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Topics for Week 34, August 17-21

Introduction, systems of identical particles and physical
systems

Monday:
Presentation of topics to be covered and introduction to
Many-Body physics (Lecture notes, Raimes chapter 1 and
Gross, Runge and Heinonen (GRH) chapter 1).
Tuesday:
Discussion of wave functions for fermions and bosons,
Lecture notes and GRH chapters 2 and 3. Raimes chapter
1.
No exercises this week.
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Quantum Many-particle Methods

1 Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

2 Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

3 Perturbative many-body methods

4 Green’s function methods

5 Density functional theory/Mean-field theory and Hartree-Fock theory

6 Monte-Carlo methods (FYS4410)

7 Renormalization group (RG) methods, in particular density matrix RG

The physics of the system hints at which many-body methods to use.
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17 August - 30 November

Projects, deadlines and oral exam
1 Deadline project 1: September 25 (12pm)
2 Deadline project 2: October 30 (12pm)
3 Deadline project 3: November 27 (12pm)

There is no exam. The projects are marked with points from 0
to 100 and the final mark is the average of all three projects.
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Lectures and exercise sessions

and syllabus
Lectures: Monday (8.15-10.00, room LilleFys) and Tuesday
(8.15-10.00, room LilleFys)
Detailed lecture notes, all exercises presented and projects
can be found at the homepage of the course.
Exercises: 14.15-16 Wednesday, room FV311
Weekly plans and all other information are on the official
webpage.
Syllabus: Lecture notes, exercises and projects. Gross,
Runge and Heinonen chapters 1-10 and 14-27. Raimes is
also a good alternative, chapter 1-3, and 5-11 form large
fractions of the syllabus.

Quantum mechanics of many-particle systems FYS-KJM4480



Gross, Runge and Heinonen’s text

Many-particle theory
Chapters which cover
large fraction of the
syllabus:
Chapters 1-10 and
14-27
See also Raimes,
chapters 1-3 and
5-11.
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Selected Texts and Many-body theory

Blaizot and Ripka, Quantum Theory of Finite systems, MIT press 1986

Negele and Orland, Quantum Many-Particle Systems, Addison-Wesley, 1987.

Fetter and Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
1971.

Helgaker, Jørgensen and Olsen, Molecular Electronic Structure Theory, Wiley,
2001.

Mattuck, Guide to Feynman Diagrams in the Many-Body Problem , Dover, 1971.

Dickhoff and Van Neck, Many-Body Theory Exposed, World Scientific, 2006.
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Definitions and notations

The Schrödinger equation reads

Ĥ(r1, r2, . . . , rN )Ψλ(r1, r2, . . . , rN ) = EλΨλ(r1, r2, . . . , rN ), (1)

where the vector ri represents the coordinates (spatial and spin) of particle i , λ stands

for all the quantum numbers needed to classify a given N-particle state and Ψλ is the

pertaining eigenfunction. Throughout this course, Ψ refers to the exact eigenfunction,

unless otherwise stated.
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Definitions and notations

We write the Hamilton operator, or Hamiltonian, in a generic way

Ĥ = T̂ + V̂

where T̂ represents the kinetic energy of the system

T̂ =
NX

i=1

p2
i

2mi
=

NX
i=1

„
−

~2

2mi
∇i

2
«

=
NX

i=1

t(ri )

while the operator V̂ for the potential energy is given by

V̂ =
NX

i=1

u(ri ) +
NX

ji=1

v(ri , rj ) +
NX

ijk=1

v(ri , rj , rk ) + . . . (2)

Hereafter we use natural units, viz. ~ = c = e = 1, with e the elementary charge and c

the speed of light. This means that momenta and masses have dimension energy.
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Definitions and notations

If one does quantum chemistry, after having introduced the Born-Oppenheimer
approximation which effectively freezes out the nucleonic degrees of freedom, the
Hamiltonian for N = ne electrons takes the following form

Ĥ =

neX
i=1

t(ri )−
neX

i=1

k
Z
ri

+

neX
i<j

k
rij
,

with k = 1.44 eVnm
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Definitions and notations

We can rewrite this as

Ĥ = Ĥ0 + ĤI =

neX
i=1

ĥ0(ri ) +

neX
i<j=1

1
rij
, (3)

where we have defined rij = |ri − rj | and

ĥ0(ri ) = t̂(ri )−
Z
ri
. (4)

The first term of eq. (3), H0, is the sum of the N one-body Hamiltonians ĥ0. Each

individual Hamiltonian ĥ0 contains the kinetic energy operator of an electron and its

potential energy due to the attraction of the nucleus. The second term, HI , is the sum

of the ne(ne − 1)/2 two-body interactions between each pair of electrons. Note that the

double sum carries a restriction i < j .
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Definitions and notations

The potential energy term due to the attraction of the nucleus defines the onebody field
ui = uext(ri ) of Eq. (2). We have moved this term into the Ĥ0 part of the Hamiltonian,
instead of keeping it in V̂ as in Eq. (2). The reason is that we will hereafter treat Ĥ0 as
our non-interacting Hamiltonian. For a many-body wavefunction Φλ defined by an
appropriate single-particle basis, we may solve exactly the non-interacting eigenvalue
problem

Ĥ0Φλ = wλΦλ,

with wλ being the non-interacting energy. This energy is defined by the sum over

single-particle energies to be defined below. For atoms the single-particle energies

could be the hydrogen-like single-particle energies corrected for the charge Z . For

nuclei and quantum dots, these energies could be given by the harmonic oscillator in

three and two dimensions, respectively.
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Definitions and notations

We will assume that the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written as

Ĥ = Ĥ0 + ĤI =
NX

i=1

ĥ0(ri ) +
NX

i<j=1

V (rij ), (5)

with

H0 =
NX

i=1

ĥ0(ri ) =
NX

i=1

“
t̂(ri ) + ûext(ri )

”
. (6)

The onebody part uext(ri ) is normally approximated by a harmonic oscillator potential

or the Coulomb interaction an electron feels from the nucleus. However, other

potentials are fully possible, such as one derived from the self-consistent solution of

the Hartree-Fock equations.

Quantum mechanics of many-particle systems FYS-KJM4480



Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P̂
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[Ĥ, P̂] = 0,

meaning that Ψλ(r1, r2, . . . , rN ) is an eigenfunction of P̂ as well, that is

P̂ij Ψλ(r1, r2, . . . , ri , . . . , rj , . . . , rN ) = βΨλ(r1, r2, . . . , ri , . . . , rj , . . . , rN ),

where β is the eigenvalue of P̂. We have introduced the suffix ij in order to indicate that

we permute particles i and j . The Pauli principle tells us that the total wave function for

a system of fermions has to be antisymmetric, resulting in the eigenvalue β = −1.
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Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Φ(r1, r2, . . . , rN , α, β, . . . , σ) =
1
√

N!

˛̨̨̨
˛̨̨̨
˛
ψα(r1) ψα(r2) . . . . . . ψα(rN )
ψβ(r1) ψβ(r2) . . . . . . ψβ(rN )
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(r1) ψσ(r2) . . . . . . ψγ(rN )

˛̨̨̨
˛̨̨̨
˛ , (7)

where ri stand for the coordinates and spin values of a particle i and α, β, . . . , γ are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function ψα(ri ) are eigenfunctions of the onebody Hamiltonian hi ,
that is

ĥ0(ri ) = t̂(ri ) + ûext(ri ),

with eigenvalues

ĥ0(ri )ψα(ri ) =
“

t̂(ri ) + ûext(ri )
”
ψα(ri ) = εαψα(ri ).

The energies εα are the so-called non-interacting single-particle energies, or

unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present.
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Definitions and notations

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

Z
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalizedZ
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (7) which
can be rewritten as

Φ(r1, r2, . . . , rN , α, β, . . . , ν) =
1
√

N!

X
P

(−)P P̂ψα(r1)ψβ(r2) . . . ψν(rN ) =
√

N!AΦH ,

(8)

where we have introduced the antisymmetrization operator A defined by the

summation over all possible permutations of two nucleons.
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Definitions and notations

It is defined as
A =

1
N!

X
p

(−)pP̂, (9)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle
functions

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN ).
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Definitions and notations

Both Ĥ0 and ˆ̂
IH are invariant under all possible permutations of any two particles and

hence commute with A
[H0,A] = [HI ,A] = 0. (10)

Furthermore, A satisfies
A2 = A, (11)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of Ĥ0Z
Φ∗Ĥ0Φdτ = N!

Z
Φ∗HAĤ0AΦHdτ

is readily reduced to Z
Φ∗Ĥ0Φdτ = N!

Z
Φ∗H Ĥ0AΦHdτ,

where we have used eqs. (10) and (11). The next step is to replace the
antisymmetrization operator by its definition Eq. (8) and to replace Ĥ0 with the sum of
one-body operators

Z
Φ∗Ĥ0Φdτ =

NX
i=1

X
p

(−)p
Z

Φ∗H ĥ0P̂ΦHdτ.
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Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then

Z
Φ∗Ĥ0Φdτ =

NX
i=1

Z
Φ∗H ĥ0ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

Z
Φ∗Ĥ0Φdτ =

NX
µ=1

Z
ψ∗µ(r)ĥ0ψµ(r)dr. (12)
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Definitions and notations

We introduce the following shorthand for the above integral

〈µ|h|µ〉 =

Z
ψ∗µ(r)ĥ0ψµ(r),

and rewrite Eq. (12) as Z
Φ∗Ĥ0Φdτ =

NX
µ=1

〈µ|h|µ〉. (13)
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Definitions and notations

The expectation value of the two-body part of the Hamiltonian is obtained in a similar
manner. We have Z

Φ∗ĤIΦdτ = N!

Z
Φ∗HAĤIAΦHdτ,

which reduces to

Z
Φ∗ĤIΦdτ =

NX
i≤j=1

X
p

(−)p
Z

Φ∗HV (rij )P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.
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Definitions and notations

Because of the dependence on the inter-particle distance rij , permutations of any two
particles no longer vanish, and we get

Z
Φ∗ĤIΦdτ =

NX
i<j=1

Z
Φ∗HV (rij )(1− Pij )ΦHdτ.

where Pij is the permutation operator that interchanges nucleon i and nucleon j . Again

we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

Z
Φ∗ĤIΦdτ =

1
2

NX
µ=1

NX
ν=1

»Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(rj )dri rj

–
.

(14)

The first term is the so-called direct term. It is frequently also called the Hartree term,

while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions ψµ(r), defined by the quantum numbers µ and r (recall that r also
includes spin degree) are defined as the overlap

ψα(r) = 〈r|α〉.
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Definitions and notations

We introduce the following shorthands for the above two integrals

〈µν|V |µν〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj ,

and
〈µν|V |νµ〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(rj )dri rj .
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .

With these notations we rewrite Eq. (14) as

Z
Φ∗ĤIΦdτ =

1
2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (15)
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Definitions and notations

Combining Eqs. (13) and (96) we obtain the energy functional

E [Φ] =
NX
µ=1

〈µ|h|µ〉+
1
2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (16)

which we will use as our starting point for the Hartree-Fock calculations later in this

course.
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Topics for Week 35, August 24-28

Second quantization
Monday:
Summary from last week
Expectation values of a given Hamiltonian for a Slater
determinant
Introduction of second quantization
Tuesday:
Operators and wave functions in second quantization
Exercise 1 and 2 on Wednesday
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Second quantization

We introduce the time-independent operators a†α and aα which create and annihilate,
respectively, a particle in the single-particle state ϕα. We define the fermion creation
operator a†α

a†α|0〉 ≡ |α〉, (17)

and
a†α|α1 . . . αn〉as ≡ |αα1 . . . αn〉as (18)
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Second quantization

In Eq. (17) the operator a†α acts on the vacuum state |0〉, which does not contain any
particles. Alternatively, we could define a closed-shell nucleus as our new vacuum,but
then we need to introduce the particle-hole formalism, see next section.
In Eq. (18) a†α acts on an antisymmetric n-particle state and creates an antisymmetric
(n + 1)-particle state, where the one-body state ϕα is occupied, under the condition
that α 6= α1, α2, . . . , αn. From Eq. (??) it follows that we can express an antisymmetric
state as the product of the creation operators acting on the vacuum state.

|α1 . . . αn〉as = a†α1
a†α2

. . . a†αn |0〉 (19)
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Second quantization

It is easy to derive the commutation and anticommutation rules for the fermionic
creation operators a†α. Using the antisymmetry of the states (19)

|α1 . . . αi . . . αk . . . αn〉as = −|α1 . . . αk . . . αi . . . αn〉as (20)

we obtain
a†αi

a†αk
= −a†αk

a†αi
(21)
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Second quantization

Using the Pauli principle
|α1 . . . αi . . . αi . . . αn〉as = 0 (22)

it follows that
a†αi

a†αi
= 0. (23)

If we combine Eqs. (21) and (23), we obtain the well-known anti-commutation rule

a†αa†β + a†βa†α ≡ {a†α, a
†
β} = 0 (24)
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Second quantization

The hermitian conjugate of a†α is
aα = (a†α)† (25)

If we take the hermitian conjugate of Eq. (24), we arrive at

{aα, aβ} = 0 (26)
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Second quantization

What is the physical interpretation of the operator aα and what is the effect of aα on a
given state |α1α2 . . . αn〉as? Consider the following matrix element

〈α1α2 . . . αn|aα|α′1α
′
2 . . . α

′
m〉 (27)

where both sides are antisymmetric. We distinguish between two cases

1 α ∈ {αi}. Using the Pauli principle of Eq. (22) it follows

〈α1α2 . . . αn|aα = 0 (28)

2 α /∈ {αi}. From Eq. (??) it follows ia hermitian conjugation

〈α1α2 . . . αn|aα = 〈αα1α2 . . . αn| (29)
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Second quantization

Eq. (29) holds for case (1) since the lefthand side is zero due to the Pauli principle. We
write Eq. (27) as

〈α1α2 . . . αn|aα|α′1α
′
2 . . . α

′
m〉 = 〈α1α2 . . . αn|αα′1α

′
2 . . . α

′
m〉 (30)

Here we must have m = n + 1 if Eq. (30) has to be trivially different from zero. Using
Eqs. (28) and (28) we arrive at

〈α1α2 . . . αn|aα|α′1α
′
2 . . . α

′
n+1〉 =


0 α ∈ {αi} ∨ {ααi} 6= {α′i }
±1 α /∈ {αi} ∪ {ααi} = {α′i }

ff
(31)
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Second quantization

For the last case, the minus and plus signs apply when the sequence α, α1, α2, . . . , αn
and α′1, α

′
2, . . . , α

′
n+1 are related to each other via even and odd permutations. If we

assume that α /∈ {αi} we have from Eq. (31)

〈α1α2 . . . αn|aα|α′1α
′
2 . . . α

′
n+1〉 = 0 (32)

when α ∈ {α′i }. If α /∈ {α′i }, we obtain

aα |α′1α
′
2 . . . α

′
n+1〉| {z }

6=α

= 0 (33)

and in particular
aα|0〉 = 0 (34)
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Second quantization

If {ααi} = {α′i }, performing the right permutations, the sequence α, α1, α2, . . . , αn is
identical with the sequence α′1, α

′
2, . . . , α

′
n+1. This results in

〈α1α2 . . . αn|aα|αα1α2 . . . αn〉 = 1 (35)

and thus
aα|αα1α2 . . . αn〉 = |α1α2 . . . αn〉 (36)
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Second quantization

The action of the operator aα from the left on a state vector is to to remove one particle
in the state α. If the state vector does not contain the single-particle state α, the
outcome of the operation is zero. The operator aα is normally called for a destruction
or annihilation operator.

The next step is to establish the commutator algebra of a†α and aβ .
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Second quantization

The action of the anti-commutator {a†α,aα} on a given n-particle state is

a†αaα |α1α2 . . . αn〉| {z }
6=α

= 0

aαa†α |α1α2 . . . αn〉| {z }
6=α

= aα |αα1α2 . . . αn〉| {z }
6=α

= |α1α2 . . . αn〉| {z }
6=α

(37)

if the single-particle state α is not contained in the state.
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Second quantization

If it is present we arrive at

a†αaα|α1α2 . . . αkααk+1 . . . αn−1〉 = a†αaα(−1)k |αα1α2 . . . αn−1〉

= (−1)k |αα1α2 . . . αn−1〉 = |α1α2 . . . αkααk+1 . . . αn−1〉

aαa†α|α1α2 . . . αkααk+1 . . . αn−1〉 = 0 (38)

From Eqs. (37) and (38) we arrive at

{a†α, aα} = a†αaα + aαa†α = 1 (39)
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Second quantization

The action of a†α, aβ , with α 6= β on a given state yields three possibilities. The first

case is a state vector which contains both α and β, then either α or β and finally none

of them.
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Second quantization

The first case results in

a†αaβ |αβα1α2 . . . αn−2〉 = 0

aβa†α|αβα1α2 . . . αn−2〉 = 0 (40)

while the second case gives

a†αaβ |β α1α2 . . . αn−1| {z }
6=α

〉 = |αα1α2 . . . αn−1| {z }
6=α

〉

aβa†α|β α1α2 . . . αn−1| {z }
6=α

〉 = aβ |αβ βα1α2 . . . αn−1| {z }
6=α

〉

= −|αα1α2 . . . αn−1| {z }
6=α

〉 (41)
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Second quantization

Finally if the state vector does not contain α and β

a†αaβ |α1α2 . . . αn| {z }
6=α,β

〉 = 0

aβa†α|α1α2 . . . αn| {z }
6=α,β

〉 = aβ |αα1α2 . . . αn| {z }
6=α,β

〉 = 0 (42)

For all three cases we have

{a†α, aβ} = a†αaβ + aβa†α = 0, α 6= β (43)
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Second quantization

We can summarize our findings in Eqs. (39) and (43) as

{a†α, aβ} = δαβ (44)

with δαβ is the Kroenecker δ-symbol.
The properties of the creation and annihilation operators can be summarized as (for
fermions)

a†α|0〉 ≡ |α〉,

and
a†α|α1 . . . αn〉AS ≡ |αα1 . . . αn〉AS .

from which follows
|α1 . . . αn〉AS = a†α1

a†α2
. . . a†αn |0〉.
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Second quantization

The hermitian conjugate has the folowing properties

aα = (a†α)†.

Finally we found
aα |α′1α

′
2 . . . α

′
n+1〉| {z }

6=α

= 0, spesielt aα|0〉 = 0,

and
aα|αα1α2 . . . αn〉 = |α1α2 . . . αn〉,

and the corresponding commutator algebra

{a†α, a
†
β} = {aα, aβ} = 0 {a†α, aβ} = δαβ .
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Topics for Week 36, August 31- September 4

Second quantization
Monday:
Summary from last week
Second quantization and operators
Anti-commutation rules
Tuesday:
Operators and wave functions in second quantization
Exercise 3, 4 and 5 on Wednesday
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Operators in second quantization

A very useful operator is the so.called number-operator. Most physics cases we will

study in this text conserve the total number of particles. The number operator is

therefore a useful quantity which allows us to test that our many-body formalism

conserves the number of particles. (add about DFT here and reactions with

connections to onebody densities and spectroscopic factors.) In eaction such (d , p) or

(p, d) reactions it is important to be able to describe quantum mechanical states where

particles get added or removed from. A creation operator a†α adds one particle to the

single-particle state α of a give many-body state vector, while an annihilation operator

aα removes a particle from a single-particle state α.
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Operators in second quantization

Let us consider an operator proportional with a†αaβ and α = β. It acts on an n-particle
state resulting in

a†αaα|α1α2 . . . αn〉 =

8><>:
0 α /∈ {αi}

|α1α2 . . . αn〉 α ∈ {αi}
(2-16)

Summing over all possible one-particle states we arrive at X
α

a†αaα

!
|α1α2 . . . αn〉 = n|α1α2 . . . αn〉 (45)
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Operators in second quantization

The operator
N =

X
α

a†αaα (46)

is called the number operator since it counts the number of particles in a give state

vector when it acts on the different single-particle states. It acts on one single-particle

state at the time and falls therefore under category one-body operators. Next we look

at another important one-body operator, namely Ĥ0 and study its operator form in the

occupation number representation.
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Operators in second quantization

We want to obtain an expression for a one-body operator which conserves the number
of particles. Here we study the one-body operator for the kinetic energy plus an
eventual external one-body potential. The action of this operator on a particular n-body
state with its pertinent expectation value has already been studied in coordinate space.
In coordinate space the operator reads

Ĥ0 =
X

i

h(ri ) (47)

and the anti-symmetric n-particle Slater determinant is defined as

Φ(r1, r2, . . . , rn, α1, α2, . . . , αn) =
1
√

n!

X
p

(−1)pψα1 (r1)ψα2 (r2) . . . ψαn (rn). (48)
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Operators in second quantization

Defining
h(ri )ψαi (ri ) =

X
α′k

ψα′k
(ri )〈α′k |ĥ|αk 〉 (49)

we can easily evaluate the action of Ĥ0 on each product of one-particle functions in
Slater determinant. From Eqs. (48) (49) we obtain the following result without
permuting any particle pair X

i

h(ri )

!
ψα1 (r1)ψα2 (r2) . . . ψαn (rn)

=
X
α′1

〈α′1|h|α1〉ψα′1 (r1)ψα2 (r2) . . . ψαn (rn)

+
X
α′2

〈α′2|h|α2〉ψα1 (r1)ψα′2
(r2) . . . ψαn (rn)

+ . . .

+
X
α′n

〈α′n|h|αn〉ψα1 (r1)ψα2 (r2) . . . ψα′n (rn) (50)
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Operators in second quantization

If we interchange the positions of particle 1 and 2 we obtain X
i

h(ri )

!
ψα1 (r2)ψα1 (r2) . . . ψαn (rn)

=
X
α′2

〈α′2|h|α2〉ψα1 (r2)ψα′2
(r1) . . . ψαn (rn)

+
X
α′1

〈α′1|h|α1〉ψα′1 (r2)ψα2 (r1) . . . ψαn (rn)

+ . . .

+
X
α′n

〈α′n|h|αn〉ψα1 (r2)ψα1 (r2) . . . ψα′n (rn) (51)
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Operators in second quantization

We can continue by computing all possible permutations. We rewrite also our Slater
determinant in its second quantized form and skip the dependence on the quantum
numbers ri . Summing up all contributions and taking care of all phases (−1)p we arrive
at

Ĥ0|α1, α2, . . . , αn〉 =
X
α′1

〈α′1|h|α1〉|α′1α2 . . . αn〉

+
X
α′2

〈α′2|h|α2〉|α1α
′
2 . . . αn〉

+ . . .

+
X
α′n

〈α′n|h|αn〉|α1α2 . . . α
′
n〉 (52)
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Operators in second quantization

In Eq. (52) we have expressed the action of the one-body operator of Eq. (47) on the
n-body state of Eq. (48) in its second quantized form. This equation can be further
manipulated if we use the properties of the creation and annihilation operator on each
primed quantum number, that is

|α1α2 . . . α
′
k . . . αn〉 = a†

α′k
aαk |α1α2 . . . αk . . . αn〉 (53)

Inserting this in the right-hand side of Eq. (52) results in

Ĥ0|α1α2 . . . αn〉 =
X
α′1

〈α′1|h|α1〉a†α′1
aα1 |α1α2 . . . αn〉

+
X
α′2

〈α′2|h|α2〉a†α′2
aα2 |α1α2 . . . αn〉

+ . . .

+
X
α′n

〈α′n|h|αn〉a†α′n aαn |α1α2 . . . αn〉

=
X
α,β

〈α|h|β〉a†αaβ |α1α2 . . . αn〉 (54)
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Operators in second quantization

In the number occupation representation or second quantization we get the following
expression for a one-body operator which conserves the number of particles

Ĥ0 =
X
αβ

〈α|h|β〉a†αaβ (55)

Obviously, Ĥ0 can be replaced by any other one-body operator which preserved the
number of particles. The stucture of the operator is therefore not limited to say the
kinetic or single-particle energy only.

The opearator Ĥ0 takes a particle from the single-particle state β to the single-particle

state α with a probability for the transition given by the expectation value 〈α|h|β〉.
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Operators in second quantization

It is instructive to verify Eq. (55) by computing the expectation value of Ĥ0 between two
single-particle states

〈α1|Ĥ0|α2〉 =
X
αβ

〈α|h|β〉〈0|aα1 a†αaβa†α2
|0〉 (56)

Using the commutation relations for the creation and annihilation operators we have

aα1 a†αaβa†α2
= (δαα1 − a†αaα1 )(δβα2 − a†α2

aβ), (57)

which results in
〈0|aα1 a†αaβa†α2

|0〉 = δαα1δβα2 (58)

and
〈α1|Ĥ0|α2〉 =

X
αβ

〈α|h|β〉δαα1δβα2 = 〈α1|h|α2〉 (59)

as expected.
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Operators in second quantization

Let us now derive the expression for our two-body interaction part, which also
conserves the number of particles. We can proceed in exactly the same way as for the
one-body operator. In the coordinate representation our two-body interaction part takes
the following expression

ĤI =
X
i<j

V (ri , rj ) (60)

where the summation runs over distinct pairs. The term V can be an interaction model

for the nucleon-nucleon interaction. It can also include additional two-body interaction

terms.
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Operators in second quantization

The action of this operator on a product of two single-particle functions is defined as

V (ri , rj )ψαk (ri )ψαl (rj ) =
X
α′kα
′
l

ψ′αk
(ri )ψ

′
αl

(rj )〈α′kα
′
l |V |αkαl 〉 (61)
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Operators in second quantization

We can now let ĤI act on all terms in the linear combination of Eq. (??) for
|α1α2 . . . αn〉. Without any permutations we have0@X

i<j

V (ri , rj )

1Aψα1 (r1)ψα2 (r2) . . . ψαn (rn)

=
X
α′1α
′
2

〈α′1α
′
2|V |α1α2〉ψ′α1

(r1)ψ′α2
(r2) . . . ψαn (rn)

+ . . .

+
X
α′1α
′
n

〈α′1α
′
n|V |α1αn〉ψ′α1

(r1)ψα2 (r2) . . . ψ′αn (rn)

+ . . .

+
X
α′2α
′
n

〈α′2α
′
n|V |α2αn〉ψα1 (r1)ψ′α2

(r2) . . . ψ′αn (rn)

+ . . . (62)
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Operators in second quantization

Summing all possible terms we arrive at

ĤI =
1
2

X
αβγδ

〈αβ|V |γδ〉a†αa†βaδaγ (63)

where we sum freely over all single-particle states α, β, γ og δ.
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Operators in second quantization

With this expression we can now verify that the second quantization form of ĤI in
Eq. (63) results in the same matrix between two anti-symmetrized two-particle states
as its corresponding coordinate space representation. We have

〈α1α2|ĤI |β1β2〉 =
1
2

X
αβγ,δ

〈αβ|V |γδ〉〈0|aα2 aα1 a†αa†βaδaγa†β1
a†β2
|0〉. (64)
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Operators in second quantization

Using the commutation relations we get

aα2 aα1 a†αa†βaδaγa†β1
a†β2

= aα2 aα1 a†αa†β(aδδγβ1 a†β2
− aδa†β1

aγa†β2
)

= aα2 aα1 a†αa†β(δγβ1δδβ2 − δγβ1 a†β2
aδ − aδa†β1

δγβ2 + aδa†β1
a†β2

aγ)

= aα2 aα1 a†αa†β(δγβ1δδβ2 − δγβ1 a†β2
aδ

−δδβ1δγβ2 + δγβ2 a†β1
aδ + aδa†β1

a†β2
aγ) (65)
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Operators in second quantization

The vacuum expectation value of this product of operators becomes

〈0|aα2 aα1 a†αa†βaδaγa†β1
a†β2
|0〉

= (δγβ1δδβ2 − δδβ1δγβ2 )〈0|aα2 aα1 a†αa†β |0〉

= (δγβ1δδβ2 − δδβ1δγβ2 )(δαα1δβα2 − δβα1δαα2 ) (66)
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Operators in second quantization

Insertion of Eq. (66) in Eq. (64) results in

〈α1α2|ĤI |β1β2〉 =
1
2

ˆ
〈α1α2|V |β1β2〉 − 〈α1α2|V |β2β1〉

−〈α2α1|V |β1β2〉+ 〈α2α1|V |β2β1〉
˜

= 〈α1α2|V |β1β2〉 − 〈α1α2|V |β2β1〉
= 〈α1α2|V |β1β2〉AS. (67)
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Operators in second quantization

The two-body operator can also be expressed in terms of the anti-symmetrized matrix
elements we discussed previously as

ĤI =
1
2

X
αβγδ

〈αβ|V |γδ〉a†αa†βaδaγ

=
1
4

X
αβγδ

[〈αβ|V |γδ〉 − 〈αβ|V |δγ〉] a†αa†βaδaγ

=
1
4

X
αβγδ

〈αβ|V |γδ〉ASa†αa†βaδaγ (68)
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Operators in second quantization

The factors in front of the operator, either 1
4 or 1

2 tells whether we use antisymmetrized
matrix elements or not.
We can now express the Hamiltonian operator for a many-fermion system in the
occupation basis representation of Eq. (??) as

H =
X
α,β

〈α|t + u|β〉a†αaβ +
1
4

X
α,β,γ,δ

〈αβ|V |γδ〉a†αa†βaδaγ . (69)

This is form we will use in the rest of these lectures, assuming that we work with

anti-symmetrized two-body matrix elements.
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Topics for Week 37, September 7-11

Second quantization
Monday:
Summary from last week
Particle-hole representation
Tuesday:
Wick’s theorem and diagrammatic representation of
expressions
Exercise 6-8 on Wednesday
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Particle-hole formalism

Second quantization is a useful and elegant formalism for constructing many-body

states and quantum mechanical operators. As we will see later, one can express and

translate many physical processes into simple pictures such as Feynman diagrams.

Expecation values of many-body states are also easily calculated. However, although

the equations are seemingly easy to set up, from a practical point of view, that is the

solution of Schrödinger’s equation, there is no particular gain. The many-body equation

is equally hard to solve, irrespective of representation. The cliche that there is no free

lunch brings us down to earth again. Note however that a transformation to a particular

basis, for cases where the interaction obeys specific symmetries, can ease the solution

of Schrödinger’s equation. An example you will encounter here is the solution of the

two-particle Schrödinger equantion in relative and center-of-mass coordinates. Or the

solution of the three-body problem in so-called Jacobi coordinates.
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Particle-hole formalism

But there is at least one important case where second quantization comes to our
rescue. It is namely easy to introduce another reference state than the pure vacuum
|0〉, where all single-particle are active. With many particles present it is often useful to
introduce another reference state than the vacuum state |0〉. We will label this state |c〉
(c for core) and as we will see it can reduce considerably the complexity and thereby
the dimensionality of the many-body problem. It allows us to sum up to infinite order
specific many-body correlations. (add more stuff in the description below)

The particle-hole representation is one of these handy representations.
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Particle-hole formalism

In the original particle representation these states are products of the creation
operators a†αi acting on the true vacuum |0〉. Following (19) we have

|α1α2 . . . αn−1αn〉 = a†α1
a†α2

. . . a†αn−1
a†αn |0〉 (70)

|α1α2 . . . αn−1αnαn+1〉 = a†α1
a†α2

. . . a†αn−1
a†αn a†αn+1

|0〉 (71)

|α1α2 . . . αn−1〉 = a†α1
a†α2

. . . a†αn−1
|0〉 (72)
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Particle-hole formalism

If we use Eq. (70) as our new reference state, we can simplify considerably the
representation of this state

|c〉 ≡ |α1α2 . . . αn−1αn〉 = a†α1
a†α2

. . . a†αn−1
a†αn |0〉 (73)

The new reference states for the n + 1 and n − 1 states can then be written as

|α1α2 . . . αn−1αnαn+1〉 = (−1)na†αn+1
|c〉 ≡ (−1)n|αn+1〉c (74)

|α1α2 . . . αn−1〉 = (−1)n−1aαn |c〉 ≡ (−1)n−1|αn−1〉c (75)
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Particle-hole formalism

The first state has one additional particle with respect to the new vacuum state |c〉 and

is normally referred to as a one-particle state or one particle added to the many-body

reference state. The second state has one particle less than the reference vacuum

state |c〉 and is referred to as a one-hole state.
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Particle-hole formalism

When dealing with a new reference state it is often convenient to introduce new
creation and annihilation operators since we have from Eq. (75)

aα|c〉 6= 0 (76)

since α is contained in |c〉, while for the true vacuum we have aα|0〉 = 0 for all α.
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Particle-hole formalism

The new reference state leads to the definition of new creation and annihilation
operators which satisfy the following relations

bα|c〉 = 0 (77)

{b†α, b
†
β} = {bα, bβ} = 0

{b†α, bβ} = δαβ (78)

We assume also that the new reference state is properly normalized

〈c|c〉 = 1 (79)
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Particle-hole formalism

The physical interpretation of these new operators is that of so-called quasiparticle

states. This means that a state defined by the addition of one extra particle to a

reference state |c〉 may not necesseraly be interpreted as one particle coupled to a

core.
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Particle-hole formalism

We define now new creation operators that act on a state α creating a new
quasiparticle state

b†α|c〉 =

( a†α|c〉 = |α〉, α > F

aα|c〉 = |α−1〉, α ≤ F
(80)

where F is the Fermi level representing the last occupied single-particle orbit of the

new reference state |c〉.
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Particle-hole formalism

The annihilation is the hermitian conjugate of the creation operator

bα = (b†α)†,

resulting in

b†α =

( a†α α > F

aα α ≤ F
bα =

( aα α > F

a†α α ≤ F
(81)
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Particle-hole formalism

With the new creation and annihilation operator we can now construct many-body
quasiparticle states, with one-particle-one-hole states, two-particle-two-hole states etc
in the same fashion as we previously constructed many-particle states. We can write a
general particle-hole state as

|β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh
〉 ≡ b†β1

b†β2
. . . b†βnp| {z }
>F

b†γ1
b†γ2

. . . b†γnh| {z }
≤F

|c〉 (82)
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Particle-hole formalism

We can now rewrite our one-body and two-body operators in terms of the new creation
and annihilation operators. The number operator becomes

N̂ =
X
α

a†αaα =
X
α>F

b†αbα + nc −
X
α≤F

b†αbα (83)

where nc is the number of particle in the new vacuum state |c〉. The action of N̂ on a
many-body state results in

N|β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh
〉 = (np + nc − nh)|β1β2 . . . βnpγ

−1
1 γ−1

2 . . . γ−1
nh
〉 (84)
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Particle-hole formalism

Here n = np + nc − nh is the total number of particles in the quasi-particle state of
Eq. (82). Note that N̂ counts the total number of particles present

Nqp =
X
α

b†αbα, (85)

gives us the number of quasi-particles as can be seen by computing

Nqp = |β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh
〉 = (np + nh)|β1β2 . . . βnpγ

−1
1 γ−1

2 . . . γ−1
nh
〉 (86)

where nqp = np + nh is the total number of quasi-particles.
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Particle-hole formalism

We express the one-body operator Ĥ0 in terms of the quasi-particle creation and
annihilation operators, resulting in

Ĥ0 =
X
αβ>F

〈α|h|β〉b†αbβ +
X
α > F
β ≤ F

h
〈α|h|β〉b†αb†β + 〈β|h|α〉bβbα

i

+
X
α≤F

〈α|h|α〉 −
X
αβ≤F

〈β|h|α〉b†αbβ (87)
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Particle-hole formalism

The first term gives contribution only for particle states, while the last one contributes

only for holestates. The second term can create or destroy a set of quasi-particles and

the third term is the contribution from the vacuum state |c〉. The physical meaning of

these terms will be discussed in the next section, where we attempt at a diagrammatic

representation.
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Particle-hole formalism

Before we continue with the expressions for the two-body operator, we introduce a
nomenclature we will use for the rest of this text. It is inspired by the notation used in
coupled cluster theories. We reserve the labels i, j, k , . . . for hole states and a, b, c, . . .
for states above F , viz. particle states. This means also that we will skip the constraint
≤ F or > F in the summation symbols. Our operator Ĥ0 reads now

Ĥ0 =
X
ab

〈a|h|b〉b†abb +
X

ai

h
〈a|h|i〉b†ab†i + 〈i|h|a〉bi ba

i
+

X
i

〈i|h|i〉 −
X

ij

〈j|h|i〉b†i bj (88)
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Particle-hole formalism

The two-particle operator in the particle-hole formalism is more complicated since we
have to translate four indices αβγδ to the possible combinations of particle and hole
states. When performing the commutator algebra we can regroup the operator in five
different terms

ĤI = Ĥ(a)
I + Ĥ(b)

I + Ĥ(c)
I + Ĥ(d)

I + Ĥ(e)
I (89)

Using anti-symmetrized matrix elements, the term Ĥ(a)
I is

Ĥ(a)
I =

1
4

X
abcd

〈ab|V |cd〉b†ab†bbd bc (90)
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Particle-hole formalism

The next term Ĥ(b)
I reads

Ĥ(b)
I =

1
4

X
abci

“
〈ab|V |ci〉b†ab†bb†i bc + 〈ai|V |cb〉b†abi bbbc

”
(91)

This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For Ĥ(c)

I we have

Ĥ(c)
I =

1
4

X
abij

“
〈ab|V |ij〉b†ab†bb†j b†i + 〈ij|V |ab〉babbbj bi

”
+

1
2

X
abij

〈ai|V |bj〉b†ab†j bbbi +
1
2

X
abi

〈ai|V |bi〉b†abb. (92)
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Particle-hole formalism

The first line stands for the creation of a two-particle-two-hole state, while the second
line represents the creation to two one-particle-one-hole pairs while the last term
represents a contribution to the particle single-particle energy from the hole states, that
is an interaction between the particle states and the hole states within the new vacuum
state. The fourth term reads

Ĥ(d)
I =

1
4

X
aijk

“
〈ai|V |jk〉b†ab†k b†j bi + 〈ji|V |ak〉b†k bj bi ba

”
+

1
4

X
aij

“
〈ai|V |ji〉b†ab†j + 〈ji|V |ai〉 − 〈ji|V |ia〉bj ba

”
. (93)
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Particle-hole formalism

The terms in the first line stand for the creation of a particle-hole state interacting with
hole states, we will label this as a two-hole-one-particle contribution. The remaining
terms are a particle-hole state interacting with the holes in the vacuum state. Finally we
have

Ĥ(e)
I =

1
4

X
ijkl

〈kl|V |ij〉b†i b†j bl bk +
1
2

X
ijk

〈ij|V |kj〉b†k bi +
1
2

X
ij

〈ij|V |ij〉 (94)

The first terms represents the interaction between two holes while the second stands

for the interaction between a hole and the remaining holes in the vacuum state. It

represents a contribution to single-hole energy to first order. The last term collects all

contributions to the energy of the ground state of a closed-shell system arising from

hole-hole correlations.
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Topics for Week 38, September 14-18

Second quantization
Monday:
Summary from last week
Summary of Wick’s theorem and diagrammatic
representation of diagrams
Tuesday:
Hartree-Fock theory
Exercise 9-12 on Wednesday
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Topics for Week 39, September 21-25

Second quantization
Tuesday:
Hartree-Fock theory and project 1
Wednesday:
Hartree-Fock theory and project 1
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Variational Calculus and Lagrangian Multiplier

The calculus of variations involves problems where the quantity to be minimized or
maximized is an integral.
In the general case we have an integral of the type

E [Φ] =

Z b

a
f (Φ(x),

∂Φ

∂x
, x)dx ,

where E is the quantity which is sought minimized or maximized. The problem is that

although f is a function of the variables Φ, ∂Φ/∂x and x , the exact dependence of Φ

on x is not known. This means again that even though the integral has fixed limits a

and b, the path of integration is not known. In our case the unknown quantities are the

single-particle wave functions and we wish to choose an integration path which makes

the functional E [Φ] stationary. This means that we want to find minima, or maxima or

saddle points. In physics we search normally for minima. Our task is therefore to find

the minimum of E [Φ] so that its variation δE is zero subject to specific constraints. In

our case the constraints appear as the integral which expresses the orthogonality of

the single-particle wave functions. The constraints can be treated via the technique of

Lagrangian multipliers
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Euler-Lagrange equations

We assume the existence of an optimum path, that is a path for which E [Φ] is
stationary. There are infinitely many such paths. The difference between two paths δΦ
is called the variation of Φ.
We call the variation η(x) and it is scaled by a factor α. The function η(x) is arbitrary
except for

η(a) = η(b) = 0,

and we assume that we can model the change in Φ as

Φ(x , α) = Φ(x , 0) + αη(x),

and
δΦ = Φ(x , α)− Φ(x , 0) = αη(x).
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Euler-Lagrange equations

We choose Φ(x , α = 0) as the unkonwn path that will minimize E . The value
Φ(x , α 6= 0) describes a neighbouring path.
We have

E [Φ(α)] =

Z b

a
f (Φ(x , α),

∂Φ(x , α)

∂x
, x)dx .

In the slides I will use the shorthand

Φx (x , α) =
∂Φ(x , α)

∂x
.

In our case a = 0 and b =∞ and we know the value of the wave function.
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Euler-Lagrange equations

The condition for an extreme of

E [Φ(α)] =

Z b

a
f (Φ(x , α),Φx (x , α), x)dx ,

is »
∂E [Φ(α)]

∂x

–
α=0

= 0.

The α dependence is contained in Φ(x , α) and Φx (x , α) meaning that»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ

∂Φ

∂α
+

∂f
∂Φx

∂Φx

∂α

«
dx .

We have defined
∂Φ(x , α)

∂α
= η(x)

and thereby
∂Φx (x , α)

∂α
=

d(η(x))

dx
.
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Euler-Lagrange equations

Using
∂Φ(x , α)

∂α
= η(x),

and
∂Φx (x , α)

∂α
=

d(η(x))

dx
,

in the integral gives»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ

η(x) +
∂f
∂Φx

d(η(x))

dx

«
dx .

Integrate the second term by partsZ b

a

∂f
∂Φx

d(η(x))

dx
dx = η(x)

∂f
∂Φx
|ba −

Z b

a
η(x)

d
dx

∂f
∂Φx

dx ,

and since the first term dissappears due to η(a) = η(b) = 0, we obtain»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ
−

d
dx

∂f
∂Φx

«
η(x)dx = 0.
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Euler-Lagrange equations

»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ
−

d
dx

∂f
∂Φx

«
η(x)dx = 0,

can also be written as

α

»
∂E [Φ(α)]

∂α

–
α=0

=

Z b

a

„
∂f
∂Φ
−

d
dx

∂f
∂Φx

«
δΦ(x)dx = δE = 0.

The condition for a stationary value is thus a partial differential equation

∂f
∂Φ
−

d
dx

∂f
∂Φx

= 0,

known as Euler’s equation. Can easily be generalized to more variables.
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Lagrangian Multipliers

Consider a function of three independent variables f (x , y , z) . For the function f to be
an extreme we have

df = 0.

A necessary and sufficient condition is

∂f
∂x

=
∂f
∂y

=
∂f
∂z

= 0,

due to

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz.

In physical problems the variables x , y , z are often subject to constraints (in our case Φ

and the orthogonality constraint) so that they are no longer all independent. It is

possible at least in principle to use each constraint to eliminate one variable and to

proceed with a new and smaller set of independent varables.
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Lagrangian Multipliers

The use of so-called Lagrangian multipliers is an alternative technique when the
elimination of of variables is incovenient or undesirable. Assume that we have an
equation of constraint on the variables x , y , z

φ(x , y , z) = 0,

resulting in

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz = 0.

Now we cannot set anymore

∂f
∂x

=
∂f
∂y

=
∂f
∂z

= 0,

if df = 0 is wanted because there are now only two independent variables! Assume x

and y are the independent variables. Then dz is no longer arbitrary.
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Lagrangian Multipliers

However, we can add to

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz,

a multiplum of dφ, viz. λdφ, resulting in

df + λdφ = (
∂f
∂z

+ λ
∂φ

∂x
)dx + (

∂f
∂y

+ λ
∂φ

∂y
)dy + (

∂f
∂z

+ λ
∂φ

∂z
)dz = 0.

Our multiplier is chosen so that

∂f
∂z

+ λ
∂φ

∂z
= 0.

Quantum mechanics of many-particle systems FYS-KJM4480



Lagrangian Multipliers

However, we took dx and dy as to be arbitrary and thus we must have

∂f
∂x

+ λ
∂φ

∂x
= 0,

and
∂f
∂y

+ λ
∂φ

∂y
= 0.

When all these equations are satisfied, df = 0. We have four unknowns, x , y , z and λ.
Actually we want only x , y , z, λ need not to be determined, it is therefore often called
Lagrange’s undetermined multiplier. If we have a set of constraints φk we have the
equations

∂f
∂xi

+
X

k

λk
∂φk

∂xi
= 0.
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Variational Calculus and Lagrangian Multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E =

Z
dxdydzψ∗(x , y , z)Ĥψ(x , y , z),

with the constraint Z
dxdydzψ∗(x , y , z)ψ(x , y , z) = 1,

and a Hamiltonian
Ĥ = −

1
2
∇2 + V (x , y , z).

I will skip the variables x , y , z below, and write for example V (x , y , z) = V .
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Variational Calculus and Lagrangian Multiplier

The integral involving the kinetic energy can be written as, if we assume periodic
boundary conditions or that the function ψ vanishes strongly for large values of x , y , z,Z

dxdydzψ∗
„
−

1
2
∇2
«
ψdxdydz = ψ∗∇ψ|+

Z
dxdydz

1
2
∇ψ∗∇ψ.

Inserting this expression into the expectation value for the energy and taking the
variational minimum we obtain

δE = δ

Z
dxdydz

„
1
2
∇ψ∗∇ψ + Vψ∗ψ

«ff
= 0.
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Variational Calculus and Lagrangian Multiplier

The constraint appears in integral form asZ
dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational minimum we
obtain the final variational equation

δ

Z
dxdydz

„
1
2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ

«ff
= 0.

Introducing the function f

f =
1
2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ =

1
2

(ψ∗xψx + ψ∗yψy + ψ∗zψz ) + Vψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x , y , z and introduced the shorthand ψx ,

ψy and ψz for the various derivatives.
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Variational Calculus and Lagrangian Multiplier

For ψ∗ the Euler equation results in

∂f
∂ψ∗

−
∂

∂x
∂f
∂ψ∗x

−
∂

∂y
∂f
∂ψ∗y

−
∂

∂z
∂f
∂ψ∗z

= 0,

which yields

−
1
2

(ψxx + ψyy + ψzz ) + Vψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system. Then the
last equation is nothing but the standard Schrödinger equation and the variational
approach discussed here provides a powerful method for obtaining approximate
solutions of the wave function.
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Finding the Hartree-Fock functional E [Φ]

We rewrite our Hamiltonian

Ĥ = −
NX

i=1

1
2
∇2

i −
NX

i=1

Z
ri

+
NX

i<j

1
rij
,

as

Ĥ = Ĥ1 + Ĥ2 =
NX

i=1

ĥi +
NX

i<j=1

1
rij
,

ĥi = −
1
2
∇2

i −
Z
ri
.
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Finding the Hartree-Fock functional E [Φ]

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

Z
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalizedZ
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .
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Finding the Hartree-Fock functional E [Φ]

In the Hartree-Fock method the trial function is the Slater determinant which can be
rewritten as

Ψ(r1, r2, . . . , rN , α, β, . . . , ν) =
1
√

N!

X
P

(−)PPψα(r1)ψβ(r2) . . . ψν(rN ) =
√

N!AΦH ,

where we have introduced the anti-symmetrization operator A defined by the
summation over all possible permutations of two eletrons. It is defined as

A =
1

N!

X
P

(−)PP,

with the the Hartree-function given by the simple product of all possible single-particle
function (two for helium, four for beryllium and ten for neon)

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN ).
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Finding the Hartree-Fock functional E [Φ]

Both Ĥ1 and Ĥ2 are invariant under electron permutations, and hence commute with A

[H1,A] = [H2,A] = 0.

Furthermore, A satisfies
A2 = A,

since every permutation of the Slater determinant reproduces it.
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Finding the Hartree-Fock functional E [Φ]

The expectation value of Ĥ1Z
Φ∗Ĥ1Φdτ = N!

Z
Φ∗HAĤ1AΦHdτ

is readily reduced to Z
Φ∗Ĥ1Φdτ = N!

Z
Φ∗H Ĥ1AΦHdτ,

which can be rewritten as

Z
Φ∗Ĥ1Φdτ =

NX
i=1

X
P

(−)P
Z

Φ∗H ĥi PΦHdτ.
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Finding the Hartree-Fock functional E [Φ]

The integral vanishes if two or more electrons are permuted in only one of the
Hartree-functions ΦH because the individual orbitals are orthogonal. We obtain then

Z
Φ∗Ĥ1Φdτ =

NX
i=1

Z
Φ∗H ĥi ΦHdτ.

Orthogonality allows us to further simplify the integral, and we arrive at the following
expression for the expectation values of the sum of one-body Hamiltonians

Z
Φ∗Ĥ1Φdτ =

NX
µ=1

Z
ψ∗µ(ri )ĥiψµ(ri )dri ,

or just as Z
Φ∗Ĥ1Φdτ =

NX
µ=1

〈µ|h|µ〉.
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Finding the Hartree-Fock functional E [Φ]

The expectation value of the two-body Hamiltonian is obtained in a similar manner. We
have Z

Φ∗Ĥ2Φdτ = N!

Z
Φ∗HAĤ2AΦHdτ,

which reduces to

Z
Φ∗Ĥ2Φdτ =

NX
i≤j=1

X
P

(−)P
Z

Φ∗H
1
rij

PΦHdτ,

by following the same arguments as for the one-body Hamiltonian. Because of the
dependence on the inter-electronic distance 1/rij , permutations of two electrons no
longer vanish, and we get

Z
Φ∗Ĥ2Φdτ =

NX
i<j=1

Z
Φ∗H

1
rij

(1− Pij )ΦHdτ.

where Pij is the permutation operator that interchanges electrons i and j .
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Finding the Hartree-Fock functional E [Φ]

We use the assumption that the orbitals are orthogonal, and obtain

Z
Φ∗Ĥ2Φdτ =

1
2

NX
µ=1

NX
ν=1

"Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψν(ri )ψµ(ri )dxixj

#
.

The first term is the so-called direct term or Hartree term, while the second is due to
the Pauli principle and is called exchange term or Fock term. The factor 1/2 is
introduced because we now run over all pairs twice.
The compact notation is

1
2

NX
µ=1

NX
ν=1

"
〈µν|

1
rij
|µν〉 − 〈µν|

1
rij
|νµ〉

#
.
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Variational Calculus and Lagrangian Multiplier, back to
Hartree-Fock

Our functional is written as

E [Φ] =
NX
µ=1

Z
ψ∗µ(ri )ĥiψµ(ri )dri +

1
2

NX
µ=1

NX
ν=1

"Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψν(ri )ψµ(ri )dri rj

#
The more compact version is

E [Φ] =
NX
µ=1

〈µ|h|µ〉+
1
2

NX
µ=1

NX
ν=1

"
〈µν|

1
rij
|µν〉 − 〈µν|

1
rij
|νµ〉

#
.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

If we generalize the Euler-Lagrange equations to more variables and introduce N2

Lagrange multipliers which we denote by εµν , we can write the variational equation for
the functional of E

δE −
NX
µ=1

NX
ν=1

εµνδ

Z
ψ∗µψν = 0.

For the orthogonal wave functions ψµ this reduces to

δE −
NX
µ=1

εµδ

Z
ψ∗µψµ = 0.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Variation with respect to the single-particle wave functions ψµ yields then

NX
µ=1

Z
δψ∗µĥiψµdri +

1
2

NX
µ=1

NX
ν=1

"Z
δψ∗µψ

∗
ν

1
rij
ψµψνdri drj −

Z
δψ∗µψ

∗
ν

1
rij
ψνψµdri drj

#

+
NX
µ=1

Z
ψ∗µĥiδψµdri +

1
2

NX
µ=1

NX
ν=1

"Z
ψ∗µψ

∗
ν

1
rij
δψµψνdri drj −

Z
ψ∗µψ

∗
ν

1
rij
ψνδψµdri drj

#

−
NX
µ=1

Eµ
Z
δψ∗µψµdri −

NX
µ=1

Eµ
Z
ψ∗µδψµdri = 0.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Although the variations δψ and δψ∗ are not independent, they may in fact be treated as
such, so that the terms dependent on either δψ and δψ∗ individually may be set equal
to zero. To see this, simply replace the arbitrary variation δψ by iδψ, so that δψ∗ is
replaced by −iδψ∗, and combine the two equations. We thus arrive at the
Hartree-Fock equations24−1

2
∇2

i −
Z
ri

+
NX
ν=1

Z
ψ∗ν(rj )

1
rij
ψν(rj )drj

35ψµ(ri )

−

24 NX
ν=1

Z
ψ∗ν(rj )

1
rij
ψµ(rj )drj

35ψν(ri ) = εµψµ(ri ).

Notice that the integration
R

drj implies an integration over the spatial coordinates rj

and a summation over the spin-coordinate of electron j .
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The two first terms are the one-body kinetic energy and the electron-nucleus potential.

The third or direct term is the averaged electronic repulsion of the other electrons. This

term is identical to the Coulomb integral introduced in the simple perturbative approach

to the helium atom. As written, the term includes the ’self-interaction’ of electrons when

i = j . The self-interaction is cancelled in the fourth term, or the exchange term. The

exchange term results from our inclusion of the Pauli principle and the assumed

determinantal form of the wave-function. The effect of exchange is for electrons of

like-spin to avoid each other.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

A theoretically convenient form of the Hartree-Fock equation is to regard the direct and
exchange operator defined through

V d
µ(ri ) =

Z
ψ∗µ(rj )

1
rij
ψµ(rj )drj

and

V ex
µ (ri )g(ri ) =

 Z
ψ∗µ(rj )

1
rij

g(rj )drj

!
ψµ(ri ),

respectively.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The function g(ri ) is an arbitrary function, and by the substitution g(ri ) = ψν(ri ) we get

V ex
µ (ri )ψν(ri ) =

 Z
ψ∗µ(rj )

1
rij
ψν(rj )drj

!
ψµ(ri ).
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

We may then rewrite the Hartree-Fock equations as

HHF
i ψν(ri ) = ενψν(ri ),

with

HHF
i = hi +

NX
µ=1

V d
µ(ri )−

NX
µ=1

V ex
µ (ri ),

and where hi is the one-body part
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Topics for Week 40, September 28- October 2

Hartree-Fock theory
Monday:
Hartree-Fock theory
Tuesday:
Hartree-Fock theory
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Hartree-Fock by varying the coefficients of a wave
function expansion

Another possibility is to expand the single-particle functions in a known basis and vary
the coefficients, that is, the new single-particle wave function is written as a linear
expansion in terms of a fixed chosen orthogonal basis (for example harmonic oscillator,
Laguerre polynomials etc)

ψa =
X
λ

Caλψλ. (95)

In this case we vary the coefficients Caλ. If the basis has infinitely many solutions, we
need to truncate the above sum. In all our equations we assume a truncation has been
made.
The single-particle wave functions ψλ(r), defined by the quantum numbers λ and r are
defined as the overlap

ψλ(r) = 〈r|λ〉.
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Hartree-Fock by varying the coefficients of a wave
function expansion

We will omit the radial dependence of the wave functions and introduce first the
following shorthands for the Hartree and Fock integrals

〈µν|V |µν〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj ,

and
〈µν|V |νµ〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj .
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Hartree-Fock by varying the coefficients of a wave
function expansion

Since the interaction is invariant under the interchange of two particles it means for
example that we have

〈µν|V |µν〉 = 〈νµ|V |νµ〉,

or in the more general case

〈µν|V |στ〉 = 〈νµ|V |τσ〉.
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Hartree-Fock by varying the coefficients of a wave
function expansion

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .
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Hartree-Fock by varying the coefficients of a wave
function expansion

With these notations we rewrite the Hartree-Fock functional as

Z
Φ∗Ĥ1Φdτ =

1
2

AX
µ=1

AX
ν=1

〈µν|V |µν〉AS . (96)

Combining Eqs. (13) and (96) we obtain the energy functional

E [Φ] =
NX
µ=1

〈µ|h|µ〉+
1
2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (97)
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Hartree-Fock by varying the coefficients of a wave
function expansion

If we vary the above energy functional with respect to the basis functions |µ〉, this
corresponds to what was done in the previous case. We are however interested in
defining a new basis defined in terms of a chosen basis as defined in Eq. (95). We can
then rewrite the energy functional as

E [Ψ] =
NX

a=1

〈a|h|a〉+
1
2

NX
ab=1

〈ab|V |ab〉AS , (98)

where Ψ is the new Slater determinant defined by the new basis of Eq. (95).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Using Eq. (95) we can rewrite Eq. (98) as

E [Ψ] =
NX

a=1

X
αβ

C∗aαCaβ〈α|h|β〉+
1
2

NX
ab=1

X
αβγδ

C∗aαC∗bβCaγCbδ〈αβ|V |γδ〉AS . (99)
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Hartree-Fock by varying the coefficients of a wave
function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange
multipliers, noting that since 〈a|b〉 = δa,b and 〈α|β〉 = δα,β , the coefficients Caγ obey
the relation

〈a|b〉 = δa,b =
X
αβ

C∗aαCaβ〈α|β〉 =
X
α

C∗aαCaα,

which allows us to define a functional to be minimized that reads

E [Ψ]−
NX

a=1

εa
X
α

C∗aαCaα. (100)
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Hartree-Fock by varying the coefficients of a wave
function expansion

Minimizing with respect to C∗kα, remembering that C∗kα and Ckα are independent, we
obtain

d
dC∗kα

"
E [Ψ]−

X
a
εa
X
α

C∗aαCaα

#
= 0, (101)

which yields for every single-particle state k the following Hartree-Fock equations

X
γ

Ckγ〈α|h|γ〉+
NX

a=1

X
βγδ

C∗aβCaδCkγ〈αβ|V |γδ〉AS = εk Ckα. (102)
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Hartree-Fock by varying the coefficients of a wave
function expansion

We can rewrite this equation as

X
γ

8<:〈α|h|γ〉+
NX
a

X
βδ

C∗aβCaδ〈αβ|V |γδ〉AS

9=;Ckγ = εk Ckα. (103)

Note that the sums over greek indices run over the number of basis set functions (in

principle an infinite number).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Defining

hHF
αγ = 〈α|h|γ〉+

NX
a=1

X
βδ

C∗aβCaδ〈αβ|V |γδ〉AS ,

we can rewrite the new equations asX
γ

hHF
αγCkγ = εk Ckα. (104)

Note again that the sums over greek indices run over the number of basis set functions

(in principle an infinite number).
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Topics for Week 41, October 5-9

Hartree-Fock theory
Monday:
Hartree-Fock theory, Thouless’ theorem and stability of
Hartree-Fock equations
Tuesday:
End Hartree-Fock theory, examples
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Topics for Week 42, October 12-16

Hartree-Fock theory and many-body perturbation theory
Monday:
End Hartree-Fock theory and the electron gas
Tuesday:
Many-body perturbation theory
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Topics for Week 43, October 19-23

Many-body perturbation theory
Monday:
Summary from previous week
Time-independent perturbation theory
Brillouin-Wigner and Rayleigh-Schrödinger perturbation
theory
Tuesday:
Time-dependent perturbation theory
Schrödinger, Heisenberg and interaction pictures
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Time-independent perturbation theory

We defined the projection operators

P =
DX

i=1

|ψi 〉〈ψi |,

and

Q =
∞X

i=D+1

|ψi 〉〈ψi |,

with D being the dimension of the model space, and PQ = 0, P2 = P, Q2 = Q and
P + Q = I. The wave functions |ψi 〉 are eigenfunctions of the unperturbed hamiltonian
H0 = T + U (with eigenvalues εi ), where T is the kinetic energy and U an external
one-body potential.

The full hamiltonian is then rewritten as H = H0 + HI with HI = V − U.
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Simple Toy Model to illustrate basic principles

Choose a hamiltonian that depends linearly on a strength parameter z

H = H0 + zH1,

with 0 ≤ z ≤ 1, where the limits z = 0 and z = 1 represent the non-interacting
(unperturbed) and fully interacting system, respectively. The model is an eigenvalue
problem with only two available states, which we label P and Q. Below we will let state
P represent the model-space eigenvalue whereas state Q represents the eigenvalue of
the excluded space. The unperturbed solutions to this problem are

H0ΦP = εPΦP

and
H0ΦQ = εQΦQ ,

with εP < εQ . We label the off-diagonal matrix elements X , while XP = 〈ΦP |H1|ΦP〉
and XQ = 〈ΦQ |H1|ΦQ〉.

Quantum mechanics of many-particle systems FYS-KJM4480



Simple Two-Level Model

The exact eigenvalue problem„
εP + zXP zX

zX εQ + zXQ

«
yields

E(z) =
1
2
{εP + εQ + zXP + zXQ ± (εQ − εP + zXQ − zXP)

×

s
1 +

4z2X 2

(εQ − εP + zXQ − zXP)2

)
.

A Rayleigh-Schrödinger like expansion for the lowest eigenstate

E = εP + zXP +
z2X 2

εP − εQ
+

z3X 2(XQ − XP)

(εP − εQ)2
+

z4X 2(XQ − XP)2

(εP − εQ)3
−

z4X 4

(εP − εQ)3
+ . . . ,

which can be viewed as an effective interaction for state P in which state Q is taken

into account to successive orders of the perturbation.
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Another look at the problem: Similarity
Transformations

We have defined a transformation

Ω−1HΩΩ−1|Ψα〉 = EαΩ−1|Ψα〉.

We rewrite this for later use, introducing Ω = eT , as

H′ = e−T HeT ,

and T is constructed so that QH′P = PH′Q = 0. The P-space effective Hamiltonian is
given by

Heff = PH′P,

and has d exact eigenvalues of H.
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Another look at the simple 2× 2 Case, Jacobi Rotation

We have the simple model „
εP + zXP zX

zX εQ + zXQ

«
Rewrite for simplicity as a symmetric matrix H ∈ R2×2

H =

»
H11 H12
H21 H22

–
.

The standard Jacobi rotation allows to find the eigenvalues via the orthogonal matrix Ω

Ω = eT =

»
c s
−s c

–
,

with c = cos γ and s = sin γ. We have then that H′ = e−T HeT is diagonal.
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Simple 2× 2 Case, Jacobi Rotation first

To have non-zero nondiagonal matrix H′ we need to solve

(H22 − H11)cs + H12(c2 − s2) = 0,

and using c2 − s2 = cos(2γ) and cs = sin(2γ)/2 this is equivalent with

tan(2γ) =
2H12

H11 − H22
.

Solving the equation we have

γ =
1
2

tan−1
„

2H12

H11 − H22

«
+

kπ
2
, k = . . . ,−1, 0, 1, . . . , (105)

where kπ/2 is added due to the periodicity of the tan function.
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Simple 2× 2 Case, Jacobi Rotation first

Note that k = 0 gives a diagonal matrix on the form

H′k=0 =

»
λ1 0
0 λ2

–
, (106)

while k = 1 changes the diagonal elements

H′k=1 =

»
λ2 0
0 λ1

–
. (107)
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Understanding excitations, model spaces and
excluded spaces

We always start with a ’vacuum’ reference state, the Slater determinant for the believed
dominating configuration of the ground state. Here a simple case of eight particles with
single-particle wave functions φi (xi )

Φ0 =
1
√

8!

0BBBBB@
φ1(x1) φ1(x2) . . . φ1(x8)
φ2(x1) φ2(x2) . . . φ2(x8)
φ3(x1) φ3(x2) . . . φ3(x8)
. . . . . . . . . . . .
. . . . . . . . . . . .

φ8(x1) φ8(x2) . . . φ8(x8)

1CCCCCA
We can allow for a linear combination of excitations beyond the ground state, viz., we
could assume that we include 1p-1h and 2p-2h excitations

Ψ2p−2h = (1 + T1 + T2)Φ0

T1 is a 1p-1h excitation while T2 is a 2p-2h excitation.
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Understanding excitations, model spaces and
excluded spaces

The single-particle wave functions of

Φ0 =
1
√

8!

0BBBBB@
φ1(x1) φ1(x2) . . . φ1(x8)
φ2(x1) φ2(x2) . . . φ2(x8)
φ3(x1) φ3(x2) . . . φ3(x8)
. . . . . . . . . . . .
. . . . . . . . . . . .

φ8(x1) φ8(x2) . . . φ8(x8)

1CCCCCA
are normally chosen as the solutions of the so-called non-interacting part of the

Hamiltonian, H0. A typical basis is provided by the harmonic oscillator problem or

hydrogen-like wave functions.
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Excitations in Pictures

a a a aa a a a Φ0εF

ε4
ε3

ε2
ε1

�

R

a

From T1

T1 ∝ a+
a ai

a
�

R

to T 2
1

a a a aa a a a Φ0εF

ε4
ε3

ε2
ε1

�

R

a a
�

R

From T2

T2 ∝ a+
a a+

b ajai
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�

R

�

R

to T 2
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Excitations

a a a aa a a aεF

ε4
ε3

ε2
ε1

�

R

a a
�

R

aa
�

R

�

R

2p − 2h
1p − 1h @@R

?@@R

Truncations
Truncated basis of Slater
determinants with 2p − 2h has
Ψ2p−2h = (1 + T1 + T2)Φ0

Energy contains then

E2p−2h =

〈Φ0(1+T †1 +T †2 )|H|(1+T1+T2)Φ0〉
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