## Exercises FYS-KJM4480, Fall semester 2009

## Exercises week 35, August 24-28 2009

## Exercise 1

Consider the Slater determinant

$$
\Phi_{\lambda}^{A S}\left(x_{1} x_{2} \ldots x_{N} ; \alpha_{1} \alpha_{2} \ldots \alpha_{N}\right)=\frac{1}{\sqrt{N!}} \sum_{p}(-)^{p} P \prod_{i=1}^{N} \psi_{\alpha_{i}}\left(x_{i}\right) .
$$

where $P$ is an operator which permutes the coordinates of two particles. We have assumed here that the number of particles is the same as the number of available single-particle states, represented by the greek letters $\alpha_{1} \alpha_{2} \ldots \alpha_{N}$.
a) Write out $\Phi^{A S}$ for $N=3$.
b) Show that

$$
\int d x_{1} d x_{2} \ldots d x_{N}\left|\Phi_{\lambda}^{A S}\left(x_{1} x_{2} \ldots x_{N} ; \alpha_{1} \alpha_{2} \ldots \alpha_{N}\right)\right|^{2}=1
$$

c) Define a general onebody operator $\hat{F}=\sum_{i}^{N} \hat{f}\left(x_{i}\right)$ and a general twobody operator $\hat{G}=\sum_{i>j}^{N} \hat{g}\left(x_{i}, x_{j}\right)$ with $g$ being invariant under the interchange of the coordinates of particles $i$ and $j$. Calculate the matrix elements for a two-particle Slater determinant

$$
\left\langle\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right| \hat{F}\left|\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right\rangle,
$$

and

$$
\left\langle\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right| \hat{G}\left|\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right\rangle
$$

Explain the short-hand notation for the Slater determinant. Which properties do you expect these operators to have in addition to an eventual permutation symmetry?
d) Compute the corresponding matrix elements for $N$ particles which can occupy $N$ single particle states.

## Exercise 2

We will now consider a simple three-level problem, depicted in the figure below. The single-particle states are labelled by the quantum number $p$ and can accomodate up to two single particles, viz., every single-particle state is doubly degenerate (you could think of this as one state having spin up and the other spin down). We let the spacing between the doubly degenerate single-particle states be constant, with value $d$. The first state has energy $d$. There are only three available single-particle states, $p=1, p=2$ and $p=3$, as illustrated in the figure.
a) How many two-particle Slater determinants can we construct in this space?
b) We limit ourselves to a system with only the two lowest single-particle orbits and two particles, $p=1$ and $p=2$. We assume that we can write the Hamiltonian as

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{I}
$$

and that the onebody part of the Hamiltonian with single-particle operator $\hat{h}_{0}$ has the property

$$
\hat{h}_{0} \psi_{p \sigma}=p \times d \psi_{p \sigma}
$$

where we have added a spin quantum number $\sigma$. We assume also that the only two-particle states that can exist are those where two particles are in the same state $p$, as shown by the two possibilities to the left in the figure. The two-particle matrix elements of $\hat{H}_{I}$ have all a constant value, $-g$. Show then that the Hamiltonian matrix can be written as

$$
\left(\begin{array}{cc}
2 d-g & -g \\
-g & 4 d-g
\end{array}\right)
$$



FIG. 1: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle states. The spacing between each level $p$ is constant in this picture. We show some possible two-particle states.
and find the eigenvalues and eigenvectors. What is mixing of the state with two particles in $p=2$ to the wave function with two-particles in $p=1$ ? Discuss your results in terms of a linear combination of Slater determinants.
c) Add the possibility that the two particles can be in the state with $p=3$ as well and find the Hamiltonian matrix, the eigenvalues and the eigenvectors. We still insist that we only have two-particle states composed of two particles being in the same level $p$. You can diagonalize numerically your $3 \times 3$ matrix.

This simple model catches several birds with a stone. It demonstrates how we can build linear combinations of Slater determinants and interpret these as different admixtures to a given state. It represents also the way we are going to interpret these contributions. The two-particle states above $p=1$ will be interpreted as excitations from the ground state configuration, $p=1$ here. The reliability of this ansatz for the ground state, with two particles in $p=1$, depends on the strength of the interaction $g$ and the single-particle spacing $d$. Finally, this model is a simple schematic ansatz for studies of pairing correlations and thereby superfluidity/superconductivity in fermionic systems.

## Exercises week 36, August 31- September 42009

## Exercise 3

Calculate the matrix elements

$$
\left\langle\alpha_{1} \alpha_{2}\right| \hat{F}\left|\alpha_{1} \alpha_{2}\right\rangle
$$

and

$$
\left\langle\alpha_{1} \alpha_{2}\right| \hat{G}\left|\alpha_{1} \alpha_{2}\right\rangle
$$

with

$$
\begin{gathered}
\left|\alpha_{1} \alpha_{2}\right\rangle=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger}|0\rangle, \\
\hat{F}=\sum_{\alpha \beta}\langle\alpha| f|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}, \\
\langle\alpha| f|\beta\rangle=\int \psi_{\alpha}^{*}(x) f(x) \psi_{\beta}(x) d x, \\
\hat{G}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| g|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma},
\end{gathered}
$$

and

$$
\langle\alpha \beta| g|\gamma \delta\rangle=\iint \psi_{\alpha}^{*}\left(x_{1}\right) \psi_{\beta}^{*}\left(x_{2}\right) g\left(x_{1}, x_{2}\right) \psi_{\gamma}\left(x_{1}\right) \psi_{\delta}\left(x_{2}\right) d x_{1} d x_{2}
$$

Compare these results with those from exercise 1c).

## Exercise 4

We define the two-particle operator

$$
\hat{T}=\sum_{\alpha \beta}\langle\alpha| t|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}
$$

and the two-particle operator

$$
\hat{V}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| v|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} .
$$

We have defined a single-particle basis with quantum numbers given by the set of greek letters $\alpha, \beta, \gamma, \ldots$ Show that the form of these operators remain unchanged under a transformation of the single-particle basis given by

$$
|i\rangle=\sum_{\lambda}|\lambda\rangle\langle\lambda \mid i\rangle,
$$

with $\lambda \in\{\alpha, \beta, \gamma, \ldots\}$. Show also that $a_{i}^{\dagger} a_{i}$ is the number operator for the orbital $|i\rangle$.
Find also the expressions for the operators $T$ and $V$ when $T$ is diagonal in the representation $i$. Show also that the operator

$$
\hat{N}_{p}=\frac{1}{2} \sum_{\alpha \neq \beta} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\beta} a_{\alpha}
$$

is an operator that represents the number of pairs and find an expression $\hat{T}$ and $\hat{V}$ when $v$ is diagonal in $\alpha, \beta$.

## Exercise 5

Consider the Hamilton operator for a harmonic oscillator $(c=\hbar=1)$

$$
\hat{H}=\frac{1}{2 m} p^{2}+\frac{1}{2} k x^{2}, \quad k=m \omega^{2}
$$

(a) Define the operators

$$
a^{\dagger}=\frac{1}{\sqrt{2 m \omega}}(p+i m \omega x), \quad a=\frac{1}{\sqrt{2 m \omega}}(p-i m \omega x)
$$

and find the commutation relations for these operators by using the corresponding relations for $p$ and $x$.
(b) Show that

$$
H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)
$$

(c) Show that if for a state $|0\rangle$ which satisfies $\hat{H}|0\rangle=\frac{1}{2} \omega|0\rangle$, then we have

$$
\hat{H}|n\rangle=\hat{H}\left(a^{\dagger}\right)^{n}|0\rangle=\left(n+\frac{1}{2}\right) \omega|n\rangle
$$

(d) Show that the state $|0\rangle$ from c), with the property $a|0\rangle=0$, must exist.
(e) Find the coordinate-space representation of $|0\rangle$ and explain how you would construct the wave functions for excited states based on this state.

## Exercises week 37, September 7-11 2009

## Exercise 6

Write the two-particle operator

$$
G=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| g|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

in the quasi-particle representation for particles and holes

$$
b_{\alpha}^{\dagger}=\left\{\begin{array}{l}
a_{\alpha}^{\dagger} \\
a_{\alpha}
\end{array} \quad b_{\alpha}= \begin{cases}a_{\alpha} & \alpha>\alpha_{F} \\
a_{\alpha}^{\dagger} & \alpha \leq \alpha_{F}\end{cases}\right.
$$

You can use Wick's theorem.

## Exercise 7

Starting with the Slater determinant

$$
\Phi_{0}=\prod_{i=1}^{n} a_{\alpha_{i}}^{\dagger}|0\rangle
$$

use Wick's theorem to compute the normalization integral $<\Phi_{0} \mid \Phi_{0}>$.

## Exercise 8

Compute the matrix element

$$
\left\langle\alpha_{1} \alpha_{2} \alpha_{3}\right| G\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime}\right\rangle
$$

using Wick's theorem and express the two-body operator $G$ (from exercise 1) in the occupation number (second quantization) representation.

## Exercises week 38, September 14-18 2009

## Exercise 9

Use the results from exercise 6 and Wick's theorem to calculate

$$
\left\langle\beta_{1} \gamma_{1}^{-1}\right| G\left|\beta_{2} \gamma_{2}^{-1}\right\rangle
$$

You need to consider that case that $\beta_{1}$ be equal $\beta_{2}$ and that $\gamma_{1}$ be equal $\gamma_{2}$.

## Exercise 10

a) Place indices and write the algebraic expressions and discuss the physical meaning of the following diagrams: b)




What is the diagram for $\langle c| G|c\rangle$ ? The operator $G$ is the same as the one discussed in the previous exercises. Use the diagrammatic rules to write down the algebraic expression.

## Exercise 11

Consider a Slater determinant built up of single-particle orbitals $\psi_{\lambda}$, with $\lambda=1,2, \ldots, N$.
The unitary transformation

$$
\psi_{a}=\sum_{\lambda} C_{a \lambda} \phi_{\lambda}
$$

brings us into the new basis. The new basis has quantum numbers $a=1,2, \ldots, N$. Show that the new basis is orthonormal. Show that the new Slater determinant constructed from the new single-particle wave functions can be written as the determinant based on the previous basis and the determinant of the matrix $C$. Show that the old and the new Slater determinants are equal up to a complex constant with absolute value unity. (Hint, $C$ is a unitary matrix).

## Exercise 12

Consider the Slater determinant

$$
\Phi_{0}=\frac{1}{\sqrt{n!}} \sum_{p}(-)^{p} P \prod_{i=1}^{n} \psi_{\alpha_{i}}\left(x_{i}\right)
$$

A small variation in this function is given by

$$
\delta \Phi_{0}=\frac{1}{\sqrt{n!}} \sum_{p}(-)^{p} P \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right) \ldots \psi_{\alpha_{i-1}}\left(x_{i-1}\right)\left(\delta \psi_{\alpha_{i}}\left(x_{i}\right)\right) \psi_{\alpha_{i+1}}\left(x_{i+1}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)
$$

Show that

$$
\begin{gathered}
\left\langle\delta \Phi_{0}\right| \sum_{i=1}^{n}\left\{t\left(x_{i}\right)+u\left(x_{i}\right)\right\}+\frac{1}{2} \sum_{i \neq j=1}^{n} v\left(x_{i}, x_{j}\right)\left|\Phi_{0}\right\rangle= \\
\sum_{i=1}^{n}\left\langle\delta \psi_{\alpha_{i}}\right| t+u\left|\phi_{\alpha_{i}}\right\rangle+\sum_{i \neq j=1}^{n}\left\{\left\langle\delta \psi_{\alpha_{i}} \psi_{\alpha_{j}}\right| v\left|\psi_{\alpha_{i}} \psi_{\alpha_{j}}\right\rangle-\left\langle\delta \psi_{\alpha_{i}} \psi_{\alpha_{j}}\right| v\left|\psi_{\alpha_{j}} \psi_{\alpha_{i}}\right\rangle\right\}
\end{gathered}
$$

## Exercises week 39, September 21-25 2009

No exercises this week due to project work.

Exercises week 39, September 28- October 22009

## Exercise 13

What is the diagrammatic representation of the HF equation?

$$
-\left\langle\alpha_{k}\right| u^{H F}\left|\alpha_{i}\right\rangle+\sum_{j=1}^{n}\left[\left\langle\alpha_{k} \alpha_{j}\right| v\left|\alpha_{i} \alpha_{j}\right\rangle-\left\langle\alpha_{k} \alpha_{j}\right| v\left|\alpha_{j} \alpha_{i}\right\rangle\right]=0
$$

(Represent $\left(-u^{H F}\right)$ by the symbol ---X.$)$

## Exercise 14

Consider the ground state $|\Phi\rangle$ of a bound many-particle system of fermions. Assume that we remove one particle from the single-particle state $\lambda$ and that our system ends in a new state $\left|\Phi_{n}\right\rangle$. Define the energy needed to remove this particle as

$$
\left.\mathcal{E}_{\lambda}=\sum_{n}\left|\left\langle\Phi_{n}\right| a_{\lambda}\right| \Phi\right\rangle\left.\right|^{2}\left(E_{0}-E_{n}\right),
$$

where $E_{0}$ and $E_{n}$ are the ground state energies of the states $|\Phi\rangle$ and $\left|\Phi_{n}\right\rangle$, respectively.
a) Show that

$$
\mathcal{E}_{\lambda}=\langle\Phi| a_{\lambda}^{\dagger}\left[a_{\lambda}, H\right]|\Phi\rangle
$$

where $H$ is the Hamiltonian of this system.
b) If we assume that $\Phi$ is the Hartree-Fock result, find the relation between $\mathcal{E}_{\lambda}$ and the single-particle energy $\varepsilon_{\lambda}$ for states $\lambda \leq F$ and $\lambda>F$, with

$$
\varepsilon_{\lambda}=\langle\lambda|(t+u)|\lambda\rangle
$$

and

$$
\langle\lambda| u|\lambda\rangle=\sum_{\beta \leq F}\langle\lambda \beta| v|\lambda \beta\rangle .
$$

We have assumed an antisymmetrized matrix element here. Discuss the result. The Hamiltonian operator is defined as

$$
H=\sum_{\alpha \beta}\langle\alpha| t|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}+\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| v|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

