Exercises FYS-KJM4480, Fall semester 2010

Exercises week 35, August 30- September 3 2010
Exercise 1

Consider the Slater determinant
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where P is an operator which permutes the coordinates of two particles. We have assumed here that the number of
particles is the same as the number of available single-particle states, represented by the greek letters ajas...an.
a) Write out ®49 for N = 3.
b) Show that
2
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¢) Define a general onebody operator £ = Ziv f(x;) and a general twobody operator G = ZZ]\LJ §(z;,x;) with g

being invariant under the interchange of the coordinates of particles i and j. Calculate the matrix elements for a
two-particle Slater determinant
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Explain the short-hand notation for the Slater determinant. Which properties do you expect these operators to have
in addition to an eventual permutation symmetry?
d) Compute the corresponding matrix elements for N particles which can occupy N single particle states.

Exercise 2

We will now consider a simple three-level problem, depicted in the figure below. The single-particle states are
labelled by the quantum number p and can accomodate up to two single particles, viz., every single-particle state is
doubly degenerate (you could think of this as one state having spin up and the other spin down). We let the spacing
between the doubly degenerate single-particle states be constant, with value d. The first state has energy d. There
are only three available single-particle states, p = 1, p = 2 and p = 3, as illustrated in the figure.

a) How many two-particle Slater determinants can we construct in this space?
b) We limit ourselves to a system with only the two lowest single-particle orbits and two particles, p = 1 and p = 2.
We assume that we can write the Hamiltonian as

H = Ho+ H,
and that the onebody part of the Hamiltonian with single-particle operator izo has the property
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where we have added a spin quantum number o. We assume also that the only two-particle states that can exist are
those where two particles are in the same state p, as shown by the two possibilities to the left in the figure. The
two-particle matrix elements of H; have all a constant value, —g. Show then that the Hamiltonian matrix can be

written as
2d—g —g
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FIG. 1: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle
states. The spacing between each level p is constant in this picture. We show some possible two-particle states.

and find the eigenvalues and eigenvectors. What is mixing of the state with two particles in p = 2 to the wave
function with two-particles in p = 17 Discuss your results in terms of a linear combination of Slater determinants.

¢) Add the possibility that the two particles can be in the state with p = 3 as well and find the Hamiltonian matrix,
the eigenvalues and the eigenvectors. We still insist that we only have two-particle states composed of two particles
being in the same level p. You can diagonalize numerically your 3 x 3 matrix.

This simple model catches several birds with a stone. It demonstrates how we can build linear combinations
of Slater determinants and interpret these as different admixtures to a given state. It represents also the way we are
going to interpret these contributions. The two-particle states above p = 1 will be interpreted as excitations from
the ground state configuration, p = 1 here. The reliability of this ansatz for the ground state, with two particles in
p = 1, depends on the strength of the interaction g and the single-particle spacing d. Finally, this model is a simple
schematic ansatz for studies of pairing correlations and thereby superfluidity /superconductivity in fermionic systems.

Exercises week 36, September 6-10 2010
Exercise 3

Calculate the matrix elements
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Compare these results with those from exercise 1c).

Exercise 4

We define the two-particle operator
T =Y (alt|B)alag,
af
and the two-particle operator
.1
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We have defined a single-particle basis with quantum numbers given by the set of greek letters «, 3,7, ... Show that
the form of these operators remain unchanged under a transformation of the single-particle basis given by

i) = 1A (Ala)
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with A € {a, 3,7, ... }. Show also that ala; is the number operator for the orbital |4).

i
Find also the expressions for the operators T"and V when T is diagonal in the representation 7. Show also that the
operator
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is an operator that represents the number of pairs and find an expression T and V when v is diagonal in «, 3.

Exercise 5
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Consider the Hamilton operator for a harmonic oscillator (¢ = &

~ 1 1
H = %p2+§k:x2, k= mw?
(a) Define the operators
+ 1 . 1 .
a' = (p + imwa), a= (p —imwx)
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and find the commutation relations for these operators by using the corresponding relations for p and .
(b) Show that

1
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(¢) Show that if for a state |0) which satisfies H |0) = 1w|0), then we have
N . 1
H [n) = H(a')" 0) = (n+ 5)w [n)

(d) Show that the state |0) from c), with the property a|0) = 0, must exist.
(e) Find the coordinate-space representation of |0) and explain how you would construct the wave functions for excited
states based on this state.



Exercises week 37, September 13-17 2010
Exercise 6

Starting with the Slater determinant

0),
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use Wick’s theorem to compute the normalization integral < ®¢|®y >.

Exercise 7

Compute the matrix element
(a1azas] G o) ajal)
using Wick’s theorem and express the two-body operator G (from exercise 1) in the occupation number (second

quantization) representation.

Exercise 8

Write the two-particle operator
G=3 > (aBlgyd) alalasa,
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in the quasi-particle representation for particles and holes
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