
Exerises FYS-KJM4480, Fall semester 2009Exerises week 35, August 24-28 2009Exerise 1Consider the Slater determinant
ΦAS

λ (x1x2 . . . xN ;α1α2 . . . αN ) =
1√
N !

∑

p

(−)pP

N
∏

i=1

ψαi
(xi).where P is an operator whih permutes the oordinates of two partiles. We have assumed here that the number ofpartiles is the same as the number of available single-partile states, represented by the greek letters α1α2 . . . αN .a) Write out ΦAS for N = 3.b) Show that

∫

dx1dx2 . . . dxN

∣

∣ΦAS
λ (x1x2 . . . xN ;α1α2 . . . αN )

∣

∣

2
= 1.) De�ne a general onebody operator F̂ =

∑N
i f̂(xi) and a general twobody operator Ĝ =

∑N
i>j ĝ(xi, xj) with gbeing invariant under the interhange of the oordinates of partiles i and j. Calulate the matrix elements for atwo-partile Slater determinant

〈

ΦAS
α1α2

∣

∣ F̂
∣

∣ΦAS
α1α2

〉

,and
〈

ΦAS
α1α2

∣

∣ Ĝ
∣

∣ΦAS
α1α2

〉

.Explain the short-hand notation for the Slater determinant. Whih properties do you expet these operators to havein addition to an eventual permutation symmetry?d) Compute the orresponding matrix elements for N partiles whih an oupy N single partile states.Exerise 2We will now onsider a simple three-level problem, depited in the �gure below. The single-partile states arelabelled by the quantum number p and an aomodate up to two single partiles, viz., every single-partile state isdoubly degenerate (you ould think of this as one state having spin up and the other spin down). We let the spaingbetween the doubly degenerate single-partile states be onstant, with value d. The �rst state has energy d. Thereare only three available single-partile states, p = 1, p = 2 and p = 3, as illustrated in the �gure.a) How many two-partile Slater determinants an we onstrut in this spae?b) We limit ourselves to a system with only the two lowest single-partile orbits and two partiles, p = 1 and p = 2.We assume that we an write the Hamiltonian as
Ĥ = Ĥ0 + ĤI ,and that the onebody part of the Hamiltonian with single-partile operator ĥ0 has the property

ĥ0ψpσ = p× dψpσ ,where we have added a spin quantum number σ. We assume also that the only two-partile states that an exist arethose where two partiles are in the same state p, as shown by the two possibilities to the left in the �gure. Thetwo-partile matrix elements of ĤI have all a onstant value, −g. Show then that the Hamiltonian matrix an bewritten as
(

2d− g −g
−g 4d− g

)

,



2

p = 1

p = 2

p = 3

FIG. 1: Shemati plot of the possible single-partile levels with double degeneray. The �lled irles indiate oupied partilestates. The spaing between eah level p is onstant in this piture. We show some possible two-partile states.and �nd the eigenvalues and eigenvetors. What is mixing of the state with two partiles in p = 2 to the wavefuntion with two-partiles in p = 1? Disuss your results in terms of a linear ombination of Slater determinants.) Add the possibility that the two partiles an be in the state with p = 3 as well and �nd the Hamiltonian matrix,the eigenvalues and the eigenvetors. We still insist that we only have two-partile states omposed of two partilesbeing in the same level p. You an diagonalize numerially your 3 × 3 matrix.This simple model athes several birds with a stone. It demonstrates how we an build linear ombinationsof Slater determinants and interpret these as di�erent admixtures to a given state. It represents also the way we aregoing to interpret these ontributions. The two-partile states above p = 1 will be interpreted as exitations fromthe ground state on�guration, p = 1 here. The reliability of this ansatz for the ground state, with two partiles in
p = 1, depends on the strength of the interation g and the single-partile spaing d. Finally, this model is a simpleshemati ansatz for studies of pairing orrelations and thereby super�uidity/superondutivity in fermioni systems.Exerises week 36, August 31- September 4 2009Exerise 3Calulate the matrix elements

〈α1α2| F̂ |α1α2〉and
〈α1α2| Ĝ |α1α2〉with

|α1α2〉 = a†α1
a†α2

|0〉 ,

F̂ =
∑

αβ

〈α| f |β〉 a†αaβ,

〈α| f |β〉 =

∫

ψ∗
α(x)f(x)ψβ(x)dx,

Ĝ =
1

2

∑

αβγδ

〈αβ| g |γδ〉 a†αa†βaδaγ ,



3and
〈αβ| g |γδ〉 =

∫ ∫

ψ∗
α(x1)ψ

∗
β(x2)g(x1, x2)ψγ(x1)ψδ(x2)dx1dx2Compare these results with those from exerise 1).Exerise 4We de�ne the two-partile operator

T̂ =
∑

αβ

〈α| t |β〉 a†αaβ,and the two-partile operator
V̂ =

1

2

∑

αβγδ

〈αβ| v |γδ〉 a†αa†βaδaγ .We have de�ned a single-partile basis with quantum numbers given by the set of greek letters α, β, γ, . . . Show thatthe form of these operators remain unhanged under a transformation of the single-partile basis given by
|i〉 =

∑

λ

|λ〉 〈λ|i〉 ,with λ ∈ {α, β, γ, . . . }. Show also that a†iai is the number operator for the orbital |i〉.Find also the expressions for the operators T and V when T is diagonal in the representation i. Show also that theoperator
N̂p =

1

2

∑

α6=β

a†αa
†
βaβaα,is an operator that represents the number of pairs and �nd an expression T̂ and V̂ when v is diagonal in α, β.Exerise 5Consider the Hamilton operator for a harmoni osillator (c = ~ = 1)

Ĥ =
1

2m
p2 +

1

2
kx2, k = mω2(a) De�ne the operators

a† =
1√

2mω
(p+ imωx), a =

1√
2mω

(p− imωx)and �nd the ommutation relations for these operators by using the orresponding relations for p and x.(b) Show that
H = ω(a†a+

1

2
)() Show that if for a state |0〉 whih satis�es Ĥ |0〉 = 1

2
ω |0〉, then we have

Ĥ |n〉 = Ĥ(a†)n |0〉 = (n+
1

2
)ω |n〉(d) Show that the state |0〉 from ), with the property a |0〉 = 0, must exist.(e) Find the oordinate-spae representation of |0〉 and explain how you would onstrut the wave funtions for exitedstates based on this state.



4Exerises week 37, September 7-11 2009Exerise 6Write the two-partile operator
G =

1

2

∑

αβγδ

〈αβ| g |γδ〉 a†αa†βaδaγin the quasi-partile representation for partiles and holes
b†α =

{

a†α
aα

bα =

{

aα α > αF

a†α α ≤ αFYou an use Wik's theorem. Exerise 7Starting with the Slater determinant
Φ0 =

n
∏

i=1

a†αi
|0〉 ,use Wik's theorem to ompute the normalization integral < Φ0|Φ0 >.Exerise 8Compute the matrix element

〈α1α2α3|G |α′
1α

′
2α

′
3〉using Wik's theorem and express the two-body operator G (from exerise 1) in the oupation number (seondquantization) representation. Exerises week 38, September 14-18 2009Exerise 9Use the results from exerise 6 and Wik's theorem to alulate

〈

β1γ
−1

1

∣

∣G
∣

∣β2γ
−1

2

〉You need to onsider that ase that β1 be equal β2 and that γ1 be equal γ2.Exerise 10a) Plae indies and write the algebrai expressions and disuss the physial meaning of the following diagrams: b)
What is the diagram for 〈c|G |c〉? The operator G is the same as the one disussed in the previous exerises.Use the diagrammati rules to write down the algebrai expression.



5Exerise 11Consider a Slater determinant built up of single-partile orbitals ψλ, with λ = 1, 2, . . . , N .The unitary transformation
ψa =

∑

λ

Caλφλ,brings us into the new basis. The new basis has quantum numbers a = 1, 2, . . . , N . Show that the new basis isorthonormal. Show that the new Slater determinant onstruted from the new single-partile wave funtions an bewritten as the determinant based on the previous basis and the determinant of the matrix C. Show that the old andthe new Slater determinants are equal up to a omplex onstant with absolute value unity. (Hint, C is a unitarymatrix). Exerise 12Consider the Slater determinant
Φ0 =

1√
n!

∑

p

(−)pP

n
∏

i=1

ψαi
(xi).A small variation in this funtion is given by

δΦ0 =
1√
n!

∑

p

(−)pPψα1
(x1)ψα2

(x2) . . . ψαi−1
(xi−1)(δψαi

(xi))ψαi+1
(xi+1) . . . ψαn

(xn).Show that
〈δΦ0|

n
∑

i=1

{t(xi) + u(xi)} +
1

2

n
∑

i6=j=1

v(xi, xj) |Φ0〉 =

n
∑

i=1

〈δψαi
| t+ u |φαi

〉 +

n
∑

i6=j=1

{〈

δψαi
ψαj

∣

∣ v
∣

∣ψαi
ψαj

〉

−
〈

δψαi
ψαj

∣

∣ v
∣

∣ψαj
ψαi

〉}Exerises week 39, September 21-25 2009No exerises this week due to projet work.Exerises week 39, September 28- Otober 2 2009Exerise 13What is the diagrammati representation of the HF equation?
−〈αk|uHF |αi〉 +

n
∑

j=1

[〈αkαj | v |αiαj〉 − 〈αkαj | v |αjαi〉] = 0 ?(Represent (−uHF ) by the symbol −−−X .)



6Exerise 14Consider the ground state |Φ〉 of a bound many-partile system of fermions. Assume that we remove one partilefrom the single-partile state λ and that our system ends in a new state |Φn〉. De�ne the energy needed to removethis partile as
Eλ =

∑

n

| 〈Φn| aλ |Φ〉 |2(E0 − En),where E0 and En are the ground state energies of the states |Φ〉 and |Φn〉, respetively.a) Show that
Eλ = 〈Φ| a†λ [aλ, H ] |Φ〉 ,where H is the Hamiltonian of this system.b) If we assume that Φ is the Hartree-Fok result, �nd the relation between Eλ and the single-partile energy ελ forstates λ ≤ F and λ > F , with
ελ = 〈λ| (t+ u) |λ〉and

〈λ|u |λ〉 =
∑

β≤F

〈λβ| v |λβ〉 .We have assumed an antisymmetrized matrix element here. Disuss the result.The Hamiltonian operator is de�ned as
H =

∑

αβ

〈α| t |β〉 a†αaβ +
1

2

∑

αβγδ

〈αβ| v |γδ〉 a†αa†βaδaγ .
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