rgKor \ g~*Ko r gKor

2h2{n^ + i4) \ r r ) ? '

A typical comparison between this expression and the numerical Fourier-
Bessel transform of the dressed noninteracting propagator is shown in
Fig. 20.6 for the imaginary part. For fixed r', corresponding to the location
of the maximum in Fig. 20.6, both propagators are shown as a function
of r without the factor 1/rr'. While confirming the validity of the CPA,
Fig. 20.6 also demonstrates that the propagator for dressed particles is
radically different from the noninteracting or mean-field one due to pres-
ence of damping terms related to the nonzero value of KQ. For comparison,
Eq. (20.22) reduces to

ri=o, , w, m sin(kQr) e~ik<>r'
(20.23)
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Fig. 20.6 Comparison between the CPA and the complete numerical calculation for the
dressed noninteracting tp propagator in coordinate space for a value of r' for which both
propagators have a maximum (around 11 fm). Indeed, for r = r' the damping is least
effective (see Eq. (20.22)). Shown is the imaginary part for an energy below 2ep (also
used in Fig. 20.5) for the CPA propagator (dotted line) and the complete result (full
line).

for free particles. Taking e.g. the imaginary part, yields the product of the
two 1 = 0 spherical Bessel functions exhibiting no damping.

As noted before, there is no longer a unique on-shell wave vector. In-
deed, the complex pole at re0 in the CPA propagator is just a simple (and
approximate) representation of this feature. As a consequence, the rela-
tive wave function of the dressed particles contains a spread in wave-vector
states. In turn, it must yield a localization of the wave function in co-
ordinate space, based on the Heisenberg uncertainty principle. This has
interesting physical consequences, since it means that if the separation dis-
tance between the scatterers is too large there is little probability that they
will actually interact because this requires a small relative distance. Indeed,
taking r' to much larger values than in Fig. 20.6, yields a negligible contri-
bution to the noninteracting propagator near small r, where the interaction
will act to modify the wave function. Clearly, the effect is governed by the
size of KQ, the imaginary part of the pole of the CPA, which only becomes
small when the scattering energy approaches 2sF- Just as in the case of
sp motion, the noninteracting wave function tends to a plane wave only
in this limit. Figure 20.6 would then yield a simple sine wave character-
ized by K^ -> kF, as in Eq. (20.23). For all other energies damping does
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Fig. 20.7 Decomposition of the tp CPA propagator in coordinate space into in- (dashed)
and outgoing wave (dotted line) for the same value of r' and energy as in Fig. 20.6. Also
shown is the sum of both contributions (full line). The in- and outgoing wave correspond
to the two terms in Eq. (20.21).

occur sufficiently rapidly to warrant the following observation: since only
the part of the wave which returns from the scattering can be affected and
always decreases with increasing r, only that part of the noninteracting
wave can be influenced by the scattering which is exponentially damped in
r. Figure 20.7 illustrates the decomposition of the CPA propagator, shown
in Fig. 20.6, in terms of the incoming and outgoing wave. For values of r'
outside the range of the interaction, even a substantial modification of the
outgoing wave will hardly affect the total propagator and the wave function
automatically "heals", according to the value of K!

0 , to the noninteracting
one.

An asymptotic analysis of the scattering process employing the CPA
propagator is also possible. By following the steps leading to Eq. (6.70)
in the case when the noninteracting propagator is given by the CPA result
Eq. (20.21), one obtains the asymptotic propagator in the following form
(for an uncoupled channel and energy E above 2SF)

Gpihh(r,r';E) -> -i (j£pj «0h,(«0o{h/(Ko'-) + M«or)x

l-2i~KOJo dn T\ j o dr2 r\ (r1|ri
7ST(E)|r2)j,(/cor-i)j,(Acor2)J j

= -t^«oh<(«or') {K(Kor) + he(Kor)e2i5"T } . (20.24)
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A simple example for a hard-core potential will be used to illustrate some
features in more detail. The term in brackets in Eq. (20.24) represents the
asymptotic wave function including the effect of the potential in terms of a
phase shift, as in Eq. (6.70) for free or mean-field particles. For a hard-core
potential with hard-core radius r0 one must require this correlated wave
function to vanish at r0 also in the case of [dropping the JST subscript in
Eq. (20.24]

0 = hj (Koro) + h , (K o r o )e 2^. (20.25)

The boundary condition generates the following expression for the phase
shifts

tanfc = M ^ . (20.26)

In the limit that KQ vanishes, corresponding to free or mean-field particles,
one recovers the usual ratio of spherical Bessel and Neumann functions with
real arguments. For the £ = 0 case one obtains

tan do = — tan KÔ O , (20.27)

yielding a real

<S« = -ngro (20.28)

and an imaginary part of the phase shift

6l = -4ro- (20.29)

Somewhat surprisingly a complex phase shift appears. Its role becomes
clear when one considers the asymptotic propagator explicitly. For energies
E above 2ep (KQ > 0) the CPA for £ = 0, inserting the real and imaginary
part of the phase shift according to Eqs. (20.28) and (20.29), yields

_,<>_n , , , _ , , . Cm 1 ,-„«_' _/„'
d y, (r r E) —> 1 p o p~Kor

pphh( ' ' J 2(«o
fi + m ^ r r ' e 6

|-e~ iKo i reKo r + e"c"(r~2r°)eKo(2ro~r)'i . (20.30)

It is clear that Eq. (20.30) vanishes for r = r0. Note, however, that this can
only be achieved by the presence of a complex phase shift. The incoming
wave, given by the first term in the bracket, needs to be exactly compen-
sated by the outgoing wave at r0. Only shifting the oscillatory character
of the wave function by the real part of the phase shift does not suffice,
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Fig. 20.8 Outgoing tp wave function, with (dotted) and without (full line) complex
phase shift for a hard-core radius of 0.5 fm, corresponding to the second term in
Eq. (20.30) for values of the energy and r' used in Fig. 20.6.

an additional enhancement provided by the imaginary part of the phase
shift is required to achieve cancellation at ro since the incoming wave has
a larger amplitude than the outgoing part (without the phase shift). The
effect is a shift of the complete wave function as appropriate for a hard-core
potential, illustrated in Fig. 20.8. The solid line represents the uncorrelated
outgoing wave and the dashed line includes the real and imaginary part of
the phase shift. Results for values of fco = 0.6 fm"1, 7 = 0.2 fm"1 [see
Eqs. (20.16) and (20.19)] yield phase shifts of 8$ = -0.3 and 8^ = -0.08 for
a hard-core radius of 0.5 fm used in Fig. 20.8.

The complete asymptotic propagator including the complex phase shift
(dashed line) and the noninteracting CPA propagator (full line) are shown
in Fig. 20.9. As in Fig. 20.7 the unaffected incoming wave dominates
both propagators (wave functions) while both outgoing waves (shown in
Fig. 20.8) are damped exponentially. The dashed line vanishes at the
hard-core radius of 0.5 fm as required. More importantly, even though
a phase shift will exist representing the effect of the scattering interaction,
the asymptotic wave function nevertheless heals to the noninteracting one,
as shown in Fig 20.9. This same feature is observed for the complete nu-
merical calculation including a realistic interaction [Dickhoff et al. (1999)].
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Fig. 20.9 Comparison of the imaginary part of the total noninteracting tp propagator
(full line) with the asymptotic one (dotted line) for a hard-core radius of 0.5 fm for values
of the energy and r' used in Fig. 20.6. The asymptotic wave function (Eq. (20.30)) does
not vanish inside the hard-core radius. The exact wave function vanishes of course for
r < ro-

Healing properties and the nuclear shell model

The above observations allow for the resolution of an apparent paradox re-
lated to the so-called healing properties of wave functions in the medium.
This property has been considered the physical justification of the mean-
field-like properties observed in nuclei in the presence of strong short-range
interactions. They correspond to the simple shell-model results discussed in
Ch. 3. The problem is to explain these simple properties while it is known
that the particles involved have very violent encounters in the medium on
account of their short-range repulsion. The original discussion of the healing
properties of the relative wave function of particles in the medium [Gomes et
al. (1958)] used a Bethe-Goldstone propagator involving mean-field nucle-
ons above kF to arrive at the healing property of the relative wave function.
The easiest way to infer this is to consider the FT of Eq. (15.34) (for K = 0
for simplicity)

G^hh{ry-E) = J L y>* e ^ ' - ^ ^ J f = 0,E). (20.31)
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For free particles the FT leads to the usual expression, which is given in
Eq. (6.48) for the sp case. Excluding hh propagation but considering en-
ergies below 2ep, excises the energy-conserving pole contribution. The
nonsingular integrand then yields only real contributions to the FT. More
importantly, the propagator vanishes like \r - r'\~2. When inserted into
the asymptotic analysis of the wave function, it leads to a vanishing differ-
ence between the correlated wave function and the unperturbed plane wave.
This is the healing property of the wave function that is accompanied by
a vanishing phase shift. The description relies heavily on the Fermi gas
picture of the ground state and the assumption that only pp propagation is
relevant. However, there is overwhelming experimental evidence, discussed
in Sec. 7.8, that sp motion in nuclei must be described in terms of dressed
nucleons with substantial fragmentation of the strength.

If the nucleons are dressed particles, a Bethe-Goldstone propagator does
not suffice to generate a self-energy that will describe the sp strength distri-
bution. Instead a Galitskii-Feynman propagator must be employed. This
will generate quite a reasonable description of the sp strength, including
the quasiparticle features for nucleons at the Fermi surface, as discussed
in Ch. 16. The description of the scattering process is however modified
by employing a Galitskii-Feynman propagator. Whereas it is possible to
generate healing with a Bethe-Goldstone propagator, due to a vanishing
phase shift, for scattering energies below 2EF, this is no longer possible
with a Galitskii-Feynman propagator. A nonvanishing phase shift is found
and the asymptotic relative wave function of mean-field particles does not
heal. The discussion of the scattering of dressed particles in this chapter
demonstrates that one automatically encounters a localization of the rela-
tive wave functions in coordinate space. The CPA analysis for hard-core
scattering indicates that even with sizable phase shifts its localization leads
to the desired healing property, since the part of the wave function affected
by the scattering is exponentially damped. Also for the complete numerical
propagator, the same features are observed [Dickhoff et al. (1999)]. Even
in the presence of strong interaction processes the ensuing picture of the
nuclear medium is a tranquil one, in which the dressed particles no longer
remember their scattering event beyond some finite distance, and their wave
functions heal to the corresponding noninteracting ones. This appears to
be a satisfactory depiction of a correlated medium in which particles do
not carry the information of their interaction indefinitely around, unlike a
description of scattering using a Galitskii-Feynman (or Bethe-Goldstone)
propagator. The sp properties of the nuclear shell model are therefore bet-
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ter viewed in terms of quasiparticles (holes) as in Landau's Fermi liquid
analysis, provided the proper sp basis for the relevant nucleus is employed
(see Sec. 17.4).

20.3 Scattering of particles in the medium

The preceding discussion has focused on an analytically solvable model.
First, the CPA was developed to provide a sufficiently realistic approxi-
mation to the propagator of two dressed particles. Second, a hard-core
scattering problem for such a propagator was analyzed. A generalization
to the complete propagator will be outlined now. As for the CPA shown in
Fig. 20.7, it is possible to separate the in and outgoing part of the (numer-
ical) noninteracting propagator in coordinate space. This can be written
schematically as

GfPU = Gfp*hh(in) + G%hh(out). (20.32)

The separation is similar to the one presented in Fig. 20.7. The equation
for the propagator in a partial wave basis is obtained in complete analogy
to the steps that yield Eq. (6.64), is given by

GJp^h(r£,r'£';E) = (l - ( - l /+ s + T ) 6t,t,Gfjje(r,r';E) (20.33)
(•CO />OO

+ L drir2iL d r 2 r 2 2 G ^ ( r ' r i ; ^ ) ( r i £ | r ^ ( £ ) i r 2 ^ G p^( r 2 ' r ' ; ^ -
This equation for the propagator can be written for an uncoupled channel
as

GPPhh - GPPhh + AGPPhh . (20.34)

where AGpphh contains the contribution due to the interaction F which can
only affect the outgoing wave. By using Eq. (20.32) it is possible to identify
the phase shift similar to Eq. (20.24)

eMisr = Gpphh(QUt+*Gpphh

GfPphh(out)

Two remarks are in order here. First, due to the localization of the prop-
agator the phase shift must be calculated for r' not too far away from the
origin, in order to generate a nonvanishing outgoing wave. Second, and re-
latedly, one must expect some r' dependence of this definition of the phase

(20.35)
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shift, since the dressed noninteracting propagator does not completely sep-
arate into a product of a function of r and a function of r' as in the CPA
of Eq. (20.21). More importantly, these observations and the healing prop-
erty of the propagator imply that a conventional derivation and definition
of the cross section for the scattering process is not possible. No outgoing
wave reaches asymptotically meaningful distances, with damping constants
of the order of fm in the case of nuclear matter around saturation density.

Similar to the definition of the phase shift in the partial wave basis
above, one may obtain the scattering amplitude by considering the CPA of
the noninteracting propagator in coordinate space. Equation (6.45) can be
calculated analytically using Eq. (20.17), yielding for E > 2ep

«;>y;£> = - ^ ^ f (20.36)

For a derivation of the scattering amplitude, one requires the separability
of this propagator as in Eq. (6.50), contingent on the condition that either
r' is much larger than r or vice versa. In the present case one cannot
make this assumption without running into a vanishing propagator, due
to the presence of the imaginary part of /to- This observation does not
change for the complete numerical propagator. As a result, there is no
asymptotic (large distance) cross section as in the case of conventional
scattering experiments. Only a local modification of the wave function is
possible, with a rapid healing to the noninteracting wave. Even for energies
close to 2SF, where the imaginary part of KQ becomes small, the phase shift
vanishes (or approaches IT [Bishop et al. (1974)]) and no asymptotically
significant cross section can be identified. Similar conclusions are reached
for the complete numerical propagator [Dickhoff et al. (1999)].

The above discussion does not imply that the localized interaction be-
tween dressed particles is small. In order to provide a way to assess the
strength of the interaction of dressed particles, it is convenient to gener-
ate a quantity that will yield the conventional cross section in the limit of
mean-field or free-particle scattering. In addition, it is useful to obtain a
similar quantity for the phase shifts to make meaningful comparisons to
conventional results. Although we introduce approximations below, they
do provide physically useful generalizations. The first step involves the
practical observation that in most cases the imaginary part of KO, which
characterizes the damping of the wave function, is considerably smaller
than its real part, as shown for example in Fig. 20.3. Only for energies of
two particles deep in the Fermi sea do the real and imaginary parts of KQ
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become comparable. Consider the identity (for r < r')

—ik
-ikoie(kor)ie(kor') = - ^ MkOr)he(kor') + ie(kor)h*e(kor')}

= I f °°dk e Mkr)h(kr') _ 1 r°°dk k2 uikrMkr')
K Jo kl-k2 +irj TV Jo k2 - k2 - ir)
2 r°° ( l 1

= l-jadkk\(krMkr')lm[w-^-]
Ofc2 poo

=>i— dk k\{kr)]t{kr') lm\G^{k-E)\, (20.37)
7T771 J o ^ '

which is valid for vanishing r\ in the case of particles propagating in free
space. Invoking the smallness of the imaginary part of /to with respect to
its real part, one may heuristically write the product of the spherical Bessel
functions appearing in the first line of Eq. (20.24) using the identity given
in Eq. (20.37). This is appropriate for a pole in the complex wave-vector
plane, not too far from the real axis (|KQ| <C K^ for the CPA result), but
also makes sense for r not too different from r' since the damping effect
is smallest there. Since the integral in Eq. (20.37) contains real spherical
Bessel functions, one can use the transformation to fc-space for both inte-
grals in the first line of Eq. (20.24), yielding the asymptotic propagator for
the CPA as

Gl
p

JJh(ry-E)CPA -> -i ( ^ ) K0h,(«or'){h;(«or) +h*(«or)

x [l + 2t jTdfc kk2 lm{Gf
pphh(k;E)}(k\Te

p
J
p

sJ(E)\k)j j . (20.38)

The <S-matrix element (and phase shift) can thus be written for an uncou-
pled channel in the following way

Se(E) = l+2ijo dkk2Im{Gf
pphh(k-,E)}(k\ri

pp
sJ\k) = e2iS'ST. (20.39)

It reduces to Eq. (15.22) for free or mean-field particles. Equation (20.39)
can also be used to calculate phase shifts for the complete propagator.
Using Eq. (20.39) implies that the phase shift 5jST remains real, a rea-
sonable approximation at most energies considering the smallness of KQ\
compared to KQ, which determines the strength of 5\ with respect to 5f [see
Eqs. (20.29) and (20.28)]. Consequently, the phase shifts can be fruitfully
compared with calculations for mean-field or free particles.
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The approximation is sensible for a pole in the complex wave-vector
plane not too far from the real axis for the CPA, but also makes sense for r
no too different from r' in general. Using this extension of the last equality
in Eq. (20.37) to the dressed propagator in the case of coupled channels,
the 5-matrix element can also be written like Eq. (20.39)

pea

Sis
t,

T(E) = l + 2iJ dkk2lm[Gf
pphh(k;E)}(k£\TJ

p^h(E)\k£'). (20.40)

This also reduces to the conventional formulations [see e.g. Eq. (15.24)] for
free or mean-field particles. For coupled channels Eq. (20.40) can be used
to generate phase shifts by diagonalization of the <S-matrix, as discussed in
Sec. 15.1. Equation (20.40) is exact for noninteracting or mean-field parti-
cles. For dressed particles, it includes the physically reasonable expectation
that the distribution over the wave vectors as contained in the imaginary
part of the propagator will feature in determining the scattering process.
While this approximation does not make sense at large distance scales, it
provides, locally, a very useful generalization of the phase shift. The corre-
sponding "short-distance" approximation to the scattering amplitude then
yields

/m'.n,.(M)=47r£ Y, i''(-i)eY(me(i)Yt1m,(z)
U'J mm'M

(£mt Sms\JM){£'m'e Sm!s\JM)
poo

J dkklm[Gf
pphh(k;E)}(k(£S)J\Tpphh(E)\k(£lS)J), (20.41)

where a coupling to total spin S and projections ms,m's for initial and
final spin states has been included together with the usual decomposition in
partial waves. For free or mean-field particle scattering the (5-function of the
imaginary part of G^p yields the usual formulation. For a central interaction
and free particles Eq. (20.41) reduces to (suppressing spin indices)

9/ -I- 1
= V" —f—e16' smSePeicosO), (20.42)

e k°

where the addition theorem for spherical harmonics and the (5-function of
the imaginary part of the propagator have been used for the first equality
and Eq. (15.22) for the second one. For the total cross section (in the
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neutron-proton system) one finds

cTtot=* £ ( 2 J + 1 ) (20.43)
SU'J

x dkklm\Gf
pphh(k;E)}(k(iS)J\Tpphh(E)\k(e'S)J) ,

Jo

which for a central interaction and free particles, reduces to the standard
result

otot = %TW+l)sm25t. (20.44)
0 i

Equation (20.43) demonstrates that a sensible cross section will be obtained
for dressed particles at all energies for which a nonvanishing imaginary part
of the propagator exists. For two particles deep in the Fermi sea, for ex-
ample, Eq. (20.43) avoids the divergence associated with the k$2 term in
Eq. (20.44). The formulation of the cross section in terms of Eq. (20.43)
provides a reasonable way to assess the strength of the interaction between
dressed particles in the medium in terms of the square of the relevant tran-
sition matrix element (F), multiplied by an appropriate measure of the
density of states represented by the imaginary part of the noninteracting
propagator.

This density of states can be written for zero total wave vector as

1 f°°
N&(E) = - " / dkk2ImGf

pphh(k;K = 0,E), (20.45)
"" Jo

where only the magnitude of the relative vector needs to be considered. For
a free Fermi gas this expression reduces to

N?(E) = ̂ . (20.46)

Using the unique relation between the energy and the on-shell wave vector
fco [see Eq. (15.37)] this result can be written as

<(*o) = ^ - (20.47)

when only kinetic energy contributes. For mean-field particles in the
medium one may have to include the effect of the sp potential energy U
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Fig. 20.10 Density of tp states as a function of the on-shell wave vector for free particles
(solid line), for mean-field particles at kp — 1.36 fin"1 including a sp spectrum U (dotted
line), and for dressed particles (dashed line). All three lines correspond to zero total wave
vector.

which yields the following density of states

«S»> = $(* . + *£[)"'• (-48)
For purposes of comparison we consider the density of states for dressed
particles also as a function of wave vector. This is achieved for zero total
wave vector by determining an on-shell wave vector by Eq. (20.13). This
on-shell wave vector ko normally coincides with the location of the peak in
the imaginary part of Gpphh, as discussed in Sec. 20.1.

In Fig. 20.10 the density of states for these different cases is presented.
The dashed line represents free particles (or mean-field particles with only
kinetic energy) according to Eq. (20.47). The dotted line shows the effect of
a realistic sp spectrum [Vonderfecht et al. (1993)] for mean-field particles
at h,F = 1.36 fm"1 and uses Eq. (20.48). The inclusion of the complete
dressing leads to the dashed line in Fig. 20.10 based on the evaluation of
Eq. (20.45). When the on-shell wave vector approaches kp the reduction
of the density of states compared to the dotted line is given exactly by
a factor Z\ (about 0.5 here), representing a reduction of the strength of
the quasiparticle pole at \ZF for each of the particles. Figure 20.10 shows
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Fig. 20.11 Comparison of phase shifts for free particles (solid), mean-field particles
(dashed), and dressed particles (short-dashed lines) for different partial waves. The
density of the medium corresponds to kp = 1.36 fm"1.

that this reduction is substantial in a large domain of wave vectors (or
equivalently in a large domain of energies). For small wave vectors the
dressed density of states does not go to zero, since the on-shell relation
(20.13) is no longer applicable for energies below 2U(k — 0), while the
density of states does not vanish at those energies.

The phase shifts for some of the more important partial wave channels
are summarized in Fig. 20.11. A comparison is made between phase shifts
for free particles (solid line), mean-field particles at UF = 1-36 fm~ (dashed
line), and dressed particles (short-dashed line) at the same density for the
1 5 0 , 35*i, 3Pi, and 3DX channels (corresponding to the different panels
in Fig. 20.11) as a function of the on-shell wave vector. In general, one
finds that the dressed phase shifts suggest weaker interactions, since they
are either less repulsive or less attractive than in the mean-field. For the
two 5-wave channels the most striking feature of the dressed phase shift
is the disappearance of the pairing signature for the X5o channel and the
enormous reduction of the signal in the 3Si partial wave. While the dressed
1SQ phase shift is essentially zero at /CF, it is still clearly attractive at this
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wave vector for the 35i channel. The actual calculation of the phase shift
for this channel displays a slight kink close to UF , suggesting that the phase
shift may actually rise rapidly to TX very close to fcf. It implies a tremendous
reduction in the strength of the pairing correlations in this coupled channel,
as compared to a mean-field treatment. Gaps of the order of 10 MeV
have been generated for this channel in [Vonderfecht et al. (1991b); Baldo
et al. (1992)] (see also Ch. 22). Clearly, the dressing of the nucleons
has a strong influence on pairing. While one would expect a gap using
dressed nucleons, based on the attractive effective interaction at the Fermi
surface, its magnitude is drastically reduced, as suggested by the phase shift
calculation illustrated in Fig. 20.11. The main ingredient in this reduction
is the decrease in the density of states at 2ep when dressed nucleons are
propagated. According to Fig. 20.10 the reduction is essentially the square
of the strength of the quasiparticle pole at kp leading to a reduction factor
of about 0.5. Since pairing correlations are particularly sensitive to the
density of states, it is not surprising that the strength of the pairing is
substantially diminished when dressing is taken into account. It is also
noteworthy that one observes a smaller negative phase shift for both S-
waves at higher energy, as compared to the mean-field. A similar conclusion
may be drawn by inspecting the phase shifts for the 3Pi and 3£>i channel
in the bottom panels of Fig. 20.11. For these partial waves, which represent
repulsive effective interactions, one observes a reduction of the magnitude
of the phase shift as well when dressing is included. It is important to
note that for mean-field propagation Fig. 20.11 shows that the results tend
to those of free particles at high energy, whereas it is not so for dressed
particles. The latter indicates that the effect of the dressing extends to a
large energy domain. Such an observation is not too surprising since the
spreading of the sp strength, due to short-range and tensor correlations,
takes place in a very large energy domain and is quite different from a local
(in energy) spreading of the strength, as would be generated by a complex
quasiparticle energy.

The phase shifts for dressed particles lead to the expectation that the
total cross sections are substantially reduced compared to the mean-field
calculations. Neutron-proton (np) and neutron-neutron (nn) total cross
sections are displayed in Fig. 20.12, and confirm this expectation. The
cross sections have been obtained for free (solid), mean-field (dashed), and
dressed particles (short-dashed line) by including all partial wave channels
of the Reid potential with J < 2. For mean-field particles a realistic sp
energy spectrum was included. The effect of the pairing correlations on
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Fig. 20.12 Total neutron-proton (top) and neutron-neutron (bottom panel) cross sec-
tions for free (solid), mean-field (dashed), and dressed particles (short-dashed line) as a
function of the on-shell wave vector. Gaps in the dashed and short-dashed curves reflect
the difficulty in attaining accurate results near kp when pairing occurs.

the cross sections yields a cusp-like behavior around kp. As the phase
shifts for mean-field particles suggest, the corresponding cross sections in
the medium become essentially identical to the one in free space at high
energy. Both for the np and nn total cross sections, the effect of dressing
the nucleons is quite dramatic, leading to a substantial reduction of the
total cross section at all energies. Indeed, on average a cross section of
only about 10 mb is obtained. While this may seem a small number, it
does not imply that the effective interaction in the medium has become
insignificant. In addition, one should recall that the concept of asymptotic
flux in the medium, representing preserved information of a scattering event
deep in the medium, is not a realistic consideration when the dressing of
the nucleons is significant, as it is at kp = 1.36 fm"1. The main ingredient
accounting for the dressing is the tp density of states, its reduction for
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dressed particles is to a large extent responsible for the change in the cross
section. While no results are shown in Fig. 20.12 below 0.5 fm^1 in order to
avoid the large value of the total cross sections for free particles, it should be
noted that the cross sections for dressed particles smoothly go to zero when
expression Eq. (20.43) is used at lower energies. This expression avoids the
problem associated with Eq. (20.44) which would yield an infinite cross
section for the on-shell wave vector going to zero. In addition, the latter
does not generate a cross section for energies that do not yield a solution
for the on-shell wave vector according to Eq. (20.13), i.e. for energies deep
in the hh continuum.

20.4 Exercises

(1) Extend the analysis of the complex phase shift to a hard-core interac-
tion supplemented by an attractive square well, just outside the hard
core.

(2) Perform the integral in Eq. (20.31) for a Bethe-Goldstone propagator.
Solve for the Bethe-Goldstone wave function for a hard-core plus at-
tractive square well. Study the healing properties of this wave function.





Chapter 21

Conserving approximations and
excited states

The necessity to go beyond the mean-field description of sp motion has
attendant consequences for the approach to excited states. So far the dis-
cussion in Chs. 13 and 14 has assumed that the sp propagators that gen-
erate them, at most include the HF contribution to the self-energy. The
situation changes in a qualitative manner when it becomes necessary to in-
clude higher-order terms in the self-energy. Examples have been discussed
in Ch. 16 for the electron gas (ring diagrams) and nuclear matter (ladder
diagrams). Even at the level of the second-order self-energy, an important
change in the treatment of excited states is warranted. When an energy-
dependent self-energy is required, the RPA method for excited states will
no longer be adequate, at least in principle. Indeed, intermediate states in
the self-energy will include 2plh- and 2hlp- and more complicated states.
When the resulting sp propagator is combined with another one to de-
scribe excited states, it establishes an automatic link to 2p2h states. Such
a coupling to 2p2h states is included, in a minimal fashion, in the RPA by
the backward-going diagrams. It is however, insufficient to represent the
proper mixing of lplh with 2p2h states. As a result, an improved descrip-
tion of excited states is necessary that should be consistent with relevant
conservation laws at the same time.

A treatment of excited states that builds on a given approxima-
tion of the self-energy was developed by [Baym and Kadanoff (1961);
Baym (1962)] for the many-body problem, and will be presented in this
chapter. We will first consider the self-energy in the time formulation in
the presence of a time-dependent external potential in Sec. 21.1. Thus a
useful link with the response to this external field is set up. The application
of the equations of motion for the sp propagator in its presence, will enable
to identify an important condition on the (approximate) tp propagator.

619
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The link between general conservation laws and the equations of motion
leads to a second condition. Conserving approximations to the response,
including the fulfillment of sum rules, will be studied in Sec. 21.2. Exact
relations between properties of the sp propagator in an infinite system and
the ph interaction on the Fermi surface are discussed in Sec. 21.3. A survey
of several different approximations to the self-energy and the resulting con-
serving description of excited states will be presented in Sec. 21.4. A brief
overview of the properties of excited states in nuclei and their theoretical
description, based on the material in this chapter, will be given in Sec. 21.5.

21.1 Equations of motion and conservation laws

The Hamiltonian of the many-particle problem has the form

H = f + V

= £ (a\ T |/?) ala0 + ± £ (a/3\ V \j8) aW0as(h

a/3 a0~{6

= f + U + V-U = H0 + Hi

a a0

with the usual separation into HQ = J2a ea<Axaa and H\ = V — U that
involves the auxiliary potential U. We will employ the sp basis that diag-
onalizes Ho. Experimentally, information about the ground state or exci-
tations of the system can only be gathered by applying a time-dependent
external field, which probes the density (or other degrees of freedom). The
electromagnetic field is a prime example of such a probe. A field that cou-
ples directly to the "density" through a one-body operator, can be written
as

kt) = Yl <7l <t>{x, t) \S) a\a5 = J^ ^s(t)a\as. (21.2)

The field 4>(x,t) is for instance given by:

cj>{x,t) = 4>(x) e-iEtlh + ̂ (x) eiEtlh (21.3)

but may depend on other dynamical variables like momentum, spin, and
isospin etc. The density will oscillate with this external field and the sys-
tem exhibits resonances whenever the energy E is close to an excitation

(21.1)
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energy. We will therefore proceed by examining the more general case of
the system immersed in an external field, which can transfer energy and
momentum (and other quantities) to it. This will allow for the description
of the response in a natural way. The total Hamiltonian H.^ now becomes
explicitly time dependent:

H0>{t)=H + 4>{t). (21.4)

We start by generating an expression for the sp propagator in the presence
of the external field <f>. This requires a Heisenberg picture that is different
from the usual one, since <j> is time dependent. Consider first the time-
dependent Schrodinger equation in the presence of 4>

ih~\^s(t)) = H^t)\^s(t)). (21.5)

The time-evolution operator is defined by

!*£(*)> = £$(*, *o)l*£(*o)> (21.6)

with additional labels to distinguish it from the time-evolution operator
associated with the time-independent Hamiltonian H (while dropping the
one for particle number). When H^ doesn't commute with itself at different
times, one obtains a time-evolution operator similar to Eq. (8.7)

U$(t,to)= (21.7)

Y, ( -T -1 / dtl / d *2- / d*n T H*(t1)H*(t2)...H*(t,1) .
~0 V h ) n-Jto ha Jto L J

21.1.1 The field picture

It is now useful to introduce the field picture, which is analogous to the
interaction picture in the standard case. In the field picture we identify
the time evolution generated by H, the Hamiltonian without the field (j),
as playing the role of Ho in the interaction picture. The field picture state
ket can thus be denned by using Eq. (8.1) as a template

|*£(i)>=expj^tj|*!(t)>. (21.8)

The adjoint of Us(t,0), the time-evolution operator without the external

field, appears here as the present equivalent of exp < \Hot >, which defines
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the usual interaction picture. It is straightforward to derive the Schrodinger
equation in the field picture with the result

ihjt\9+(t)) = 4>F(t)\*t(t)), (21.9)

where the field picture operator 4>F is given by

^(t) = expUHtb(t)exp|-iHt| (21.10)

in analogy to Eq. (8.3). Time evolution in the field picture is governed by
the corresponding operator

|*£(*)) = tMMo)l*£(*o)>- (21-n)
From Eq. (21.9) one therefore obtains

ih^UF(t,to) = 4>F(t)UF(t,t0). (21.12)

Again, a formal solution can be applied here as well to yield

UF(t,h)= (21.13)

52 T ) ~1 / dtl / d*2- / dtn T U F ^ I ) ^ ^ ) - ^ ^ ) .
t^Q\h J nlJt0 Jto Jto [ J

The Heisenberg picture state ket in the presence of <p(t) becomes

l*&(0> = (U$)Ht,to)\*t(t)) = \*t(t0)), (21.14)

generalizing the case of a time-independent Hamiltonian. We still find

i ^ l * t r ( * ) > = 0 . (21.15)

An operator in this Heisenberg picture is defined by

OH{t) = (Ut)Ht,to)dsu£(t,to), (21.16)

which applies in particular to the addition and removal operators, a* and
a. We are now ready to consider the sp propagator in the presence of <j>(t)
with respect to the Heisenberg ground state |$g) (H suppressed) of the
combined system by

G*(a, 0; t-t') = -fat\ T [aaH (t)a\H (*')] | < ) , (21.17)
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where the H subscript for a and a) refers to the time dependence given by
Eq. (21.16). The expansion that was used in Eq. (8.17) for the sp propa-
gator, can be employed to generate the analogous result for Eq. (21.17)

oo / _ , - \ « i /-+oo /.+00

x (*0 | T [4>F{ti)...4>F(tn)aaF (t)oJF (*')] |*0) (21.18)
00 C-i\m 1 /- + 00 /•+°° r -,

/ E ( T j ^ / JA--- j_fm{MT[t>F(t[)...4>F(t'm)\ |*o).

It is convenient to simplify the notation for further development

c . ( a i W - , ) = . ' < w ^ 4 w , (2,19)
ft <$o|T[S]|*o>

where

S = e x p i - i /""df ^ ^ ( t ' ) < F ( i ' ) a 5 F ( i ' ) I (21.20)

I °° L ̂  J J
and the time dependence corresponds to the usual Heisenberg picture linked
with H and so can be associated with the field picture time dependence of
Eq. (21.10). For a very weak field one therefore obtains information about
the ground state l^o) associated with H

lira G^ia, /?; t - t') = G{a, /?; t-t'), (21.21)

but also about excited states, as discussed in Sec. 21.2.

21.1.2 Equations of motion in the field picture

Following the development in Ch. 9, we can study the equations of motion
for the sp propagator that lead to the identification of the self-energy. The
equivalent result to Eq. (9.15) in the presence of <fi becomes

M^GHa, 0; t-f)= S(t - t')6a0 + epG*(a, /?; t - t1)

- Y , H u \ s ) G^6,P;t-t') + Y,&»«(*) G<P(S>P>l~*')
s s

+ lj2(a5\V\eO G^(et,Ct,6t+,/3t'), (21.22)
6£6
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where the corresponding tp propagator

GU^a^t0nt7,St6) = ~^t\r[a0At0)aaAta)a\H(t1)alH(tsmt)-
(21.23)

has been employed. When the time derivative of the addition operator in
the sp propagator is used, we find

-ih^pG*(a, /?; t-f)= S(t - t)8ap + £ a G ^ ( a , /3; * - f)

s s

+ \^2(&C\V\^) GlI(St',at,9t'+,(t'+). (21.24)
see

As discussed in Sec. 9.4, it is possible to develop the equation of motion
for the tp propagator that will couple to the three-particle propagator, etc.
In most practical applications an approximation to Gn is made and the
hierarchic coupling to n-particle Green's functions is terminated at n =
2. It is reasonable to expect that a physically meaningful approximation
requires that both Eq. (21.22) and (21.24) lead to the same G^ and that
the conservation laws implied by Eq. (21.4) should be obeyed. We will
investigate the first condition by transforming Eqs. (21.22) and (21.24)
into the Dyson equation in the time formulation. The Dyson equation then
allows for the calculation of the sp propagator, based on diagrammatic
approximations that have been discussed in previous chapters.

We start by introducing the equations of motion for the sp propagator
G'°) associated with Ho = T + U. These are generated in the same way as
for G^ and read

»V>ĵ G<0) (a, /?; * - * ' ) = S(t - t')5a0 + saG^ (a, /?; t - t') (21.25)

and

-ik-QjG{Q)(a, /3; t - t') = S(t - t')6a0 + epG™(a, /3; t-t'). (21.26)

We proceed by defining the inverted Green's function G^ by

Y,f dt"G*{a,r,t-t")G+~\'Y,p-X-t) = 8(t-t!)Saf} (21.27)
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or

J2 dt"G* \a,1-t-t")G*{1,p]t"-.t') = 5{t-t')8a0. (21.28)
y J-OO

For G'°) one has in like fashion

J2 dt"GW(a,r,t-t")GM-\'y,f3;t"-tl)=5(t-tl)6a0 (21.29)
J — oo

or

/•°° - i

5 3 / dt"G<°> (a,7;t-*")G(0)(7,)9;*"-t')=*(*-*')*a/3. (21.30)
J —oo

Multiplying Eq. (21.25) by G^0' from the right, performing the appropri-
ate summation and integration, and using Eq. (21.29) we obtain the explicit
expression

GW~\a,/3;t-t')= (ih?-t-ea\5a06(t-t'). (21.31)

Similar steps also yield the alternative relation

G^~\a,p-t-t')= Lih~-E0\5ap5{t-tl). (21.32)

Employing these equations, it is possible to rewrite Eqs. (21.22) in the
following way

G*~1(o,/3;<-«')=G f (0 )"1(a,/3;<-0

+ (a| U \0) - <j>a0(t)6(t - t1) - E (y l )(a, p; t - t') (21.33)

with

EW(a,P;t-t')= (21.34)
1 f°° - i

- / dt" Yt(
a6\v\eOGtI(et,(:t,St+,1t")G^ (-y,p;t"-t').

J-°° 76<;8

In the same way we can transform Eq. (21.24) so that
G*-1(a,P;t-t') = GM~1(a,P;t-t)

+ (a\ U |/3) - <f>a0(t)5{t - t') - S(B)(a, P; t - t') (21.35)
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Fig. 21.1 Diagrammatic representation of the sp propagator in terms of the irreducible
self-energy £ and the noninteracting propagator G'0 ' representing Eq. (21.38).

with

£ ( B ) ( a , 0 ; t - O = (21-36)
i roc
l- dt" J2G'b {a,r,t-t"){ec\v\p5)Gtp

II^t',it",etl+,ct'+).
1 J-°° y5(0

To guarantee that both Eqs. (21.33) and (21.35) produce the identical solu-
tion for the sp propagator, it is clear that the approximation to GJJ should
be such that

£^> = £(B>. (21.37)

If this condition is fulfilled both equations of motion can be replaced by
one equation: the Dyson equation with T,^ = E(j4) - U = £(B> - U

G*(a,0;t-t')=GW(a,0;t-t')
/•OO />OO

+ J2 dt" / dt1" G{0)(a,T,t-t")Z*(7,S;t" -t'")G4'(5,/3;t"' -t')

+ £ / dt"GW{a,r,t-t")<l>yS{t")G+(6,l3;t"-t'). (21.38)

This result is shown diagrammatically in Fig. 21.1. The external field </> is
indicated by the helical line and represents the difference between Fig. 21.1
and Fig. 9.8. Note that the presence of 0 also changes all the internal sp
propagators in the self-energy, which must therefore be labeled accordingly.

The condition of Eq. (21.37) can be checked by writing the tp propagator
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as in Eq. (9.22)

Gf 7(at a , #,3,7<7, <*««) =

ih[G+{a, 7; ta - tJG+W, 6; t0 - ts) - G*{a, 6; ta - ts)G*{P, 7; t0 - t7)]

+(in)2 fc |dtc fc fc Y, G0(a>€;*« - te)G+(P,C;tfi - k)
J J J J €ive

x (eC| T(tt,tc,tcri,te) \ifi) G*(»j,7;*„ - *7)G0(^,<5;<e - ts), (21.39)

in terms of the vertex function T shown in Fig. 9.11. An approximation
to GJI can obviously be formulated in terms of F. Equations (21.34) and
(21.36) may now be represented in the diagrammatic form of Figs. 9.13 and
9.14, respectively. Checking condition Eq. (21.37) is therefore equivalent to
making sure that the approximation to F or Gn yields the same diagrams
for Figs. 9.13 and 9.14. This development emphasizes the importance of self-
consistent propagators, as indicated by the use of the equations of motion.

21.1.3 Conservation laws and approximations

Conservation laws that are implied by the Hamiltonian are fulfilled by im-
posing another condition on the approximate sp propagator. In turn, this
leads to an extra condition on the tp propagator, which is already implied
by its original definition given in Eq. (21.23). The extra symmetry condi-
tion, together with Eq. (21.37), is sufficient to ensure that the sp propagator
satisfies conservation laws. We proceed by studying some examples.

If the approximate sp propagator solves both equations of motion in
Eqs. (21.22) and (21.24), then the number of particles is conserved. This
can be shown as follows: subtracting Eq. (21.24) from (21.22), putting
a = /?, t' = t+ and summing over a one obtains

ihj'Y^G4'{a,a\t-t+) = 0, (21.40)
a

or

jt(N(t)) = 0. (21.41)

Particle number conservation is thus guaranteed if the equations of motion
in Eqs. (21.22) and (21.24) are satisfied. In turn, this requires for any
approximation the use of self-consistent propagators.

To satisfy conservation of momentum, the approximate GJJ has to fulfill
an additional symmetry condition. We proceed by multiplying Eqs. (21.22)
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and (21.24) by the matrix element (/?|p|a). Performing the subtraction,
summing over a and /?, putting t' = t+, and using completeness of the sp
states {\a)} yields, after cancelling the U contribution,

dt
a/3

^2(P\[p,^x,t)}\S)G^(d,p,t-t+)
50

+ £ (P\[p,T]\8)G*(5, P;t-t+)
S/3

+ \^2m\Pi,V]\eOGUOt,0,St+,Pt+). (21.42)
psec

The commutation relation of p with the kinetic energy operator vanishes.
The implication is that Eq. (21.42) can be written as

ihjt £ ;< /3 |p |a )G*(a ,# t - t + ) =
[a/3

- £ (/3| (ihW^x, t) \5) G+{8, /3; * - t+), (21.43)

by observing that

\pJ{x)] = -ihVf{x) (21.44)

and provided that the term

-ih\ Y^ (p5\(vlv)\eoGtI(et,(t,5t+,/3t+) = o. (21.45)
0se<;

Assuming an interaction of the form V(\x\ - x2\) and evaluating this ex-
pression in coordinate space, one can show that the integrand is odd upon
interchange of Xi and X2 when the following symmetry property holds

G$I(at,pt,'yt+,8t+) = G*n{pt,at,8t+ ,jt+). (21.46)

The symmetry condition is certainly fulfilled by the exact tp propagator.
We conclude that, if it is obeyed by the approximate tp propagator, the
momentum conservation law holds, since it is possible to write Eq. (21.43)
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as

& ) l = -H(V<f>(x,t)), (21.47)

which states that the change in the total momentum of the system equals
the applied force. The condition stated in Eq. (21.46) is then written as

{ap\r(tut2,h,U) |7<5) = (Hr(t2,ti;U,t3) \Sy), (21.48)

and both forms can be checked by inspecting the diagrammatic content of
these quantities. The method may be employed to demonstrate the con-
servation law associated with angular momentum. A more complicated
derivation is required to prove conservation of energy. Provided the condi-
tions of Eqs. (21.37) and (21.46), or (21.48) hold, it is shown in [Kadanoff
and Baym (1962)] that the energy conservation law is fulfilled.

21.2 Linear response and extensions of RPA

The discussion of the sp propagator for the electron gas, nuclei, and nu-
clear matter has made it clear that self-energy contributions beyond the
HF approximation are essential for these systems. The need to go beyond
the mean-field approximation in the self-energy has its counterpart in the
description of excited states. This relation is well known in quantum field
theory and is referred to under the heading of Ward identities. For the
many-body system the work of [Kadanoff and Baym (1962)] has been par-
ticularly helpful in clarifying the proper way to describe excited states, once
an approximation to the self-energy has been chosen. We have already seen
in the previous section how an analysis of the sp propagator in the presence
of an external field <fi leads to constraints on the self-energy that guarantee
the fulfillment of important conservation laws. We will now extend this
discussion to the description of excited states.

A convenient starting point is again provided by the field picture intro-
duced in Sec. 21.1. In the presence of the external field 4> the sp propagator
can be written as a perturbation expansion in powers of the external field.
This expansion takes the familiar form

_ i (*o| T[SaaF (t)4 (t')]|*o>
G*(a,P;t-t') = -i ^ , (21.49)

ft (*o|T[S]|*o)
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where

S = exp\-t-J°Gdt' X>7^>U''KF('') | (21-5°)

We have employed time-reversed states to facilitate the proper coupling to
total angular momentum when necessary. In the linear response formula-
tion the assumption is made that the external field is weak and can therefore
be treated in first order. In particular, we will study the linear response
of the sp propagator to the external field as expressed by Eq. (21.49). The
strategy is to consider all terms linear in <fi (in the limit <p => 0). If <j> were a
variable, this would correspond to the first derivative of G^ with respect to
that variable. Since 4> is a function, it is necessary to treat it as a functional
derivative.

21.2.1 Brief encounter with functional derivatives

A functional F[ip] is a mapping between the functions ip(x) °f a variable
x (either a single or a multiple variable), and the complex numbers. The
functional derivative 6F[i/}]/6ip(x) is also a functional, and in addition a
function of the external variable x. It is defined as the variation 5J- of the
functional when a small change Sip is made,

SFty] = J t y + 64>] - F[tl>] = j dx ^ H < t y ( s O , (21-51)

up to first order in Sip. This definition can be viewed as a generalization
of the ordinary (partial) derivative. The usual rules of differentiation are
also valid for functional derivatives [Volterra (1959); Strinati (1988)]. The
following results hold

and

^(x)W} = m [s^om - mW)\ • (2L54)

(21.52)

(21.53)
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Another useful relation involves a functional T[ip; x, y] dependent on two
external variables, as the matrix inverse of Q[4>\ x,y] which means that

J dz Fty; x, z]G[t/r, z, y] = 5{x - y), (21.55)

for any function ip. Taking the functional derivative S/Stp(u) in accordance
with Eq. (21.53) one finds

H ^ « * * r f + * * * * ! W H (2L56)
and a (matrix) multiplication with F[ip; y, z'] then yields

s^u) = - Jdy \dz m x' z]^Kurm y>z ]- (2L57)

For a functional f[G[ip; x]] defined through its dependence on a functional
<5[i/>;:r] with e.g. a single external variable, the "chain" rule is given by

^ _ fdx 8F SGi^x)

Equipped with this material, we can generate the results of the following
section.

21.2.2 Linear response and functional derivatives

The functional derivative of the sp propagator, given in Eq. (21.49), with
respect to </> can now be evaluated, employing the material of Sec. 21.2.1.
The (^-dependence, represented by S in Eq. (21.49), is present in both the
numerator and denominator. We can therefore apply Eq. (21.54) varying
0 by a small amount 5(f> and keeping only the lowest-order terms to write
the change in G as

_ i<*0|T[<J5aaF(t)4 (*')] l*o>

* (¥o|T[S]|*o>

.«t.Oi?W*l. (21.59)

(21.58)
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The change in S is related to 6(f> by

i f°°
6S = -- df X> 7 ? ( i ' )<4 (*')%.(*') • (21-6°)

J-°° I 7«

Upon substitution of Eq. (21.60) into (21.59) the change in G* can be
written as

6G+(a,P;t-t)= [ dt" ^W^t") (21.61)
J ys

UGIJ(at,St"+Jt',1t")+G(a,P;t-tl)G(S,r,t"-t"+)\.

The functional derivative can now be identified according to Eq. (21.51) as

&G*t^;t7^ = l:Gn(at,6t"+^t',7t") + G(a,^t-t')G(6,T,t"-t"+).
°<Py6V' ) ^

(21.62)
The exact propagators on the right side of this equation correspond to the
usual Heisenberg picture. We observe that the tp propagator is equivalent
to a three-time generalization of the ph propagator introduced in Eq. (13.1).
The term with the product of sp propagators provides the correction that
turns the functional derivative of G^ into the three-time generalization of
the polarization propagator of Eq. (13.8)

IHatrf-'W+iS-H") = -ih^^Mzfi, (21.63)

The two-time polarization propagator can be obtained by taking the fol-
lowing limit

n^/T1^,*-1;;-*') = \imU(atJ~li-jt'+ ,S~H'). (21.64)

We will now derive the integral equation for the three-time polarization
propagator that ensures the fulfillment of the relevant conservation laws in
describing excited states. We start by rewriting Eq. (21.33) or (21.35) as

G*~W;t-*') = G (orW;*-0
-<t>a0(t)S(t - t1) - S * ( a , 0; t - t 1 ) . (21.65)
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Employing Eq. (21.57), we can replace the functional derivative of G^ by
the one of its inverse

G+ia^t-h)50* ,{fC;X~t2) G*(l0;t2-t'). (21.66)

Inserting Eq. (21.65) and employing the chain rule of Eq. (21.58), yields
the so-called Bethe-Salpeter equation for the polarization propagator in
the limit 4> =>• 0

n(at,/r1t';7t"+,<r1t") = n /(ai,/r1t';7t"+,crV)

+ ̂ E /d*i Idh (di* [dU[Uf(at,p-1t';etuC
1t2)

eWJ J J J

T"h(et1,C
1t2,Vt3,S-1U)n(rit3,9-1U;'yt"+,S-1t")] . (21.67)

The noninteracting polarization propagator is given by the product of
dressed sp propagators

n-^a i . / r 1 * '^ ! , .* - 1 ^) = -ihG{a,T,t - h)G(8^\t2 - t') (21.68)

and describes the independent propagation of a particle and a hole. Since
the self-energy is conserving in the sense of the previous discussion, the
internal propagators are self-consistent within the chosen approximation
scheme. The resulting conserving approximation for the polarization prop-
agator requires a ph interaction vertex given by the functional derivative
of the self-energy with respect to the self-consistent sp propagator. We
therefore obtain

F-VL/r^.Tts,*-1*,) = g H 5 ' 1 " ^ - (21-69)
5G(7,5;t3 -U)

The Bethe-Salpeter equation involves the three-time version of the polariza-
tion propagator. Hence, practical applications are not easy to implement.
We will discuss some examples of the relation between the approximation
for the self-energy and the resulting description of excited states in Sec. 21.4.

Equation (21.67) can be regarded as a reformulation of the standard
perturbation expansion of the polarization propagator in terms of noninter-
acting propagators. Instead, the first term contributing to the polarization
propagator, involves the product of exact sp propagators, as illustrated in
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Fig. 21.2 Diagrammatic representation of Eq. (21.67) for the polarization propagator.
Note that the box represents the irreducible ph interaction Tph as defined in Eq. (21.69).
The use of self-consistent or exact sp propagators is indicated by the double-line notation.
The present diagrammatic form may be employed in the time formulation but can also
be used with energy variables.

Fig. 21.2. The advantage of the present approach over the standard per-
turbation expansion is that, in an approximation scheme, it automatically
produces the set of diagrams, according to Eq. (21.69), that fulfill the con-
servation laws. The latter is based on the use of a self-energy that includes
self-consistent propagators, leading to a conserving approximation to G and
to its functional derivative II [see Eq. (21.63)]. Several examples of con-
serving approximations and the consequences for the description of excited
states are reviewed in Sec. 21.4.

21.3 Ward—Pitaevskii relations for a Fermi liquid

An important collection of identities exists that relates properties of the
exact sp propagator in the vicinity of the Fermi surface with those of the
corresponding irreducible ph interaction in an infinite system. Some of these
results have already been employed in Sec. 14.6 when we discussed the ex-
citations of a normal Fermi liquid in the Landau limit. They will now be
presented in a more detail. For the many-body problem these identities are
referred to as Ward-Pitaevskii relations. First studied for quantum electro-
dynamics by [Ward (1950)], they were applied to the many-body problem
by [Pitaevskii (I960)]. We will follow the presentation of [Abrikosov et
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al. (1975)] for the first relation and present the others without too much
detail. Slightly different presentations can be found in [Nozieres (1997);
Gross et al. (1991)].

The framework, developed so far, lends itself quite well to a derivation
of the Ward-Pitaevskii relations. We therefore start with Eq. (21.61) and
apply it for several different choices of the external field <j>. By expressing
the change in G in terms of the tp propagator, it is possible to rewrite
the latter in terms of the four-point vertex function. Using Eq. (21.39) to
replace Gu in Eq. (21.61), we find

8G*{a,0;t-t') = (21.70)

jdt" £ S^(t")G(a, 7; * - t")G(5,0; t" - t1)

-ih jdt" Y, <ty7i(t") jdt* jdt( jdtv jdte Y, G{a, c; t - U)

x G(5, C; t" - t()G(rj, 0; tv - f)G(6,7; t9 - t") (e^11 T ftC1),

where the ph notation of Eq. (13.20) has been used for the matrix element
of F and the latter's time dependence is suppressed. We will now specialize
to the momentum sp basis appropriate for infinite systems. Making rele-
vant substitutions, we take advantage of the fact that the sp propagators
are diagonal in momentum and spin variables. Employing the momentum
variables introduced in Sec. 14.2, we obtain

SG^ip + Q/2 ma,p- Q/2 m0;t - t') = (21.71)

jdt" (p + Q/2 ma\8<t>(t") \p - Q/2 m0)

x G{p + Q/2; t - t")G(p - Q/2; t" - t')

-ih jdt" Y <P; + Q/2 m^ <J0(t") | p ' - Q/2 m«)

x jdte jdt( jdtv jdteG{p + Q/2; t - QG{p' - Q/2; t" - tc)

x G{p - Q/2; tn - t')G(p' + Q/2; te - t") (Q, p; a^11 r \Q, p'; -yS'1),

assuming a spin-i fermion system. Note that we have also used conserva-
tion of the total ph momentum by F to arrive at this result.
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The first choice for the external field is given by

4>(t) => £ (a\ 6cf>(t) \0) CLia^ = 6</>{t)N, (21.72)

where we consider an infinitely small field S(f)(t) which is homogeneous in
space and varies slowly in time. The matrix element of 5(f> is given by

(p + Q/2 ma\8<j>{t") \p - Q/2 nip) = 8Qfi5<f>{t){ma\m0)

= 8Qfi5cj>{t){-l)^m'5ma^m^ (21.73)

using the definition of the time-reversed spin state given in Eq. (13.3).
Inserting Eq. (21.73) in the second term of Eq. (21.71), generates a ph
state with good total spin on the ket side of F, since

£ | i m 7 ( j m a ) - 1 > ( - l ) i - m ^ m , , _ r o 4 = V ^ | j ±-1S = 0Ms = 0),
m-f-ms

(21.74)
using Eq. (B.12). Since F conserves the total spin, the bra side of the in-
teraction will also have 5 = 0, generating a corresponding Clebsch-Gordan
coefficient. Together with the y/2 factor in Eq. (21.74) the latter produces
the same phase factor and spin Kronecker <5 as in Eq. (21.73), which is there-
fore common to both terms in Eq. (21.71). We next proceed to perform
the transformation to energy variables, for example using

m) = j^e-tE*t6<KE+), (21.75)

and similar expressions for the sp propagators G and the interaction F (see
Sec. 9.4). Employing Eq. (9.25) and eliminating the common factors, the
change in G under the influence of <j> can now be written as

SG = G{p; E) G(p; E - E+) 64>(E^)

x (p;S = 0\ro\p';S = 0)G(p';El)G(p';El-E(t,). (21.76)

As in Sec. 14.6 the limit of T when Q =̂  0 first is denoted by F°. The
last form of Eq. (21.72) shows that when this operator is added to the
Hamiltonian of the system, the sp propagator will be multiplied by a factor

e-\^4>(t~t) j n ^ \[m[t j ^ -v, c o n s tant. In the energy formulation this
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implies that E is replaced by E - 6<p, which shows that

5G ^ dG (2m)

when £ 0 => 0. Denoting the limit of G{p; E) G{p; E - £0) by {G2(p; E)}0

when E^ =» 0 and using Eq. (21.77), Eq. (21.76) is written as

§§ = -«?<Kir». [ i -</f / | ^ (Pir»W(G'(P^')4
(21.78)

suppressing the label 5 = 0. If we consider G near the Fermi energy and
Fermi momentum, as in Eq. (14.93), we may rewrite Eq. (21.78) upon
division by {G2(p;E)}o as

implying that the magnitude of p =>• PF and E => EF- By performing simi-
lar steps for different types of external perturbations, other useful relations
between quasiparticle properties and the vertex function can be generated.
We refer to [Abrikosov et al. (1975); Lifshitz and Pitaevskii (1980)] for more
details and list these relations below. For a field that does not depend on
time, no energy is transferred. When the particles have fictitious infinitesi-
mal charge, the presence of a magnetic field that has a small spatial but no
time dependence, leads to the substitution of the momenta of the particles
from p => p - SeA/c and results in a small change in the Hamiltonian.
Such a field transfers an infinitesimal momentum and no energy. When
this momentum is taken to zero, it yields

SeA/c dp

Repeating the same steps as before, one arrives near the Fermi momentum
and energy at the following identity

V'G" = -Jz; (2181)

where we have denoted the limit of F where first the energy and than the
momentum is taken to zero, so Q/Et => oo in the notation of Sec. 14.6,

(21.80)

(21.79)
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by r°°. This notation is also introduced for the product of the two sp
propagators.

If the change in the sp propagator is considered when the system as a
whole moves with a small, slowly varying velocity 6u(t), the Hamiltonian
acquires an additional term — 8u • P, where P is the total momentum
operator of the system. The resulting identity for such a field, with the
energy transfer and 5u => 0, is given by

P^E~ = fr ( 2 L 8 2 )

Finally, a small field that is constant in time and weakly inhomogeneous
in space requires the invocation of the equilibrium condition involving the
chemical potential /i + S(j) = 0, leading to the final identity

?W='1- ' / f SM?<pl r" lp'} {GV; * » » (2L83)

valid for all momenta. We note that all the fields generate 5 = 0 ph states.
We are now in a position to verify Eqs. (14.141) and (14.142). In prepa-

ration we rewrite Eq. (14.126) in the limit that first Et =S> 0 and then Q as
follows,

(p|r°°|p') = ( p | r V ) (21.84)

adjusting the notation to the present situation and noting that the mag-
nitude of both p and p' will be assumed equal to pp. We also note that
Eqs. (14.120) and (14.121) lead to the following relation between the oppo-
site limits of G2

{G2(p;E)}^ = -2m2Z2p &(E - eF)8(\p\ - pF) + {G2(p;E)}0. (21.85)

The last two equations are useful vehicles to manipulate the four identities
that were obtained for various external fields.

We proceed by inserting Eq. (21.84)1 into Eq. (21.81), thereby generat-
1 Note that this equation holds for arbitrary values of p and p'.
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ing

+'J 2* J (2rf>)' { m- I (21 86)

x / ( ^ f W^\vrt,)[PFPt\T"\t/)^{G\P',E')}a,

where the magnitude of p and p' are equal to J>F and Eq. (21.81) was
employed in rewriting the second term after the last equality. Substitution
of Eq. (21.85) into the first term yields, after some cancellations and minor
rearrangement,

Using Eq. (14.129) and the defintion of the Landau parameters, combined
with the orthogonality of the Legendre polynomials, finally generates the
relation between the effective mass and the Landau parameter Fi

which was employed in Sec. 14.6.
To obtain the relation between the speed of sound and the Landau

parameter FQ , we first note that the smooth dependence of Fermi velocity
VF and the pole strength ZF on the chemical potential, or Fermi energy,
allows to rewrite the derivative of the left-hand side of Eq. (21.83) near the
pole, as follows

dn m*ZF d/u v ;

Employing the right side of Eq. (21.83), while replacing T°° by Eq. (21.84)
and using Eq. (21.85) as before, yields after some rearrangement

^ h ' W t ^ ^ H " 1 - (2L90)

(21.87)

(21.88)
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Noting that, in general, the derivative of the density can be written as

we may establish that Eq. (21.90) is equivalent to the following expression
for the speed of sound

2 Nd» pi l + F0

where the first equality represents a well-known thermodynamic relation for
an infinite system. This concludes our discussion of the relation between the
first two Fermi liquid parameters and important observables of an infinite
Fermi system.

21.4 Examples of conserving approximations

We will now consider in some detail the relation between the conserving
polarization propagator and specific choices for the self-consistent approx-
imations to the self-energy that have been presented in previous chapters.

21.4.1 Hartree-Fock and the RPA approximation

The simplest self-consistent approximation to the sp propagator or self-
energy produces the HF approximation. The self-consistent HF self-energy
is given in the time formulation by

XHF(a,~p;t - t1) = -ihS(t - t') J2 (aS\ V |^7) GHF(7,5;t- t+). (21.93)

This result can be obtained from the expression for the first-order term
in Fig. 8.4 by replacing the propagator by GHF. The self-consistent HF
solution of the Dyson equation with the self-energy of Eq. (21.93) generates
the HF propagator. In the corresponding HF sp basis, discussed in Ch. 10,
the propagator reads, after FT,

(21.91)

(21.92)

(21.94)
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The application of Eq. (21.69) to the HF self-energy yields the appropriate
irreducible ph interaction given by

= -ihS(h - t2)6(t1 - ts)S(ti - U) (aS\ V |/?7). (21.95)

Insertion of this ph interaction in Eq. (21.67), generates

n i I P > l(Q,/3-1 ;7^"1 ;<i-t2) = n(0)(a , /3-1 ;7^-1 ; t i -*2)

+ £ I dh^a\a^-l;eCl;h-h)

x (e0\V\Cri)nRPA(T),0-1;'r8-1;t3-t2), (21.96)

where

n^(a,0-1,'Y,S-1;t1-t2) = -iHGHF(a,r,ti-t2)G
HF(S,P;t2-t1).

(21.97)
After applying the usual FT, we recognize the RPA version of the polar-
ization propagator, which can be written as

URPA(a,p-1;>y,8-1;E) = Il(0\a,p-1;'Y,6-1;E) (21.98)

+U^{a,r1;E)'£(ar1\Vph\ve-1)URPA(r,,e-1;'r,S-1;E),

where the definition of the ph interaction of Eq. (13.20) was used. The
noninteracting polarization propagator in the HF basis

n(°) (a , / ! - 1 i7 i r
1 ;£ ; )= (21.99)

f 9(a - F)0(F - P) 0(F-a)0(0-F) \

""*'' \ E - {e»F - eH
0

F) + irl E + ^"F -e?F)-ivj'

was also employed to generate Eq. (21.98) in the same form as Eq. (13.23)
in Ch. 13. The unique link between the RPA and the HF approximation is
therefore clearly demonstrated. The results of Sec. 13.5 for excited states
in atoms should thus be viewed in the present context.

21.4.2 Second-order self-energy and the particle-hole inter-
action

The self-consistent treatment of the second-order self-energy was docu-
mented e.g. in Sec. 11.5.3 for atoms. The second-order contribution to the
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Fig. 21.3 Diagrammatic representation of the self-consistent second-order self-energy
in a). The contributions to the irreducible ph interaction that are obtained by the
functional derivative of a), with respect to the self-consistent sp propagator G'2 ' , are
given by diagrams b) and c).

self-energy in nuclei, employing the G-matrix interaction, was presented in
Sec. 17.1.1. The relevant self-energy diagram is shown in Fig. 21.3. The
diagram is given in the time formulation by

E<2)(a, /?; h - t2) = -{ih)2\ £ £ (aA| V \eO) <«| V W)
\te at*

G (2)(c,C;*i-«2)G (2 )(^^*i-*2)G (2 )(/i,A;t2-ti), (21.100)

where G^ is the self-consistent propagator (up to second order). As illus-
trated explicitly in Fig. 11.1, the HF contribution is also incorporated in the
self-energy. We will only consider the new contributions to the irreducible
ph interaction when the second-order diagram of Fig. 21.3 is included. By
applying Eq. (21.69) to Eq. (21.100), we generate the extra interaction
terms

rfyiatup-Hz^s-H*) = (21.101)

-(ih)2S(h - t3)S(t2 - U) J2 (a\\ V |e7) (tf\ V | ^ )

xG< 2 >(e ,C ; t i -<2 )G< 2 >( / i ) A;* 2 -* 1 )

-m2\8(t2 - t3)5(h - U) ]T (aS\ V \e0) (« | V |^7)

x G^\e,C,h-t2)G{-2\e,^tl-t2).

Two of the three contributions from the functional derivative of Eq. (21.100)
are identical, and the factor of \ only survives in the last term of
Eq. (21.101). The interaction associated with Eq. (21.101) is displayed
in Fig. 21.3. Diagram a) represents the first term and b) the second one. In
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this approximation the equation for the polarization propagator becomes

n(2)(Q/3-1 ;7 , j -1 ; t1- t2) = n'(a)/3-1;7,<J"1;*i-*2)

+ ̂ Y1 I dt3 J dU Jdt6fdt6Uf (ah, (3-lh-etz,ClU)

[r^F(e<3,r1i4,^5,r1i6) + r[2
/l

)(ei3,r1i4,^5,^1^)]

x n(2)(f/t5)0-46;7t2)<J"1t2). (21.102)

This equation is not yet ready for practical application, but it leads to an
important extension of the RPA method.

21.4.3 Extension of the RPA including second-order terms

The time dependence of Eq. (21.102) is still quite formidable and we will
now proceed to a manageable form, which takes the major new physical in-
gredient of the second-order self-energy into account [Brand et al. (1990)].
The latter corresponds to the fragmentation of the sp strength that becomes
inevitable when there is substantial mixing between hole (or particle) states
with 2hlp (or 2plh) states. For a system where this fragmentation is im-
portant, it is unavoidable that the description of excited states requires the
mixing between lplh and 2p2h states. It is this physical ingredient that
will now be incorporated in an approximate treatment of Eq. (21.102).

By employing the HF sp basis, it is possible to write the first iteration
of the Dyson equation towards the self-consistent propagator G^ in the
following manner (see also Ch. 11)

G(2) (a, /?; h ~ t2) = GHF(a, /?; h - t2) (21.103)

+ E / ^ 3 fdUGHF(a,r,h-t3)i:
(-2\1,d;t3-t4)G

(-2\6,P;n-t2),
7<s J J

using HF sp propagators in the self-energy. The result of this approxima-
tion is to transform Eq. (21.102) into an expansion in which only iterations
of rffp, rfy, and E'2) according to Eq. (21.103) occur, all expressed in

HF sp propagators. Iteration of Eq. (21.102) using only TP^F, will gener-
ate the usual RPA diagrams. The extra Feynman diagrams up to second
order that are generated in this scheme from Eq. (21.102), are shown in
Fig. 21.4. Switching to the energy formulation, the contribution of the
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Fig. 21.4 Feynman diagrams for the polarization propagator up to second order in
the interaction. The self-energy diagrams are identified in a) and b). The so-called ph
screening diagram is displayed in c). The ladder diagram is illustrated in d). The sp lines
represent the HF sp propagators. The sum of diagrams a) - d) defines the irreducible
ph interaction T?3PA.

diagrams a) - d) to the ph propagator II can be written as

employing a generalized meaning (and notation) for the irreducible inter-
action, which now also contains self-energy terms. We thus define the ir-
reducible ph interaction IT2J|N. Irreducible here implies that it cannot be
separated into successive ph interactions by cutting a pair of ph lines at the
same time. Note that Eq. (21.104) contains terms that include all possible
connections between forward and backward-going contributions present in
T[(°K By iterating the ph interaction IT2 * together with the usual ph in-
teraction that generates the RPA, we arrive at the following approximation
to Eq. (21.102)

11^ (ab-1; ctT1; J; E) = n<°> (ab'1; aT1; J; E) + Y^ H(0) (a6"J; J; E)
ef

x {{ab-lj\Vph\erlJ)+TP(i){ab-l-erlU;E)}

xU^ief^-^d^-J-E), (21.105)

where we have applied the angular momentum coupling that was developed
in Sec. 13.7. The equation takes the form of an inhomogeneous RPA equa-
tion with an energy-dependent interaction. The polarization propagator
n^2' can also be derived from the equation of motion method [Takayanagi
et al. (1988)]. Besides the usual RPA contributions, it takes into ac-

(21.104)
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count the coupling to antisymmetrized 2p2h states for the excited states
(through forward-going terms) as well as for the ground state (backward-
going terms), and the coupling of the particle or the hole to a 2p2h admix-
ture in the ground state (self-energy contributions).

The diagram expansion implied by Eq. (21.105), represents only a sub-
series of the terms generated by Eq. (21.102). The latter will also produce
irreducible ph interactions which are of higher order in the ph vertex Ffi,
i.e. they cannot be partitioned by cutting a particle and a hole line at
the same time. They can be thought of, e.g., as linking subsequent F£^
interactions by means of two hole or two particle lines that do not return
the polarization propagator to its simple ph component. Such higher-order
irreducible ph interactions describe the coupling of the lplh state to more
complicated configurations, in which the 2p2h state couples to npnh states
with n>3. These contributions to the ph interaction are expected to be
suppressed because, due to the gap in the sp spectrum of a closed-shell
system, there will be a large energy mismatch between the initial lplh
state and the intermediate propagating npnh state (n>3). At low energy,
the coupling of lplh to 2p2h excitations will dominate, whereas at higher
excitation energies typically no coherent excitations are observed. More-
over, in this energy region it is probably most important to consider the
small admixture of lplh states into the abundantly present 2p2h states. In
practical applications [Brand et al. (1990)] such higher-order terms have
therefore been neglected.

A remaining complication in Eqs. (21.102) - (21.105) is that one should
employ the fully dressed sp propagator G^ everywhere. Dressing the dia-
grams of F?k means replacing the HF sp propagators GHF by G^. How-
ever, the second-order self-energy causes a fragmentation of the sp strength,
which leads to very large numbers of lplh and 2p2h states in practical real-
izations. Furthermore, G*2' no longer provides a sharp distinction between
particle (> F) and hole (< F) states. Consequently, the dressed diagrams
of F?2 , also contribute to the pp and hh amplitudes of the polarization
propagator, requiring their explicit consideration. Such calculations have
not been reported so far.

In the treatment of the sp propagator one may neglect the fragmentation
of the sp strength and restrict the effect of the second-order self-energy to a
shift of the HF sp energy, approximating G^ by the single pole expression

<7<*>(«,/>;*) = SaP \ 9{a
(~P + ^ ( - Q ) | . (21.106)
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These quasiparticle energies ea are defined in a self-consistent way as the
poles with the largest fragment in the sp propagator that satisfies the Dyson
equation for the diagonal second-order self-energy. This means that the
£«2*̂  correspond to the solutions with the largest strength of the equation

eg*) = £»
F + rt2*)(a,a;E = e^). (21.107)

The single-pole expression of Eq. (21.106) maintains the sharp distinc-
tion between particle and hole states, so that when the HF propagators
in r?2t\(E) are replaced by Eq. (21.106), again only the ph and hp ampli-
tudes have to be considered. This dressed ph interaction leads to what we
will call the extended RPA (ERPA) equation, represented by Eq. (21.105)
with the appropriate substitutions discussed here. We note that the inde-
pendent propagation of a particle and a hole is described by the iteration
of diagrams a) and b) of Fig. 21.4 in Eq. (21.105). This incorporates the
desired properties that the largest ph strength is associated with the cor-
responding ph energy, while at the same time a fragmented ph spectrum is
generated due to the coupling to 2p2h states in the self-energy terms.

We have now arrived at a conserving extension of the RPA in which
the coupling to 2p2h states is explicitly accounted for, while allowing for a
shift of the lplh and 2p2h energies with respect to the HF energies through
the action of the second-order self-energy. The latter coupling can also be
accomplished by calculating the matrix element between a ph state with
a properly antisymmetrized 2p2h state, propagating the intermediate 2p2h
state, and then returning to a ph state, which is potentially different from
the original one. When comparing with the contributions from the four
diagrams in Fig. 21.4, it becomes clear that all four terms are required
to account for the Pauli principle, which reduces the number of possible
2p2h states. This illustrates the role of conserving approximations to the
polarization propagator. In the present approximation one encounters frag-
mentation of ph strength from iterating only the self-energy terms, which
cannot be described in the standard lplh RPA. It is this feature plus the
additional interaction terms, iterated in Eq. (21.105), that lead to a treat-
ment of sp properties and response beyond a mean-field description.

21.4.4 Practical ingredients of ERPA calculations

We start by discussing the procedure to solve the ERPA equations in a
discrete basis, emphasizing the proper normalization of the transition am-
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plitudes and strength functions. Equation (21.105) can be solved in the
usual way by explicitly calculating the poles of Il(2). Inserting the Lehmann
representation, given by Eq.(13.87), with the ph states coupled to good to-
tal angular momentum, we multiply Eq. (21.105) by E — e^j and take the
limit E => e^j. The inhomogeneous term in Eq. (21.105) vanishes and an
RPA-like eigenvalue problem emerges as in Eq. (13.53), which we write as

(A(E) B\ (X;{\ _ (1 0\ (X#\

to be solved subject to the condition

E = e*nJ(E). (21.109)

The ERPA sub-matrices contain the new ingredients and can be written as

A(E) => (Plh^J\ V + T^E) \PzKlJ) + {e™ - e%?)81>362A

(21.110)

B =» (Plh^J\ V + rj£} \hiP^J) (21.111)

A*(E) => {h2p^J\ V + Tft^E) \hiP^j) + (e»F - elF)6^3S2A

(21.112)

B* =» (h2P^J\ V + T'h \P3h^J). (21.113)

Explicit formulas for all diagrams contained in IT2 * are presented here for
completeness [Brand et al. (1990)]. We have adopted the notation pi,p2,
etc. for sp states above the Fermi level and hi,h2, etc. for sp states below.
These indices represent a complete set of quantum numbers, for example
given by ni,£i, ji, mi, and m^. Coupling to good total angular momentum
is indeed appropriate since it reduces the number of states that needs to be
considered and is essential in distinguishing the different types of excitation
modes, as will be illustrated in Sec. 21.5. The contribution to !?£, of the
ph screening diagram of Fig. 21 Ad) to the ERPA A-matrix is given by

(Plh^j\rp^s)(E) \p3h^J) = £(12,34; J|13,24; J')
j'

^ \&P?J'\ V \psh-lJ') (P5h^J'\ V \h2h^J')

(PlP^J'\ V \hP^J>) (h6P^J'\ V \h2h^J>)]
+ E- ( e r + $* - e",F - e»F) +H J ' ( j

(21.108)
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The angular momentum recoupling factor is discussed in App. B and reads
for the present situation

(12,34; .7113,24; J') =-(-l)h+J3+J+J'(2J1 + 1) { j} J2 f, \ . (21.115)

For closed-shell nuclei with TV — Z, it is convenient to employ the isospin
formulation. The inclusion of isospin in constructing the recoupling fac-
tor then yields a result similar to Eq. (21.115) and can be incorporated
straightforwardly. The contribution of the ph screening diagram to the
ERPA B-matrix is represented by

(Plh^j\T^s) \h3p^J) = £(12,34; J|13,24; J')
j'

V- [(P!^1 J'| V \P^J') (P5h^J'\ V \h2p^J')

, (Pih^j'\ V \htPzlJ') (hep^J'\ V \h2p^J')]
+ -{eHF+eHF_eHF_eHF) j -(21-116)

The contributions from the ph screening diagram to the ERPA A* and B*
matrices follow from the symmetry relations [Hengeveld et al. (1986)]

{h2P^j\r$s)(E)\hiP3lj) =

{_1)jl+h+h+ji ( M - i J | T^s)(-E) \p3h^j) (21.117)

and

(h2pT1J\r$t)(E)\p4hi1j) =

^yi+h+h+h (Pl/l-i J| Y$S){E) \h3p^J) . (21.118)

The contribution from the ladder diagram of Fig. 21.4c) to the ERPA A-
matrix is given by the expression

(M^Jlrg^E) \p3h^j) = £[12,34; J|13,24; J']
j'

v ( V jpihjj'l V \p5P6J') (p5p6J'\ V \p3h2J')
\p^ E-(er+^F-e^-en+iv

^ {Plh4J'\V\h5h6J'){h5h6J'\V\p3h2J')}
(21.119)
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The contribution to the ERPA B-matrix from the ladder diagram of
Fig. 21.4c) has the form:

(p1h^1j\r^l) (h3p^j\ = £[12,34; J\13,24; J']
j '

f y^ {PiPiJ'l V \P5PeJ') (P5P6J'\ V \h3h2j')
} 2 s _(ph ,FHF _FHF _ HF\
\V5P6 V£5 + £ 6 £2 £3 I

, V <PlP4 J'l ^ Iftsfce./') (^5^6 J'l V 1^/12./') ) . . . . _

The contributions to the ERPA A* and B*-matrix can be found by applying
Eqs. (21.117) and (21.118). The angular momentum recoupling factor for
the present case produces

[12,34;J|13,24;J'] = -(2J' + 1){-M2 {. \ . (21.121)

The self-energy diagrams of Figs. 21.4a) and b) will be dealt with next.
The expression for the contribution to the A-matrix when the self-energy
couples to the particle line, yields

(pifta-1J|rg,)(^)|pifca-1./> = | E ^ T r
J

j ^ (Pih6J'\V\piP5J')2

\h^F-^F^"F-^}'
The expression for the contribution to the A-matrix when the self-energy
couples to the hole line is given by:

J

\ ^ (h2P6J'\V\h4h5J')2

\hh,E-^F+£"F-£"F-^+^
v (h2h6J>\V\p4P,J')2 ]

Ph^F-^F+^F-^f'

(21.122)

(21.123)
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The contribution to the ERPA A* -matrix can be found by employing
Eqs. (21.117) and (21.118).

The pole structure of the A and A* -matrix, due to the intermediate
2p2h propagation (the B-matrices are energy independent), ensures also
that solutions are obtained corresponding to predominantly 2p2h states.
The dimension of the matrix that one diagonalizes is however still the same,
as in the standard RPA. In order to satisfy the condition of Eq. (21.109),
these diagonalizations have to be performed for various values of E. The
amplitudes X can be normalized by manipulating the inhomogeneous equa-
tion (21.105) in the usual way:

E l ynJ 2 V"̂  | ynJ |2 _ -i

P\h2 fl2Pl

+ E *«"JXn/ (ab-'A (2*E \cd~lJ). (21.124)
abed E=en ,

Tl J

This shows explicitly that it is necessary for r?2 > to have the correct energy
dependence (to contain all diagrams of Fig. 21.4) to generate the proper
normalization of the excitation amplitudes. All transition amplitudes to the
excited states can thus be calculated, so that besides excitation energies,
transition densities as well as cross sections can be obtained. The resulting
transition strength distribution can be written as

SQ{E) = 27TI £ I 5 > " Q J " h) W + *#} f6^ - e^)>
n ph

(21.125)
where QJM represents an external field with multipolarity (J,M).

The density of 2p2h states, and thus the number of solutions, increases
rapidly with energy so that for the calculation of high-lying excitations like
the giant resonances in nuclei, the above method, although still feasible,
becomes very involved. In this region a second method can be employed to
calculate a continuous strength distribution directly from the polarization
propagator. This is accomplished by making the energy complex: E =>
E + iA. The value A = 0.25 MeV can be adopted as a reasonable choice
for closed-shell nuclei [Brand et al. (1990)]. In addition, a width of 1
MeV for the 2p2h states may be introduced, which can be interpreted to
represent the spreading of these states into more complicated states. The
polarization propagator can then be calculated directly from Eq. (21.105)
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by matrix inversion:

U^(E) = ffn'0 '^))"1 -V- rj^CE)] , (21.126)

and the strength distribution is obtained from

SQ(E) = - i l m Yl [(a II Q' II byn^iab-^cd-1; J;E)(c \\ QJ || d>] .
abed

(21.127)
The width of 1 MeV is sufficiently large to yield a smooth strength distri-
bution and sufficiently small so as not to influence it significantly. With
a complete set of conserving diagrams for F?^ * the response function is
positive definite. These two complementary methods have been used to
study both the low-lying discrete states as well as the strength distribution
at higher energies in closed-shell nuclei, as discussed in Sec. 21.5.

21.4.5 Ring diagram approximation and the polarization
propagator

The description of collective states by means of the RPA suggests that such
correlations should be included in the self-energy. Examples are provided
by the plasmon excitation in the electron gas, discussed in Sec. 16.2.1 and
16.2.2, and low-lying collective states in nuclei, as studied in Sec. 17.1.2.
When such phenomena dominate the properties of the tp propagator, the
resulting self-energy contains the sum of all ring diagrams. We will con-
sider here the case where only the direct contributions to the RPA are
included, as is appropriate for the electron gas, while keeping the nota-
tion general however, to allow possible applications to finite systems. The
HF contribution to the self-energy will be included together with the other
ring diagram terms of the self-energy. The additional self-energy diagrams
for constructing the new ingredients of the irreducible ph interaction are
given by Figs. 17.2e) and / ) , provided self-consistent sp propagators are
employed. For the electron gas this self-energy contribution can be found
in Eq. (16.38). Using the general notation of the present chapter, we can
write for this term

AZR(a, P\ h - h) =ihJ2J2 ^XW\e0) (a\V\^)

G(t, C; h - t2)U
RPA (0, A-1; {, /x"1; h - t2), (21.128)
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noting that the factor | disappears when only direct contributions are in-
cluded. The construction of the irreducible ph interaction from Eq. (21.128)
employs yet again Eq. (21.69). Its application requires the formulation
of URPA according to Eq. (21.96) to exhibit its dependence on the self-
consistent G, while omitting the exchange contribution from the two-body
matrix element of the interaction. We note that, as before, the applica-
tion of the functional derivative with respect to G is actually equivalent
to cutting one of the internal G lines in the self-energy diagram. For the
present case, two types of contributions are generated. The first involves
the term where the G not involved in URPA is cut. For the other, a G
inside HHPA must be cut, giving rise to two separate terms. The algebra is
not complicated but somewhat tedious2. The final result for the conserving
polarization propagator is given by the following expression

U(ah, 0-H2; Jtf,5-lt3) = -ihG(a, 7 ; h - t3)G(S, 0; t3 - h)

-ih Y^ I dt4 G{a, e; h - t3)G{(, 0; t3 - t2)

x [(e6\V\(r,) - (e6\V\r]0} U^t^e^U,-yt+,S~H3)

-ih J2 [ dt4 f dt5G(a, e; h - U)G((, 0; t6 - t2)
ecne

J J

x J2(ep\V\rrr)URPA(T,p-1;{,<jTX\U ~ *s) WIC0)

X nfot3,0~1*4;7*3".<rl*3)

+HY, fdU [dt5 fdt6 fdt7G(a,e;h-t4)G{(:,l3;t5-t2)
ecne J J J

x { ^(ep\W{U-ttt)\<TTi)G((T,K;U-t6)
P<JK\

xG(\,p;t7-t6){K8\W(t7-t6)\C\)

+ £ (€0\W(t4 - t7)\a\)G(a, K; U - h)
crXKp

x G(X,p;t7-t5)(Kp\W(t6-t5)\Cr,)}

x U(Vt6,e-1tr,7tt^~1t3), (21.129)
2 We note that the external field dependence of G must be included before the func-

tional derivative is taken and <p is put to zero. In the case of the electron gas, this restores
the presence of the bare Coulomb interaction in the irreducible ph interaction since the
Hartree self-energy contribution must be included.
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Fig. 21.5 Diagrammatic representation of Eq. (21.129). The use of self-consistent prop-
agators is indicated by the double-line notation.

where the screened interaction

((i\\W(h - t2)\(rr) = (n\\V\<rr)8(h ~ t2)

+ y£(w\V\an)nRPA(7r,p-1;e,r]-
1;t1-t2)(6\\V\T1T) (21.130)

has been introduced in analogy to the screened Coulomb interaction W.
As it stands, it appears that Eq. (21.129) is quite intractable. The physical
content buried in Eq. (21.129) becomes more distinct when its diagram-
matic structure is viewed, as in Fig. 21.5. The last term in the top row
of the figure combines the exchange of the bare interaction term with the
next one in Eq. (21.129), resulting in the screened interaction W, which
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is indicated by the doubly wiggled line. Two such screened interactions
contribute to the last two terms in Eq. (21.129). Figure 21.5 demonstrates
that the self-consistent inclusion of ring diagrams in the self-energy leads
to two new ingredients of the irreducible ph interaction. The first involves
the exchange term of the screened interaction W. For the electron gas one
may therefore loosely speak about the exchange of a plasmon-like excitation
between the particle and the hole. In this language the last two diagrams
in Fig. 21.5 can be interpreted as the coupling of the ph propagation to two
such excitations. We note that the construction of the irreducible inter-
action guarantees that the /-sum rule is now conserved. For the electron
gas this should lead to the restoration of the physical plasmon excitation in
the polarization propagator. We are not aware of an actual (approximate)
implementation of such a scheme.

The other self-consistent approximation to the self-energy includes the
summation of all ladder diagrams, as discussed in Sec. 16.3.3. The construc-
tion of the irreducible ph interaction proceeds by calculating the functional
derivative of this self-energy. The irreducible interaction contains the ph
form of the ladder-summed effective interaction plus the coupling to two
such interactions. The latter can be considered as the coupling to a si-
multaneous pp and a hh excitation. More details can be found in [Baym
and Kadanoff (1961)]. Also in this case, we are not aware of an actual
application.

21.5 Excited states in nuclei

We conclude this chapter with a brief overview of some of the properties of
excited states in nuclei. In order to appreciate some of the complexities of
nuclear spectra, it is helpful to consider the information that is contained
in the noninteracting polarization propagator of Eq. (21.68). Taking t = t'
and performing the transformation to the energy formulation yields

nf(a,p-1n,6~1;E)= (21.131)

(^la^l^-1)(^|qa|^+1) (^+1\a\\^)(^-1\aI\^)

h E-(et- e'k) + irj

tX E+iet-e^-irj
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Fig. 21.6 Energy levels for the 16O nucleus below 14 MeV excitation energy. The first
column displays positive parity states with isospin T = 0. The second column contains
isoscalar negative parity states and the third column exhibits all isovector states. The
last column employs information from neighboring A ± 1 nuclei to identify the poles of
11-̂  associated with the main sp shell states for this nucleus. The dashed line correspond
to the first pole of 11̂  associated with more complicated configurations in the AH
spectra. Data were taken from [Tilley et al. (1993)].

where the Lehmann representations of the individual sp propagators has
been employed. The notation of Eqs. (10.23) and (10.25) has been used
to identify the energy of states with one particle removed or added, with
respect to the energy of the ground state of A particles. The latter state
will be presumed to correspond to a closed-shell nucleus, as identified in
the discussion of Sec. 3.3. Figure 21.6 illustrates the excitation spectrum of
the doubly-closed shell nucleus 16O up to 14 MeV, identifying the isoscalar
positive and negative parity states in the first two columns, respectively.
All T = 1 states below 14 MeV are shown in the third column. The
last column identifies the poles of Eq. (21.131) as they are obtained from
the experimental information of the neighboring odd nuclei. The possible
configurations include the pi and ps hole states combined with the da, s i ,
and dt particle ones. These sp states correspond to large spectroscopic
factors as identified by appropriate nucleon transfer reactions. The possible
angular momentum and parity of these ph states are also indicated. The
dashed line in the last column identifies the first pole in 11̂  that is associated
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with smaller-strength fragments in the A + l system.
The spectrum of Fig. 21.6 is not easy to understand from the perspective

of a mean-field description. Only the isovector states in the third column
can easily be identified with the four states at slightly lower energy in the
last column. In the RPA based on the HF approximation, the latter states
can obviously be accounted for if the ph interaction is slightly repulsive.
Since HF for nuclei must be replaced by at least a BHF approach, it is
useful to summarize the successes and failures of the RPA for the excited
states when a G-matrix ph interaction is employed [Czerski et al. (1986)].
Similar results have been found with phenomenological effective ph inter-
actions. The description of the isovector states clustered around 13 MeV
excitation energy is quite satisfactory, indicating that the G-matrix has the
right tendency to move these states up from their unperturbed position
that is based on the experimental information from the A ±1 nuclei. The
RPA diagonalization of the isovector states does not lead to any significant
collective enhancements, except in the 1~ case. A strong collective state
is calculated around 23 MeV, documenting a substantial repulsion in the
interaction, which is capable of mixing ph states in a way that is quite
similar to the schematic model from Sec. 13.3. Unfortunately, while in
this region there is substantial electric dipole strength observed experimen-
tally [Dolbilkin et al. (1965)], it is strongly fragmented unlike the result of
the RPA calculations. Other negative parity isovector states exhibit simi-
lar fragmentation of the transition strength, like the magnetic quadrupole,
that cannot be obtained within the RPA framework. For isoscalar states,
the G-matrix ph interaction generates one low-lying collective 3~ state but
completely fails to account for all the low-lying states that are observed.
This is true for the negative parity states, but even more conspicuously for
the positive parity states that in the mean-field approach are only available
as ph excitations that jump two major shells and are therefore not found
below 20 MeV excitation energy. The only positive conclusion here is that
the interaction has the correct sign for the isoscalar states with natural
parity3.

The failure of the RPA should not come as a surprise when the frag-
mentation of the sp strength is taken into account. The experimental re-
sults, discussed in Sec. 7.8, and the theoretical ones of Sec. 17.1.2, leave
no doubt that a dynamical description of the nucleon self-energy is neces-
sary to produce the pattern of the sp strength. Following the presentation

3These states have quantum numbers 0+, l ~ , 2 + , 3 ~ , etc.
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Fig. 21.7 Energy levels for the 48Ca nucleus below 7 MeV excitation energy. The
first column displays the results of the ERPA calculation. The second contains the
experimental data taken from [Wise et al. (1985); Fujita et al. (1988); Lederer and
Shirley (1978)].

of this chapter, it is thus necessary to include higher-order terms to the
self-energy, which then automatically yield an effective ph interaction that
takes the consequences of this fragmentation into account in the treatment
of excited states. For nuclei this has been accomplished in the form of
the ERPA method, as developed in Sees. 21.4.3 and 21.4.4. It is based
on the second-order self-energy approximation in the G-matrix interaction
and has been applied to the closed-shell nucleus 48Ca and the semi-magic
nucleus 90Zr in [Brand et al. (1990)]. The latter nucleus exhibits some of
the pairing properties that were discussed in Sec. 17.2.

Another deficiency of the RPA method that employs a G-matrix ph
interaction is the development of instabilities in heavier nuclei for 2+ and
3~ states. For 48Ca this occurs for the first 3~ state. A gratifying feature of
the ERPA method is the disappearance of the instability, as shown by the
presence of this state in Fig. 21.7 in reasonable agreement with experiment
(note that the scale starts at 4 MeV excitation energy). While the level
density in the ERPA at low energy is still smaller than the experimental
one, the overall agreement with the angular momentum and parity of the
excited states is much better than for the RPA. In general, the low-lying
states are better accounted for than in the RPA calculation. The latter
feature can be nicely illustrated by considering electromagnetic transition
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Fig. 21.8 Electromagnetic transition density from the ground state to the first 3~
in 48Ca. The dotted lines indicate the experimental uncertainty. Data are adapted
from [Wise et at. (1985)]. The solid line shows the ERPA result. Note that the RPA
method generates an instability for this state.

densities.
The latter can be extracted from inelastic electron scattering to dis-

crete final states [Heisenberg and Blok (1983)]. Electromagnetic transition
densities (and currents) provide extremely useful information about the
character of the excited states. To elucidate their sensitive character, it is
helpful to write the second-quantized density operator in the following way

JM nCj

[4*]* U \ o J r ^ ^ W L - (2L132)

The multipole decomposition employs results and notation from Sec. 13.7
and App. B. The critical ingredients of the decomposition are the sp wave
functions uncj that determine the radial shape of the matrix element of this
operator between the ground state and the excited state under study. For
a simple ph state coupled to good total angular momentum, Eq. (21.132)
is proportional to the product of the sp wave functions that comprise the
ph state.

The transition density for the first 3~ state in 48Ca is shown in
Fig. 21.8. The two dotted lines indicate the uncertainty in the experimen-
tal data [Wise et al. (1985)]. Since the RPA is unstable, only the ERPA
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Fig. 21.9 Electromagnetic transition density from the ground state to the second 3~
in 48Ca. The dotted lines indicate the experimental uncertainty. Data are adapted
from [Wise et al. (1985)]. The solid line represents the ERPA calculation. The RPA
(dashed line) underestimates the experimental data substantially.

curve is given, which describes the data reasonably. The transition to the
second 3~ state is illustrated in Fig. 21.9. Clearly, the RPA calculation
(dashed line) for this transition density underestimates the experimental
data. This outcome is not unexpected since the transition strength collects
in the lowest state of the same Jn for an attractive interaction and little
strength remains for other states. The ERPA method corrects for this de-
ficiency by including the fragmentation of the sp strength, which generates
the good agreement with the data, as illustrated by the solid line. Similar
improvements are observed for other low-lying states when the ERPA is
applied [Brand et al. (1990)].

The coupling to 2p2h states that is incorporated in the ERPA is also
essential for the description of the response at higher energy. At those
energies several nuclear excitation modes exist that are referred to as "gi-
ant resonances" [van der Woude (1987)]. These collective modes exhaust
substantial fractions of the relevant EWSR given in Eq. (13.50) and their
energy and width exhibit a smooth dependence on particle number. The
giant dipole resonance (GDR) emerged when the absorption of high-energy
photons was studied [Baldwin and Klaiber (1947)]. The GDR is a com-
mon feature of all nuclei and for heavier nuclei the absorption cross section
has the shape of a Lorentzian. The resonance energy exhibits a simple
^-dependence given by EGDR = 47.9A"1/427 [Berman and Fultz (1975)].
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Fig. 21.10 Strength function for the electric dipole resonance in 48Ca. RPA results are
represented by the dashed line and are divided by a factor of 2. The ERPA calculations
is illustrated by the solid line.

The width varies from 4 MeV in 208Pb to 7 MeV in 65Cu. An explanation
of this phenomenon was provided by [Goldhaber and Teller (1948)] as a col-
lective, dipole-like, vibration of protons against neutrons. In microscopic
language, the resonance results from the coherent interplay of a substan-
tial number of ph excitations which contribute to this AT = 1, Jn = 1~
excitation. The location of the resonance is about double the energy differ-
ence between major nuclear shells, and must therefore be associated with
a repulsive ph interaction.

A typical RPA description of the GDR for 48Ca is illustrated in
Fig. 21.10 by the dashed line. The strength distribution is calculated by
applying Eq. (21.127) when the RPA problem is solved as an inhomoge-
neous equation by assigning the unperturbed energies a small width. The
unperturbed ph strength is concentrated around 11.5 MeV and is moved to
15 MeV by the RPA correlations. A further push to 19 MeV in the ERPA
description puts the center of the strength distribution at the energy ob-
served in neighboring nuclei and in accord with systematics. The calculated
width of about 6 MeV also compares favorably with empirical information.
The energy-weighted dipole strength summed up to 30 MeV yields 125%
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of the classical sum rule given by S(El)ciass = 14.8NZ/A e2fm2 [Bohr and
Mottelson (1998)]. The enhancement is due to the more complicated na-
ture of the nuclear interaction, invalidating the simple result corresponding
to Eq. (13.65). In the ERPA calculation a reduction occurs to 102% of the
classical value. The experimental value in 51V only yields 73% suggest-
ing that too much dipole strength is found below 30 MeV. This feature is
also identified for other giant resonances like the electric quadrupole and
the charge-exchange Gamow-Teller mode. The main distribution of the
strength is also in agreement with experiment but the ERPA overestimates
it by 20-30%. The calculations of [Brand et al. (1990)] did not include the
depletion effect for the sp strength due to short-range correlations that was
discussed in Sec. 17.3. Since such depletions easily remove at least 10% of
the strength of both the relevant particle and hole strength, their combined
effect matches the discrepancy between the ERPA strength and experiment
quite well. Thus, consistency is achieved with the observed and calculated
sp strength of this nucleus, discussed in Sec. 17.1.

The conclusion may therefore be drawn that heavier closed-shell nuclei,
like 48Ca, are somewhat easier to describe than the lighter N = Z ones like
16O. Both the sp strength and the response for the latter nucleus require
a more sophisticated treatment of the self-energy and the resulting ph in-
teraction. A first attempt at incorporating both ph and pp/hh collective
phenomena in the self-energy has been developed in [Barbieri and Dickhoff
(2001,2002)]. Such an approach still yields an overestimate of the spectro-
scopic factors in 16O but improves their overall description. The inclusion
of ph phonons in the self-energy may be employed to construct irreducible
ph interaction terms like those in Fig. 21.5. The presence of two-phonon
coupling in the ph interaction improves the excitation spectrum of 16O by
introducing positive parity states of the two-phonon kind at lower excita-
tion energy [Barbieri and Dickhoff (2003)]. Such states can be thought of
as a combination of two negative parity (microscopic) RPA phonons. This
development appears a promising step towards a deeper understanding of
the excitation spectrum shown in Fig. 21.6.

We conclude with a brief comment on the extraction of removal proba-
bilities and spectroscopic factors in the (e, e'p) reaction. First note that the
reaction predominantly acts as a one-body excitation operator to nuclear
excited states. The preceding discussion of excited states of nuclei clari-
fies that collective correlations occur at small excitation energy, associated
with 2+ and 3~ surface modes and at somewhat higher energy as giant
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resonances. Theoretical and experimental studies at even higher energy
suggest that no further coherence of ph states and corresponding transition
strength is to be expected. It can thus be concluded that the dominant
contribution to the polarization propagator at these energies is of the form
given by Eq. (21.131). The latter involves dressed but noninteracting parti-
cle and hole components. It should be clear that that an appropriate choice
of the kinematics of the (e, e'p) reaction (including high enough excitation
energy), enables the analysis of the reaction in terms of a specific hole tran-
sition amplitude to a discrete final A—I state, which can be selected by the
coincidence set-up, and a particle amplitude that describes the addition of
a proton at high energy. The latter term corresponds to the elastic scatter-
ing of protons from the target nucleus. By employing empirical information
concerning this process, constrained by such elastic scattering data, it be-
comes possible to extract accurate information on the removal amplitude of
valence nucleons. The resulting analysis [Sick and de Witt Huberts (1991);
Pandharipande et al. (1997)] is capable of generating absolute spectroscopic
factors for nuclei with errors of about 5%.

21.6 Exercises

(1) Perform the FT of the terms displayed in Fig. 21.4 to demonstrate the
validity of Eq. (21.104).

(2) Calculate the second-order term that links an initial ph state with a
final (different) ph state by going through an intermediate properly
antisymmetrized 2p2h state. Show that this procedure is equivalent to
the yl-matrix contribution of IT2 ,. Compare also with the separate
contributions from diagrams a) - d) of Fig. 21.4.

(3) Check Eqs. (21.114) - (21.123).
(4) Construct the irreducible ph interaction when the self-energy includes

all the direct contributions of the ring diagrams, which contain self-
consistent sp propagators. Verify Eq. (21.129).

(5) Construct the irreducible ph interaction from the previous exercise by
cutting one of the self-consistent propagators in the self-energy in all
possible ways.

(6) Calculate the functional derivative with respect to G of the self-energy
that includes all ladder diagrams containing such self-consistent prop-
agators G. Perform this feat diagrammatically by cutting G in the
self-energy in all possible ways.



Chapter 22

Pairing phenomena

In this chapter the extension of the Green's function formalism to super-
fluid (superconducting) systems is presented. The ground state of these
systems can be characterized by a macroscopic occupation of a specific pair
state. Such a possibility had already been anticipated in the treatment of
Cooper pairing in Sec. 15.3. In Sec. 22.1 the general concept of condensa-
tion into a quasi-boson or fermion pair state is introduced. This has much
in common with the phenomenon of Bose-Einstein condensation for identi-
cal bosons, and throughout this chapter we will emphasize the analogy. In
Sec. 22.2 the Fermi gas is revisited and we introduce the concept of anoma-
lous propagators. The perturbation expansion of the propagators, and the
corresponding diagram rules, are derived in Sec. 22.3. In lowest-order this
leads to the Bardeen-Cooper-Schrieffer (BCS) treatment of superconduc-
tivity, explained in Sec. 22.4. We rederive in Sec. 22.5 the BCS theory by
employing the Bogoliubov-Valatin transformation to quasiparticles. This
alternative formulation exposes the mean-field character and variational
interpretation of BCS. Various applications, such as superconductivity in
metals, the superfluid 3He, and nucleon pairing in neutron stars, are briefly
discussed in Sec. 22.6. In Sec. 22.7 the BCS formalism is expressed in terms
of an arbitrary sp basis, allowing an extension to inhomogeneous settings.
The chapter ends with a discussion of exactly solvable pairing models in
Sec. 22.8, a recent topic of importance for finite systems.

22.1 General considerations

The normal perturbation expansion for identical fermions, as developed in
Chs. 8 and 9, has a chance to converge only when the true ground state
bears a reasonable resemblance to a noninteracting ground state (Slater
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determinant). This is not guaranteed when the interparticle interaction is
sufficiently attractive. Section 15.3 already contained the notion that the
pair excitation energies in the Fermi gas [as determined from Eq. (15.46)]
can become complex, signaling an instability of the Fermi sea with respect
to the formation of the corresponding pair state (Cooper pairs). In such a
case we must drastically alter the starting point of our perturbation expan-
sion, in order to accommodate pairing effects.

One can appreciate that such considerations hold quite generally by
considering the following Hamiltonian, symmetric under time reversal,

H = Ho + V = Y, £a(at<aa + aU&) - gB^B, (22.1)
a>0

where (a, a) are time-reversed states and ^ a >o refers to a summation over
one member of each pair. In Eq. (22.1) the attractive interaction V is
assumed to be dominated by a single pair state, £?* = v ^ E ^ o V ^ a i
w i t h 2 £ a > 0 K | 2 = i-

For 5 = 0 the sp Hamiltonian HQ gives rise to the noninteracting ground
state

AT/2

\p)=n 441°) - (22-2)
/i=i

where the orbitals with lowest e are filled. For g > 0 the total energy for
a state \^N) has a negative interaction contribution, proportional to the
occupation ng = (tyN B^B \^N) of the pair state B^. In some cases the
interaction term in Eq. (22.1) may become dominant, e.g. when the coupling
strength g > 0 increases, or the sp spectrum ea is nearly degenerate. It
is then obviously advantageous to make UB large, by putting as many B^
pairs as possible in the ground state1. Consequently, the Fermi sea |F) is
a poor starting point, since it is plausible that the true ground state will
look more like a coherent superposition of the pair state B^, i. e.

\P) ~ (Bt)JV/210). (22.3)

As is usual for coherent phenomena, the gain in interaction energy going
from \F) to |P) can become very large and, in fact, proportional to the

'As discussed in more detail in Sec. 22.8, the pair occupation ng cannot be larger
than N/2, and in general has an upper bound smaller than 7V/2 depending on the internal
structure of the pair state B+.
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particle number. This is illustrated by the schematic example of a "struc-
tureless" pair state

£?t = y^Jn^alal (22.4)
a>0

where U (with Q > N) is the total number of available sp states. It is easily
shown that B, B\ and the number operator

JV=]£(4aQ + 4a a) (22.5)

obey SU(2)-like commutation relations,

[B, fit] = 1 - | iV, [B^N] = 2B+. (22.6)

As a consequence, one can verify [see Exercise (1)] that, for integer n,

n

B{B])n\Q) = J2(BJY~1[B,Bf](B'!)n-i\0)
i=i

= n[l-^^](Btr-1|0). (22.7)

Considering the limit N —> oo with N/fl —>• 0, the interaction energy in the
paired state of Eq. (22.3) is given by

(P\&B\F) N
(P\P) "* T' (22 '8)

whereas for the Fermi sea |F) in Eq. (22.2) one finds (F\ BfB \F) = N/fl ->
0. In this case, the Fermi sea cannot be a meaningful starting point for a
perturbative treatment of exact ground-state quantities.

The structure of \P) in Eq. (22.3) looks suspiciously like the Bose con-
densed state in Eq. (12.7), with the fermion pair operator B^ playing the
role of the condensate boson operator, and with a macroscopic number of
condensed "bosons" (fermion pairs) in the ground state. It is clear that a
candidate for a modified perturbation expansion can be closely modeled on
the structure of the Bogoliubov perturbation expansion in the presence of
a condensate, as presented in Ch. 18.
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22.2 Anomalous propagators in the Fermi gas

We study a homogeneous and unpolarized system of spin-^ fermions, in-
teracting with spin-independent forces. The Hamiltonian reads

pm Pirm

(22.9)

where m = ± | denotes the spin projection. The interaction is given by

(P1P2I ^ \P3P4) = ^6PI+P2,P*+P*W(PI - p3) , (22.10)

with W{Q) = W{\Q\) a real function.
Once it has been accepted that a pair state is condensed {i.e. has a

macroscopic occupation in the exact ground state), it makes sense to give up
particle-number conservation, and to consider the grand-canonical potential
(l — H — fiN in Fock space. Since a similar matrix structure as in Sec. 18.3
is expected, we define the normal sp propagator

iHGnipmit-t') = (*o\T[apmn(t)almn(t')]\yo), (22.11)

as well as the complementary propagator

ifiG22(pm;t-t') = (*o\T["-P-ma{t)a-P-ma(i?)]\*o)- (22.12)

The operators op m n = e~*" tapme^Qt are in the Heisenberg picture, with
Cl defining the time evolution. Moreover, we should be prepared (see later)
to introduce anomalous propagators

ihG12(pm;t-t) = (*o|T[apmo(i)a_p_ inn(t ;)]|*o>,

iHG21(pm;t- t') = (^olTV-p-m^a^Jt1)] |*o) • (22.13)

With these definitions one has set up a 2 x 2 matrix propagator [G(pm; E)}
with elements Gij(pm;E), that can be formally written as

ih[G(pm; E)] = <*0| T[Aprn(t)Alm(t')] | * 0 ) , (22.14)

where

Apm(t) = ( taPmn(*L ) ;4mW = ( a U n W «-P-mo(*)) • (22.15)
\a~p-mn{

1) ) v >



Pairing phenomena 667

It is possible [Nambu (1960); Mattuck (1992)] to derive the perturbative
expansion of the Green's function solely in terms of matrix quantities. How-
ever, we will maintain the distinction between the normal and anomalous
quantities, since we prefer to closely follow the development of the boson
formalism in Sec. 18.3.

The propagators in the energy representation are obtained by FT,

Gn{pm;E) = (^o\apm .aPm + a ]
p m \ . apm |$0)

E—Q+Uo + iri E+Q — tto — iv

Gi2(pm;E) = (^0\apm : o_p_m + a_p_m : apm |#0)
E—Q+Qo + iit E+Q—Uo — ir)

G21(pm;E) = ($0 | alp_m \ . aPm + aPm * . oLp_ro |*o)
E-n+Q0+in E+n-no-irj H

G22(pm;E) = (<fo| a l p_m -—; a_p_m
E — fi+Q0+"?

+ a _ P - m — - i - - a L p _ m | * 0 > . (22.16)

These definitions are in complete formal analogy to the boson case, but
one must keep in mind some differences as well. Firstly, minus signs now
appear upon switching the arguments of the propagators in both the time
(r = t - t1) and energy representation:

G22(pm;T) = -Gn(-p-m;- r ) ; G22{pm;E) = -Gn{-p - m;-E)

Guipm-r) = -G1 2(-p-m;-r); G12{pm;E) = -G12(-p - m;-E)

G2i(pm;r) = -G2l{-p - m; -r); G2i(pm;E) = -G21(-p - m;-E).

(22.17)

Secondly, the anomalous quantities have a somewhat different interpre-
tation here. The so-called anomalous density

F{pm) = -ihG21(pm-T = 0) = <tfo| apmalp_m |*0> (22.18)

e.g., represents the structure of the condensed fermion pair, and is therefore
related to the condensate parameter \/No — (*o| ao |^o) m Bose gas theory,
rather than to the noncondensate bosons. Also, note the sign change when
both operators in Eq. (22.18) are switched, F(pm) = —F(—p — m). For
the present isotropic system we can take

F(pm) = Fp(-l)i+m = F p S m j ( 2 2 i l g )

where Fp depends only on the magnitude p — \p\ and can be taken real.
The spin-dependent phase factor sm = ( - l ) i + m is required for the sign
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change mentioned above.
The introduction of anomalous propagators like Eq. (22.13) for an iso-

lated system2 requires some explanation. We recall that in the boson case
the condensate was singled out as a special sp state (Bogoliubov prescrip-
tion), resulting in a potential OB that was automatically particle-number
nonconserving. It was then argued that in the thermodynamic limit the
same results are generated as in a particle-number conserving approach.
At present we cannot do this explicitly: it is not a sp state but a pair
state that is possibly condensed, as a result of the interparticle interac-
tions. Nevertheless, the use of anomalous propagators makes perfect sense
in the thermodynamic limit (or whenever a very large number N of par-
ticles is studied). If a Cooper-like pair state is really macroscopically oc-
cupied, the exact ground state in Fock space is automatically massively
degenerate; neighboring ground states for N ± 2, N ± 4, . . . , can be ob-
tained without expense by adding or removing Cooper pairs, and have the
same ft (up to vanishingly small terms in 1/-/V). This means that we may
as well include superpositions of these states in the state |$0), appearing
in the bra and ket of the propagator definitions. Such a state minimizes
Qo = (\to| H - p,N |*0) under the constraint N = (\to| N |*0)- It has no
definite particle number, but is sharply peaked around N, and the relative
fluctuations vanish in the thermodynamic limit AN/N —> 0. In this limit
all expectation values of particle-number conserving operators will be the
same for l^n) and the fixed-TV ground state j^o^). In addition, |$o) has
anomalous expectation values. The advantage is that |\?o) has a graceful
perturbation expansion, in particular a simple mean-field approximation
(BCS), of which the ground state is a (generalized) product wave function
that already captures the essentials of a coherent pair superposition like
the one in Eq. (22.3). Note that this reasoning is only precise in the limit
N -» oo: when dealing with a rather small number of particles (i.e. pairing
in nuclei) care must be taken to correct for particle-number nonconserva-
tion.

22.3 Diagrammatic expansion in a superconducting system

Employing familiar reasoning, the general Eq. (8.18) can be applied to the
time-ordered products appearing in the propagators Gtj of Eqs. (22.11) -

2There is of course no problem for a genuinely open system like a Josephson junction,
where electrons can tunnel into and out of the system.
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(22.13). The resulting perturbation series is expressed in terms of time-
ordered products of the fermion operators in the interaction picture, where
the free (l0 = T - fiN governs the time evolution. The operator products
should be taken in the Fermi-gas noninteracting ground state |$Q) a t fixed
chemical potential fi. Wick's theorem can be used to evaluate the matrix
elements in terms of contractions, and to make a one-to-one correspondence
with a suitably defined diagrammatic series.

At this point we seem to be in deep trouble, since the Fermi gas |$£J)

has fixed particle-number (with y — p = ^ " ^ — ) , and obviously does not
have any anomalous expectation values, i.e.

ihG{°2\pm; t-t') = ($£| 7>pm(t)a_p_m(t')] |$£) = 0. (22.20)

It only has the usual normal type

itiG^(pm;t- f) = K | T[apm(t)alm(t')} |*g) (22.21)

= e - * ' " " - * ' ) ^ - f)d(epit) - 6{f - t)d(-eplt)],

where ePM = ep — n — p2 /(2m) — fi. This seems to imply that anomalous
contractions between aa and a)a) do not contribute to Wick's theorem, and
we are simply left with the perturbation series for Gn in a normal system.

A moment of reflection learns that this should be expected: we are try-
ing to take the Fermi sea as a perturbative starting point for a series in
powers of the interaction, whereas we strongly suspect (see Sec. 22.1) that
condensation of a fermion pair state is a nonperturbative phenomenon.
Fortunately we know that self-consistent Green's function theory is able to
cope with nonperturbative phenomena, and that is indeed how the pertur-
bation expansion of a superconducting system should be organized.

The situation is one of spontaneous symmetry breaking, and in fact very
similar to that of a self-bound system like a nucleus, in which the particles
are localized around the center of mass due to their mutual interactions. It
is clearly impossible to generate a useful approximation for the sp propaga-
tor, by starting with the free plane-wave propagator (corresponding to the
kinetic energy T) and expanding in powers of the translationally invariant
interaction V. The way out is to change the noninteracting starting point
to Ho = T+lf, by adding an auxiliary potential U localized around a fixed
point in space, and subtracting the contributions of U from the interac-
tion term. As shown in Sec. 9.5, the auxiliary potential then drops out of
the calculation in a self-consistent treatment (as in HF theory), when the
self-energy is evaluated with the interacting propagator.
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In the present case we can imagine adding to the kinetic energy a small
auxiliary potential U of the type (aW + aa), which is explicitly number-
nonconserving, and use this as the noninteracting reference system. The
corresponding ground state |$Q) now appears in Eq. (8.18), and acts as the
reference vacuum for Wick's theorem. As a consequence, also contractions
between aW and aa operators appear, and should be identified with the
G2i and Gl2 propagators. Again, the auxiliary potential will drop out of
the calculation in a self-consistent theory. In view of this, we may as well
skip an explicit introduction of a particle-number nonconserving auxiliary
potential: we simply keep in mind that the internal contractions in Wick's
theorem can be of both the normal and anomalous type, and correspond
to the interacting propagators of the self-consistent theory.

After these preliminaries, the diagrammatic expansion can be safely
interpreted, and it is clear that its structure will bear a strong resemblance
to the bosonic case of Sec. 18.3. The expansion for the propagators Gij
consists of all connected diagrams containing interaction lines, propagators,
and two external points, with all the usual construction rules of Sec. 8.6
applying. The normal propagators G\\ and G22 have one incoming and one
outgoing external fermion line, and are represented graphically as follows.

Gu{pm;E)=> G22(pm;£)=»

The anomalous propagators G12 and G2\ have either two incoming or two
outgoing fermion lines, and are represented graphically below.

pm,E

G12 (pm;£)=> G21 (pm;E)=>

One may then define the corresponding (irreducible) self-energies Sjj, as the
sum of the irreducible diagrams, stripped of the external lines, contributing
to the propagator Gij. Note again, that self-consistency is a necessity here.
The internal propagators, appearing in the self-energy diagrams, should
be the dressed ones: the anomalous self-energy cannot be written down in
terms of the noninteracting propagator, which only contains normal pieces.
This is logical, as a condensate of fermion pairs may arise solely because of
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the interactions, in contrast to the bosonic case where condensation occurs
at the noninteracting (sp) level.

In the algebraic translation of the diagrams for Gij (pm; E) some am-
biguity exists, related to the fact that switching the labeling of both legs
in the anomalous propagators results in a minus sign. A sign ambiguity
also emerges when a normal fermion line is identified with either Gn or
G22- These ambiguities are simply resolved by looking at the spin label
of the fermion lines, and restricting the propagators in the expansion to
the Gij with spin m. An examination of the contractions arising in the
time-ordered products then leads to the conclusion that all diagram rules
of Sec. 8.6 remain unchanged, apart from one additional rule: an extra mi-
nus sign should be introduced for each interaction vertex with the opposite
spin (—m).

Finally we should determine how to interpret equal-time contractions,
or equivalently, propagators having both endpoints at the same interaction
line. In this case the original order of the removal and addition operators,
as they appear in the interaction, should be restored. For Gn this leads to
the usual prescription (see Sec. 8.6.1)

lim Gn(pm;t - t') = Gn(pm;-7j),

f dE Gn(pm;E) => f dE eir>EGn{pm;E), (22.22)

in the time and energy formulation, respectively. For the G22 propagators
the opposite holds,

lim G22(pm; t - t') = Gii(pm; +77),

f dE G22(pm;E) => / dE e~ivEG'22(pm;E). (22.23)

For the anomalous propagators either choice can be made, since the equal-
time a^a1 and aa operators anticommute anyway.

As an example of the diagram rules we treat the first-order contributions
to the Sy {pm; E), shown in Figs. 22.1 - 22.2. Note that in keeping with the
self-consistent formulation, the internal propagators are dressed ones. For
£11 (Pm',E) the direct [part a)] and exchange [part b)] diagrams of Fig. 22.1
are of course already known from the treatment of normal Fermi systems,
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a) b)

Fig. 22.1 First-order diagrams for the normal self-energy £ii(pm;J3). Direct a) and
exchange b) contributions.

but their evaluation provides a useful check for the present diagram rules:

Sfl(pm;E) = (-1) (JA E / ^ ' ™ (e"£'Gn(P'm;£')
p'

-ei^'G22(-p'm; -E')) . (22.24)

The factors in front, (-1) (due to the closed fermion loop) and ̂ , come
from the familiar diagram rules. In part a) of Fig. 22.1, the propagator in
the loop should be interpreted as Gn for m' = m, and as G22 for m' = —m.
In the latter case an extra minus sign appears (additional rule), because a
vertex is present with opposite spin (—m). Finally, Eqs. (22.22) and (22.23)
have been used. The energy integrations can be worked out and yield

Eft (pro; £) = £ ^ 2 n p , , (22.25)
p'

where

np = (*o |apmaPm|#o) (22.26)

is the normal density of the system, i.e. the momentum distribution. For
the exchange diagram (part b) of Fig. 22.1) one can only have m' = m for
the spin label of the internal propagator,

Ef,(pm;E) = ( i ) £/dE'^S^l^GIl{P^,E')

= -£^V (222?)
P'
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a) b)

Fig. 22.2 First-order diagrams for the anomalous self-energy £,2i(pm; E) in part a) and
Ei2(pm;.E) in part b).

The contributions to E22(pm;£) are similar, but the external legs in
Fig. 22.1 should be labeled (-p-m; —E), resulting in a global sign change.
The first-order contribution to S2i(pm; E) is shown in part a) of Fig. 22.2.
The internal propagator has m1 = m and we find (the additional rule gives
an extra minus sign):

£21(pm;£) = (-1) (J^j £ j dE> W{P~ P>) e^'G21 (p'm; E')

= E ^ « . (22-28)
p'

with the anomalous density F(pm) as defined in Eq. (22.18). Likewise,
part b) of Fig. 22.2 leads to

£12(pm;£) = (-1) (J^j ^ JdE'W{p~P>)e^E'Gl2{p>m;E>)

^E^W. (22.29)
p'

The general topological structure of the diagrammatic series is the same
as the Bose case of Fig. 18.5: a sequence of normal and anomalous S^
(irreducible) self-energies, connected by the non-interacting (Fermi gas)
normal propagators,

G^(pm;E) = 6{£™\ , + / ( - ^ } , ,
E-Epft+ir} E - ew - IT]
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Fig. 22.3 Diagrammatic representation of the propagators Gij(pm; E), summing all
reducible repetitions of the irreducible self-energies Sy(pm;£) .

G(£(pm;E) = F ^^ , + 6^£^\ , (22.30)

The full sequence can be summed in the way shown in Fig. 22.3. Adding the
momentum, spin, and energy labels in Fig. 22.3 the corresponding algebraic
Dyson-like equations becomes

Gn(pm;E) = G{^(pm; E) + G^(pm;E)Zn(pm; E)Gn(pm; E)

+ G{$ (pm; E)S12(pm; E)G2i (pm; E)

G2i(pm;E) = G{°2
] (pm; E)X2i(pm; E)Gu(pm;E)

+ G$ (pm; E)Sn (pm; E)G2\ (pm; E). (22.31)

These are called the Gorkov equations [Gorkov (1958)], and determine the
propagators in terms of the self-energies. One can rewrite Eq. (22.31) more
elegantly as a 2 x 2 matrix equation,

[G(pm;E)] = [G^(pm;E)\ + [G^(pm;E)}[i:(pm;E)}[G(pm; E)].
(22.32)
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The noninteracting matrix propagator is defined as

\GW(nm-FV- \Gn(Pm'E) ° 1 f n n ^
[CT (pm,&)\- ( 0 ) {11.66)

[ 0 G22
; (pm; £) J

and its inverse follows from Eq. (22.30)

[tfV;E|-==[£V"B;J. (22.34)

The explicit solution of Eq. (22.32) is given by matrix inversion as

[G{pm-E)] = {[G^ipm-E)}-1 - [£(pm; E) ] )^ (22.35)

1 lE + em-T,22{pm;E) T,12{pm;E) 1
£(pm; £) [ £21 (pm; £) £ - £ p / 1 - S n (pm; £) J '

where the determinant function,

D{pm- E) = {E- EW - Sn(pm; £)}{£ + £PM - S22(pm; £)}

+ S12(pm;JB)S21(pm;E), (22.36)

identifies the singularities of the propagator.

22.4 The BCS gap equation

The first-order self-consistent equations generated by this scheme are called
the BCS equations, after [Bardeen et al. (1957)] who derived them starting
from an inspired variational ansatz (see Sec. 22.5). The first-order self-
energies in Fig. 22.1 and Fig. 22.2 were calculated in Eqs. (22.24) - (22.29).
They are independent of energy and read,

Ell(!m) = -S22(pro). £ „ ( 2 m - 3SLJ2) = v,

E21(pm) = S12(pm) = J2FP's™WiPvP>) = A?s™- (22'37)
p'

One recognizes in En the familiar expression for a HF-type self-energy Vp.
The anomalous Ei2 is called the gap function, for reasons that will soon
be apparent. Note that Vp and Ap are expressed in terms of the (as yet
unknown) normal and anomalous densities, np and Fp.
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Substitution of Eq. (22.37) into Eq. (22.35) yields the normal and
anomalous Green's functions, with the determinant function appearing in
the denominator reducing to

D(pm-E) = E2 - (em + Vp)2 - A2p = E2 - E2p. (22.38)

The last equality defines the singularities ±EP of the propagator, or the
excitation spectrum of the elementary sp excitations,

Ev = y/x2P + A | , (22.39)

where the modified sp energies xP,

XP = eVVL + Vp, (22.40)

are taken relative to the chemical potential, and include the HF-like energy
shift. The total expression for the propagator Gij in Eq. (22.35) becomes

P^sa-srhs ( ! £ £ £ ) • (22'41)
To retrieve a representation with simple poles, we note that

E = 1 / 1 1 \
E^-Ej 2\E-Ep + ir, + E + Ep-iV)'

E*-E% = 2E~P [E-Ep + iV ~ E + Ep-irj) ' ( 2 2 ' 4 2 )

where the identification ±irj has been made in agreement with Eq. (22.16).
As a consequence, the propagator can be written as

/ U2p UpVpSm\ ( V2p -UpVpSm\

ti — tip + it] hi + hp — ir]

in terms of the BCS amplitudes uv and vp,

-5=Ki +t) ' "-=K^t)- (2244>
Note that the amplitudes obey u2p + v2 = 1, and that the relative sign of
up and vp is fixed by

W = i^r- (22.45)
lhip

(22.43)
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Fig. 22.4 Behavior as a function of sp energy XP> of the BCS occupation vjj [upper
panel], its deviation from the Fermi-gas step function u | — 0(—\p) [middle panel], and
the product UpVp (lower panel), as given by Eq. (22.44) and assuming a constant gap A.

In Fig. 22.4 we illustrate the typical behavior near the Fermi surface, of the
BCS amplitudes in Eq. (22.44), assuming a constant gap A (independent
of momentum). It is clear that the deviation from the normal Fermi-gas
quantities only occurs in a region of width A, where, instead of the Fermi-
gas discontinuity, one now has a smooth transition symmetrical around the
chemical potential // (i.e. \v = 0)-

The densities that follow from the propagator (22.41) are given by
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Eqs. (22.26) and (22.18),

" - ^ K 1 - ! ) ' F " = u ^ = ^ - (22-46)
These equations in fact represent the self-consistency relations between the
propagator (22.43) and the self-energy in Eq. (22.37). The last relation in
Eq. (22.46) can also be expressed through Eq. (22.37), in the form

_ 1 ^ W(p - p>) A ,

p>

which is the celebrated BCS gap equation.
Several important observations regarding the nature of the solutions can

be made without explicitly solving the BCS equations. First, one observes
that the gap equation (22.47) always has the trivial solution Ap = 0,Vp.
This trivial (or normal) solution implies Ep = \\p\ and, through Eq. (22.44),
that the system has Fermi-gas occupations u2p = 9(xP), vp = 9(—Xp)-
Equation (22.37) then simply restates the HF expression for the normal
self-energy En. On the other hand, a nontrivial (or superconducting) so-
lution is characterized by a finite |AP| > 0. As a consequence, one has
Ep > jApj > 0, and there is a finite gap separating the ground state from
the spectrum of sp excitations (hence the name of the gap function). Such a
feature is not present in a normal infinite Fermi system, but agrees with the
expectations for a system with pair condensation. The gap is then related
to the energy it takes to break a condensed pair, and create a sp excita-
tion. The shape of the quasiparticle spectrum Ep near the Fermi surface is
illustrated in Fig. 22.5 for a constant gap A.

From the gap equation (22.47) it is also clear that a purely repulsive
interaction cannot generate a superconducting solution3, and that the in-
teraction must be globally attractive for the signs on the left and right to
be balanced. Finally, we note that BCS superconductivity is a phenomenon
limited to a region near the Fermi surface. The gap Ap in Eq. (22.47) can
be appreciably different from zero only for \p ~ 0, since one may naturally
assume that the interaction W(p — p') decreases rapidly with momentum

3With "purely repulsive" we mean that the interaction, viewed as an operator in
momentum space, has only positive eigenvalues. In the present example V(r) is local
in coordinate space, V(r) ~ intdQ exp[iQ -r/h,]W(Q), and purely repulsive means that
V(r) > 0. Sometimes (e.g. for nuclear interactions), W(Q) > 0 in momentum space and
still yields a solution to the BCS gap equation. By overcoming the short-range repulsion
in coordinate space, the gap equation emphasizes the longer range attraction.

(22.47)
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Fig. 22.5 The superconducting quasiparticle spectrum Ep = \/Xp + ^p as a function
of sp energy \p, assuming a constant gap A. The dotted lines represent the normal
quasiparticle spectrum Bp = \\p\-

transfer and requires p fa p1, whereas the denominator Ep> = \ x\* + ^

increases with \xp'\ and requires Xp' w 0.
In accordance with these observations, further insight in the behavior

can be gained by a schematic model of a weak, constant attractive interac-
tion,

W(p - p ' ) = -\6(c - \Xp\)9(c - \ X p > \ ) , (22.48)

which is limited to a small region R = (—c < Xp < c) around the Fermi
surface. The interaction vanishes when \xp\ exceeds some cut-off energy c,
assumed to be much smaller than the chemical potential (0 < c <C /i).

Substitution into Eq. (22.47) immediately leads to the conclusion that
Ap vanishes outside R, and is a constant A inside R,

Ap=6(c-\Xp\)A, (22.49)
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with A a solution of

1 A^fcM.
2V P y/4 + A2

For a further analytical evaluation we set the occupations appearing in
the normal self-energy of Eq. (22.37) equal to the Fermi-gas step function,
v2pl = d(-Xp'), i-e- Eq. (22.40) is replaced by

,, = ̂  + £ » ( - x w ( ^ - 2 M ) . (22.51)
p' ^ '

This allows to decouple the changes to the normal self-energy from the de-
termination of the gap, and to concentrate on the new features generated
by the superconducting solution. Note that the error introduced is presum-
ably very small: the bulk of the normal self-energy comes from the entire
Fermi sea, whereas the deviation v2p, - d(-Xp') is nonzero only in the small
region R, and is in addition antisymmetrical.

Taking the thermodynamic limit, and switching the integration variable
from p to xP in Eq. (22.50) one obtains

* ~^- [+C - 7 = = = A#(0)Asinh(c/A), (22.52)
1 J-c VX2+A2

where the density of states has been defined as D(x) — / 2 ^ ^ p 2 ^ . As
D(x) is a smooth function, which does not change appreciably in the small
interval R, it can be replaced with its value D(0) at the Fermi surface. The
solution of Eq. (22.52) is

A = -^ r-->2ce"rEfel. (22.53)
s i n h (A25*OJ)

The latter limit applies to the normal situation where \D(0) < 1 and hence
A C c, which is consistent with the nature of this schematic model. Note
that, while A —> 0 implies A —• 0, it is impossible to expand A in a power
series of the interaction strength A, and the presence of a finite gap is indeed
a nonperturbative effect.

Having determined the gap A, the BCS propagator Gij(pm; E) at fixed
chemical potential fi is now fully known, and various properties of the

(22.50)
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system can be calculated in the standard way. These properties should
be compared to the ones that follow from the normal Fermi gas (or HF)
propagator at fixed fi, i.e.

G - ^ E ) = E ^ ^ + E ~ ^ - ' ^(Pm;E) = 0. (22.54)

The number of particles is obtained as

pm p

= iVHF(M) + 2 5 > 2 _ 0 ( - X p ) ) . (22.55)
p

The last term may be manipulated in a similar way as Eq. (22.52),

AV,M - "»,M = 2D(o)v£Cd* (jU - -j^==) - j d - jfj>)

= D ( 0 ) l / £ d "fe-7?W)= 0 - (2256)
and vanishes due to the antisymmetry of the integrand. Therefore, to
leading order, the BCS solution has the same number of particles as the
underlying Fermi gas (or HF) state. The grand-canonical potential reads

nBCS(/x) = \J2 f^ivEGn(pm;E)(epti + E)
pm

= 52(eWi-.Ep)uJ ) (22.57)
p

which should be compared to the normal solution

IW/*) = Y, (£w +
 *P) °(-XP)- (22.58)

p

The difference can be split into two contributions,

nBCS(fi) - ftHF(M) = J2 (eW + XP) (vl - O(-Xp)) -^(XP + Ev) v\
p p

= Ri+R2. (22.59)
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The contribution Ri may be rewritten using Eq. (22.40),

i*i = £(2xP-tg(u*-0(-xP))

The term involving Vp has been dropped, with a similar reasoning as before:
Vp is not peaked at the Fermi surface and is assumed constant in the small
region R, whereas the factor (v% - O(-Xp)) ls antisymmetric. The remain-
der of i?i is clearly positive, and represents the cost in kinetic energy, for
deforming the Fermi-gas step function into the BCS distribution depicted
in Fig. 22.4. The remaining integrals are standard and result in

Ri = D{0)V {c2 - (Vc 2 + A2 + A2Asinh(^)) }

= ~ID{0)VA2+V\- (22.61)

where the expression (22.53) for the gap has been used, and the limit A <£ c
was taken. The pairing energy, gained by introducing a gap in the sp
spectrum, is represented by the negative contribution i?2 and reads

2 J_c y ' ^ + A2 A

It more than compensates for the increased kinetic energy, with a net result
R1+R2 = -7}D(0)VA2 that is negative and extensive (proportional to the
volume or the particle number). The shift in the potential [or the energy,
by virtue of Eq. (22.56)] at fixed fj, thus becomes

nflCS(/i) - nHF(n) = EBCS{n) - EHF(ii) = -^D(0)VA2. (22.63)

For the energy shift, the relevant quantity is of course the energy at fixed
particle number N. However, the energy shift at fixed iV is the same as the
shift at fixed \x given by Eq. (22.63). This is because NBCS(fi) = NHF(n)
implies that for fixed N, t-tBcs(N) = fiHF(N) to leading order in 1/JV. So
the leading order of the chemical potential is not affected by the transition
to the BCS ground state. However, the extensive quantity N[/j,BCS — fiHF]
is again of leading order (see, e.g., [Fetter and Walecka (1971)]), and as a

(22.60)

(22.62)
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consequence Q,BCS(N) - UHF(N) differs from Eq. (22.63). This difference
drops out in the more relevant energy shift, since

EBcs{N) - EHF(N) = nBCS(HBCs) - OHF(/iHF) + N[nBcs - MHP]

= nf lCS(/iHF) - ttHF(VHF) (22.64)

As a consequence of the thermodynamic identity dfl/dfi = —N, the last
term vanishes, and we have

EBCS{N) - EHF{N) = -^-D{0)NA2. (22.65)

22.5 Canonical BCS transformation

The BCS propagator in Eq. (22.43) has a mean-field character, i.e. it con-
tains a single removal pole for each sp momentum p. Just as in the boson
case of Sec. 18.7, it is therefore possible to derive the BCS equation as a
mean-field approximation.

We consider a general linear transformation which mixes the fermion
addition and removal operators,

bpm = uPapm + vpsm0—p-m; bpm - upapm + vpsma[_p_m, (22.66)

where the up and vp are real coefficients. Note that this is consistent
with isotropy, momentum conservation and time-reversal invariance. Equa-
tion (22.66) was first considered in [Bogoliubov (1958); Valatin (1958)],
and is called the Bogoliubov-Valatin transformation. We demand that the
transformation is canonical, i.e. that it should preserve the fundamental
fermion anticommutation relations. From Eq. (22.66) one calculates

{bpm,bp.m.} = 0; {bpm,bllml} = (ul + v2
p)6Pipl5mtm,, (22.67)

and observes that the transformation is canonical, provided that the nor-
malization condition

u\ + v2
p = 1 (22.68)

is fulfilled. The inverse transformation is easily worked out as

®pm = up0pm ~ vpSmb—p—m] apm = UpOpm — VpSmO_p_m, (22.69)
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The vacuum state of the new b operators is denoted as \BCS), and is
defined as the state for which

bpm \BCS) = 0, Vpm. (22.70)

We now want to minimize the expectation value of the grand-canonical po-
tential, (BCS\ tl \BCS), in order to get the best possible approximation
to the true ground state among all vacuum states generated by transfor-
mations of the type (22.66). The strategy consists of rewriting Cl in terms
of the b, tf operators, and reshuffle to normal ordering with respect to the
vacuum \BCS) of the b operators (i.e. all tf to the left of all b operators).
The result contains normal products of zero, two, and four tf,b opera-
tors, where the fully contracted or zero-operator term is just the required
fio = (BCS\n\BCS).

In order to execute this strategy, Wick's theorem (for equal time argu-
ments, see Sec. 8.4) is very useful. The possible contractions of the a,al
operators with respect to the 6-vacuum are given by

4 > P ' m ' = (BCS\apmap,m, \BCS) = v2
p6PtP,6m,m,,

apm
a
P'm> = "p<W*m,m' ,

apmap'm' = upvpsm0p, — p'0m,-m',

ap'ma
P'm' = -UpVpSmSp,-P>5m,-m>. (22.71)

Transforming the sp term is easy:

Y,eP»aPmaP>n = Y,£P^Vl + ^ p m V l ) . (22-72)
prn pm

where N{..} denotes normal ordering with respect to \BCS). The interaction
term,

2 Y^ (PiP2|V|P3P4)4 i m i42 m aoP 4 m aap, r o i , (22.73)
Pi mi

requires a bit more work. We note that the 4 a, a* operators give rise to
6 singly contracted terms, but only 3 are independent. In terms of the
momentum labels in Eq. (22.73), the 1*2* and 4*3* terms are hermitian
conjugate, whereas the 1*3* and 2*4* terms are equal, and so are the 1*4*
and 2*3* terms.
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Using Eqs. (22.71) and (22.73) we therefore obtain for the singly con-
tracted terms

Vi = ~\ Yl {W yV UpVpSm {N[a]p,malpl_m\ + iV[a_p,_map,m])

pp'm

^ ' m

The doubly contracted terms arise from the previous expression by re-
placing the normal products by contractions, and applying a factor \ to
correct for the fact that each double contraction has been counted twice.
Adding the constant contribution from Eq. (22.72) we get

p PP' ^ '

+ UpUp'VpVp' ~— I = ^2 {(2ePM + Vp)Vl ~ UpVp&p} ,
> p

in terms of quantities Vp and Ap which depend on the up, vp as

p'

A^E^T^^'V- (22.76)

p'

The full n can now be rewritten as Cl = fio + ^ i + ^2, where

fii = E ePllN[apmapm\ + V1, (22.77)
pm

and fi2 contains the uncontracted contributions of the interaction,

" 2 = \ Yl (P lP2l V IP3P4) ^[°Pimiokm2Op4m2apam1]. (22.78)
PiTUi

It remains to express Cl in terms of the b, tf operators. Employing

(22.74)

22.75
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Eq. (22.69) this is straightforward, and with \p = tpp, + ^P o n e finds4

Oi = £ { x > p - t # + 2ApMpWp}6t,m6pm (22.79)
pm

+ \ -£(ul ~ VV> - XpUpVp \ sm(blmblp_m + b-p-mbpm).
I z J

The last line of Eq. (22.79) contains the "off-diagonal" bb and fcW con-
tribution, which can be made to vanish by choosing the up, vp as solutions
of

Xpupvp=^Ap(u
2
p-v

2
p). (22.80)

This equation should be solved together with the normalization constraint
(22.68), and it is somewhat easier to eliminate the latter by defining a new
variable 6P as

up = cos 9p; vp = sin9p, (22.81)

in terms of which u2
p — vp — cos2#p and 2upvp = sin2#p. Equation (22.80)

is now easily solved as 8p = |Arctan (Ap/xP) or

cos20p = X p ; sin26»p =
 A p (22.82)

which implies

Up = ^ T ' ^ = ^ T ' where Ep = v/x^ + A2, (22.83)

bringing Cli to its diagonal form,

Cl1 = Y,EPb]mbpm. (22.84)
pm

At the same time we have found the transformation in Eq. (22.66) that min-
imizes fl0 = (BCS\ A \BCS), since this is equivalent to the diagonalization
requirement (22.80). This can be seen by noting that a small variation in

4It is of course possible to rewrite Q2 in terms of the 6, b^ operators as well. However,
CI2 plays no role at the BCS mean-field level, and while it can be employed to go beyond
BCS, it seems more practical to use the systematic diagrammatic expansion of Sec. 22.3.
We therefore omit further consideration of J72•
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the b, fct operators leads to a change in the vacuum \6BCS) which must be
orthogonal to \BCS), and is thus of the form

\5BCS) ~ bpmblp_m \BCS) • (22-85)

For |£?CS) to have minimal fl0, it must be stable with respect to these
two-quasiparticle excitations,

0 = (BCS\ m\,mblp_m \BCS) = (BCS\ (l.blJ.l^ \BCS). (22.86)

Only the off-diagonal bb-term in Eq. (22.79) can contribute to Eq. (22.86),
which is therefore equivalent to Eq. (22.80). It is in fact possible to derive
the BCS equations by direct minimization of fio [see Exercise (2)].

A survey of the relations (22.76) and (22.83) learns that these are com-
pletely equivalent to the BCS equations derived in the previous Sec. 22.4.
It allows to view BCS theory as a mean-field approximation: the remain-
ing operator Cl\ in Eq. (22.84) clearly has the structure of a noninteract-
ing quasiparticle Hamiltonian, with positive excitation energies Ep. As a
consequence, the ground state is simply the vacuum \BCS) (with no quasi-
particles present), whereas all excited eigenstates of (l\ are of the form:
biimi

bUm2-- \BCS). One may verify, using Eq. (22.66), that the state

bpm[up - vpsmapmalp_m] |0) = 0 (22.87)

vanishes Vpm. Since the different momenta p do not interfere, the product
wave function

\BCS) = J ] K - vpsmapmalp_m)} |0), (22.88)
p

has the property (22.70) and can therefore be identified as the BCS vacuum.
The product state is normalized to unity, since

(0| [up - vpsma-p-mapm)[up - vpsmapmcJ_p_m} |0> = 1 (22.89)

implies (BCS\BCS) = 1. In the original BCS paper [Bardeen et al. (1957)]
the explicit form of Eq. (22.88) was in fact used as a variational ansatz. The
fact that \BCS) is a coherent pair state, is best illustrated by rewriting
Eq. (22.88) in exponential form,

\BCS) = Y[[up] [ ] [ ! - %maPmaLp_m] |0)
P P f

= I l K l n[e"^ S m a U a L p - m ] |0> ~ e"Bt |0>, (22.90)
p p
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in terms of a pair state Bf = \ £ p r a ^;Sma\,ma}_v_m.

22.6 Applications

The present chapter only covers the overall structure of a Green's function
treatment of superconductivity in any detail, and the following discussion is
quite superficial. For in-depth treatments of specific applications we must
refer to dedicated books, e.g. [Schrieffer (1983); de Gennes (1966)] (super-
conductivity), [Anderson (1997)] (high-Tc superconductors), and [Vollhardt
and Woffle (1990)] (3He superfluidity).

22.6.1 Superconductivity in metals

Most metals, cooled below a certain critical temperature, exhibit a range
of macroscopic quantum phenomena known under the heading of supercon-
ductivity. The resistance to electric current drops to zero, and a current
in a superconducting ring persists without observable dissipation. Zero
resistance implies that the electric field inside the material vanishes (other-
wise an infinite current would result). Maxwell's equations then dictate a
constant magnetic field. In fact, the magnetic field inside a metallic super-
conductor is zero. The superconductor has perfect diamagnetic properties
and shows the Meissner effect: a — not too strong — magnetic field is
completely expelled from its interior [Meissner and Ochsenfeld (1933)].

After the discovery of superconductivity in mercury by Kamerlingh-
Onnes in 1911, the phenomenon remained unexplained for a long time.
It became clear that strong parallels exist with the phase transition to
superfluidity in 4He, and that diamagnetism was the fundamental prop-
erty. Based on the "electron superfiuid" analogy, successful phenomenolog-
ical theories were proposed by [London and London (1935)] and [Pippard
(1953)], and by [Ginzburg and Landau (1950)]. The Ginzburg-Landau
theory is actually a general treatment of second-order phase transitions.

For a long time it was unclear how the repulsive Coulomb force between
electrons, could be reconciled with an attraction needed for the formation of
quasibosonic electron pairs in a microscopic theory. With the observation
of the isotope effect (the fact that the critical temperature depends as
Tc ~ M~2 on the mass M of the positive ions forming the crystal lattice
of the metal), the relevance of the interplay between the electrons and the
lattice became clear.
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The quantized vibrations of the lattice around the ionic equilibrium
positions are called phonons. Electrons in metals also interact through the
exchange of virtual phonons. In pictorial terms, an electron moving through
the crystal bends the lattice somewhat towards itself (phonon creation); this
temporarily leaves a region of positive charge, which can attract another
electron (phonon absorption) before the slow-moving ions have had time
to restore the lattice. The phonon-exchange or Frolich interaction [Frolich
(1952)] is spin-independent and has the form

(P1P2I V(E) \p3p4) = <W P 2 , P 3 + P 4 ^7 2
E 2 Q

n2
 9^D - nQ), (22.91)

where QQ is the phonon spectrum, 7 is the electron-phonon coupling
strength, and E = ePl — eP3 (Q = Pi - P3) is the energy (momentum)
transfer. The denominator of Eq. (22.91) reflects the propagation of the
exchanged phonon; the interaction V(E) is therefore retarded, as indicated
by the dependence on the energy transfer. Finally, n^/fi is the Debye
frequency, or the maximal frequency allowed in the discrete lattice. The
interaction in Eq. (22.91) is attractive when |E| < HQ < flo, and can dom-
inate the (screened) Coulomb repulsion when the electron-phonon coupling
strength is large enough. The attraction vanishes when ePl and eP3 differ
by more than fin (which is quite tiny, of the order of 10~2 eV, compared
to typical kinetic and Coulomb energies of the order of eV). This clearly
limits allowed particle-hole excitations to momenta within a small region
around the Fermi surface.

The net result of the Coulomb repulsion and the Frolich interaction,
including the in-medium charge screening, produces an effective interaction
that is attractive for electrons near the Fermi surface. The first microscopic
explanation of metallic superconductivity was provided by BCS [Bardeen et
al. (1957)], using a variational ansatz [see Eq. (22.76)] and the schematic
interaction of Eq. (22.48), which is essentially the static approximation
(E = 0) of Eq. (22.91), with A = -j2 and the cut-off energy c=nD. This
leads to values for the gap A of the order of 10"4 eV. The condensation
energy per particle [the energy gain because of pairing, see Eq. (22.65)] is
very small, of the order of 10~8 eV: a very subtle effect, but responsible for
huge changes in the macroscopic behavior.

Note that diagrammatic methods allow to go beyond the static approx-
imation, and to study a coupled system of electrons and phonons. This is
described by the Eliashberg equations [Eliashberg (I960)], which include
retardation effects in the phonon exchange.
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The BCS theory (and its finite temperature extension) proved to be
astonishingly successful. The attractive interaction produces a condensate
of Cooper pairs; the pairing occurs in states with opposite spin and mo-
mentum, and each electron can be thought to move in coherence with its
partner.

One of the fundamental length scales is the coherence length £o that can
be thought of as the spatial extent of a Cooper pair. This can be roughly
estimated by realizing that in the model with a constant gap A, the pair
wave function Fp = A/(2Ep) [see Eq. (22.46] has an extent (5p) in momen-
tum space corresponding to (Sx) = A, or (5p) = A(dp/dx)x=o- For a free
spectrum (or introducing an effective mass ) one has (dp/dx)x=o — rnjpp =
1/VF, where vp is the velocity at the Fermi surface. As a consequence, the
spatial extent is characterized by (8r) = h/(Sp) = Hvp / A. A more precise
calculation yields the BCS coherence length £0 = ^f, which is of the order
of 10~6 m. This should be compared to the average distance ds between
the electrons involved in pairing. The density of superconducting electrons
is ps = Ns/V = 2D(Q) jc_cdxvl = 2D(0)flD. Assuming a free spectrum
yields Ns/N — 3£ID/(2EF), corresponding to ds of the order of 10~9 m.
This implies that the spatial extent of the Cooper pairs is of the order
of a thousand times the average interparticle distance, i.e. a great many
overlapping Cooper pairs occupy the same volume. BCS pairing is there-
fore called the weak-coupling limit, and is different from condensation of
fermion pairs into isolated bosonic "molecules". The latter situation would
arise when the attractive forces become very strong.

Up to now we have discussed normal, metallic superconductors of the so-
called type-I, characterized by a complete Meissner effect. These materials
must completely expel an applied magnetic field (costing energy) in order to
remain superconducting, and thus cannot withstand large field strengths.
The Meissner effect does not occur discontinuously at the surface; in fact the
magnetic field penetrates slightly in the interior and dies out exponentially,
with a length scale given by the London penetration depth XL- The latter
depends on the superconducting electron density according to XL ~ ps

 2 •
Other superconductors (mostly alloys) belong to the type-II class, and

show only a partial Meissner effect: between two critical values of the field
strength, magnetic fields are not completely expelled but confined to an
array of tubes with matter in the normal state (the vortex lattice). This
allows the bulk of the material to remain superconducting at much larger
field strengths than the type-I class. The ratio of the two length scales (pen-



Pairing phenomena 691

etration depth and coherence length) is crucial for the distinction between
type-I or type-II behavior.

In 1986, [Bednorz and Miiller (1986)] discovered "high Te" supercon-
ductivity in a new class of ceramic materials containing stacks of CuC>2
planes, alternated by layers which act as charge reservoirs for the planes.
These cuprate materials are of extreme type-II and anisotropic, and the
critical temperature can be amazingly large, up to 165 K. While the role of
electron pairing itself is generally accepted, the precise origin of the pairing
mechanism is still hotly debated.

22.6.2 Superfluid 3He

The transition to a superfluid state in the 3He liquid only occurs at ex-
tremely low temperatures (below 3 mK). In fact, depending on the pres-
sure, and the presence of a magnetic field, three superfluid phases are ob-
served [Osheroff et al. (1972a); Osheroff et al. (1972b)]. The pair state
has relative orbital angular momentum L = 1, and spin 5 = 1, which is
energetically more favorable than the L = 0, 5 = 0 channel due to the very
repulsive short-distance part of the interaction.

As a consequence, the 3He liquid is a prime example of an anisotropic
superfluid (in contrast to the isotropic singlet pairing in metals), being
characterized by two vector quantities L and S that can exhibit long-range
order. This makes for a far richer phenomenology (e.g. the three possible
superfluid phases are distinguished by the Sz structure of the pairs), which
is at present rather well understood [Leggett (1975); Leggett (2004)].

22.6.3 Superfluidity in neutron stars

The structure of a neutron star is schematically illustrated in Fig. 5.1. For
many properties of a neutron star (e.g. the cooling rate through neutrino
emission, after its creation in a supernova explosion), the consideration of
pairing in the nucleonic quantum fluids of its interior is absolutely crucial.
A detailed account can be found in a recent review by [Dean and Hjorth-
Jensen (2003)], concerning nucleon pairing in both finite nuclei and fluids.

In a first step one can study the free NN interaction V, and determine
the attractive components that can give rise to pairing. The momentum
range in which a specific partial wave of V is attractive, corresponds roughly
to a density range where such momenta are typically found near the Fermi
surface. For the neutrons in the inner crust region, the density is quite
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low (p RJ po/10 with p0 — 0.16 fm~3), and the singlet XSQ channel will be
dominant for neutron pairing. The neutron density becomes much larger
in the quantum fluid interior (p « p0 - 2p0), corresponding to momenta
that allow the neutrons to experience the strongly repulsive core of the lSo
component. One then expects neutron pairing predominantly in the triplet
3P2 - 3^2 channel, which is the most attractive T = 1 component in this
momentum region. This global picture is indeed confirmed by microscopic
calculations (e.g. at the BHF+BCS level).

At the same time, one should keep in mind that many calculations
treat the nucleon propagator at the mean-field level, and do not include
the reduced quasiparticle strength, and the corresponding reduction of the
in-medium interaction strength near the Fermi surface. This effect can sig-
nificantly decrease the pairing gap, and in principle requires a self-consistent
treatment of the sp propagator, the BCS gap, and the in-medium interac-
tion [Bozek (2002,2003)].

Note that for realistic NN potentials, the BCS gap equation (22.47)
couples different partial-wave components, and becomes quite difficult to
solve. Angle-averaging procedures are usually employed to simplify the
problem. A recent separation method proposed in [Khodel et al. (1996)]
allows to solve the BCS problem in a complete way [Khodel et al. (1998)].

22.7 Inhomogeneous systems

The BCS pairing mechanism was originally developed for electrons in met-
als, but has also been applied extensively to inhomogeneous finite systems
like nuclei. In this section, the BCS treatment of Sec. 22.5 will be reformu-
lated in an arbitrary sp basis. In addition, since there are large parallels
with the corresponding discussion for bosons in Sec. 19.3, technical com-
ments will be kept to a minimum. We start with the Hamiltonian,

H = J2 £a74o7 + \ E W\ V \1&) 4ajj<W (22-92)
ay afiyS

The general Bogoliubov-Valatin transformation mixes addition and re-
moval operators,

b\ = ]C ̂ - X + v-na-r. bi = E U>i + V>\' (22-93)
7 7
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which can be reformulated in matrix notation as

fuv*\
where M = I I. The transformation is canonical, provided that M
is unitary, i.e. M^M = MM^ = 1, and the inverse transformation is simply

As in Sec. 22.5 we try to find the 6-operators for which the corresponding
vacuum |0B) has minimal energy EQ = (0B\ H\0B)- This can be done by
reshuffling to normal order with respect to \0B)- The contractions will be
denoted as

al'a^ = = (0B| a^a7 \0B) = pai = p*a,

afa1; = = <0B| 4 aj |0B) = Fa0 = ~F0a, (22.96)

and are recognized as the normal and anomalous density, respectively. Em-
ploying Wick's theorem, the Hamiltonian is decomposed as H = EQ + Hi +
H2, where the energy EQ represents the doubly contracted term,

Eo = $ > a 7 p Q 7 + \ £ (aP\ V \j5) (PayP0S + -FcpF;^
ay 0/376 ^ '

= 2 Y,(£a~< + Xa-r)pal + 2YI A«/3F«/3' (22-97)
ay a/3

and the singly contracted term is

Hi = Yl XcyN[aiay] + | ^ (AQ/3JV[a^at ] + A*a/3N[apaa}) . (22.98)
07 a/3

In Eqs. (22.97) and (22.98) the HF-like sp energies x, and the pairing field
A, have been introduced,

Xai = eay + £ (a(3\ V \7S) p0S; Aa0 = ^ (ap\V\76) F;s. (22.99)
05 yd

The term ^2, containing normal products of four b, tf, is irrelevant for the
further discussion, and will not be considered.

(22.94)

(22.95)
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Minimizing EQ is again equivalent with requiring Hi to be diagonal in
the 6-operators. Using antisymmetry (iV[a^a7] = — iV[a7aJJ) and linearity
of the normal product, Hi can be rewritten in a more symmetrical form as

*=H<"->U-t-)(:0]
= -N[A*HaA] = \N[B](M^HaM)B]. (22.100)

Note that \ is hermitian, A is antisymmetric, and Ha is therefore a her-
mitian matrix of twice the dimension of the sp space. Diagonality of
Hb = M^HaM is achieved by taking the columns of the unitary trans-
formation matrix M as the solutions ( ̂  ) of the eigenvalue problem

XUi + AVi = EiUi,

A* Ui + x*Vi = -EiVi. (22.101)

It has the same form as the bosonic Eq. (19.39), but since A is now an-
tisymmetric, Eq. (22.101) represents a simple hermitian eigenvalue prob-
lem with real eigenvalues. The eigenvalues come in pairs with opposite
signs, since any solution (Ui,Vi,Ei) implies that (V*,U*,—Ei) is also one.
The positive-energy solutions correspond to the physical quasiparticle ex-
citations b\, in terms of which the Hamiltonian of Eq. (22.100) becomes

The relations (22.101) are called the Hartree-Fock-Bogoliubov (HFB)
equations in general, or the Bogoliubov-de Gennes equations when ex-
pressed in coordinate space. Note that the HF-like energy Xi a n d the
pairing field A, still depend on the normal and anomalous densities p and
F, which are, in turn, determined by the amplitudes U and V. Like in
HF, the full HFB method therefore requires iterative methods for finding
a self-consistent solution. For finite N, the energy minimization should
be performed under the particle-number constraint [N — Trace(p)], which
is done in the usual fashion by introducing the grand-canonical potential
Cl = H — fiN. It amounts to replacing e —> e — /J, in the treatment above.

The HFB method, or approximations to it, have been used extensively in
nuclear calculations to study so-called superfluid nuclei: in open-shell nuclei
the attractive forces acting between like valence nucleons with nearly degen-
erate sp energies favor the formation of pairs with total angular momentum
J = 0 (see e.g. [Heyde (1990)] and also Sec. 17.2). Since the number of nu-
cleons is quite small, particle-number nonconservation is an important prob-
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lem that needs correcting by projection techniques [Ring and Schuck (1980);
Allaart et al. (1988)].

Canonical single-particle basis

The full Bogoliubov-Valatin transformation in Eq. (22.93) can always be
decomposed into three successive transformations. This is by and large
analogous to the bosonic case of Sec. 19.3, where additional details can be
found. Applying singular value decomposition to the (complex) transfor-
mation matrices U and V", one can write U — wluW2 and V = W^vWi,
where the Wi are unitary matrices and both u and v are real and posi-
tive diagonal matrices. The unitarity requirements UW + VW = 1 and
UW + V*VT = 1 again imply that u2 + v2 = 1, and hence u and v have
corresponding blocks with degenerate values. In addition, one can write
V = Wi RvW2, with R unitary and block-diagonal {i.e. commuting with u
and v. This allows treating each degeneracy block separately.

For fermions, the additional unitarity condition now requires UV^ to be
antisymmetric, or equivalently uv(R — RT) = 0. For a block with a nonzero
value of uv, the matrix R should therefore be unitary and antisymmetric. It
is easy to see that R then has necessarily even dimension, with eigenvectors
and eigenvalues that come in pairs (X,el6) and (X*, -ez9). Taking the real
combinations X+ = (X+X*)/V2 and X- = (X-X*)/(y/2i), one can show
that R can be transformed by a real orthogonal matrix O into the canonical

form R = OTeierO, where r contains 2 x 2 blocks of the form I )

along its diagonal, and the real-diagonal matrix 9 is twofold degenerate in
each such block. One is thus allowed to redefine W\ —>• el^0W\ and Wi —>
SOW2 to get the final canonical form U = W}uW2 and V = W?VTW2.

It is curious to see that fermions have this natural pairing property,
where each sp state has a partner associated to it, having the same u and
v. In systems with time-reversal invariance the associated partners (a, a)
are time-reversed sp states, but in general this does not have to be the case.
Note that the sp states with uv = 0 are either fully occupied (u = 0, v = 1)
or unoccupied (u — l,v — 0). In that case, the condition that UV^ be
antisymmetric is automatically fulfilled for the corresponding block. In the
blocks with uv = 0 the matrix R is irrelevant, and r can be replaced by the
unit matrix.

Hence, the full transformation in Eq. (22.94) can always be decomposed
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as a succession of three transformations,

tf0-(^)U7)0WU)- <—
This is known as the Bloch-Messiah decomposition [Bloch and Messiah
(1962)]. The first transformation (involving W\) is an ordinary change
of sp basis a -+ a' to the canonical basis a'a = X)7(Wi)a7a7- The sec-
ond transformation a' -> b' is a BCS transformation among the associated
partners of the canonical basis,

b'a = uaa'a+va<4, b'w = uaa'^ - vaa'l (22.103)

Note that ua = u^ and va — V-& are all taken positive here; it is sometimes
easier to shift the phase difference in Eq. (22.103) into the w-amplitudes
and/or the sp states.

These two transformations are sufficient to remove b'b' and b'^b'^ terms
from the Hamiltonian and to fix the quasiparticle vacuum. The final
transformation b' —> b is again an ordinary unitary transformation bi =
Ea(^2*)ai')a o n the quasiparticle operators and brings the b^b block in the
Hamiltonian to its diagonal form.

The quasiparticle vacuum, and the structure of the condensed pair state,
are most easily expressed in the canonical basis. The derivation then be-
comes identical to the Fermi gas expressions of Sec. 22.5. With the identity
b'a[ua — vaa'^a!±] |0) = 0, one can check that the wave function

|0B) = n [ u ° - u < * a M l 0 > (22.104)

obeys b'a |0_e) = 0, Va; it is also normalized to unity. The labels a > 0
refer to the first member of each associated pair. It is also assumed that
no fully occupied sp states (with ua = 0) are present; these are of course
trivial to include as a Slater determinant. The BCS wave function can
alternatively be written as |0B) ~ e~B |0), in terms of the condensed pair
state fit = E Q > Q ^ 4 .

Finally, it is sometimes useful to consider the generalized density matrix

R=(0B\ AA^ \0B) = (1 ~F
P* ~F* \ . (22.105)
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The condition that |0s) be the vacuum of the 6-operators, is equivalent to

R = M(OB\BB1 |0B)Aft = M ( J jj) Aft = ( ^ ^ , (22.106)

and one sees that /9 = VW, and F — VU^. Going to the canonical basis,

n/ /n , , / , / t l n V ( Wl ° \ n / ^ l 0 \ / U2 - U U T \

# = (0fl| A'A't |0B) - ( O ^ J ^ ( Q1 ^ J = (_UOT ,2 j .
(22.107)

therefore brings both the normal density, p'ap = Sa,0V^, and the anomalous
density, F'al3 = uai)a(5iai5[^(a) - 6(0)}, to its canonical form.

22.8 Exact solutions of schematic pairing problems

Two-fermion states

We first look more closely at the structure of a general two-fermion state,

|tf2) = fit |0) = Y^ Ca0aiaj
p |0>. (22.108)

OC0

With the same reasoning as in Sec. 22.7, one proves the existence of a
natural sp basis, in terms of which the pair addition operator has the form

B^x/^a^at, (22.109)

where the xa are real and positive (and correspond to the singular values
of the antisymmetric matrix Cap). The pairs (a, a) are not necessarily
time-reversed sp states, but are associated pairs in the general sense. The
density matrix is diagonal in this sp basis, with all natural occupations
x2

a = (*2 | a)aaa ]*2) = (*2 | a\a& |*2) being (at least) twofold degenerate.
We will assume normalized two-fermion states, i.e. (0| BB^ |0) =

2 JZa>o xa = 1- ^ IS &^so convenient to define x& = —xa and write equiva-
lently,

Sf = -J= Y,^44,with Y,x2
a = 1. (22.110)

* a a
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Pairing Hamiltonians

We now revisit the problem posed in the beginning of this chapter, in the
form of a pairing Hamiltonian like Eq. (22.1),

H = Y,£aaW-9B*B, (22.111)
a

expressing a competition between the tendency to fill the lowest sp levels,
and the tendency to lower the energy by creating B^ pairs. The eigenstates
can be classified according to the presence of unpaired sp states /?i../?m>
since the subspaces

\*01..0j = 4i-alm J2 c°i-"»4 14 1»4 n4jo) , (22.H2)
ai..an>0

with different /3i../3m, cannot be connected by the Hamiltonian (22.111).
We can therefore restrict the discussion to the "fully paired" eigenstates
with N = 2n particles; in the other subspaces the unpaired sp states are
blocked, and simply removed from the available sp space.

For general ea and xa, the Hamiltonian (22.111) cannot be solved ex-
actly. However, in two limiting cases it is possible: a flat distribution of
xa = x (corresponding to a schematic pairing force) with an arbitrary sp
spectrum ea, and a flat distribution of the sp energies ea = e (correspond-
ing to one degenerate shell) with an arbitrary pairing vector xa. These two
cases are in fact the most relevant examples of a larger class of Hamiltoni-
ans [Dukelsky et al. (2004)], consisting of linear combinations of a complete
set of commuting operators (the integrals of motion) that are quadratic in
the generators of some Lie algebra [SU(2) in the present case]. The mod-
els based on SU(2) were discovered quite early [Richardson (1963,1968);
Richardson and Sherman (1964); Gaudin (1976)], but were largely ignored,
mainly because the resulting set of nonlinear equations is difficult to solve
near a singularity. Recently they were rediscovered [Dukelsky et al. (2001)],
and algorithms have become available to solve them without much ef-
fort [Rombouts et al. (2004)].

Maximal pair occupation

In the limiting case of degenerate sp energies, the Hamiltonian (22.111)
is equivalent to the operator B^B, and the ./V-particle ground state has a
maximal pair occupation JIB = (^N\ B^B \^N). Defining the set of two-
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fermion operators [Pan et al. (1998)]

<̂ ) = ^ E T ^ ^ 4 , (22.113)

where the y are complex numbers [note that B^ = <j!>t(O)], one may verify
the following commutator relations,

P'^)] = E r i ^ 1 4 - 2 ^ ^ = A^ + 2j?E T~^a'^
a
 X y^a a J- Vxa

UB,<t>Hyi)UHy2)}=*v<i>Hm)-^{y2\ (22.114)
2/1 - 2/2

where ry = — 1. It is possible to show that all fully-paired eigenstates of
B^B with N — 2n particles have the form of a product of pair operators,

VN) = 0f (0)0*(yi)0t(j/2)..0t(!/„_!) |0>, (22.115)

with the set {j/} = {2/1, .-,2/n-i} to be determined. This can be seen ex-
plicitly by acting with B^B on the state (22.115), using the commutation
relations in Eq. (22.114) to move B to the right where it destroys the vac-
uum |0). The resulting state can be written as

BiB\9N) = E{{y})\9N) + '52vk({y})BiBi J[ ^(yi)\0),

Vk{{y}) = \(yk) - 4v [ - + E '

n- l 1

S ( { 2 / } ) = A ( O ) + 4 T ? ^ - . (22.116)
fc=i Vk

Clearly, an eigenstate is obtained for any solution {y} of the nonlinear set
of equations Vjt({y}) = 0, or:

E i X° 2 - 4?? I - + E - ^ — I = 0 , fc = l , . . , n - l . (22.117)

Equation (22.116) then yields the corresponding eigenvalue,

n-l
£({y}) = l + 4 r , ^ - . (22.118)
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Of special interest [Van Neck et al. (2001b)] is the largest among the
eigenvalues (22.118) of B^B, which corresponds to the maximal occupation
ng M of the pair state B^. By virtue of Eqs. (22.117), this is seen to
be a function of the singular values {xa} of B^. There are two extreme
situations: an uncorrelated pair state B^ = a^a^ for which n7^^ — 1; and
a maximally correlated pair state (17 is the total number of sp states)

B1 = \ /I E 4 4 = A/j£sgn(a)44 = Gt, (22.119)
a>0 a

for which the spectrum can be solved by SU(2) algebra [see Eq. (22.7)] and
nmax _ nj-j _ 2{n- J]. For an arbitrary pair state, nrgax lies between these
two extremes, and 1 < n™1 < n for ft » N.

Extension to bosons

The above exact solutions are easily extended to boson pairing. An arbi-
trary two-boson state has the same form as Eq. (22.108), the matrix Cap
now being symmetric. The canonical form for a normalized two-boson state
(see Sec. 19.3) is given by

Bt = 7 i E * « ( 4 ) 2 , (22.120)

where the real and positive xa correspond to the singular values of Cap,
and J2a xa = 1- One defines similarly to Eq. (22.113) the set of two-boson
operators,

and applying the same manipulations, Eqs. (22.114)-(22.118) still hold with
77=1.

For bosons, an uncorrelated pair state B^ — (a«)2 has a maximal occu-
pation n™1 = n(2n - 1) = |AT(AT - 1), whereas the maximally correlated
pair state,

s t = /^E(4)2 = Gt, (22.122)
a

has a maximal occupation ngaa: = n[l + 2 ^ " ^ ] . An arbitrary two-boson
state therefore has n < n^ax < \N{N - 1) for 0 » TV. Note the different

(22.121)
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behavior for fermions (bosons): the maximal occupation of a pair state is
enhanced (reduced) with respect to uncorrelated pair states.

22.8.1 Richards on-Gaudin equations

The second special case of an exactly solvable pairing Hamiltonian (22.111)
involves a nondegenerate sp spectrum ea, and a schematic pairing force
with £?t = G* as given by Eq. (22.119). It is convenient to introduce the
following set of two-fermion operators,

t/>t(*) = x/2 J2 T^—44 = 4= £sgn(a)-^—4<4 (22.123)

where the z are complex numbers. The following commutation relations
are easily verified,

[Ho, tf (z)} = [ £ eaaiaa,^(z)} = 2y/HG^ + 2ztf(z),
a

[[g^'falU'Wl^^^'^:^ '" ' , (22-124)

where rj = — 1. One can again show that all fully-paired eigenstates with
N — 2n particles have the form of a product of pair operators,

*w> = ^(Zl)^(z2)..^(zn) |0), (22.125)

with the set {z} = {z\, ..,zn} to be determined. Acting with the Hamilto-
nian on the state (22.125), the commutation relations in Eq. (22.124) can
be used to move Ho and G to the right, where they destroy the vacuum
0). One finds

(Ho-g&G)\*N) = E({z})\*N) + tfJ2Vk({z}) f [ *+(^)i0>,

Vk({z}) = 2VU-9^A(Zk) -^£^-±-j ,
n

E({z}) = 2Y,*i- (22-126)
jt=i
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An eigenstate is obtained for any solution {z} of the set of nonlinear equa-
tions Vk{{z}) = 0, or:

2-^ = ^2^—-4V £ " J — • * = l,.-,»- (22-127)

These equations were first derived in [Richardson (1963,1968)]. The eigen-
value E({z}) corresponding to a solution {z} is then represented by
Eq. (22.126). For a boson Hamiltonian (22.111) with a schematic pairing
force G^ as given by Eq. (22.122), one introduces

^W^Er1:^2' (2 2-1 2 8)
* a a ~

Performing the same manipulations then leads to Eqs. (22.124) - (22.127),
with 7] = 1 for bosons.

22.9 Exercises

(1) Derive the spectrum and eigenstates of the schematic pairing force H =
B^B, with B^ the pair creation operator as denned in Eq. (22.4). Use
the commutator algebra of Eq. (22.6).

(2) Generate the BCS equations by minimizing ft0 in Eq. (22.75) with
respect to the amplitudes up and vp, subject to the normalization con-
straint Mp + Vp = 1.

(3) Calculate the energy in Eq. (22.75) starting from the BCS vacuum
ansatz in Eq. (22.88).

(4) Show that a solution to the HFB equations (22.101) indeed provides
an extremum for the energy in Eq. (22.97).



Appendix A

Pictures in quantum mechanics

A discussion of the different pictures that are used in quantum mechanics
for the many-particle problem [Fetter and Walecka (1971)] follows the same
steps as in one-particle problems [Sakurai (1994)]. As discussed in the Ch. 6,
it is possible to use the time-dependent formulation to establish through FT
insight into the energy properties of the system under study. In addition,
it is important to learn to deal with time-dependent interactions to descibe
the effect of experimental probes, which may transfer energy to the many-
particle system.

A.I Schrodinger picture

In the Schrodinger picture we employ the notation

|<M0> = |*(t)) (A.i)

to describe the normal time dependence of a state ket. The Schrodinger
equation for this many-particle state reads

ihjt\*s(t)) = H \*s(t)) (A.2)

with the initial state |\ts(£o)) at to assumed known. For a time-independent
hamiltonian one can obtain the state at t from the one at to in the following
way

|*s(*)>=«7s(*-<o)l*s(*o)>. (A.3)

where

Us(t-t0) = exp(-l-H(t-t0)\ (A.4)

703
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is the time-evolution operator in the Schrodinger picture.

A.2 Interaction picture

One can express the time-independent hamiltonian of the many-body sys-
tem in terms of

H = HO + HU (A.5)

where the problem associated with .Ho is assumed to be completely solved
e.g. in terms of the independent-particle model discussed in Ch. 3. In the
sp case, the propagator was studied by considering the one belonging to
Ho, G(°\ to be known so that the exact propagator can be expressed in
terms of an expansion involving G^ and the interaction term V. In the
present many-particle context, we proceed similarly by assuming knowledge
of the time dependence governed by HQ, SO that one can concentrate on the
changes introduced by the action of H\. At any time t one then defines

|tf/(*)) =expjiH0<}|*s(0> (A-6)

the interaction picture state ket in terms of the Schrodinger ket and the
noninteracting hamiltonian HQ . The equation of motion for this ket is given
by

ih~ !*,(*)) = -Ho |*/(t)) + exp j l £ 0 * j t t A |$5(f))

= -Ho |*/(*)> + exp {^o* J (H0 + Hi) |*s(0>

= £ i ( t ) | t f / ( * )> , (A.7)

where

&i(i) = exp jji&otjjJiexp j-^Ho*}- (A.8)

Note that in general HQ and Hi do not commute. If states are related by
Eq. (A.6), then one may obtain a corresponding relation for operators by
considering

6s\*s(t)) = \$'s(t)) (A.9)
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so that one can write

|*i(t))=exp|^otj|*#s(t)>=exp|^o*}ds|*s(t)>

= expUHot\dsexpl-l-Hot\ exp UHot\ |*s(t)>

= 6/(t)|*j(t)), (A.10)

where

6i(t) =exp\^Hot\dsexp<-^Hot\ (A.ll)

is the operator in the interaction picture that corresponds to Os in the
Schrodinger picture. The latter is usually assumed to have no explicit time
dependence. This shows that in the interaction picture both state kets and
operators have time dependence, while noting that the one for operators is
simple. The equation of motion of an operator in the interaction picture
may be obtained by considering

^ / W = {i4exp{iH0t}}6sexp{-i^}

+ exp{lHot}6s{ift|exp{-iHot}}

= -H0Oi(t) +0^)60

= [dI(t),H0\. (A.12)

An important example involves the addition (removal) operators of par-
ticles with sp quantum numbers corresponding to HQ. In this basis

x

Applying Eq. (A.12), we find

ih—ax,{t) = \ax,(t),Ho^

= exp< -rHot} \a\,Ho\ exp i --Hot\
[h J L J I n )

= e\ax,(t), (A.14)

(A.13)
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with the solution

aXl(t)=e-i^t'hax (A.15)

and correspondingly

a{i{t) = e^t'ha\. (A.16)

In this basis the two-body interaction in the interaction picture has the
form

Vi(t) = \ J2 (a/3|^|7«) 4 , (* )< («)««/(*)a7/W. (A-^)
a0y5

and similarly for the auxiliary potential (or external field)

UW = Y,{a\V\P)alI{t)a0I(t). (A.18)
a/3

These operators have a simple time-dependence, which allows for straight-
forward time integrations when a FT is applied. A special role is played by
the time-evolution operator in the interaction picture, defined by

|*/(*)> =W(Mo)|*/(*o)>, (A.19)

where the / subscript is suppressed. Clearly

U(to,to) = l. (A.20)

The explicit construction of this operator is accomplished by considering

|*/(<)> =exp j ^ o * } |*s(*)>

= exp [\Hot\ exp l~^H(t - to)\ |*s(t0)> (A.21)

= exp l^Hot\ exp | - ^ ( t - to)\ exp j - !£„*„ I |*7(i0)),

which shows that

U(t, to) = exp I \Hot\ exp I ~H(t - i o ) | exp | - ^ o i o | . (A.22)

We emphasize again that H and Ho normally do not commute. Employ-
ing this result one can show the following property of the time-evolution
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operator in the interaction picture

tf(t,to)U{t,to) =U(t,to)tf(t,to) = 1, (A.23)

demonstrating unitarity

tf(t,to)=U-1{t,to). (A.24)

We also note that

U(t1,t2)ti(t2,t3)=U(t1,t3) (A.25)

and

ti(t,to)ti(to,t) = l, (A.26)

which demonstrates that

U{to,t)=UHt,to). (A.27)

For practical applications it is also important to consider an alternative
expression for U. By combining Eqs. (A.7) and (A.19) we find

ih^U{t,t0) = Hi(t)ti(t,to). (A.28)

Employing the boundary condition in Eq. (A.20), formal integration of this
operator equation yields

U(t,t0) = l-%- f dt' ^(f 'Mt'.to). (A.29)
h ho

Iterating this equation generates an expansion in terms of Hi

U(t,t0) = 1 - l- J'df ffi(i') 11 - l- J'dt" H^'Mt"M) | (A.30)

= i + (^)/W^

+ (=r) I dt' I <**" Hi(* ' )# i (*") + •••
V h J Jt0 Jto

= 5Z \T] dtl dh- / dtn H1{t1)H1(t2)...H1{tn).
n = 0 V h J Jt0 Jto Jt0
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Rewriting the second-order term according to

U2{t,t0) = dt' dt" Hx{t')Hi{t")

Jto Jto

= I I fdt' f dt" H^H^t") + fdt" I dt' H^Hiit") 1
2 {Jto Jt0 Jto Jt" J

= \ \ fdt' fdt" ffi(t')#i(i") + fdt' fdt" H^n&iit1))
1 \Jto Jt0 Jt0 jf )

= Ufdt'J dt" [6{f - t")Hi (i')^i (*") + 0(t" -t')Hx (t")fl-i (t')] ]

= i /d t ' / dt" r [^(fOffiCt")] , (A.31)
1 Jt0 Jto L J

introduces the time-ordering operation in the last equality, denoted by T•
In this development we employ the option to integrate first over t' and
then over t", then interchange then in this term t' and t", and finally use
step functions to extend the integration interval in both terms from to to
t. With a little puzzling one can convince oneself that this result can be
extended to any order. The complete expansion of U can thus be written
as

°° / _ - \ n 1 ft rt rt

U(t,t0) = Y] ( — ) - dh dt2... / dtn T \H1(h)Hl(t2)...H1(tn)\ ,
n=0 \ n J n- Jto Jto Jto L J

(A.32)
where the T-operation is extended to order the operator with the latest
time farthest to the left, and so on.

A.3 Heisenberg picture

State kets can be made independent of time while assigning time depen-
dence, governed by the full hamiltonian, to operators by employing the
Heisenberg picture. We define

|*ff(t))=expjj^rtj |* s(t)), (A.33)

using the full hamiltonian. It is immediately clear then that

ihjt |*H(t)> = -H |*ff(t)) + H |**(t)) = 0, (A.34)
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which confirms that state kets do not depend on time (|\I>JJ(£)) = \^H))-

For operators we first consider again

Os \*s{t)) = \9's(t)), (A.35)

so that one can write

| tf 'H)=exp{^}|* s(i)) (A.36)

= exp {Iffijosexp {-iff*} exp jijft j |*s(*)) = 6H(t) |¥H),

where

OH(t) = e x p | ^ t | o s e x p | - ^ F i | (A.37)

is the operator in the Heisenberg picture that corresponds to Os. The
equation of motion of an operator in the Heisenberg picture is given by

^w=H e x p {^}}^ e x p {4^}
+ exP{^}0s{^|exP{4^}}

= -HOH{t) + OH{t)H = [6H(t),H]

= exp|^J[ds,^]exp|-^J, (A.38)

which shows that if a Schrodinger operator commutes with the hamiltonian
the corresponding Heisenberg operator is a constant of motion. The relation
between operators in the interaction and Heisenberg picture can be obtained
by going back to the Schrodinger picture

= expl^Htl exp [ - ^Hot\ 61 (t) exp l^Hot\ exp j - ^ f f i j

= ti(0,t)Oi(t)ti(t,0). (A.39)

At t = 0 state kets in the different pictures coincide

|*ff) = |*s(t = O)) = |¥j(t = O)) (A.40)
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as do the operators

Os = dH(t = 0) = dI(t = 0). (A.41)

For stationary solutions (energy eigenstates) one has in addition

l*nS(*))=e" iE" t / f i |*r l)

= e-
iflt/h\Vn), (A.42)

which shows that the corresponding states in the Heisenberg picture satisfy
the time-independent form of the Schrodinger equation while

l*n> = |*nH> • (A.43)

We also note that

I*//) = |*/(0)) = W(0, to) |*/(to)>, (A.44)

which allows one to construct exact eigenstates from interaction picture
state kets at an earlier time t0.



Appendix B

Practical results from angular
momentum algebra

This appendix contains a summary of the angular momentum relations that
are of relevance for the material in this book. More details can be found
e.g. in [Brink and Satchler (1994); Edmonds (1996)]. Some prior knowledge
of angular momentum algebra (at the level of sp quantum mechanics) is
assumed. We will use h = 1 and the short-hand notation [j] = \/2j + 1.
For an angular momentum operator j the simultaneous eigenstates of j 2

and j z are denoted as j 2 \jm) = [j]2 \jm) and j z \jm) — m \jm), with the
action of the ladder operators j± = j x ± ijy on the basis vectors given by

J± \jm) = y/{j±m+l){jTm)\jm ± 1). (B.I)

Clebsch-Gordan coefficients

Consider the vector space of the direct product of the eigenstates of two
angular momentum operators. The unitary transformation relating the
basis of uncoupled (product) states with those coupled to good total angular
momentum, is written as

\j1j2JM)= ^ UimiJ2m2\JM)\jimi- j2m2), (B.2)
n i l m>2

in terms of the Clebsch-Gordan (CG) coefficients, which are real numbers.
As a consequence, the inverse transformation is

\jim1;j2m2) = ^2(jimij2m2\JM) \jij2JM). (B.3)
JM

Unitarity is expressed by the orthogonality relations,

53 Uimi-J2m2\JM)(jimij2m2\J'M') = 6jtJ'SM,M', (B.4)
Till TT12

711
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X^(iimii2m.2|J'M)(jim'1J2m'2\JM) - <Jmi,m'/m2,m^ (B.5)
JM

Note that (jimiJ2m2\JM) can be nonzero only if mi + m2 = M and the
triangle inequalities |ji - j 2 | < J < ji + j 2 are fulfilled. Switching the order
of the angular momenta, or reversing the sign of all the m's, results in a
phase,

(-l)h+h-J(jim1j2m2\JM) = (i2m2iim1|JM) (B.6)

= Ui-m1j2-m2\J-M). (B.7)

3]-symbols

The CG coefficients are related to the 3j-symbols by

(nmM\j3m3) = ( - l ) - - ^ - b 3 ] ( £ ij. J j J . (B.8)

The more symmetrical 3j-symbol ^ •'2 ^3 is invariant under permuta-
\mi m2 m3 )

tions of the columns, apart from a phase (—1)-?1+-?2+.?3 when the permutation
is odd. The same phase arises when the sign of all m, is reversed

( h h h \ = fyh+ji+j* ( h h h \ _ ( B 9 )

\ m i m2 m3 J \ ~ m i ~ m 2 ~m3 ) '

Orthogonality is expressed as

E ( h 32 h \ ( jl h 33 \ ^33,j'sSm3,m'3 f >

m i m 2 Vmi m2 "13/ Vmi m2 m'3 J [jz]2

v^ r. l2 /" ii J2 J3 \ ( h h h \ _ r c m m

^[j3] U i m2 m3 J U i m'2mj- 5™^8^m>2- (B.ll)

Some special cases are given by

U-mo)=^--lOO) = L l ^ (R12)
fj j IN = (-l)i-"m
Vm-mO; [j]v^(7TT) ^ ' ̂
(j 3 2\ = (-l)J-"[3m3-j(j + l)]

Vm-mO; [;-l][7][; + l]^(7+l)" (B.14)
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Also note that Eq. (B.9) implies that ^ -12 ^3 vanishes unless ji +J2+J3

is even.

6] -symbols

When three angular momenta are involved, the ordering of the couplings
(indicated by brackets) becomes important. The unitary transformation
relating two different coupling schemes can be expressed in terms of 6j-
symbols,

Kii, (hk) J23)jm) = £ ( - i r + J 2 + ^ [ J 1 2 ] [ J 2 3 ] (B.15)
.712

x{hJ2JTU}\((Juh)Ju,h)jrn).
{ J3 3 J23 J

The 6j-symbol J J l ^2 ^3 1 is invariant under permutations of columns, and
{ k k k J

invariant under switching the upper and lower row of two columns, leaving
the third column fixed. Orthogonality is expressed as

and a succession of two changes in the coupling scheme yields the sum rule

y 2{_1)j+j'+j" r h h r 1 r h k f \ \ h h f 1 (B 17)
Y l J 4 33 J J U 2 33 J J {33 34 3 J

Equation (B.15) leads to the extremely useful recoupling formula

Yt-w-m ( h h j \ ( k k j \ = ( B 1 8 )

Y\i'?(-l)i+h+h+m' iJ2 J4 j' \ ( jl J3 j' ) ( J2 ji j' ^p^r \k h 3 J Vmi m3 ™' J \m2 m4 -m1 J '

Equivalently, a 6j-symbol can be expressed as a product of four 3j's,

{ Jl J2 J3 I _ \ ' ,_^.ji+j5+je+m4+m;i+me /g jg^

k k ie J „
all m;

x / h h k \ ( Ji k k \ ( k k k \ f k k k \
\ m i m,2 m3 J \mi 7715 —m6/ \ —mi m2 m 6 / \m 4 -m 5 m 3 /

(B.16)
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A 6j with a zero entry is simply

provided j% obeys the triangle inequalities.

9'i-symbols

When four angular momenta are coupled, the unitary transformation re-
lating different coupling schemes contains a 9j-symbol,

\(Ui,h)Ji3,(J2H)J2i)JM)= J2 MJ34P13P24] (B.21)

{ j\ h J12 "I
h k hi\\{(h,32)JiiAhk)J3i)JM).
J\3 J24 J )

h h h
The 9j-symbol j 4 j5 j6 is invariant under permutations of rows and per-

h js jg
mutations of columns, apart from a phase (—l)^-3' containing all nine ele-
ments, when the permutation is odd. Orthogonality is expressed as

{ ji h J12 ) ( i\ J2 J[2 )
h k J34 > I h k Jk )
Jl3 J24 J ) I ^13 J24 J )

= 8j12,j'Jj3t,jki (B.22)

and a succession of two changes in the coupling scheme yields the sum rule

{ h h J12 ) [ h h J13 )
h k J34 \ { k h J24 )
Jl3 J24 J J I Jl4 J23 J J

{ h h J12 ]
k h J34 > (B.23)

Jl4 J23 J )

A 9j-symbol with a zero entry can be written as a 6j,

h k j ) = l Virvi •> (B-24)

(B.20)
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Spherical tensor operators

A spherical tensor operator of rank j is a set of 2j + 1 operators AJ
m,

m = —j,..,j, the members of which under a rotation transform similarly
as the \jm) basisvectors. Equivalently, they obey the usual commutation
relations with the angular momentum operator,

[jz,Ain} = mAin; [j±, A'm] = y/(j ± m + l)(j T m ) ^ m ± 1 . (B.25)

The hermitian conjugate is not a spherical tensor operator; but the set
B3

m — ( - l ) : ) + m (Ai m ) t is; i.e. an additional phase is required.
The Wigner-Eckart theorem allows to extract the dependence on the m

values in a matrix element of a tensor operator,

(jimi\ Al \j2m2) = (-l)^-m> ( Jl J * ) (j, || A* || j2). (B.26)
y —Till 'H lTl2 J

The proportionality factor is called the reduced matrix element, and is
indicated by double lines in the usual bra-ket notation.

The product of two tensor operators can be coupled to a new spherical
tensor operator, in the usual way,

[A* ®fl*]&, = YL Uim1J2m2\j3Tn3)A%1B%a. (B.27)

For a tensor product of two operators AJa and BJb acting in differ-
ent spaces {e.g. operators related to different particles, or a spatial and
a spin operator of the same particle), the reduced matrix element can be
decomposed as

{(aja, bjb)jab II [AJ» ® B J ' ] J - || (a'j'a,b'j'b)j'ab) = (B.28)

[Jab][jab}[jab] I fa k f l \ («Ja II AJ' || a'j'a) (bjb || BJ> \\ b'j'b) .
{ Ja Jb Jab )

Scalar operators {e.g. a rotationally invariant tp interaction) are spher-
ical tensor operators of rank 0. A (pseudo)vector operator A is a spherical
tensor operator of rank 1; its spherical components are given by

Al=Az; A1
±1 = ^=(Ax±iAy). (B.29)

Some simple reduced matrix elements are

( i l | i | | i ' ) = [i]<5«', (B.30)
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U\\31\\j') = \j]y/lUTijSJ,r, (B.31)

U II v1 II i) = V6, (B.32)

(ni^||/') = ̂ P r ] ( ^ Q (B-33)

The reduced matrix elements for the transition spin (and isospin) operator
in Eq. (14.79) is given by

(I II S1 || i) = 2. (B.34)
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