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Topics for Week 34, August 23-27

Introduction, systems of identical particles and physical

systems

>

>

Monday:

Presentation of topics to be covered and introduction to
Many-Body physics (Lecture notes, Shavitt and Bartlett
chapter 1, Raimes chapter 1 and Gross, Runge and
Heinonen (GRH) chapter 1).

» Tuesday:

» Discussion of wave functions for fermions and bosons.

» No exercises this week.

21462



Lectures and exercise sessions

and syllabus

» Lectures: Monday (8.15-10.00, room LilleFys) and Tuesday
(8.15-10.00, room LilleFys)

» Detailed lecture notes, all exercises presented and projects
can be found at the homepage of the course.

» Exercises: 14.15-16 Wednesday, room FV311

» Weekly plans and all other information are on the official
webpage.

» Syllabus: Lecture notes, exercises and projects. Shavitt
and Bartlett as main text, chapter 1-7 and 9-10. Gross,
Runge and Heinonen chapters 1-10 and 14-27or Raimes
(chapter 1-3, and 5-11) are also good alternatives.
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Quantum Many-particle Methods

1. Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

2. Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

Perturbative many-body methods
Density functional theory/Mean-field theory and Hartree-Fock theory
Monte-Carlo methods (FYS4411)

Green'’s function theories

N o g o

Density functional theories

The physics of the system hints at which many-body methods to use.
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23 August - 30 November

Projects, deadlines and oral exam

1. Midterm project, counts 30%: hand out October 12, handin
October 15 (12pm)

2. Final oral exam, to be decided.
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Lectures and exercise sessions

and syllabus

» Lectures: Monday (8.15-10.00, room LilleFys) and Tuesday
(8.15-10.00, room LilleFys)

» Detailed lecture notes, all exercises presented and projects
can be found at the homepage of the course.

» Exercises: 14.15-16 Wednesday, room FV311

» Weekly plans and all other information are on the official
webpage.

» Syllabus: Lecture notes, exercises and projects. Shavitt
and Bartlett as main text, chapter 1-7 and 9-10. Gross,
Runge and Heinonen chapters 1-10 and 14-27or Raimes
(chapter 1-3, and 5-11) are also good alternatives.
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Selected Texts and Many-body theory

LK I I N AN

Blaizot and Ripka, Quantum Theory of Finite systems, MIT press 1986
Negele and Orland, Quantum Many-Particle Systems, Addison-Wesley, 1987.

Fetter and Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
1971.

Helgaker, Jargensen and Olsen, Molecular Electronic Structure Theory, Wiley,
2001.

Mattuck, Guide to Feynman Diagrams in the Many-Body Problem , Dover, 1971.

Dickhoff and Van Neck, Many-Body Theory Exposed, World Scientific, 2006.
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Topics for Week 35, August 30 - September 3

Introduction, systems of identical particles and physical
systems

» Monday:
» Calculations of expectation values and start defining
second quantization

» Tuesday:
» Second quantization and representation of operators

» Wednesday: Exercises 1 and 2
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Definitions

An operator is defined as O throughout this text. Unless
otherwise specified the number of particles is always N and d
is the dimension of the system. In nuclear physics we normally
define the total number of particles to be A =N + Z, where N
is total number of neutrons and Z the total number of protons.
In case of other baryons such isobars A or various hyperons
such as A or ¥, one needs to add their definitions. Hereafter, N
is reserved for the total number of particles, unless otherwise
specificied.
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Definitions

The quantum numbers of a single-particle state in coordinate
space are defined by the variable x = (r, o), where r € R9with
d =1, 2, 3 represents the spatial coordinates and o is the

eigenspin of the particle. For fermions with eigenspin 1/2 this

means that q

5)

/dx:zg:/ddrzzgz/dr,
/de:/dxl/dxz.../de.

x e RY @ (

and the integral

and
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Definitions

The quantum mechanical wave function of a given state with
guantum numbers A (encompassing all quantum numbers
needed to specify the system), ignoring time, is

\U)\ — WX(X17X27 oo 7XN)7

with x; = (rj, o) and the projection of o; takes the values
{—1/2,41/2} for particles with spin 1/2. We will hereafter
always refer to ¥, as the exact wave function, and if the ground
state is not degenerate we label it as

Yy = \Uo(Xl,Xz, oo ,XN).
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Definitions

Since the solution W, seldomly can be found in closed form,
approximations are sought. In this text we define an
approximative wave function or an ansatz to the exact wave
function as

P\ = Pr(X1, X2, .-, XN),

with
cl)0 — ¢0(X17X27 o 7XN)7

being the ansatz to the ground state.
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Definitions

The wave function WV, is sought in the Hilbert space of either
symmetric or anti-symmetric N-body functions, namely

VyeHN =H1PH1 D D Hq,

where the single-particle Hilbert space H; is the space of
square integrable functions over € RY & (o) resulting in

Hy = L2(RY @ (0)).
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Definitions
Our Hamiltonian is invariant under the permutation
(interchange) of two particles. Since we deal with fermions
however, the total wave function is antisymmetric. Let P be an
operator which interchanges two particles. Due to the
symmetries we have ascribed to our Hamiltonian, this operator
commutes with the total Hamiltonian,

[A,P] =0,
meaning that W (x1, X2, ..., Xy ) is an eigenfunction of P as well,
that is
FA’ij\U)\(X]_,Xz,...,Xi,...,Xj,...,XN) :ﬂ\U)\(Xl,Xz,...,Xj,...,Xi,...,XN)‘

where ( is the eigenvalue of P. We have introduced the suffix ij
in order to indicate that we permute particles i and j. The Pauli
principle tells us that the total wave function for a system of
fermions has to be antisymmetric, resulting in the eigenvalue

B=-1.
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Definitions and notations

The Schrodinger equation reads

H(X1, X2, - s X)W (X1, X25 - -, XN) = EAWA(X1, X2, -+, XN, (0.0.1)

where the vector x; represents the coordinates (spatial and spin) of particle i, A stands
for all the quantum numbers needed to classify a given N-particle state and W, is the
pertaining eigenfunction. Throughout this course, W refers to the exact eigenfunction,
unless otherwise stated.
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Definitions and notations

We write the Hamilton operator, or Hamiltonian, in a generic way

while the operator V for the potential energy is given by

N

N N
Vo= lex(Xi) + D V0 X) + D VG, X, %) + - (0.0.2)
i—1

ji=1 ijk=1

Hereafter we use natural units, viz. A = ¢ = e = 1, with e the elementary charge and c
the speed of light. This means that momenta and masses have dimension energy.
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Definitions and notations

If one does quantum chemistry, after having introduced the Born-Oppenheimer
approximation which effectively freezes out the nucleonic degrees of freedom, the
Hamiltonian for N = ne electrons takes the following form

R Ne Ne 7 Ne K
H ::jg:t(xi)-_ zz:l(}f +’:£: F;7

i=1 i=1 ! i<j !

with k = 1.44 eVnm
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Definitions and notations

We can rewrite this as

Ne Ne
~ A ~ ~ 1
A= H = ho (X =, 0.0.3
o+ Hi =, 0(X|)+_Z rij (0.0.3)
i=1 i<j=1
where we have defined rjj = |r; — rj| and
~ o 4
ho(%i) = t(xi) — - (0.0.4)

The first term of eq. (0.0.3), Hg, is the sum of the N one-body Hamiltonians ﬁo. Each
individual Hamiltonian hy contains the kinetic energy operator of an electron and its
potential energy due to the attraction of the nucleus. The second term, H,, is the sum
of the ne(ne — 1)/2 two-body interactions between each pair of electrons. Note that the
double sum carries a restriction i < j.
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Definitions and notations

The potential energy term due to the attraction of the nucleus defines the onebody field
U; = Uext(Xj) of Eq. (0.0.2). We have moved this term into the Fo part of the
Hamiltonian, instead of keeping it in V asin Eqg. (0.0.2). The reason is that we will
hereafter treat Hy as our non-interacting Hamiltonian. For a many-body wavefunction
®, defined by an appropriate single-particle basis, we may solve exactly the
non-interacting eigenvalue problem

Ho®y = wy &y,

with wy being the non-interacting energy. This energy is defined by the sum over
single-particle energies to be defined below. For atoms the single-particle energies
could be the hydrogen-like single-particle energies corrected for the charge Z. For
nuclei and quantum dots, these energies could be given by the harmonic oscillator in
three and two dimensions, respectively.
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Definitions and notations

We will assume that the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written as

N
A =Ho+H = ho(x)+ Z V(r), (0.0.5)
i=1 i<j=1
with
N . N
=S hox) =" (t(x. + Gext(X; )) (0.0.6)
i=1 i=1

The onebody part uext(x;) is normally approximated by a harmonic oscillator potential
or the Coulomb interaction an electron feels from the nucleus. However, other
potentials are fully possible, such as one derived from the self-consistent solution of
the Hartree-Fock equations.
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Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[H,P]=0,
meaning that W (X1, Xz, . . ., XN ) is an eigenfunction of P as well, that is
ﬁijwk(xl7x27"'7Xi7""xj7""XN) = IB\UA(X17X27"'7Xi7"'7xj7""XN)7

where 3 is the eigenvalue of P. We have introduced the suffix ij in order to indicate that
we permute particles i and j. The Pauli principle tells us that the total wave function for

a system of fermions has to be antisymmetric, resulting in the eigenvalue g = —1.
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Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Ya(X1) Yal2) ... ... Palxn)
1| ¥sla) vplx2) ... .o Pp(xn)
B T SO  |
Yo(X1) Yolx2) ... ... y(Xn)
(0.0.7)
where x; stand for the coordinates and spin values of a particle i and «, 3, ...,y are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function v (x;) are eigenfunctions of the onebody Hamiltonian h;,
that is

ho(xi) = t(xi) + Gex(xi),

with eigenvalues
ho(xi)ra (x)) = (T06) + Be(x)) a(x) = eatba(x).

The energies ¢, are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present.
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Definitions and notations

Let us denote the ground state energy by Eq. According to the variational principle we
have
Eo < E[¢] :/d>*|3|d>d7—

where @ is a trial function which we assume to be normalized

/d>*¢dT =1,

where we have used the shorthand d7 = dr;dr, ... dry.
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (0.0.7)
which can be rewritten as
1 2
(X1, X0+ XN @ By oy v) = —= > (=)PPia(xa)¥p(X2) - ¥ (xn) = VNLASDY,
VNI
(0.0.8)

where we have introduced the antisymmetrization operator .4 defined by the

summation over all possible permutations of two nucleons.
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Definitions and notations

It is defined as

1 .
A= Ni ;(—)"P, (0.0.9)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle

functions
¢H(X17X27' .. 7XN7a7ﬁ7 .. '7'/) = ’LZJQ(X]_)’LZJB(XZ) ° "d)V(XN)'
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Definitions and notations

Both Hy and T—i are invariant under all possible permutations of any two particles and

hence commute with A
[Ho, A] = [H;, A] = 0. (0.0.10)

Furthermore, A satisfies
A2 = A, (0.0.11)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of Ho
/¢*I—To¢d7- = N!/¢,T,A|—TOA¢HdT

is readily reduced to
/¢*I—To¢d7- = N!/¢,*_]I—TOA¢HdT,
where we have used egs. (0.0.10) and (0.0.11). The next step is to replace the

antisymmetrization operator by its definition Eq. (0.0.8) and to replace Hy with the sum
of one-body operators

N
/¢*I—fo¢d7- =SS (=) / o P by dr.

i=1 p
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Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions @ because the individual single-particle wave functions are
orthogonal. We obtain then

N
/¢*|3|0¢d7 = Z/cb;f,ﬁochdT.
i=1

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

N
/¢*Ho¢dT _ Z/w;(r)ﬁow(r)dr. (0.0.12)
p=1
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Definitions and notations

We introduce the following shorthand for the above integral

(ulhlu) = / 7 (Notu (1),

and rewrite Eq. (0.0.12) as

N

/¢*ﬁo¢dT =" (ulh|). (0.0.13)

p=1
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Definitions and notations

The expectation value of the two-body part of the Hamiltonian is obtained in a similar
manner. We have

/¢*ﬁ.¢dT:N!/¢;AﬁlA¢HdT,

which reduces to

N
/¢*|—"|.¢dr: > Z(—)p/%V(rij)ﬁchdT,

i<j=1 p

by following the same arguments as for the one-body Hamiltonian.
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Definitions and notations

Because of the dependence on the inter-particle distance r;;, permutations of any two
particles no longer vanish, and we get

N
/¢*I:||¢d7: > /¢:_;V(rij)(1— Pj)®pdr.

i<j=1

where Pj is the permutation operator that interchanges nucleon i and nucleon j. Again

we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

. 1 N N
Joriodr =257 50| [unoaus v (rn(xve ek
p=1v=1 (0.0.14)

- / W5 06065 04V (5 )b (% o (%)l |

The first term is the so-called direct term. It is frequently also called the Hartree term,
while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions v, (r), defined by the quantum numbers . and r (recall that r also
includes spin degree) are defined as the overlap

Ya(X) = (X]).
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Definitions and notations

We introduce the following shorthands for the above two integrals
(V) = [0SOV (1 04 05,

and
(pv|Vvp) = / Py (%), () V(1 )w (X ) (X ) dXi -
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

(u|V |pv)as = (uv|V |pv) — (pv|V vy,
or for a general matrix element

(ulVloT)as = (uv|V |or) — (uv|V|70).
It has the symmetry property

(mv|Vot)as = —(uv|V|To)as = —(vu|V|oT)as.
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying
(uv|VloT)as = (o7|V|uv)as.

With these notations we rewrite Eq. (0.0.14) as

N N
N 1
/¢*H|¢d7 = 5 Z Z<NV‘V|NV>AS' (0.0.15)

p=1lv=1
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Definitions and notations

Combining Egs. (0.0.13) and (0.0.132) we obtain the energy functional

N

N N
E[0] = > (ulhlu) + %ZZ IV s (0.0.16)

p=1

which we will use as our starting point for the Hartree-Fock calculations later in this

course.
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Topics for Week 36, September 6-10

Second quantization

Monday:

Summary from last week

Second quantization and operators
Anti-commutation rules

>

4

4

4

» Tuesday:
» Operators and wave functions in second quantization
» Wick’s theorem

» Diagrammatic representation of operators.

» Exercise 3, 4 and 5 on Wednesday

The material is taken from chapter 3.1-3.6 and 4.1-4.4 of
Shavitt and Bartlett.
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Second guantization

We introduce the time-independent operators al, and a, which create and annihilate,
respectively, a particle in the single-particle state ¢,. We define the fermion creation
operator al,

al |0) = |), (0.0.17)

and
ag\al...anﬂs = ‘Otal...Otn>AS (0018)
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Second quantization

In Eq. (0.0.17) the operator aL acts on the vacuum state |0), which does not contain
any particles. Alternatively, we could define a closed-shell nucleus as our new
vacuum,but then we need to introduce the particle-hole formalism, see next section.
In Eq. (0.0.18) al, acts on an antisymmetric n-particle state and creates an
antisymmetric (n + 1)-particle state, where the one-body state ., is occupied, under
the condition that « # a3, ay, ..., an. It follows that we can express an antisymmetric
state as the product of the creation operators acting on the vacuum state.

laz ... an)as = af, al,, ... af, |0) (0.0.19)
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Second guantization

It is easy to derive the commutation and anticommutation rules for the fermionic
creation operators aL. Using the antisymmetry of the states (0.0.19)

lag...qj...ox...an)as = —|a1...0ax...qj...an)as (0.0.20)
we obtain
al,al, = —al, al, (0.0.22)
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Second guantization

Using the Pauli principle
lag...q...05...0n)as =0 (0.0.22)

it follows that
al,al, =0. (0.0.23)

If we combine Egs. (0.0.21) and (0.0.23), we obtain the well-known anti-commutation
rule
aLaE + aj’Baj1 = {al, aE} =0 (0.0.24)
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Second guantization

The hermitian conjugate of al, is
aa = (a})’

If we take the hermitian conjugate of Eq. (0.0.24), we arrive at

{aa,a3} =0

(0.0.25)

(0.0.26)
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Second quantization

What is the physical interpretation of the operator a, and what is the effect of a, on a
given state |aya . .. an)as? Consider the following matrix element

(a0 ... anlaalafas ... am) (0.0.27)

where both sides are antisymmetric. We distinguish between two cases

1. « € {«a;}. Using the Pauli principle of Eq. (0.0.22) it follows

(10 ...anlaa =0 (0.0.28)

2. a ¢ {a;j}. It follows that an hermitian conjugation

(1@ ...anlaa = (aagan ... an (0.0.29)
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Second guantization

Eqg. (0.0.29) holds for case (1) since the lefthand side is zero due to the Pauli principle.
We write Eq. (0.0.27) as

(1az...anlaalajal . ..an) = (a1ag ... an| acjah . .. ap (0.0.30)

Here we must have m = n + 1 if Eq. (0.0.30) has to be trivially different from zero.
Using Egs. (0.0.28) and (0.0.28) we arrive at

0 oac{o}V{an} #{af} } (0.0.31)

(osoz.-anlsclofe—-on = { 51 g (o)L foan) 2 fan
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Second guantization

For the last case, the minus and plus signs apply when the sequence «, ag, ay, . .., an
and ag, a5, ..., ap , are related to each other via even and odd permutations. If we
assume that a ¢ {«;} we have from Eq. (0.0.31)

(0z...anlaalajay ... on ) =0 (0.0.32)

when o € {af}. If o ¢ {a]}, we obtain

aq lajas . ..o ,) =0 (0.0.33)
—————
#a
and in particular
a.|0) =0 (0.0.34)
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Second guantization

If {c; } = {a/}, performing the right permutations, the sequence o, a1, @z, . . ., an is
identical with the sequence o}, a5, . . ., O‘:H—l' This results in

(@102 ... anlaa|aciag . ..an) =1 (0.0.35)
and thus

an|aayap . ..on) = |agas ... an) (0.0.36)
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Second quantization

The action of the operator a., from the left on a state vector is to to remove one particle
in the state «. If the state vector does not contain the single-particle state «, the
outcome of the operation is zero. The operator a., is normally called for a destruction
or annihilation operator.

The next step is to establish the commutator algebra of af, and ag.
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Second guantization

The action of the anti-commutator {aL,aa} on a given n-particle state is

alan|atas...an) = 0
N—_— ———
F#a
asal, |aras . .. an)
—_———

Ao |aagay...an) = |ajay ... an)

#a F#a #a

if the single-particle state « is not contained in the state.

(0.0.37)
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Second guantization

If it is present we arrive at

alan|aton ... ooy ... on_1) = ahan(—1)¢|acas...

= (-1)¥aczoz...an_1) = |ogaz...oxc0pyg .

aaaL|a1a2...akaom+4...an_1> 0
From Egs. (0.0.37) and (0.0.38) we arrive at

{al ,a,} =ala, +asal, =1

an_1)

. O(n—1>

(0.0.38)

(0.0.39)
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Second guantization

The action of aL, ag, with o # 8 on a given state yields three possibilities. The first
case is a state vector which contains both a and g, then either « or 8 and finally none
of them.
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Second guantization

The first case results in

aLa5|aﬂa1a2 coo an_2> =0
agal|afayas ... an_p) =0 (0.0.40)
while the second case gives
aLaMﬁalaz...an_l) = \aalaz...an_l)
N——— N————
#a #a
agal|Basaz...an_1) = aglaBBogaz...an 1)
| — | —
#a #a
= —|aaian...an_1) (0.0.41)
N——
#a
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Second guantization

Finally if the state vector does not contain « and 3

alag‘alaz...an> 0
N— —
#a, 8

aﬂajl\ a1 ... an>
N— —

aglaajay...an) =0
N——

#a, 8 #a, 8

For all three cases we have

{al,,ag} =alas +agal, =0, a#p

(0.0.42)

(0.0.43)
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Second guantization

We can summarize our findings in Egs. (0.0.39) and (0.0.43) as
{al,, a5} = dup (0.0.44)

with 6, is the Kroenecker 4-symbol.
The properties of the creation and annihilation operators can be summarized as (for
fermions)
al|0) =|a),

and

al‘al 51010 an>/_\5 = \aal 51010 Oln>AS~
from which follows

lag ... an)as = af, al,, ...af, |0).

2

55/462



Second guantization

The hermitian conjugate has the folowing properties
a, = (ah)t.

Finally we found
aq |ajas .. o) =0, spesielta|0) =0,
N———
Fa

and
an|aaian . ..an) = |azaz ... an),

and the corresponding commutator algebra

{al,al} = {aa,a3} =0 {al,as} = dap-
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Operators in second quantization

A very useful operator is the so-called number-operator. Most physics cases we will
study in this text conserve the total number of particles. The number operator is
therefore a useful quantity which allows us to test that our many-body formalism
conserves the number of particles. In for example (d, p) or (p, d) reactions it is
important to be able to describe quantum mechanical states where particles get added
or removed. A creation operator aL adds one particle to the single-particle state a of a
give many-body state vector, while an annihilation operator a, removes a particle from
a single-particle state a.
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Operators in second quantization

Let us consider an operator proportional with aLaﬁ and o = S. It acts on an n-particle
state resulting in

0 o {a}
alas|aias...an) = (0.0.45)
lewan . ..an) o € {ei}

Summing over all possible one-particle states we arrive at

<Z aLaa> lagag ... an) = nlagag ... oan) (0.0.46)
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Operators in second quantization

The operator
N=> ala. (0.0.47)

o
is called the number operator since it counts the number of particles in a give state

vector when it acts on the different single-particle states. It acts on one single-particle
state at the time and falls therefore under category one-body operators. Next we look
at another important one-body operator, namely Ho and study its operator form in the

occupation number representation.
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Operators in second quantization

We want to obtain an expression for a one-body operator which conserves the number
of particles. Here we study the one-body operator for the kinetic energy plus an
eventual external one-body potential. The action of this operator on a particular n-body
state with its pertinent expectation value has already been studied in coordinate space.
In coordinate space the operator reads

Ho = > h(x) (0.0.48)
i
and the anti-symmetric n-particle Slater determinant is defined as

¢(X1,X2,...,Xn,a1,a2,...,an \/—Z wal X1 waz(XZ) wan(Xn)'
(0.0.49)
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Operators in second quantization

Defining
ho(Xi)tbey () = > Doy, (%) etk [Pof e} (0.0.50)
o
we can easily evaluate the action of Hy on each product of one-particle functions in

Slater determinant. From Egs. (0.0.49) (0.0.50) we obtain the following result without
permuting any particle pair

(Z I'A10(Xi )) Yoy (X1)¥ay (X2) - - - Yan (Xn)

= D (aqlhlaa)¥as (1), (X2) - - - Yan (Xn)

!
1

+ D (aplhlaz)pa; (Xa)Pay (Xe) - - - Pan (Xn)

/

3

+ > (ahlholan)day (X1)day (X2) - - - Wy (Xn) (0.0.51)

!/
An
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Operators in second quantization

If we interchange the positions of particle 1 and 2 we obtain

(Z ﬁo(Xi)> Yoy (X2)Pa; (X2) - - - Pan (Xn)

= Z(a'zmo\azwm(xzwaé (X1) - - - Yan (xn)

/
2

+ > (anlholas)da; (X2)tay (X1) - - - Yan (Xn)

!’
R

o

+ > (anlholan)ta; (X2)day (X2) - - - Yas (n) (0.0.52)

/
A

62/462



Operators in second quantization

We can continue by computing all possible permutations. We rewrite also our Slater
determinant in its second quantized form and skip the dependence on the quantum

numbers x;. Summing up all contributions and taking care of all phases (—1)P we
arrive at

Holaw, az,...,an) = D (ajlhla)lajaz...an)

!
1

+ Y (ablholaz)|eral ... an)

’
2

+ > (anlholan)|ara . .. ap) (0.0.53)

/
An
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Operators in second quantization

In Eq. (0.0.53) we have expressed the action of the one-body operator of Eq. (0.0.48)
on the n-body state of Eq. (0.0.49) in its second quantized form. This equation can be
further manipulated if we use the properties of the creation and annihilation operator
on each primed quantum number, that is

lorag .. .ap ...an) = aL Aoy |o1o .. o ... om) (0.0.54)

Inserting this in the right-hand side of Eq. (0.0.53) results in

qu‘611612 ...(1n>

Z<a/1\ﬁo|a1>aliaa1 loaag ... an)
a/
1

e Z(a'z\ﬁomz)aléaaz\alag...an)

ap

+ ...

+ Z(aﬁ|ﬁo|an>a1;é 8aplogaz ... on)
o

= > (alho|B)afaglaes .. . on) (0.0.55)
a,B
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Operators in second quantization

In the number occupation representation or second quantization we get the following
expression for a one-body operator which conserves the number of particles

Ho = > (alholB)al,as (0.0.56)
af

Obviously, Ao can be replaced by any other one-body operator which preserved the
number of particles. The stucture of the operator is therefore not limited to say the
kinetic or single-particle energy only.

The opearator Fo takes a particle from the single-particle state 3 to the single-particle
state o with a probability for the transition given by the expectation value {«|h|3).
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Operators in second quantization

It is instructive to verify Eq. (0.0.56) by computing the expectation value of Hy between
two single-particle states

(1|Folaz) = (alho|8)(0lan, al,asal,|0) (0.0.57)
af

Using the commutation relations for the creation and annihilation operators we have

ao,al,a5al,, = (baa; — aL8a;)(6pa, — al,a3), (0.0.58)
which results in
(0laa, al,agal, [0) = daa; 0pa, (0.0.59)
and . ~ R
(e1lHolaz) = D (alholB)daa dpa, = (a1lholaz) (0.0.60)
af

as expected.
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Operators in second quantization

Let us now derive the expression for our two-body interaction part, which also
conserves the number of particles. We can proceed in exactly the same way as for the
one-body operator. In the coordinate representation our two-body interaction part takes
the following expression

Hi=>_V(x,x) (0.0.61)
i<j
where the summation runs over distinct pairs. The term V can be an interaction model
for the nucleon-nucleon interaction. It can also include additional two-body interaction

terms.
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Operators in second quantization

The action of this operator on a product of two single-particle functions is defined as

V(%5 %)y (6 )8y (%) = D i, ()90, 04) (g IV |oscen) (0.0.62)
oo
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Operators in second quantization

We can now let F|, act on all terms in the linear combination for |ay s . . . an). Without

any permutations we have

(ZV(Xi o )) Yoy (X1)Yay (X2) - - - Yan (Xn)

i<j

D~ (ah bV ), (X1)Ph, (X2) - - - Yaq (Xn)

ajaj

+ A

+ > (aqonlVazan)dh, (X1)Ya, (X2) - - - ¥h, (Xn)
oo

=

+ ) (abon|Viazan)ta, (X1)¥h, (X2) - . - ¥h, (Xn)
Dtéoéa

_l’_

where on the rhs we have a term for each distinct pairs.

(0.0.63)
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Operators in second quantization

For the other terms on the rhs we obtain similar expressions and summing over all
terms we obtain

Hi|laqao ... an) Z (a) bV |agan)|afal . . . an)

al o
+ o
+ > (dhoplVeran)lataz .. )
af,0q
+ .
+ Z <a/2a/n|v‘a20ln>|a1a,2...a:1>
aé,a{]
T (0.0.64)

70/462



Operators in second quantization

We introduce second quantization via the relation

T af
aa&a&(aalaak|a1a2...ak...a|...an)

= (1) (-1)2al,a an a0 ]oxa 010z ... an)

koo
Fou,
= () Y(-1)"?|afof ajay ... an)
——
oy ,af
= |mog...oq...of...an) (0.0.65)
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Operators in second quantization

Inserting this in (0.0.64) gives

Fh‘(llclz ...C¥n>

:E: <aioé‘v|a102>alialéaazaal|alog...

i
aj,op

Z (afah |V \alan>al aL

e
al,op

’ /
1 %n

Z (ahap|V \azan>a];, aL, Aanaa,|onag ...
2 n

’ ’
ag,0ap

!
> (aBIV]yd)alalasaylaiaz ... an)
a,B,7,6

AapQay |10 .- . .

(0.0.66)
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Operators in second quantization

Here we let >~/ indicate that the sums running over o and 3 run over all single-particle
states, while the summations v and 6 run over all pairs of single-particle states. We
wish to remove this restriction and since

(BIV|v8) = (BeV [67) (0.0.67)
we get
> (aBlViyo)ahalasa, = 3 (BalV|sy)alalasa, (0.0.68)
o, o,
= > (BalV|éy)alala,as (0.0.69)
o,

where we have used the anti-commutation rules.
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Operators in second quantization

Changing the summation indices « and 3 in (0.0.69) we obtain

> (aBIV]yd)alalasa, = > (ap|V]sy)alala,a; (0.0.70)
o, a,f

From this it follows that the restriction on the summation over v and é can be removed
if we multiply with a factor % resulting in

1
H=3 ﬁz 6<aﬂ|vwa>aga;a5a7 (0.0.71)
a, 0,7,

where we sum freely over all single-particle states «, 3, v 0g ¢.
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Operators in second quantization

With this expression we can now verify that the second quantization form of I:|| in
Eqg. (0.0.71) results in the same matrix between two anti-symmetrized two-particle
states as its corresponding coordinate space representation. We have

~ 1
(ol Fi|B152) = 5 ﬂzéwmv|va><0|aa2aa1aLa;a5awa;1aLZ|0>. (0.0.72)
afy,
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Operators in second quantization

Using the commutation relations we get

2,302 aka,a,af af,
= aa,aq,alaf(as0,p,8], —asal aal)
= Qa,a0,aLa5(0,5,058, — 615,80y a5 — asal 5,5, + asa al) a,)
= aazamajya%(‘svﬂl dsp, — 6751aT52a5

T T af
—058,0y8, + 048,85 85 + 8585 a5 ay) (0.0.73)
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Operators in second quantization

The vacuum expectation value of this product of operators becomes

(0]aa,aa, (';\Z‘azLaa(;anyaZ31 agz |0)

(648,058, — 956,0+3,) (018, 8a; 8525 (0)
= (5'Y5165ﬂ2 - 55516752)(511&155&2 - 65%6‘1&2)

(0.0.74)
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Operators in second quantization

Insertion of Eq. (0.0.74) in Eq. (0.0.72) results in

1

> [(a102|V|B182) — (c102|V [B201)
—(opa1|V|[B182) + (0201 |V |B2/31)]

= (a|V|B162) — (a2|V|B2061)

= (oaz|V|B1B2)as. (0.0.75)

(10 |Fi|8162)
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Operators in second quantization

The two-body operator can also be expressed in terms of the anti-symmetrized matrix
elements we discussed previously as

~ 1
Hoo= 3 > (aﬁ\Vhé)aLa}fagaw
afBvyé

1
3 3 [0aV19) - avis] alebese,
afy

1
2 2 (aBIVId)asalafasay (0.0.76)
afBvyé
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Operators in second quantization

The factors in front of the operator, either 711 or % tells whether we use antisymmetrized
matrix elements or not.

We can now express the Hamiltonian operator for a many-fermion system in the
occupation basis representation as

1
H =3 (alt +u|@alas + n > (aBIV]ys)alafiasa,. (0.0.77)
a,B a,B,7,6

This is form we will use in the rest of these lectures, assuming that we work with
anti-symmetrized two-body matrix elements.
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Wick’s theorem

Wick’s theorem is based on two fundamental concepts, namely normal ordering and

contraction. The normal-ordered form of AB..XY, where the individual terms are either
a creation or annihilation operator, is defined as

AB..XY ! = (=1)P [creation operators] - [annihilation operators] . 0.0.78
{ } (-1) P P

The p subscript denotes the number of permutations that is needed to transform the
original string into the normal-ordered form. A contraction between to arbitrary
operators X and Y is defined as

—

XY = (0]XY|0). (0.0.79)
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Wick’s theorem

It is also possible to contract operators inside a normal ordered products. We define
the original relative position between two operators in a normal ordered product as p,
the so-called permutation number. This is the number of permutations needed to bring
one of the two operators next to the other one. A contraction between two operators
with p # 0 inside a normal ordered is defined as

{@?} = (=1)° {K%..R?}. (0.0.80)

In the general case with m contractions, the procedure is similar, and the prefactor
changes to

(_1)p1+pz+--+Pm . (0.0.81)
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Wick’s theorem

Wick’s theorem states that every string of creation and annihilation operators can be
written as a sum of normalordered products with all possible ways of contractions,

ABCD..RXYZ = { ABCD..RXYZ

(1)

+ {
()

AF ooo

+2.

[

N

2

}

{

+> {ABCD..RXYZ}

AAAAAAAA
ABCD..RXYZ}

PSSV I NN
ABCD.. RXYZ

} |

(0.0.82)

(0.0.83)

(0.0.84)

(0.0.85)

(0.0.86)

83/462



Wick’s theorem

The >~ m) Means the sum over all terms with m contractions, while [%] means the

largest integer that not do not exceeds % where N is the number of creation and
annihilation operators. When N is even,

P} = g (0.0.87)

and the last sum in Eq. (0.0.82) is over fully contracted terms. When N is odd,

N

[ﬂ # g (0.0.88)

and non of the terms in Eq. (0.0.82) are fully contracted. See later for a proof.
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Wick’s theorem

An important extension of Wick’s theorem allow us to define contractions between
normal-ordered strings of operators. This is the so-called generalized Wick’s theorem,

+2

&)

TF oo

{

ABCD..RXYZ

}

(0.0.89)

(0.0.90)

(0.0.91)

(0.0.92)
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Wick’s theorem

Turning back to the many-body problem, the vacuum expectation value of products of
creation and annihilation operators can be written, according to Wick’s theoren in Eq.
(0.0.82), as a sum over normal ordered products with all possible numbers and
combinations of contractions,

(0|ABCD..RXYZ|0) = (0| { ABCD..RXYZ ! |0) (0.0.93)
+> (0| {K%EB..&)??E} |0) (0.0.94)
B
fiv'v 1
+> (0| {ABCD..RXYZ} o) (0.0.95)
@
+ . (0.0.96)
2ol ol
+> (0l {ABCD.. vaz} |0). (0.0.97)
(%]

86/462



Wick’s theorem

All vacuum expectation values of normal ordered products without fully contracted
terms are zero. Hence, the only contributions to the expectation value are those terms
that is fully contracted,

AAAAAAAA = =
(OJABCD..RXYZ|0) = > (0| {ABCD.. vaz} |0) (0.0.98)
(all)
el
=) ABCD..RXYZ. (0.0.99)
(all)
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Wick’s theorem

To obtain fully contracted terms, Eq. (0.0.87) must hold. When the number of creation
and annihilation operators is odd, the vacuum expectation value can be set to zero at
once. When the number is even, the expectation value is simply the sum of terms with
all possible combinations of fully contracted terms. Observing that the only
contractions that give nonzero contributions are

a';lg = bap) (0.0.100)

the terms that contribute are reduced even more.

Wick’s theorem provides us with an algebraic method for easy determine the terms that
contribute to the matrix element. In the next section, the particle-hole formalism is
presented, which is appropriate formalism in many-body systems.
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Topics for Week 37, September 13-17

Second quantization

» Monday:
» Summary from last week

» Wick’s theorem and its proof

» Particle-hole formalism

» Tuesday:

» Diagrammatic representation of operators.
» Exercises 6 and 7, recommended.

The material is taken from chapter 3.1-3.6 and 4.1-4.4 of
Shavitt and Bartlett.
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Particle-hole formalism

Second quantization is a useful and elegant formalism for constructing many-body
states and quantum mechanical operators. As we will see later, one can express and
translate many physical processes into simple pictures such as Feynman diagrams.
Expecation values of many-body states are also easily calculated. However, although
the equations are seemingly easy to set up, from a practical point of view, that is the
solution of Schrédinger’s equation, there is no particular gain. The many-body equation
is equally hard to solve, irrespective of representation. The cliche that there is no free
lunch brings us down to earth again. Note however that a transformation to a particular
basis, for cases where the interaction obeys specific symmetries, can ease the solution
of Schrédinger’s equation. An example you will encounter here is the solution of the
two-particle Schrodinger equantion in relative and center-of-mass coordinates. Or the

solution of the three-body problem in so-called Jacobi coordinates.
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Particle-hole formalism

But there is at least one important case where second quantization comes to our
rescue. It is namely easy to introduce another reference state than the pure vacuum
|0), where all single-particle are active. With many particles present it is often useful to
introduce another reference state than the vacuum state |0). We will label this state |c)
(c for core) and as we will see it can reduce considerably the complexity and thereby
the dimensionality of the many-body problem. It allows us to sum up to infinite order
specific many-body correlations. (add more stuff in the description below)

The particle-hole representation is one of these handy representations.
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Particle-hole formalism

In the original particle representation these states are products of the creation

operators aLl acting on the true vacuum |0). Following (0.0.19) we have

lazez...on_1an) = af al, ...al,  al |0) (0.0.101)
lagaz...ap_jananya) = ah,al,...al al al  0)  (0.0.102)
lazez...on_1) = alal,...al  [0) (0.0.103)
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Particle-hole formalism

If we use Eq. (0.0.101) as our new reference state, we can simplify considerably the
representation of this state
c) = |enaz ... an_1om) = af, af, ...al, _ al, |0) (0.0.104)

an—1

The new reference states for the n + 1 and n — 1 states can then be written as

ooy ... an_1onant1) = (—l)”ajln+1|c>E(—l)”|an+1>c (0.0.105)
ajag...an_1) = (=1)"tag,lc) = (—1)"Fan_1)c (0.0.106)
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Particle-hole formalism

The first state has one additional particle with respect to the new vacuum state |c) and
is normally referred to as a one-particle state or one particle added to the many-body
reference state. The second state has one particle less than the reference vacuum
state |c) and is referred to as a one-hole state.
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Particle-hole formalism

When dealing with a new reference state it is often convenient to introduce new
creation and annihilation operators since we have from Eq. (0.0.106)

aalc) #£0 (0.0.107)

since « is contained in |c), while for the true vacuum we have a.|0) = 0 for all c.
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Particle-hole formalism

The new reference state leads to the definition of new creation and annihilation
operators which satisfy the following relations

balc) = 0 (0.0.108)
{bL,b;} ={ba,bg} = 0
{bl,bg} = bap (0.0.109)

We assume also that the new reference state is properly normalized

<C| c=1 (0.0.110)
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Particle-hole formalism

The physical interpretation of these new operators is that of so-called quasiparticle
states. This means that a state defined by the addition of one extra particle to a
reference state |c) may not necesseraly be interpreted as one particle coupled to a

core.
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Particle-hole formalism

We define now new creation operators that act on a state « creating a new
quasiparticle state
allcy=la), a>F
bl |c) = (0.0.111)

aalc) =la"t), a<F

where F is the Fermi level representing the last occupied single-particle orbit of the
new reference state |c).
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Particle-hole formalism

The annihilation is the hermitian conjugate of the creation operator

bo = (bL)Tv
resulting in
al, a>F ax a>F
bl = { ba = { (0.0.112)
a, a<F al, a<F
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Particle-hole formalism

With the new creation and annihilation operator we can now construct many-body
quasiparticle states, with one-particle-one-hole states, two-particle-two-hole states etc

in the same fashion as we previously constructed many-particle states. We can write a
general particle-hole state as

BBz .. BrorTiugt oty = b}'ﬁbgz .. b};np b bl, ... b;nh Ic) (0.0.113)

>F <F
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Particle-hole formalism

We can now rewrite our one-body and two-body operators in terms of the new creation
and annihilation operators. The number operator becomes

N=> alaa= ) biba+nc— > biba (0.0.114)

a>F a<F

where n¢ is the number of particle in the new vacuum state |c). The action of N on a
many-body state results in

NIBLBz - - Brp 1y 22 L - Ane ) = (Mp +Ne = M0)IBLBz2 - - Brp vy 5 - o)
(0.0.115)
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Particle-hole formalism

Here n = np + nc — ny, is the total number of particles in the quasi-particle state of
Eq. (0.0.113). Note that N counts the total number of particles present

Ngp = > blba, (0.0.116)

gives us the number of quasi-particles as can be seen by computing

Nop = 18182 - Brp vy % H - ) = (Mp + 10)1B1B2 - By 95 - - o)
(0.0.117)

where ngp = np + Ny, is the total number of quasi-particles.
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Particle-hole formalism

We express the one-body operator Fy in terms of the quasi-particle creation and
annihilation operators, resulting in

o = > (alnigbibs+ > [(alnlg)blb + (Glhla)bsbal
aB>F a>F
B<F
+ D (alhla) = > (Blhja)blbs (0.0.118)
a<F aB<F
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Particle-hole formalism

The first term gives contribution only for particle states, while the last one contributes
only for holestates. The second term can create or destroy a set of quasi-particles and
the third term is the contribution from the vacuum state |c). The physical meaning of
these terms will be discussed in the next section, where we attempt at a diagrammatic

representation.
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Particle-hole formalism

Before we continue with the expressions for the two-body operator, we introduce a
nomenclature we will use for the rest of this text. It is inspired by the notation used in
coupled cluster theories. We reserve the labels i, j, k, ... for hole states and a, b, c, ...
for states above F, viz. particle states. This means also that we will skip the constraint

< F or > F in the summation symbols. Our operator I:|o reads now
Ao = Z(a|h|b bTbb+Z [ (alhfiybibf + (|h|a>biba]

+ Z Infiy — > \h\l>bTb (0.0.119)

ij
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Particle-hole formalism

The two-particle operator in the particle-hole formalism is more complicated since we
have to translate four indices a3v4 to the possible combinations of particle and hole
states. When performing the commutator algebra we can regroup the operator in five
different terms

A =A%+ A® + A + A L A® (0.0.120)

Using anti-symmetrized matrix elements, the term Hl(a) is

A = 1 > (ab|Vcd)bib]bybe (0.0.121)

abcd

106/462



Particle-hole formalism

The next term Ifil(b) reads
A 1 . .
AL = 2 S ((ab\V|cu>b;bgbinc + (ai|V |cb)b]b; bbbc) (0.0.122)
abci

This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For FII(C) we have

. 1 ) )
A© = > ((ab|V\u>b;bgbijiT + <|J|V\ab)babbbjbi) +
abij

1 I 1 I
5 > (ai|V|bj)bibbyb; + 5 > (@i |V|bi)b]by. (0.0.123)
abij abi
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Particle-hole formalism

The first line stands for the creation of a two-particle-two-hole state, while the second
line represents the creation to two one-particle-one-hole pairs while the last term
represents a contribution to the particle single-particle energy from the hole states, that
is an interaction between the particle states and the hole states within the new vacuum
state. The fourth term reads

1 - }
@ o= 1> (<a||V\Jk>b;bgbfbi + <J|\V|ak>bgbjbiba) 4
aijk

%Z (<.—:1i|vui>b;bjT + (ji|V]ai) — (ji\V|ia>bjba) . (0.0.124)

aij
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Particle-hole formalism

The terms in the first line stand for the creation of a particle-hole state interacting with
hole states, we will label this as a two-hole-one-particle contribution. The remaining
terms are a particle-hole state interacting with the holes in the vacuum state. Finally we
have

Al = %Z(kuvmbﬁbfblbk + %Z(i”v}kj)blbi + % STy (0.0.125)
ijkI ijk i

The first terms represents the interaction between two holes while the second stands

for the interaction between a hole and the remaining holes in the vacuum state. It

represents a contribution to single-hole energy to first order. The last term collects all

contributions to the energy of the ground state of a closed-shell system arising from

hole-hole correlations.
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Notation

Second quantization
Antisymmetrized wavefunction

A
Pas(@a, ..., apa; X1, ... Xp) = % > ()PP [ va (xi)
P i=1

=l|ag...ap)
=a/, ...al |0)

ah|0) = [p),  apla) = dpql0)

Opq = {ap,aa}
0= {ag,aq} ={ap,aq} = {az”ai‘}

110/462



Notation

Second quantization, quasiparticles

Reference state

|®o) =|a1...an), ai1,...,aa < af
Creation and annihilation operators
{a.l,aq} = 0pq, P, 0 < aF {ap,ai,} = 0pq,P,q > aF
ij,...<ar, ab,...>aF, p,q,...—any

aj|®o) = |;) al|®g) = |0?)
aiT|¢0> =0 aa|®o) =0
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Notation

Second quantization, operators

Onebody operator

F=> (plf|a)ajaq
Pq
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Notation

Second guantization, operators

Twobody operator

. 1 . 1 &
V = 2 Z(pq|v|rs>ASaE,agasar = 2 Z<pq|v|rs>al];ag;a5ar
pars pars

where we have defined the antisymmetric matrix elements

(pa|V[rs)as = (palV[rs) — (pq|Vsr).
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Notation

Second guantization, operators

Threebody operator

~ 1 N 1 N
Va= o= > (par|Vs|stu)asafaialaacas = 36 > (par|Vs|stu)ajajalauaias
parstu parstu

where we have defined the antisymmetric matrix elements

(par|Vs|stu)as = (par|Vz|stu) + (par|Vs|tus) + (pgr|Vz|ust)
— (par|Va|sut) — (pqr|Vs|tsu) — (pgr|Vs|uts).
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Notation

Second guantization, operators

Normal ordered operators

{aaab : ..alag} = (-1)Palal ... a.ap

All creation operators to the left and all annihilation operators to
the right times a factor determined by how many operators
have been switched.
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Definitions
The basics, Normal ordered Hamiltonian
Definition
The normal ordered Hamiltonian is given by

A 1 o
= & s {afefalanes)

par
stu

b= Z pql|rs) {apaqasar} pr {afaq}

pqrs
=HY +Vy + Fy
where

By =2t {alag} V=7 Y (palirs) {abajacar }
Pq

pars

A 1 A
HY = = Z(pqr|v3|stu> {agaaaiauatas}

par
stu
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Definitions

The basics, Normal ordered Hamiltonian

Definition
The amplitudes are given by

% = (plfola) + > (pil91i) + 5 > (pillvs[ai)

ij
(pallrs) = (palV|rs) + Z<pqi|\73|rsi>,

In relation to the Hamiltonian, Hy is given by

A

Nn=H —Ep
Eo = (®o|H|®o)

A 1 A 1 A e
= (ilholi) + > > il + 5 > ik |slijk),

ij ik

I

where Ep is the energy expectation value between reference states.
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Definitions

The basics, Normal ordered Hamiltonian

Derivation

We start with the Hamiltonian

where

A

H

Ha

A

H=Hi+H +Fs

>_{plhola)ajaq
Pa

1 N
L palos)abalaser
pars

1 .
35 O (ParVs|stu)ajajalasaias

par
stu
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Definitions

The basics, Normal ordered Hamiltonian
Derivation, onebody part

Hy = Z<p|ﬁo|q>a$aq

Pq

—
ajaqg = {a},aq} + {a,ﬁaq}
= {ag,aq} + Opaei

Hy = (plholq)ajag
Pqg

- Z plfola) {abaq } + dpaer D (plhola)

pq

—Z plfola) {abaq } + 3 (ilhol
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, onebody part
A onebody part

Fu <= > (plhola) {aaq }
pPq

and a scalar part

Eo < > (lfoli)
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Definitions
The basics, Normal ordered Hamiltonian
Derivation, twobody part

~ 1
_ G Taf
Hy, = 3 %(pqwns)apaqasa,

ajalasa, =

121/462



Definitions

The basics, Normal ordered Hamiltonian
Derivation, twobody part

A 1
_ % Tzl
Hy = 2 §<pq|v|rs>apaqasar

ajalasa, = {agaaasar }

o Sow R o
+ < ahagasar ¢ + { ajalasar ¢ + 1 apahasar
Ll i i
+ < apagasar ¢ + < ahajasar ¢ + < ahagasar
= {a},aaasa,}
Soieri T Y S T S I
+ Ogsei | @par grei | Apas psci | Agar

+ dprei {ac];as} + Opreidgsei — Opscidgrei
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part

.1 A
A= > (palvrs)ajalasar
pars
1 R 1 o
= 2 (paldlrs) {ajaasa |+ 5> (dusci(paldlrs) {aba |
pars pars

— drei{paldlrs) {afas | — dpsei (Pal?lrs) {aba |

+ dprei (PAIVrs) {aan} + Opreidgsei — 5pse|5qre|)
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part

_ % > (pald]rs) {ag,agasar}

pqgrs

+ 23 (wilolai) — (il lia) — (pl9lai) + (ipl7lia)) {afaq}

pqi

+ 5 Z(IJIVIIJ IJIVIJI>)
= 23 (palvlrs) {afalasa } + S (pilvlai) {afaq } + Zzuwm

pars pai
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part
A twobody part

~ 1
Uy <= 7 > (palvlrs) {apagasar}
pars
A onebody part
Fy < Z pi |[V|qi) {apaq}
pai

and a scalar part

1 -
Eo < 5 > _(iilvlii)
i
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Definitions

The basics, Normal ordered Hamiltonian

Exercise
Derive the normalordered form of the threebody part of the
Hamiltonian.

A 1 &
As = 2% > " (par|Vs|stu)ajadalaiaias

par
stu

—7

and specify the contributions to the twobody, onebody and the
scalar part.

126/462



Definitions

The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
An = 7 > tpallrs) {ajadasar } + Sk {ahe

where
Fv=> f {ag,aq}
pq

Uy = 3 " (pallrs) {ajabasar )

pgrs

o}
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Definitions

The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
The amplitudes are given by

f§ = (plhola) + > (pi|9|ai)
i
(pallrs) = (palV|rs)
In relation to the Hamiltonian, I3|N is given by

Hy = H — Eo
Eo = (®o|H|Po)

= ol + 5 el

ij

where Ep is the energy expectation value between reference states.
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Topics for Week 38, September 20-24

Second quantization

» Monday:
» Summary from last week

» Summary of Wick’s theorem and diagrammatic
representation of operators and expectation values (no
slides for this part yet).

» Tuesday:

» Diagrammatic representation of of operators and
expectation values

» Begin of Hartree-Fock theory
» Exercises 9-12 on Wednesday
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Topics for Week 39, September 27- October 1

Second quantization

» Monday:

» Summary from last week

» Hartree-Fock theory

» Tuesday:

» Hartree-Fock theory

» Exercise 13. This exercise extends into next week as well.
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Variational Calculus and Lagrangian Multiplier

The calculus of variations involves problems where the quantity to be minimized or
maximized is an integral.
In the general case we have an integral of the type

E[®] = /abf(':D(x), Z—j,x)dx,

where E is the quantity which is sought minimized or maximized. The problem is that
although f is a function of the variables ¢, 9 /dx and x, the exact dependence of ®
on x is not known. This means again that even though the integral has fixed limits a
and b, the path of integration is not known. In our case the unknown quantities are the
single-particle wave functions and we wish to choose an integration path which makes
the functional E [®] stationary. This means that we want to find minima, or maxima or
saddle points. In physics we search normally for minima. Our task is therefore to find
the minimum of E[®] so that its variation SE is zero subject to specific constraints. In
our case the constraints appear as the integral which expresses the orthogonality of
the single-particle wave functions. The constraints can be treated via the technique of
Lagrangian multipliers

131/462



Euler-Lagrange equations

We assume the existence of an optimum path, that is a path for which E[®] is
stationary. There are infinitely many such paths. The difference between two paths j®
is called the variation of ®.

We call the variation n(x) and it is scaled by a factor «.. The function 7(x) is arbitrary
except for

n(a) = n(b) =0,
and we assume that we can model the change in ¢ as

d(x, ) = P(x,0) + an(x),

and
0P = d(x, a) — P(x,0) = an(x).
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Euler-Lagrange equations

We choose ®(x, « = 0) as the unkonwn path that will minimize E. The value
d(x, a # 0) describes a neighbouring path.

We have "
E[®(a)] = / f(D(x, @), a¢(8>;, % y)ox.
a
In the slides | will use the shorthand
od(X,
Oy (X, ) = %.

In our case a = 0 and b = co and we know the value of the wave function.
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Euler-Lagrange equations

The condition for an extreme of

b
E[®(a)] :/a F(B(x, @), Dx (X, @), X)dX,

=5

The o dependence is contained in ®(x, o) and ®x (X, &) meaning that
b
[8E[d>(a)]} _ / (ﬂa_cb ’ of Oy ) dx.
da a \0® da 0dx Oa

OP(x, ) _
Ja -

We have defined

n(x)

and thereby
I« (x, @) _ d(n(x))

Oa dx
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Euler-Lagrange equations

Using
odb(x,a)
e = n(x),

and
IPx(x,a) _ d(n(x))
Oa T odx

in the integral gives

[8E[(;I>Ofa)]} :/ab (S—LW(X)-F 3(2: d(dE(x)))

Integrate the second term by parts

> ot d@mi) of o (b . d of
- n(x)aT,x\a—/a 10035 -0,

and since the first term dissappears due to n(a) = n(b) = 0, we obtain

{aE[;OEa)]} _ /ab (% _ %;q:x)n(x)dx —o.

135/462



Euler-Lagrange equations

{aE[;x(a)]} _ /: ((% _ dixa‘%x) n(x)dx = 0,

can also be written as

9% dx 9o

a{wkzoz/j(f” i o ) S0k = GE =0.

da
The condition for a stationary value is thus a partial differential equation

o d ot
P  dx ddx

known as Euler’s equation. Can easily be generalized to more variables.

136/462



Lagrangian Multipliers

Consider a function of three independent variables f(x, y, z) . For the function f to be
an extreme we have

df = 0.
A necessary and sufficient condition is
of of of
ox oy 9z
due to 5
df = —

8; dx + %dy 3+ %dz.

In physical problems the variables x,y, z are often subject to constraints (in our case ¢
and the orthogonality constraint) so that they are no longer all independent. It is
possible at least in principle to use each constraint to eliminate one variable and to

proceed with a new and smaller set of independent varables.
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Lagrangian Multipliers

The use of so-called Lagrangian multipliers is an alternative technique when the
elimination of of variables is incovenient or undesirable. Assume that we have an
equation of constraint on the variables x,y, z

#(x,y,2) =0,

resulting in

8% +8—$’dy+i’dz_o

d¢ =

Now we cannot set anymore

of _of  of
ox oy 0z

if df = 0 is wanted because there are now only two independent variables! Assume x

and y are the independent variables. Then dz is no longer arbitrary.
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Lagrangian Multipliers

However, we can add to

of of of
df = —d —d —d
ox X+8y y+8z =
a multiplum of d¢, viz. Ad ¢, resulting in

) 9¢

of of  _9¢ of
df + Mg = (—— + A=2)d Z 422 Z 4+ 22)dz =0.
+adg = (o + )X+(8y+ ay)y+(82+ )dz

(524 0z

Our multiplier is chosen so that
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Lagrangian Multipliers

However, we took dx and dy as to be arbitrary and thus we must have

Z aZ =0
Ox * Ox ’
and of O
Z taZE =0
oy + oy

When all these equations are satisfied, df = 0. We have four unknowns, x,y,z and .
Actually we want only x,y, z, A need not to be determined, it is therefore often called
Lagrange’s undetermined multiplier. If we have a set of constraints ¢, we have the
equations
of 1o}
DI P

=0.
8xi K K 8xi
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Variational Calculus and Lagrangian Multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

= /dxdydzw*(x,y,z)ﬁw(x,y,z),

with the constraint
[ dxaydzr (x.y. 2putxy.2) = 1,

and a Hamiltonian 1
A= —évz +V(x,y,2).

I will skip the variables x,y, z below, and write for example V (x,y,z) = V.
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Variational Calculus and Lagrangian Multiplier

The integral involving the kinetic energy can be written as, if we assume periodic
boundary conditions or that the function v vanishes strongly for large values of x,y, z,

/ dxdydz " ( v2) bdxdydz = ¥* V| + / dxdydz = vw T

Inserting this expression into the expectation value for the energy and taking the
variational minimum we obtain

SE — 6{/dxdydz (%vw*w +vw*w)} —0.
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Variational Calculus and Lagrangian Multiplier

The constraint appears in integral form as

/ dxdydzt)* 1) = constant

and multiplying with a Lagrangian multiplier A and taking the variational minimum we
obtain the final variational equation

1) {/dxdydz (%vw*vw + Vyp*p — )\w*w) } =0.
Introducing the function f
1 1
f= va*vw + VT — My = E(w;“wx + gty +rz) + Vi — ATy,

where we have skipped the dependence on x, y, z and introduced the shorthand ),
vy and v for the various derivatives.
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Variational Calculus and Lagrangian Multiplier

For ¢)* the Euler equation results in

of 0 of o of o of

oy ox vy oy ovy 0z oy

which yields
1
—E(wxx + by +Yzz) +Vip = M.
We can then identify the Lagrangian multiplier as the energy of the system. Then the
last equation is nothing but the standard Schrodinger equation and the variational

approach discussed here provides a powerful method for obtaining approximate
solutions of the wave function.
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Finding the Hartree-Fock functional E[®]

We rewrite our Hamiltonian

as
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Finding the Hartree-Fock functional E[®]

Let us denote the ground state energy by Eq. According to the variational principle we
have
Eo < E[¢] :/d>*|3|d>d7—

where @ is a trial function which we assume to be normalized

/d>*¢dT =1,

where we have used the shorthand d7 = dx;dx; . .. dxy .-

146/462



Finding the Hartree-Fock functional E[®]

In the Hartree-Fock method the trial function is the Slater determinant which can be
rewritten as

W(X17X27'"7XN7a76y"'7y) = \/% Z(_)Ppwa(xl)wﬂ(xz)'"wV(XN) = \/mA¢H7
P

where we have introduced the anti-symmetrization operator .4 defined by the
summation over all possible permutations of two eletrons. It is defined as
A= rP
NS '

with the the Hartree-function given by the simple product of all possible single-particle
function (two for helium, four for beryllium and ten for neon)

qDH(X17X27' ° o ,XN,OL,,B, ° o ',V) = wa(xl)wﬁ(XZ) o "wu(XN)‘
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Finding the Hartree-Fock functional E[®]

Both I—Tl and I—Tz are invariant under electron permutations, and hence commute with A
[Ho, A] = [H|, A] = 0.

Furthermore, A satisfies
A% = A,

since every permutation of the Slater determinant reproduces it.
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Variational Calculus and Lagrangian Multiplier, back to
Hartree-Fock

Our functional is written as

E[®] = Z/%(XI Fio (% )b (% )i+ ZZ |:/wu(xl ¥y XJ) wu(xl)wV(XJ)dXIXJ

u 1v=1

1
- [ it w;(xj)r__wu(xim(xj)dxixj}
ij
The more compact version is

N N N

E[®] = > (ulholu) + % S>> [W/ vy = (uv| = Ivuﬂ

p=1 p=1v=1
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

If we generalize the Euler-Lagrange equations to more variables and introduce N2
Lagrange multipliers which we denote by €., we can write the variational equation for

the functional of E
N N
OE — E E ew,6/1p:1p,, =0.

p=1v=1

For the orthogonal wave functions 1), this reduces to

N
0E — Zeua/u;;w =0.
p=1

150/462



Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Variation with respect to the single-particle wave functions v, yields then

N N N
Y [ oviuay+ 330> { / ww;%wmdxidxj -/ w;w;%%wxidx&
u=1 I i

p=1v=1

N N N
+Z/¢;ﬁi5wudxi + % > > {/w;«p;:jaw#wydxidxj - /w;w;:%&p#dxidx&
pn=1 J i

p=1lv=1

N N
~S E, /&p;wdxi ~SE. /zp;;w#dxi -o.
p=1 p=1
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Although the variations §v and d)* are not independent, they may in fact be treated as
such, so that the terms dependent on either §v) and d+)* individually may be set equal
to zero. To see this, simply replace the arbitrary variation 61 by id1, so that 6* is
replaced by —idvy*, and combine the two equations. We thus arrive at the
Hartree-Fock equations

1 z X 1
[—ZV?— o +Uzl/w;(xj)rijwu(xj)dxj} Yu(Xi)

N 1
- [Z/w;(xj)r]wu(xj)dxj} Yo (Xi) = €pbu(Xi)-
v=1

Notice that the integration [ dx; implies an integration over the spatial coordinates r;
and a summation over the spin-coordinate of electron j.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The two first terms are the one-body kinetic energy and the electron-nucleus potential.
The third or direct term is the averaged electronic repulsion of the other electrons. This
term is identical to the Coulomb integral introduced in the simple perturbative approach
to the helium atom. As written, the term includes the 'self-interaction’ of electrons when
i = ]. The self-interaction is cancelled in the fourth term, or the exchange term. The
exchange term results from our inclusion of the Pauli principle and the assumed
determinantal form of the wave-function. The effect of exchange is for electrons of
like-spin to avoid each other.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

A theoretically convenient form of the Hartree-Fock equation is to regard the direct and
exchange operator defined through

Va(x) = / w:(xj)%w(xj)dx,-

and
VE(xi)a(xi) = </ %(Xj)r—tg(xj)dxj) Y (i),

respectively.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The function g(x;) is an arbitrary function, and by the substitution g(x;) = . (x;) we
get

VX (X ) (%) = </ "/)Z(Xj)%"/)l/(xj)dxj> Pu(Xi).
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

We may then rewrite the Hartree-Fock equations as

HiHF Yo (Xi) = evhu (%),

with
N

N
HPF = ho() + Y VE(i) = D Ve (xi),

p=1 pn=1

and where hq(i) is the one-body part
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Topics for Week 40, October 4-8

Hartree-Fock

vV V. vV V. V. YV VY

Monday:

Summary from last week

Hartree-Fock theory in configuration space

Interpretation of Hartree-Fock theory

Hartree-Fock theory in second quantization and its stability
Tuesday:

Hartree-Fock theory and its stability.

Thouless’ theorem.

Exercise 13. Continuation from last week.
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Topics for Week 41, October 11-15

Hartree-Fock

Monday:

Summary from last week
Koopman’s and Brillouin’s theorems.
Summary Hartree-Fock theory
Tuesday:

Discussion of midterm exam

vV VvV vV VvV VY
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Hartree-Fock by varying the coefficients of a wave
function expansion

Another possibility is to expand the single-particle functions in a known basis and vary
the coefficients, that is, the new single-particle wave function is written as a linear
expansion in terms of a fixed chosen orthogonal basis (for example harmonic oscillator,
Laguerre polynomials etc)

$a = Carxthr- (0.0.131)
A

In this case we vary the coefficients C, . If the basis has infinitely many solutions, we
need to truncate the above sum. In all our equations we assume a truncation has been
made.

The single-particle wave functions 1, (r), defined by the quantum numbers X and r are
defined as the overlap

PYa(r) = (r|A).
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Hartree-Fock by varying the coefficients of a wave
function expansion

We will omit the radial dependence of the wave functions and introduce first the
following shorthands for the Hartree and Fock integrals

(wv |V |pv) = /¢Z(ri)¢;(rj)V(rij)wu(ri)wu(rj)drirjy

and

(uv|Vvp) = /%(fi)%(n‘)V(fu)wu(fi)%(fi)dfiw
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Hartree-Fock by varying the coefficients of a wave
function expansion

Since the interaction is invariant under the interchange of two particles it means for
example that we have
(uv|Vpv) = (vplV|vp),

or in the more general case

(w|VloT) = (vp|V|ro).
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Hartree-Fock by varying the coefficients of a wave
function expansion

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

(Vi pv)as = (uv|Vpv) — (uvlV vy,
or for a general matrix element
(uVoT)as = (wlV]or) — (uv|V |ro).
It has the symmetry property
(wv|VloT)as = —(uv|V|To)as = —(vulV]oT)as -
The antisymmetric matrix element is also hermitian, implying

(|V|oT)as = (o7 |V |w)as-
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Hartree-Fock by varying the coefficients of a wave

function expansion

With these notations we rewrite the Hartree-Fock functional as
R 1A A
/¢*H1¢d7' =3 ZZ(MV|VWV>AS-
p=1lv=1
Combining Egs. (0.0.13) and (0.0.132) we obtain the energy functional
N N N

E[0] = S (ulnln) + 5 D2 D (v uvdas.

p=1 p=1v=1

(0.0.132)

(0.0.133)

163/462



Hartree-Fock by varying the coefficients of a wave
function expansion

If we vary the above energy functional with respect to the basis functions |u), this
corresponds to what was done in the previous case. We are however interested in
defining a new basis defined in terms of a chosen basis as defined in Eq. (0.0.131).

We can then rewrite the energy functional as

N N
E[w] = (alhla) + % >~ (ab|V|ab)as, (0.0.134)
a=1 ab=1

where V is the new Slater determinant defined by the new basis of Eq. (0.0.131).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Using Eq. (0.0.131) we can rewrite Eq. (0.0.134) as
N N

l * *
E[W] =3 > CaaCaplalhlB)+5 3 D CiaCiyCarCos(aBlV[16)as. (0.0.135)
a=1 af ab=1af~s
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Hartree-Fock by varying the coefficients of a wave
function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange
multipliers, noting that since (alb) = d, p and («|3) = da, 3. the coefficients Cay obey

the relation
(alb) = b2 = Y Ci.CaplalB) = Zc - G
afB

which allows us to define a functional to be minimized that reads

N
E[W]- ) ey Ci,Caa (0.0.136)

a=1 «
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Hartree-Fock by varying the coefficients of a wave
function expansion

Minimizing with respect to C¢_, remembering that C and Cy,, are independent, we
obtain
d

acr E[w] — ZEa;C;aCaa =0, (0.0.137)

which yields for every single-particle state k the following Hartree-Fock equations

N

ZCM (@lhly) + > > " CisCasChy (aBIV [18)as = eCia- (0.0.138)
a=1 B3v6
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Hartree-Fock by varying the coefficients of a wave
function expansion

We can rewrite this equation as

N
> {<ahv> +> > CisCas(@BIV[v0)as } Ciky = &kCkar- (0.0.139)

e a Bs

Note that the sums over greek indices run over the number of basis set functions (in
principle an infinite number).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Defining
N
hiE = (alhly) + D> > CisCas(aBIV [18)as.
a=1 36
we can rewrite the new equations as
> hHF Ciy = eCra- (0.0.140)
-~

Note again that the sums over greek indices run over the number of basis set functions

(in principle an infinite number).
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Topics for Week 42, October 18-22

Density functional theory

Monday:
Summary from last week
Density functional theory
Tuesday:
Density functional theory

vV v v Vv VY
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Litterature |

» R. van Leeuwen: Density functional approach to the many-body problem: key
concepts and exact functionals, Adv. Quant. Chem. 43, 25 (2003).
(Mathematical foundations of DFT)

» R. M. Dreizler and E. K. U. Gross: Density functional theory: An approach to the
guantum many-body problem. (Introductory book)

» W. Koch and M. C. Holthausen: A chemist's guide to density functional theory.
(Introductory book, less formal than Dreizler/Gross)

» E. H. Lieb: Density functionals for Coulomb systems, Int. J. Quant. Chem. 24,
243-277 (1983). (Mathematical analysis of DFT)
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Litterature I

» J. P. Perdew and S. Kurth: In A Primer in Density Functional Theory: Density
Functionals for Non-relativistic Coulomb Systems in the New Century, ed. C.
Fiolhais et al. (Introductory course, partly difficult, but interesting points of view)

» E. Engel: In A Primer in Density Functional Theory: Orbital-Dependent
Functionals for the Exchange-Correlation Energy, ed. C. Fiolhais et al.
(Introductory lectures, only about orbital-dependent functionals)
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Density Functional Theory (DFT)

Hohenberg and Kohn proved that the total energy of a system including that of the
many-body effects of electrons (exchange and correlation) in the presence of static
external potential (for example, the atomic nuclei) is a unique functional of the charge
density. The minimum value of the total energy functional is the ground state energy of
the system. The electronic charge density which yields this minimum is then the exact
single particle ground state energy.

In Hartree-Fock theory one works with large basis sets. This poses a problem for large
systems. An alternative to the HF methods is DFT. DFT takes into account electron
correlations but is less demanding computationally than full scale diagonalization or
Monte Carlo methods.
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Density Functional Theory

The electronic energy E is said to be a functional of the electronic density, E[p], in the
sense that for a given function p(r), there is a single corresponding energy. The
Hohenberg-Kohn theorem confirms that such a functional exists, but does not tell us
the form of the functional. As shown by Kohn and Sham, the exact ground-state energy
E of an N-electron system can be written as

N
el =53 [wrevinein- [ Zpear+s [ A anar el
i=1

with W; the Kohn-Sham (KS) orbitals.
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Density Functional Theory

The ground-state charge density is given by

N
p(r) = > IWi(nI%,
i=1

where the sum is over the occupied Kohn-Sham orbitals. The last term, Egxc [p], is the
exchange-correlation energy which in theory takes into account all non-classical
electron-electron interaction. However, we do not know how to obtain this term exactly,
and are forced to approximate it. The KS orbitals are found by solving the Kohn-Sham
equations, which can be found by applying a variational principle to the electronic

energy E[p]. This approach is similar to the one used for obtaining the HF equation.
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Density Functional Theory

The KS equations reads

1 4 r
{—ivi -—+ / Mdrz +VEXC(r1)} Vi(r1) = Vi(ra)
f M2
where ¢; are the KS orbital energies, and where the exchange-correlation potential is
given by
oE )
Vexcle] = E;id]
P
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Density Functional Theory

The KS equations are solved in a self-consistent fashion. A variety of basis set
functions can be used, and the experience gained in HF calculations are often useful.
The computational time needed for a DFT calculation formally scales as the third
power of the number of basis functions.

The main source of error in DFT usually arises from the approximate nature of Egxc. In
the local density approximation (LDA) it is approximated as

Eexc = /P(f)EExc[P(")]d'ﬁ

where egxc[p(r)] is the exchange-correlation energy per electron in a homogeneous
electron gas of constant density. The LDA approach is clearly an approximation as the
charge is not continuously distributed. To account for the inhomogeneity of the electron
density, a nonlocal correction involving the gradient of p is often added to the

exchange-correlation energy.
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The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

A=T4+V+W,
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The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system
A=T+V+W,

or second quantized form

- ——/de'r\lﬁ Nv2@ /dBer )

+ = /d3 /d3 e )T w(r, r Y () B(r),

I

¥, U = annihilation, creation field operators
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W(r) = r(r)ag
k

i) =S wpna)
k

k = collection of quantum numbers

T = kinetic energy operator

V = external single-particle potential operator

W = two-particle interaction operator
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The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

A=T4+V+W,
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The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system
A=T+V+W,

or second quantized form

- ——/de'r\lﬁ Nv2@ /dBer )

+ = /d3 /d3 e )T w(r, r Y () B(r),

I

¥, U = annihilation, creation field operators
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V = set of external single-particle potentials v s.t.
Alg) = (T +V +W) =Elg), VeV,

gives a non-degenerate N-particle ground state |W)
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V = set of external single-particle potentials v s.t.
Alg) = (T +V +W) =Elg), VeV,

gives a non-degenerate N-particle ground state |W)

= C:V(C)—w surjective,

where W = set of ground states (GS) |V)

184/462



The density

o(r) = NZ/dxz.../de\\I!(ri,xz,...,xN)\z

gives a second map
D:V— N,

where A/ = set of GS densities. The map trivially surjective.
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The density

o(r) = NZ/dxz.../de\\Il(ri,xz,...,xN)\z

gives a second map
D:V— N,

where A/ = set of GS densities. The map trivially surjective.

Lemma
Hohenberg-Kohn states: C and D also injective (one-to-one; X3 # X = TX; # TXp)

= C and D bijective (surjective and bijective)
= CD:V(CD) — N bijective
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Proof I.
Let us prove C : V(C) — W injective:

V£V +constant == |W) £ W),

where V,V’ € V
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Proof I.
Let us prove C : V(C) — W injective:

V£V +constant == |W) £ W),

where V,V’ € V

Reductio ad absurdum:
Assume |W) = |W’) for some V # V' + const, V,V’ € V
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Proof I.
Let us prove C : V(C) — W injective:

V £V’ +constant == |w) £ [w'),

where V,V’ € V

Reductio ad absurdum:
Assume |W) = |W’) for some V # V' + const, V,V’ € V
T ATV W £W[V] =t

(\7 —\7’) W) = (Egs - Eés) w).

LUnique continuation theorem: |W) # 0 on a set of positive measure
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Proof I.
Let us prove C : V(C) — W injective:

V£V +constant == |W) £ W),
where V,V’ € V
Reductio ad absurdum:

Assume |W) = |W’) for some V # V' + const, V,V’ € V
T ATV W £W[V] =t

(\7 —\7’) W) = (Egs - Eés) w).

= V-V’ =Egs —Ej
— /

V =V’ +constant  Contradiction!

LUnique continuation theorem: |W) # 0 on a set of positive measure
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Proof II.

Let us prove D : W — A injective:

W) # W) =L p(r) £n'(r)
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Proof II.

Let us prove D : W — A injective:

W) # W) =L p(r) £n'(r)

Reductio ad absurdum:
Assume p(r) = n’(r) for some |W) # [W/)
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Proof II.

Let us prove D : W — A injective:
Wy £ W) = () £0()

Reductio ad absurdum:

Assume p(r) = n’(r) for some |W) # [W/)
Ritz principle — . )
Egs = (V[H|W) < (W[H[V)
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Proof II.
Let us prove D : W — A injective:

) # W) = p(r) #0'(r)
Reductio ad absurdum:

Assume p(r) = n’(r) for some |W) # [W/)
Ritz principle — . )
Egs = (V[H|W) < (W[H[V)

(W) = (W[’ 4V = V'|W') = Eg +/n/(f)[V(f) —V/(n)]d°r
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Proof II.

Let us prove D : W — A injective:

W) # W) =L p(r) £n'(r)
Reductio ad absurdum:
Assume p(r) = n’(r) for some |W) # [W/)

Ritz principle — R R
Egs = (W[H|W) < (W'|H]W')

(W) = (W[’ 4V = V'|W') = Eg +/n/(f)[V(f) —V/(n)]d°r

= Ejs < Egs +/n’(r)[v(r) —v/(r)]d3r (0.0.141)

By symmetry
—  Egs <El +/n/(r)[v’(r) —v(n)]d3r (0.0.142)

195/462



Proof II.

Let us prove D : W — A injective:

W) # W) =L p(r) £n'(r)
Reductio ad absurdum:
Assume p(r) = n’(r) for some |W) # [W/)

Ritz principle — R R
Egs = (W[H|W) < (W'|H]W')

(W |H[W) = (W|H +V = V/|V) = Efe +/n/(r)[v(r) —v/(r)]d®r

= Ejs < Egs +/n’(r)[v(r) —v/(r)]d3r (0.0.141)

By symmetry
—  Egs <El +/n/(r)[v’(r) —v(n)]d3r (0.0.142)

(0.0.141) & (0.0.142) =
Egs + Egs < Egs + Egs  Contradiction!

O
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Define R R R
Evolo] := (W[pl|T +W + Vo|V¥[p])

Vo = external potential, no(r) = corresponding GS density, Ep = GS energy
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Define ~ . .
Evolo] := (W[pl|T +W + Vo|V¥[p])

Vo = external potential, no(r) = corresponding GS density, E; = GS energy

Rayleigh-Ritz principle — second statement of H-K theorem:

Eo = min E
0 = min Evg ]
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Define ~ . .
Evolo] := (W[pl|T +W + Vo|V¥[p])

Vo = external potential, no(r) = corresponding GS density, E; = GS energy

Rayleigh-Ritz principle — second statement of H-K theorem:
Eo = min E
0 neN volPl

Last satement of H-K theorem:

Fr el = (W[o]IT + W |W[o])

is universal (Fux # Frk [Vo])

199/462



The Basic Kohn-Sham Equations

» So far:
H-K variational principle —-
exact GS density of many-particle system
Practically intractable !!

> Next step:
Kohn and Sham (1965): single-particle picture
— equations solved selfconsistently (iterative scheme)
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Hamiltonian of N non-interacting particles:
As =T + Vs
Hohenberg and Kohn = 3 unique energy functional

Es[p] = Ts[p] +/Vs(r)p(r)d3r

s. t. 6Es[p] = O gives GS density ns(r) corresp. to Fs
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Theorem

Let
vs(r) = local single-particle pot.,
p(r) = GSdensity of interacting system,
ns(r) = GS density of non-interacting system

— for any interacting system,

3 a vs(r) s.t. ns(r) = p(r)
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Theorem

Let
vs(r) = local single-particle pot.,
p(r) = GSdensity of interacting system,
ns(r) = GS density of non-interacting system

— for any interacting system,

3 a vs(r) s.t. ns(r) = p(r)

Proof in book by Dreizler/Gross, Sec. 4.2
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Assume nondegenerate GS. Then

N
p(r) =ns(r) =>_lai(N?,
i=1
where ¢;(r) are determined by

2
(—z}lmvz'i‘VS(f)) #i(r) = €igi(r), e1<ex < ...
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Assume nondegenerate GS. Then

N
p(r) =ns(r) =>4,
i=1
where ¢;(r) are determined by

2
(—z’lmvz‘i‘VS(f)) #i(r) = €igi(r), e1<ex < ...

If 3 vs(r), then H-K theorem gives uniqueness of vs(r)
Consequently, we may write

¢i(r) = di([e(MD) !
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Assume
Vo(r) = ext. potential
np(r) = GS density
of interacting system

» Wanted: single-particle potential vs(r) of non-interacting system
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Exchange-correlation functional

Many-particle energy functional:

Bl = Fildl + [ d(r)o()
— (Telil+ ;5 [ (ol + Bl ) + [ drva(r)otr)

Here exchange-correlation functional defined:

Eecls] = Fuldl — 5 [ [ &1t ow(r.r)p(r') ~ Tl
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The exchange-correlation functional defined:

Eecls] = FLldl — 5 [ [ &1t ow(r.r)p(r) ~ Tl

Explicit form of F_[p] as functional of n unknown

» Eexc[p] unknown functional, must be approximated
Otherwise, Kohn-Sham scheme exact
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Definition
Let F : B — R be a functional from normed function space B to real numbers R.

The functional derivative (Gateaux derivative)
OF [p] = 6F [p]/dp(r) is defined as

on e—0 €
Another useful definition of 6F [p]:

(Gl ) = [0 +<g]

)

e=0

where

(GFlpl ) = [ drEF D)

o = test function
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Let us derive expression for single-particle potential vs(r) of non-interacting system:

H-K variational principle:
0= 6EVD = EVD [no = 6”] = EVD [no]

=6Ts + /d3r5p(r) [vo(r) e /w(r, rYd3r” + Vexe([Nol; r)} , (0.0.143)
where exchange-coorelation potential

Eexc|p]

Vexc([No]; 1) = 3p(r)

b
No

no(r) = GS density
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no(r) + dp(r) non-interacting v-representable =  unique representation

Bi,0(r) +6¢i(r)

oTs = Z/d3 [6¢' ( ) @i,0(r) + &i'0(r) (—%VZ) 5¢i(f)}
= Z/d ¥ [5‘?. ( )¢. o(r) + 3¢ o(r) (—%VZ) qbi(r)} (0.0.144)

!

Green'’s first identity
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Green'’s first identity:
/fvzgdv :%f(Vg-n)dS—/Vf-ngV,
% s v
where V € R3, S = 9V € R? and f, g = arh. real scalar functions
Let surface 9V approach infinity w.r.t. origin,

assume f,g — 0 on 9V,
Apply Green'’s first identity twice —

/fvzng:O—/Vf~ngV
\% \%

:_<O—/VVf~ngV)

/gvzf dv
A\
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The orbitals ¢; o(r) in Eq. (0.0.144) satisfy

h?
(—%VZ I Vs,o(r)) #i,0(r) = €i¢io(r), €126 ... . (0.0.145)

Using this relation, we may rewrite Eq. (0.0.144) as
N
0Ts = Z/d3r [66;°(r) (ei — Vs,0(r)) &i0(r) 4 86i(r) (i — Vs ,o(r)) & (r)]

725,/d r8|¢i(r Z/dSrvso Yo (r) 2. (0.0.146)
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Since

[arslamF = [ 6 [16.00) + 861001 - 1én0(r)F]
—1-1=0, (0.0.147)

the first term of Eq. (0.0.146) vanishes, and we get
5Ts = — / d3rvs o(r)Sp(r). (0.0.148)
Combine Egs. (0.0.143) and (0.0.148): — total single-particle potential:

Vso(r) :VO(r)+/d3r/w(r7rl)n0(r/)+Vexc([no];l') (0.0.149)
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The Kohn-Sham scheme |

The classic Kohn-Sham scheme:
”_,
(_ﬁv +Vs,o(f)) ¢i,0(r) = €idio(r), E12€E22 ...,

where
Vs,o(r) =vo(r) + /d3r’w(r, )N (r’) + Vexc([no]; r)

The density calculated as
N

no(r) = > Iéi0(r)I?,

i=1

Equation solved selfconsistently
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The Kohn-Sham scheme |

The classic Kohn-Sham scheme:

2
(_zh_mVZ +V5,0(r)) Bio(r) =eidiolr), e >e22>...,

where
Vs,O(r) =vo(r) + /d3r’w(r, )N (r’) + Vexc([no]; r)

The density calculated as

N
no(r) = _ Iéi,0(r)l?,
i=1

Equation solved selfconsistently
Total energy:

N 1

E=3 a5 [ draTpOW(r " p(r) + Eeulp] — [ drvenclplino(r)
i=1
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The Kohn-Sham scheme I

Kohn-Sham scheme for systems with degenerate GS:

2
(—ivz +Vs,0(r)) Bio(r) =cidiolr), e>e22>...,

2m
where
Vs,O(r) = VO(r) 3 /dsrlw(r7 r/)no("/) aF Vexc([nO]; I’)
and
vewd(lolir) = 52

6 1 ! ! !
-5 (Pl = 5 [[ oo, ryote) - Tula))
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The Kohn-Sham scheme I

Density of degen. K-S scheme:
N
no(r) = > 7ileio(nI?,
i=1

occupation numbers ~; satisfy

Yi=1lig <p
0<~<1l:g=0p
7% =0:&>u

and
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Exchange Energy and Correlation Energy

Hartree-Fock equation:
h?
(~3m 72+ o)+ [ rwte.r)ole)) o)

N
=3 [ a0 = o).
=1

exchange term

Non-local exchange term (Pauli exclusion principle)

Kohn-Sham equation:

2
eV + [ W)+ velllin) | a0 = a0,

exchange + correlation

Local exchange-correlation term

219/462



Exchange-correlation energy = Exchange energy + Correlation energy
Eexc[p] = Ex[p] + Ec[p]

From earlier:

Eecls] = Fulfl — Telpl = 5 [ [ a1 p(ryw(r.)p(e)

We want to show: Ec[p] <0
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Here we have (assume Fi[p] = FL_[p])

Filol (V[T +W|w)

inf
Vv—n
= (W T W,

and

Tslol = jnf (W[T W) = (@[T ofm),

V¥ = normalized, antisymm. N-particle wavefunction,
&M fin. komb. of Slater determinants of

single-particle orbitals ; (rj)
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Eg. (4.35) in J. M. Thijssen: Computational Physics:
ooty = 3 5= | [[ aar otem(r. )
2 K,

- / A3rd3r i (1) (K )W (e, 1) (e (1)
By definition,

Bl = =5 3 [ U On W )
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Using expressions from previous pages gives

Ec[p] = Eexclp] — Ex|[p]

= FLlp] — Ts[p] — %/ d3rd3r’ p(r)w(r, r')p(r")
+3 > [ @t @i w0
= (WRT + WWR) — (o[ T + W o)

Since . ) L
W T + W ey = winf (W|T + W /W),
—n
we see that
Ec[p] <0

223/462



Gradient expansion

The gradient expansion approximation (GEA) — a natural extension of LDA ??

Taylor expansion of Eexc[p]
around homogeneous electron gas (HEG)
densitynp  ((n — ng)/np < 1):

Eexdp] = Eexc[n0]+z o / d3my ﬁ 5p(r1)...5p(rm)
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Gradient expansion

Shown in article by van Leeuwen:

Expansion can be written
Eexclp] = ES2A[] + / d3rg1 (o(1) (Vo (1))
+ / d2rga (p(r))(V2p(1))2 + .. .,

gi(n) uniquely determined by the density response functions of a HEG
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Gradient expansion in principle exact, provided series converges

Metallic systems:  good convergence
Insulators: bad convergence
Finite systems: bad convergece
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Caution!

Numerical tests show:
Inclusion of second-order gradient term
may give a considerably worse Eexc[p] than EL2A[p]

Why?
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ELPA[p]  provides rather realistic results  for atoms, molecules, and solids

But: second-order term (next systematic correction

for slowly-varying densities) makes Eexc worse
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Why does gradient expansion fail?
1. Realistic electron densities not very close to slowly-varying limit

2. LDA: xc hole is the hole of a possible physical system
— satisfies exact constraints
GEA: xc hole not physical
—> does not satisfy constraints
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Example of constraints:

Physical constraint LDA GEA
Ec <0 <0 >0

Ex <0 < 0 notrestricted

J hexe(ry;r2)drp = -1 —1  notrestricted

=  Wrong behaviour of GEA
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The Generalized Gradient Approximation

Method: Enforce physical restrictions for the xc hole
—>  Generalized gradient approximation (GGA):

Ege [Ny, n] =/d3ff(nT7n17V”man)

» f(ny,n;, Vng, Vny) not unique,
but formal features of LDA — constraints

» GGA-functionals with/without semiempirical parameters
» Successful in quantum chemistry

» No systematic approach to improve GGA-functionals
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Typical errors for atoms, molecules, and solids (Perdew/Kurth):

Property LDA GGA
Ex 5% (not negative enough) 0.5%
Ec 100% (too negative) 5%
bond length 1% (too short) 1% (too long)
structure overly favours close packing  more correct
energy barrier 100% (too low) 30% (too low)

» GGA in most cases better than LDA
» Typically cancellation of errors between Ex and E¢

» “Energy barrier” = barrier to a chemical reaction
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Situations where GGA fails:

Unaccurate results for heavy elements
Does not predict existence of negative ions
Fails to reproduce dispersion forces (= van der Waals forces)

Can not describe properly strongly correlated systems
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GGA gives unaccurate results for heavy elements:

Gold (Au):
Eexc[p] Equilibrium Cohesive
lattice constant energy
LDA 7.68 4.12
relativistic LDA 7.68 4.09
GGA 7.87 291
relativistic GGA 7.88 2.89
experiment 7.67 3.78

» Here: LDA better than GGA
» Problem not due to relativistic effects

» GGA: problems with high angular momenta
(higher ion charge = higher electron angular momentum)
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GGA does not predict existence of negative ions:

For neutral atoms exactly:
1
vs(r) —— ——
r—oo r
additional electron feels a Coulomb-like potential
Rydberg series of excited states
necessary criterion for negative ion state fulfilled

L

In LDA:
vs(r) = exp(—ar)

= not able to bind additional electron (negative ion)
Same problem with GGA
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Topics for Week 43, October 25-29

Perturbation theory

» Monday:
» Summary from last week and end density functional theory

» Start many-body perturbation theory,
Rayleigh-Schrodinger and Brillouin-Wigner perturbation
theory (chapter 2 of Shavitt and Bartlett)

» Tuesday:

» Rayleigh-Schrodinger and Brillouin-Wigner perturbation
theory

» Introduction to time-dependent perturbation theory
» Schrodinger, Heisenberg and interaction pictures
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Time-independent perturbation theory

We defined the projection operators

D
P =" |o) il
i=1
and -
Q= > vl
i=D+1

with D being the dimension of the model space, and PQ = 0, P2 = P, Q%2 = Q and

P + Q = I. The wave functions |t);) are eigenfunctions of the unperturbed hamiltonian
Ho = T + U (with eigenvalues &), where T is the kinetic energy and U an external
one-body potential.

The full hamiltonian is then rewritten as H = Hg + H, with H =V — U.
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Simple Toy Model to illustrate basic principles

Choose a hamiltonian that depends linearly on a strength parameter z

H =Ho + zHy,
with 0 < z < 1, where the limits z = 0 and z = 1 represent the non-interacting
(unperturbed) and fully interacting system, respectively. The model is an eigenvalue
problem with only two available states, which we label P and Q. Below we will let state
P represent the model-space eigenvalue whereas state Q represents the eigenvalue of
the excluded space. The unperturbed solutions to this problem are

Hod)p = Ep(bp

and
H0¢Q = EQ ¢Q7

with ep < eq. We label the off-diagonal matrix elements X, while Xp = (®p |H1|®p)
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Simple Two-Level Model

The exact eigenvalue problem

ep + zXp zX
zX €Q =+ ZXQ

yields
1
E(Z) = 5 {Ep +6Q +ZXp +ZXQ ER (6Q — €p +ZXQ = ZXP)

4z22X?
x4 /14 5 (-
(6Q —ep + ZXQ = ZXp)

A Rayleigh-Schrodinger like expansion for the lowest eigenstate

7°X? N 23X2(Xq — Xp) N 24X2(Xq — Xp)? z4Xx4

E:€p+ZXp+ = -‘1-7
€p — €Q (ep — €q)? (ep — €q)® (ep — €q)®

which can be viewed as an effective interaction for state P in which state Q is taken
into account to successive orders of the perturbation.
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Another look at the problem: Similarity
Transformations

We have defined a transformation
QTHOO Y W,) = Eo Q7 W,).
We rewrite this for later use, introducing Q = eT, as
H =e THeT,
and T is constructed so that QH’P = PH’Q = 0. The P-space effective Hamiltonian is
given by
Heff = PH'P,

and has d exact eigenvalues of H.
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Another look at the simple 2 x 2 Case, Jacobi Rotation

We have the simple model

ep + zXp zX
zX €Q =+ ZXQ

Rewrite for simplicity as a symmetric matrix H € R2*?2

:[Hn le}
Hz1  Haz|®

The standard Jacobi rotation allows to find the eigenvalues via the orthogonal matrix Q2

Q= eT _ Cc S
—-s c|’

with ¢ = cosv and s = sin~. We have then that H’ = e—THeT is diagonal.
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Simple 2 x 2 Case, Jacobi Rotation first

To have non-zero nondiagonal matrix H’ we need to solve
(Haz2 — Hiz)es + Hyp(c? — s?) =0,

and using ¢ — s2 = cos(2v) and cs = p(2v)/2 this is equivalent with

2H
tan(2y) = B_
Hip — Hao
Solving the equation we have
1 2H k
y=-tan"? (i) + 27 k=...,-1,0,1,...,
2 Hiz — Ha 2

where k7/2 is added due to the periodicity of the tan function.

(0.0.150)
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Simple 2 x 2 Case, Jacobi Rotation first

Note that k = 0 gives a diagonal matrix on the form

Hi—o = [Aol AOJ : (0.0.151)

while k = 1 changes the diagonal elements

A2 0}

Hi_, = [0 A (0.0.152)
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Understanding excitations, model spaces and
excluded spaces

We always start with a 'vacuum’ reference state, the Slater determinant for the believed
dominating configuration of the ground state. Here a simple case of eight particles with
single-particle wave functions ¢;(x;)

#1(X1)  d1(x2) ... H1(Xs)
2(X1)  d2(x2) ... Pa(Xs)
%:i d3(x1)  ¢s(x2) ... #3(xs)
da(x1) d8(x2) ... da(xe)

We can allow for a linear combination of excitations beyond the ground state, viz., we
could assume that we include 1p-1h and 2p-2h excitations

Wop_2h = (14 T1 + T2)®g

T is a 1p-1h excitation while T is a 2p-2h excitation.
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Understanding excitations, model spaces and
excluded spaces

The single-particle wave functions of

$1(X1)  d1(x2) ... Hi(Xs)
$2(X1)  d2(x2) ... Pa(Xs)
¢o:i #3(X1)  #3(x2) ... #3(Xs)
ds(x1) d8(x2) ... da(xe)

are normally chosen as the solutions of the so-called non-interacting part of the
Hamiltonian, Hg. A typical basis is provided by the harmonic oscillator problem or

hydrogen-like wave functions.
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Excitations in Pictures

€a
€3

€F dg
€2
€1
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Excitations in Pictures
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From T
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Excitations in Pictures
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Excitations in Pictures
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From T, to T2
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Excitations in Pictures

€a
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Ti xaja

00

€a
€3

€F
€2
€1

&

:

T

From T, to T2
T, x aj &, aja;

%)
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Excitations

€4
€3

€F
€2
€1

2p —2h
1p—1h
ann
NN

Truncations

» Truncated basis of Slater
determinants with 2p — 2h has
Wop on = (1 + Ty + T2)®

» Energy contains then

Eop_on =

(Po(1+T]+TH)H|(1+T1+T2)Po)
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Brillouin-Wigner perturbation theory

In Brilluoin-Wigner perturbation theory it is customary to set w = Eg. Tis results in the
following perturbative expansion for the energy AE,

el @ SN
AEy fg@o“‘h {w—ﬂo (w Eo H|)} |®o) =
& .. @ . 0

| [+ F———F + A ———F———H + ... | [&).
(o|<| Fowrask Fowaroaros )o)
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Brillouin-Wigner perturbation theory

This expression depends however on the exact energy Eg and is again not very
convenient from a practical point of view. It can obviously be solved iteratively, by
starting with a guess for Eg and then solve till some kind of self-consistency criterion
has been reached. Actually, the above expression is nothing but a rewrite again of the
fullSchrodinger equation. To see this, we use the operator identity

Defining e = Eq — Fp and recalling that Hy commutes with Q by construction and that
Q is an idempotent operator Qz = Q
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Brillouin-Wigner perturbation theory

Using this equation in the above expansion for AEy we can write the expression for
AEg as
PPN 1 an
AEp = (®o[H| + HQ ——F——5=—=QH|®0).
Eo — Ho — QHIQ
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Rayleigh-Schrodinger perturbation theory

In RS perturbation theory we set w = Wy and obtain the following expression for the
energy difference

AEg = Z(‘bo“:'l {W (3 Fo ('ql - AEO)} |®0) =

i=0 0

(®ol [ H + Hy : — (H, — AEg) + Hy : —(H — AEo) =
Wop — Ho Wo — Ho Wp — Ho

(A, —AE0)+...> |
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Rayleigh-Schrodinger perturbation theory

Recalling that Q commutes with I—To and since AEg is a constant we obtain that
QAE| o) = QAE,|Qd) = 0.
Inserting this results in the expression for the energy results in

Q Q

AEq = (| (Fh —H:hWLAFh + H ———(H — AE)———H, +> |®o).

o — Ho Wo — Ho Wo — Ho
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Rayleigh-Schrodinger perturbation theory

We can now this expression in terms of a perturbative expression in terms of I:|, where
we iterate the last expression in terms of AEg

AEy =" AEY.
i=1

We get the following expression for AEéi)

AE = (o]Fy|®0),

which is just the contribution to first order in perturbation theory,

) A Q A
AEP) — (00— A |d0),
0 (@0 ' Wo — Ao 1|®o)

which is the contribution to second order.
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Rayleigh-Schrodinger perturbation theory

. o .
(Po|Hi|Po) ~—H|®o),
Wp — Ho

@ p- @ — H; ®o)— (PoH

3 .
AESY = (oo —H, 5
Wo —Ho Wp —Ho Wo — Ho

being the third-order contribution. The last term is a so-called unlinked diagram!
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Rayleigh-Schrodinger perturbation theory

The fourth order term is

4 Qs Q 4 Q.
AE = (oA, —A, —A, — i o) —
Wo—Ho Wp—Ho Wo—Ho

o} .
= (®o|Hi|®o)
o —Ho
~ Q . Q A Q 4
—(®o|H, —H, =~ (Po[Hi|Po) ~—H,®p)
Wo —Ho Wop —Ho Wo — Ho

Q 4 ©

= _F &
Wo — Ho IWo—Ho o

do|H
<o\|W

N T 6 . 9 .
+(do[H, ~—Hj (o |H||Po) ~— (do[H|Po) ~—H ®o)—
Wo — Ho Wo — Ho Wo — Ho

T P
(®o|H = (Po[H ~—Hi|®o) ~—Hi|®o),
Wop — Ho o — Ho Wo — Ho
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Wave Operator |

We define the projection of the exact wave function |V, ) of a state «, i.e. the solution
to the full Schroédinger equation

H[Va) = Ea|Wa),
as P|W,) = |[WM) and a wave operator Q which transforms all the model states back
into the corresponding exact states as |V, ) = Q|WM). The latter statement is however
not trivial, it actually means that there is a one-to-one correspondence between the d
exact states and the model functions. We will now assume that the wave operator Q
has an inverse. Use a similarity transformation of the hamiltonian

QHQQ YW, = E.Q L w,,).
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Wave Operator I

Recall also that |W,) = Q|WM), which means that Q—1|W,) = |WM) insofar as the
inverse of Q exists. Let us define the transformed hamiltonian H = Q~1HQ, which can
be rewritten in terms of the operators P and Q (P + Q =) as

H = PHP +PHQ + QHP + QHQ.

The eigenvalues of H are the same as those of H, since a similarity transformation
does not affect the eigenvalues.

H|WY) = Ea|VY),
with the operator Q, one can show the so-called decoupling condition

QHP = 0.
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Wave Operator Il

The last equation is an important relation which states that the eigenfunction P|W) is
a pure model space eigenfunction. This implies that we can define an effective model
space hamiltonian

Het = PHP = PQ IHQP,

or equivalently
HOP = QPHeP,

which is the Bloch equation. This equation can be used to determine the wave operator
Q.
The wave operator is often expressed as

Q=1+x,

where x is known as the correlation operator.
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Wave Operator IV

The wave operator Q2 can be ordered in terms of the number of interactions with the
perturbation H,
Q=1+004+0® 4 |

where Q(") means that we have n H, terms. Explicitly, the above equation reads
li)¢ |H|W}a (IH i) G H [%a)
Qlpa) = )+ S v
V) 2 Z(aa—e. oo —2)

li)( \H||1lfﬂ>(¢,8\H||wa>
Z (ea —¢i)(ea —€p)

Bi

where ¢ are the unperturbed energies of the P-space
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Topics for Week 44, November 1-5

Perturbation theory

Monday:

Summary from last week and end density functional theory
Diagram examples and unlinked diagrams

Introduction to time-dependent perturbation theory
Schrddinger, Heisenberg and interaction pictures

Tuesday:

Schrddinger, Heisenberg and interaction pictures

Linked diagram theorem

Diagram rules and examples

vV VvV V. V. VY. V.V VY

Finish exercise 14 this week.
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Schrddinger picture

The time-dependent Schrodinger equation (or equation of motion) reads
0 ~
Zha\"’s(t» = HWs(t)),
where the subscript S stands for Schrodinger here. A formal solution is given by
Ws(t)) = exp (—eH(t — to) /)| Vs (to))-

The Hamiltonian H is hermitian and the exponent represents a unitary operator with an
operation carried ut on the wave function at a time t;.

265/462



Interaction picture

Our Hamiltonian is normally written out as the sum of an unperturbed part Ho and an
interaction part H,, that is ~ . .
A =Ho +H,.
In general we have [Hg, F|] # 0 since [T, V] # 0. We wish now to define a unitary
transformation in terms of Hy by defining
Wi (t)) = exp (sHot/h) | Ws(t)),

which is again a unitary transformation carried out now at the time t on the wave

function in the Schrddinger picture.
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Interaction picture

We can easily find the equation of motion by taking the time derivative

oW (1)) = ~Ro exp (ot /W)W (1) -+ exp (gt /R)eh W (1),
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Interaction picture

Using the definition of the Schrodinger equation, we can rewrite the last equation as
0 ~ ~ ~ ~ ~
[V (1)) = exp (sFlot /1) [~Fo + Ao + Ay | exp (—afot/m)wi (1),

which gives us
A (1) = A OW 1),

with R R R R
H, (t) = exp (:Hot/R)H, exp (—2Hot/R).
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Interaction picture

The order of the operators is important since Hy and F; do generally not commute. The
expectation value of an arbitrary operator in the interaction picture can now be written
as
(Ws(1)|Os|Ws(t)) = (Wi(t)] exp (:Hot/h)Os exp (—eHot/h)|Wi(t)),
and using the definition
G (t) = exp (sHot /)0, exp (—Hot/h),

we obtain . .
(W5 (1)[O0s|Ws(t)) = (W (1)[O(1)[Wi(t)),

stating that a unitary transformation does not change expectation values!
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Interaction picture

If the take the time derivative of the operator in the interaction picture we arrive at the
following equation of motion

zh%d(t) = exp («Hot/7) [ésﬁo = F!of)s] exp (—Hot /R) = [6|(t), ﬁo] )

Here we have used the time-independence of the Schrodinger equation together with
the observation that any function of an operator commutes with the operator itself.
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Interaction picture

In order to solve the equation of motion equation in the interaction picture, we define a
unitary operator time-development operator U (t,t’). Later we will derive its connection
with the linked-diagram theorem, which yields a linked expression for the actual
operator. The action of the operator on the wave function is

Wi(t)) = O(t, 1) Wi (1)),

with the obvious value O(to,to) =i
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Interaction picture

The time-development operator U has the properties that
Of(t,t)0(t,t") = O(t, t)0T(t,t") = 1,
which implies that U is unitary
Of(t,t) = 0—4(t, t').

Further, R R R
U(t, t)Ut't"”) = U(t,t"”)

and R R
Ut tHu(t’,t) = 1,

which leads to N .
Ut t') = Ot/ 1).
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Interaction picture

Using our definition of Schrodinger’s equation in the interaction picture, we can then
construct the operator U. We have defined

[W(t)) = exp (Hot/7) | Ws(t)),
which can be rewritten as
[W,(t)) = exp (sHot/R) exp (—A(t — to) /) [Vs(t)),

or
|Wi(t)) = exp (Hot /) exp (—aH (t — to)/h) exp (—eHoto /)| Wi (to))-
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Interaction picture

From the last expression we can define
U(t,to) = exp (Hot/h) exp (—H (t — to)/h) exp (—Hoto/h).

It is then easy to convince oneself that the properties defined above are satisfied by the
definition of U.
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Interaction picture

We derive the equation of motion for U using the above definition. This results in
O ~ ~ ~
Zhau(h to) = H|(t)U (t7 t0)7

which we integrate from tp to a time t resulting in

7 t ~ ~
U(t,t0) — O(to, to) = U(t, o) — 1 = —+ | R0 ),

to

which can be rewritten as

t
O(t,to) =1 — 1/ dt’A, ()0 (1, o).
h to
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Interaction picture

We can solve this equation iteratively keeping in mind the time-ordering of the of the
operators

t _ 2 t t/ R .
Ot t)=1—~ [ dA()+ (J) / d' [ )R ) + .
h to h to to

The third term can be written as
t/

t t/ R R 1 st
[a [ aarien = [ o
1o 2

fo fo fo

t t
a4, [ o [ aeh R
to 7
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Interaction picture

We obtain this expression by changing the integration order in the second term via a
change of the integration variables t’ and t” in

1t v
E/t dt’ dt”’ Hy (t)H, (t").
0

fo

We can rewrite the terms which contain the double integral as

t t/
/ dt’” [ dt”H (t")H(t") =
fo

fo

t t’
%/t dt'/t at” [A ()R ) — ) + AR ) )],

with ©(t"" — t’) being the standard Heavyside or step function. The step function
allows us to give a specific time-ordering to the above expression.
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Interaction picture

With the ©-function we can rewrite the last expression as

e ()R]

fo

t t/ R R 1 st
/dt’ dt”H (t")H (") = —/ dt’
to 2 Jy

fo

where T is the so-called time-ordering operator.
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Interaction picture

With this definition, we can rewrite the expression for U as

N 2 /—=\"1 I LN

U(t,tp) = = dt dty T Ht CHi(t =T = dt'H, (t") ] .
Co=3(5) 5 [ @ -t [ A] = e | 5 [ )

The above time-evolution operator in the interaction picture will be used to derive
various contributions to many-body perturbation theory.
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Heisenberg picture

We wish now to define a unitary transformation in terms of H by defining

[Wh (1)) = exp (Ht/R)|Ws (1)),
which is again a unitary transformation carried out now at the time t on the wave

function in the Schrddinger picture. If we combine this equation with Schrddinger’s
equation we obtain the following equation of motion

0
fie Wy (1)) = 0,
e [V (1)

meaning that Wy (t)) is time independent. An operator in this picture is defined as

O (t) = exp (zHt/h)Og exp (—2At/R).
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Heisenberg picture

The time dependence is then in the operator itself, and this yields in turn the following
equation of motion

zh%éH(t) = exp («Ht/h) [équ — ﬁéH] exp (—At/n) = [CA)H(t)’ |f|] )

We note that an operator in the Heisenberg picture can be related to the corresponding
operator in the interaction picture as

O (t) = exp (2At/R)Og exp (—At/h) =

exp (2t /R) exp (—Fot /R) O, exp (Fot /h) exp (—eFit/h).
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Heisenberg picture

With our definition of the time evolution operator we see that

On(t) = 0(0,1)6,0(t, 0),

which in turn implies that Og = O,(0) = O (0), all operators are equal att = 0. The
wave function in the Heisenberg formalism is related to the other pictures as

[Wh) = [Ws(0)) = [W1(0)),

since the wave function in the Heisenberg picture is time independent. We can relate
this wave function to that a given time t via the time evolution operator as

(W) = 00, ) W (1))
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Adiabatic hypothesis

We assume that the interaction term is switched on gradually. Our wave function at
timet = —oo and t = oo is supposed to represent a non-interacting system given by
the solution to the unperturbed part of our Hamiltonian Hy. We assume the ground
state is given by |$q), which could be a Slater determinant.

We define our Hamiltonian as

A = Fo + exp (—et/R)A,

where ¢ is a small number. The way we write the Hamiltonian and its interaction term is
meant to simulate the switching of the interaction.
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Adiabatic hypothesis

The time evolution of the wave function in the interaction picture is then

[Wi(t)) = Ue(t, to) Wi (to)),

Os(t,to):Z(_—Z)ni Yty [ dtyexp(—e(ty + -+ t)/B)T [Ai) . Autn)|

n! to to
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Adiabatic hypothesis

In the limit tp — —oo, the solution ot Schrddinger’s equation is |®g), and the
eigenenergies are given by
Ho|®o) = Wo|®o),

meaning that
[Vs(to)) = exp (—:Woto/R)|Po),

with the corresponding interaction picture wave function given by

|Wi(to)) = exp (:Hoto /)| Ws(to)) = |Po).
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Adiabatic hypothesis

The solution becomes time independent in the limit ty — —oo. The same conclusion
can be reached by looking at

BT (0) = exp (eIt /W 91 (1)

and taking the limitt — +oc0. We can rewrite the equation for the wave function at a
timet =0as .
[W1(0)) = U (0, —o0)| o).
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Topics for Week 45, November 8-12

Time-dependent Perturbation theory

» Monday:
» Summary from last week

» Linked diagram theorem and Gell-Mann’s and Low’s
theorem

Linked and unlinked diagrams, examples

Tuesday:

Diagram rules with examples

Wednesday:

More examples of usage of many-body perturbation theory

vV v vV Vv Y

No exercises this week.

2871462



Topics for Week 47, November 22-26

Coupled cluster theory

Monday:

Summary of perturbation theory
Introduction to Coupled cluster theory
Tuesday:

Coupled cluster theory

Wednesday:

Exercises

vV V.V VvV vV VY
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Coupled Cluster

The basics

The exponential ansatz

oo

W) ~ Wee) = € [og) = (Z% ) o)

=1

T=Ti+T2+++Ta
_I’l

1= Z t?ala
Z talal aja;

,]ab

'IA'n:<_> Zt -afal ... aa

7J7
a,b,...
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Coupled Cluster

The basics, Classifications

CCSD - Coupled Cluster Singles and Doubles

T=T,+T,
[Wee) = et T2(dg)
1
2

. . . 1 . . n
= <1+Tl+ Tf+T2+§Tf+T1T2+++> |dg)
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Coupled Cluster

The basics, Classifications

CCSD - Coupled Cluster Singles and Doubles

-l|; = -fl =F -fz
Wee) = et 72(d)

1A N
—T12+T2+

~ 1.
= <1+T1 aF 5 T1 +TaT2 + ++> |®o)

3l

CCSDT - Coupled Cluster Singles, Doubles and Triples

-|/= = -/|=1 + -,|=2 + -,|=3
Wee) = et 1ot Ts g

~ 14 A 1.
= <1+T1+§Tf+T2+ 3|T1 +T1T2+T3+++> ‘¢o>
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Coupled Cluster

The basics, Equations

Energy equation
(Pole~THeT [0g) = E
Amplitude equations

(®2le~THeT0g) =0
(®2e~THeT [og) = 0
(®3-[e~THeT |og) =0

Note: (W] # (dgle~T, e=T £ (eT)".
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Coupled Cluster

The basics, Equations

Campbell-Baker-Haussdorff expansion

e "he’ —H+[H 5 [[AF] 8]+ g [[[AF].5].7]
HHH 8] 7] F]+++

|
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Coupled Cluster

The basics, Equations
Normal ordered Hamiltonian - CCSD

= > (plfila) {afaq } + > (pilv(ai) {ajad }

pqi

+7 Z pqY|rs) {apaqasar} + > (ilhli) + Z ijV[if)
i

pars i
= Fn + Vn + (Wo|A|Wo) = An + Erer

where

< plhla) +Z pi |V |qi) ) {apaq} pr {apaq}
ele]
Vy = 1 (pq|¥]rs) {agagasa,}

pqrs

(WolFi|ve) = > (i) + zzuwm
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Coupled Cluster

The basics, Equations

Coupled Cluster equations for Fiy

(Wole THye' |Wo) = E — Erer = Ecc
(WEP-le"THyeT|Wo) = 0
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Coupled Cluster

The basics, Equations

Expanded Coupled Cluster equations for Hy

oo = ol (- [ 7]+ [ 7]. 7]+ & [[807]. 7).

A N
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Coupled Cluster

The basics, Equations

Evaluating commutators

(Wol [F'NJA—] [Wo) = (Wo| (['ENJAH] + ['Efoz] 4 [\7N,'|A'1] I [\7N7f2]) [Wo)

(Wol [IEN,'fl] [Wo) = prta W ({agaq} {a;ai} = {aiai} {agaq}) [Wo)

{agaq} {agai} — {a;ai} {agaq} = dqa {agai} + pi {aqal\} + dqadpi

(Wol ['ENJAH] [Wo) = Zfziitia
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Definitions
The basics, Normal ordered Hamiltonian
Definition
The normal ordered Hamiltonian is given by

A 1 o
= & s {afefalanes)

par
stu

b= Z pql|rs) {apaqasar} pr {afaq}

pqrs
=HY +Vy + Fy
where

By =2t {alag} V=7 Y (palirs) {abajacar }
Pq

pars

A 1 A
HY = = Z(pqr|v3|stu> {agaaaiauatas}

par
stu
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Definitions

The basics, Normal ordered Hamiltonian

Definition
The amplitudes are given by

% = (plfola) + > (pil91i) + 5 > (pillvs[ai)

ij
(pallrs) = (palV|rs) + Z<pqi|\73|rsi>,

In relation to the Hamiltonian, Hy is given by

A

Nn=H —Ep
Eo = (®o|H|®o)

A 1 A 1 A e
= (ilholi) + > > il + 5 > ik |slijk),

ij ik

I

where Ep is the energy expectation value between reference states.
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Definitions

The basics, Normal ordered Hamiltonian

Derivation

We start with the Hamiltonian

where

A

H

Ha

A

H=Hi+H +Fs

>_{plhola)ajaq
Pa

1 N
L palos)abalaser
pars

1 .
35 O (ParVs|stu)ajajalasaias

par
stu
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Definitions

The basics, Normal ordered Hamiltonian
Derivation, onebody part

Hy = Z<p|ﬁo|q>a$aq

Pq

—
ajaqg = {a},aq} + {a,ﬁaq}
= {ag,aq} + Opaei

Hy = (plholq)ajag
Pqg

- Z plfola) {abaq } + dpaer D (plhola)

pq

—Z plfola) {abaq } + 3 (ilhol
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, onebody part
A onebody part

Fu <= > (plhola) {aaq }
pPq

and a scalar part

Eo < > (lfoli)
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Definitions
The basics, Normal ordered Hamiltonian
Derivation, twobody part

~ 1
_ G Taf
Hy, = 3 %(pqwns)apaqasa,

ajalasa, =
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Definitions

The basics, Normal ordered Hamiltonian
Derivation, twobody part

A 1
_ % Tzl
Hy = 2 §<pq|v|rs>apaqasar

ajalasa, = {agaaasar }

o Sow R o
+ < ahagasar ¢ + { ajalasar ¢ + 1 apahasar
Ll i i
+ < apagasar ¢ + < ahajasar ¢ + < ahagasar
= {a},aaasa,}
Soieri T Y S T S I
+ Ogsei | @par grei | Apas psci | Agar

+ dprei {ac];as} + Opreidgsei — Opscidgrei
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part

.1 A
A= > (palvrs)ajalasar
pars
1 R 1 o
= 2 (paldlrs) {ajaasa |+ 5> (dusci(paldlrs) {aba |
pars pars

— drei{paldlrs) {afas | — dpsei (Pal?lrs) {aba |

+ dprei (PAIVrs) {aan} + Opreidgsei — 5pse|5qre|)
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part

_ % > (pald]rs) {ag,agasar}

pqgrs

+ 23 (wilolai) — (il lia) — (pl9lai) + (ipl7lia)) {afaq}

pqi

+ 5 Z(IJIVIIJ IJIVIJI>)
= 23 (palvlrs) {afalasa } + S (pilvlai) {afaq } + Zzuwm

pars pai
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part
A twobody part

~ 1
Uy <= 7 > (palvlrs) {apagasar}
pars
A onebody part
Fy < Z pi |[V|qi) {apaq}
pai

and a scalar part

1 -
Eo < 5 > _(iilvlii)
i
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Definitions

The basics, Normal ordered Hamiltonian

Exercise
Derive the normalordered form of the threebody part of the
Hamiltonian.

A 1 &
As = 2% > " (par|Vs|stu)ajadalaiaias

par
stu

—7

and specify the contributions to the twobody, onebody and the
scalar part.
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Definitions

The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
An = 7 > tpallrs) {ajadasar } + Sk {ahe

where
Fv=> f {ag,aq}
pq

Uy = 3 " (pallrs) {ajabasar )

pgrs

o}
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Definitions

The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
The amplitudes are given by

f§ = (plhola) + > (pi|9|ai)
i
(pallrs) = (palV|rs)
In relation to the Hamiltonian, I3|N is given by

Hy = H — Eo
Eo = (®o|H|Po)

= ol + 5 el

ij

where Ep is the energy expectation value between reference states.
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

Ecc < (®olFin|®o) = (o] (Fn + Vi ) [0)

(o] P [do) = ¢O|pr{ } |®o)
=0
7 1 o
(@0l Vn|%0) = (@o|5 Y (pallrs) {abalasar | [@o)
pars

=0

The expectation value of ﬁN between reference determinants is
zero by construction.

(®o|Fin| o) = 0

311/462



Coupled Cluster equations, CCSD

Energy equation, Algebraic method

Ecc < (P [F'N7-ﬂ |®o)

= (®o| ([ﬁN’fl} - [ﬁN,fz] + [\A/N,fl] + [\A/N,fz]) |®o)

(®o| [ﬁN,fl} |dg) = (@] [ng {ag,aq} Zta{aa }] bo)
- S igete[foee) {eta}] o

paia

- S it {oon} e} - {le) e}

paia
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

1 1
{af,aq} {agai} = {af,aqa;ai} + {a},aqagai} + {af,aqa;ai}

t 114
+ ¢ apaqasa;

apaqaaa,} + Opi {aqag} + 0ga {a},ai} + Opidga

{
{alaala)
{

aagala; }

—
S
e

——

,—M

N

Il
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

[IEN,'IA]] prt""({aTaqaaa,} + &pi {aqaa} + 8ga {apa.} + 8pidga
pgia

- {a},aqagai})
— i t P I '
Zfét,a{aqaa} +> 1 ta{a a,} %:f;t,a

gia pia

(@l |Fr. Ta] l00) = Y- fig?
ia
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

(o] [Py, T2] [90) = (o] Zf {afad}, Ztab{aTabaa} |®o)
fptab (Dol Ha*aq} {a*a*aJ H |do)
> R (b ({:’;\Taq}{a\*a\*aJ } {a;agajai}{agaq}) | o)
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

i ot to ot ot to afof o alal
{apaq} {aaabajai} = {apaqaaabaj ai} + < ajaqazalaja; p + < ajaqazalaa
N i Lot [ T 4]
+ { agagajayaa; ¢ + | apagasalajai ¢ + ¢ apagasa) aje

ta alal fa alal ta atal
+{abaqalalaai p + < afajalalaa ¢ + < ajagalala
= {agaqa;agaj ai} — 8y {aqagaba.} + O {aqa;aga,}
5 TT___5 TT___5_5 T,
T+ 5pi 5qa {aga,-} T+ 5pj 5qb {agai} = 5pi 5qb {agaj}
{agalajai} {af,aq} = {agagajaiag,aq}
= {agaqa;agajai}
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

[ﬁN,fz] = prt (5p. {aqaaabaj} — byi {aqaaaba.} + dga {apagaja.}
pai
jab

— bab {agalaj ai} — 6pi0qa {agai} + bpidqa {agaj} + yi0p {alai}
— Opidgb {al\a,-})
= % > fiti® {aqalala | + % > i26° {ajajaa} + Zf t* {ala}
pijab

qijab

(®o] [ﬁN,fz] |d) = 0
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

<¢0| [VNyfl} |¢O> = <¢O| [% Z(pq”rs {apaqasar} Zta {aaal}‘| |¢O

pqgrs

= —Z pq||rs ta cDo| Hapaqasar} {aaal}:| |Po)

par
sia

=0
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

(Pol [VN ) fz] |Po)

(o [jz<pqrs>{ ajasar}, Zt {a*a*aja.}} [®o)

pars

_ 1! (pal|rs)t® (o [{agagasar} , {agagajai}] )

16
suab
1 ab T T ] nhswnnl
== (pq[rs)t; <¢0|< apaqasaraaabaja, + < apagasaraaa,aja
par
sijab

LTl LT,
{agaéasaragagajai + < afajasaralalaa; )|¢o>

= Z ij||ab)t®

uab
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

Ecc < (®o [F'N,"A'] |®o)

i 1 .
=D _fat? + 7> (illab)t®
ia

ijab
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method

Ecc « (9ol [[Fin. T] ] 90)

NI

[(FN Tl] ] = % [(Zf i {aqa;} +> 18 {agai} + gﬂgﬁ) ,%tjb {agaj}}

qia pia

- (e et o e o)) o )
=D _faft’ {aj ab}

ijab
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Coupled Cluster

Connected Cluster theorem B
The only terms that survives in the hausdorff expansion of H
are the terms where all the excitation operators are connected

to the Hamiltonian.

2

connected

i} N oaa 1A oa i
H= <HN +HnT + —HNT2++HHNT”++>
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Coupled Cluster

Twobody Hamiltonian

N 1~ -~ 1 ~ -
HNT2+—HNT3+—24HNT4>
connected

1

FI:<|:|N+|:|N-,I=+2

(o))
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Coupled Cluster equations, CCSD

Energy equation, Algebraic method
1/n 22
Ecc < (®ol5 (HNT )C |®0)

(¢o|% (\A/N'Iﬁl) |o) = ZZ pa| [rs)ttP (o) ({apaqasar} {a;ai} {agaj})c | o)

quS ijab
= ZZ pal|rs)tAt (bo|
quS ijab

el [T 1] P DTl
( apaqasaraaaiabaj =+ apaqasaraaaiabaj —+ apaqasaraaaiabaj

TR ]
+ {agaTaSa,aTala a; >|d>0>

= Z ij||ab)t?t”

uab
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Topics for Week 48, November 29- December 3

Coupled cluster theory and summary of course

» Monday:
» Coupled cluster theory

» Tuesday:
» Coupled cluster theory and summary of course
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Problem statement

Many-body systems

» We study a bound system of A interacting particles ...

./\/\/\/\/\/\/.

and it quickly becomes unmanageable . . .
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Problem statement

We are looking at non-relativistic particles, so the solutions of
the A-body system, is given by the A-body Schrodinger
equation.

Ha|Wa) = Ea|Wa)
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Manybody wavefunction
The wavefunction of the manybody system can be
decomposed into a suitable manybody basis

(Wa) = Zci|¢i>-

For fermions, these are Slater-determinants

|®i) = |aj, i, - . . )

A
- (Hag) 0),
=1

Where a' is a second quantized operator satisfying

abi0) = op)  aplog) = (a})' o) = 3pel0)

{amajq} = Opg {@,8q} = {a£7a<T:|} =0
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Manybody wavefunction

In the x-representation the Slater-determinant is written

16, = L S0P T] i ()
X|$j=—=) (=1)" in (Xj);
\/anl =1 J

where
ik (X)) = (Xj| i,

are the solutions to a selected single particle problem

he (x) = ek (X).
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Manybody wavefunction

In the particle-hole formalism all quantities are expressed in
relation to the reference state

|Po) =|az...ap), oa1,...,aa < oF

The indices are partitioned according to their relation to the
Fermi level

ij,...<af a,b,...>af p,q,...:any,
and the second quantized operators now satisfy
{ai,ajT} = Gj {aa,az,} = Oab
3| ®o) = [&3) al|®o) = &%)
al|dg) = 0 aa|®o) =0
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Manybody wavefunction

For use with Wicks theorem, we define the contractions
between operators in the particle-hole formalism

I ] i
apag = (Polapaq|Po) = dpgei

e i
aqap = (Polagap|Po) = dpgea
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Manybody wavefunction

The particle-hole expansion of a manybody wavefunction is a
linear combination of all possible excitations of the reference

wavefuncton.
°
° ) °
ee00 e 0 ) oo 00}0 -+ eo ..} """" o +++
o o0 %0 o ® o ® . o ® o )
o o e o o o
....:o o. ....So o. .:‘20 o.
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Manybody wavefunction

The manybody wavefunction can be expanded in a linear
combination of particle-hole excitations, which is complete in
agiven basis set

1
=200 +3 X100+ + 3 19
ia

ijab
a1 aA

= Z clala;| o) + Zc balalaiai|®o) + ... +
uab

Z o aAaal .ah,a;, ... aj|do)

al aA

A'2
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Manybody Hamiltonian

A general Hamiltonian contains up to A-body interactions
N A A A
Aa=Y (ti + Gi) + 3 Gt > G,
i=1 i<j=1 i <-<ipa=1

A
= Tiin +U + ) Vi,
n=2

where fkin is the kinetic energy operator, Uisa generic
onebody potential and Vj, is an n-body potential.
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Manybody Hamiltonian

In second quantized form, a general n-body operator is written

n|)2 D> o .anValyr. . m)al, . al ay, ey,
ag...0n
Y1---n

where the matrix elements («; . .. an\\7nm ...7n) are fully
anti-symmetric with respect to the interchange of indices and
the sum over «; and ~; runs over all possible single particle
states.
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Manybody Hamiltonian

We will truncate the Hamiltonian at the n = 3 level at the most
and skip the onebody potential, so the Hamiltonian will be
written

PN - 1 N
H =Y (pltla)abag + 7 d_(palvlrs)afajasa:
pg pars

1 -
% > (par|Vs[stu)ajalala,aras
parstu
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Manybody Hamiltonian

We define the normal ordered operator

{aaab : ..alai,} = (-1)Palal ... a.ap
All creation operators to the left and all annihilation operators to
the right times a factor determined by how many operators
have been switched.

This object has the highly desired property that the expectation
value is always zero

(®o| {aaab e aiaij} |®g) =0
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

Tin = > _(p[ta)aaq

o
ajaq = {ajaq} + {aTaq}
= {a}aq} + dpqe
U= %mmmaéaq
- Z (pltla) {afaq } + dpqei Z<p|?|q>
- %qj pltla) {abaq } + 3200
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

a1 sirsvatal
H2 = Z %;(pq‘v‘rs>apaqasar

Eigfiafisfir = {:Eigfiaéiséir }
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

N1 S ireval Al
Ha = 2 %ﬁ(pqw“aapaqasar

Eigéiafisfir = {:Eigéiafisfir }
7] Sronsil U Aoy
+ J apagasar ¢ + § apagasar ¢ + § apagasar

i
+ < apajasar
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

1, -1 sirsvatal
HZ = Z %ﬁ(pq|V|rS>apaqasar

Eigéiaéiséir = {:Eigéiaiisiir }
7] Sronsil U Aoy
+ J apagasar ¢ + § apagasar ¢ + § apagasar

EP 117 il )
+ ¢ @pagdsar ¢ + { @pagasar ¢ + | Apdgasar
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

1, -1 sirsvatal
HZ = Z %ﬁ(pq|V|rS>apaqasar

Eigéiaéiséir = {:Eigéiaiisiir }
tI7] t L
+ < apagasdr ¢ +  Apagdsdr ¢ + | Apdgasar
EP 117 il )
+{8pagasdr ¢ + 4 Apag@sar ¢ + | Apdgasay

= {:Eigéiaiisiir }
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

1, -1 sirsvatal
HZ = Z %ﬁ(pq|V|rS>apaqasar

+ {aTaT'_'a a } + {aTaTa a } + {aTaTa a }
pdgasar pdgasar pdgasar
EP 117 il )

+ajajasa; ¢ + < ajahasar ¢ + 4 ahalasar

+ dgsei {agar} — Ogrei {agas} — Opsei {aaar}

+ 5pr€i {az‘as}
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

N1 S ireval Al
Ha = 2 %ﬁ(pq|v|rs>apaqasar

Eigéiafisfir = {:Eigéiafisfir }
+ {aTaT'_'a a } + {aTaTa a } + {aTaTa a }
pdgasar pdgasar pdgasar
EP 117 il )
+ajajasa; ¢ + < ajahasar ¢ + 4 ahalasar
= {:Eigéiaiisiir }
+ dgsei {agar} — Ogrei {agas} — Opsei {aaar}

aF 5pr€i {aaas} aF 5pr€i5qsei = 5psei5qrei

344462



Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

Sl X
Az = 7 (palV|rs)ajajasa;
pars
1 . 1 -
=2 > _(palvlrs) {agaaasar} + 7D (6qsei (pqlV|rs) {agar}
pars pars

— Garei (palV1rs) {abas | — dpsci(pal?rs) {afar |
+ dprei (PA|V|rs) {aaas} + Opreidgsei — 5psei5qrei)
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

= 2> (palolrs) {abajacar }

pgrs

+ 2 3 ((wilo1ai) — (ilglia) — (pl9li) + (p1viia)) {afeq}

pqi

4o Z(IJ\VIIJ i 91
:—Z pq|v|rs{ aqasar} Z(pllvlql{ } 2z:'J|V|'J

pars pqi
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

Exercise
Derive the normal ordered form of the threebody part of the
Hamiltonian.

~ 1 5
As = 2% > " (par|Vs|stu)ajadalaiaias

par
stu

—7

and specify the contributions to the twobody, onebody and the
scalar part.
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

~ 1 -

Gy = = E (par|vs|stu) {az,ai‘aiauatas}
par
stu

~ 2 Z ( pg|V]rs) +Z ipq|Vslirs) ) {apaaasar}

pars

Fn=)_ <<p?q> + > (pilV]ai) + 5 - Z<'JPV3”q>> {aTaq}

pq ij

Eo = () + 5 Y910} + £ Sk vafik)
i ij ijk

H =Gy + Vn + Fn + Eo (0.0.158)
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Coupled Cluster summary

The wavefunction is given by
= 1

Z mfn) |¢0>)

V) = [Wee) = el |dg) = <
n=1

e T is the cluster operator defined as

1 . .aLnain R T T

1 2
= a;az...an ot
Ty = o E tiliz...in Ay, Aa, -
i15i2,-+-In
ap,az;,...an
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Coupled Cluster summary cont.

The energy is given by

Ecc = (®o||®o),

where is a similarity transformed Hamiltonian
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Coupled Cluster summary cont.

The coupled cluster energy is a function of the unknown cluster
amplitudes t7+°2,-*", given by the solutions to the amplitude
equations

0 = (P23 D).

I7.. Jin
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Coupled Cluster summary cont.

is expanded using the .

and simplified using the connected cluster theorem

s () + (T

c

1/~ ~
oot = (ANTR) 4t
n! c
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CCSD with twobody Hamiltonian

Truncating the cluster operator T atthe n = 2 level, defines
CCSD approximation to the Coupled Cluster wavefunction. The
coupled cluster wavefunction is now given by

[Wee) = e 72| dg)

where
T =) tPala
ia

PR I
To=7 ijza;ti? ahalaja.
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CCSD with twobody Hamiltonian cont.

Normal ordered Hamiltonian

H=>1 {a},aq} 1 % > (pallrs) {aﬁ,aaasar}
Pq

pars
+Eo

:I/:\N—I-VN—FEO:'/"\N-FEQ
where

f§ = (pltla) + > (pilv]ai)

(pqllrs) = (pqv]rs)

Eo = DGR + 5 D ilvi)

i ij
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
» All T elements must have atleast one contraction with ﬁN.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
» All T elements must have atleast one contraction with ﬁN.

» No contractions between T elements are allowed.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
» All T elements must have atleast one contraction with ﬁN.

» No contractions between T elements are allowed.

» Asingle T element can contract with a single element of
Hy in different ways.
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Diagram elements - Directed lines

% #

Figure: Particle line Figure: Hole line

» Represents a contraction between second quantized
operators.

» External lines are connected to one operator vertex and
infinity.

» Internal lines are connected to operator vertices in both
ends.
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Diagram elements - Onebody Hamiltonian

Level: -1 Level: +1
Level: O Level: O

» Horisontal dashed line segment with one vertex.

» Excitation level identify the number of particle/hole pairs
created by the operator.
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Diagram elements - Twobody Hamiltonian

Level: -2

Level: O

>\/

Level: +1

o

Level: O

>\/

Level: +1

o

Level: O

Level: +2
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Diagram elements - Onebody cluster operator

W

Level: +1

» Horisontal line segment with one vertex.
» Excitation level of +1.
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Diagram elements - Twobody cluster operator

WY

Level: +2

» Horisontal line segment with two vertices.
» Excitation level of +2.
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CCSD energy equation - Derivation

Eccsp = (Pol|Po)

» No external lines.

» Final excitation level: 0

Elements: ﬁN Elements: T
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CCSD energy equation
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Diagram rules

» Label all lines.
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Diagram rules

» Label all lines.
» Sum over all internal indices.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)
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Diagram rules

vV vV v VY

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f2", (lout, rout]|lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)

Calculate the phase: ( —1)h0|e|ines+loop5
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Diagram rules

vV vV v VY

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f2", (lout, rout]|lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(r31u:irr10ut)

» Calculate the phase: (_1)ho|e|ines+|oops

Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.
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CCSD energy equation

i 1. 1 .
Eccsp = fat? + Z<“||ab>ti?b + §<U|Iab>ti""tjb

Note the implicit sum over repeated indices.
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CCSD 'IA'l amplitude equation - Derivation

0 = (d}[|do)
»> One pair of particle/hole \/
external lines.
» Final excitation level: +1
Elements: ﬁN Elements: T
P T \/
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CCSD 'IA'l amplitude equation

eeeeee A g
VARV YW

Y

M [scale=0.4]graphics/ccsdpbarg4n
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Diagram rules

» Label all lines.
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Diagram rules

» Label all lines.
» Sum over all internal indices.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)
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Diagram rules

vV vV v VY

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f2", (lout, rout]|lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)

Calculate the phase: ( —1)h0|e|ines+loop5
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Diagram rules

vV vV v VY

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f2", (lout, rout]|lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(r31u:irr10ut)

» Calculate the phase: (_1)ho|e|ines+|oops

Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.
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CCSD 'IA'l amplitude equation

e "im 1m

: 1
0 =2 + 37 — f™S + (ma|ei)ty, + f"t2° + §<am\|ef>t-ef
1 . :

— 5 (mnlleitnn — fe't°tn + (am|lef)tetf, — (mnl[ei)t5ts
+ (mn|lef)tStf — 3<mn|\ef>t.etaf — 3<mn|\ef>tatef.
mni :Z 1 “mn :Z n™m

— (mn||ef)tetat!
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CCSD 'IA'Z amplitude equation - Derivation

0 = ($F°|| o)

» Two pairs of particle/hole
external lines. \/ \/

» Final excitation level: +2

Elements: ﬁN Elements: T
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CCSD 'fz amplitude equation

WAV IENYANY
O AV AV N AV VRV,
WAV ISV Y VAWV AW,




Diagram rules

» Label all lines.
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Diagram rules

» Label all lines.
» Sum over all internal indices.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)
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Diagram rules

vV v v VY

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f", (lout, rout||lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)

Calculate the phase: ( _1)ho|e|ines+|oops
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Diagram rules

vV v v VY

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f", (lout, rout||lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)

» Calculate the phase: (_1)ho|e|ines+|oops

Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.
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Diagram rules

Label all lines.
Sum over all internal indices.

Extract matrix elements. (f", (lout, rout||lin, rin))

Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)

» Calculate the phase: (—1)holelinestloops
» Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.

» Antisymmetrize a pair of external particle/hole line that
does not connect to the same operator.

vV v v VY
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CCSD 'IA'Z amplitude equation

0 = (ab][ij) + P(ij)(abl |e})t° — P(ab)(aml|ij)ty + P(ab)fgtf® — P (i) {3y
1 1 " . .
+ E(abHefﬁff + E(mnlllm%% + P(ij)P (ab)(mbl|ej)t57
1. 1 " . :
5F’('J)(élbl|'3f>tietjf + EP(ab)(mnlllDt%tﬁ' — P(ij)P (ab)(mb]lej)t*ts,

+

+

1 1. 1
2 (MnleNtEER + ZP ()P (ab)(mn|leh)tirt — P (ab)(mn|lef)titry,

= 1P(ij)<mnuef>tef.tab — P(ij i3 — P(ab)fl ety

2 mi nj i ‘'mj

P(ij)P(ab)(am||ef)tet® — %P(ab)(am||ef>t§ftr?1 + P(ab)(bm|[ef)t2°tf,

i "mj

+

P(ij)P (ab)(mn| e} 35ty + EP(IJ)<mnHeJ>tiet§% — P(ij)(mn|[ei)t t

1. 1_ . .
- EP(IJ)P(ab)<am||ef>tietjftrt7)1 + EP('J)P(amen\\el>tiet%t.?

1. y
+ P (mnl[ef) At — P(i)P(ab)(mn|[eh)te e
o %P(ab)(mn\\ef)t%tifft,ﬁ’ — P(ij)(mn|lef)t3t/t3° — P(ab)(mn||ef yt2tht}

+

%P(ij)P(ab)(mn||ef>tiet;tjft§
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The expansion

Ecc:<W0|(ﬁN+[':'NvﬂJF_HHN’T} T}+%{HHN T} T} T}
2 [[[[Aw 1] 1] 1] 8]+ ) wo)
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The CCSD energy equation revisited

The expanded CC energy equation involves an infinite sum
over nested commutators

Foc = (ol (P + [ 7]+ [ [ ] 7
5 ([ 7]
o (A 1].8] 5] 1] + ) v,

but fortunately we can show that it truncates naturally,
depending on the Hamiltonian.

The first term is zero by construction.
(Wo[Hn[Wo) =0
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The CCSD energy equation revisited.

The second term can be split up into different pieces

(Wol [Fin, T ] 1wo) = (ol ([F, Ta| + [Fn. F2] + [V, Ta] + [V, T2 ) 1wo)

Since we need the explicit expressions for the commutators both in
the next term and in the amplitude equations, we calculate them
separately.
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {af)aq})

pgia

=Y b ({a},aq} {aLai} — {agai} {aEaQ})

pgia
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

=Y b ({a},aq} {aLai} — {aLai} {aEaQ})

pgia

{agai} {af)aq} = {agaiagaq}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

=Y b ({a},aq} {aLai} — {aLai} {aEaQ})

pgia

{agai} {af)aq} = {agaiagaq} = {agaqagai}

398/462



The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

= 218" ({ahaa) {ala} — {alar} {afad})

pgia

{agai} {af)aq} = {agaiagaq} = {agaqagai}
{ag,aq} {agai} = {ag,aqagai}

399/462



The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

DQIa

=5 e ({a},aq} {a;ai} - {a;ai} {a},aq})

DQIa

{ }{a*aq} {aaaaTaq} {aTaqaga,}
{abaq} {ala} = {afaqalai}

—
*‘ {: Téiqfigfi|}> %‘ {i Téiqfigfﬂ:}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

= 218" ({ahaa) {ala} — {alar} {afad})

pgia

{agai} {af)aq} = agaiagaq} = {agaqagai}

401/462



The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

DQIa

_§2ﬁ6<&$%}{£&}—{ﬂ&}%ﬁ%})

pgia
{ } {aTaq} {aaa aTaq} {aTaqaga,}
{abaq} {ala} = {afaqalai}
- {ag,aqaga.} + { Taq'_|<’:1§1ai}
()
= {az,aqagai} + dqa {agai} + Opi {aqa;} + dgadpi
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The expansion - [IfN,T'l]

Wicks theorem gives us

{agaq} {a;ai} — {allai} {ag,aq} = 0ga {agai} + Opi {aqag} + dgadpi-

Inserted into the original expression, we arrive at the explicit
value of the commutator

[ﬁN’-IA—l] - Zfaptia {a;r)ai} + Zf(;tia {aqa;} + Zfailtia
ai

pai gai
= (FuTh) -
c

The subscript means that the product only includes terms
where the operators are connected by atleast one shared index.
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The expansion - [IfN,T'Z]

o] - [ S s S Tk feenn)

=3 3 [{ebe} {aloloal}]
- %Zf(fti?b ({agaq} {a;r\az,ajai} - {a;az)ajai} {ag,aq})
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The expansion - [IfN,'IA'z]

{a;af)a,-ai} {af)aq} = {alagajaiag,aq}
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The expansion - [IfN,T'Z]

{a;af)a,-ai} {af)aq}

{alag aja;ahag }

_ Jal Taf
= {apaqaaabaj ai}
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The expansion - [IfN,T'Z]

{a;af)a,-ai} {ag,aq}

{agagaj aiahag }
= {a},aqagalaj a }

{ag,aq} {a;aga,-ai} = {agaqa;agaj ai}
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The expansion - [IfN,T'Z]

{agaga,-a.} {apaq}
{aTa }{a a aa}
pdg [ | adpd

alajajaialag }

1
)

T Tt i Tof
apaqaaaba,a.} +  apagazalaa; o + { apagaaaaay

{a
{a a aaaba,a,}
{

t b 1ot t b ot
+ { ajagaiajaa; o + | apaqasa;a;a;
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The expansion - [IfN,T'Z]

{agaga,-a.} {apaq}
{aTa }{a a aa}
pdg [ | adpd

alajajaialag }

{a a aaaba,a.}
|—|

i |

{apaqaaaba,a.} + {apaqaaaba,a.} + {alpaqaaaba,a.J

t b 1ot
+ < ajagaralaja ¢ + apaqaaaba,a. aqaaaba,‘

t b 1yt Mt
+ < ajagatalajai p + apaqaaaba,a. + < afagalala
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The expansion - [IfN,T'Z]

{agaga,-a.} {apaq}

{

T
apag

} falalaa)

alajajaialag }

i |

T Tt i i
apaqaaaba,a.} + { ajagajajaja; o + apaqaaaba,-aiJ

{a
{a a aaaba,a,}
{

t b 1ot t b ot il 1y
+ < ajagaralaja ¢ + 4 ahagasalajai ¢ + < ajagajaay

t b 1yt t bt t b ot
+ < ajagatalajai ¢ + < ajagalalaja o + 4 ahagalala;

= {agaqa;agaj ai} — 0y {aqagaba.} + & {aqa;aga,}

+ 8qa {agagajai} — b {agaga,- ai} — 0pidqa {agai}

+ 8pidga {aba,} + 85i0gb {aga.} — 8pidgb {agaj}
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The expansion - [IfN : T’z]
Wicks theorem gives us
({a*aq} {agagaja-} —~ {a;aga,a } {a*aq}>
— 8y {aqagag } + & {aqaaaba,} - 5qa{ halaa }
— dgb {agalaj a.} 85 0qa {aba.} + 85idga {aba,} + 0pjOap {a;a.}

= 5pi 5qb {agaj}
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The expansion - [IfN,T'Z]

Wicks theorem gives us

({a*aq} {agagaja-} —~ {agaga,a } {a*aq})
— 0 {aqagagJ } + & {aqaaaba,} - 5qa{ halaa }
— Ogp {agagaj a.} 85 0qa {aba.} + 8pidga {aba,} + 8pjOgb {a;a.}
— Gpi g {agaj}

Inserted into the original expression, we arrive at

[,EN,fz] — prta ( Spj {aqaaaba.} + dpi {aqaiala;}

abj
+ dqa {agaga, } dqb {agaga, } 8pi0qa {aga }

+ 8pidga {aba,} + 8pjdqo {aga.} Spidgb {aga,- })
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The expansion - [IfN,T'Z]

After renaming indices and changing the order of operators, we
arrive at the explicit expression

[IEN,'FZ] =3 Zf £20 {aqaaa a,} + % > PP {az,agajai}

gijab pijab
i+ab
+> il {afa )
ijab
= (FuT2) -
Cc
The subscript implies that only the connected terms from the
product contribute.
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The expansion - HEN’ﬂ] ,ﬂ]

{IEN,'IA]} prta{apa.} tha{aqaa} tha

pai gai
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The expansion - HﬁN,ﬂ] ,ﬂ]

o] = e e+ St s e

pai qai

HFN Tl} Tl} = {prta {ap } Zf ta{ } ;f;tia,jzbtjb {agaj}

pai qai
- {Z fot2 {agai} + Z fot? {aqal} : thb {aga,-}
pai

= > Rt Hapa,} {aba,H X:fqt's‘tb Haqaa} {aga,-H

pabij
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The expansion - HﬁN,ﬂ] ,ﬂ]

{ﬁN,Tl} prta{ap} tha{aqaa} tha

pai gai

HFN Tl} Tl} = {prta {ap } Zf ta{ } ;f;tia,jzbtjb {agaj}

— {% ft2 {agai} - Z fot? {aqal} ; thb {aga,-}
_gszfptatb Hapa,} {aba,H qutatb Haqaa} {a;ajH

T T _ T T _ T T
{abaj} {apai} = {aba,-apai} = {apaiabaj}
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The expansion - HﬁN,ﬂ] ,ﬂ]

{ﬁN,Tl} prta{ap} tha{aqaa} tha

pai gai

HFN Tl} Tl} = {prta {ap } Zf ta{ } ;f;tia,jzbtjb {agaj}

— {% ft2 {agai} - Z fot? {aqal} ; thb {aga,-}
_gszfptatb Hapa,} {aba,H qutatb Haqaa} {a;ajH

T T _ T T _ T T
{abaj} {apai} = {aba,-apai} = {apaiabaj}

{agaj} {aqag} = {agajaqag} = {aqagagaj}
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The expansion - HENJA]] ,ﬂ]

CRARAE (zfpt,a o {mal) - X1 tatbaqb{a;aj}>
pabij qgabij
- _%2 %}: f,;’,tj""t,b {aaa.}
——%f’ totP {aaa.}

- % (I/:\Nflz)c
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The CCSD energy equation revisited

(do| [VN,fl} |o) = (Po| H > (pqllrs) {apaqasa,} Zta {aaa.}] |®o)

pars
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The CCSD energy equation revisited

(do| |:\7N7-|21:| |o) = (Po| H > (pqllrs) {apaqasa,} Zta {aaa.}] |®o)

pars

_ %Z(pq||rs>tia<¢o| {alalasa } . {alai}] @)

par
Sla
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The CCSD energy equation revisited

(do| |:\7N7-|21:| |o) = (Po| H > (pqllrs) {apaqasa,} Zta {aaa.}] |®o)

pars

_ %Z(pq||rs>tia<¢o| {alalasa } . {alai}] @)

par
Sla

=0
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The CCSD energy equation revisited

(@o| [V, T2] [0) =

(®o] %Z<pqllr8>{apaqasar} =% {aaaba,a.} o)

pars ijab
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The CCSD energy equation revisited

(Do [VNJA—Z} |®o) =

(do] %Z(pq||rs>{apagasar} iztﬁ‘b {agagajai} |®o)

pars ijab

16 Z (pallrs)t® (o Hapaqasaf} {a;aga,-aiH o)

suab
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The CCSD energy equation revisited

(Do [VNJA—Z} |®o) =

(o [%Z<DQIIrS>{apaqasar} 2yt {aaaba,a.}] |®o)

pars ijab

=15 Z (pal|rs)te® (o Ha*aqasa,} {agaga,-aiH |®g)

suab

[T 111 [Trrr 111
Z (pal|rs)te® (do| (< afala aalalaa b+ alalasa alalaa
16 0 pAgAsArdaddjdi pAgAsdr dad djdi

par
sijab

fata & it tat tat
Apagasaraaapajai o + | apdgasaraaay, a;a; )|¢0>
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The CCSD energy equation revisited

(Do [VNJA—Z} |®o) =

(o [%Z<DQIIrS>{apaqasar} 2yt {aaaba,a.}] |®o)

pars ijab

=15 Z (pal|rs)te® (o Ha*aqasa,} {agaga,-aiH |®g)

suab

[T 111 [Trrr 111
Z (pal|rs)te® (do| (< afala aalalaa b+ alalasa alalaa
16 0 pAgAsArdaddjdi pAgAsdr dad djdi

par
sijab

fata & it tat tat
Apagasaraaapajai o + | apdgasaraaay, a;a; )|¢0>

1 -
= 2> illab)g®

ijab
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The CCSD energy equation revisited

The CCSD energy get two contributions from (ﬁ,ﬁ)
Cc

Ecc « (®o [Fin, T [®0)

- 1.
_ Zf;tia +2 > ijllab)t®
1a

ijab
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The CCSD energy equation revisited

1 -
Ecc < <¢o\§ (HNT2>C |Po)
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The CCSD energy equation revisited
Ecc < <¢o|% (ﬁNT—Z)C |®o)
(@o]3 (VnT2)_[00) =

= ZZ pq |[rs)tAtP (o ({apagasa,} {agai} {agaj})c |®0)

pqu ijab
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The CCSD energy equation revisited
Ecc < <¢o|% ('qN1A—2>C |®o)

(@o]3 (VnT2)_[00) =

= ZZ (pal|rs)t3tP (do| ({apagasar} {agai} {agaj})c |®0)

pqu ijab

:—ZZ (pal|rs)tit’ (%ol

pars ijab

(LT T ITII—I_#IITI ITiT||—|T ITI
( apajasarabaia)aj p + apaqasa,a‘.ﬂa.abaJ + < ajahasa;abaia) a;

nhrr 1]
+ {a*agasa,aga. a) a; ) |®o)
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The CCSD energy equation revisited

Ecc < <¢o|% ('qN1A—2>C |®o)
(@o]3 (VnT2)_[00) =
= ZZ (pal|rs)t3tP (do| ({apagasar} {agai} {agaj})c |®0)

pqu ijab

——ZZ (palrs)tt? (Po

pars ijab
Tlﬁ .11 |TI l_|:T||T| |TiT| 1] ITI
( ajalasa;alaiala ¢ + { alalasaralaialaj » + 4 ajalasa,alaiala
I_lﬁl
+{aTagasa,aLa.aba, )|<Do)
L at
=5 Z<”||ab>ti [

ijab

430/462



The CCSD energy equation revisited

» No contractions possible between cluster operators.

431/462



The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.

» Onebody operators can connect to maximum two cluster
operators.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.

» Onebody operators can connect to maximum two cluster
operators.

» Twobody operators can connect to maximum four cluster
operators.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.

» Onebody operators can connect to maximum two cluster
operators.

» Twobody operators can connect to maximum four cluster
operators.

» Different terms in the expansion contributes to different
equations.
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Factoring, motivation
Diagram (2.12)

(mnllef)t

N

Diagram (2.26)

1_ .
M = ZP(DmnllentEny

Diagram (2.31)

\A/\A/ = %P(ij)P(ab)(mn||ef)tiet,i‘,‘1tjftrﬁ’
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Factoring, motivation
Diagram (2.12)

(mnlef)teTtan

e

i - n4n4
Diagram cost: ngny;

Diagram (2.13) - Factored

1
= Z(mn]lef)ts'sh

= 7 (tmnflefyes')
1

_ mnsab
- _Xij trn

4



Factoring, motivation
Diagram (2.26)

Diagram cost: njn
Diagram (2.26) - Factored

1_ .
ZP(|J)<mn||ef>tiet,?f,’1tjf

1.
2P (@)(mn|lef)t*tThe
EP(i')tabt-eXm”

4 ) )tnnl ej

1,

7 P(ij)tan Y™
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Factoring, motivation
Diagram (2.31)

\A/\A/ = %P(ij)P(ab)(mn||ef>tiet§;tjft§

i - n4n4
Diagram cost: ngny;

Diagram (2.31) - Factored

\A/\A/ = %P(ij)P(ab)<mn||ef>tietr?1tjftr?

1
- ZP(ij)F>(ab)tr‘;t,?tiexe“j“‘
— Lp(ij)p(ab)abym
2 (iP(ab)taty Y
1
= ZP(i)P(ab)HZ{™
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Factoring, Classification

A diagram is classified by how many hole and particle lines
between a T; operator and the interaction (T;(p"Ph™)).

Diagram (2.12) Classification

= —(mn|[ef)ts"t20

-bIH

This diagram is classified as T,(p?) x To(h?)
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Factoring, Classification

Diagram (2.26)

1.
M :ZP(|J)(mn||ef>tiet,%?1tjf

This diagram is classified as To(h?) x T1(p) x T1(p)
Diagram (2.31)

\A/\A/ = %P(” )P (ab)<mn| |ef>tietr?\tjftrt1)

This diagram is classified as T1(p) x T1(p) x T1(h) x T1(h)
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Factoring, Classification

Cost of making intermediates

Object CPU cost | Memory cost
To(h) nany nzg
To(h?) n n, “n3
T2(p) Npn?Z na
T, (ph) NpNh 1
T.(h) Np N, Np
T(ph?) np n,”
T,(p?) n2 np “n?
T1(p) N np "Nh
T,(p%h) Nh n,?
Ta(ph) 1 Ny g
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Factoring, Classification

Classification of fl diagrams

Object Expression id
To(ph) || 5,11

T1(h) 3,8,10,13, 14
To(ph?) || 7, 12

T1(p) 2,8,9,12,14
To(p%h) || 6, 13

Ti(ph) | 4,9,10,11, 14
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Factoring, Classification

Classification of T’z diagrams

Object Expression id

T, (h) 5, 15, 16, 23, 29

T,(h?) 7,12, 22,26

T2(p) 4,14, 17, 20, 30

T, (ph) 8,13, 13, 18, 21, 27

T1(h) 3,10, 10, 11, 17, 19, 21, 24, 25, 25, 27, 28, 28, 30, 31, 31
To(ph?) || 14

To(p?) 6,12, 19, 28

T1(p) 2,9,9, 11, 16, 18, 22, 24, 24, 25, 26, 26, 27, 29, 31, 31
Tz(pzh) 15

T1(ph) 20, 23, 29, 30
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Factoring, T,(h)

Contribution to the T, amplitude equation from T,(h)

To(h) < —P (i)™t — Zp (i) (mn|ef)tel2d — p(j)fmeetd

2 mi nj i mj
— P(ij)(mn][ei)t5te> — P(ij)(mn|[ef t5 tt2
= PR [+ (mnllie)ts + 3 (mnljef)te!
L f (fem + <mn||ef>t,2)]
= —P(ij)th (H3)]"
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Factoring, T»(h?)

Contribution to the T, amplitude equation from T,(h?)

1 . 1 1 . .
To(h?) <= S (mnllij)tah + 7 (mn[|ef)ts 2 + SP (i) (mnllei) et
P (i) (mn|[ef)t°tnt]
. 1
£ | (mnl i) + 5 (mn|lef t5"
. . 1
+P (i) ((mnlfie) + 3 (mnffe)t]) |

1 _
= Etr?l%(Hg)irjnn
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Factored T, amplitude equations

. 1 —
0 =f2 + (mallei)ts, + E(am\|ef>tfr’,§ + t7(12a) — t3(H3)"

1 — —
+ SR AT + e (FL)T

Can be solved by
1. Matrix inversion for each iteration (n3n?)
2. Extracting diagonal elements (n3n?)
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Factored T, amplitude equations

. 1 —
0 =f2 + (mallei)ts, + E(am\|ef>ti$,f, + t°(12a)8 — t3(H3)"

1 —
+ Sten (DR + e (HL)T
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Factored T, amplitude equations

. 1 —

0 =f2 + (mallei)ts, + E(am\|ef>tiﬁ§ + t°(12a)8 — t3(H3)"

1 — —
+ SEAANE + (A
=2 + (mallei)ty, + t2(12a)5 + (1 — dea)t (128)

— — 1 1 —
— t3(H3); — (1 — 0mi)te (H3)™ + E(am\|ef>ti$:, + Etr%?m(H7 o
+ 3 (HL)D
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Factored T, amplitude equations

. 1 —
0 =f2 + (mallei)ts, + E(am\|ef>tiﬁ§ + t°(12a)8 — t3(H3)"

1 — —
+ SteaANE + e (AR

= T + (mallei)ty, + t7(12a)3 + (1 — dea)t (122)3

— — 1 1 —
— t3(H3); — (1 — 0mi)te (H3)™ + E(am\|ef>ti‘ﬁ:, = i (7

2
+toy (H1)e

= 12+ 62 ( (12203 — (H3)}) + (mal ei)t5

— 1
+ (1 — dea)t?(122)2 — (1 — i A (H3)™ + E(am||ef>ti$,§

—~~

+ Stan(H7)i" + i (H1)e

N|
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Factored T, amplitude equations

Define o
D = (H3); — (12a)3,

and we get the T, amplitude equations
DAt? = £ + (mallei)ty, + (1 — dea)t(122)3

— 1
— (1 = dmitS(H3)" + E(am\|ef>ti$r‘:

1 — —
+ SteRANE + e (AR
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Factored T, amplitude equations

j
+ P (ab)t2*(H2)2 + P(ij)P (ab)t3(110¢)T° — P(ab)t5(112a)i"™
+P(ij)te (1112)3

.. 1 . = 1 —
0 = (abllij) + §<ab|\ef>tijef — P(ij)the (H3)" + Etr%?](Hg)mn

Can be solved by
1. Matrix inversion for each iteration (ngnf)
2. Extracting diagonal elements (ngn?)
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Factored T, amplitude equations

Similarily we define
DE® = (H3); + (H3)| — (H2)3 - (H2)p
and get the T, amplitude equations
1 . =
D°t5® = (ab|lif) + 3 (abl[ef)tf" — P(i)(1 — djm)tiy (HI)"
1 —
130 (HO)I™ + P(ab)(1 — dpe)t2°(H2)8

T3m
+ P (ij P (ab)tae (1100)5° — P(ab)td (112a)™

+ P(ij)t® (Illa)ej
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
t? — 0; ti‘]-"b —0

E«—1;Eqqg <0
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Coupled Cluster algorithm

Setup modelspace

Calculate f and v amplitudes
t? — 0; ti?b —0

E 1 Eoqg <0

Erer — S0 (IEli) + 5 7 i V1))
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Coupled Cluster algorithm

Setup modelspace

Calculate f and v amplitudes

t? — 0; ti‘leb —0

E 1 Eoqg <0

Erer — S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
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Coupled Cluster algorithm

Setup modelspace

Calculate f and v amplitudes

t? — 0; ti‘leb —0

E 1 Eoqg <0

Erer — S0 (IEli) + 5 7 i V1))

while not converged (E — Eqiq > €)
Calculate intermediates
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
t? — 0; ti‘leb —0
E 1 Eoqg <0
Erer — 3 (ifEl) + 3 37 i V1)
while not converged (E — Eqiq > €)
Calculate intermediates
t? < calculated value
tij?‘b — calculated value
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
t? — 0; ti?b —0
E 1 Eoqg <0
Erer — S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
Calculate intermediates
t? < calculated value
tij?‘b « calculated value
Eog < E
E — fit2 + (i |[ab)t?® + 3(ij||ab)t3t?
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
t? — 0; ti‘leb —0
E —1 Eqg — 0
Erer — S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
Calculate intermediates
t? < calculated value
tij?‘b « calculated value
Eog < E
E — fit? + 2(ij|[ab)t? + 3(ij||ab)t3t?
end while
Ecs < Eref +E
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Coupled Cluster algorithm

Typical convergence of the T, amplitudes
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