Density functional theory

5.1 Introduction

In the previous chapter we saw how the many-electron problem can be
treated in the Hartree—Fock formalism in which the solution of the many-body
Schrédinger equation is written in the form of a Slater determinant. The
resulting HF equations depend on the occupied electron orbitals, which enter
these equations in a nonlocal way. The nonlocal potential of Hartree~Fock
is difficult to apply in extended systems, and for this reason there have been
relatively few applications to solids; see however ref. 33.

Most electronic structure calculations for solids are based on density
functional theory (DFT), which results from the work of Hohenberg, Kohn and
Sham 3433 This approach has also become popular for atoms and molecules.
In the density functional theory, the electronic orbitals are solutions to a
Schrédinger equation which depends on the electron density rather than on
the individual electron orbitals. However, the dependence of the one-particle
Hamiltonian on this density is in principle nonlocal. Often, this Hamiltonian
is taken to depend on the local value of the density only — this is the local
density approximation (LDA). In the vast majority of DFT electronic structure
calculations for solids, this approximation is adopted. It is, however, also
applied to atomic and molecular systems.36

In this chapter we describe the density functional method for electronic
structure calculations. In the present section, the physical interpretation of the
density functional equations is first described and the formal derivations are
given. In the next section the local density approximation is considered. An
application to the ground state of the helium atom will be described in some
detail in section 5.3. Finally, some results obtained using density functional
theory will be discussed in section 5.3.3. For further reading, there are many
reviews and books available, see for example refs. 36—38.
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5.1.1 Density functional theory — physical picture

In density functional theory, an effective independent particle Hamiltonian is
arrived at, leading to the following Schrédinger equation for one-electron spin-
orbitals:
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The first three terms in the left hand side of this equation are exactly the same as
those of Hartree—Fock, Eq. (4.30), namely the kinetic energy, the electrostatic
interaction between the electrons and the nuclei, and the electrostatic energy
of the electron in the field generated by the total electron density n(r). The
fourth term contains the many-body effects, lumped together in an exchange-
correlation potential. The main result of density functional theory is that there
exists a form of this potential, depending only on the electron density n(r),
which yields the exact ground state energy and density. Unfortunately, this
exact form is not known, but there exist several approximations to it, as we shall
see in section 5.2. The dependence of the independent particle Hamiltonian on
the density only is in striking contrast with Hartree—Fock theory, where the
Hamiltonian depends on the individual orbitals. The solutions of Eq. (5.1)
must be self-consistent in the density, which is given by

N

n(r) =Y |y(r)?, (5.2)

k=1

where the sum is over the N spin-orbitals y; having the lowest eigenvalues g,
in (5.1) — N is the number of electrons in the system.
The total energy of the many-electron system is given by

n(r') + Exc[n] — / B r Vie[n] (t)n(r)
(5.3)
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where the parameters ¢, are the eigenvalues occurring in Eq. (5.1) and E. is the
exchange correlation energy. The exchange correlation potential V.[n] which
occurs in (5.1) is the functional derivative of this energy with respect to the
density:

Vil (r) = S—IL—)E (). (5.4)
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Although the energy parameters €, are not, strictly speaking, one-electron
energies they are often treated as such for comparison with spectroscopy
experiments according to an extended version of Koopman’s theorem (see
problem 5.4). The wave functions y; also have no individual meaning
but are used to construct the total charge density. This again contrasts
with Hartree-Fock where the one-electron spin-orbitals have a definite
interpretation: they are the constituents of the many-electron wave function.

Equations (5.1) and (5.2) are solved in an iterative self-consistency loop,
which is started by choosing an initial density n(r), constructing the Schréd-
inger equation (5.1) from it, solving the latter and calculating the resulting
density from (5.2). Then a new Schrodinger equation is constructed and so on,
until the density does not change appreciably any more.

In both DFT and Hartree—Fock theory, the electrons move in a background
composed of the Hartree and external potentials. In addition to this, the
exchange term in Hartree—Fock accounts for the fact that electrons with parallel
spin avoid each other as a result of the exclusion principle (exchange hole) —
opposite spin pairs do not feel this interaction. In DFT, the exchange correlation
potential not only includes exchange effects but also correlation effects due to
the Coulomb repulsion between the electrons (dynamic correlation effects). In
HF, the exchange interaction is treated exactly, but dynamic correlations are
neglected. DFT is in principle exact, but we do not know the exact form of the
exchange correlation potential — both exchange and dynamic correlation effects
are in practice treated approximately.

It is essential that the exchange correlation energy is given in terms of the
electron density only and contains no explicit dependence on the external
potential — in our case the potential due to the atomic nuclei. As we shall
see in section 5.2, a local approximation for the exchange correlation energy
occuring in the DFT equation (5.1) is usually made, thereby simplifying the
implementation significantly with respect to Hartree—Fock with its complicated
nonlocal exchange term.

*5.1.2 Density functional formalism and derivation of the Kohn—-Sham
equations

For a many-electron system, the Hamiltonian is given by
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Vext 18 an external potential which, in the systems which are of interest to us, is
the Coulomb attraction by the static nuclei.

In chapter 3 we have seen how the ground state can be found by varying the
energy functional with respect to the wave function. Now consider carrying
out this variational procedure in two stages: first — for a given electron density
— minimise with respect to the wave functions consistent with this density, and
then minimise with respect to the density. Denoting by miny, a minimisation
with respect to the wave functions ¥ which are consistent with the density n(r),
we can write

E[n] = min(¥ |H|¥) (5.6)
¥|n
and it will be clear that the ground state of the many-electron Hamiltonian can

be found by minimising the functional E [n] with respect to the density, subject
to the constraint

/ Bra(r) =N 5.7)

where N is the total number of electrons.

Now consider a separation of the Hamiltonian into the Hamiltonian Hy of the
homogeneous electron gas (with external potential Ve = 0), and the external
potential:

H =HO+Vext(r)' (5-8)

In this case we can write E[n] as
Eln] = rﬁ'n [(‘P|H0|‘I’) + /d3r Vext (r)n(r)] . (5.9)
n

If we minimise the term in square brackets for a given density n(r), the second
term is a constant so that we do not have to include it in the minimisation:

Efr] = min[(¥ [Hol¥)] + / @3 r Ve (0)n(r). (5.10)
Writing
Flr] = min((¥|Ho|¥)] (5.11)

we see that E[n] can be written as

E[n] = F[n]+ / d*r Vgt (r)n(r) (5.12)
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and F[n] does obviously not depend on the external potential. We shall now
use these general statements to treat our problem of interacting electrons in an
external potential. Summarising the results obtained so far, we have:

e The ground state density can be obtained by minimising the energy
functional (5.6).

e If we split the Hamiltonian H into a homogeneous one, Hy, and the external
potential, the energy functional can be split into a part F[n], which is
defined in (5.11) and which is independent of the external potential, and
the functional [ d3r Ve (r)n(r).

The problem with treating the many-electron system lies in the
electron-electron interaction. In fact, for both interacting and noninteracting
electron systems the form of the functional E[n] is unknown, but the ground
state energy for noninteracting electrons can be solved for trivially, and we can
use this to tackle the problem of interacting electrons. In the noninteracting
case, E[n] has a kinetic contribution and a contribution from the external
potential Vey;:

El[n] = T[n] + / &1 n(r)Vex (r). (5.13)
Variation of E with respect to the density leads to the following equation:
3T [n]
sn(r) +Vex[(r) — ln(l‘), (5.14)

where A is the Lagrange parameter associated with the restriction of the
density to yield the correct total number of electrons, N. The form of T'[n] is
unknown, but we know that the ground state of the system can be written as a
Slater determinant with spin-orbitals satisfying the single-particle Schrodinger
equation:

1
[—§v2 ; vext(r)] we(r) = exvr). (5.15)
The ground state density is then given by
N
n(r) =3 lwi(r)l® (5.16)
k=1

where the spin-orbitals y; are supposed to be normalised so that the density
satisfies the correct normalisation to the number of particles N. Using the above
analysis, taking T [n] for the functional F [n], we immediately see that the kinetic
energy functional T is independent of the potential V.. Summarising, we have:
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e The energy functional of a noninteracting electron gas can be split into a
kinetic functional T'[n], and a functional representing the interaction with
the external potential, [ d>r Vex(r)n(r). The kinetic functional does not
depend on the external potential.

e The exact solution of the noninteracting electron gas is given in terms of
the eigenfunction solutions of the IP Hamiltonian; see Eq. (5.15).

The energy functional for a many-electron system with electronic
interactions included can be written in the form

Efn] = Tln] + / &r n(r)Veu(r) +

1 ) 1
i/d3r /d3r’ n(r)|r—r’|n(r)+Exc[n]’ (5.17)

where the last term, the exchange correlation energy, contains, by definition,
all the contributions not taken into account by the first three terms which
represent the kinetic energy functional of the noninteracting electron gas, the
external and the Hartree energy respectively. It is important to note that we
have made no approximations so far but moved all the unknown correlations
into E4., which depends on the density n rather than on the explicit form of
the wave function because all the other terms in (5.17) depend on the density.
For the interacting electron gas it is not clear that the kinetic energy and the
electron—electron interaction can be written as a sum of two terms depending on
the density only; therefore the kinetic functional for noninteracting electrons,
which depends only on the density, has been split off and the remaining part of
the kinetic energy has been moved into E,.. Varying this equation with respect
to the density, we obtain

2:([:)] + 55:&) + / &r n(r' )| I+Vext(r) An(r). (5.18)

This equation has the same form as (5.14), the only difference being the
potential replaced by a more complicated one, the ‘effective potential’:

Vet (r) = V(r) + ——= SExc[n / d*r' n(r') (5.19)

8n(r)

The analogue of Eq. (5.15) now becomes

IlJI

[— %Vz + Veff(l')J yi(r) = exyi(r). (5.20)
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Comparing Egs. (5.20) and (5.17), we see that adding the eigenvalues ¢, of
the occupied states does not lead to the total energy as the Hartree energy is
overestimated by a factor of 2, and there is a further difference in the exchange
correlation term, so that we have all together:

1
r—r'|

n(t) + Exe[n] — / B r Vi [n(r)]n(r).
(5.21)

N 1
E=Y e~ §/d3rd3r' n(r)

where V,. is defined in (5.4). The density functional procedure is now given
by Egs. (5.16), (5.19), (5.20) and (5.21). These equations were first derived by
Kohn and Sham.®

We have already mentioned that the exact form of the exchange correlation
potential is not known. This energy is a functional of the density, but
there may be an additional explicit dependence on the external potential.
Such a dependence would imply that each physical system has its own
particular exchange correlation energy functional.  That the exchange
correlation potential does not have such a dependence follows immediately
from the argument given at the beginning of this section [Egs. (5.8-5.12)] by
separating the external potential off the Hamiltonian and taking the remaining
contributions to the energy functional for F[n]. This shows that the exact
exchange correlation potential, which should work for all materials, is simply
a functional of the density. In practice we have to use approximations for Ey,
as the exact form of this functional is unknown, and our approximation might
be better for some materials than for others. The final conclusion can then be
formulated as follows:

e If we split the energy functional according to (5.17), the term Ey.[n] into
which we have moved all the terms we do not have under control, is
independent of the external potential.

e The minimisation problem of the energy functional can be carried out using
the Kohn—Sham equations (5.20) together with the constraint (5.16).

5.2 The local density approximation

The difference between the Hartree—Fock and density functional approxima-
tion is the replacement of the HF exchange term by the exchange correlation
energy E.. which is a functional of the density. The exchange correlation
potential is a functional derivative of the exchange correlation energy with
respect to the local density, and for a homogeneous electron gas, this will
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depend on the value of the electron density. For a nonhomogeneous system,
the value of the exchange correlation potential at the point r depends not only
on the value of the density at r but also on its variation close to r, and it can
therefore be written as an expansion in the gradients to arbitrary order of the
density:

Vie[n] (r) = Vie [n(x), V(r), V (Vn(r)),...]. (5.22)

Apart from the fact that the exact form of the energy functional is unknown,
inclusion of density gradients makes the solution of the DFT equations rather
difficult, and usually the Ansarz is made that the exchange correlation energy
leads to an exchange correlation potential depending on the value of the density
in r only and not on its gradients — this is the local density approximation
(LDA):

Bo= [ drexln(m)a(r) (5.23)

where g,.[n] is the exchange correlation energy per particle of an homogeneous
electron gas at density n. The local density approximation is exact for
an homogeneous electron gas, so it works well for systems in which the
electron density does not vary too rapidly. We shall briefly discuss the various
forms used for the exchange correlation energy density in the local density
approximation, ex[n(r)], and refer to the literature for more details.36-3%40
The exchange effects (denoted by the subscript ‘x’) are usually included in
a term based on calculations for the homogeneous electron gas!® giving the
following form for the exchange energy in density functional theory:

ex[n(r)] = Const. x n!/3(r) (5.24)

which we have already encountered at the end of section 4.5.1. The value for
the constant is found as —3/4(3/x)!/3.

For open-shell systems the spin-up and -down densities n, and n_ are
usually taken into account as two independent densities in the exchange
correlation energy according to a natural extension of the DFT formalism.3¢
In local density approximation (now called local spin density approximation),
the exchange is given as

Ex[ny,n_] = —Const. / &r [nP )+ ()], (5.25)

with Const. = 3/2(3/4x)'/3 in accordance with the closed-shell prefactor in
(5.24). As is to be expected for an exchange coupling, this expression contains
interactions between parallel spin pairs only.
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In addition to exchange, there is a contribution from the dynamic correlation
effects (due to the Coulomb interaction between the electrons) present in the
exchange correlation potential, and several local density parametrisations of
this interaction have been proposed. A successful one is a parametrised version
of the correlation energy obtained in quantum Monte Carlo simulations of the
homogeneous electron gas at different densities.*®4! Other parametrisations
have been presented by Von Barth and Hedin*? and Gunnarson and
Lundqvist.*> These dynamic correlations represent couplings between both
parallel and opposite spin pairs.

In calculations of the electronic structure, the DFT-LDA approach has turned
out very successfully. In some systems, however, it leads to noticeable
deviations or even failures — some stable negative ions such as H-, O~ and
F~ are predicted to be unstable for example. Many improvements on LDA
have therefore been proposed. One of these consists of taking gradients of
the density into account in the exchange correlation energy whose form is
motivated by calculations taking many-electron effects into account.

Another approach focuses on the self-interaction present in the Hartree
energy which contains Coulomb couplings between an electron and its own
charge distribution. This overestimation of the electron—electron interaction
should be cancelled by the exchange correlation term, which — in LDA -
succeeds only partially in doing so (although in the hydrogen atom for example,
95% of the self-interaction is cancelled by the exchange correlation). It
is possible to add these corrections afterward to the exchange correlation
potential,40 which, however, introduces a dependence of the exchange
correlation on the individual orbitals, yy, instead of a dependence on the
density only. Both the gradient-correction and self-interaction methods lead
to important improvements in calculations of physical properties.3®

5.3 A density functional program for the helium atom

In this section we describe the construction of a program for the calculation
of the ground state of the helium atom within the local density approximation.
As the two electrons occupy the 1s-orbital, the density and hence the Hartree
potential is radially symmetric and we exploit this symmetry in spatial
integrations. Instead of using basis functions, we solve the radial Schrédinger
equation directly, just as we have done in the first chapter for calculating
scattering cross sections. The program is set up in three steps. First, we use
a simple integration algorithm and combine this with an interpolation routine
in order to find the stationary states of hydrogen-like atoms. Second, a routine
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for obtaining the Hartree potential from the (radial) electronic density is added.
At this point the results should compare with those obtained in the previous
chapter using Gaussian basis functions. Finally, the exchange correlation
potential is added and we have a fully self-consistent local density program.

5.3.1 Solving the radial equation

To solve the radial Schrodinger equation you can use the Numerov algorithm
which is discussed in section A.7.1.4 and which has been used for the scattering
program in chapter 2. However, we also have to solve other differential
equations and integrals, and in order to avoid complications we shall not
require the O(h®) accuracy of Numerov’s algorithm — hence you can also
use the simpler Verlet/Stoermer algorithm of section A.7.1.3. It is of course
possible and recommended to use library routines throughout the program. For
integrating the radial Schrédinger equation, a nonuniform grid is often used
which is dense near the nucleus where the Coulomb potential diverges — see
problem 5.1. For the hydrogen atom, the radial equation for / = O reads (in
atomic units)
7]
—=V*— —|u(r) = Eu(r) (5.26)
2 r

where u(r) is given as rR(r), R(r) being the radial wave function. For the
hydrogen atom we know that the solution for the ground state is given by
E = —0.5 a.u. and u(r) = re™", and this enables us to test our programs. The
energy eigenvalues can be found by integrating the radial Schrédinger equation
from some large radius ry,x inward to r = 0 and checking whether the solution
vanishes there. The procedure is analogous to that described in problem A.4.
You should first check whether indeed for E = —0.5 a.u. the radial solution
vanishes at r = 0. Note that for the regular solutions [#(0) = 0] we are looking
for, the divergence of the potential near the origin causes no problems in the
integration routine as long as it is not evaluated at r = 0.

For the starting values at rp,x you can either substitute the exact values
U(7max) = Ymax €Xp(—rmax) and similarly for u(rmax — k), but it is also possible
to take u(rmax) equal to O and u(rmax) equal to a very small value. It is
interesting to play around varying the starting conditions and the value of rpax
in order to get a feeling for how the accuracy is affected by these.

To arrive at a program which determines the spectrum for you, you must
couple the integration routine to a root-finding scheme and apply it to the value
of u at the origin. Although it is in principle possible to solve for the energy
derivative of u alongside the determination of u itself, we assume here that



104 Density functional theory

the integration routine does not provide energy derivatives. Therefore a library
root-finding routine must not use the derivative and the same holds for one
you write yourself. In the latter case, the secant method is appropriate; see
section A.3. You will have to supply the boundaries between which the root
must lie when using the program.

— Programming exercise — Combine the integration routine and the
root-finding routine into a method for finding the | = O states of a radial
potential.

Check Test your program for the hydrogen atom.

5.3.2 Including the Hartree potential

We now describe an extension of the hydrogen program to the helium case,
which implies having a nuclear potential —2/r in the Hamiltonian and requires
some treatment of the electron—electron interaction. In this section we take the
latter into account in the same way as in section 4.3.2, that is by a so-called
Hartree potential which is the electrostatic potential generated by the charge
distribution following from the wave function. This potential is given by

1
r—r'|’

() = [ &7 n(@) (5.27)
Here, ng stands for the density of a single orbital — the total charge density
is twice as large as a result of summation over the spin. The proper Hartree
potential is therefore twice as large but half of it consists of the self-interaction
which we have subtracted off because this can easily be done for the helium
case (see also the end of section 4.3.1). Rather than solving for this potential
by calculating the integral (5.27) directly, we shall find it by solving Poisson’s
equation:

V2Vy(r) = —4nng(r). (5.28)

Using the radial symmetry of the density and defining U(r) = rVy(r), this
equation reduces to the form
d2

E’—EU(r) = —4nrng(r). (5.29)
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This is an ordinary second order differential equation which can be solved
again using Verlet’s algorithm (or a library routine). Note that it is necessary
to normalise the radial wave function before integrating Poisson’s equation! If
you take for the normalisation

/dr u*(r) = /dr rR(r) =1, (5.30)

you have already included a factor 4r into the density (arising from the angular
integrations) and the factor 4w in Poisson’s equation drops out:

()

U'(r) =— "

(5.31)

We shall use the normalisation (5.30) throughout this section.

The solution of Eq. (5.31) contains two integration constants which have to
be fixed by the boundary conditions. We take U (0) = O as the first boundary
condition. Elementary electrostatics then leads to the second condition

Vi (rmag) = —max (5.32)

2
max

where gnax 1S the electron charge contained in a sphere of radius rpax:

qmax—_:/omudruz(r). (5.33)

For large 7max, gmax 1S the total electron charge. If there is no charge
beyond 7max, gmax does not depend on rmax, and we have U(rmax) = Gmax-
When carrying out the numerical integration, we take for the first starting
condition U(0) = 0. The second starting condition, for U(4), is not known
at the beginning — we take U(h) = h. As the solution U(r) = ar solves the
homogeneous differential equation, U”(r) = 0, we can add this solution to the
numerical solution found, with o taken such as to satisfy the end condition
U (rmax) = gmax, Without violating the starting condition U (0) = 0.

— Programming exercise — Add an extra integration to your program which
solves Eq. (5.31).

It is useful to check for the correctness by using the hydrogen atom as an
example. The normalised ground state density [in the sense of (5.30)], found
at E = —0.5 a.u., is 4¢~ %" and we must solve

U"(r) = —4re™™", (5.34)
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with the boundary conditions U(0) =0, U(=) = 1:

U(r)=—(r+1)e " +1. (5.35)

Check Check whether your program produces these results.

The next step is to make the program self-consistent. This is done by adding
the Hartree potential to the nuclear potential and solving for the eigenstate
again. You repeat this process until the energy does not change appreciably
between subsequent steps. The total energy is given by

E =2 —/dr Vau(r)u?(r). (5.36)

The Hartree correction arises because the Hartree energy is quadratic in the
density.

Check Try to reproduce the results for the helium Hartree—Fock calculation
in section 4.3.2. In fact, the present method is more accurate as the wave
functions are not restricted to linear combinations of four Gaussians. For
an integration step 2 = 0.01 (in the Verlet algorithm) you will find for the
eigenvalue of the radial Schrédinger equation the value —0.923 a.u. and
for the Hartree correction 1.0155 a.u., so that the total energy amounts to
E = —2.861 a.u., in good agreement with the result obtained in the previous
chapter. The experimental value is —2.903 a.u.

5.3.3 The local density exchange potential

The aim of the exercise has not yet been achieved: we must calculate the
energy and eigenvalues in the density functional formalism within the local
density approximation. Remember that in density functional theory, the density
which gives rise to the Hartree potential is the full density n(r), i.e. the density
of the two electrons, and in the previous section we have subtracted off the
self-interaction contribution, leading to a reduction by a factor of 2 of the
Hartree potential. Multiplying the Hartree potential by a factor 2 in the previous
program Yyields very poor results and therefore we hope that the exchange
potential will correct for the self-interaction. As we have noted above, a
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popular form of the local density exchange potential is the one based on a
treatment of the exchange hole in a homogeneous electron gas and is given by

Vi (r) = Const. x n'/3(r) (5.37)

where the constant is given as

3\ 1/3
/ Const. = — (;) . (5.38)

Here, again the full density is to be taken in the right hand side of (5.37) and this
is twice the single electron density arising from the radial Schrédinger equation
since we have two electrons. Therefore, in terms of the radial eigenfunctions u
normalised as in (5.30), our exchange potential reads

2 1/3
Su (r)] (5.39)

Vi(r) =— [m

which, for the s-states under consideration, depends only on the radial
coordinate r. The total energy is given by

E =2¢— /dr Va (r)u?(r) + %dr u? (r)Vy (r). (5.40)

The extension of your program to a local density version is now
straightforward: instead of adding only the Hartree potential to the nuclear
attraction, you take twice this potential and add the exchange potential to it.
The self-consistency loop remains unaltered.

— Programming exercise — Extend your Hartree—Fock program to include
the exchange potential.

Check 1If your program is correct, it should give the following values for
the energies: € = —0.52 and E = —2.72 atomic units.

Obviously the result is inferior to Hartree—Fock as the exchange potential is
included only in an approximate way. Improvement is possible by considering
an exchange correlation potential based on an interpolation of quantum
Monte Carlo results by Ceperley and Alder,** and it yields a ground state
energy of E = —2.83 atomic units*® which is an important improvement with
respect to —2.72, although it is still worse than the HF result of —2.86 a.u.
Implementation of this is straightforward and will be done in problem 5.3.
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Table 5.1: Lattice constants and cohesive energies for diamond, Si and Ge. Atomic
units are used. Data taken from ref. 36.

Lattice constant Cohesion energy
DFT Expt. DFT Expt.
Diamond 6.807 6.740 7.58 7.37
Si 10.30 10.26 4.84 4.64
Ge 10.69 10.68 4.02 3.85

Table 5.2: Energies in a.u. for various atoms. Data taken from ref. 36.

Atom HF DFT Expt.

Li —-7.433 —-7.353 —-7.479
C —37.702 —-37.479 —37.858
0] —74.858 —74.532 —-75.113

5.4 Applications and results

In numerous calculations for atoms, molecules and solids the DFT-LDA
approach has been very successful. In this section we quote some results which
have been taken from the review by Jones and Gunnarson.>®

The original applications were to the ground state properties of solids,
and some typical results are shown in table 5.1. Results for atoms and
molecules are often better than HF (tables 5.2 and 5.3). Interpretation of
the Kohn—Sham eigenvalues as excitation energies works surprisingly well in
many solids, where the energy bands frequently agree with those measured in
photo-emission for example (see problem 5.4). But we should be cautious
about interpreting y; and g, as anything other than auxiliary quantities for
constructing the ground state energy and density. There are several examples
where interpretation of €; as excitation energies goes drastically wrong — band
gaps in semiconductors and insulators are almost invariably too small,
this should not surprise us as the DFT is designed to give the ground gtate
only. The inclusion of self-interaction corrections, mentioned in the previous
subsection, gives better results for these gaps — remember these corrections
introduce dependence of the Hamiltonian on individual orbitals instead of the
density only and are therefore incompatible with DFT.
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Table 5.3: Binding energies in a.u. for diatomic molecules. Data taken from ref. 36.

5.1

Atom HF DFT  Expt.

H, 3.64 4.91 4.75

C, 0.79 7.19 6.32

/ 0, 1.28 7.54 5.22
Exercises

[C] Instead of the regular grid which was used in the helium program of
section 5.3, it is better to use a grid with a step size which grows from a
very small value near the nucleus to larger values in the valence region,
because the wave function will oscillate more rapidly near the nucleus as
a result of the deep Coulomb potential. Consider a grid with grid points
given by the following formula:

ri=rpy[exp(j8) —1], j=0,1,..., jmax-

The grid point with j = O coincides with the nucleus and the grid runs up
to a radius rp,x Which fixes the value of the prefactor r;, to

"> = Tmax/[€XP(8 jmax) — 1].

The grid is defined by the number of grid points jnax, by the outermost
point 7y« and by the parameter 8 which determines how much the grid
constant near the nucleus differs from that near rp,,. All these three
values must be specified and then the prefactor 7, can be determined.

(a) Show that, in terms of j, the radial Schrédinger equation

d2
u(r) =[V(r) — EJu(r)
transforms into
&)~ Lutj) = 28IV ()~ Eu()
2t — 8 5ulj) = rydte J) — Elu(j),

where u(j) = u(r;).

(b) Write a general integral [;™* f(r)dr as an integral over j.
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(c) [C] Transform all integrals and differential equation methods in
the density functional program to the nonhomogeneous grid defined
above. Compare the accuracies of the two versions.

(d) Show that the first derivative occurring in the radial Schrodinger
equation in terms of j above can be transformed away by writing
u(j) = v(j)exp(8;j/2). Show that the resulting equation for v reads

PN L 25228
270 0) = 7o) =18V () — Ele(j).

(e) [C] Numerov’s algorithm (see section A.7.1.4) can be used for solving
this differential equation. Try this out for the ground state of the
hydrogen atom and show that the numerical error scales as 1/N* as
is expected (see problem A.3). Note that when the number of points is
doubled, & should be decreased by a factor of 2.

5.2 [C] The Hartree energy

E =d3rd3r’ M
" Ir—r/|

overestimates the classical electrostatic energy of the electrons because
it includes interactions of the electrons with themselves — these are the
so-called self-interactions. In Hartree—Fock theory, this spurious effect
is cancelled by the exchange energy. In density functional theory, the
exchange correlation energy does not ensure this cancellation a priori and
we can only hope that it cancels the self-interaction as much as possible.
In order to see to what extent the exchange correlation potential succeeds
in doing so, we consider the hydrogen atom in DFT (of course, DFT
was designed for many-electron systems, but its validity is not a priori
restricted to systems containing more than one electron). In the hydrogen
atom, we find a nonvanishing Hartree and exchange correlation energy,
which can easily be evaluated with our DFT program for helium.

Change the nuclear charge back to Z = 1 and make sure that the density
used in the Hartree and exchange correlation energies is evaluated for the
single electron (i.e. not multiplied by 2 as in the helium case). F7zaluate
both energies for the exact solution of the hydrogen atom.

You should find that the exchange correlation energy compensates about
80% of the self-interaction. For better exchange correlation energies, a
value of 96% can be found — see the following problem and ref. 40. See
also ref. 17 for more examples.
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5.3 [C] The Slater exchange potential

Vi=— (3)1/3"1/3&)

T

is based on the exchange energy in a homogeneous electron gas.?! It
is quite a crude approximation, and a refinement can be made using
quantum Monte Carlo results obtained by Ceperley and Alder.40-41.44
This leads to a parametrised correlation energy which should be added
to the Slater term given above. The parametrisation is given in terms of
the parameter r; which is related to the density n according to
3
"= 4rrd’
The parametrisation is split into two parts: r; > 1 and ry; < 1. We need an
expression for the correlation energy parameter €. defined by

E.= / &*r n(r)ee (n)n(r).

(a) Show that from this an expression for the correlation potential V, can
be derived according to

Ve(rs) = (1 -gdi,s-) ee(re).

(b) [C] A parametrised form of €. is given by the following expressions.
For r; > 1 we have

€c :Y/(l +Bl\/ﬁ+f’2rs)
and for ry; > 1

e. =Alnry+B+Crilnrg+ Dry.

From this, we obtain the following expressions for the correlation
potential:

1+%l31\/ﬁ+ Bars
© 1+ B1y/Ts + Bars

Ve(rs) =¢

for r; > 1 and
Ve(rs) =Alnrg+B—A/3+ %Crslnrs+
(2D - C)rs/3.

The values of the parameters A, B etc. depend on whether we are
dealing with the polarised (all spins same z component) or unpolarised
case. For both cases, the values are given in the following table:
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Parameters for correlation energy

Unpolarised Polarised
A 0.0311 0.01555
B —0.048 —0.0269
C 0.0020 0.0014
D —0.0116 —0.0108
Y —0.1423 —0.0843
B1 1.0529 1.3981
B2 0.3334 0.2611

Use this parametrisation in your helium density functional theory
program (unpolarised). You should find an energy £ = —2.83 atomic
units, to be compared with —2.72 without this correction.

(c) [C] Use the polarised parametrisation for the hydrogen program of the
previous problem. You should find an energy E = —0.478 a.u.

(d) [C] It is also possible to combine the self-energy correction with
the correlation energy. You should consult the paper by Perdew and
Zunger, ref. 40, if you intend to do this. This results in an energy
E = —2.918 a.u., which is only 0.015 a.u. off the experimental value.

5.4 1In this problem, we consider a generalisation of Koopman’s theorem
(see section 4.5.3) to the density functional formalism. To this end,
we consider the spectrum {¢;} and the corresponding eigenstates of the
Kohn-Sham Hamiltonian. We want to consider excitations from the
ground state, which means that we do not fill the N lowest levels of the
Kohn—Sham spectrum, but skip some levels. In fact we focus on singly
ionised systems, which means that instead of filling the lowest N levels
of the Kohn—Sham spectrum, we leave level j unoccupied. This results in
a change in the total density:

ni(r) = n(r) + dn(r)

where the index I stands for the ionised system.

We want to compare total energies for the full and for the ionised system.
The total energy for the full system containing N electrons is given by

E(N) = gNle,-— %/d%d%’ non(r) /d3rn(r)ch(r) + Ex[n].

v —r|
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The levels ¢; arise from taking the matrix elements (y;|H(N)|y;). As a
result of the change in density, both the Hamiltonian occurring in these
matrix elements and the remaining terms in the energy expression change.

Show that, to linear order in 3n(r), the effect of the change in the
Hamiltonian occurring in these matrix elements is precisely compensated
by the change in the remaining terms in the energy expression so that we
obtain

E(N)—E(N—1) =¢;

where E(N — 1) is the total energy if the level j remains unoccupied.
Hint: the change in the exchange correlation energy Ex.[n] is given by the
expression

8Exc[n]
8n(r)

where y ; denotes the j-th orbital.

8Eyc[n] = / d?r 8n(r) =222 / &r Vie[n) (1) ;]

Unless j is the highest level, the DFT formalism does not provide an
interpretation of a system in which we skip levels when filling the
spectrum. Therefore, this version of Koopman’s theorem does not seem
justified for excitation from lower lying states. It is, however, frequently
used in interpreting excitation spectra, and often with success.



6

Solving the Schrodinger equation in
periodic solids

In the previous chapter we encountered density functional theory (DFT)
which is extensively used for calculating the electronic structure of periodic
solids. Aside from DFT, carefully designed potentials often allow for
obtaining accurate electronic structures by simply solving the Schrédinger
equation without going through the self-consistency machinery of DFT. In both
approaches it is necessary to solve the Schrodinger equation and the present
chapter focuses on this problem, although some comments on implementing a
DFT self-consistency loop will be made.

The large number of electrons contained in a macroscopic crystal prohibits a
direct solution of the Schrédinger equation for such a system. Fortunately, the
solid has periodic symmetry in the bulk, and this can be exploited to reduce the
size of the problem significantly, using Bloch’s theorem, which enables us to
replace the problem of solving the Schrédinger equation for an infinite periodic
solid by that of solving the Schrodinger equation in a unit cell with a series
of different boundary conditions — the so-called Bloch boundary conditions.
Having done this, there remains the problem that close to the nuclei, the
potential diverges, whereas it is weak when we are not too close to any of the
nuclei (interstitial region). We can take advantage of the fact that the potential
is approximately spherically symmetric close to the nuclei, but further away the
periodicity of the crystal becomes noticeable. These two different symmetries
render the solution of the Schrédinger equation in periodic solids difficult. In
this chapter we consider an example of an electronic structure method, the
augmented plane wave (APW) method, which uses a spatial decomposition
of the wave functions: close to the nuclei they are solutions to a spherical
potential, and in the interstitial region they are plane waves satisfying the
appropriate Bloch boundary conditions.

It is possible to avoid the problem of the deep potential altogether by
replacing it by a weaker one, which leaves the interesting physical properties
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