Exercises FYS-KJM4480, Fall semester 2010

Exercises week 35, August 30- September 32010

Exercise 1

Consider the Slater determinant

$$
\Phi_{\lambda}^{A S}\left(x_{1} x_{2} \ldots x_{N} ; \alpha_{1} \alpha_{2} \ldots \alpha_{N}\right)=\frac{1}{\sqrt{N!}} \sum_{p}(-)^{p} P \prod_{i=1}^{N} \psi_{\alpha_{i}}\left(x_{i}\right) .
$$

where P is an operator which permutes the coordinates of two particles. We have assumed here that the number of particles is the same as the number of available single-particle states, represented by the greek letters $\alpha_{1} \alpha_{2} \ldots \alpha_{N}$.
a) Write out $\Phi^{A S}$ for $N=3$.
b) Show that

$$
\int d x_{1} d x_{2} \ldots d x_{N}\left|\Phi_{\lambda}^{A S}\left(x_{1} x_{2} \ldots x_{N} ; \alpha_{1} \alpha_{2} \ldots \alpha_{N}\right)\right|^{2}=1
$$

c) Define a general onebody operator $\hat{F}=\sum_{i}^{N} \hat{f}\left(x_{i}\right)$ and a general twobody operator $\hat{G}=\sum_{i>j}^{N} \hat{g}\left(x_{i}, x_{j}\right)$ with g being invariant under the interchange of the coordinates of particles i and j. Calculate the matrix elements for a two-particle Slater determinant

$$
\left\langle\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right| \hat{F}\left|\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right\rangle
$$

and

$$
\left\langle\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right| \hat{G}\left|\Phi_{\alpha_{1} \alpha_{2}}^{A S}\right\rangle
$$

Explain the short-hand notation for the Slater determinant. Which properties do you expect these operators to have in addition to an eventual permutation symmetry?
d) Compute the corresponding matrix elements for N particles which can occupy N single particle states.

Exercise 2

We will now consider a simple three-level problem, depicted in the figure below. The single-particle states are labelled by the quantum number p and can accomodate up to two single particles, viz., every single-particle state is doubly degenerate (you could think of this as one state having spin up and the other spin down). We let the spacing between the doubly degenerate single-particle states be constant, with value d. The first state has energy d. There are only three available single-particle states, $p=1, p=2$ and $p=3$, as illustrated in the figure.
a) How many two-particle Slater determinants can we construct in this space?
b) We limit ourselves to a system with only the two lowest single-particle orbits and two particles, $p=1$ and $p=2$. We assume that we can write the Hamiltonian as

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{I}
$$

and that the onebody part of the Hamiltonian with single-particle operator \hat{h}_{0} has the property

$$
\hat{h}_{0} \psi_{p \sigma}=p \times d \psi_{p \sigma}
$$

where we have added a spin quantum number σ. We assume also that the only two-particle states that can exist are those where two particles are in the same state p, as shown by the two possibilities to the left in the figure. The two-particle matrix elements of \hat{H}_{I} have all a constant value, $-g$. Show then that the Hamiltonian matrix can be written as

$$
\left(\begin{array}{cc}
2 d-g & -g \\
-g & 4 d-g
\end{array}\right)
$$

FIG. 1: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle states. The spacing between each level p is constant in this picture. We show some possible two-particle states.
and find the eigenvalues and eigenvectors. What is mixing of the state with two particles in $p=2$ to the wave function with two-particles in $p=1$? Discuss your results in terms of a linear combination of Slater determinants.
c) Add the possibility that the two particles can be in the state with $p=3$ as well and find the Hamiltonian matrix, the eigenvalues and the eigenvectors. We still insist that we only have two-particle states composed of two particles being in the same level p. You can diagonalize numerically your 3×3 matrix.

This simple model catches several birds with a stone. It demonstrates how we can build linear combinations of Slater determinants and interpret these as different admixtures to a given state. It represents also the way we are going to interpret these contributions. The two-particle states above $p=1$ will be interpreted as excitations from the ground state configuration, $p=1$ here. The reliability of this ansatz for the ground state, with two particles in $p=1$, depends on the strength of the interaction g and the single-particle spacing d. Finally, this model is a simple schematic ansatz for studies of pairing correlations and thereby superfluidity/superconductivity in fermionic systems.

Exercises week 36, September 6-10 2010

Exercise 3

Calculate the matrix elements

$$
\left\langle\alpha_{1} \alpha_{2}\right| \hat{F}\left|\alpha_{1} \alpha_{2}\right\rangle
$$

and

$$
\left\langle\alpha_{1} \alpha_{2}\right| \hat{G}\left|\alpha_{1} \alpha_{2}\right\rangle
$$

with

$$
\begin{gathered}
\left|\alpha_{1} \alpha_{2}\right\rangle=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger}|0\rangle, \\
\hat{F}=\sum_{\alpha \beta}\langle\alpha| f|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}, \\
\langle\alpha| f|\beta\rangle=\int \psi_{\alpha}^{*}(x) f(x) \psi_{\beta}(x) d x, \\
\hat{G}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| g|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma},
\end{gathered}
$$

and

$$
\langle\alpha \beta| g|\gamma \delta\rangle=\iint \psi_{\alpha}^{*}\left(x_{1}\right) \psi_{\beta}^{*}\left(x_{2}\right) g\left(x_{1}, x_{2}\right) \psi_{\gamma}\left(x_{1}\right) \psi_{\delta}\left(x_{2}\right) d x_{1} d x_{2}
$$

Compare these results with those from exercise 1c).

Exercise 4

We define the two-particle operator

$$
\hat{T}=\sum_{\alpha \beta}\langle\alpha| t|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}
$$

and the two-particle operator

$$
\hat{V}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| v|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} .
$$

We have defined a single-particle basis with quantum numbers given by the set of greek letters $\alpha, \beta, \gamma, \ldots$. Show that the form of these operators remain unchanged under a transformation of the single-particle basis given by

$$
|i\rangle=\sum_{\lambda}|\lambda\rangle\langle\lambda \mid i\rangle,
$$

with $\lambda \in\{\alpha, \beta, \gamma, \ldots\}$. Show also that $a_{i}^{\dagger} a_{i}$ is the number operator for the orbital $|i\rangle$.
Find also the expressions for the operators T and V when T is diagonal in the representation i. Show also that the operator

$$
\hat{N}_{p}=\frac{1}{2} \sum_{\alpha \neq \beta} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\beta} a_{\alpha}
$$

is an operator that represents the number of pairs and find an expression \hat{T} and \hat{V} when v is diagonal in α, β.

Exercise 5

Consider the Hamilton operator for a harmonic oscillator $(c=\hbar=1)$

$$
\hat{H}=\frac{1}{2 m} p^{2}+\frac{1}{2} k x^{2}, \quad k=m \omega^{2}
$$

(a) Define the operators

$$
a^{\dagger}=\frac{1}{\sqrt{2 m \omega}}(p+i m \omega x), \quad a=\frac{1}{\sqrt{2 m \omega}}(p-i m \omega x)
$$

and find the commutation relations for these operators by using the corresponding relations for p and x.
(b) Show that

$$
H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)
$$

(c) Show that if for a state $|0\rangle$ which satisfies $\hat{H}|0\rangle=\frac{1}{2} \omega|0\rangle$, then we have

$$
\hat{H}|n\rangle=\hat{H}\left(a^{\dagger}\right)^{n}|0\rangle=\left(n+\frac{1}{2}\right) \omega|n\rangle
$$

(d) Show that the state $|0\rangle$ from c), with the property $a|0\rangle=0$, must exist.
(e) Find the coordinate-space representation of $|0\rangle$ and explain how you would construct the wave functions for excited states based on this state.

Exercise 6

Starting with the Slater determinant

$$
\Phi_{0}=\prod_{i=1}^{n} a_{\alpha_{i}}^{\dagger}|0\rangle
$$

use Wick's theorem to compute the normalization integral $<\Phi_{0} \mid \Phi_{0}>$.

Exercise 7

Compute the matrix element

$$
\left\langle\alpha_{1} \alpha_{2} \alpha_{3}\right| G\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime}\right\rangle
$$

using Wick's theorem and express the two-body operator G (from exercise 1) in the occupation number (second quantization) representation.

Exercise 8

Write the two-particle operator

$$
G=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| g|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

in the quasi-particle representation for particles and holes

$$
b_{\alpha}^{\dagger}=\left\{\begin{array}{l}
a_{\alpha}^{\dagger} \\
a_{\alpha}
\end{array} \quad b_{\alpha}= \begin{cases}a_{\alpha} & \alpha>\alpha_{F} \\
a_{\alpha}^{\dagger} & \alpha \leq \alpha_{F}\end{cases}\right.
$$

Exercises week 38, September 20-24 2010

Exercise 9

Use the results from exercise 8 and Wick's theorem to calculate

$$
\left\langle\beta_{1} \gamma_{1}^{-1}\right| G\left|\beta_{2} \gamma_{2}^{-1}\right\rangle
$$

You need to consider that case that β_{1} be equal β_{2} and that γ_{1} be equal γ_{2}.

Exercise 10

Show that the onebody part of the Hamiltonian

$$
\hat{H}_{0}=\sum_{p q}\langle p| \hat{h}_{0}|q\rangle a_{p}^{\dagger} a_{q}
$$

can be written, using standard annihilation and creation operators, in normal-ordered form as

$$
\begin{aligned}
\hat{H}_{0} & =\sum_{p q}\langle p| \hat{h}_{0}|q\rangle a_{p}^{\dagger} a_{q} \\
& =\sum_{p q}\langle p| \hat{h}_{0}|q\rangle\left\{a_{p}^{\dagger} a_{q}\right\}+\delta_{p q \in i} \sum_{p q}\langle p| \hat{h}_{0}|q\rangle \\
& =\sum_{p q}\langle p| \hat{h}_{0}|q\rangle\left\{a_{p}^{\dagger} a_{q}\right\}+\sum_{i}\langle i| \hat{h}_{0}|i\rangle
\end{aligned}
$$

Explain the meaning of the various symbols. Which reference vacuum has been used?

Exercise 11

Show that the twobody part of the Hamiltonian

$$
\hat{H}_{I}=\frac{1}{4} \sum_{p q r s}\langle p q| \hat{v}|r s\rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}
$$

can be written, using standard annihilation and creation operators, in normal-ordered form as

$$
\begin{aligned}
\hat{H}_{I} & =\frac{1}{4} \sum_{p q r s}\langle p q| \hat{v}|r s\rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r} \\
& =\frac{1}{4} \sum_{p q r s}\langle p q| \hat{v}|r s\rangle\left\{a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}\right\}+\sum_{p q i}\langle p i| \hat{v}|q i\rangle\left\{a_{p}^{\dagger} a_{q}\right\}+\frac{1}{2} \sum_{i j}\langle i j| \hat{v}|i j\rangle
\end{aligned}
$$

Explain again the meaning of the various symbols.

Exercise 12

a) Place indices and write the algebraic expressions and discuss the physical meaning of the following diagrams:

b) Can you find the diagrammatic expression for $\langle c| \hat{H}_{I}|c\rangle$ using the normal-ordered form from the previous exercise?

Exercise 13

Derive the normal-ordered form of the threebody part of the Hamiltonian.

$$
\begin{aligned}
\hat{H}_{3} & =\frac{1}{36} \sum_{\substack{p q r \\
s t u}}\langle p q r| \hat{v}_{3}|s t u\rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{r}^{\dagger} a_{u} a_{t} a_{s} \\
& =?
\end{aligned}
$$

and specify the contributions to the twobody, onebody and the scalar part.

