MANY-ELECTRON THEORY

BY

STANLEY RAIMES

Department of Mathematics
Imperial College
University of London

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM - LONDON



© North-Holland Publishing Company, 1972

[
All rights reserved. No part of this publication may be reproduced, stored in a retrieval }
system, or transmitted in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior permission of the copyright owner |

Library of Congress Catalog Card Number: 76-183283
North-Holland ISBN: 07204 0242 5
American Elsevier ISBN: 0444 10353 8

My propositions are elucidatory in this way: he who understands me
finally recognizes them as senseless, when he has climbed out through
them, on them, over them. (He must so to speak throw away the ladder,
PUBLISHERS: after he has climbed up oniit.)

NORTH-HOLLAND PUBLISHING COMPANY-AMSTERDAM He must surmount these propositions; then he sees the world rightly.

NORTH-HOLLAND PUBLISHING COMPANY LTD.-.LONDON Whereof one cannot speak, thereof one must be silent.

SOLE DISTRIBUTORS FOR THE U.S.A. AND CANADA: Ludwig Wittgenstein Tractatus Logico-Philosophicus

AMERICAN ELSEVIER PUBLISHING COMPANY, INC.
52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017

PRINTED IN THE NETHERLANDS



PREFACE

Many-body theory is undoubtedly one of the most difficult branches of
quantum mechanics, yet it is of growing importance throughout the whole
of theoretical physics, and particularly in the theory of the solid state.
Many students and research workers, baffled and intrigued by the rash of
Feynman graphs and Green functions which in recent years has appeared
on the face of physics, would like to gain some familiarity with the sub-
ject. However, they often find that not only original papers, but even
books purporting to be written for beginners, present an impenetrable
barrier. This applies to workers in fields such as theoretical metallurgy
and quantum chemistry, as well as to specialists in solid-state theory who
started their research in the days before a knowledge of quantum field
theory became a sine qua non. It may be added that even graduate
students of theoretical physics, who have had the benefit of a more
sophisticated training, are often obliged to accept without proof state-
ments whose origins are shrouded in mystery and whose truth is by no
means apparent. To some of those who perceive it, this causes a psycho-
logical impediment to further progress.

This book has been written with all such people in mind. The only
prerequisites to its understanding are a knowledge of elementary quantum
mechanics and of the sort of mathematics now normaily given in under-
graduate courses to students of physics, metallurgy and chemistry. As
far as the quantum mechanics is concerned, a reading of my Wave
Mechanics of Electrons in Metals (North-Holland, 1961) would be more
than adequate. Some mathematics which may not have been encountered
in undergraduate courses is given in the Appendixes to the present work.

The book does not presume to cover all aspects of many-body theory.
Only many-electron systems are considered, but the techniques described
apply equally well to all many-fermion systems, and, with slight modifica-
tions, to many-boson systems also. Some well-developed branches of
many-electron theory, such as the dielectric theory of plasma oscilla-
tions and the equation-of-motion method, are not included, since they
paralle]l the methods described. The intention has been to force one path
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viii PREFACE

through the jungle, leaving no obstruction which requires a mental heli-
copter to surmount. It is not anticipated that anyone who reads the book
will then be in a position to do research in the subject or even to read all
original papers with ease. However, the contents may be adequate for
those whose interest in the subject is secondary, and for the others the
book will serve as a solid foundation for studying more comprehensive,
if less comprehensible, texts.

Some problems and exercises relating to each chapter are collected at
the end of the book, but are mainly confined to those which emphasize
points of the text and which can be done without consulting external
sources.

Although the primary purpose of the book is pedagogical, it is not a
mere reshuffle of existing material. Many of the proofs and demonstra-
tions have not, to my knowledge, appeared in print before, and few of
the detailed explanations are available in any other work. For this reason,
if for no other, it is probable that errors and inelegancies exist. However,
no part of the book has been read by experts before publication, so all
its shortcomings must be laid at my door. I extend my gratitude in advance
to those who will point out to me any flagrant errors and suggest possible
improvements.

Imperial College S. RAIMES
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CHAPTER 1

RESUME OF THE MANY-ELECTRON PROBLEM

1.1. Introduction

Calculation of the properties of systems containing many electrons
becomes almost impossibly complicated when an attempt is made to
include the interaction of the electrons. Fortunately, in some cases it is
possible to obtain reasonable results by neglecting this interaction alto-
gether, or by considering only its average effect, so that the electrons are
assumed to move more or less independently of one another. In other
cases this independent electron approximation is inadequate.

The many-electron problem is the problem of taking proper account of
the interaction of the electrons. It thus covers a large number of problems,
but the one which will concern us most in this book is that of calculating
the total energy of a many-electron system, or, more specifically, that
part of it known as the correlation energyt. The techniques we shall
describe, such as perturbation theory and the use of Green functions,
are of course applicable to the calculation of other properties of the
system.

In principle the methods to be described are suitable for any many-
electron system, such as an atom, a molecule or a solid, but in practice
insuperable computational difficulties, if nothing worse, may be en-
countered. Each system must therefore be considered on its merits. We
shall attempt initially to keep the treatment as general as possible, but in

T See §4.4 and ch. 9. An elementary discussion of the many-electron problem is given
inthe author’s book: Raimes, S., 1961, The Wave Mechanics of Electrons in Metals (North-
Holland, Amsterdam). Since a number of references will be made to this work it will be
convenient in future to denote it simply by WM. The correlation energy, for example, is
defined and discussed in WM, §9.5.



2 RESUME OF THE MANY-ELECTRON PROBLEM [Ch. 1.§2

the ultimate application we shall have in mind a metal such as sodium,
which can be thought of as a gas of almost-free valence electrons moving
in a lattice of positive ion-cores, and we shall give a detailed discussion of
the free-electron approximation to such a system.

In the present chapter we begin by looking at the many-body problem
in the light of elementary wave mechanics and deriving some results
which will be needed for comparison purposes when describing the more
sophisticated methods of later chapters.

1.2. The Schriodinger Equation

The system we wish to consider is a general one consisting of N elec-
trons moving in an external electrostatic field, due to which the potential
energy of an electron at position r is ¥ (r). The first approximation we
make is to take into account only the electrostatic interactions of the
electrons with each other and with the external field, and to ignore
magnetic interactions, which are of a very much smaller order of magni-
tude. The quantum-mechanical Hamiltonian operator of the system is
then

H=H,+H', (1.1)
where
N ﬁZ )
H,= ——Vi+-Vir) |, 1.2
0 g,[ 2m (r)} (1.2)
and
N N

H'=%22E_—r]| (1.3)

H, is the Hamiltonian the system would have if the electrons did not
interact, and H' is the potential energy due to the electrostatic or Coulomb
interaction of the electrons.

The Schrodinger equation of the system is

HY = EVY, (1.4)

the wave function ¥ being a function of the coordinates, both space and
spin. of all the electrons. The eigenvalues E of this equation are the
energy levels of the system. We shall be particularly interested in the
energy and wave function of the ground state, that is, the state of lowest
energy — all other states are called excited states.

2 -
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Were it not for the presence of H', the solution of eq. (1.4) would be a
relatively simple matter, for the equation would then be separable. Thus,
if the equation were

HV =EV, (1.5)
we could write
W=y (r)ba(ry) .. dy(ry), (1.6)
and inserting this in the equation and dividing by ¥ would then give
yo h _.
S sl mv oo lu-k. (1.7)

“ 2m
i=1

Each term in the sum on the left-hand side depends upon the coordinates
of one electron only, so that the equation can be separated into the N
equations

%2
_%V?d’ﬁ‘ V(r); = ey, i=1,2,...N, (1.8)

with

-

Il
-

¢, =EFE. (1.9)

Although it is a solution of eq. (1.5) the function ¥ in (1.6) is not a
correct wave function for two reasons. First, it should include the spin
coordinates of the electrons. If spin-orbit interaction is neglected, we
may include spin by writing, instead of y;(r).

é:(x) =¥ (r)x: (L), (1.10)

where { is the spin coordinate, x standing for both r and ¢, and the spin
function y; is either « or 8, defined by

a(l)=1, a(—1) =0,
B(1)=0, B(-1)=1.

The presence of the spin functions does not affect eqgs. (1.8) and (1.9).
Secondly, we know (see WM, p. 115) that the wave function of any
system of particles must be either symmetric or antisymmetric in the
coordinates of the particles. Particles whose wave functions are sym-
metric are called bosons, and those whose wave functions are anti-
symmetric are called fermions. Photons, for example, are bosons, while



4 RESUME OF THE MANY-ELECTRON PROBLEM [Ch. 1,82

electrons are fermions. Instead of a single product like (1.6) we must
therefore take an antisymmetric sum of such products with the electronic
coordinates permuted in all possible ways. The result, including spin, is
the function

1

¢ = (N )12

Z (=1)"Pd(xy) . . . by (xy), (1.11)

where P is a permutation operator upon the electronic coordinates, p is
the number of interchanges in P, and the sum is over the N! different
permutations. This is just a compact way of writing the determinant

G1(x)  Di(xy) ... bilxy)

1 o (x1)  Pa(xy) ... bo(xy)

o= (N!)l/:l

(1.12)

On(x1)  du(xs) ... dylxy)

The factor 1/(N!)¥2 normalizes @, provided the one-electron functions
are normalized, so thatT

fld)i(x)lzdx:f [ (r)|2dr=1. (1.13)

The functions ; are, of course, orthogonal, since they are the eigen-
functions of eq. (1.8).

For the non-interacting system we have been considering, whose
Hamiltonian is H,, the determinantal wave function ® gives the same
energy E, eq. (1.9), as the single product function (1.6). The wave func-
tion of the ground state is just a determinant whose elements are the
one-electron functions corresponding to the lowest energy levels g; (two
functions with opposite spin factors to each orbital state).

When the interaction term H' is included in the Hamiltonian, so that
we have the Schrodinger eq. (1.4), this equation can no longer be
separated, and the wave function cannot be expressed as a single deter-
minant of one-electron functions. However, it would seem possible to
use the determinantal solutions of eq. (1.5) as the basis of a perturbation

t Integration with respect to x implies a sum over the two values =1 of the spin variable
¢; thus

[@rar= 3 [ Px@ra= [ wora

I==*1
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treatment of H' - in other words, to take the non-interacting system as
the unperturbed system, with H’ as a perturbation. We shall show in
later chapters how this may be done, but it is by no means easy. The
difficulty is that second-order perturbation theory will not work, owing to
the fact that the second-order energy correction diverges. In order to
obtain a finite result it is necessary to consider perturbation theory of
infinite order.

Although it is possible to use the one-electron functions ¢;, whose
orbital factors are solutions of eq. (1.8), in constructing the solutions of
eq. (1.4), these may not be the best choice - it may, for example, be better
to use the one-electron functions obtained by the Hartree or Hartree—
Fock methods. Determinants formed from the latter functions would in
general no longer be solutions of eq. (1.5), but solutions of (1.4) could
still be expressed in terms of them. In the following sections we shall
consider determinantal functions in general, without specifying the one-
electron functions which are their elements, except to say that they form
a complete, orthonormal set.

1.3. Determinantal Wave Functions

. Let us then consider a complete, orthonormal set of one-electron func-
tions ¢;(x), including spin. The orthonormality is expressed by

f ¢i (x);(x) dx = 8, (1.14)
and the completeness by*

2 $F () dilx) =8(x—x). (1.15)

T 8(x—x’) stands for §(r—r')8,,. The important property of a complete, orthogonal set
of functions is that it is possible, within the interval of orthogonality, to expand almost any
fun.ction in terms of them (see WM, Appendix 2). That this property leads to eq. (1.15) can
easily be seen by expanding 8 (x —x’) in terms of the functions ¢, (x). Thus we write

S(x—x') = 2 Bii(x),
where the B; are constants. Multiplying both sides by ¢ (x) and integrating over all x, we

find
[ 86=x107 ) 2x =3 B, [ 87 ) x) ax =,

fromeq. (1.14). The left-hand side is just &F (x'), so that
B = ¢/ (x'),

and eq. (1.15)follows. This is also sometimes called the closure relation for the functions &;.
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Each function is the product of an orbital factor and a spin factor, as in
eq. (1.10).

We now construct N-electron determinantal functions from these one-
electron functions, of the type

(Da(xla TR xN)

1 13
i S P ()du(5) by, (1116)
the subscripts a;. as, etc., denoting N different integers - that is, N diffe-
rent functions chosen from the infinite set of the ¢;(x). We shall write
another such determinantal function as

@, (x, Xp0 . . . Xy)
1
(N1)12
where again b,, b,, etc., denote different integers.
We shall first prove the following theoremf:

If F is a symmetric operator and ®, and ®, are normalized deter-
minantal functions, then

S (=1)7Pdy, (x1) o, (x2) - - - o (xy), (117

f i FD, dr’ = (N2 f Dy Fpa, (1) - - - bay(xy) dr’. (1.18)

A symmetric operator is one which is symmetric in the electronic
coordinates, so that PF = F. We have

. ’ 1 4 » I
[ osro ar = i [ OFF S 17RO )80 - s d

¥

1 £
= (N1 E (—I)PPf (P_I(DIT)Fq)al(h) ces ¢aN(x1v) dr’
1 . ,
= (N!)uz 2 P f (I)I;‘Fd)al(xl) e d)aN(xN) dr
= (N2 f Qi Fepa, (x1) . . - by, (xy) dr'. (1.19)

+ This is an extension of the theorem proved on p. 119 of WM. Note that the prime on
the volume element dr’ indicates that the multiple integral includes a sum over the two
values of each of the spin variables.

Ch. 1,§3] DETERMINANTAL WAVE FUNCTIONS 7
In the second line we have transferred the summation over P, and the
operator P, to the left of the integral sign, and this necessitates annulling
the effect of P upon ®; by introducing the operator P! (which is to
operate upon @; only). The fact that P now operates upon F is of no
consequence, since PF = F. The number of interchanges in P! is just p,
the same as in P, since the two operators affect the same interchanges in
reverse order. Hence

Py = (—1)ray,

for P! merely produces p interchanges of pairs of columns of the deter-
minant. Since there is a factor (—1)” already present, and (—1)2* = 1, we
obtain the third line of eq. (1.19). Finally, we note that the value of a
definite integral is independent of the symbols used for the variables of
integration. Hence the integral in line three has the same value for every
permutation P, and there are N! permutations in all. So we arrive at the
required expression.

It may be verified immediately that the determinantal functions are
normalized, for

[ @@, 0= (v1ye | Bl (32) . . - by () i
- f [2 (—1)"Poi (x,) . . . ¢;iv<xw>]¢al<xl> e Gay )
= [ 160, Elba (@) . 1duyxn

= [ . [ 1bagenle dxy =1, (1.20)

all the other terms of ®; giving zero contribution owing to the ortho-
gonality of the ¢,.

We may also verify that the determinantal functions are orthogonal.
Suppose that ®, and ®, are different determinantal functions, which
means that the sets of subscripts a; and b; must differ in at least one
integer. Let us assume that

a; — bi’ l#],} (1 21)

a; # bj.
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Then

f ®; 0, dr’
-/ [2 (1P, (31) - iy () by () - ()

= [ 1ba el an . [ idn ) dxi. . [ Ibay (o) Pz,

—o, (1.22)

owing to the orthogonality of the functions ¢aj and ¢>bj. If ®, and ®, differ
in more than one function, that is, if the sets a; and b, differ in more than
one integer, clearly the same result will follow.

The determinantal functions thus form an orthonormal set, and we shall
assume that this set is complete, so that any N-electron wave function ¥
can be expanded in an infinite series of the type

V=3 B,®, (1.23)

the coefficients B, being suitably chosen constants. This function is
correctly antisymmetric, because interchange of the coordinates of two
electrons changes the sign of every determinant.

1.4. Matrix Elements

The problem is to find the eigenfunctions and eigenvalues of the
Schrodinger equation

HY = EV¥. (1.24)

Let us assume an expansion of the form (1.23) for ¥ and substitute in
this equation. We obtain

S B,H®,=E S B,®,. (1.25)

Multiplication by ®; and integration over the configuration space of the
system now give

> B, f OFHD,dr' =E Y B, f OF D, dr'. (1.26)

¢
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If we write
H,, =f OFHD, dr', (1.27)

which is called the matrix element of H between the functions @, and D,
and remember that

f O, dr' = 8,4, (1.28)

owing to the orthonormality of the ®,, eq. (1.26) becomes

S Bu(Hyo— Edy,) = 0. (1.29)

There is an infinite number of such equations, corresponding to all the
functions ®,, and each equation has an infinite number of terms. We thus
have an infinite set of simultaneous linear equations in the B,, and for
consistency the determinant of the coefficients of the B, must vanish,
that is,

|Hyy — ESpq| = 0. (1.30)

The determinant is of infinite order, E appearing only in the elements of
the leading diagonal. The matrix elements H,, are, of course, simply
numbers, and, once these have been calculated, the determinantal equa-
tion can in principle be solved to give an infinite number of values of E,
which are the energy levels of the system.

If the functions ®, are the eigenfunctions of a Hamiltonian which
differs from H by only a small perturbing term, then the approximate
evaluation of the roots of eq. (1.30) is very much simpler, as shown in
WM, §3.8. However, it is important to notice that we have made no
such assumption here — eq. (1.30) is correct, and in principle will yield
the correct energy levels for any complete, orthonormal set of N-electron
determinantal functions ®,. In other words, the energy levels of the
system are completely specified by the matrix elements of H with respect
to any such set of functions. These matrix elements thus constitute a
complete representation of H, and any operator which has the same
matrix elements as H is entirely equivalent to H.

We shall need to use this fact in the following chapter, but meanwhile
it is necessary to obtain more definite information about the matrix
elements of H.
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For the N-electron system we have been considering H is the sum of
H,, eq. (1.2), and H', eq. (1.3), both of which are symmetric operators.
H, is the sum of terms, each of which depends upon the coordinates of
one electron only, and H' is the sum of terms, each of which depends
upon the coordinates of two electrons only. Let us for convenience writef

N
Hy=" fix), (1.31)
i=1
where
hZ
2m !
and
N N »
H’=722 v(xi,xj), (133)
i
where
62
v(x;, %;) = . (1.34)
l"i_’j|

Also, to obviate a confusion of subscripts, we shall throughout the
remainder of the book consistently use the following shorthand notation
for matrix elements. For the matrix element of H, or any other many-
electron operator, between two many-electron functions we shall writei,
for example,

(Dp|H|P,) =f OFHD AT, (1.35)

which is what we have previously denoted by Hy,. If the operator is unity,
we shall simplify the notation further and write

(@10, = [ @y@dr. (1.36)

+ The results we shall obtain here and in the following chapter will apply quite generally
to any system of N fermions whose Hamiltonian consists of the sum of two symmetric
operators like (1.31) and (1.33), even when f and v have not the special forms, independent
of spin, given in (1.32) and (1.34). This is why we have used x; and x; rather than r; and r;.

+ Although the use of angular brackets originated with Dirac, it must not be supposed
that we are going to make use of his very abstract formulation of quantum mechanics. In
fact, for the benefit of the unsophisticated reader, and at the risk of a little clumsiness, we
shall present a wave-mechanical treatment throughout, so that the bracketed symbols may
be thought of as merely a convenient notation for the integrals which they represent.
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On the other hand, for the matrix elements of f and v with respect to a

chosen set of one-electron functions ¢;(x) we shall consistently use the
notation

Gl = f i (0)f(x)s(x) dx (1.37)

and

(ilolkt) = [ [ 6 o (v (e, m) e (x) () d i (138)

1.4.1. Matrix elements of H,

We have, in general,

(@] Ho| @) = f O3 H,®, dr’
— (N1 f OF Hodba, (x1) sy (%2) - . . ooy (i) dr”

= (N S [ @i frba, (x0) - oy dr. (139

Now let us apply this to the following particular cases:
(1) Suppose @, = ®,, thatis, b; = g; for allj. Then

(N1 f BF F(5) bu (21 - - - bay () T

| [2 (—1)"Po (xy) . .. ¢;<N(xN>]f(xi>¢,,l (1) -« - bay () A7

- f & (x0) (%) bay (x1) s, (1.40)

owing to the orthonormality of the ¢,
Thus l |

(Dp|Ho|®y) =Y (ai| flas). (1.41)

i=1

(2) Next, suppose that ®, and &, differ in only one function. Let us
Say a; = bj forj # k, but ag #* bk'
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Then

(N2 f OFF(x1) o, (£2) - . - hay () O

- f S 0ePoi ) g ¢;=N<xN>]
Xf(xi)d)ul(xl) s (bak(xk) ce d)aN(xN) dr’

0, if i#k,
= (1.42)
{ f i (00 () oy () oy, i i = k.
Thus
(Dy|Ho| Do) = (by|flar). (1.43)

(3) Finally, suppose that ®, and &, differ in two functions. Let us say
a; = b;forj # k,l,but a, # b, and a; # b, (alsoa;, # b and q; # by). Then

(N [ BE7 )0 (2) - g (20) &
~ S ctrpoi e 40 b . 0 00|

X f(x)Pay (%1) .+« - by (xx) - - - oy (x0) - - - oy (xy) dr’
=0, foralli (1.44)
Thus
(D] Ho|Dy) =0, (1.45)

in this case. Clearly, the same result follows if ®, and @, differ in more
than two functions.

To summarize: H, can have non-zero matrix elements only between
two determinantal functions which are either the same or differ in a
single one-electron function only, and these matrix elements are given by
eqgs. (1.41) and (1.43), respectivelyt.

+ In the latter case the matrix element also vanishes unless the two different one-electron
functions have the same spin factor, since

(belflaey = f B8, (2)f(x) by, () dx
= 3 X Ox0 @ [ 4,0, ()

{==%1

=0 if Xop 7 Xag-
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1.4.2. Matrix elements of H'

We have, in general,

(D H'|®,) = f ®F H'®, dr’
= (N [ OFH G, (1) by (52 . . iy (i)

=3NS [ o), (x0) - by () ',

i
(1.46)

and we shall again apply this to the following cases:
(1) Suppose &, = ®,. Then

(N2 f O (%, 27) ha, (1) . - - by () dr’

= f [; (—1)?Pg (x;) . .. ¢2‘N(x~)]

X0 (x5, %) g, (x1) . . . Gay (xy) dr’
=[] 1ot — om0 )]
X 0 (x5, 35) o, (51) e, (357 dx,
= (@ay|v|aa;) — (ga;|v]|a;a;). (1.47)

The second term comes from that permutation which interchanges a; and

a only. For a single interchange, p = 1, which accounts for the minus
sign.
Thus

' N N
(Do |H'|D, =§22 Kaalv|aa;) — (aa|v]aa:) ] (1.48)

Here it is not necessary to specify i # j, as in eq. (1.46), because the
€Xpression in square brackets vanishes when i = j.

(2) Suppose that @, and ®, differ in only one function. Let us say
4y = b, for g # k, but a; # b,. Then

(N2 f v (X, %) o, (%) . . . oy () dr’

=f [2 1PPg (x) - . . i () . .. ¢5“N("N)] 8
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X v(x;, %;) Pa, (x1) ... d)ak(xlc) <. (i’aN(xN) dr’

(bya;|vlaga;) — (asbi|vlaras) if i=k,
= <aibk|vlaiak> - <bkai|U|aiak>» if j=k, (1.49)
0, otherwise.
Thus, from eq. (1.46),
N
(Oy|H'|Py) =2 2 [(braslv|axas) — (asby|v|ara;))
]
N
+3 3 [(abg|v|aiar) — (brai|v|aar) ]
N
=y [{ asbi|vlasa) — (brailv|aiar) ). (1.50)
Here we have used the fact that
(brasfolanas) = [ [ 6, )85 (50)0 (5. 22) by 53 ) i 5
= [ [ 088,500 (5 20 g e by ) 5,
= (a;be|v|aax), (1.51)
since
v(xg, %) = v(x3. %1) (1.52)

so that the sums over j and i are the same. Again, it is unnecessary to
specify i # k because the term withi = k vanishes.

(3) Suppose that ®, and ®, differ in two functions. Let us say a, = b,
forg # k.l,buta, # by and a;, # b, (also a; # b,and a; # by). Then

(N [ @50 ), (50 - iy (20) &7

=f [E (—1)PP% (x,) - - - S () - . B (x) .- - ¢:;N(xN)]

X U(xi, xj)¢>a1(x1) .o d)ak(xk) PR (;bal(xl) . ¢aN(xN) dr'

(bibi|vlagay — (biby|v|arar), ifi=k,j=1 -
ori=1Lj=k, (1.53)

0, otherwise.
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Thus
(q)blH(’(D(J = (bpbi|v]ara;) — <b1bk|U|alcal>- (1.54)

(4) Finally, if &, and ®, differ in more than two functions, the matrix
element (®,|H'|®,) is zero, since every term on the right-hand side of
eq. (1.46) then contains afactor which vanishes owing to the orthogonality
of the ¢y,

To summarize: H' can have non-zero matrix elements only between
two determinantal functions which are the same or which differ in either
one or two one-electron functions only, and these matrix elements are
given by eqs. (1.48), (1.50) and (1.54).

1.5. Perturbation Theory

It will prove convenient for future reference to end this chapter with
an account of the Rayleigh-Schrddinger perturbation theory, which is
the elementary time-independent perturbation theory described in most
text-books of quantum mechanicst. The method we shall use, however,
is different from that generally encountered in introductory texts, and
has the advantage that it provides a formally simple expression for the
perturbed wave function and energy to infinite order.

As before, let us take the Hamiltonian to be

H=H,+H', (1.55)

but now we shall treat H' as any perturbation, not necessarily the
Coulomb interaction (indeed, it is not necessary for the system to contain
many electrons). We suppose that @, is an eigenfunction of H, corre-
sponding to the eigenvalue E,, that is,

H®,=E,®,, (1.56)

and wish to consider the effect of the perturbation on a particular non-
degenerate state ®,, where

Hy®, = E,®,. (1.57)

_

T See, for example, WM, §3.8. The principal purpose of the present section is to derive
the expressions (1.78) and (1.87) for the first- and second-order energy corrections. Those
Teaders who are already familiar with the latter may prefer to omit this section. However,
the derivation used here has a certain intrinsic interest and reference will be made to parts
of itin later chapters.
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We denote by ¥, the state into which @, changes under the action of the
perturbation, so that ¥, is an eigenfunction of H, corresponding to the
eigenvalue E, say: that is,

HY,=EVY,. (1.58)

In our future work ®, and ¥, will denote the ground states of the un-
perturbed and perturbed systems, respectively, but the present treatment
is quite general.
We thus have
HY,= (H—Hy)V,=(E—H,)V,, (1.59)
so that
<¢0|H’|‘Po> =E<¢0|W0>‘<¢0|H0|‘P0>- (1.60)

Now, since H, is Hermitian, it follows from Appendix I, eq. (1.24), that
<‘D0|H0|\I'o> ZEO(Q)Olq’O)’ (1.61)
and substitution in (1.60) gives

RGNS

Y A 1.62
B = ) (162

This expression is, of course, exact and independent of any particular
perturbation method. It cannot be used immediately, however, because
the right-hand side contains the perturbed wave function, which is

unknown.
We now define a so-called projection operator R for the state @, by the

equation
RY =¥ —®y(Dy| V), (1.63)

where ¥ is any function of the same variables as ®,. This operator re-
moves the @, component of the function ¥. Thus, if

¥=3 B,®, (1.64)
n=0 -

is the expansion of ¥ in terms of the functions ®,, assumed orthonormal,
we find

n=0

= ¥ — By®,. (1.65)

T
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In particular,
Rd; = 0. (1.66)
If we substitute R for ¥ in eq. (1 .63), we obtain
R*W = RY — (D, |RY)
= RY — @y [(Do| V) — (D Do) (D, | W) ]
=RV, (1.67)

.owing .to which property R is said to be idempotent. This also follows
immediately from eqs. (1.65) and (1.66).
We shall in future write

(Do| o) = C, (1.68)
a constant depending upon the normalization of VP,. Eq. (1.63) gives
R (Eo _Ho)q’o = (Eo —Ho)‘po _q)0<q)0|E0 _HOI\P0>
= (Ey— Hy) ¥, — CE ®,+ ¢’0<‘I’0|H0|\I’0>

' = (Ey—H,y)¥,, (1.69)
using (1.61), and

(Eo -HO)RWO = (E, —Hy) (¥, — Cd,)

= (Eo—H,)¥,. (1.70)
In other words, R commutes with E,— H,.
Now,
(Eo—Hy)) Vo= (E,—H+H')¥,= (E,—E+H")¥, (1.71)
so that

(Ey—Ho)RYy= R(E,— Hy)¥, = R(E,—E+H")¥,, (1.72)
and, thereforet,

R\Poz (EO_E—"H’)‘I,O:\I’O_q)0<¢0"‘lio>, (1.73)

_R
Eo_Ho

again using (1.63). The perturbed wave function V¥, thus satisfies the
€quation

\I,O = C®0 +

R
EO_HO(EO—E-I-H)‘PO, (1.74)

\
 H, is a differential operator, so that division by E, — H, requires some justification. The
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which may be iterated to give

R R
_ R g _ ' L (E,—E+H)V
W, CCI)0+E0_HO(E0 E+H)[C(DO+E0—H0(EO ) 0}
CR , ‘
:C@O+EO_HO(EO—E+H Y,
2
+[E0_H0(EO—E+H )] (CDy+. . .)
—C¥ [ R _(E —E+H’)]”<I> (1.75)
=c3 (g tE N .

n=0

The perturbed energy can be obtained by substituting this expression
in eq. (1.62), thus:

E_E(): i <(I)0

n=0

H’[ R (EO——E+H')]" (I)0>. (1.76)

Eo_Ho

It will be observed that the right-hand side of this equation also contains
E, but this is eliminated when the terms are expanded.
We shall write

AE=E—E,=AEV+AE®+AE®+. .., (1.77)

where AE™, the m-th-order eneryy correction, contains the m-th power
of the perturbation H'. The first-order correction is the term of (1.76)

operator (E,— H,)™' is defined as the inverse of E,— H, by the equations
(Ey— H,) (Ey— H) "W = (E,— Hy) ™ (Eq—Hp)V =V
In practical application it may be equated to its binomial expansion: thus

L =l(1+£1—°+£‘5+...>.
E,—H, Ey\ E, Ej}

from which it follows that

1 1

E—H, " E,E,

Clearly this breaks down when n = 0, the coefficient on the right then being infinite.

Since E, — H, commutes with R, we may write

R 1 1

EO—HOW = EO_HOR\I' = RED_HD\I'.

In other words, it is immaterial whether we operate with R or (E,— H,) " first. However,

ov\(ing to the above-mentioned difficulty regarding the effect of (E,— H,)™' on @, it is
advisable to operate with R first. since this gets rid of the ®, component.

@,
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with n = 0, that is,

AED = (Oy|H'|Dy). (1.78)
The second-order correction is
2) — Y _ ’
| AE <<I>0 H Eo_Ho(Eo E+H') (IJO>. (1.79)
From eq. (1.66),
R(EO_E+H’)®O=RH,®O, (1.80)

so that (1.79) can equally well be written

R
Eo—Ho

AE(Z) — <(I)0'Hr H’

<I)0>. (1.81)
We may expand H'®, in terms of the ®,, thus:

H'®y=3% B,®,. (1.82)

. n=0
The coefficients B, are obtained by multiplying both sides of this equa-

tion by ®;; and integrating over the configuration space of the system.
This gives

(Dn|H'|[By) = 3 Bo(®,,],) = B, (1.83)
and "
H'Oy= S (D,|H'|0,) D, (1.84)
so that "~
RH'®y= 3 (0,H'|D),, (1.85)

n=1

which simply removes the @, term from (1.84). It then follows from eq.
(1.81) that
1 oo
i, S (Ol 190[,)
_ i (Do|H'| D) (@] H'| D)
2 E,—E, ) (1.86)

H/

AE® = <q>0

or, on the assumption that H' is Hermitian,

AE® = i I<(I)71|HI|¢0) |2
EO—En '

n=1

(1.87)
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This depends only upon H' and the unperturbed energy levels and wave
functions.

The higher-order energy corrections may be found in the same way,
but these become very complicated and Rayleigh-Schrodinger perturba-
tion theory is rarely taken beyond the second order. None the less, wé
shall find that second-order perturbation theory fails for an electron gas
when the perturbation H' is the Coulomb interaction of the electrons. It.is
then necessary to consider perturbation theory of infinite order, that is,
the whole of the perturbation series (1.77). The simple approach described
above is no longer adequate and more powerful perturbation techniques
have to be used, as will be discussed in the following chapters.

CHAPTER 2

THE OCCUPATION NUMBER REPRESENTATION
(SECOND QUANTIZATION)

2.1. Creation and Destruction Operators

In the previous chapter we obtained as much information as possible,
without knowing the actual form of the one-electron functions ¢;, about
the matrix elements of H with respect to a complete, orthonormal set of
N-electron determinantal functions ®,. In the present chapter we shall
use these results in order to establish a new mathematical formalism
which will prove convenient in later developments of the theory. This
formalism is generally called second quantization, but the name suggests
that some new quantum-mechanical principle is involved, which is cer-
tainly not the case in the present context, and we should therefore prefer
to call it the occupation number representation or something similar.

A determinantal function can be specified by the one-electron functions
é; which it contains. The only ambiguity is that of sign, and this can be
removed by ascribing a definite order to the functions ¢;. Let us therefore
suppose thatin any determinantal function ®,, defined as in eq. (1.16), the
one-electron functions ¢,, are always written in the same order, thus:

a1<a2<...aN.

The order may be that of increasing one-electron energy (where this is
meaningful), but this is by no means necessary - so long as we choose a
fixed order for the ¢;, any order will do. Then we may specify ®, com-
pletely by giving the subscripts of the functions it contains, thus:

D

ala2--~aN(x1’ Xoo v v xN)

1
(N2

E (_l)pP‘t’al(xl)d)az(xz) L ¢aN(xN)- (21)

21
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We now introduce the destruction operator (or annihilation operator)
Cq, Which removes a state ¢, from a determinantal function containing
this state:; that is to say, it converts an N-electron function containing
g, into an (N — 1)-electron function not containing ¢, . The normalizing
factor is also changed, so that the new function is a normalized deter-
minantal function appropriate to a system of N —1 electrons. The sign
has to be chosen according to the position of ¢g, in @, as described

below.
The formal definition of c,, is as followst:

if @Y contains ¢y, , then

N
Cakq)alaz...ak...aN(xh XKoo xN)
— N—1
- iq)alaz...ak_lak+1...aN(xh Xos oo xN—l)
1

== gE S D P () - by (i)

X bayy (xx) -+ . dy(xy-1), (2.2)

the sign being positive if k is odd (that is, if an even number of functions
precede b, in ®V) and negative if k is even.

On the other hand, if ®Y does not contain a one-electron function ¢,
say (that is, if / is a number not appearing in the set a;, @, . . . ay), then we
define c¢; so that

P ay...ay =0 (2.3)

N

Similarly, the creation operator ¢! adds a state ¢; to a determinantal
function not containing this state; that is to say, it converts an N-electron
function not containing ¢; into an (N -+ 1)-electron function containing
¢, again with appropriate normalizing constant and sign. The formal
definition is as follows:

THN
Cl¢a1a2...aN(x1,X2, e xN)

= i®hvitll2...ajlaj+l...a1v(xl’ Xy, . o Xyt1)
1
= i[(—N_—i:T)!—]ﬁEP‘l (—1)Pepa, (1) - . - a;(X;) i (Xs1)

X ¢aj+1(xj+2) o Oy(xnia) s (2.4)

+ To avoid confusion we use superscripts N, N —1, etc., to indicate the number of one-
electron functions, that is, the number of rows, in the determinant.
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where

G <a<...<g<l<agy... <ay, (2.5)

and the sign is positive when j is even (that is, when an even number of
functions precede ¢, in ®¥*!) and negative when j is odd.

If &) contains bay. that is, if a; is a member of the set ;. g, ...a
then ¢, operates upon ®J to give zero. Thus "

C(:k@gylaz...!lk...a]v (xlv Xos o0t xN) = 0 (26)

This is simply an expression of the Pauli principle, and follows im-
mediately from the definition (2.4), since a determinantal function is zero
if the same one-electron function appears twice in it.

It m.ay help to remove some of the apparent arbitrariness from the above
definitions if we remark that the sign convention is simply that which
l;ave's the sign of the determinant unchanged when a one-electron func-
tion is dt?stroyed or created in the first position (that is, in the first row).
The positive or negative sign which must be included is consequently
that_ Yvhich results from moving a given one-electron function 7o the first
position when it is to be destroyed, or from the first position to its cor-
rectly ordered position when it has been created. Thus, for example,

N — N—
calq)alaz...aN = oyl

agas...ay
1
HCEDIEP AR
X gy (%) . .. Gay (Xy-1). 2.7)
with positive sign, but
Cazq)‘tylaz, Lay T _Ca2q)£lvza1 ..ay
= _q)a’V;als sl ay
_ 1
= W; (=1)PPq, (x;)
X hag (X2) . . . Pay(Xno1), (2.8)

with negative sign, in agreement with the definition (2.2). Similarly,
C;(I)Q,zvla2 N (lN= Q?y\(’l_:éz ay

1
STNTTE 2 CDPPéi(x)

X gy (X5) « o+ oy (Xysr), (2.9)
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so that, for example, if a, < I < a,,

TN — (PN+1
Cld)nlag...aN = (Dlalaz...aN .
— —@dN+1
- q)alla2...aN~ (210)

whereas, ifa, < [ < a,,
THN — N+
CIcDalag...aN - (I)laq;ag...aN

= (Dgfalzla;;...a]v, (2-1 l)

in agreement with the definition (2.4).

In spite of this rationalization of the signs, however, the definitions
remain somewhat cumbersome and they will be put in more compact
form in the following section by means of the occupation number for-
malism. It will be found eventually that the definitions rarely have to be
used explicitly, since the most important properties of the creation and
destruction operators are expressed by their commutation relations,
which will be derived in §2.3. Meanwhile, it may be profitable to give
some simple, concrete examples of the foregoing.

Let us take the case N = 3 and consider

D33 (x4, X X;) = (Tyl')ﬁ 2 (=1)*P¢, (x1) b2 (xz)‘Ibs(xs)

O (x1) & (x2)  1(x3)

— GEEh®) ) ) @1
) ds(x1)  Pa(xy)  bs(xs)
Then it follows from (2.2), (2.3) and (2.4) that
€235 (X1, X5, x3) =—P; (%1, x2)
1
= _W g (—l)de)l (x1)¢)3 (xZ) (213)
_ 1 |di(x1) i(xs)
@nm ¢ (xy) ¢>3(x2) ’
ciD3a (x4, X3, x3) = 0, (2.14)
| c4®3as (%1, X2, x3) = 0, 2.15)
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i3 (X1, X5, X3) = —Plasa (X, x5, X3, X4)

1
=~ ane ; (—1)?Pepy(x,)

X by (%) by (Xs) 1 (). @1
€201 D3ea (X1, X0, x3) = P35 (xy, x5) = Pl (x;) = P3(x,), (2.17)
€162P3 (X1, X3, X3) = —¢; P (%1, x3) = — DL (%)) = — s (x,), (2.18)
ez (X1, X, X3) = — DY (X1, X2) = P35 (21, X5, X3) (2.19)
C3CiD303 (X1, X, X3) = —C3@ogs (X1, X5, X3, Xg) = — D3, (X1, X5, X3),  (2.20)
q1c3¢§23 (31, X2, x3) = 1D, (x1, x5) = Dy (21, X3, X3). (2.21)

2.2. Occupation Numbers

Instead of specifying a determinantal function ® by the subscripts of
the functions appearing in it, as in eq. (2.1), we could equally well do this
by giving the occupation numbers of these functions. An occupation
number n; is defined as having the value 1 or 0 according to whether the
function ¢; does or does not appear in ®. Thus, an N-electron deter-
minantal function may be writtent

DY (ny, ng, my, .. .), (2.22)

where N specified occupation numbers have the value unity and the rest
are zero. We have used this notation to avoid a complexity of subscripts,
but it must be understood that ®* is not a function of the n;. The super-
script N (which is generally omitted, although we include it for the sake
of clarity) indicates that ®* is a function of the N coordinates x;, x,, . . . xy.
The number of the n; is infinite, although in this case only N of them have
the value unity, and they merely indicate which of the one-electron func-
tions ¢; appear in the determinantal function ®~.

If we wish to show in (2.22) which of the n; are unity and which zero
without making a separate statement, we may write 1; if ¢; appears in ®
and 0, if it does not. Thus, the function ®, in eq. (2.1) may be written

V(0 0z, . . 1y ooy gy - ). (2.23)

—_—

t This is often written |ny, N, 13, . . .Y, but we shall retain the wave-mechanical notation.
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As a specific example, the function ®%y;(x;. x,, x3) in eq. (2.12) may be
expressed as

®3(1,, 1,5, 15,04, 05, . . .), (2.24)

the occupation numbers of the states ¢, ¢,, 3 being unity and all the
rest zero.

The destruction and creation operators may be defined more compactly
using the occupation number representation. Thus the destruction oper-
ator ¢y, is defined by

GPV( . 1p. ) =0V 0. ), (2.25)
qu)N(. .. Ok . .) = 0., (226)

where, in (2.25), it is understood that all the occupation numbers apart
from n, remain unaltered. The factor 6, is plus or minus one according to
whether an even or odd number of functions precede ¢ in ®*. It is easy
to see that we may write

zm
ok

B = (—1) (2.27)

for, if an even number of functions precede ¢y, each with occupation
number unity, the sum is an even number and 8, is plus one, while if an
odd number of functions precede ¢, the sum is an odd number and 8, is
minus one.

Similarly, the creation operator cj; is defined by

PV(. .. 0. . ) =0,DVN(L . 1, ), (2.28)
CchdV(. .. 1...)=0. (2.29)

Finally, the pairs of egs. (2.25), (2.26) and (2.28), (2.29) can be com-
bined, provided we include a factor on the right-hand side which has
value | or 0 as the case may be. The definitions in their most compact
form are then

Ck(DV(...nk...)=0knk®‘v_1(...0k...), (230)
GOV(. .o ) =0 (1 —n )@Y 1), (2.31)

with 8 given by eq. (2.27). It is easily verified that these definitions agree
exactly with the more cumbersome ones given in the previous section.
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2.3. Commutation Relations

Let us consider the function ®¥(...n,...n...), with I > k, and
operate upon it first with ¢, and then with ¢;. We have, from eq. (2.30),

Cle(DN(. oRp ... n[) = Bknkcld)N_l(. . Ok PR (TR ) (232)
Similarly,
e ®¥( o ne. ooy ) =0 @Y (L. . 0,00)), (2.33)

We see that, if either n, = 0 or n; = 0, both these expressions are zero.
Let us therefore consider the case n, = n, = 1. Then

Clckq)N(. . lk . ll...) =0kCl(pN_1(...0k.. . 1[. . .)

— 0,000V 2(. .. 0...0,...), (2.34)
and
CkCch)N(. .. lk- .. ]l .. .) = Glckd)N_l(. .. lk' . .0[. . .)

Here 6; = (—1)?, where p is the number of occupied states preceding
¢; in the function ®¥-!1(...0,...1;...), and 6, = (—1)9 where ¢
is the number of occupied states preceding ¢, in the function ¥!
(...14...0,...). It is clear that 8, = 8}, since no states preceding ¢
have been destroyed or created. However, 6; = —#;, since the destruction
of the state ¢, in ¥ by ¢, reduces the number of occupied states pre-
ceding ¢, by unity.
We thus have

Cle(DNz-‘CkCl@N, (2.36)

for any determinantal function ®” (the fact that in the above proof we
took [ > k for convenience is immaterial, since / and k can be inter-
changed without affecting the result). The equation remains true if n, = 0
or n;= 0 or k= [, both sides then being zero. Hence, for all £ and /, we
have the operator equation

CiC+ e = 0. (237)
This differs from the usual commutation relation in that the sign is plus

instead of minus. For this reason c; and c;, are said to anticommute, and
the left-hand side of eq. (2.37) is called the anticommutator of ¢, and cy.
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’

We shall denotet the anticommutator by the symbol {c;, ¢;}, using curly
brackets instead of the square brackets which denote the commutator
— in general, ‘

{A,B}=AB+BA,
[4,B] = AB—BA.
Eq. (2.37) can thus be written
{cn e} =0. (2.38)

In a similar way# it can be shown that the same anticommutation rela-
tion applies to the creation operators c}, cj, that is,

{cl,ci} =0, (2.39)

and this again is true for all / and £, including k = I.

Now let us consider the effect of one destruction and one creation
operator. Suppose, first of all, that again [ > k. Then, from (2.30) and
(2.31), we have

Aex® (oo oomy ) =0 (L 0.y, ), (2.40)
and
Ckcgq)N(. [P /7 AN (7 AN .) = Hl(l*nl)ckCDN“(. RN ll .. .). (241)

If either n;, = 0 or n, = 1, both these expressions vanish. Let us there-
fore take the case n, = 1, n, = 0. Then

Cch(DN(. .. lk- . .Ol. . .) :OkC;(DN—l(. . -Ok' . .Ol. . .)
=00PY(...0,...1;...), (2.42)

t The symbol [¢;, ]+ is also frequently used.
% Infact, this can be shown more simply using the notation of §2.1. Thus,

Tty = v+
Cy Clcq)alaz...aN - C[(I)Akalaz...aN

= N+2
- q)‘lkalaz coeaye
and

T N _— 2
Ckclq:’aa ... _Mﬁza .. a
1“2 192 N

- PHN+2
- q}lkalaz.“a

N
N>

from which eq. (2.39) follows immediately. The other commutation relations can also be
found by this method, although not quite so directly.
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and
CkC;q)N(. .. lk . 'Ol- . .) = 0le(bN+1(. .. lk' .. ll. . .)

=00, DY(...0,...1,...). (2.43)

Here 8; = (—1)®, where p is the number of occupied states preceding ¢,
in @Y1, and 6} = (—1)9, where g is the number of occupied states pre-
ceding ¢, in ®¥*1, The number of states preceding ¢, is unaltered in any
of these operations, so that 6} = 6,, but §; = —6;, since n; = 0in V-1 and
n, = 1in ®¥. Hence

C}‘qu)N(. .. lk- . 0[. . .) :—CkCZL(DN(. .. lk' . Ol' s .). (2.44)

This remains true if n, =0 or n,= 1 in ®", both sides of the equation
being zero in these cases. So longas ! # k, therefore, we have the operator
equation

clex+cpel = 0,
or
{chha}=0, Ik (2.45)

Now let us consider the case | = k. If nm, =1, we find

clzckaN(. - lk .. .) = OkC]Z¢N—1(. . Ok .. .)

=6DV(...1;...)
=DV .. 1,...), (2.46)
and
Cel®¥ (.. 1,...) =0, (2.47)
while, if n, = 0,
clex®¥(...0,...) =0, (2.48)

and
CChPY(. . 0p. . .) = 0 @V L L 1l )
=6:D¥(...0,...)
=ON(...0;...). (2.49)
Both pairs of equations lead to the operator equation

C};Ck-i- CkC]I = 1.,
or
{ck, cx} =1, (2.50)

one or other of the terms on the left-hand side giving zero result.



30 THE OCCUPATION NUMBER REPRESENTATION [Ch.2,§4,

Combining (2.45) and (2.50), we may write, for all [ and k, including
[=k,

{C;, Cr} = O 2.5
It is clear, of course, that also
{Ck7 C;} = allw (2.52)

since the order of adding the two terms in the anticommutator is im-

material.
To summarize: the commutation, or anticommutation, relations for

the destruction and creation operators are

{c. et =0, (2.53)
{cl,ci} =0, (2.54)
{ci. ek} = dus (2.55)

and these are true for all values of / and &.
Finally, we note that egs. (2.46) and (2.48) can be combined in the

single equation
C,ick(I)N(...nk...)=nkCI)N(...nk...), (256)

giving the operator equation
Cicr = . (2.57)

For this reason the operator cjc; is called the number operator for the
one-electron function ¢y.

2.4. The Vacuum State

If we operate with the destruction operator c¢; upon the first-order
determinantal function ®!(1,, 05, 05, . . .), in which only the one-electron
state ¢, is occupied, the result is a fictitious ‘zeroth-order determinant’
in which no one-electron state is occupied. This is called the vacuum
state or empty state, and we shall denote it by ®,,.. Although clearly an
artificial concept, it none the less has the convenient property that any
determinantal function can be constructed by operating upon &, with
the appropriate creation operators. Thus, for example,

CI¢Vac(017 02# 037 .. ) = q)l(llo 02$ 035 L ') = d)(xl)’ (258)
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C;CIq)vac(Olv 02" 03’ . ) = _¢)2(11’ 127 039 .. )

1
=7§[¢2(x1)d)1(x2) —d1(x1) s (x2) ], (2.59)

che1ci®@yac(0y, 05,05, . . .) = D3(14, 15, 15,04. . .)
o (%) o1 (x5) o1 (x3)
BNENE ®2(x1)  ha(xz)  yl(xs)], (2.60)
ds(x;)  hs(x,) b3 (x3)
and so on.

It is, of course, unnecessary for the one-electron states to be created in
any particular order, so long as the sign of the resulting determinantal
function is correctly chosen. If the creation operators appear in the same
order, from left to right, as that chosen for the one-electron states, the
sign is always positive. For example,

ciesei®uae = ®3(14, 15,05, 1, 05, . . ), (2.61)
e @yae = 3(0,, 1y, 15, 14, 05, . . ). (2.62)

This is because, at every stage, no occupied state precedes the one being
created.

2.5. The Hamiltonian

We now wish to express the Hamiltonian

H=H,+H' (2.63)
where
N
Ho=" f(x), (2.64)
i=1
N N
H' =%22 v(x;, x;), (2.65)

i i#j
In terms of the destruction and creation operators.

We shall show that, when operating upon wave functions expressed
as sums of determinants of the one-electron functions b,

Ho=" (ilfljce; (2.66)
where b
MHD=f¢ﬂﬂﬂw@uNx (2.67)

and the sum is over all values of i and J-
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Furthermore, we shall show that

H' =% Y (ijlv]kl)cicieicy, (2.68)

i.5,k.1

where

(iflolkl) = f f G5 (21) 5 (1) 0 (k1. %) e (50 (x2) dxy dxy. (2.69)

and the sum is over all values of i, j, k and . The order of the product
cic;. should be noted.

We shall proéeed in the most direct manner by comparing the matrix
elements of (2.64) and (2.65) with those of (2.66) and (2.68) for an
arbitrary pair of N-electron determinantal functions ®, and ®,. As
pointed out in §1.4, if the corresponding matrix elements of two operators
are the same, the operators are equivalent. However, although straight-
forward, this is a tedious process, and we shall defer the general treat-
ment, for N-electron systems, to the following section. Here we shall
simply make the above statements plausible by considering the simplest
possible systems to which they can apply, namely, one-electron systems
for H,y and two-electron systems for H' (clearly, H' does not exist for a
one-electron system, since more than one electron must be present to
have an interaction).

2.5.1. Matrix elements of H, for a one-electron system

For a one-electron system only a single occupation number has value
unity. Suppose that

O, =P1(...1;...) =p(xy), (2.70)
_ ¢b=¢l(...ll...)=¢l(xl). (2.71)
Then, from (2.64),

(| Ho|Ps) = (Dol f(x:) | Do) = (kI F]1). (2.72)

Also, from (2.66),
q;b>

= 2 (il f1)) (@lcic;| D)

(Dol Holy) = <r1>a

3 Gl fliele

i,
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=3 Cilfl) [ iciemyar
1.4

= CKIFID, @73)
sinC_e c;®, = Ounless j =1, @, = Dy,, and c[d,,, = P, only if i = k.

This shows that the two forms of H, have the same matrix elements,
and are therefore equivalent, for a one-electron system.

2.5.2. Matrix elements of H' for a two-electron system

For a two-electron system only two occupation numbers have value
unity. Suppose that

Dy=D(... 1p...1,...)
1
=7§[¢m(x1)d>n(xz)—d>n(x1)¢m(xz)], (2.74)
Dy=D2(.. . 1,...1,...)

1
=W[¢p(x1)¢q(x2) —qg(x1) bp(x,) ]. (2.75)

Then, from (2.65),
2 2
(@B00) =1 3 [ io(x x)B,dr
i#j

= f DFv(x,, x,) P, dr’

-3 f [ (x) b (x2) — bt () (22 ]
X v(xy, xz) [¢p(x1)¢q(x2) - ﬁbq(xl)d’p(xz)] dx, dx,
= 3[{mn|v|pq) — (mn|v|gp) — (nm|v|pq) + (nm|v|qp)]
= (mn|v|pq) — (mn|v|qp), (2.76)

where, in the second line, we have used the fact that v (x4, %) = v(x3, x7),

and, in the final line, that (mn|v|pq) = (nm|v|qp), as shownin eq. (1.51).
Now, from (2.68), we have
q>,,>

=3 > (ij}vlkl)'[Q;‘czcj-clckq)bdr’, 2.77)

ksl

(@ H'|,) = <<I>a

3 E (ijlvlkl)ciclece

L.kl
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and the integral vanishes unless
clcjec, @, = =Py, (2.78)

thatis,unless /, k= p,qgandi,j= m,n.
Ifk=p,l=gq,j=n,i= m, wehave, from (2.74) and (2.75),

t 1 IR R 9
ety ®y = Cmencecy @ (... 1y 1g. 1))

=chete®@ (L 1g. )

= cmCr®uac
=c;®(...1,...)
=@2(...1pn...1,...) =D, (2.79)

and the value of the integral in (2.77) is unity. Then, using the commuta-
tion relations for the operators, we have immediately, for

k=q,l=p,j=n, i=m, f——l,
k=p,l=q,.j=m,i=n, f=—1,
k=gq,l=p,j=m,i=n, f=+1.

Hence, from (2.68),
(D |H'|®,) = $[(mn|v|pq) — (mn|v|gp) — (nm|v|pq) + (nm|v|gp)]
= (mn|v|pq) — (mn|v|qp). (2.80)

as ineq. (2.76).
This shows that the two forms of H’' have the same matrix elements,
and hence are equivalent, for a two-electron system.

2.6. Matrix Elements of H for an N-electron System

In most texts on second quantization or perturbation theory the ex-
pressions for H, and H' given in egs. (2.66) and (2.68) are simply stated,
with little or no attempt at derivation. Even an elementary verification of
(2.68) such as that of the preceding section is rarely included, although
some justification of (2.66) may be given. Many readers may be content
to accept these expressions as stated, and for others the incomplete
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verifications of the previous section may suffice. For such, the present
section may be omitted. However, for the more sceptical reader, we
present the following straightforward and rather tedious, but completely
rigorous, verification of the expression for the Hamiltonian in the occupa-
tion number representation. If it does nothing more, this work will pro-
vide beginners with a useful exercise in the manipulation of the creation
and destruction operators.

The method used will be a direct extension to N-electron systems of
that of the previous section. The matrix elements of H, and H', as ex-
pressed in (2.66) and (2.68), with respect to a set of N-electron deter-
minantal functions, will be compared with those already found in ch. 1.

2.6.1. Matrix elements of H,

If @, and &, are N-electron determinantal functions and H, is given by
(2.66), we have

(@lHol@) = [ @] Gilrli)elc|@,0r

oRany f D cle,dydr 2.81)

(I) Asin§1.4.1, let us first consider a diagonal element, with &, = ®,.
Owing to the orthogonality of the determinantal functions ®,, the integral

f dicicD,dr’

vanishes unless
clef®, =+, (2.82)

This can only be true if i = j and ®, contains ¢;, in which case the sign
on the right-hand side is positive. We have, in fact, from eq. (2.57) and
the normalization of the ®,,

f ®icied,dr’ = n;. (2.83)
Thus, from (2.81) and (2.83),
(@alHol®g) =3 (11115} [ @iclebadr

i.j

= lflns. (2.84)
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However, for the function ®,, which is @, ,,
earlier notation, we have

sea s Opr

{1, for j=ay. as,...,ay,
n= .
10, otherwise.

Hence (2.84) becomes

(<I)a|H0[<I)a) =§: <ai|f|ai>v (2.85)

which is exactly the result we obtained in eq. (1.41). The diagonal matrix
clements of (2.64) and (2.66) are thus the same.

(2) Next, let us suppose that @, and ®, differ in only one function, so
that, for example,

D, =0¥(...0...1;...), (2.86)
Oy =DV(...1;...0;...), (2.87)

all the other occupation numbers being the same in the two determinantal
functions. In other words, ®, and ®, are the same, except that in ®; the
function ¢, is substituted for the ¢, appearing in ®,. Also, we shall
assume that the occupation numbers of all the one-electron functions
lying between ¢y, and ¢, are zero.

The latter assumption is to ensure that, when ®, and ®, are written
out as in eq. (2.1), ¢, and ¢; will occupy the same positionst, as was
assumed in calculating the matrix elements in §1.4.1 (e.g., a; = b; for
Jj # k,but g, # by). This obviates any difficulty with the sign of the matrix
elements when comparing with those found in ch. 1. However, no
generality is lost here, for a one-electron function can be changed to any
required position in a determinantal function by a permutation which will

T As a concrete example let us take N = 3 and suppose that @, contains ¢,, ¢, and ¢s,
while &, contains ¢, ¢, and ¢;. We then have

®i(1,, 15,05, 04, 15,0, . ..) = W ; (—1)?Pd, (x1) b5 (x5) s (x3),
and

) DF(1y, 05,04, 14, 15,06, . . ) = W 2 (—1)*P;(x1) ba(x2) ps(x3).

We see that ¢, occupies the same position in @, as ¢, does in ®,. This is so only because
the occupation number of ¢, lying between ¢, and ¢,, is zero in both cases.

(%1, Xz, .. . xy) inour
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at most change the sign of the matrix element. Precisely the same per-
mutation would be required in the calculation of ch. 1, in order to pro-
duce the ordering assumed there, if the one-electron functions were
originally ordered according to the scheme of §2.1.

With &, and &, given by (2.86) and (2.87), the integral

f dFcled, dr’

vanishes unless j =/ and i = k, when it has the value unity. Thus, from
eq. (2.81),

(Dy|Hol Do) = (K| fI1), (2.88)

and this is exactly the result found in eq. (1.43), if we simply write a,
and by instead of / and & for the subscripts of the functions in which ®,
and &, differ.

(3) Again, as found in §1.4.1, the matrix element must be zero if ®,
and &, differ in two or more functions, that is, in four or more occupation
numbers, for then the operator c{c; can never transform @, into ®,, and
the integrals in eq. (2.81) must all vanish.

This completes the proof that the matrix elements of (2.64) are identical
with those of (2.66), for an N-electron system, and the two forms of H,
are therefore equivalent.

2.6.2. Matrix elements of H'

If ®, and ®, are N-electron determinantal functions and H' is given by
(2.68), we have

@lH0) =1 3 (ilelkl) [ Opciceci®,dr.  (289)

ikl

(1) As in §1.4.2, we first consider a diagonal element, with &, = ®,.
Owing to the orthogonality of the ®@,, the integral

R
f @;‘cic}clckd)a dr’
vanishes unless

ciclecy®, = =@, (2.90)

For a non-zero value, therefore, ®, must contain ¢; and ¢y, with k # [,
and we must have eitheri =k, j=lori=1,j= k.
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From the c_:ommutation relations (2.53), (2.55), we find, if j # [,
cicjeic, = —clecicr, (2.91)
and, if k # J,
ciciec, = —clcjere; = clexcic. (2.92)
Hence,ifi=1,j = k. k # [, we have, from (2.91),
C,Tc;c,ckfba = —clcicjed, = —ﬁ,-n,-(l),,. 2.93)
Alternatively,ifi = k,j = [, k # [, we have, from (2.92),
cicjeic ®, = cleicje, @, = nin®,. (2.94)
Thus, from (2.89),

(ol H'|®a) =1 3, nan [l — Cflvl i) ] (2.95)

Here it is unnecessary to specify i # j, as the factor in square brackets
vanishes when i = j.
As before, for the function ®,, defined in eq. (2.1), we have

= {1, for j=ay, a,,...,ay,
10, otherwise,

and similarly for n;. Hence (2.95) becomes
N
(Do|H'|D,) = 2 [aa|v|aia;) — (aigs|v|a;a;) ], (2.96)
i

which is exactly the result found in eq. (1.48). The diagonal elements of
(2.65) and (2.68) are thus identical.

(2) Next, let us suppose that &, and @, differ in only one function, as
inegs. (2.86) and (2.87); say

Dy=P(...1,...0,...), (2.97)
Dy=0(...0,...1,...), (2.98)

all the other occupation numbers being the same in the two determinants.
Again, in order to make an immediate comparison with the results of
ch. 1, we shall assume that the occupation numbers of all one-electron
functions lying between ¢, and ¢, are zero.
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The integral
f dicicjec P, dr’
vanishes unless
cicjec @, = =D, (2.99)

The action of the operator on ®, must then be to destroy ¢, and create
¢, for a non-zero value. It follows that either / or k must be p and either
i or j must be g, while the remaining pair of one destruction and one
creation operator must simply destroy and create the same function in ®,.
We note also that we must have [ # k, i 5 j, since the same function can
neither be created nor destroyed twice in succession. There are four
possibilities:
(a) k=p,j=gq.i= [, sothat

clejee®, = cicieic,®, = —cleicic,®, = —n®y; (2.100)

(b k=p,i=gq.,j=1,sothat
cicicicx®@q = cleicic,®, = clejcic,®q = nyd,y: (2.101)

() I=p.j=gq,i=k,sothat
ciciei®@, = cicie,ci®q = cleicic,®, = n,Dy; (2.102)

(d) I=p,i=gq.,j=k,sothat
cicicicy®, = cheje ey = —clecle,®, = —n,®,. (2.103)

The results are the same whether p > g or ¢ > p, so long as the occupa-
tion numbers of states lying between ¢, and ¢, are zero.
Eq. (2.89) thus becomes

(Op|H' |®,) =% > <ij|vlkl)f@;‘ck‘jclck@adf
N

4.k

2 > (qjlvlpiin;—% Y (iglv|piyn;

+2 3 (iglolip)ni—4 > {ajloljp)n;

=E [ig|vlip) — (qi|v|ip)]n,, (2.104)
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again using the fact, provedin eq. (1.51), that
(ij|vlkly = (jilv]lk). (2.105)

The occupation number #; is, strictly speaking, that of ¢; in &,; but
this is the same as the occupation number of ¢, in ®,, except wheni=p
or i = q. However, the square bracket in eq. (2.104) vanishes wheni=p
or i = ¢, so that we may take

= {1, for i=ay, a,,...,ay,
' {0, otherwise,

as before. Then, if we write a; for p and by for g, the states in which @,
and @, differ, (2.104) becomes

N
(Dp|H'|Dg) =Y, [{aibi|v|aiar) — (bpai]v|aiar) ] (2.106)
i=1
which agrees with eq. (1.50).
We have thus shown that the matrix elements of (2.65) and (2.68) are
the same between two N-electron determinantal functions which differ
in a single one-electron function only.

(3) Now let us suppose that ®, and ®, differ in two functions, say @,
contains ¢, and ¢, but not ¢, and ¢,, while @, contains ¢, and ¢, but not
¢, and ¢, so that

D= .. 1,...0,...14...0,...), (2.107)
Gy =D¥(...0,...1,...0,...1,...), (2.108)

all the other occupation numbers being the same. We also assume that
the occupation numbers of all states between ¢, and ¢, and between ¢,
and ¢, are zero in both @, and ®,. This ensures that when ®, and ®, are
written out asin eq. (2.1) the states ¢,, ¢, and the states ¢,., ¢, will occupy
the same positions, as was assumed in ch. 1. It may be seen that, in order
for this to be so, we must have either p,r < g,s or g, s < p,r, but it is
immaterial whether p < rorr < p or whetherg < sors < g.
As before, the integral

J. (D;C;C;Clck®a d+’

vanishes unless

cicicic ®, = +®,. (2.109)
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For a non-zero value, therefore, the destruction operators must destroy
the states ¢, and ¢,, and the creation operators must create the states ¢,
and ¢,. Also we note that p, g, r and s are all different. There are again
four possibilities:

(a) i=r,j=s,l=p,. k= q, sothat

clejeey®, = clcic,c @y = —clepcic Py = — By (2.110)
(b)i=r,j=s,l=q,k=p,sothat
czc;-c,ckd)a = clcic,c,®, = c:cpc;ch)a = dy; 2.111)
(c)i=s,j=r,l=p, k= q,sothat
cicjeic®, = cicle,cg®y = cle,cle,®, = By (2.112)
(d) i=s,.j=r.l=q,k=p,sothat
cicjeici®, = ciclcacy®q = —clcyclc, Py = — D, (2.113)

Eq. (2.89) becomes in this case

(@IH [0 =} S (ol [ Bpciciecibod

i.4.k.1
= —¥(rs|v|gp) +¥(rs|v|pq) +3(sr|v|gp) —%(sr|v|pq)
= (rs|v|pg) — (sr|v|pq). (2.114)

If we simply write a, instead of p, g, instead of g, b, instead of r and b,
instead of s, which was the notation used in ch. 1, we obtain

<<Db|H’ I(Da> = (bkbl|vlakal> - (blbklvlakal) N (21 15)

which is exactly the result obtained in eq. (1.54). This shows that the
matrix elements of (2.65) and (2.68) are the same between two N-
electron detzrminantal functions which differ in two one-electron states.

(4) Eq. (2.89) shows immediately, as was found in §1.4.1, that the
matrix element (®,|H'|®,) must be zero if @, and ®, differ in more than
two one-electron functions, for then two destruction and two creation
Operators could never convert @, into +=&,,.

This completes the proof that the matrix elements of (2.65) are identical
with those of (2.68), for an N-electron system, and the two forms of H’
are therefore equivalent.

To summarize: we have proved, by direct comparison of their matrix
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elements, that the operators

N N
H=Y flx)+3% Y v(x.x) (2.116)
i=1 [N ES]
and
H=3(ilfli)cie;++ S (iflvlkdyciciecs Q.117)
i.Jj i.d.k,l

are equivalent for an N-electron system. It is worth noting, however,
that there are certain differences between these operators. For example,
(2.116) is meaningful when applied to an N-electron wave function in any
analytical form, while (2.117) is meaningful only when applied to a wave
function expressed as a sum of determinantal functions, the creation and
destruction operators being defined in relation to the one-electron func-
tions which are the elements of these determinants. On the other hand,
(2.117) is in one sense more general than (2.116), since it does not
depend upon N - it is the same whatever the number of electrons in the
system. N now enters the problem only via the determinantal functions
from which the total wave function is constructed - for an N-electron
system these are N-th-order determinants.

The foregoing proof is undoubtedly exhausting and unlikely to be
followed in detail by many readers. None the less, even a cursory perusal
of it may serve at least one useful purpose. It demonstrates quite clearly
that, in spite of the use of apocalyptic nouns such as creation and destruc-
tion, the so-called second quantization formalism, in this context at least,
involves no new principle. Nothing, in fact, is being created or destroyed
—these operators merely afford a convenient means of expressing one
determinantal function in terms of another.

2.7. To Prove that ¢; and ¢} are Hermitian Conjugates

The use of the symbol ¢; for the creation operator of the state ¢; implies
that it is the Hermitian conjugatet of the destruction operator ¢;. It can
easily be shown that this is so.

Let us suppose that

D, =DdV(L .. 1.0 ) (2.118)
and

Dy =PV(...0;...). (2.119)

1 See Appendix I.
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all the other occupation numbers of these two functions being the same.
Also, to make the sign definite, let the number of occupied states pre-
ceding ¢; be even. Then

f@,;“cifbadfr’ =1. (2.120)

Now let c}! be the Hermitian conjugate of ¢;. Then, by definition,

f@;"cifbadr’ =f (cld,) *d,dr’ = (f @;‘c?(bbdf’>* =1, (2.121)

using (2.120).
Since there is no restriction on ®,, except that it must not contain ¢;, it
follows that
cid, = d,. (2.122)

In other words, c! is the creation operator for the state ¢;, or

cl=cj, (2.123)
as we wished to prove.
This result enables us to express the matrix elements of the previous
section in a more symmetrical, and sometimes more convenient, form.
For example, eq. (1.5) of Appendix I tells us that

(c)' = i (2.124)
so that, for any determinantal functions ®,,, ®,,.
f drclc;®,dr’ = f (¢;®p) *c; P, d1’, (2.125)
that is,
(Dl cic;| @) = (cPumlc,Py). (2.126)

In the same way, if i # j,
(@l cle;|®p) = —(Dylcic]|®,) = —(c[Dplcid,).  (2.127)
Also, from eq. (1.11) of Appendix I, we find
(Dl cicierc)|®n) = (cici®n|crci®,), (2.128)
so that this matrix element vanishes unless
cici®y = e Py, (2.129)

and @, contains ¢, and ¢,.
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2.8. Field Operators

The equations of the many-body theory, in the occupation number
formalism, are often expressed in terms of the so-called field operators,
¥ (x) and $'(x), defined by

B(x) =3 ¢ilx)cs, (2.130)
W (x) = & (x)c]. (2.131)
The commutation relations for these operators are
{¢(x), ¥(x')} =0, (2.132)
{¥'(x), ¢'(x)} =0, (2.133)
{Px), ¥'(x')} =8(x—x'), (2.134)

and can easily be obtained from those for the creation and destruction
operators, egs. (2.53), (2.54) and (2.55). Thus

{W(x). P(x')} = 12 d)i(x)d)j(x')cicj"'iz b3 (x") i (x) cic;
= Ej di(x)d;(x"){c;s c,-},]= 0, (2.135)
and eq. (2.133) follows in u;e same way. In the case of (2.134) we have
{¥(x). ¥'(x)} = % bi(x) B (x')Cin‘*‘iEj &5 (x") i (x) cic;
= IE i(x) b (x"){ci, cj}
=z Si)SF () = (x—x), (2.136)

from the completeness condition (1.15).
We will now show that H, eq. (2.66), may be written

Hy= f W (X)f() W (x) dx. 2.137)

The right-hand side becomes
[ S orweiso S siweds=S dle, [ o )txd ) dx

= (il flicle;, (2.138)
which is H,.
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Similarly, H’, eq. (2.68), may be written
H =1 [ 00w )0t m)b(e)b(n) da .. (2.139)

The right-hand side becomes
3 f E oty (x)ci E &5 (x3) cjv(xy, x,) Z d1(x:) ¢ 2 ¢ (x1) ¢ dx, dux,
i J { k

=4 3 cicjecs [ 9 (565 () 0(r 2 i) (x) d, i,

..kl

=%y (if|v|klyclcjeick. (2.140)

isdsksl

whichis H'.

It should be noted that (2.137) is the occupation number representa-
tion of a sum of one-electron operators f(x;), and (2.139) that of a sum of
two-electron operators $v(x;, x;), whether or not these occur in the
Hamiltonian. For example, consider the particle densityt, including spin,

N
p(x) =3 8(x—x)). (2.141)
i=1
It follows that the particle density operator is given by
p(x) = [ W)= x)w(x) dr

= ¥'(x)(x). (2.142)

It should be noted that, in deriving the above properties of the field
operators, we have not required to interpret these operators physically.
This again emphasizes the fact that no new physical principle is being
invoked. However, it is sometimes a useful aid to intuition to use, even
if only loosely, the physical interpretation of these operators, which we
will now describe.

¥ p(x) is the number density of electrons at point r with spin coordinate {, 8(x—x;) being
a shorthand notation for 8(r—rl—)6“i. This means that the integral of p(x), including a sum
over the two values of ¢, throughout a given region is equal to the number of electrons in the
region. Thus, if a number v of the points r, lie in a region Q, we have

jﬂp(x)dx=z > By, ,L, S(r—r)dr=v.

i f=%1
% Itis necessary here to change the variable of integration to x' owing to the presence of
xin&(x—x;}, which replaces f(x;) in this case.
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The operators $'(x) and ¥(x) are said to create and destroy, respec-

tively, a particle at x (that is, at position r with spin coordinate ). This is
most easily demonstrated by operating upon ®.,. with ¥*(x), which gives

W) Prac = 3, & (%) €iPrac
= ¢ (x)di(x)) =8(x—xy), (2.143)

using the completeness condition (1.15) and the fact that
Dy =D, .. 1;...) = ¢i(xy). (2.144)

The function 8(x—x;) describes a one-electron state in which the
electron is located at the point x, since the probability of x; being different
from x in this state is zero. A similar result is obtained if ¥s'(x) operates
upon a determinantal function of any order (see Problem 2.6).

Now let us operate with ¥s(x') upon ¥'(x) ®, .. Using the commutation
relation (2.136), we obtain

l"(xl)‘pf(x)(pvac = a(x_x,)q)vac—¢+(x)¢(x,)cb\*ac
= 8(x—x")Dype, (2.145)

since all destruction operators give zero when operating on ®.,.. We have
seen that ¥'(x)®,,. has a single electron at x, and (2.145) shows that
Y (x') operates on this to give zero if x' # x and a constantt times ®,,,
when x' = x. We thus deduce that Yi(x) destroys the electron at x in the
state Y'(x) D,

In conclusion, it is perhaps worth mentioning that it is in connection
with the field operators that the significance of the term second quantiza-
tion emerges. These operators may be regarded as describing a matter
field. whose quanta are the electrons, in the same way as photons are the
quanta of the electromagnetic field. This quantization of the matter field
is called second quantization, the quantization of the motion of the
individual electrons being first quantization. We shall not pursue this
concept, however, since it plays no part in the present work and would
give rise to unnecessary confusion if described in detail.

T The constant is admittedly infinite, a difficulty which stems from the fact that the
function & (x —x, ) is not normalizable, since

[ =52z =500,

which is infinite.

CHAPTER 3

THE HARTREE-FOCK METHOD AND THE
FREE-ELECTRON GAS

3.1. The Hartree-Fock Method7

We have seen in ch. | that, if the electrons did not interact, so that the
total Hamiltonian were

N
E [——V2+V(rt)] 3.1)
the Schrodinger equation,
H\W =EV, (3.2)

would be separable, and the eigenfunctions would be N-th-order deter-
minants of one-electron functions whose orbital factors were eigen-
functions of the equation

h2
——V2w+V(r)¢l—e¢ (3.3)

However, the electrons do interact, the correct Hamiltonian being

N B2 N N e2
» [——v2+ V(r) ]+2 PR (3.4)

i=1 i#j Tij

and the Schrédinger equation

HY =EV¥ (3.5)

1 There is an elementary account of the Hartree-Fock method and its application to a
free-electron gas in WM, chs. 6 and 7.

47
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is not separable. The foregoing does not apply, therefore. None the less,
as we have already emphasized, we can always express the eigenfunc-
tions of eq. (3.5) as infinite sums of the determinantal eigenfunctions of
eq. (3.2).

This is a reasonable thing to do if the interaction term is to be treated
as a perturbation, H, being the Hamiltonian of the unperturbed system,
but it is not obligatory. The eigenfunctions of (3.5) can be expressed as
infinite sums of determinants constructed from any set of orthogonal
one-electron functions, not only those whose orbital factors satisfy (3.3),
and it may be convenient to choose some other set.

For example, since a single determinant is easier to handle than an
infinite sum of them, one is attracted to the idea of approximating to the
ground-state wave function of the interacting system by a single deter-
minant (the energy of the ground state is what will principally interest
us). The problem then is to choose the one-electron functions so that this
determinant gives the best approximation to the energy. According to the
variation principle the best functions are, in fact, those which minimize
the energy.

Let us rewrite the Hamiltonian as

H= g [—%V%+V(r,-) +F(ri)]

N N 2o N
+[%22;—E F(ri)], (3.6)
or i Y =1

N N

N N

H=3 ) +Fol+ [} 33 otur) =3 Fin]. @)
i=1 i#j i=1

using our previous notationt, where the second term in square brackets

is a modified interaction. We now take as an approximation to the ground-

state wave function a single N-th-order determinant of one-electron func-

tions whose orbital factors are eigenfunctions of the equation

[———h—z—V2+ V(r) +F(r)]d/(r) = eyi(r), (3.8)

2m

T Although previously we have written f(x;), v(x;, x;), to emphasize that the results
applied generally to operators which might depend upon the spin, here we are dealing
specifically with a Hamiltonian which is spin-independent, and so it will be less confusing
simply to write f(r;), v{r;. r;).
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the operator F being chosen so as to minimize the total energy. N func-
tions have to be chosen, two of them, with opposite spins, corresponding
to each of the lowest ;N eigenvalues (or, strictly speaking, eigenfunctions,
since there will usually be degeneracy) of eq. (3.8). Let us designate these
functions by ¢y, ¢, - . ., Py

This determinant is the unperturbed ground-state wave function when
the second term in square brackets in eq. (3.6) is treated as a perturbation.
The wave functions of the excited unperturbed states are also N-th-
order determinants containing one or more functions ¢; formed from
eigenfunctions of (3.8) with eigenvalues ¢, > €xj2-

We now intend to show that the best choice of F, according to the
variation principle, is such that

(alFIp) =3, iglolip) ~ (ailsip) . 3.9)

Suppose that @, is the ground-state unperturbed wave function,
described above, and let @, differ from it only in that the function
¢»(p < N) in ®, has been replaced by ¢,(g > N); that is, &, represents
an unperturbed state in which a single electron has been excited from
state ¢, to state ¢,. Also, for simplicity, we shall assume that ¢, occupies
the same position in @, as ¢, does in ®,.

We shall show first that the matrix element of H, eq. (3.7), between
these two functions vanishes if F satisfies eq. (3.9). According to eq.
(2.88) (or eq. (1.43)),

(242

S [fr) +F(r)]

<1>0> —(qlf+Flpy=0.  (3.10)

since g # p and ¢, and ¢, are eigenfunctions of f+ F (that is, f+Fis
diagonal with respect to the chosen one-electron functions). Also, accord-
ingto eq. (2.104) (or eq. (1.50)),

N N
(@ S virir)
i
while, according to egs. (2.88) and (3.9),

(o3

i F(r)

Do) =3 Liglolip) —(ailolip)].  G.11)

<I>o>= (q|F|p)

=3 ighlip) ~(@ilelim)].  (.12)

i=1
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The matrix element of the second term of (3.7) in square brackets thus .

also vanishes, and we have, finally,
(D, |H|Dy) = 0. (3.13)

It should be noted that, so long as the functions ¢; are eigenfunctions
of f+F, it is necessary, as well as sufficient, that F satisfy eq. (3.9) in
order that (3.13) may follow. It is worth emphasizing that the Hamiltonian
is not affected by the choice of F, but only the one-electron functions ¢;.

We have thus shown that a choice of F leading to eq. (3.9) causes the
Hamiltonian to have zero matrix elements between the unperturbed
ground-state determinant and determinants which differ from this in one
row only. We shall now show that this choice of F gives the best single-
determinantal ground-state wave function according to the variation
principleft.

We wish to choose those one-electron functions which make the value
of
_ (®lH[®0)

E= oo,

(3.14)

an absolute minimum. In other words, if any one of our chosen functions
1s altered, the value of this expression must increase. Let us make a
change in one of the functions, say ¢,, appearing in ®,, by adding to it
ne,(q > N), where 7 is a real constant. That is to say¥, let us substitute

+ The variational method used here is the elementary one described in WM, ch. 3.
$ Inour previous notation

b)) oo &1 (xy) &1(x1) ... dr(xy) bi(x1) ...y (xy)

(by(xl) +7I¢q(x1) e d)p(xN) +7}¢q(x.\') = (bp(xl) e d’p(xm‘) +7 ‘!)q(xl) e ¢q(xl\')

be(X) e by (xy) belx) - dulxe) | oyl .. bylxy)

= (NY12(Dy+7P,).
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@, +nd, for d,in (3.14), so that E becomes a function of n, thus:

(Dp+ n(DqIqu)0+"Iq)q>
(Do + nq)q'q)o_f_nq)q)

E(n) =
_ (Do|H|Dy) + 1(Po| H|D,) +1( D H Do) +1*(Dg| H|D,)
(D[ Do) + 1{Do| D) +1{Dy| Do) + (D, D)
= [(Do|H|Dp) +n{{Do| H|D,) + (D | H| D)}
+ 03D |H|D,) ] (1+72) 7, (3.15)

on the assumption that ®, and ®, are orthogonal, as will be shown in the
following section, as well as normalized. Differentiating with respect tom,
and then putting » = 0, we find
dE(n)
(2] = alaieg + (@ H00), (3.16)
N dn=o
and we have seen, eq. (3.13), that the matrix elementst vanish.
For our chosen one-electron functions, therefore, we have

[%L:o =0, (3.17)

which proves that these functions minimize# (3.14) and are consequently
the best functions to use in the determinantal wave function according to
the variation principle. The use of these functions in a single determinant
as an approximation to the ground-state wave function is known as the
Fock or Hartree-Fock method.

3.2. The One-electron Hartree-Fock Equation

In order to determine the explicit form of the Hartree~Fock equation
(3.8), let us first write out eq. (3.9) in full, that is,

 Since H is Hermitian, we have

(Dol H[Dg) = (D) H|Dg)* = 0,
from (3.13).

.13‘ Eq. (3.17), in fact, proves only that E(m) has a stationary value at n = 0. That thisis a
Mmimmum is suggested by the fact that the functions ¢, chosen for the ground state ®, are
those corresponding to the lowest eigenvalues e, of eq. (3.8). More rigorously, it can be
shown that the second derivative of E (m) is positive when n = 0 (see Problem 3.1).



52 HARTREE-FOCK METHOD AND FREE-ELECTRON GAS [Ch.3,§2 * Ch. 3,§2] ONE-ELECTRON HARTREE-FOCK EQUATION 53

[ 42 0F 8 ax

=3 [[[ ot i v moeos e ana,
— [[ 01 et o1 ) 20
=3 [[ et {[ b lotmanou ) a
~ [ ws [ 61 @00 a2 e
= [ 610 S [ 16 o1, 518,

= f i (x1) by () 0 (s F) s () dxl]dx, (3.18)

where we have first interchanged x; and x, in one integral and finally
substituted x for x, (this is perfectly legitimate as the value of a definite
integral is independent of the symbols used for the variables of integra-
tion). We deduce that

F()9(0) =3, [ 16:6e0) Potri, 1)y () d

_ﬁf¢5k(x1)¢p(x1)v(r1,r)¢i(x)dx1. (3.19)

Remembering that ¢, is the product of ¢, and a spin function, and that
the integral implies a sum over the two values of the spin variable, we
may eliminate the spin immediately and obtain

Fn(n) =3, [ alr) ot () dr,

N
- 3 [rEke e ue . 6.20

(spini=spinn)

In the latter term the sum is only over those states {; (i < N) which are
associated with the same spin function as ¢, because the integral in the

second term on the right-hand side of eq. (3.19) vanishes if ¢; and ¢, have
different spin factors.

Eq. (3.20) can be simplified still further in the case of a non-ferro-
magnetic system, where there are equal numbers of electrons with
opposite spins. We may then assume that, in the ground-state determinant,
the set of functions ¢;(i =< N) contains the set ;(i < 4N) twice with
opposite spin factors —in other words, the set ;(i < $N) and the set
P;(3N < i < N) are the same. The equation thus becomes

N/2
F(r)dip(r) =23 | [Wi(ry) Po(ry, r)dy(r) dry
i=1

Ni2

—2 Ui (r) P (1) v (ry. P) i (r) dry, (3.21)

and it is no longer necessary to specify spin i = spin p, since the sum
includes all the orbital states associated with either spin.
The Hartree-Fock equation for the function v, from eq. (3.8), is

ﬁZ
|5, VO +F0) ) = e 0. (3.22)
and, using eq. (3.21), this becomes

NI2

[—ﬁ—zvz +V(r)+2 E [ (ry) |20 (ry, 1) drl]dfp(r)

2m

N2

=Y dnulr) f W (r)p(r) oy, r) dry = ey (r).  (3.23)
i=1

There is one such equation for each of the N different functions s,
appearing in the ground-state determinantt. Since the operator F(r)
depends upon all these functions, the set of 4N simultaneous equations
must be solved by a process of iteration, which is continued until a
sufficient degree of self-consistency is attained.

The last term on the left-hand side of eq. (3.23) is called the exchange
ferm. Without this term the equation would reduce to the simpler Hartree
equation, which is derived from a total wave function consisting of a
single product, rather than a determinant, of one-electron functions. The

¥ We may assume that eq. (3.23) applies to all functions i, even though those with
P > N are not required in the ground state. This means that eq. (3.9) applies for all p and g,
and not only for p <N, g > N, which is what we have previously required.
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Hartree potential, the last term in square brackets, is Jjust the potential

energy of electron p due to its Coulomb interaction with the charge cloud
of all the electrons. The operator F(r) may be written as the sum

F(r)=V¢(r)+Fx(r), (3.24)

where V' is the Hartree potential and Fy is the exchange operator, an
integral operator defined by

N/2

Felr)n(r) == 3 (1) f UEr)b(r)o(r R dr. (3.25)

It is easy to see that V¢ is Hermitian, since it is just a Coulomb potential,
the same for all y,, but it is not so easy to see that Fy is also Hermitian.
However, the property of F defined in eq. (3.9) tells us immediately that
itis Hermitian; thus, because v is real,

(q|F|p)* =i [{iglvlip)* — (qi|v|ip)*]

=S Kiplolig) — (iplvlai]

22 [(ip|vlig) — (pi|v]iq)]

= (p|Flq). (3.26)

which is the condition for Hermiticityt (see Appendix I). Since F and V.
are Hermitian, it follows that Fy must also be.

This is an important result, for it means that, in eq. (3.22), the operator
in square brackets, which is the same for all U, is Hermitian, so that the
functions i, may be assumed to form a complete, orthogonal set#. It
follows that the determinantal functions ®, and ®,, for example, are
orthogonal, as was assumed in the previous section.

T Strictly speaking, this proof of the Hermiticity of F is only rigorous if ¢, and ¢, are
arbitrary functions or arbitrary members of a complete, orthogonal set of functions. The
latter is certainly the case if F is Hermitian!

¥ This point was not brought out in the elementary treatment of the Hartree-Fock
method in WM, ch. 6, where the expression of the exchange operator as a multiplying
operator, like the Hartree potential, caused it apparently to depend upon i, (present
notation).
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3.3. The Hamiltonian and the Hartree-Fock Ground-state Energy

If ¢], ¢; are the creation and destruction operators for the Hartree~Fock
function ¢;, we know from the work of the previous chapter that, in the
occupation number representation, the Hamiltonian (3.4) can be written
asineq. (2.117) or, using (3.7), in the form

H =7 (i|f+F|j)cic
i
+5 Y (lolklciciees — S (iIF] e, (3.27)
ikl iJj
However, ¢; (or its orbital factor) is an eigenfunction of eq. (3.22), that is,
(f+F)d;= €y, (3.28)

and we may assume that these eigenfunctions form a complete, ortho-
normal set (this is, in fact, necessary for the validity of the above ex-
pression for H). It follows that

(il f+Flj) = e(ilj) = €8 (3.29)

Also, from eq. (3.9), we have
N }
(i|F|jy =3 [(kifvlkj) — (ik|v]ki)]
k=1
=Y [Kkilv|kj) — (iklv|kj) ] ny. (3.30)
k

where 1y, is the occupation number of the function ¢, in the ground-state
determinant ®,. Eq. (3.27) thus becomes

H=Y ecic+t S (iilolkeiciee,
i iJg.kd

— 3 [kilolki) — (iklolki) Imcics (3.31)

igk

The ground-state energy in the Hartree-Fock approximation is, there-
fore,

E= <(I>0|H]CI)0)
= i €+ <¢0|H’,(D0>

- 2 [Ckiv|kj) — Cik|v]ki) (Dol npcic;|Dy), (3.32)

L.k
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where H' is the second term on the right-hand side of eq. (3.31). From

eq. (2.95), we have
(Do|H'|[do) = % 2 nn[if)vlif) — (ijlvlji)]

=4S Kilold) — (ilolin . (3.33)

i.j=1

Also,
81']', f()r l..,j,k = N.

Tt =
(@o|nxcic;|Po) {0, otherwise,

so that the last term on the right-hand side of eq. (3.32) becomes

LS [kilelkiy — (Kol ] =— S [Gilolin — (@llid]. (334

ik=1 i.j=1

Substituting (3.33) and (3.34) in (3.32) gives, finally,

N N

E=Ya—tY [l —ileli]. (3.35)
i=1 i.J=1

This expression can be put in another form which is sometimes useful.

From eq. (3.28), we have

€ = (il fli) + (i|Fli), (3.36)
and eq. (3.9) gives
N
(i|Fliy =3 [l —Cilvlid]. (3.37)
j=1
Hence, eq. (3.35) may be written
E=143 [a+lfli)]. (3.38)

i=1

3.4. The Free-electron Gas

The only realistic model of a many-electron system for which the
Hartree-Fock equation can be solved analytically is the free-electron
gas, which approximates to the valence-electron gas in many metals. A
system of electrons moving under no external forces is called a free-
electron gas, even though the electrons are interacting with each other. It
is customary to assume the presence of a uniform distribution of positive
charge of density equal in magnitude, but opposite in sign, to the average

\
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charge density of the electrons, so that the system as a whole is electrically
neutral.

Let us assume that we have N electrons in a cubic box, with edges of
length L and volume Q) = L3, which also contains a distribution of positive
charge of uniform density Ne/Q). The eigenfunctions of the Hartree—
Fock equation for this system (see WM, ch. 7), subject to periodic
boundary conditions, are the functions

b, (x) = ¥, (N X (2)

where the spin factor x,(¢) ist @({) when o =% and 8({) when o =—1,
and the normalized function s, is

(3.39)

1 .
Y (r) = -ﬁexp (ik-r), (3.40)
the wave vector k being given by
2
k=%(n1e1+n2e2+n3e3), (3.41)

where n,, n,, n; are integers, positive, negative or zero, and e,, e,, e; are
unit vectors along three mutually orthogonal cube edges.

The wave vectors of the occupied one-electron states in the Hartree-
Fock ground-state determinant lie within a sphere in ‘k-space’, called the
Fermi sphere, of radiusi kg. Each orbital state is doubly-occupied by
electrons with opposite spins. A sum over the different orbital states in
the ground-state determinant is thus a sum over all k vectors lying within
the Fermi sphere. The Hartree—Fock eq. (3.23) therefore becomes

[T+ b) G e

=3 ) [ W dn = i), G4

where
€2

v(rl,r) =m
1

Now V (r) is the potential energy of an electron at r due to the uniform

* We use the symbol o to denote the spin quantum number, which is more usual in this
Wwork than the symbol m, used in WM, ch. 5.
¥ This was denoted by k, in WM.
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background of positive charge, and this is exactly cancelled by the

Hartree potential (the last term in square brackets), which is the potential
energy of an electron at r due to a uniform distribution of negative charge,
with density —Ne/(), due to all the electrons, since, on the assumption of
(3.40),

| (r) |2 = 1/Q, (3.43)

for all k. Eq. (3.42) thus reduces to
ﬁZ
[— EVZ + Fx(r)]tl/k (r) = e (r). (3.44)
where Fy(r) is the exchange operator defined in eq. (3.25). It was shown

in WM, §7.5, that the function 5, given in (3.40) is a self-consistent eigen-
function of this equation, and the eigenvalue is

kkye 1 8 —k

2m 2

h2k? kg K:— ‘kF+ k
€= [2 ] (3.45)

It is easy to see that the same s, is also an eigenfunction of the simpler
Hartree equation (that is, (3.44) without Fx(r)), and that the eigenvalue
in this case is just #2k%/2m. Since we shall be concerned only with the
total energy of a free-electron gas, and not with the distribution of one-
electron energies, we need not refer to the expression (3.45) again, but
shall simply use the one-electron functions (3.39) as the basis set from
which the determinants for this system will be constructed. That this is
an orthonormal set is easily verified, for

[ 91,06 Ddr= 3 X 0% 0 [ v ar

==1

80’0’

q | P [i(k' —k) - r]dr=8,,:8,. (3.46)

The Hamiltonian of this system, in the notation of ch. 1, is essentially
H = H() + H’
2 vi+iy 2 ™
i}

the first term representing the kinetic energy and the second the Coulomb
interaction of the electrons. We have not explicitly included terms repre-
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senting the interaction of the electrons with the uniform distribution of
positive charge and the self-energy of this charge, but these terms will be
cancelled out of our final Hamiltonian.

We denote by ¢, and ¢, the destruction and creation operators for
the state ¢, and, with

ﬁ2
flr) = =3V (3.47)

and
62
v(r, ;) =—, (3.48)
i
the Hamiltonian expressed in the occupation number formalism becomes,
from 2.117),
H= E (ko |f|k20-2>cltlo-|ck2(r2

k. ks
0,0

+% 2 <k10’1, k20'2l1.7|k30'3, k40—4>CZ|U'|C220'2Ck4o'_,Ck3m,’ (349)
Ky ks, kg kg

01 T2, 03,04
where the sums over k;, etc., are over all the wave vectors (3.41) and the
sums Oover o, etc., are over the two values +3

3.4.1. The kinetic energy term

Expression (3.49) simplifies somewhat when the matrix elements are
evaluated. Let us consider the kinetic energy term first. We have

(k10| f|lara) = f d)kﬂ, (x )(‘%Vz)%m (x) dx

zé > Xo:i ()Xo (0) fexp (—iky - r)

{=x1

h? .
X (—%W) exp (ik, - r) dr

2
- _zﬁ_ﬂaﬂ'w’z f eXp (_—_lkl : I') vz €xXp (lk2 : r) dr
. m
— 2K b [ exp Lilha—R) -1
ﬁézrl:lz 8(710'2 kok,® (350)
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The matrix element therefore vanishes unless o, = o, and k, = k,, when .

its value is #2k3/2m. The kinetic energy term thus reduces to

h2k?

HOZ; m CroCs (3.51)»

where c] c,, is just the number operator for the state by, -

3.4.2. The interaction term

The matrix element in H' is

<k10—15 k202|U|k30'3’ k40'4>
~ [ 61001, I, ()8, (22) i,
= 2 Xﬂ'l(gl)Xo'z(gZ)Xox(CI)XLN(CZ)

L1.e==1

2
< [ [ wzowi S, 00w, 6 arar,

= 80100 - ff exp [i(ks—ky) - r,] exp [i(ky—ks) - 1] dr, dr,.

4T

(3.52)
The integral may be written
1= [ exp lith—k) r)ar, [ 2Lkl ]y,
12
and (see WM, p. 170)
exp [i(k,—k,) -] _4mexp [i(ky—k,) - rl]
f Fip dr. = |k4 kzl2 (3.33)

provided k, # k.

Hence
4 .
I:E—k—zlzf exp [i(ks—ky+ky—ky) - ri]dry
470 .
AT k—ky=ke—k, £ 0,
_ ]k4“k2|2 1 3 4 2 (3.54)
07 if kl_k3 #= k4_k2'
If we write

kl—k3:k4_k2=k # 0,
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then
47Q)
I= 2 (3.55)
If k = 0, however,
I= f drz (3.56)
The only non-zero matrix elements, with k # 0, are those of the type
4 2
<k3+k,0'1q k4_k, 0'2|U|k30'1, k40'2>: (;Tke; . (357)
When k= 0, we have
é? dr,
<k30'1.k40'2|l)|k30'], k40'2> =-f drl f_ (358)
0?2 Fio

This expression represents twice the self-potential energy of one elec-
tronic charge uniformly distributed throughout the volume € (there is. of
course, a factor $in H'). However, we have assumed, in order to ensure
the charge neutrality of the system as a whole, that to each electron there
is a single protonic charge uniformly distributed throughout the volume
Q. The effect of this positive charge distribution is to cancel the effect of
those terms in the Hamiltonian with k = 0. This will be seen more clearly
below, but meanwhile we shall drop those terms with k = 0.

Putting k; = p, ks = ¢, 0, = o, 0, = ¢’, the interaction term becomes

H' =3% (pt+k.o.q—k o'|v|po.q0')c,, ., ¢ c,.

kqp-ll
o
2re?
—_ T
2 ng p+k o-cq—k o ('qa- cpa ’ (3 . 59)
kpq

oo’

where the sums are over all the wave vectors (3.41) exceptk = 0.

3.4.3. Alternative treatment of the interaction term

Another treatment of the interaction term, which will be used in the
following chapter for the modified interaction considered there, consists
in first expanding 1/r; in Fourier series within the cubic box of volume Q
(see WM, p. 285). We then find

N ' 2
H =3 S 2 exp [k (n—r)). (3.60)

Ljsi K

where the prime denotes that k = 01is excluded to account for the uniform
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background of positive charge. We may thus write
' 2

v(rir) = 487; exp [ik -« (r;—r;)]. (3.61)

k

and, using (3.52),

(kioy, k20'2|v|k30'3~ koy)

! 2
= 60’101 T20a 47Te J’f exp [lk _rl)]

Q‘/\
X exp [i(ka_k4) ‘r] exp [i(ky—ky) - r,]drydr,

" 4qre

= 60‘10‘; 0204 2 ng

exp [ir, - (k—k,+k;)] dr,

Xf exp [iry - (—k—k,+ k)] dr,

2
6010‘360-20'44%. if kl —k3 = kz_k4 =k # 0’

- (3.62)
0, ]f k] - k3 # kg _k4

This leads immediately to the expression (3.59) for H', and k=0 is
automatically excluded, because it is excluded from (3.60).

3.5. First-order Perturbation Theory for a Free-electron Gas

It should be clear from what has gone before that, for a free-electron
gas, the Hartree—-Fock ground-state energy is precisely the same as that
given by first-order perturbation theory when the whole Coulomb inter-
action is treated as a perturbation. In the latter case the unperturbed
Hamiltonian consists of the kinetic energy term H, only, and the wave
function &, of this unperturbed ground state is a single determinant of
free-electron functions with k-vectors lying within the Fermi sphere
- in other words, the Hartree-Fock ground-state wave function.

The unperturbed ground-state energy is just the kinetic energy

h2k2 .
<‘D0|H0|(Do> = 2 W(‘Do g

ko
k.

Do)

ﬁ2k2
=2 kE Tyt (3.63)
(k<ky)
since ¢, P, =0 if & > kg, and each orbital state k is occupied by two
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electrons with opposite spins. Replacing the sum by an integral, re-
membering that the density of orbital states in k-space is ()/873, we have

Q
<‘D0|H0|(D0> = g—k47ﬂx2d/€
0
- Qo
T (3.64)

Now, twice the number of orbital states within the Fermi sphere is
equal to N, the number of electrons, so that
Q 47
— 3 =
473 k
and
372N

k==T5

(3.65)
Finally, then,

ﬁZQ 2 5/3 2 2/3
O e I e G

1072m\ € 10m\ 4/ 2

s

(3.66)

the atomic radius r, being defined by

dr . Q

?rs =N (3.67)
The mean kinetic energy per electron is called the Fermi energy, and

we denote it by Er. If energy is measured in rydbergs and length in Bohr

unitst, we obtain from (3.66)

E;=—ry. (3.68)

The first-order perturbation correction due to the interaction term H' is

AE(” = <(D0|H, |®0>

27re?
B Z Qk? <CD0|C1"L’“’ Cotkar Cqo Cprr'q)()> (369)

’\I”I

oo’

from (1.78) and (3.59). Now,
Ce®y=0 unless p < kg, (3.70)

T 1rydberg = me¥22 = 13.60eV.
1 Bohr unit = #%/me? = 0.5292 A.



64 HARTREE-FOCK METHOD AND FREE-ELECTRON GAS [Ch. 3,§5

CwPo=0 unless g < ky, (3.71)
and the matrix element vanishes unless

CpikoCqtar' Cqo Cor Po = =Py, (3.72)
or, using the commutation relations,

_C;+k.a' qo' q—-ktr pcr(bo +(I)() (3-73)

Since k=0 is excluded from the sum in (3.69), it follows that, with
P.q < kg, the matrix element vanishes unless

’

p=q_k7 q=P+k, og=qag .
so that the left-hand side of (3.73) becomes
;0 qu prr pu'q)() q)()’ (3 74)
and the matrix element has the value —1. Thus
AEW = _Ame? 1 (3.7%)
Q Z w‘f lp— lI|Z
Dg<ky)

an extra factor 2 arising because of the sum over o, each orbital state
being doubly occupied. It should be noted that, since p=g—k and k 5 0,
we never have p = g, so that all the terms are finite. Replacing the sums

by integrals, we find
8" |P ql*’

AE(I)
both integrals being throughout the Fermi sphere. The integration is
elementary but tedious (see WM, ch. 7, especially egs. (7.43) and (7.49))
and gives

(3.76)

"AEW = k4

77-3F

ZQ 371-2N 4/3
477( Q )

_ 3N 13 ]
4 <47r ) r_s
This is called the exchange energy.

Denoting the average exchange energy per electron by Ey, and ex-
pressing energy in rydbergs and length in Bohr units. we have

(3.77)

0.916
ry

8

EX='—

(3.78)

T
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The average ground-state energy per electron of a free-electron gas,
as given by first-order perturbation theory (or by the Hartree-Fock

method, which is the reason for the symbol Ey;), is thus

2.21 0.916
il ry
rS rS

Eur= Ep+Ey = (3.79)

3.6. Second-order Perturbation Theory for a Free-electron Gas

According to the Rayleigh-Schrédinger perturbation theory, the
second-order correction AE® to the energy of the ground state of a free-
electron gas, due to the interaction term, is given by (eq. (1.87))

i (D [H'| Do) |
En_EO ’

n=1
where E, and E, are the kinetic energies of the ground state ®, and the
excited state @, of the unperturbed system, and H' is given by (3.59).
Thus

AE® = — (3.80)

, 2me
<(I)"IH ICDO> = 2 ka <q)n|C;+k.oC;—k,rr'
k.p.g

CaorCorr | Do) . (3.81)

Since the one-electron functions, which are the elements of @, and @,
are eigenfunctions of the Hartree-Fock equations for this system, we
may deduce immediately (see eq. (3.13) and relevant discussion) that

- the matrix element vanishes if ®, and ®, differ in only one row (that is,

in a single one-electron function).

It is also clear that the matrix element vanishes if &, and @, differ in
more than two rows, since two destruction and two creation operators
could not then operate upon ®, to give =®,. Thus, if (3.81) is not to
vanish, ®, and ®, must differ in two rows and only two rows. Let us
consider this case.

We shall suppose that @, is obtained from ®, by exciting two electrons,
initially in states k,o,, k.0, to states ksos, k4o, lying outside the Fermi
sphere. That is to say, ®, is

¢)H( 0

O+ O+ - Ao e L),

the occupation numbers of the other states being the same as in ®,. We
then find
2
3 (2we/Qk?) (D, | Chrir Cp-tea Caor Cpr| Py

AE(Z) — __% kpgoo'
Kk, (h%/2m) (K24 k2 — k2 —

T103030

) , (3.82)
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where k,.k, < kp and k;.ky > ky. The factor § is necessary, because @, is
unchanged if either k,o,, k,o, are interchanged or ks;o3, kyoy are inter-
changed, so that the sum includes all the different ®,, four times. We note
that the matrix element

(3.83)

< q)n | C;fk.lr C;_k.u" Coo' Cpor | (I)O >

must vanish unless the operators destroy k,oy, k.o, and create k;0;, kyoy.

The expression (3.82) is awkward, but not impossible, and, if indeed
second-order perturbation theory were sufficient here, as is so often the
case, there would be no need for the elaborate perturbation techniques
described in later chapters. Unfortunately, this is not so, and we shall
show below that AE® diverges.

The expression (3.82) is generally written as the sum of two terms. and
this may be done in two different ways, both of which have their uses. In
the present chaptert, AE® will be split into the contribution from the
interaction of pairs of electrons with antiparallel spins (o # ¢») and
that from the interaction of electrons with parallel spins (o; = ¢,). Only
the former, which we shall denote by AE‘T?, will be explicitly calculated,
since it diverges and we only wish to demonstrate the divergence of
AE®,_ 1t is somewhat easier to handle than the parallel spin part which,
as will be seen in ch. 9, also diverges, and its divergence does not cancel
that of AE®.

3.6.1. Antiparallel spins

We shall first consider a particular @, with k,, k., k;. ky fixed and
o, = 3, o3 = £ This implies that o, = —$%, since o, # g, and we shall see
that the only non-zero matrix elements are those with o, = —1% also. In
fact, the matrix element (3.83) is zero except in the following cases:

() p=ki.q= kz,p+k=k3,q—k=k4.0'=%, o' =—3=0y
This gives

k=k;—k,=k,— k. (3.84)
which requires that

ki tk,=ky+ k. (3.85)

In other words, for a non-zero matrix element, momentum must be con-
served.
Q) g=ki.p=ky,q—k=ky.p+k=k,.o' =% 0=—

= 04

[

+ The alternative way of expressing AE® will be described in §9.2.
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This gives

kzkl—k3:k4—kg, (386)

again implying momentum conservation.

Case (2) is obtained from case (1) by inverting the order of both the
destruction and the creation operators, so that the sign of the matrix
element is the same in both cases and its numerical value is unity. Also,
we have k* = |k; —k,|? in both cases, so that the sum over ks, say, can be
expressed as a sum over k. We may consider k, to be fixed by momentum
conservation, which gives k, = k, — k, + k;.

The numerator in (3.82) thus has the value (4me?/Qk?)2, and there are
four combinations of o, and o, namely o, = +4, o3 = *3%, which give
the same value, the values of o, and o, being automatically fixed. This
cancels the factor 1 in (3.82).

Withk = k;—k, = k, — k,, we have

BA K=k — k2 = ke k| + [k — k|2 — A2 — 2

=2k (ky—k.+k). (3.87)
Finally, then,
AE® = — E m (4me?/Qk?)?
W PPk (ki —ky+ k)
or
, 16m%e*m 1
AE® = _ 2% =™ - -
¥ RO 2 Kk (p—g k) (3.88)
where p.q < kpand |p+k|.|g—k| > k.
Expressing this as an integral, in the usual way, we have
16m2etm/ Q \? dpdqdk
AE<2>:_—<_) f”#
# A \873 kKk-(p—q+k) (3.89)

It is‘customary to measure energy in rydbergs and &, p and ¢ in units of
| ke, given by (3.65), which leads to

. 3N [ dk d
AEP = — f—fd f‘—p
* 167 ) &) )k (p—gq+i) " (3-90
the region of integration now being
p.g<1 and |p+kl|.|g—k > 1. (3.91)

Now, the greatest contribution to the integral will be from the region
Where £ is very small, and in this region we must have p =~ l and g = 1,
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since p < 1 and |p+k| > 1, etc. Thus, for very small &, p and g must lie
in a shell of approximately unit radius and thickness of the order of &. In
other words, the greatest contribution to the integral is from states p and ¢
near the Fermi surface. In order to investigate this further, let us define
xand y by

k- p= kpx, k-q=—kpy. (3.92)

Now, from |p+k| > 1, we have
pi+ k4 2kpx > 1. (3.93)

If k is very small, so that £* can be neglected and p = 1, this becomes,
approximately,

kx> 1—p, (3.94)
so that the limits on p are
1>p>1—kx (3.95)
Similarly, we find that
1>qg>1—ky. (3.96)

Clearly, both x and y must be positive, since k is positive.
Thus, in the region where k is very small,

qufFTp(i_Hc):qujk(prZwk)

~ f qu’k(%y_)_ (3.97)

Now, if 9 is the angle between k and p, so that x = cos 6, the volume
element for the p integration, using spherical polar coordinates and the
fact that the integrand is independent of the azimuthal angle, is

2wp?sinfdodp = —2wdxdp. (3.98)

Since x is positive, so that 0 < 8 < i, we then have
dp f ! f ! dp

——— =27 | dx —

fk(x+y) 0 1—kz K(x+Y)

! xdx
= 3.99
277"[0 Xty ( )

The ¢ integration is similar, giving finally

dp J’l J’l xydx
————=(2m)%k | d , 3.100
qufk(x+y) (2m) o Y 0o X+Yy ¢ )
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for very small k. The double integral on the right is independent of &, so
that the contribution to AED, eq. (3.90), from small values of k is pro-
portional to

dk dk
fﬁ_%f_k-_wogk. (3.101)

This tends to—c as k — 0.

We have thus shown that AE®, and consequently AE®, diverge
logarithmically at £ = 0. The part of AE® due to interactions between
electrons with parallel spins will be seen in ch. 9 to consist of two terms,
one of which is the same as AE? and the other of which does not diverge
atk=0.

Second-order perturbation theory therefore does not work for a free-
electron gas, if the perturbation is taken to be the whole of the Coulomb
interaction of the electrons. In fact, it will be seen, also in ch. 9, that the
perturbation energy of every order after the first diverges. None the less,
perturbation theory can be applied in this case, at least when the electron
density is high, but the elaborate techniques required will take up much
of the remainder of the book. First, as a slight digression, we shall, in
the following chapter, describe an attempt to circumvent the difficulty
with the second-order perturbation energy by using the concept of plasma
oscillations.



CHAPTER 4

PLASMA OSCILLATIONS IN A FREE-ELECTRON GAS

4.1. Résumé of the Plasma Theoryt

Any highly-ionized gas, that is, a system of positively charged ions
and virtually free electrons, is called a plasma. Such plasmas occur in
gas discharge tubes, and have been extensively studied for many years.
Clearly, a metal may also be regarded as a plasma, since it consists of a
lattice of positive ions and a gas of almost-free valence electrons. The
motion of the relatively heavy ions may generally be neglected in com-
parison with the motion of the electrons, so that, as an idealization of a
plasma, we may take the free-electron gas described in §3.4, where the
ions are replaced by a uniform distribution of positive charge. We shall
be concerned exclusively with such an idealized plasma in the present
work.

According to classical electromagnetic theory a free-electron gas will
exhibit oscillations of the electron density, analogous to sound waves,
which are known as plasma oscillations. If dispersion is neglected, the
angular frequency w, of these oscillations is

4 Nez 1/2
wp=( 7sr)m ) , 4.1

T An introductory account of the theory of plasma oscillations in an electron gas, and
its application to metals, is given in WM, ch. 10. Although the classical theory and. the
principal results of the quantum theory are discussed there at some length, the quantum-
mechanical theory itself is not presented in detail - in particular, the unitary transformation
of the Hamiltonian is not described. In order to reduce overlap to a minimum, we shall
here. apart from the initial summary, concentrate upon those aspects of the theory not in-
cluded, or only briefly described, in WM.
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where N is the total number of electrons and  is the volume of the
plasma. There is, in fact, a certain amount of dispersion, the angular
frequency w, corresponding to the wave number k (i.e. to the wavelength
27r/k) being given approximately by

of = wp+ K (v])ay

2
= w,2,+—;n~EFk2, 4.2)

where (v#),, is the average of the squared velocities of the electrons and
Eg is the Fermi energy (eq. (3.68)). The dispersion is small, however,
because there is an upper limit, denoted by k., to the wave number,
beyond which plasma oscillation does not occur.

Following Bohm and Pinest, we express the particle density (regard-
less of spin — compare eq. (2.141))

p(r)=> 8(r—ry) (4.3)

i=1

in Fourier series
_1 o
P(r)—QngeXP (lk r) (44)

within the box of volume (. This defines the density fluctuations p, as
pr = f p(r) exp (—ik-r)dr="3 exp (—ik - r;), 4.5)

so that py = N. Bohm and Pines found that, within the random phase
approximation, which will be described later, the equation of motion of

Pi 18

Prt+ wipe =— 2 (k-v;)?exp (—ik-r;), (4.6)

t In addition to the elementary account in WM, more detailed accounts of the theory,
together with references to the original papers, may be found in the following review
articles:

Pines, D., 1955, Solid State Physics 1, 367 (Academic Press, New York).

Raimes, S., 1957, Reports on Progress in Physics 20, 1 (Institute of Physics, London).

A very full discussion of the theory is given in the following book:

Pines, D., 1963, Elementary Excitations in Solids (Benjamin, New York).

t Other definitions, differing from ours by a multiplying constant, are often used - for
example, the factor 1/£) in (4.4) may be absorbed in the p;. Bohm and Pines took the volume
 to be unity, so that, although their expression for py is that given in (4.5), in their work
po = N/, the average electron density.
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or, alternatively,
ﬁk=_2 [(k-v;)?+w}] exp (—ik - 1), 4.7)

where v; = #,. This shows clearly that, for very small &, the p, will oscil-
late approximately with angular frequency w,. For larger k, however,
these oscillations will be damped by the random thermal motion of the
electrons, which gives rise to the term on the right-hand side of (4.6).
Eq. (4.7) shows that plasma oscillation might be expected so long as

wp > kvy, (4.8)

where v, is the speed of an electron at the Fermi surface. As a very rough
upper bound to the value of k. we may thus write

ke = wy/vo, (4.9)

which gives the value k7' =~ 1 A for the density of the valence electrons
occurring in metals. This extreme value of k, when inserted in eq. (4.2),
leads to a value of w, differing from w, by only 26 per cent.

All the foregoing is based upon classical electron theory. Although we
expect the qualitative results still to hold, it is clear that, for an electron
gas of the density occurring in metals, quantum mechanics must be used,
and the method of doing this will be described in the following section. As
a preliminary, we might apply elementary quantum theory to the results
described above. The plasma oscillations may be represented approxi-
mately by a finite set of harmonic oscillators with angular frequency w,,
one for each density fluctuation p, with k < k.. According to quantum
theory the ground-state, or zero-point, energy of such an oscillator is
$hw,, and the excitation energy, that is, the energy required to raise the
oscillator from one state to that of next higher energy, is fiw,.

The magnitude of the quantum #w,, which we shall call the plasmon
energyt, is crucial to the success of the plasma theory as a computational

t In WM, ch. 10, the term plasmon was used essentially as a short-hand form of plasma
oscillation. This is still quite common, although it is now more usual to use the term to mean
a quantum of plasma oscillation, just as a phonon is a quantum of sound. Such quanta are
known as elementary excitations and may often be treated as particles. In particle language
we would refer to the creation or emission of a plasmon rather than to the excitation of a
plasma oscillation. 1t is seldom that particle language is used consistently, however. For
example, the state of the system in which all plasma oscillators are in their ground states
should, strictly speaking, be referred to as the state in which no plasmons are present, but it
is quite customary to say that the plasmons are in their ground states. Although this is un-
likely to lead to confusion, we shall avoid such inconsistency by not using the particle
language.
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tool, as we shall now explain. From eq. (4.1) and the definition of r, in
eq. (3.67), we find

2V3
fw, = T ry, 4.10)

where 7, is measured in Bohr units. For the valence-electron density
occurring in sodium, with r; = 4 Bohr units, this gives Zw, = 0.433 ry =
5.9 ¢V. For the valence-electron densities occurring in all metals %w,, is
found to lie between about 3 and 25 eV.

Now, at normal temperatures T, only relatively few electrons in states
near the Fermi surface are excited, and their excitation energies are of
the order of kT, where k is Boltzmann’s constant. Since states lying well
below the Fermi surface are all occupied, according to the Pauli principle,
it follows that thermally excited electrons have only energy of the order
of kT, which is about 0.025 eV at room temperature, to give away. This
energy is very small compared with the plasmon energy %w,,, which means
that thermal excitation of plasma oscillations can usually be neglected.
In other words, plasma oscillations may generally be assumed to remain
in their ground states unless excited by some other method, such as the
passage of a fast charged particle through the metal.

The foregoing is a most important result, for it means that the plasma
oscillations take no active part in many electronic processes and may
often be ignored. Since plasma oscillation is an organized motion of a
large number of electrons, it may be inferred that the long-range part of
the Coulomb interaction is responsible for the plasma oscillations, so
that in calculations where the latter may be ignored the former may also
be ignored. We shall see in the following section that the remaining inter-
action has an effective range of about 1 A, and this is so short that reason-
able results might often be expected by ignoring this interaction also,
that is, by treating the electrons as non-interacting particles. The plasma
theory thus offers a justification of the independent-particle approxima-
tion, which has been used with much success in the theory of metals.
Even when the short-range interaction cannot be ignored, as in the cal-
culation of the energy of the system, we shall see that it can be treated by

elementary perturbation theory without divergence difficulties being
€ncountered.



74 PLASMA OSCILLATIONS IN A FREE-ELECTRON GAS [Ch.4,§2

4.2. Quantum-mechanical Theory

We are considering a box of volume ) containing N electrons together
with a uniform distribution, or background, of positive charge, as de-
scribed in §3.4. Using the expression (3.68) for the Coulomb interaction,
the Hamiltonian for the system becomes

N N ' 2
H=3S 243 5 2 explik- (ri—r)), 4.11)

i=1 i.g#%1 k

Sl

where p; (= iAV,) is the momentum operator for electron i. Alternatively,
using the definition (4.5) of the density fluctuation p,, we may writet

N 2 2
— Di 2me ko
H ;—2m+§ o (PP —N). (4.12)

The energy levels of the system are the eigenvalues of the Schrodinger
equation
HY =EV, 4.13)

and may thus be found, in principle, without explicitly considering plasma
oscillations. However, as explained in the foregoing section, we expect
plasma oscillations to occur, and this leads us to suspect the possibility
of transforming the Hamiltonian (4.12) in such a way that these oscilla-
tions show themselves explicitly as a finite set of simple harmonic
oscillator Hamiltonians, one for each k with k < k., that is, Hamiltonians
of the type}

PP, +*0}0,), (4.14)
where P, and Q, are the canonically conjugate momentum and co-

ordinate operators relating to the oscillator.

t Here and in the remainder of this chapter we drop the prime on the summation sign.
In any sum over wave vectors k it is to be understood that k = 0 must be excluded.

i To see that this is indeed a simple harmonic oscillator Hamiltonian, let us take as an
example

+ g d_
O, =x=0,. Pk——lha—Pk,

which are canonically conjugate operators. Then (4.14) becomes

which has the form of the simple harmonic oscillator Hamiltonian encountered in ele-
mentary wave mechanics (cf. WM, eq. (1.53), with m = 1). In this simple illustration we
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To find the necessary transformation operator is a matter of inspired
guesswork, with a knowledge of the result which is desired. In fact, it is
found convenient to start, not with the Hamiltonian (4.12), but with a
so-called model Hamiltonian, which contains an extra term

H,=3 (3FB —MFp,). (4.15)
k<kC
where
4776‘2 1/2
M, = (Q—kz> (4.16)

(N.B. Here and in future we write 2, to mean 3., ,.)

This introduces immediately a set of P,, and implicitly a set of Q,, with
k < k.. In order to ensure that (4.15) is Hermitian we impose the con-
ditions$

Pi=Py, Q!=0., (4.17)

the latter being implicit. This means that P, and Q, are not Hermitian.
However, we note that the same condition is satisfied by p,- since, from
4.5),

PL=Py=p,. (4.18)

The interpretation of this additional term need not concern us — we
may regard its inclusion as a formal step to be justified by results. Of
course, it is not permissible to take this step unconditionally, for in so
doing we have increased the number of degrees of freedom of the system
by the number of the oscillator variables, namely, the number of k-vectors

have chosen Q rand Pxto be Hermitian (see Appendix I). If this were always so, we could
write (4.14) as

HP2+a2Q2).

However, the more general form we have used does not require P and Qy to be Hermitian
(although (4.14) itself is Hermitian, of course), and this is desirable, since we expect P, and
Oy to be related to py;, which, as eq. (4.18) shows, is not Hermitian.

} The first term is Hermitian by the rules of Appendix I, whether (4.17) applies or not,
and for the second term we have

(2 MkPIka)T= 2 M Pypi
k<k, k<k,

=3 M, p% =3 MiFp.

K<k, k<,

from (4.17), (4.18) and the spherically symmetrical distribution of the k-vectors.
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lying within a sphere of radius k. in k-space, which is

4.19)

Our intention, however, is merely to re-describe part of the motion of the
electrons in terms of plasma oscillations, the number of degrees of free-
dom remaining fixed at 3N. We therefore impose on the wave function ¥
the subsidiary conditions

PY=0, k<k, (4.20)
We assume that P, and Q, satisfy the commutation relations
(R, Qp]=—ihd,, (4.21)

(this, in fact, is what we mean by saying that P, and @, are canonically
conjugate), so that P, can be represented by the differential operator
—ifd/8Q,. In this representation, the subsidiary conditions (4.20) become

£= 0, k<k, (4.22)

30,
and merely ensure that ¥ does not contain any of the Q,, but is a function
of the electronic coordinates only. It is clear then that the additional
term in the Hamiltonian cannot affect the eigenvalues, for it operates on
W to give zero; thus

(H+H,)V = HY = EV, (4.23)

with the same E as in (4.13).

It seems, therefore, that the inclusion of the extra term is correct} but,
so far, it is also pointless, for it gives us no new information. To remedy
this we shall make a unitary, or canonical, transformation of the Hamil-
tonian H+ H,. As shown in Appendix II, it is legitimate to make any
such transformation, but the problem is to find one which will give sig-
nificant and useful results.

The unitary operator we choose is

U = exp (iS/%), (4.24)

t There is, in fact, a slight difficulty regarding the normalization of ¥. Since ¥ does not
contain Oy, the integral of |¥|? with respect to QO diverges, so that, strictly speaking, ¥ is
not normalizable. We assume, however, that this formal difficulty may be overcome by
applying some type of ‘box normalization’, ultimately allowing the dimensions of the box
(that is, the range of values of the Q, ) to increase without limit.

Ch. 4,§2) QUANTUM-MECHANICAL THEORY 77
where

S = E Mkapk. (425)

k<kg

We have

U'=exp (—iS /%) (4.26)
and

S'=3 MQipf=3 MiQ.p,=S 4.27)
k<k, ke<k,

by (4.17), so that
U'=U, (4.28)

and the operator U is, indeed, unitary. The transformation we require is
such that any operator O becomes O,,,, say, where

Opew = UTI0U, (4.29)
and the wave function ¥ becomes V..., where
Yoew = U™ = exp (—iS/h) V. (4.30)
Now, let us see how the various operators transform. First, we have
r)rew=Ur,U=r, (4.31)
and
(Qnew=U"Q,U=Q,, (4.32)

since r; and O, commute with U. It also follows that

(pk)new = U_lpkU = Prk- (4.33)
;n other words, r;, O, and p, are unchanged by this transformation. This
1s not so for P and p;, however. Owing to (4.21), we have

[P, U] = —iﬁaﬁng, (4.34)

SO that

(Pnew = U"P.U = Py+ U™ [P, U]
. al
— P — ﬁl}—l__
£ 0Q4

= P, +M;p,. 4.35)
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Similarly, if (Pig» Piy» Piz) are the Cartesian components of p;, and
(x:, ¥i, z;) those of r;, we have

L oU
[piz, Ul = _‘ﬁa_x,-’ (4.36)
etc., so that
(Pi.t)new =U"piU=piz+ U [pi.t’ U]
U M
= o —— 1 1 = . —_—
Dix U ax; Dizt+ ax;
=pie—i > MOk, exp (—ik-r). 4.37)
K<k,
It follows that
(Pi)new = pi_i 2 Mkak €xXp (_lk . ri) . (4.38)
K<k

We note that the subsidiary conditions (4.20) become
(UTRUUY =0, k<k, (4.39)

or

(Pk +Mkpk)q,new = 0, k < kc, (440)

so that the field momenta P: are directly related to the density fluctua-
tions p, for long wavelengths, which we expect to oscillate with roughly
the plasma frequency w,.

We now wish to find

H,.,=U'YH+H)U =%, (4.41)

say, where

2
H+H,=3 3-+4 3 Mi(pipsi—N)
i k

+ S GPP—M,Pip)). (4.42)
k<kg
First, we have
pi = ph+ph,+ ph, (4.43)

and, from (4.37),
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2
(Pe)en = [pm—i S MOk, exp (—ik - n-)]

k<k,

=ph—i Y MiQik,[pi exp (—ik - r;) +exp (—ik - r;) ;)

k<ke

— 2 M M,Q,0k 1. exp [—i(k+1) - r]. (4.44)

kd<ke
Now,

. ., 0 .
[Piz, €xp (—ik - 1)) ] = —lﬁa exp (—ik - r;) = —hk, exp (—ik-r)., (4.45)
so that

exp (—ik - r))pir = pip €Xp (—ik - r;) + ik, exp (—ik - r;)  (4.46)

and
(pix)%ew = pzzx_l 2 Mkakx(2p1x+ﬁk.r) €Xp (—lk ’ ri)
K<k
- 2 M M,0, Okl exp [—i(k+1) - r]. 4.47)
k.<k¢
This gives

p} P .
(E Zm)new =S 25~ 3 MQik- (2pi+hk) exp (—ik - 1)
i i k<ke

1 .
"'ﬁz 2 MleQlek’ lexp [_l(k+l) 'ri]. (4.48)
i kd<ke

The second term on the right-hand side of (4.42), the Coulomb inter-
ac.tlon, commutes with U and is thus unchanged in the transformation. It
will be convenient to write it in the following way:

1Y Mi(pip—N) =Hor 1 S Mi(pip—N),
k
ke (4.49)
where

Hy, =% > Mi(pipi—N), (4.50)

which we shall show to be a short-range interaction.
Passing to the third term on the right-hand side of (4.42), we have, from
(4.35),
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(PLPe)new = (Pk+Myp¥) (Pt Mypi)
= PLR +M,(Pipy+ Pipi) + Mipipy. (4.51)
Now,
E M, (Pipi+Pep}) = 2 Mk(Pl:pk+R-kpjz)

k<ke k<ke
=2 3 MiBops, (4.52)

ke<ke

using (4.17), (4.18) and the spherically symmetrical distribution of the
k-vectors. Hence

(S #R) =3 mn

new

k<k k<l
+ 3 MiPip,+% S Mipip,. (4.53)
k<ke ke<ke
Finally,
(MkP;pk)new = Mkpk(Plt +Mkpt) ’ (454)
and
(- = MiPin) =S MBip— 3 Miste (459
k<ke new k<ke k<ke

The new Hamiltonian & is the sum of (4.48), (4.49), (4.53) and (4.55),
which gives

%=2£—————2 S MyQuk - (2p;+#k) exp (—ik - r,)

2m 2m i k<k,
1
+_mz 2 MM, Q,Q k- lexp [—i(k—1) - r]
i k.l<ke
2me?N
+Hg,— 3 Z';kz + S $PIP. (4.56)
ke<ke k<ke

We have changed I to —I in the third term on the right-hand side. The
latter may be expressed as the sum of two parts - those terms with k=1
and the rest. The first part becomes

2’7TN e

S M0 = S 0.0,
k<ke K<k,
=1} 3 010, 4.57)

k<l
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Hence, (4.56) may be written

%2

+ E $(P{R, +prka)

k<ke
. 27;)€k£V+H“ +H, +K, (4.58)
k<ke
where
i .
Hmt:—ﬁz Y M Q.k- (2p;+1tik)exp (—ik-r)  (4.59)
i k<ke
and

=2LZ > MMQ,Q k- lexp [<i(k—1) - r]. (4.60)

i k.l<ke
k=l

It is important to realize that no approximations have been made in
getting from (4.11) to (4.58). The new Hamiltonian is perfectly accurate
(subject, of course, to the subsidiary conditions) and contains the re-
quired oscillator Hamiltonians and short-range interaction. However, it
also contains the extremely awkward terms H;,; and K, and the viability
of the method depends upon our being able to deal with these in a fairly
simple manner.

In fact, it is an excellent approximation to drop K altogether. This is
because the general term of the sum over k and Iin K contains

e = Y, exp [—i(k—1) - r],

which, with k # [, is expected to be very small compared with p, (= N),
the terms containing p, having been retained in (4.57). The reason is
simply that p,_,, k # [, is the sum over all electrons of phase factors of
the type exp [—i(k—1) - r;], that is to say, complex numbers of modulus
unity. Now, the electrons are randomly distributed, so that p s is the
sum of a large number of unit vectors with random directions in the com-
plex plane. Clearly this sum must be small compared with N, since for
each unit vector there will be one in almost the opposite direction which
will very nearly cancel it. This reason for the neglect of K is known as
the random phase approximation, and makes its appearance in the
classical theory of plasma oscillations as well as in various guises through-
out the whole theory of many-electron systems.

The interaction term H,, cannot immediately be dismissed for the
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same reason, owing to the presence of p;-for each phase factor
exp (—ik - r;) there will be one which is very nearly its negative, but it is
unlikely that the corresponding momenta will be the same. Bohm and
Pines demonstrated the effect of this term by a further unitary transforma-
tion, which almost completely eliminated H,,,. This transformation is too
complicated for inclusion here, but its principal effects on the rest of the
Hamiltonian are to change the first two terms of (4.58) to

2 m ( )+ > PR+ 0i0iQh). (4.61)

k<ke
where

B = k./ky, (4.62)

and w; is given, as far as terms of the second order in k, by the classical
dispersion relation (4.2). It will be shown that, for sodium, 8 = 0.7, so
that the change in the particle kinetic energy is about 6% or 0.01 ry per
electron. Also, although we have already seen that the dispersion is slight,
the change in the zero-point energy of the oscillators in going from w, to
w;, will cancel some of the change in the particle kinetic energy. We may
conclude, therefore, that the effect of H,y,, if not completely negligible, is
certainly very small. In the interests of simplicity, we shall drop this term
also, so that the approximate new Hamiltonian is

H = 2 2 (PT +prka)

2
- 2 ka +HS.I'.7 (4'63)

subject to the subsidiary conditions (4.40). This describes the system as
a set of plasma oscillations plus a set of particles, or, more correctly,
quasi-particles, whose interaction is not the full Coulomb interaction but
H,.. The third term is constant and represents part of the electron self-
energy which is not accounted for by the plasma oscillations.

Let us consider H, .. From (4.50), we have

Ho, =Y $Mi(pipi—N)

k>ke

=2 2 2&2 exp [ik - (r,—r)]. (4.64)

9% k>ke
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An elementary calculation (see WM, §10.5) shows that this may be ex-
pressed in the form

2 2 ZF(k r), (4.65)

i#j
where

Flks) =1—= f < sinx g (4.66)

The potential energy of the effective interaction between two particles
a distance r apart has thus been changed from e?/r to

eTZF(kcr). (4.67)

The latter is the potential energy of a screened interaction, which is
virtually zero for k.r > 2. In other words, the effective range of the inter-
action is about 2k_?, or, as we shall see, about 2 or 3 A.

Of course, the validity of the approximate Hamiltonian (4.63) depends
upon the value of k7! being about 1 A or more, while, if Hg, istruly to be
a short-range interaction, we must have the value of k;* about 1 A or less.
It thus appears that an optimum value of k3! is about 1 A, as suggested
by the classical theory. We shall now show that this is confirmed by the
quantum-mechanical theory.

4.3. The Energy of the Ground State

We have already remarked that the eigenvalues of the Hamiltonian
are unchanged by the transformation (otherwise the latter would not be
permissible). This is easy to see, since, from the Schrodinger equation

HY = EV,
we have immediately
UTHUU YW = EU'V, (4.68)
or
HV¥new = E¥ew, (4.69)

with the same E as before. We shall only be interested in the ground
state, so let us take ¥,,,, and E to be the wave function and energy of
the ground state (at the absolute zero of temperature).

With # given by (4.63) the eq. (4.69) is separable, and ¥,,,, may be
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written as a product of a function of the plasma coordinates and a func-
tion of the particle coordinates. The plasma oscillations will, of course,
be in their ground states, and, since the particle interaction is of such short
range, it should be a good first approximation to treat the particles as if
they were non-interacting. Hence, approximately, we may write

Voo =G(...0;.. )D(...x5...), (4.70)

where G is a product of harmonic oscillator ground-state wave functions
and ®, is, as usual, a single determinant of free-electron functions.

The ground-state energy is thus, approximately, the sum of the zero-
point energies of the plasma oscillations (3#w, for each) and the energy
of the particles. If we denote the energy per electron by Egp in this
approximation, we have

E = NEg;
fiw, 2meEN
—NE+ 3 (=T (@i, @D

K<k

the last term being the first-order perturbation energy, or exchange
energy, due to Hy ;..

If we replace the sum by an integral, the second term on the right-hand
side becomes

Q fkc (ﬁw,, 2w N

8’ 2 1272 -

Qhw k2 Neék,
2q) — 2=2Wplec  LVE K¢ 4.72
> Y )41rk dk . ( )
Now, from (3.65),

0

k= q (4.73)
so that, if we set 8 = k./ky as before, (4.72) becomes
Nhw, .,  Nekg
" B - B. (4.74)

H,,, eq. (4.64), differs from the whole Coulomb interaction H’', eq.
(3.60), only in that the k-sum has the condition k > k.. We may therefore
evaluate (®,|H, . |®,) by the same method, apart from the final integra-
tion, as was used to evaluate (| H'|®,) in §3.5. We obtain

4me? 1
<(D Hs.r. D) =— . (475)
0| | 0) Q pzyq Ip_q|2
(P g<ke,
|P—al>k)
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Replacing the sums by integrals, we find

L\ [ _dpdg
(6) [ e (4.76)

the region of integration being given by

47re?
<q)0|Hs.r.l(D0> = QO

pq <ke |p—q|>k.

The evaluation of the integral is straightforward but lengthy (see WM,
§10.6), and we merely quote the result

INe*ke(, 48 B> B
®o|H .| =————F( - ———). .
(Dy|H 1 | D) . 1 3 +2 i3 4.77)

Substituting (4.77) and (4.74) in (4.7 1) gives, for the average energy per
electron,

oy gy _ ke

Egp = Ex+ 4 B? B
T
_3ethke( 4B BB
47 (1 3 +2 48>' (4.78)

Expressing energy in rydbergs and length in Bohr units, and making use
of egs. (3.65), (3.67), (3.68) and (4.10), we have

2 4
E,=22l, V3 0.916/1+§__B)ry

3
T A T

_221_0916 0458, 08665, 0019, .o

rg rS rS r:S?'/2 rS

Apart from the fact that we have made certain assumptions about its
order of magnitude, 8 is at present an arbitrary parameter, so that it
would seem perfectly legitimate to choose 8 by minimizing Egp. It must
be remembered, however, that 8, as well as fixing the number of plasma
variables, also determines the number of subsidiary conditions, and one
would expect to have to take these into account in any minimization
process. Furthermore, we have ignored the subsidiary conditions in con-
structing our approximate wave function (4.70). Bohm, Huang and Pines?
claim to show, however, that the ground-state wave function is inde-
pendent of the subsidiary conditions, and faute de mieux we shall accept
this.

t Bohm, D.. Huang, K. and Pines, D., 1957, Phys. Rev. 107, 71.
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Dropping the last term of Egp, which is of a smaller order than the
energy due to Hy,;, we find

9Ege _2.598 , 0.916

B e BZ— " B. (4.80)
Equating this to zero gives
B=10.353r17 (4.81)
or
k. = 0.353r1%ke = 0.677r 12, (4.82)

where r, is in Bohr units. For sodium, with r; = 4 Bohr units, this gives
B=10.71 and k;'=2.95 Bohr units = 1.56 A. This value is consistent
with our previous assumptions about k.

Of course, Egp is not the total energy per electron, since it does not
include the effect of H,, upon the wave function. In other words, it con-
tains only the first-order perturbation energy due to Hy,. We must now
consider the higher-order corrections.

4.4. The Correlation Energyt

The effect of the Coulomb repulsion between electrons is to correlate
the electronic motions in such a way as to reduce the probability of two
electrons closely approaching each other. Such correlations among the
electronic motions may be called Coulomb correlations, to distinguish
them from another type of correlations, which are due to the Pauli prin-
ciple. The Hartree—Fock method, for example, takes account of the latter,
but takes no account at all of Coulomb correlations.

The correlation energy is defined as the total energy, calculated with
proper allowance for Coulomb correlations, minus the Hartree-Fock
energy. We shall denote the average correlation energy per electron by W.

In the work of the previous section we may say that long-range
Coulomb correlations are accounted for by the plasma oscillations, but
short-range Coulomb correlations, those due to H,,, are neglected. In
other words, Egp already includes part of the correlation energy, which
we shall call the long-range correlation energy and denote by W, per
electron. The remainder of the correlation energy, not included in Egp,
we shall call the short-range correlation energy and denote by W

+ See WM., §§6.3,9.5 and 10.7 for an elementary account.
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4.4.1. The long-range correlation energy

The Hartree~Fock energy per electron, given in eq. (3.79), is

2.21 0.916
Euyr= 2 - . ry. (4.83)
Subtracting this from Egp, we have
W)= Egp— Eyy
0.458 0.866 0.019
== . B+ F3i2 B+ r. Biry. (4.84)

With the value of 8 given in (4.81), this becomes
W, =—0.019+40.0003r, ry. (4.85)

This is negative, as expected, since the correlation energy must be
negative (i.e. the correct total energy must lie below that of the Hartree—
Fock approximation) and W), is just part of this energy. The value of B
has, infact, been chosen to give the lowest value of Egp, that is, the largest
value of —W,. This is a reasonable procedure, since it gives the greatest
improvement of the total energy on that of the Hartree-Fock theory,
without taking into account the more awkward short-range correlations.

4.4.2. The short-range correlation energy

It has already been mentioned that Egp contains only the first-order
perturbation correction due to H,,. This is because the particle wave
function ®,, eq. (4.70), is a single determinant of free-electron functions.
which would only be correct if the particles did not interact. The particle
wave function should, in fact, be an infinite sum of determinants, with
coefficients determined by H,,. The method of procedure is that de-
scribed in §3.6, except that the perturbation is now the short-range inter-
action instead of the whole Coulomb interaction. We found that the
§econd-order perturbation energy due to the latter diverged. but the new
interaction is of such short range that we may expect the second-order
perturbation energy no longer to diverge, but in fact to be quite small. In
this case, higher-order perturbation corrections might be neglected. We
shall anticipate this result and take the short-range correlation energy
per electron to be given by

Wom L L)
n E()

n=1

(4.86)

using the same notation as in eq. (3.80).
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Since, as was indicated when obtaining eq. (4.75), H;.., €q. (4.64).
differs from the whole Coulomb interaction H', eq. (3.60), only in that the
k-sum is over k > k., instead of over all k, we can adapt the results of
§3.6 immediately to the present case merely by imposing the condition
k > k.. Thus, for example, in terms of the creation and destruction
operators for the free-electron functions, we have, from (3.81),

<‘bn|Hs.r.lq)0> = Z k <(Dll|c+k(,- gk’ qu' yrr[(D()) (487)

p.q.k(k>k,)
oo’

Now, in §3.6, since we were only concerned to show that AE® di-
verges, we simply considered the contribution from antiparallel spin
correlations, which itself diverges. Here again we intend to consider
only antiparailel spin correlations, but this now requires justification,
because we hope to obtain a finite numerical value for W. The justifica-
tion lies in the effect of those correlations, mentioned previously, which
are due, not to the Coulomb interaction, but to the Pauli principle as
embodied in the use of determinantal wave functions. These correlations
occur only between electrons with parallel spins, and the net effect is
that any electron during its motion appears to be surrounded by a
spherical hole, called the exchange or Fermi holet, in the distribution of
electrons with parallel spins. The radius of the Fermi hole is roughly r,,
that is, a distance comparable with the screening distance, about k_?, of
the short-range interaction for actual metallic densitiest. It follows, there-
fore, that electrons with parallel spins, purely as a result of the Pauli
principle, will rarely come close enough to each other for the short-
range interaction to have much effect. We shall therefore neglect the
contribution of parallel spin interactions to Wy, which, from eq. (3.88), is
then given by

1672%e*m 1

N#202 2 kk- (p—q-+k)’ (4.88)

W,=—

where p.q < ky, k > ke, and |p+k|.|g—k| > k. This differs from (3.88)
only in that here we have k& > k..

1 A detailed explanation of this is given in WM, §§6.3 and 7.6.

$ From (4.82), we have, for r,= 2, k7' = 2, and for ry=4, k7' ~ 3 (all in Bohr units). [t
should be noted, however, that, for r = - 0. 01, say, k' = 0.15, dnd as r — 0, the radius of
the Fermi hole becomes negligible compared with the screening distance of the short-
range interaction. The approximation used here is not expected. therefore. to be valid in the
high density limit.
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Transforming this to an integral, as in eq. (3.90), we find

Vs =" l6n 5[ J fk (r— q+k) Y, (4.89)

the region of integration being given by p,q < 1, k > g, and |p+k|.|qg— k|
> 1, since k. = 8 when measured in units of k. It is immediately obvious
that there is no logarithmic divergence at k = 0 in this case, since k is
never zero.

We shall not calculate the integral in (4.89) directly, but, by the same
method used to show the divergence of (3.90), we shall obtain W, in the
approximate form

W,=Alogr,+B, (4.90)

where A and B are constants. We assume thatt 8 < 1, so that the greatest
contribution to the integral will come from k =~ g, for whichp ~ 1,q = 1.
From eqgs. (3.97) and (3.100) we then obtain

dp g " ! oxdx
d f————% 2 Zkf d f .
f O B ——— (2m) Y 4.91)
and, substituting in (4.89),

W, ~ _3(277')2] f f xdx
1673 x+y

_ dkf dyf xdx

2
=P(1—log2) log B+ 8. (4.92)

Here we have arbitrarily cut off k£ at an upper limit of unity, compensating
for this by the addition of a constant &, which is expected to be small.
If we now assume
B ri, (4.93)
as in (4.81) (the value of the constant of proportionality is immaterial as
far as the logarithmic term is concerned), we obtain

1
W, = —T-r—2(1—log2) logrs+ B
= 0.0311 log r,+ B, (4.94)

t For 8 given by (4.81) and the values of r, occurring in actual metals, this is not strictly

true. For example, 8 = 0.7 for sodium. However, this is not likely to affect the logarithmic
term.
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where B is a new constant. The direct evaluation of the integral in (4.89)
is rather tedious. It has been carried out by Pines, and we quote the value
of B obtained by him, namely,

B =—0.091ry. 4.935)

Pines also obtained an additional very small term proportional to r,,
which we shall neglect. If we also neglect the equally small term propor-
tional to r in W1, eq. (4.85), we obtain, finally,

W=W,+W,=0.0311logr,—0.110 ry. (4.96)

After various refinements, including a more careful treatment of the
interaction between the electrons and the plasma oscillations, Noziéres
and Pinest obtained the slightly amended formula

W =0.0311logr,—0.115ry. “4.97)

The change in the value of the constant is hardly significant, but this is the
formula we shall compare with the results obtained by the direct per-
turbation treatment described in ch. 9. It is certainly incorrect at very
high and at very low densities, but in the region of actual metallic densities
it yields values of W which are of the size needed in cohesive energy
calculations. In the case of sodium, for example, with r, = 4 Bohr units,
it gives W =—0.072 ry, compared with the value —0.075 ry given by the
Wigner formula (see WM, p. 273)

__ 088
T ht78™

(4.98)

which has been used successfully for many years in calculating cohesive
energies.

From a rigorous mathematical point of view the foregoing calculation
of the correlation energy is defective in many ways. None the less, it is
undoubtedly the simplest available method of obtaining the desired
results. It has one great advantage over more mathematically sophis-
ticated calculations, in that it presents a simple and acceptable physical
picture of the effects of the electronic interactions. Even in a qualitative
sense this is valuable, but the plasma theory has, of course, yielded many
useful quantitative and semi-quantitative results (particularly in the fields

+ Nozieres, P. and Pines, D., 1958, Phys. Rev. 111, 442,
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of band theory and electron penetration phenomena) which we do not
wish to go into here. Nor do we wish to include accounts of the several
attempts to establish the theory on sounder foundations and to extend its
range of applicability. These are very complicated, and, as far as the
correlation energy, which is our main interest, is concerned, add very
little to the results obtained above. Some further remarks about the
plasma theory will be made at the end of ch. 9.



CHAPTER 5

THE SCHRODINGER, HEISENBERG AND INTERACTION
PICTURES

5.1. Time Dependence and the Schrodinger Picture

The basic problem which concerns us is that of finding the energy
levels of a many-electron system, which are the eigenvalues of the
Schrodinger equation

HY = E¥. (5.1)

The Hamiltonian H, which was introduced in §1.2, does not contain the
time explicitly, so that the time dependence of the wave function ¥ is
trivial. The time-dependent Schrodinger equation is (see WM, §11.1)

HY (1) = iﬁ%\lf(t), (5.2)

where we have simply written ¥ () for the wave function at time ¢. In
the remainder of the book it will, in fact, be convenient to assume a
system of units in which # = 1. This will avoid the appearance of a factor
1/ in the many exponents which occur. In such a system of units, eq.
(5.2) becomes

=id
HY (1) =i ¥ (1), (5.3)

and this may be integrated formally to give

W (r) =exp (—iHH)W¥(0), (5.4)
92
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the operator exp (—iHt) being defined by

(iHD)?  (iH1)®

exp (—iHt) = 1—iHt+ 0 3

(5.5)

If ¥(0), the wave function at time ¢ = 0, is an eigenfunction of eq. (5.1),
with corresponding eigenvalue E, thent

(1) = exp (—iEt) ¥ (0), (5.6)

which is the familiar expression for the time-dependent wave function of
a stationary state of a conservative system.

This formulation of the problem, in which the operator H and other
operators, such as momentum, generally do not depend explicitly
upon time, but the wave function is time-dependent, is known as the
Schrodinger picture.

This is not the only formulation of the problem, however, and others
are sometimes more convenient. Any unitary transformation of both
operators and wave functions gives an equally valid formulation. This is
because, as shown in Appendix II, such a transformation leaves the
matrix elements of all operators unchanged, and the physically significant
properties of the system depend only upon these matrix elements. Two
formulations of particular interest are known as the Heisenberg and inter-
action pictures, in the former of which the time dependence is transferred
from the wave functions to the operators, and in the latter both operators
and wave functions become time-dependent.

t In case there is doubt about the validity of this step, it may be helpful to verify it in
detail. We have

H*Y = H(HY) = HEY = EHY = E*V,
Similarly,
H*W = E*,
and so on, for all positive integral powers of H. Also, H and t commute, since the differential
Operators appearing in H act only on the space coordinates. Hence, from (5.5),

exp (—iHt)¥(0) = ¥ (0) —itH¥ (0) +£—£EH2\I’(0) -

i
2!
112
= [1 —itE+%t!)—E2—. . .]‘I/(O)'

= exp (—iEH) ¥ (0).



94 SCHRODINGER, HEISENBERG AND INTERACTION PICTURES [Ch. 5, §2

5.2. The Heisenberg Picture

We shall now designate the Schrodinger wave function by Wg(#) to dis-
tinguish it from the transformed functions which we shall introduce, so
that eq. (5.3) becomes

H () = i2-¥4(1), 5.7)
and eq. (5.4) becomes
W (t) = exp (—iH)¥g(0). (5.8)
Now let us consider the operator
O =exp (iH1). 5.9

This is a unitary operator, since H is Hermitian and ¢ is real, so that, by
the rules of Appendix I,

O'=exp (—iH1), (5.10)

and

00'=0'0=1. (5.11)

We propose to use this operator O to effect a unitary transformation of
the wave functions and operators of the Schridinger picture. The result
is known as the Heisenberg picture, and we shall designate a wave func-
tion in this picture by ¥y. Then

Wy = OVg(1) = exp (iH1) ¥s(r) = ¥5(0), (5.12)

from (5.8). The Heisenberg function ¥y is thus independent of time.
Now let us consider the transformation of a Schrodinger operator Ag
into a Heisenberg operator 4;;. We have, from eq. (11.3), Appendix 11,

Ay = 0450 = exp (iHt)Ag exp (—iHt). (5.13)

Thus, even if Ag does not depend upon the time explicitly, 4y generally
does so. Assuming that H and 4 are independent of #, we havet

0A4
—atﬁ = iHAy+exp (iHt)Ag[—iH exp (—iH?)]

= i(HAy—AgH), (5.14)

since H and O commute.

+ The derivative of an operator 4 which depends explicitly upon a parameter ¢ is defined
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The equation of motion of the operator Ay is thus

.04

i—2 = [4y, H]. (5.15)
ot

It should be noted that the Hamiltonian is the same in both the

Schréodinger and the Heisenberg pictures, since

Hy =exp (iHt)H exp (—iHt) = H. (5.16)

The equation satisfied by Wy is thus the time-independent Schrédinger
equation (5.1).

5.3. The Interaction Picture

We have noted that in the Schrodinger picture the wave function
depends upon ¢ and the operators generally do not, while in the Heisen-
berg picture the wave function does not depend upon ¢ and the operators
generally do. There is another representation which proves convenient
when a system is subject to a time-dependent perturbation. This is called
the interaction picture, and in it both the wave functions and the operators
depend explicitly upon the time.

Let us suppose that the Hamiltonian consists of two parts:
H=H,+H' (1), (5.17)

where H, is, as before, independent of ¢, while H' may depend explicitly
upon ¢. The time-dependent Schrodinger equation is then

i:%\lfs(t) = (Ho+ H') W, (1). (5.18)

in the same way as for a function, that is,

34 —
oA _ i AU = A
at ko k

It follows that products of such operators may be differentiated by the same rule as for
products of functions, provided that, when they do not commute, the order of the operators
is preserved, for example,

aA aB

d
—~(AB) ==B+A—.
ar at at
Similarly, if ¥ is a function of ¢,

9 A4 B
—(ABY)=—BY¥+A4—T +ABQ.
ot at ot at




96 SCHRODINGER, HEISENBERG AND INTERACTION PICTURES [Ch. 5, §3

We now make a unitary transformation by means of the operator
exp (iHyt), such that the Schrodinger wave function Ws(¢) is transformed
into a function ¥ (¢), where

V(1) = exp (iHt)¥s(1), (5.19)
and a Schrédinger operator Ag is transformed into A;, where
Ay = exp (iHyt)Ag exp (—iHyt). (5.20)

Differentiating (5.19) gives

8;1;1 iH W+ exp (1H0t)————
= iH,W,—iexp (iHyt) (Hy+H')Vyq
=—iexp (iHyt)H' exp (—iHt) ¥, (5.21)
using (5.18). If we write
H, = exp (iHyt)H' exp (—iH,t), (5.22)
the equation of motion for ¥y is thus
1% = B, (5.23)

This is similar to the time-dependent Schrédinger equation, with Hj re-
placing H. However, it must be remembered that H, is not the trans-
formed total Hamiltonian in the interaction picture (this, in fact, is
H,+ H;), but only the transformed perturbation or interaction term. It
would perhaps be more consistent to designate it by H, but as this
symbol will occur many times in complicated expressions lt will be con-
venient to drop the prime.

It may be seen that the time dependence of ¥, is determined by both
H' and H,, while, if Ag is time-independent, the time dependence of the
transformed operator A4; is determined solely by H,. We note, in par-
ticular, that ¥, is independent of ¢ if H' is zero, that is to say, if there is no
interaction term - the interaction picture is then the same as the Heisen-
berg picture (obviously so, since then H = H,).

We now define the operator U(t,t'), called:the time-development
operatort, by

() =U(t, )V (). (5.24)

+ This name is often given to an operator defined similarly in the Schrddinger picture.
However, in this book we shall only consider time-development operators in the interaction
picture.
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It follows from this definition that
V(1) = U(t, )¥i(t) = Ul(r, ")V, (1")
=U(t, YU, )T (1), , (5.25

and
V(") = U, )YU(r) = U, )W (1), (5.26)

so that we have immediately the three basic properties

U(t,t) =1, (5.27)
U.t)y=U@ut,) U, "), (5.28)

and
Ut(t,t')y=U(,1). (5.29)

The fact that U(z,¢t') is a unitary operator follows from the require-
ment that the normalization of ¥;(¢) be independent of ¢ (that is, once
normalized, the function must remain so for all time). Thus, from eqs.
(5.24) and (1.2), Appendix I,

(WD) [F:(0)) = (U (8, )Ty (¢) U (1, £ ) ¥, (1))
= (U6, YU (1, 0)0() [¥ (1))
= (V1) [¥1(1)), (5.30)
and, since this is true for all the functions ¥,(¢), we may deduce that

U'(t, YU(t, ') = 1. (5.31)
Finally, substituting (5.24) in (5.23), we obtain

i%w(z, OW()] = Hi()U (1.0 )W(1)
or

i%U(t, 1) = H()U (s, 1), (5.32)

which is the equation of motion for U (7, t').

A closed expression can be found for U(t, t') quite simply when (and
only when) H does not depend explicitly upon the time. In this case it
follows from eq. (5.8) that

Vs (0) = exp (iH1)Ws(r) = exp (IHt)¥s(t'). (5.33)
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Hence
V(1) = exp [iH (t—1")]¥s(1'), (5.34)

and, using eq. (5.19),
V(1) = exp (iHot) exp [1H (t—1")]¥s(t')
= exp (iHt) exp [—iH (t—1")] exp (—iHt' ) ¥y ('), (5.35)
so that, in this case,
U(t,t') = exp (iHt) exp [-iH (t—1")] exp (—iHt').  (5.36)

It is a trivial matter to verify that U(¢, ') is unitary. By the rules of
Appendix I, since H is Hermitian,

U'(t,t') = exp (iHyt') exp [iH (t—1")] exp (—iHt)
=U(,t)=U"(,1). (5.37)

In the following chapters we shall be particularly concerned with an

- interaction term H' depending explicitly upon ¢, in which case (5.36) does

not apply (and, even when it does, it is not very helpful), so we must now
find some convenient method of solving eq. (5.32).

5.4. The Integral Equation for U(#, 1)
We first replace eq. (5.32) by the integral equation

t
Ut,t')y=1—1| H(;,)U(t;,1")dt,. (5.38)
tl

Differentiation with respect to ¢ gives (5.32) immediately. Also, sub-
stitution of ¢ for ¢’ gives the initial condition (5.27).

Eq. (5.38) may now be solved by iteration. Substituting 7, for ¢, and
changing the variable of integration to t,, we have

t1
U(ty, ') =1—1| Hi(t,)U(t, 1) dty, (5.39)
t/
so that
¢ t1
Uty =1-i Hl(tl){l—i Hl(tzw(zz,t')drz}dr,

t 4

t
=1_1 Hl(tl)dtl

t

t t
+ (=) f Hy() dty f H(t)Ults, ) dty.  (5.40)
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Similarly,
{2
Ut,, ')y =1—i | H(t;)U(t,, 1) dts, (5.41)
v
so that

t t t1
Ut.t') = l—if HI(t,)dtl+(~i)2f Hit)ds, [ Hy(1) di,
t t

tf
t 21 t2
+ (—i)® | Hy(t,)dry Hy(t,)dt, H(t;) U(t;, t') dts.
v

’ ’ (5.42)
Proceeding in this way, we find
© t t1 ty—
Uty =1+ (=) | Hn)dn | Him)ds. .. [ Hi(s,) ds,.
v v v (5.43)

Consideration of the regions of integration for the successive multiple
integrals shows that, if ¢t > ¢, then we must have

t=2H=2t...21,=1.

It must be understood that the operators H,(t,), H\(t,), ..., taken at
different instants ¢, t,, . . . will not generally commute. Thus, from (5.22),

[Hi(t)), Hi(1,)]
= exp (iHt, ) H' (1,) exp [—iH(t; — t;) |H' (1;) exp (—iHt,)
—exp (iH,t,)H' (1) exp [—iH(t,—t,) 1H' (1;) exp (—iHt;). (5.44)

Clearly, if t; # t,, this will not vanish except in the trivial case where
H' commutes with H,,.

In our application of perturbation theory to a many-electron system we
shall, in fact, make use of the expression (5.43) for U (¢, t') as it stands.
However, a more compact expression may be obtained with the aid of
an operator, due to Dyson, which we shall call the chronological opera-
tor, to distinguish it from the similar time-ordering operator, due to Wick,
which will be defined in the final chapter of this book. In the following
section we shall define and demonstrate the use of the chronological
operator, but this account may be omitted by any reader in a hurry.

5.5. The Chronological Operator

This operator, which we will denote by P (not to be confused with the
permutation operator P used in the first two chapters), when applied to a
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product of time-dependent operators A (#,)B(#,) . . ., taken at different
times #,, %, . . .. rearranges the operators so that the times decrease from
left to right. Thus, for the product A4 (z,) B(t,), we havet

_[A(t)B(t), if 1, > 1,
P[A(t‘)B(tz)]_{B(tz)A(tl), it £, > 1.

We shall first use this operator in order to express the double integral
in the term with n = 2 of the series in eq. (5.43) in a more symmetrical
form. We shall prove, in fact, that

(5.45)

t t1 t rt .
f Hy(t,) dt, Hl(tz)d&:%f f P[H\(t,)H,(t,) ] dt,dt,. (5.46)
t t 1 ’

Assuming that t > ', the regions of integration are as shown in fig. 5.1.
Now,

f f: P[H\(1,) H\(t;) ] dr, dt,

t th t

- f dr,{ f PLH, (1) Hy(1,) ] d1, + P[HIul)HI(rg)]drg}
4 t t

=ft dtl{ ) H(t,)H(t,) dt, + tHI(tz)HI(tl)dtz}, (5.47)
t i t1

since t; > t, in the first term and ¢, > ¢, in the second term.

A
(3

ta> ty

Vs
/ f1 > 12

t e

t’ ¢ 2

Fig. 5.1. Regions of integration for the double integral in eq. (5.46).

1 The operator P is not defined for ¢, = t,. However, if the operators A(t,) ., B(t,) become
the same when t, = t,, as is the case with the operators H(t,), H;(t,), they then commute,
so that for our purposes the symbol > in eq. (5.45) can be replaced by =.
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Changing the order of integration in the second term, for which the
region of integration is the upper triangle in fig. 5.1, we find

t t t t2
f d’l Hl(tz)Hl(tl)dtzzf dtzf HI(tZ)HI(tl)dtl
4 t v 1%

t t
:j dt, f H\(t,)H\(t,) dt,, (5.48)
t %

where in the last step we have interchanged the symbols representing the
variables of integration, which is always permissible in a definite integral.
Hence

f PLH(1,) Hy(1,) ] dty dty = 2 f dr, j Hy(t) Hy(1,) dty

! tl
=2f H\(#,) dt, Hl(tz)dtm (5.49)
t t
as required.
We now make an obvious generalization of this, and write

Uty =1+ ‘) dtlfdtz . dt,,
n=1 : t v
X P[H(t,)H\(t;) ... Hi(t,)], (5.50)

which we shall prove by differentiation. Thus

au(t, t) .
T=—1H1(t)
_l)n n t t t
D dt1 o] dty dtmﬂ...fdt,,
m=1 i t t
><P[Ifl(tl LR Hl(tm—l)HI(t)HI(tm+1) .« Hl(tn)]
= —iH(t)
t
+2 nHI(t) dtl oo | At PLH(#) ... Hy(2,-1)]

¢

=—1H1(t){1+2 ‘.) t’dzl fdt

g=1

X P[Hy(t;) ... H(t,)]
=—iH ()U(t, t), (5.51)
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which is correct, according to eq. (5.32). In the second line we have
removed H;(f) to the left of the multiple integral, since this is its correct
position given by the chronological operator, and re-labelled the variables
of integration from 1 to #— 1 in each of the » multiple integrals appearing
in the general term of the series, each of which has the same value. In the
third line we have merely written ¢ = n— 1, and the sum over g is seen to
be the same as the sum over n in (5.50).
Eq. (5.50) may be written compactly in the form

t
U(t,t') = Pexp [—i H;(1) dtl], (5.52)
tl
since

t n t t
(f Hy(1,) d71) = | Hi(t)dt, ... | Hy(t,)dt,,
¢ ¢ ¢

and P is to be applied to each term of the expansion.
The effect of the chronological operator is clearly seen here. The solu-
tion of the elementary differential equation
dy
= , 5.53
O Sy (5.53)
where f(x) is just a function of x and not an operator, subject to the
boundary condition y(x') = 1, is clearly

y = exp [f: flx)) dxl]. (5.54)

One might have been tempted, therefore, to write the formal solution of
eq. (5.32), satisfying (5.27), immediately as in eq. (5.52), but without the
operator P. This would have been erroneous, owing to the fact that H;(¢)
is an operator and H(t,), H;(t,), with t, 5 t,,in general do not commute.

CHAPTER 6

THE ADIABATIC HYPOTHESIS AND THE ENERGY OF
THE GROUND STATE

6.1. The Adiabatic Hypothesis

The work of the previous chapter is quite general and may be applied
to any system, but clearly it will be most useful in the case of a system
subject to a time-dependent perturbation. It would appear to be irrelevant
to the problem which concerns us, since the Hamiltonian (1.1) does not
depend explicitly upon time and the system is not subject to a time-
dependent perturbation. It is our intention to treat the electronic inter-
action term (1.3) as a perturbation, and this is time-independent.
However, in order to employ the method of the previous chapter,
together with the highly-developed graphical analysis to be described
later, we introduce an artificial time dependence by multiplying the inter-
action term H' by e*, where « is a small positive constantt ultimately
tending to zero. Then, as f — —eo, the new interaction term tends to
zero and the Hamiltonian tends to just H,, while at = 0 we revert to our
original Hamiltonian, H,+ H'. In other words, we assume that, starting
at some very large negative time with a system of non-interacting elec-
trons, the interaction is slowly (a small) switched on. until at t =0 we
have the full interaction.

According to the adiabatic hypothesis, a particular eigenfunction of
H,, or state of the non-interacting system, will, provided the interaction
is switched on sufficiently slowly, change continuously into a particular

t The exponential factor is frequently written e~ which tends to zero as ¢ - +x also.
However. except in the final chapter, we shall not be concerned with positive values of ¢, so
that e will suffice.
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eigenfunction of H, or state of the fully-interacting system, at t = 0. The
same applies to the corresponding eigenvalues or energy levels. This, in
fact, is unlikely to be true for excited states, which are degeneratet, but
i1s probably true for the ground state, which is non-degenerate. In what
follows we shall be concerned exclusively with the ground state of the
system and shall assume the truth of the adiabatic hypothesis. A sufficient
justification of this will be found in the correspondence between the
results and those of the Rayleigh-Schrodinger perturbation theory.

6.2. The Ground State

We denote by @&, the (Heisenberg) ground-state wave function of the
non-interacting system, that is, the time-independent eigenfunction of
H, corresponding to the lowest eigenvalue E,. Thus

H®, = E,d,. 6.1)

We have seen in ch. 1 that this equation is separable, so that @, is a
single determinant of one-electron functions, whose orbital factors are
eigenfunctions of the equation (cf. eq. (1.8), witha = 1)

—LV2¢+ V(r) = ep. (6.2)
2m
In the following work our creation and destruction operators will refer to
the eigenfunctions of this equation, multiplied by the appropriate spin
factors. The determinant ®, contains N functions, consisting of $N pairs
formed from the 3N lowest eigenfunctions of eq. (6.2) multiplied by the
spin functions « and 8, respectively.
We denote by V¥, the (Heisenberg) ground-state wave function of the
fully-interacting system, that is, the time-independent eigenfunction of H
corresponding to its lowest eigenvalue E. Thus

HY, = (H,+H)¥V,= EY,. 6.3)
Writing
E=E,+ AE, (6.4)
we have immediately, from eq. (1.62),
(Do|H'[ V)
AE = ———————— (6.5)
(Do W)

1 A degenerate energy level usually splits into a number of levels under the action of a
perturbation (see WM, §3.7). :
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Now, following the scheme outlined in the previous section, we assume
that at some negative time ¢ the time-dependent Hamiltonian is

H(t) = Hy+ H' e*. (6.6)

In the interaction picture, the wave function W,(7) satisfies eq. (5.23),
that is,

. a

15;\1'1(0 = Hy()¥(1). (6.7)

where
H(t) = exp (iHyt)H' exp (at) exp (—iHyt)

= exp (1Hyt)H' exp (—iHyt) exp (at). (6.8)

As t —> —x, e — 0, and hence H, — 0, so that according to eq. (5.10)

the wave function becomes independent of ¢, and, for the ground state,

is equal to @,
From eq. (5.24) we have

V() = U, )V (). (6.9)
Hence
Wi(t) = U(t,—oo) W (—o) = U(t,—x)d,. (6.10)
Also, from eq. (5.19),
Wi (1) = exp (iHt)¥g(1), (6.11)
so that :
Y (0) = ¥g(0), (6.12)
and, for the ground state,
W (0) = V,. (6.13)
Therefore, from (6.10),
V= U(0,—»)d,. 6.14)

Substituting this expression in eq. (6.5), we obtain

_ (D|H'U (0, —») |Dy)

= 6.15
AE = [T (0.—) |y (6-15)

Although this derivation appears straightforward, it is not, in fact, quite
correct. It must be remembered that U(t,¢') depends upon «, a fact
which we shall recognize by writing U,(z,t"). Clearly the energy cor-
rection AE cannot depend upon « if the value of this constant is arbitrary.
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However, since the adiabatic hypothesis demands that « be very small,
an obvious solution is to take the limit as & — 0, so that the interaction is
switched on infinitely slowly. We shall see in the following section that
agreement with the Rayleigh~Schrédinger perturbation theory is only
achieved when this limit is taken. The final expression for AE, is, then.

(Do|H'Uq (0 —x) [By)
AE = lim .
a0 <(I)0|U ) :X:)ICI)O>

This expression, which, if we use the formula for U(¢.t') given in
(5.43), is the quotient of two infinite series, can be put in & more con-
venient form. We note that

(6.16)

d d
S @IV =) @) = (0 Ut =) 0). (617

since @, is independent of ¢, and also, from eq. (5.32),

i%Ua(t,—w) = H(t)U,(t,—). (6.18)

Therefore

%(®0|Ua(t,—°0)|(l)0> = -i<q)0|H1(t) U,(t.,—x=) |(D()>7 (6.19)

and hence
d (D[ H (1) U, (1, —) |Dy)
—1 DU, (1, —0) |D,) = — .
at 0g< (l' (t OO)I ()> <(D0|Ua(t,_o°)'q)0> (6 20)
However, from eq. (6.8), we have
H(0)=H’, (6.21)
so that, putting t = 0in (6.20) and comparing with (6.16), we find
. ]
AE = lim l[— log <‘D0|U,,(t,—°°)|CI>O)] . (6.22)
a-»0 ot =0

This is the expression we shall use in the following chapters.

6.3. Correspondence with Rayleigh-Schrodinger Perturbation Theory -

In order to increase our confidence in the correctness of eq. (6.22), we
shall now show that it leads to the same expressions for the first- and
second-order energy corrections as given by the elementary, time-inde-
pendent, Rayleigh-Schrédinger perturbation theory described in §1.5.
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From eq. (5.43) we obtain

Up(t, =) =14+ % U, (6.23)

n=1

where
t tl tn—l
Up= (i) f Hy(n) dr, f H(t) d . .. f Hy(t,) dtu, (6.24)

and H,(¢) is given by (6.8). According to eq. (5.50), this may also be
written

“)"f dt, . .ft At PLH(t)H() - - Hy(6)],  (6.25)

but (6.24) is more suitable for our present purposes.

Then
(@)U =) 00 = (®1]1+ S U,[0)
n=1
=1+ E A,, (6.26)
n=1
say, where
A= <(I)0|Un|®0)_ (6.27)
Thus¥

log (®,| U, (1, —») | D) = log (1 +324,)
=3A4,—3(24,)*+5(24,)*—
=A,+A,+As+...—3A47— A A, —
+3d4i+. .., (6.28)

where the only terms explicitly shown in the last line are those involving
the first, second or third powers of H' only.
As in § 1.5, we shall write the energy correction, eq. (6.22), in the form

AE = AEVY+AE®+AE®+. .., (6.29)

t Strictly speaking, this expansion is only permissible if —1 < 24, < 1 - that is to say,
for a small perturbation. However, since our intention is merely to demonstrate the formal
correspondence between the present theory and the Rayleigh-Schrodinger theory, we shall
not concern ourselves with questions of convergence. Where the given expansion fails we
should expect the elementary Rayleigh~Schrodinger theory also to fail.
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where AE™ involves the n-th power of H' only and is called the n-th-
order energy correction. Eqgs. (6.22) and (6.28) give the first-, second- and
third-ordert energy corrections as

. .[e4,
(1) — il 4
AE !}l{}‘[ o ]r:o’ (6.30)
AE® = Jim i[i(Az—%A%)] , 6.31)
a0 | of =0
AE® = lim i[i(As—AlAer%A?] (6.32)
a>0 | 9t t=0
Let us consider the first-order correction. Now
A, = ((I>0|U1|<I>0)
t
= (@0|(=i) [ Bl dn @), (6.33)
so that
0A .
_871 = —i(Do|H (1) | Dy) (6.34)
and
A .
B CILACIES!
=0
= —(Dy|H'|Dy). (6.35)
Hence, from eq. (6.30),
AE® = (Dy|H’ | D), (6.36)

which agrees with eq. (1.78) for the first-order energy correction given by
the. Rayleigh-Schrodinger theory. It may be noted that the limit as o
tends to zero is redundant here, since H;(0) is independent of a, but we
shall see that this does not apply to the higher-order terms.

Now, let us consider the second-order energy correction, which is
rather more complicated. First,

A, = <®0|U2Iq)o>

= (—i)2<<I>0 " Hy(n)d, L Hl(tz)étz q>0>, 637)

—c

T The order of any term in the expansion (6.28) is simply obtained by summing the sub-
scripts: thus the order of the term 4,43 4% is 3+ (3 X S)+(2x6)=30.

[

-~

Ch. 6,§3] RAYLEIGH-SCHRODINGER PERTURBATION THEORY 109

so that

e (o,
at '

Hy(1) f " Hy(t)dn <b0> (6.38)
and

2] (o [ morso)

- fo (Dg| H' Hy(1)|Dy) dt

0
H’j H(t) dt

0
= —f (Do|H' exp (iHt) H' exp (—iH,t) |®,) exp (at) dt

0
=— (Do|H'" exp (iHot) H'|Dy) exp (—iE,t) exp (at) dt.
- (6.39)

In general, H, and H' do not commute, so that we cannot simply sub-
stitute exp (iEy) for exp (iH,t) in this integral, but we proceed by ex-
panding H'®, in terms of the eigenfunctions of H,. Let us suppose that
®, is an eigenfunction of H, corresponding to the eigenvalue E,, that is,

H®,=E,,, (6.40)

and that these eigenfunctions are orthogonal and normalized. Then,
according to eq. (1.84),

H'Qy=» (D, [H'|Dy)D,. (6.41)
n=0

Using this, and assuming that H' is Hermitian, we find
(Dy|H' exp (iHot)H'|Dy)

=f OFH' exp (iHqt)H'®,dr’

=f (H'®Dy) * exp (iHt) (H'®,) dr'

=f [i <q>n|H'|q>0>q>,,]*exp (iHot)[i <CI>,,,|H’I<I>0)(I>m] dr’

n=0 m=0

=3 3 (BIH ) (@, H00) [ B exp (iHyr) b, dr

n=0 m=0

= 3 (@ |0 exp GE,0).

n=0

(6.42)
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Therefore, from (6.39),

o0 0 i
[aAz] -3 |<c1>n|H’|CD0)|2f exp [—i(Ey—Ey+ia)t] dt
t=o0 — o ‘

at =
-3 [(Bu|H|Dy) |2 (6.43)
“ (E,—E,+ia)
Also,
D o ng 0
adt =24
¢
='—2<©0} Hl(tl) dtl q)0><q)0|HI(t)|(D0>, (6.44)
and ,
[%A%] =—2<c1>(,‘ f Hy(t) d <I>0>(<D0|H’|CI>0). (6.45)
t=0 —
Now

3

0
f exp (iHot)H’ exp (—iHt) exp (at) dt

fw Hi(t)dt

o o

0
=f exp (at) dtf OF exp (IHt) H' exp (—iH ) Dy dr’

o

0 . ,
=f exp (at)dt f [exp (—iH )P, *H' exp (—iEyt) P, dr

0
=J' exp (at) dthDS"H’(DOdT'

= (| H|<y). (6.46)
o

Therefore
il 2 :_l ’(D 2 647
|5 | =@l |20 (6.47)

Substituting (6.43) and (6.47) in (6.31), we obtain

[ K Pa|H' [ D) |
@ — WN=nlfd [Fo/|”
AE lim [ E E,—E,+ia

a->0

+§<¢01H'|<I>o>2]

n=0
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% r 2
a0 E() - En +1ia

n=1

o [(DP.JH' | D) ]2
_ 5 Leriogr

6.48
O_En ( )

n=1
which is just the formula for the second-order energy correction given by
the Rayleigh-Schrodinger perturbation theory, eq. (1.87). Notice that
(6.43) and (6.47) separately tend to © as o —> 0, but that the awkward
terms cancel in (6.48). Unlike the first-order correction, here it is neces-
sary to take the limit as & — 0, owing to the presence of the term i« in the
denominator.

It can be shown that the third-order correction, eq. (6.32), also reduces
to the Rayleigh-Schrodinger expression, but this is even more com-
plicated than the second-order correction, and so we leave it as an
exercise for the enthusiastic reader. The same applies, of course, to the
energy correction of any order.

As stated earlier, the perturbation theory described in this chapter and
the foregoing one can, in principle, be applied to any system, not only the
many-electron system which is our main concern. That this must be so is
obvious from its equivalence to the Rayleigh-Schrodinger theory. One
might well ask whether it has any advantages over the latter theory. If,
in fact, the first- and second-order terms provided a sufficiently accurate
value of the energy correction, as is often the case in simple perturbation
problems, there would be no advantage in using the present theory at all.
Such advantages as it has only appear when higher-order corrections
have to be considered, as in the case of an electron gas when the inter-
action term is treated as a perturbation. Then we shall see in the follow-
ing chapters that the time-dependent method, together with the use of
Feynman graphs, offers a convenient way of accounting for all the terms
of the perturbation series.



CHAPTER 7

FEYNMAN GRAPHS

7.1. Creation and Destruction Operators in the Interaction Picture

The creation and destruction operators defined in ch. 2 become time-
dependent in the interaction picture, and, according to eq. (5.20), have

the form
c;(t) = exp (iHot)c; exp (—iH,t), (7.1)

cl(t) = exp (iHqt)c] exp (—iHt), (7.2)
the Schrodinger operators c;, ¢} being simply ¢;(0), ¢}(0), respectively.
Now, suppose that ®V is a determinantal wave function of the non-

interacting system, that is to say, a (time-independent) eigenfunction of
H,, corresponding to the eigenvalue E¥, so that

HdY = ENQN, (7.3)

As stated in §6.2, we assume that the creation and destruction operators
refer to the one-electron functions whose orbital factors are eigenfunc-
tions of the separated parts of H, (eq. (6.2)). Then

¢; (1) DY = exp (iHyt)c; exp (—iH ) DV
= exp (iHyt)c; PV exp (—iE"t)
= exp (iH ) DY, exp (—iE), (7.4)

where we have written ®;! for the (N —1)-th-order determinant
obtained by removing the function ¢; from &V,
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Now we recall thatf, in the occupation number representation,

H0=Z (fli)cies, (7.5)

and, since i and j take on all integral values here, H, may operate upon a
determinantal function of any order. In the present case, where ¢; and ¢,
are eigenfunctions of f, such that

foi = e, - (7.6)

(this is eq. (6.2) in general notation and including the spin factor in @), we
have

(ilf’j> = €0y, (7.7
and (7.5) reduces to

Hy=Y ecic;. (7.8)

Thus
HO(I)N = Z €iC1‘LCiq)N

=3 en,®¥ = ENQY, (7.9

where n; is the occupation number of the function ¢; in ®.
It follows that

H DY = ENTOY, (7.10)

where
E%;IZE eini=EN—€,-. (711)
i#j
Eq. (7.4) therefore becomes
(1) DY = ot exp [i(EN ' — EY)1]
= ;@Y exp (—ie;t). (7.12)

We have, of course, assumed that ¥ contains the function ¢;, so that the
occupation number of ¢; is unity. If not, both sides of (7.4) vanish.
We deduce, therefore, that

c;(1) = c;exp (—ie;t), (7.13)
and, similarly,
ci (1) = ¢} exp (igjt). (7.14)

t H,is the same in the Schrédinger and interaction pictures, since

Hy=exp (iHyt)Hyexp (—iHt).
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Finally, we note that the product of any number of Schrddinger
creation and destruction operators is transformed to the interaction
picture by substituting c;(r) and ¢} (¢) for ¢; and cj, since, for example,

exp (iHyt)clc;exp (—iHt) = exp (iH,t) ¢} exp (—iHt)
X exp (iHyt)c;exp (—iHt)
= cl(t)¢;(t). (7.15)

7.2. The interaction term and the energy of the ground state

In the Schrodinger picture the interaction term, eq. (2.68), is

H' =% (ijlvlkDciciccy. (7.16)
iikl
We wish to use the method described in §6.2, and so must multiply H' by
exp (at) and transform to the interaction picture. We then obtain for the
transformed interaction H;(t), eq. (6.11),

H(1) =% (ijlolkl)ci(t)c(t)e(t) e () exp (at)
ikl
=1 Z {j|v|kl)ciciecrexp [i(e;+ 6—€—€ )] exp (a). (7.17)
ikl

The correction to the energy of the ground state due to the inter-
action is given by eq. (6.22), and to evaluate it we must first calculate
(@ U, (1, —0)|®,). In the notation of eqs. (6.24), (6.26) and (6.27) we
have, for the first-order term,

A= <(D0‘U1|q)o>

o o)

= =4 S (§f[olkl) (Dolclceicn| o)

ijkl

i) [ H)dn

—

t
X f exp [i(e;+¢€—e€—¢€)t,] exp (aty) dty

=— 1 S (iflolkD) (@alcicieicy Do)
ikl
o EXP [(A +a)t

7.18
1A1+a ’ ( )
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where
A1=€i+€j—€l_‘6k. (7]9)

For the second-order term we obtain
Ay = (Do U, | Dy)

o o

= (—3i)2 E (if|v]kl){mn|v|pg) {D|clcfeicch,cheacy| o)

ijkl mnpq

(—i)? f_tw Hy(1) dn, f_tw Hi(ty) dy

t
X f exp [i(e;+€—€—e)t,] exp (aty) dy

t1
X f exp [i(e,+€,—€;,—€,) 1] exp (at,) dt,

—00

= (=302 S S (ijlolkd) (mnlv]pq)

ikl mnpg
(A, +A,) + 2]}
X (Dq|che ereichchioe,| @) -SRI F Ag 7.20
(Polcicieiciencicoy| °>[1(A1+A2)+2a](iA2+a)’ (7.20)
where
Ay=¢€,+€,—€,— €, (7.21)

The r-th-order term may easily be deduced from egs. (7.18) and (7.20).
We find

Ay = (Do| U, | Dy)
= (3" ... > (ilolkly ... (rs|vluw)

ijkl rsuw

X (D|cicieicy . . . cicheycy| Do)

t 151
xf exp[(iAI—i—a)tl]dtlf exp [ (idg+a)1,] dty

—o0

by
xf lexp[(iAn+a)t,,]dtn

—00

==Y LY (Gl .. (rs|o|uw)

ijkl rSUW
(Dycicferck . . . ciclewe, | Do) exp {[I(A + Ay +. .. +4,) +nalt}
(A +A+. .. +Ay) +na][i(A+. .. +A) + (n—Da] ... >[A,+a)
(7.22)
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where
A, =€ t+e—€,— €y, (7.23)
etc.
This is a rather complicated expression. A certain simplification is
introduced by the fact that the matrix element

<¢0|C;C;C1Ck - CT'CT;CwCuICI’o)

vanishes if the creation and destruction operators do not balance in
pairs: that is to say, if each state destroyed is not created again and vice
versa. Great complexity still remains, however, and to help to bring some
order out of chaos a method of describing the terms of the series in (7.22)
by graphs or diagrams has been developed. This will be explained below,
but first it will be convenient to re-define the creation and destruction
operators in terms of excited particles and holes in the unperturbed
ground state ®,-in other words, to use ®, as the ‘vacuum state’ in
describing excited unperturbed states.

7.3. Particle and Hole Operators

In the case of free electrons, as we have already seen in ch. 3, the
ground-state wave function @, of the unperturbed system is a single
determinant of functions ¢, (x;) whose k-vectors lie within the Fermi
sphere in k-space; that is to say, each (one-electron) state with k < ky is
occupied and no state with k > kg is occupied. States lying within the
Fermi sphere are called unexcited states and those outside the Fermi
sphere are called excited states. Any other eigenfunction @ of H, can be
described by stating which excited states are occupied and which un-
excited states are unoccupied. An unoccupied, unexcited state is called
a hole. so that the destruction of an electron in an unexcited state may be
regarded as the creation of a hole, and the creation of an electron in an
unoccupied, unexcited state is the destruction of a hole.

Although the free-electron case is the only one for which detailed cal-
culations have been made, we wish to point out that what follows is of
more general application than this. For example, in a metal the electrons
move in the periodic field due to the lattice of jon-cores, so that the
potential function V(r;) appearing in H,, eq. (1.2), has the period of the
lattice. We then construct determinantal eigenfunctions of H, from the
orthogonal set of one-electron functions whose orbital factors are eigen-
functions of eq. (6.2), and, since V(r) is periodic, these are Bloch
functions, having the form
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Y (r) = exp (ik - r)u(r), (7.24)

where u:(r) has the period of the lattice. The specification of the wave-
vector k depends upon the crystal structure. In this case also the one-
electron functions comprising the ground state @, lie within a surface of
constant energy in k-space, but this surface is not spherical. We call this
the Fermi surface, and denote the one-electron energy (eigenvalue of eq.
(6.2)) at the Fermi surface by er. An excited state is now one with energy
€(k) > er, and an unexcited state one with e(k) < €. This also applies
to the free-electron case, but there it is possible to say k > ky and k < kg
which is not possible in general, since k is not constant over a non:
spherical Fermi surface. Any determinantal eigenfunction of H, can again
be described in terms of holest, which are unoccupied states lying within
the Fermi surface, and particles in excited states lying outside the Fermi
surface.

We are now in a position to define the creation and destruction opera-

tors for holes and particles (excited states) in terms of our previous
operators. Thus:

fore; > €5,
ci=a} (creates particle),
¢ = q (destroys particle); (7.23)
fore; < e,
i =b; (destroys hole),
(7.26)

c;= b (creates hole).

The operators «j, a; refer to excited states or particles outside the Fermi
sgrface, while b;, b; refer to holes inside the Fermi surface. We have used
different subscripts i and j here merely to emphasize that particle and hole
states are distinct, so that we must always have

) €; # €5, (727)

or, more specifically,
k; # k;. (7.28)
The commutation relations for the particle and hole operators can be

found immediately from those for the ¢}, ¢;, given i
i, ¢y givenineqs. (2.53), (2.54) and
(2.55). Thus J - h an

{ai, ax} = 8. ' (7.29)

T It must be remembered that these holes are not what are usually described as holes in
metal theory (see WM. p. 242), which are unoccupied states within a Brillouin zone.
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{b], by} = 8y, (7.30)

but, owing to (7.28), all other anticommutators vanish.-
Since the ground state ®, contains neither holes nor excited states, we
have
a;d, =0, (7.31)
b;®, = 0. (7.32)
In terms of the particle and hole operators, H,, €q. (7.8), becomes

H,= 2 €CiCy
i

=3 eicie;+ Y ecic

e]-SEF €i>€F
— T 1
= 2 Ejbjbj“l" 2 €;a;4;
€<ep €;>€p

=3 ¢— 3 ebib+ Y eda; (7.33)

EjseF ejSeF €;>€p

using (7.30). The first term on the right-hand side is just the energy of the
state @,,.

In the interaction picture, fromegs. (7.13) and (7.14) and the definitions
(7.25) and (7.26), we have

a;(t) = a; exp (—iet),
ai(t) = aj exp (ieit), (7.34)
b;(t) = b;exp (i€it),

bi(t) = bl exp (—ie;t).

7.4. Feynman Graphs

We have already stated our intention to describe the terms of
(®o| Uy (t, —) |®,) by means of graphs. These are similar to those intro-
duced by Feynmant in his theory of positrons and are generally called
Feynman graphs or Feynman diagrams. .

We recall that U,, eq. (6.25), contains a chronologically-ordered

+ Feynman, R. P., 1949, Phys. Rev. 76, 749. The graphs described here were first used in
many-body theory by Goldstone (Goldstone, J., 1957, Proc. Roy. Soc. A239, 267) and are
sometimes referred to as Goldstone graphs. Several authors have developed their own
variations of these graphs, which adds to the confusion of the subject.

[
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product of interaction terms P[H(#,)H\(t,) ... H(t,)], with H(r)
given by eq. (7.17). Let us first see how to represent graphically a single
term

$(ijlv|kl) cicicicr exp [i(e;+€,— €, —€)t] exp (ar) (7.35)
of Hy(?).

7.4.1. First-order graphs

We draw a horizontal broken line, called an interaction line, and from
each end, called a vertext, we draw two solid lines bearing arrow heads,
one line entering and one leaving each vertex. The left-hand pair of lines
represents ¢}, ¢y, in (7.35), and the right-hand pair represents ¢}, ¢;. The
general directions of the lines, that is, whether they go up or down the
page (the actual angles they make with the interaction line are immaterial),
and the sense of the arrows, depends upon whether the operators are
particle or hole, creation or destruction operators, according to the follow-
ing rules: :

(1) An upward line leaving a vertex refers to the creation of a particl
in an excited state, e.g. the line marked 4] in fig. 7.1.

Fig. 7.1. A first-order graph, represent-

ing a single term of H,(¢), showing the

interaction line (broken) and the two

vertices with lines representing hole

and particle, creation and destruction
operators.

(2) An upward line entering a vertex refers to the destruction of a
particle in an excited state, e.g. the line marked q; in fig. 7.1.

(3) A downward line entering a vertex refers to the creation of a hole,
€.g. the line marked b/ in fig. 7.1.

) i lt_ should be noted that there are variations in terminology, as indeed there are varia-
gons in the type of graphs.USed, iq this pz}rt of the subject. Sometimes the interaction line

self is called a vertex. This name is certainly appropriate to the frequently-used graphical
scheme in ‘which the interaction line is shrunk to a point. However, the terminology we
have chosen seems more suited to Goldstone graphs.
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(4) A downward line leaving a vertex refers to the destruction of a hole,
e.g. the line marked b; in fig. 7.1.

We note that upward lines refer to particles, and downward lines to
holes. Also, lines leaving a vertex refer to the creation of particles or the
destruction of holes, that is, the creation of excited or unexcited states,
respectively. Lines entering a vertex refer to the destruction of particles
or the creation of holes, that is, the destruction of excited or unexcited
states, respectively.

The lines are normally labelled with the subscriptst of the states to
which they refer, so that a given graph fixes completely the matrix ele-
ment, the operators and their order, and consequently also the time factor
of a term such as (7.35). Such graphs are called first-order graphs. We
shall consider the more useful higher-order graphs, representing terms of
products H;(t,)H,(t,) . . ., later. It might be noted, in passing, that first-
order graphs can equally well be used to represent the terms of the time-
independent operator H', eq. (2.68).

A convenient way of interpreting a given graph is as follows. Write
down on the left-hand side of the matrix element the labels of the lines
leaving the vertices on the left and right, in order, and on the right-hand
side of the matrix element the labels of the lines entering the vertices on
the left and right, in order. The order of the operators is fixed by the matrix
element, for example (ij|v|kl) implies c¢jcjc,c,. It must be remembered
that ¢} may imply a} or b;, depending upon whether ¢, is an excited or
unexcited state, and similarly ¢; may imply q; or bj.

We shall now consider a number of examples, in which we will not
specify the time factor, since it also is fixed by the matrix element, for
example, (ij|v|kl) implies exp [i(e;+€;— €, — ) ]. In addition, all terms
have a factor 3 exp (at).

(1 (ij|v|klyaid;bi by,
is shown in fig. 7.2. This represents the excitation of electrons from states
&1 ¢, within the Fermi surface, leaving holes, to states ¢;, ¢;, respectively,
outside the Fermi surface. As an aid to understanding, a more obvious
picture of this process has been drawn alongside the Feynman graph,
showing a circle which represents the Fermi surface and two directed

+ We shall in future drop the convention, introduced in egs. (7.25) and (7.26), of reserv-
ing the subscript i for a particle state and the subscript j for a hole state. It will be sufficient
to remember that the subscript of a particle operator can never be the same as that of a hole
operator.
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{

Fig. 7.2.

linest representing electrons going from ¢, to ¢; and from ¢; to ¢;.

2) (ijlv|kl)y bibajay,
is shown in fig. 7.3. It represents two electrons falling from excited states
to unexcited states, destroying holes, as pictured to the right of the

graphi. _
A AT
k
Fig. 7.3.
3) (ij|vlkl) a; a;biay

is shown in fig. 7.4. It represents an electron passing from excited state
¢, to excited state ¢; and another passing from unexcited state ¢, to
excited state ¢;, creating a hole.

Fig. 7.4.

4) (ij|v|kl) aib;biay
is shown in fig. 7.5. It represents an electron passing from excited state
p ¢ to excited state ¢; and another passing from unexcited state ¢, creat-
ing a hole, to unexcited state ¢;, destroying a hole.

T There is no apparent reason for saying ‘from ¢, to ¢; and from ¢, to ¢, rather than
‘from ¢, to ¢; and from ¢, to ¢;, which would give the same final state. The given inter-
pfetation is a natural one, since, in the integrand of (ij|v|kl}, eq. (1.38), ¢;* and ¢, are func-
tions of x, and ¢} and ¢, are functions of x,. However, the choice is really immaterial, since
the expansion of H(¢) also contains this term with i and j interchanged.

.i Each figure is to be regarded as a separate illustration of the type of term which can
arise. Figs. 7.2 and 7.3, if taken literally, cannot apply to the same system, since a given
state ¢;, for example, cannot be both an excited state and an unexcited state.




122 FEYNMAN GRAPHS [Ch.7,§4
! ¢
K j \j
Fig. 7.5.

(5) A pair of operators, one creation and one destruction, may refer to
the same state. In this case, the lines representing the two operators are
joined to form a loop. For example, the term

(ij|vlil) bialab],

shown in fig. 7.6(a), is usually drawn as in fig. 7.6(b). It represents an
interaction in which an unexcited particle has taken part without changing
its state ¢;, as pictured to the right of the graph in fig. 7.6(a).

(a)

(b}
Fig. 7.6.
(6) As another example, consider the term
(if|v| ki) baiblay,

shown in fig. 7.7(a). This is usually drawn as in figs. 7.7(b) or 7.7(c), the
two lines referring to the creation and destruction of the same hole, this
time at opposite vertices, again being joined to form a loop. It is cus-
tomary to draw the loop on one side or the other of the interaction line,

as shown, even though fig. 7.7(a) would suggest a sinusoidal curve -

crossing the interaction line.
It should be noted that interchanging the vertices of a first-order graph
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(a)

Fig. 7.7.

makes no difference to the term it represents. For example, consider the
two graphs shown in fig. 7.8.

i J J i
k ’ Z K
(a) (b)
Fig. 7.8.
Fig. 7.8(a) represents the term
(ij|v|kl) ajaja,ax, (7.36)

while fig. 7.8(b), obtained by interchanging the two vertices in fig. 7.8(a),
represents the term

(jilv|lk)alajaa;. (7.37)
Now, by the commutation relations for the operators, we have

alalaea; = aldja,ay, (7.38)

provided i # j and k # [ (and, if either i = j or k = [, the matrix element
(®Py|alata,a,|®D,) vanishes and the term is of no interest). Also, from eq.
(1.51), we have

(jilvllky = (ij|v|kl). (7.39)

The terms (7.36) and (7.37) are thus one and the same, and the two graphs
in fig. 7.8 represent the same term.
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On the other hand, the graph shown in fig. 7.9, obtained by inter-
changing two lines at opposite vertices in fig. 7.8(a), represents the term
(jilv|klydidiaa, = — {ij|v|lk) ajd}a,ay, (7.40)

which in general is different from (7.36).

x
o

Fig. 7.9.

It must be understood that, although (7.36) and (7.37) are the same,
both appear in H;(t), eq. (7.17). When summing the terms of H(¢) one
may sum over all graphs representing different terms and then multiply
by 2 - in other words, omit the factor § in (7.17).

It would seem from the examples given that the representation of terms
of H,(t) by a picture showing the Fermi surface and excited particles,
etc., is simpler and more obvious than the use of Feynman graphs. This
is undoubtedly true, but the full beauty of the Feynman graphs is only
realized when higher orders are considered, that is to say, when we
represent graphically the terms of a product of operators Hy(t)H(t,) . . .
H (t,) taken at different times. The use of the Fermi surface representation
would in such cases be difficult and confusing.

7.4.2. Higher-order graphs

U,, eq. (6.25), contains a chronologically ordered product of »n inter-
action operators, each of which is a sum of terms as in eq. (7.17). In order
to represent graphically a single term of the multiple sum in U, we draw
n interaction lines down the page, one for each H(t), starting with ¢, at
the top, f, below that, and so on. We then draw particle and hole lines at
each vertex and label them, as explained above, so that we have a
graphical representation of the contribution from each interaction opera-
tor, in the correct order, to this particular term of U,. Fig. 7.10 shows a
possible term of U.

Since time increases from the bottom to the top of the page (i.e.
t, > t, > ...>t,), and upward lines refer to particles, while downward
lines refer to holes, it is often said that particles travel forward in time
and holes travel backwards in time.
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~T

fe_ \/______
t3‘ \/_____

Fig. 7.10. Graphical representation of a
possible term of Uj.

The greatest value of the graphical representation lies in classifying
those terms which contribute to (®,|U,(t,—%)|®,), required in calculat-
ing the ground-state energy. The general term A4,, is shown in eq. (7.22)
and consists of a 4n-fold infinite sum of terms, each of which can be
represented by a graph. The important point is that the matrix element?

(Dy|cicicicr . .. CrCiCuCy| Do), (7.41)

as has been pointed out before, vanishes if the destruction and creation
operators do not balance in pairs. This means that, if the matrix element
is not to vanish, for every particle or hole creation line there must be a
corresponding destruction line. If we join up creation and destruction
lines for the same particle or hole, whether they occur at the same vertex
(forming a loop) or at different vertices, therefore, we may say that every
line must begin and end at a vertex.

T .Having defined the Feynman graphs, we shall in future make little explicit use of the
particle~hole notation. That is to say, we shall in general use ¢; without stating explicitly
whether this is a; or b;, and ¢; without stating explicitly whether this is a; or b;. In specific

‘?Xamples the direction of the line representing a given state in a Feynman graph will
indicate whether it is a particle or a hole state.
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Furthermore, since ®, contains neither holes nor excited particles, the
matrix element (7.41) will vanish unless the first two operators ¢,c,, at
the lowest vertices, create holes. Also, at the same vertices, the operators
ctcl must either destroy these holes again, or destroy one hole and create
one particle, or create two particles. In all cases we either have lines
above the lowest interaction line or loops. Similarly, the last two operators
cicl, at the highest vertices, must destroy holes, and the operators c;c;
must either create these same holes, or create one of them and destroy a
particle, or destroy a pair of particles. In all cases we either have lines
below the highest interaction line or loops. We deduce, therefore, that
there must be no lines below the lowest interaction line or above the
highest interaction line, unless they happen to be loops.

All this simplifies considerably the construction of the graphs which
contribute to (®y|U,(t, —) |®,). Typical third-order graphs, which may
contribute to A,, are shown in fig. 7.11. Here and in future, where we
illustrate a fype of graph, we shall not label the lines.

(e) () (@) (h)

Fig. 7.11. Typical third-order graphs, representing-terms which may
contribute to 4. -

It should be noted that the vertical ordering of the interaction lines is
important, but not their lengths or horizontal positions. Thus, an inter-
action line may be shortened, lengthened, or moved to right or left, for
convenience of drawing, without changing the significance of a graph.
For example, fig. 7.11(e) could equally well be drawn as in fig. 7.12.

. -

~

-

i
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Fig. 7.12. Alternative way of drawing
fig. 7.11(e).

It will be shown later that not even all graphs of the type described
above contribute to the energy of the ground state. First, however, it

might be helpful to give some concrete examples of the evaluation of
terms from graphs.

7.5. Examples of the Evaluation of the Contributions of Various Graphs
to the Perturbation Series

The general term A, of the series (®y|U,(z,—x)|®,) is shown in eq.
(7.22). We shall consider the contributions to 4;, A, and A, from some
typical graphs.

7.5.1. First-order graphs

According to the rules of the previous section, the only possible first-
order graphs which contribute to 4, are of the types shown in fig. 7.13.

{
J
() (b)
Fig. 7.13. First-order graphs which may

contribute to 4;.

The term of 4,, eq. (7.18), corresponding to fig. 7.13(a) is

N e
(=3 (ol (Dalcicieei| o) . (7.42)
since A, = 0 here. This vanishes if i = j, since
cici®y =0, (7.43)

and, if i # j, the commutation rules for the creation and destruction
Operators give

<¢'0]C;c;cjci|q)0> = <q)0|C;CiCJTCj|‘I>0> =1 (7.44)
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Also, since ®, contains neither holes nor excited particles, the operators
c;,c; must create holes, and cj,c] destroy them for a non-zero result: that
is to say, we must have €;,6; < €.

This term is known as a direct term (two unexcited particles interact
without changing their states —i goes to i and j toj). The total contribu-
tion to A, from all direct terms is thus

(171
(—3) S (il = (7.45)
[0

Ll
(€;-€5 =€p)

The term of A, corresponding to fig. 7.13(b) is
o\ Jerl ] e e
—%l)<lJ|v|Jl><<1>o|030§cicj|‘1>o>;- (7.46)
Here again we must have [ # j, and
<‘D0|C¥C;Cicj|¢)o> = -—-(fboldcic;cjlfbo) =—1, (7.47)
Wlth €;,€; = €p.
This term is known as an exchange term (two unexcited particles
‘exchange’ their states —i goes toj and j to ). The total contribution to
A, from all exchange terms is thus

. e €
—(=21) Y, (ijlvljy—- (7.48)
i @
(€j.€5<€p)
Adding (7.45) and (7.48), we find
. s I
Ay = (=) 3 [@loli) — Cifloljid ] (7.49)
i
(€€ 5<€f)

It is unnecessary to specify i # j here, since the expression in square
brackets vanishes if i =j. In other words, for every direct term which
contradicts the Pauli principlet there is an exchange term which cancels
it. We shall see that this also applies to higher-order graphs.

Inserting (7.49) in eq. (6.30) we have immediately, for the first-order
energy correction,

AE® =3 3 [(Golif) — <GloljD]- (7.50)

(€;.€;<€p)

¥ The Pauli principle demands that i # j, so that no state is destroyed or created twice
in succession.

Ch.7.§51 EVALUATION OF VARIOUS GRAPHS 129

7.5.2. Second-order graphs

According to the rules of §7.4.2 the only graphs which may contribute
to As. €q. (7.20), are of the types shown in fig. 7.14. We shall show that,
for a free-electron gas at the absolute zero of temperature at least, the

Fig. 7.14. Second-order graphs which may contribute to 4,.

only graphs which contribute to the ground-state energy are those in the
first row, and, of these, only (a) and (c) need be explicitly considered,
since (b) is obtained from (a) and (d) is obtained from (c) by interchanging
the vertices at one interaction line. Let us therefore consider the con-
tribution to A, from the two graphs shown in fig. 7.15. It is to be under-
stood, in all graphs, that the time axis runs from the bottom to the top of



130 FEYNMAN GRAPHS [Ch.7.§5

Fig. 7.15.

the page, so that the highest interaction line corresponds to Hi(#;), the
next lower one to H,(#,), and so on.
The term of 4,, eq. (7.20), corresponding to fig. 7.15(a) is

eZat

(— 1) 2(ij|v] kD) <kllv|ij>(‘Do|C;C}CzCkCZ-CzTCjCi|¢o>m‘_'_—a),
2

(7.51)

where
A2=€k+€1_ﬁi_€j=_A1. (7.52)

For a non-zero result we must have i # j, k # [. Furthermore, since the i,
J operators are hole operators (downward pointing lines) and the &, [
operators are particle operators (upward pointing lines), so that €;,¢; < €
and €,,€; > €, it follows that i, j, k, [ must all be different. The commuta-
tion relations then giveT

<®O|C§C}Clckc},c§cjci|(b0) =1. (7.53)

This term is again called a direct term (one particle goes from state i
to state k at time ¢, and back again to / at later time ¢,, while the other
particle goes fromj to [ at ¢, and back toj at ,, so that finally the particles
are in the same states as they were originally), and fig. 7.15(a) is called a

+ An even number of interchanges of adjacent operators leaves the sign of the matrix
element unchanged. while an odd number changes the sign. Thus

(Dy|ctcfcrencic) csei| Do) = (DBy|ch eict crecic ¢ D) (6 interchanges)

= (®,|c} ;¢ 01016k | Do) (4 interchanges)

= (D]l c;cf cje,c) | Dy (2 interchanges)
=1.

Notice that, since ¢y, ¢ are particle operators,

chex P, =0,
but
decq)o = (1 _C.lrcck)q)o = .

~
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direct graph. The total contribution to 4, from terms with direct graphs
of this type is thus

l(ijfvlkl) |2 et

—1)” . : 7.54
: 1',]2#1‘ klz;ek 2afi(ex+ € —€—¢) +al ( )
(€;-€;<€p
ek,5;>s:\)
since
(ijlolkl) CKllvlij) = [(ijlo|kD)[2.
The term of A, corresponding to fig. 7.15(b) is
R .. .. : e2at
(—%l)zwlvlkl)<1k|vlu><CDoIcic}clckc?cicjcilq)o)———za(iAZ+a), (7.55)
and
(Dy|cicieicrelctese;|Po) =—1, (7.56)

with the same conditions on i,j, k and [ as before.

This term is called an exchange term (one particle goes from i to [ at ¢,
and then toj at t,, while the other particle goes fromj to & at £, and then to
i at ¢, so that the particles have finally ‘exchanged’ their original states),
and fig. 7.15(b) is called an exchange graph. The total contribution to 4,
from terms with exchange graphs of this type is thus

. (ijlv| k) {lk|v]ij) e*
—(—1))2 k .
(—#i) 1,%1, k%k 20fi(e,+€,—€,—€) +al

(€;.€5<€p,

(7.57)

€€ €D

The terms of A, corresponding to the graphs shown in fig. 7.16(a) and

Fig. 7.16.

fig. 7.16(b) are again just (7.51) and (7.55) respectively, since

(lk|v| jiy = (Kl|vlif) (7.58)
and

(kllv|jiy = (Ik|v]if)- (7.59)

Hence the total contribution to 4, from all graphs of the types shown in
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the first row of fig. 7.14(a)-(d) is just twice the sum of (7.54) and (7.57),

namely

LI<vlk) |2 — (ijlolkl) (lklvif) ] e
ali(e+ €¢—¢€;—€;) +al )

(—3)z S (7.60)
ijkl
(ej€5<ep,
€€ >€F)

Here it is not necessary to specify i # j, k # I, since the numerator
vanishes when either i = j or k = L. In other words, as for the first-order
terms, we see that for every direct term which contradicts the Pauli
principle there is an exchange term which cancels it.

We shall show later that (7.60) gives the total contribution to the
second-order energy correction AE® for a free-electron gas, the contribu-
tion from all other graphs being either disallowed or cancelling one
another.

7.5.3. Third-order graphs

The number of types of third-order graphs, which may contribute to 43,
is too great for us even to draw them all, although the number con-
tributing to the ground-state energy is again comparatively small. We
shall consider only a few third-order graphs, which will serve to illu-
strate some important points.

From eq. (7.22) we have

A= (4SS S (iilolkd) (mnlolpa) (rsloluw)

ijkl mnpg rsuw
ot
X (q)O | Ci CjC[CkCT,lCJ;,CqCpC;C;CwCu | (D0>

exp {[i(A;+ Ay + Ag) +3a]t}

(1A 8+ &) +3a] [1(Bs + ) + 2a] By 0)° (7.6
where
A =¢+e€—€,—€, (7.62)
A, =¢€,+€,—€,— € (7.63)
As=¢€,+€,—€,—€,. (7.64)
The term of this sum corresponding to the graph infig. 7.17 is
4y (i oKty Cknlolim) (mllo] ) e 7.65)

3afi(es+€—€;—€) +2a][i(e,+€—€,—€) +a]’
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)

Fig. 7.17. A third-order graph contrib-
uting to 4,.

since, in this case,

A+A+A;=€+e—€,—¢€+e.+e,—€—¢€,
+e,te—€,—¢=0, (7.66)
and
Ayt Ay =—A, =€, +€6—¢,—¢,. (7.67)

The energy factor A for any interaction is obtained by adding the energies
for the outgoing lines and subtracting the energies for the incoming lines.
It follows that, as illustrated by eq. (7.66), the sum of all the energy factors
for any allowed graph must be zero, since every line must begin and end
at a vertex, so that its energy must occur twice with opposite signs.

Also, for a non-zero result, we must have i # j # n and k # | # m,
and, since i, j, n are hole states while &, [, m are particle states, it follows
thati,j, k, [, m, n must all be different. Hence

(Dol cierehelencichcicien Bo) = 1. (7.68)

Further examples of third-order graphs will be given in the following
section.

7.6. Linked and Unlinked Graphs

A linked graph is defined as a graph which can be drawn without
removing the pen from the paper (except to dash the interaction lines).
An unlinked graph is one which cannot be so drawn, but consists of two
or more quite separate parts, not connected by lines. For example, in fig.
7.11, the graphs (a), (b), (f) and (g) are linked, all the others being un-
linked. In fig. 7.14 all the graphs are linked except those in the last row
((u), (v), (w) and (x)). Clearly, each unlinked graph consists of several
lower-order linked graphs, which we will call unlinked partst.

T The terminology in this part of the subject is apt to be confusing, because of the different
uses of the words linked and unlinked. An unlinked part, for example, is unlinked from the
rest of the graph, but it is internally linked, so to speak. For the latter reason it is, unfor-
tunately, often called a linked part. The word connected is sometimes used instead of linked.
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We shall show in the next chapter that only linked graphs need be con-
sidered in calculating the energy of the ground state. Meanwhile, how-
ever, we shall give some examples which will illustrate an important

property of unlinked graphs.

Let us consider the three unlinked third-order graphs in fig. 7.18.
Notice that each of these graphs consists of the same two unlinked
parts — only the order of the interactions varies from graph to graph.

The contribution to A5, eq. (7.61), from the graph in fig. 7.18(a) is

(—31)3(j o] kl) Cklv|if) (mn|v| nm){ Dy | c] cjeiCiClec] €iCiChchemCal Do)
e3(xt

X ; .
3a[i(e,+ 6 —€,—€;) +2a]

(7.69)

Now i,j are hole states and &,/ are particle states, so that i,j # k,l. Fora
non-zero contribution we must have i # j, k # [, m # n. We shall also
assume that m,n are hole states (otherwise the first two graphs, at least,
give zero contribution), and thati,j # m,n (otherwise the last graph gives
zero contribution). In other words, we shall suppose thati,j, k, [, m, n are
all different. Then the commutation relations give

(Dy|ciclaickciciciciemermCnl ®o) =1, (7.70)

and the corresponding matrix elements for the other two graphs have the
same value. Thus the contribution to A, from fig. 7.18(b) is

e3at

az[i(ek-i-e,—ei—ej) +a] ’

~ (=3i)*(mnlvinm) (§i|v|kl) Ckllv|i)g (7.71)
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and the contribution from fig. 7.18(c) is
— (— 1) %(ij|v|kD) (mn]v|nm) (kl|v|ij)
eSat

X :
3a[1(€k+€,—€i—€j) +2a] [i(€k+el_€i_€j) +C¥] ’

(7.72)

The sum of the contributions to 4; from the three graphs, (7.69), 7.71)
and (7.72), is

= (= 31)*(if|v|kI) (mn|v|nm) (kl|v]if)

63‘”[ 1 1 1
X - + - +— -
3ala(iA+2a) 2a(iA+a) (1A+2a) (1A+a)]

= — (—4i)*(ij|v|kl)(mn|v|nm) (kl|v|if) (7.73)

e3ott
202 (A4 )’
where
A=gt+e—€—e. (7.74)

Now, let us consider the two unlinked parts of these three graphs
separately, that is, the two graphs shown in fig. 7.19.

Fig. 7.19(a) is a first-order graph whose contribution to A, is, from eqs.
(7.46) and (7.47),

at
— (—%D(mnlvlnm)%, (7.75)

provided m and n are hole states and m # n.
Fig. 7.19(b) is a second-order graph whose contribution to A4, is, from
egs. (7.51) and (7.53),

—3)%(|vlkl) (kllv]ij)

providedi # j, k # 1.

The product of (7.75) and (7.76) is immediately seen to be just (7.73),
which is the sum of the contributions from the three unlinked graphs
formed by combining figs. 7.19(a) and (b) with all possible relative
orderings of their interactions. We shall now go on to consider the total
contribution from all graphs of the types shown in fig. 7.18, but first it
may be advisable to state more precisely what we mean by the type of a
graph.

. It must be remembered that it is the topology of a graph which is
Important, rather than its shape or size. We shall call two graphs topo-

e2at

2a(Ata)’ (7.76)
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Fig. 7.19.

logically equivalent if, disregarding the labelling of the hole and particle
lines, one can be distorted into the other without changing the time-
ordering of the interaction lines or interchanging verticest. For example,
the two graphs in fig. 7.20 are topologically equivalent.

w
(a) (b)

Fig. 7.20. Topologically equivalent fourth-order
graphs.

We now state, as a definition, that two graphs are of the same type if
they are topologically equivalent. Thus the type of a graph is represented
simply by the graph itself (or a topologically equivalent one) with arrows
but no labels on its hole and particle lines. Two graphs of the same type
are different if the labels of their hole and particle lines are different
(although, owing to the fact mentioned at the end of §7.4.1, regarding the
inversion of vertices, they may represent the same term).

We are interested in the total contribution to (®,|U, (¢, —=)|®,), eq.
(6.26), from all different graphs of given types. It should be clear from
the above discussion that (provided we ignore certain possible violations
of the Pauli principle, as will be explained and justified in §7.8 below) the
total contribution from all different graphs of the types shown in fig. 7.18

+ Sometimes graphs are also said to be topologically equivalent if one may be obtained
from the other by interchanging opposite vertices (that is, by inverting the ends of one or
more interaction lines). As may be deduced from the remarks at the end of §7.4.1, the only
difference this makes is to introduce factors of 2 into the final summing of the contributions
from all graphs of a given type.
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is just the productt of the total contribution from all graphs of the type
shown in fig. 7.19(a) and the total contribution from all graphs of the type
shown in fig. 7.19(b). We may represent this result symbolically as in fig.
7.21, where an unlabelled graph stands for the sum of the contributions to
(o] Ua(t, —) | D) from all different graphs of that type.

At

R gy

Fig. 7.21.

We shall generalize this result in the following chapter and show that it
applies to any set of unlinked graphs containing the same unlinked parts,
all possible relative orderings of the latter being included, provided that
these unlinked parts are all of different types.

A slight modification is necessary if several unlinked parts of a graph
are of the same type. For example, consider the graph shown in fig. 7.22,

Fig. 7.22.

which has three unlinked parts, each of the same type. The contribution
10 A, from all such graphs is, from eq. (7.61),

3at
—(—40)* 3 Glolji) kilolk) (malolam)y—.(1.77)

idkimn 6o
However, the cube of the contribution to 4, from all graphs of the type
shown in fig. 7.19(a), which is the type of each unlinked part of fig. 7.22,

T This follows from the fact that
3 (ijlolkly (mnlo|nm) (K|o)ify =, (Glolkd) (Klolif) Y, (malv|nm).

ijklmn ijkl mn
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is, from eq. (7.75),
X . . 3e3at
— —%1)3[2 <U'D|ﬁ)] e (7.78)
i

which is 6 or 3! times the expression (7.77). We may represent this result
symbolically as in fig. 7.23, an unlabelled graph again standing for the
sum of the contributions to (®y|U,(z,—%=)|®,) from all different graphs
of that type.

b

Fig. 7.23.

The reason for this result is simply that permuting unlinked parts of
the same type does not change the type of an unlinked graph, and there
are 3! permutations of the unlinked parts of the graph in fig. 7.22. The
generalization of this is fairly obvious and will be discussed in the follow-
ing chapter.

7.7. The Vacuum-Vacuum Matrix Element

We shall in future refer to the matrix element
(@o|c}cieic . .. ChC}CuCou| Do)
appearing in any term of 4, eq. (7.22), whatever the value of n, as the
vacuum-vacuum matrix element for that term, since @, is the unperturbed
ground state, which, as explained in §7.2, plays the part of the vacuum
state in the present work. We shall also denote this matrix element
symbolically by { ).

The possible values of ( ) are 0 and +1. It vanishes, in fact, only in
cases where the Pauli principle is violated, that is, where the same one-
electron state is created or destroyed twice in succession. Apart from
such cases, which we shall ignore (for reasons to be discussed in the
following section), the value of { ) can be found very simply from the
graph of the term in which it appears. The rule is as foliows:

If, for a given graph, \ is the number of closed loops formed by the
hole and particle lines, and . is the number of hole lines, then the value
of the vacuum—vacuum matrix element for this graph is (—1)*.

ety ey
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We shall not prove this rule rigorouslyt, but shall make it plausible.
First, we note that (again ignoring certain possible violations of the Pauli
principle) the value of the vacuum-vacuum matrix element for an un-
linked graph is just the product of the values for the unlinked parts. This
is obvious in the case of unlinked parts which are completely separate
in time, as in figs. 7.18(a) and (b). When there is overlap, as in fig. 7.18(c).
it is only necessary to realize that the interchange of two interactions
involves the interchange of two blocks of four operators in ( ). This
entails an even number of interchanges of neighbouring operators, and
hence does not change the sign of (). It follows that the value of { ) is
the same for all unlinked graphs obtained by permuting the same set of
unlinked parts. It also follows that, in verifying the rule for evaluating
{ ), we need only consider linked graphs.

Secondly, it may be verified immediately that the rule applies to all the
graphs whose contributions we have evaluated, namely, figs. 7.13, 7.15
and 7.17. In fig. 7.13(a) there are two loops and two hole lines?, giving
{ ) =1, while in fig. 7.13(b) there is one loop and two hole lines, giving
( ) =—1. Similarly, the graph in fig. 7.15(a) has two loops and two hole
lines, giving {( ) = 1, while that in fig. 7.15(b) has one loop (which inter-
sects itself) and two hole lines, giving ( ) = —1. Finally, the graph in
fig. 7.17 has three loops and three hole lines, giving { ) = 1.

Thirdly, we note that when two lines at opposite vertices (that is, at
the two ends of an interaction line) are interchanged, as in the case of the
i,j lines in going fromfig. 7.15(a) to fig. 7.15(b), the signof { ) is changed.
This is because the two lines interchanged must either both leave or both
enter their respective vertices, so that in the block of four operators,
cicle,c, say, coming from this interaction, either ¢}, ¢ must be inter-
changed or c¢,, ¢. Interchanging two lines in this manner always adds or
subtracts a closed loop, as seen in fig. 7.15, but does not affect the number
of hole lines. This strongly suggests that adding or subtracting a closed
loop, leaving the number of hole lines unchanged, changes the sign of
the vacuum-vacuum matrix element, as implied by the rule.

t The rigorous proof entails the use of Wick’s theorem, stated in Appendix VII. How-
ever, this requires tedious and complicated algebra which it is the principal purpose of the
graphical method to avoid. We therefore prefer not to make explicit use of Wick’s theorem.
even at the occasional cost of a little rigour.

t Loops of the type shown in fig. 7.13 always refer to holes, as we have seen in §7.5. In
order to conform with the rule, circular loops of the type of fig. 7.13(a), when they occur
singly, must be assumed to include one hole line, so that such loops do not contribute to the
signof { ).



140 FEYNMAN GRAPHS [Ch.7.47

(a) (b

Fig. 7.24.

In order to obtain the dependence of the sign of { ) upon the number
of hole lines, let us consider the graphs in fig. 7.24. Those in the upper
row, (a) to (¢), are all ‘direct’ graphs, as explained in §7.5. They are also
known as ring graphs, for an obvious reason, and we shall find them to be
very important in calculating the correlation energy of a free-electron gas
(see ch. 9). Going from one ring graph to that of next higher order adds a
loop and a hole line. Each time this is done a similar block of four opera-
tors is inserted into ( ), so that an additional even number of inter-
changes of adjacent operators is required to bring those relating to the
same state into juxtaposition. In fact, { ) = 1 for all ring graphs, so that
adding a loop and a hole line does not change the signof ().

Now consider the third-order ‘exchange’ graph shown in fig. 7.24(d).
This is obtained from (b) by interchanging the k,m lines at the ¢, inter-
action, the sign of ( ) thus becoming negative. We therefore find that, in
going from (a) to (d), the number of loops remains the same, but the
number of hole lines increases by one, and the sign of {( ) is changed.
Similarly, (e) is obtained from (c) by interchanging the &.p lines at the £,
interaction and the n./ lines at the ¢, interaction. Since there are two inter-
changes, the sign of { ) remains the same in (¢) and (¢). Thus{ ) =—1
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for (d) and ( ) =1 for (e), but (d) and (e) both have two loops and differ
only in that (e) has an additional hole line. We deduce that the sign of
the matrix element depends upon the number of hole lines. as well as
upon the number of loops, as stated in the rule.

Although not completely rigorous, the foregoing verification should be
sufficiently convincing. We have gone into the question at some length
because it receives scant attention in most texts. Generally, even when
the rule is correctly stated, no proof is attempted or it is left implicit in a
mass of algebra.

7.8. Graphs which Violate the Pauli Principle

In the foregoing sections we stated in several places that we were
ignoring certain possible violations of the Pauli principle. We shall now
explain the meaning of this statement and justify the procedure.

A graph is said to violate the Pauli principle if it represents a term in
which the same one-electron state is created or destroyed twice in suc-
cession. The vacuum-vacuum matrix element {( ) for such a term must
vanish. However, it would be convenient not to have to take such ex-
ceptional cases into account when summing over graphs, but to assume
that all graphs of the same type, whatever the labelling of their hole and
particle lines, have the same value of ( ). This can, in fact, be done.

We have seen in §7.5 that, in summing over first-order and second-order
graphs, the Pauli principle can be ignored, because any direct graph
which violates it is automatically cancelled by an exchange graph which
represents a term of the same magnitude but opposite sign. For example,
the two graphsin fig. 7.25 cancel each other. The vacuum-vacuum matrix
element should really vanish for these two graphs, because the hole state
i is created twice in succession. However, if this fact is ignored,and { )
is evaluated according to the rule given in the previous section, its value
for fig. 7.25(a) is 1, and its value for fig. 7.25(b) is—1. Apart from this the
terms represented by the two graphs are the same, since corresponding

(a)
Fig. 7.25. Two second-order graphs which
violate the Pauli principle. but which cancel
each other.
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interactions are the same in both graphs and only the method of joining
up the i lines is different.

It is not difficult to see that, whenever the same hole or particle line
appears twice in a graph, it is possible to join up the relevant creation and
destruction lines in two alternative ways, one of which has an extra loop.
Both graphs have the same number of hole lines, so that the sign of ( )
is different for the two graphs and their contributions therefore cancel.

Fig. 7.26. Two third-order graphs which violate the Pauli prin-
ciple, but which cancel each other.

The two graphs shown in fig. 7.26 illustrate a further important point.
Both graphs violate the Pauli principle, but, if this fact is ignored, the
value of { ) is found to be 1 for (a) and —1 for (b). Clearly, the two
graphs differ only in the way the j hole lines are connected up, so that, if
both are included in the sum over graphs, they cancel each other. Now,
fig. 7.26(a) is of the same type as fig. 7.18(c), with n=j. If, indeed, we
take n = in all the graphs of figs. 7.18 and 7.19, and follow through the
same calculation as in §7.6, we find that the sum of the contributions from
the three graphs in fig. 7.18 is equal to the product of the contributions
from 7.19(a) and 7.19(b) only if the value of the vacuum-vacuum matrix
element is assumed to be the same for all the graphs in fig. 7.18. In fact,
the value of this matrix element should be zero for fig. 7.18(c), with n = j,
since this graph violates the Pauli principle. Thus the situation depicted
in fig. 7.21 is true only if violations of the Pauli principle are ignored.
We shall see in the following chapter that, in order for the linked graph
theorem to hold, it is necessary that the situation depicted in fig. 7.21,
and similar situations, be true. In other words, the linked graph theorem
holds only if violations of the Pauli principle are ignored.

To summarize: violations of the Pauli principle can be ignored in
summing the contributions from all graphs, since graphs which violate
the Pauli principle always occur in pairs which cancel each other. In
applications of the linked graph theorem violations of the Pauli principle
must be ignored.

.
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CHAPTER 8

THE LINKED GRAPH THEOREM

8.1. Statement and General Discussion of the Theorem

We have shown in ch. 6 that, if the energy of the ground state is

E=E,+AE, (8.1
where E,, is the energy of the unperturbed ground state, then
. .9
AE = lmon[— log (d)oan(t,—oc)l(DO)] 8.2)
a0 gt =0
Here
(q)Oan(ts _OO)I(I)()) =1+ 2 Ana (83)

n=1
and A4, is defined in eq. (6.27). In the present chapter we shall discuss

_an important theorem which greatly simplifies the evaluation of AE. This
1s known as the linked graph theoremt, and may be stated as follows:

lOg (q)()l Ua(t9 _w) l®0> = (q)OI Ua(tv —OO) I(D0>Lv (84)

the subscript L on the right-hand side denoting that only the contributions
from linked graphs are to be included in the evaluation of that expression.
Thus, only linked graphs contribute to the energy of the ground state.

Before proving this theorem, let us see what it implies. As shown in
€q. (6.28), we have
2 3
l08 (@] Uy (1,~) [90) = 5 4 =3, 4u) +1(3 ) =

. (8.5)

T Itis also known as the linked cluster theorem.
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where A, includes the contributions from all graphs of order n, both
linked and unlinked. Now, it should be clear from the work of §7.6 that
the terms of (24,)2, (2A,)% ..., can all be represented by unlinked
graphs, which implies that, if the linked graph theorem is true, all the
terms after the first on the right-hand side of (8.5) must simply cancel the
contributions of all unlinked graphs to the first term, 24,,.

We can, in fact, easily see that this is so for the lower-order contribu-
tions. First, in order to reduce the number of graphs we need considert,
we shall neglect all graphs which do not conserve momentum. The mean-
ing of this will be made clear in the following chapter, where it will be
shown that terms represented by such graphs do not occur, for example,
in the energy of a free-electron gas at the absolute zero of temperature.
Essentially, the implication is that graphs containing loops of the types
shown in fig. 8.1 must be excluded, so that only exchange graphs of the

Fig. 8.1.

type of fig. 7.13(b) are to be included in first order, and only graphs of the
types shown in figs. 7.14(a), (b), (¢), (d) and (x) are to be included in
second order.

Also, again to reduce the number of graphs, we shall, in this section
only, represent by a single graph, without arrowheads, all graphs of a
given type as well as those of the types obtained by interchanging the
vertices at any of the interaction lines. For example, in the second-order
case we represent all graphs of the types shown in figs. 7.14(a) and (b) by
just fig. 7.14(a) without the arrowheads, and all graphs of the types shown
in figs. 7.14(c) and (d) by just 7.14(c) without the arrowheads. As we have
seen in §7.5.2, the contributions from the types in each pair are the same,
so that the inclusion of both in a single graph merely requires the intro-
duction of a factor of 2. The same thing must be done in the case of
unlinked third-order graphs with these second-order graphs as unlinked

t The theorem remains true if all graphs are taken into account, as we shall prove, but
the demonstration becomes more cumbersome.

~

-
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parts, so that the factor of 2 may be neglected when cancelling unlinked
graphs, as we shall do below. We shall not consider terms of order higher
than the third, and so may restrict ourselves to the graphs shown in fig.
8.2.

- 1
- O

X |
1]
:

o other linked,
-- + third - order
Q graphs

Fig. 8.2.

@

Expanding the right-hand side of eq. (8.5), we have
lOg ((I)()IUQ(I, _OO) |(D0> :A1+A2+A3+ ..

—3AP— A A, —. A+ (8.6)

the terms shown explicitly being all those of the first, second and third
orders. We shall now make use of the results expressed in figs. 7.21 and
7.23, together with the similar and easily verified results expressed in fig.
8.3, to represent graphically the final three terms of (8.6). These terms,
shown in fig. 8.4, clearly cancel the unlinked graphs of 4;+A4,+A4,,
shown in fig. 8.2.

This verifies the linked graph theorem up to and including terms of the
third order. It is a useful demonstration in that it clearly shows how the
unlinked graphs cancel, but it does not lead directly to a general proof of



146 THE LINKED GRAPH THEOREM [Ch.8,§1 *
<CPTE> xS = 2 x
<Z"=>
<> x = 3 x
>
<2 >
Fig. 8.3.
===
- 34t = -
===

e == (K 2
ER N

I .

===

Fig. 8.4.
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the theorem. However, once the result discussed in the following section
is firmly established, we shall see that the general proof of the theorem is
quite simple.

8.2. Unlinked Graphs with the Same Unlinked Parts

We shall now prove in general a result already demonstrated in certain
particular cases - for example, figs. 7.21 and 7.23. From eq. (7.22), we
have

A= (—F)" Y ... > (ijlolkly . .. {rs|v]uw)

ijkl rsuw

X (=] )M f’ exp [ (A, + a)1,] dt, f_t exp [(iAg+a)t,]drs . ..

—w

lh—1
x f exp [ (i, +)1,] i, &)

where A+ u, explained in §7.7, may vary from term to term of the sum.
We first wish to consider the contributions to 4, from unlinked graphs
which are constructed from the same two unlinked parts, with different
relative orderings of their interactions, the ordering of the interactions
in each unlinked part being kept fixed. Let us suppose that the orders of
the two unlinked graphs are m and n— m, respectively. We shall show
that the contribution from all such graphs to A4, is just the product of the
contribution from the first unlinked part to 4,, and the contribution of the
second unlinked partto 4,,_,,.

It is clear that the matrix elements {ij|v|kl), etc., and the factor (—1)***
are the samet for all such graphs, as well as for the product of the con-
tributions from the unlinked parts. It is only necessary, therefore, to
consider the time factor in (8.7), which may be written

exp [(iA;+a)t,] ... exp [(IA,+a)t,]dt, ... dt,, (8.8)

>t >ty> ... >ty
the integration being over all the values of the variables subject to the

given condition.
Let us denote the times of the interactions in the two unlinked parts by

T The result we wish to establish is, in fact, true only if all such graphs are included, with
the value of the vacuum-vacuum matrix element being taken to be (—1)*** for each. As
explained in §7.8, this means that possible violations of the Pauli principle must be ignored.
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tistsy .. by, and £, 8, ..., t,_,, respectively. Also, let us denote by
AL A, .. A, and AL AL, ..., A, the corresponding energy factors for
the two parts. We wish to find the contribution to A, from allf such
graphs, in which the ¢; and f; are arranged in every possible order subject
to the conditions

> >t ..ty (8.9)
and

t>H> > ey (8.10)

Since all relative orderings of the interactions in the two unlinked parts
are included, the sum of the time factors like (8.8) for all such graphs is
just

ff ff exp [(1A;+a)t]...exp [(1A+a)t;] . ..

10>, L0,

Xdty...dt,_,

= ff exp [(A +a)ty] .. .exp [(1A,+a)t,]dt, ... dt,

>0>4>...>1,

x ff exp [GAI+ )] ... exp [GA!_ +a)t]dr ... dt\m

1>0>0> 0028, (8 1 1)
which is the product of the time factors for the two unlinked parts taken
separately.

This completes the proof of our first point. Before proceeding, however,
it may be found helpful to have a concrete example of the foregoing. Let
us, therefore, reconsider the graphs in fig. 7.18. We shall denote the
times of the interactions in the second-order unlinked part by ¢,, £,, with
t; > 15, and the time of the interaction in the other part by ¢;. The sum of
the time factors for the three graphs is, then,

fff ( )dede,de; + fff ( )drde,dr

>0h>H>1 >4

+ ”f ( )dndndr,  (8.12)

1,211,

+ There are n! ways of ordering n different objects, and, in a fraction 1/m!(n—m)! of
these, m chosen objects have a particular order among themselves and the remaining n — m
objects also have a particular order among themselves. The number of such graphs is thus
n!/m'(n—m)!. For example. in fig. 7.18, the numberis 3!/2!1! = 3.

[Ch.8,§2 *
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the integrand ( ) being
exp [(iA;+a)1,] exp [ (1A, +a)t,] exp [(IA] + ) 1}]

in each case. Since all ranges of integration of ¢, relative to ¢, and ¢, are
included, (8.12) can be written as

f exp [(1Aj+ @)t ] dr; fj exp [ (1A, +a) 4] exp [(1A, +a)1,] dt, dt,,
>t =>h>t (8 13)

which is the product of the time factors of the two unlinked parts taken
separately. This was proved in §7.6 by direct calculation of the time
factors.

The generalization of the result proved above is immediate. Thus the
sum of the contributions to (®y|U,(t,—=)|d,) from all graphs con-
structed from the same set of unlinked parts, by arranging the relative
ordering of the interactions in all possible ways (retaining the ordering of
the interactions in each unlinked part separately, however), is equal to
the product of the contributions from the unlinked parts considered
separately.

When we come to sum over i, /, k, [, etc., that is, to find the contribution
from all graphs of the same types, constructed as described above from
the same unlinked parts, a little care must be exercised. If all the unlinked
parts are of different types, then the total contribution is just the product
of the total contributions from all graphs of the types of the unlinked
parts (for example, the result expressed in fig. 7.21), but this is not so if
several of the unlinked parts are of the same type. We have already had
an example of this, which led to the result expressed in fig. 7.23, but the
point is so important that a further example might be worth while. Let us
consider the six graphs shown in fig. 8.5, which are constructed by
arranging in all possible ways the relative ordering of the interactions in
two unlinked parts of the same type. The sum of the contributions to 4,
from these six graphs is just the product of the contributions to 4, from
the two unlinked parts. However, if we sum over i, j, k, I, m, n, p, g, to
obtain the total contribution from all graphs of these types, we see that
the same graphs are included rwice, since the graphs (a) and (d) are of the
Same type, as are the pair (b), (e) and the pair (¢), (f). The square of the
total contribution to 4, from all graphs of the type of the unlinked parts
has therefore to be divided by 2 in order to obtain the total contribution
to A, from all different graphs of the types shown in fig. 8.5.



150 THE LINKED GRAPH THEOREM [Ch.8,§3 *

T
S OOQ@ OO "

(a) (c)

L (X -, OO
i ’Of( E H"?ﬂ

(d) . e)
Fig. 8.5.

It follows that, for graphs constructed from N unlinked parts of the
same type, the product of the contributions from the unlinked parts must
be divided by N, since this is the number of ways of ordering the un-
linked parts without changing the type of the graph. The final generaliza-
tion of this result, to graphs constructed from several different sets of
unlinked parts, the graphs of each set being of the same type, is obvious,
but we shall leave it until the next section, where we shall introduce a
convenient notation.

8.3. Proof of the Linked Graph Theorem

Let us denote the types of all linked graphs byt G,, G,, Gs, . . ., as shown
in fig. 8.6, for example. The most general type of graph will thus consist
of n,+n,+. .. unlinked parts, n; of type Gy, n, of type G,, and so on,
wheren;, ny,...=0,1,2,....

We shall denote by (®,|Ug,|®,) the contribution to (Do Uy (2, —) | D)

+ The subscripts here have no significance apart from the enumeration of the different
types. In particular, they do not indicate the order of a graph. There are many different
types of linked graphs of any given order - for example. figs. 7.14(a)-(t) show the twenty
different types of second-order linked graphs. We are here using the definition of type given
in §7.6, and we are not restricting the graphs in any way, as we did in §8.1.
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from all graphs of the type G;. In general, a large number of different
types of graphs can be constructed from #, unlinked parts of type Gy, n,
of type Gg. etc., by arranging the relative ordering of the interactions in
all possible ways. It follows directly from the work of the previous sec-
tion that the total contribution to {(®,|U,(r, —2) |®,) from all graphs of all
these different types is

m(%lljall‘bo)"’(@JUcz|¢o>"2- .o
since there are n,! ways of arranging the unlinked parts of type G, among
themselves, n,! ways of arranging those of type G., etc., without changing
the type of the whole graph.
The total contribution from all graphs of all types is obtained by
summing over all values of n,, n,. . . .. Thus

(q)0| Ua(t,—oc)|(l)0>

1
= m%““ PPN .<q)0|UG1|‘D0>"‘<®0|UGz“l)o)"Z e
=[S L@vsienr|| S Levaless|...
=on! . =~ ! “

= EXp [<(D()|UG1|(I)O> + <(D0|U(;zlq)0> +...]
= €Xp (®()|Ua(f~_°°)|q)0>L~ (8.14)

where L indicates the contribution from all linked graphs only. The
linked graph theorem, in the form of eq. (8.4), follows immediately.
8.4. The Energy of the Ground State

We shall now consider in greater detail the energy of the ground state

of the perturbed system. From eqs. (8.2), (8.3) and (8.4), we have

AE = limi[ (@ Uatr.—) 00}, |

t=0

R 0A
= lim [(—") ] . 8.15
a—0 ! 2 at wdi=0 ( )

n=1
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Also, from eq. (7.22),
Ay= (="YX (ilvlkd) ... (rs|ofuw)

ijkl rsuw
y (=DM exp {[iI(A+As+...F+A) + nalr}
A+ Ay +. ..+ At na][i(As+Ay+. .. +FA)+H(mr—Da] ... [IA,+ o]
(8.16)

where
An = €r+ € € T €y

etc., and we have substituted (—1)** for the vacuum-vacuum matrix
element, as explained in §7.7, so that

i (Flvlkl) . .. (rs|v|uw) (—1)M+#
DY X (A +Ag+...+A)(Ag+...+A,) ... A

ijkl rsuw
(8.17)

The value of (—1)*™* depends, of course, upon the type of graph repre-
senting a given term, and A,. A,, . . ., will vary from term to term.

If we write
AE = 2 AE™, (8.18)
n=1
as in eq. (6.29), then
(flvlkly . .. (rs|v|uw) (—1)M#
(n) — _ (__1\n
AE 2) %Szw (Ag+Agt ... +A)(Ag+...+4A,) ... A
(linked graphs) (8 1 9)

This is the n-th-order energy correction. The sum is over all terms repre-
sented by n-th-order linked graphs. It should be noted that, although the
time factors and the creation and destruction operators have vanished
from (8.19), the graph representing any term can be constructed from the
matrix elements {ij|v|kl}, ..., taken in the correct order. Conversely, if
an n-th-order linked graph is drawn at random, the corresponding term of
the sum in (8.19) can immediately be written down. Time dependence,
which was used as scaffolding in order to arrive at the desired result
(8.19), can now be forgotten.

P
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8.5. Intermediate States

The graphs we have been considering, which contribute to the energy
of the ground state, are often called vacuum-vacuum graphs, because
they represent a series of interactions in which the initial state ®, ulti-
mately becomes @, again (with a possible change of sign), and @, takes
the place of the vacuum state in this work. We note that each unlinked
part of an unlinked graph is itself a vacuum-vacuum graph.

The states which occur during the time sequence of interactions repre-
sented by a graph are called intermediate states. Consider, for example,
the vacuum-vacuum matrix element

(Dylcicieicy . - . chcicwey|Po)
occurring in the general term of 4,,, eq. (7.22). We may write

ciele,e,dy = Oy,

(8.20)

where @, is the first of the intermediate states. The last interaction,
represented by the operators c}cic,c,, must transform the final inter-
mediate state back to ®, (or — ®,) for a vacuum-vacuum graph.

Two things about intermediate states should be emphasized. First,
intermediate states are not real physical states of the system, but are
sometimes called ‘virtual’ states. This becomes obvious when we
remember that, since we are neglecting certain possible violations of the
Pauli principle, intermediate states need not obey the Pauli principle.
They may be states of the unperturbed system, but the unperturbed
system itself is generally a mathematical fiction. Secondly, for a linked
graph, ®, can never be an intermediate state. This is because, if ®, were
an intermediate state at some point, the graph would separate at this point
into two unlinked parts, each being a vacuum-vacuum graph.

The energy factors A, + A;+. . .+ A, etc., may be expressed in terms
of the energies of the intermediate states. Thus, if E, is the energy of the
intermediate state @, given in eq. (8.20), thent

€, = EI_EO'

Similarly, if E, is the energy of the intermediate state formed by operating
upon &, with the next four operators, then

An71 b EZ_EI'

A, =¢€+€—€,— (8.21)

(8.22)

T It should be noted that E, is still given by eq. (8.21) even when w = u, for example. so
that ®, is not a state of the unperturbed system.



154 THE LINKED GRAPH THEOREM [Ch.8.§6
Thus, the second last factor in the denominator of the general term of
AE™ _ ineq.{8.19), becomes

A, +A,=E,—E,. (8.23)

Every factor can be treated similarly, and, as there are n — I intermediate
states, the denominator becomes

(En—l “Eo) (En——Q_E()) CE (EI—E())-

It must be remembered. of course, that the energies of the intermediate
states will vary from term to term — that is to say, E,, for example, will
not be the same for every term of AE™.

In a notation which requires a little care in its interpretation, therefore,
eq. (8.19) may be written

(flo|kl) . .. {rs|v]uw) (=1) **
AED = (3" ... T - .
B2 2 B —E, ) (Ea—Ey ) - (Eo—E)
(linked graphs)

(8.24)

Since only linked graphs are allowed, ®, cannot be an intermediate state.
Also, we assumed in ch. 6 that the ground state @, is non-degenerate, so
that no intermediate state can have energy E,. It follows that no factor
in the denominator of (8.24) can ever be zero.

8.6. Alternative Formulation of the Perturbation Series

We shall now derive the perturbation series for the ground-state energy
correction in a different form, which occurs frequently in the literature
and which can be compared with the Rayleigh-Schriodinger series in eq.
(1.76).

Fromeq. (8.15) we have

.- [f0A4
AE = lim [( ") ] , 8.25
al—)() ! 2 at =0 ( )

and eqgs. (6.24) and (6.27) give
A, = <®0|Un|d)0>~ (8.26)

where

t

" HL(1,) dt,. (8.27)

—oc

t 4
U, = (—i)nf Hl(tl)drlf Hy(t)dt, ...

e

o T T e e
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() ~(o
dat /i
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Thus
(—i) H, (1) f Hy(t) dr, f Y Hy(ty) dry . ..

tn_
... f " Hy(1,) dt, ¢>O> . (8.28)
—00 L
Now, from eq. (6.8),
H,(t) = exp (iH,t)H' exp (—iH,t) exp (af), (8.29)

so that
—1
H(t,) dt,®,

—co

tp— .
=f 1 exp (iHot,)H' exp (—iHt,) exp (at,) dt, D,

—®

t—
=J’n " exp (iHotu) H' exp (—iEqt,) exp (at,) dt,®,

tp—

:f 1 exp [i(HO—Et)—ia)tn] dthIq)O

— €Xp [i(HO_EO—ia)tn—l]
i(HO_E()—ia)

H'®,, (8.30)

since
H(I)(): qu)o, (8'31)

and H', which does noi commute with H, is time-independent.
It follows that

tn—z tn—l
[ H) drae f Hy(t,) i,

b .
= f ’ exp (iHot,—1)H' exp (—iHt,-1) exp (aty—1)

-

x exp [i(Hy— Ey—ia)tys]

- dt,_\H'®
i(HO_E()_la) ! 0
tn—2 1
= i —E,—2i _ '——dt, \H'®
LG exp [i(Hy— Eo—=2ie)ty o JH e p a0
- exXp [I(HO_EO_zla)tn_g] H' 1 H’CI)O, (8.32)
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Continuing this process, we finally obtain, from eq. (8.28),
(—i)"exp [i(Hy— Ey— nia)t]H’
1 1 ’

(5r), = (o

at /L

X — H .. H H<I>>
i[Hy— E,— (n—1)ia] i(H—Ey—ia) " | /v

(o,

X

(—i) exp [i(Hy— Ey—nia)t]H'

1 ) ) 1 '
EO_H0+ (n—l)laH oo H EO_H0+1(XH

<I>0>L. (8.33)

Thus, from (8.25),

1 ) , 1
0_H0+ (n—l)laH o H EO_H0+1a

1 , n—1
H (E()_‘H()H)

H/

HE

@)
L

<D0>L. (8.34)

a->0

AE=1lim S <c1>0
n=1

=§1<®°

It is permissible to put « = 0 immediately because, as was pointed out in
the previous section, ®, cannot occur as an intermediate state in a linked
graph. Also, we have assumed that ®, is non-degenerate, so that all
intermediate states have energies greater than E,, which means that
E,— H, will never operate upon an intermediate state to give zero.

Eq. (8.34) gives the linked graph, or linked cluster, expansion as it is
usually encountered in the literature. It is similar to the Rayleigh-
Schrodinger perturbation series in eq. (1.76), which may be written in the
form

R n—1
! E,—E+H’'
1|5 2 g B ]

<I)0>. (8.35)

sE=3 (@,
n=1
Clearly, the projection operator R, which excludes the ®, component of
any function it operates upon, has the same effect as the restriction to
linked graphs only in (8.34). This will become more obvious if we com-
pare the first- and second-order terms of (8.34) and (8.35).
The first-order correction (n = 1) given by eq. (8.34) is

AE® = (®y|H'|Dy)1., (8.36)

which agrees with that from (8.35), given in eq. (1.78), since all first-order
graphs are linked, so that the L is superfluous.
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The second-order correction given by eq. (8.34) is

1
EO_H(J

AE® = <@0\H' H

d)o> , 8.37)
L
which is to be compared with that from (8.35), given in eq. (1.81), namely,

HI

AE® = <<I)O‘H’

E.—H, <I>0>. (8.38)
The restriction to linked graphs only in (8.37) removes the ®, component
from H'®,, just as the operator R does in (8.38), since it disallows ®, as
an intermediate state. More explicitly, we have, from eq. (2.68),

H'® =13 (ijlvlkDeicieicid, (8.39)
ijkl
and the restriction to linked graphs only means that we must omit every
term for which
ciclee,®, = =D, (8.40)

(i.e. those terms for which i,j = k,l), since these would give rise to un-
linked graphs of the types shown in fig. 7.14(u), (v), (w) and (x). Com-
parison of higher-order corrections becomes more complfcated, but the
principle remains the same.



CHAPTER 9

THE CORRELATION ENERGY OF A FREE-ELECTRON GAS

9.1. The First-order Perturbation Energy

We have already considered, in ch. 3, the first- and second-order per-
turbation corrections to the energy of the ground state of a free-electron
gas, treating the whole Coulomb interaction as a perturbation. We shall
now, as a prelude to our discussion of the correlation energy, show how
to obtain these terms using the graphical method described in the previous
chapter.

The interaction term H' was found to be (eq. (3.59))

H =313 {p+ko;q—ko'[v|po.go’) ., CoiaCorCpo
k.p.q

oo’

2me? ‘
=3 e Crther Cirer Cac Cpo ©.1)
k.pg

.o

where k = 0is to be omitted from the sum.
According to eq. (8.19), the first-order term is given by

AE® = 4§ 3 (ijlolkl) (=1)**, (9.2)

ijkl
(linked graphs)

and the first-order graphs are of the types shown in fig. 9.1. There are, of

course, no unlinked first-order graphs.

(a) (b)

Fig.9.1.

g N6
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The only non-zero matrix elements in (9.2) must be of the type shown
in (9.1), namely,

4re?

Qi

(ptkosq—k.o'|v|po.go’) = 9.3)
Now, a graph of the type of fig. 9.1(a) would represent a term of (9.2)
withi = k.j=[. According to (9.3) this would imply

p+tk=p and g—k=gq,

which is impossible, since k # 0. Graphs of this type, therefore, do not
contribute to AE,

A graph of the type of fig. 9.1(b) represents a term of (9.2) with i = [,
j= k, and this implies

ptk=¢q, o=0, or k=q—p, o=da'. (9.4)

There is a single closed loop and two hole lines (¢,,c; must create holes or
they will operate upon ®, to give zero), so that A + u = 3.
We thus find

4mre? 1
AE® = — ) 9.5
Q ,,,,,2,, lp—ql®
(p.a<he)

in agreement with eq. (3.75). The factor # in (9.2) has been cancelled by
the sum over spins, which, since o = ¢, merely introduces a factor of 2.
Also p.q < kg since the loops refer to holes, and p # ¢ because k # 0.

AEY is the exchange energy, or Hartree-Fock term in the ground-state
energy, and is given as a function of ry in eq. (3.77).

9.2. The Second-order Perturbation Energy
Fromeq. (8.19) we have

AE®==4 S 3 (i) (slolaw) DML 0
(Linked graphs)
where
A, =€+ e€—€,—€,. 9.7)

The second-order linked graphs are of the types shown in fig. 7.14,
with the exception of (u), (v), (w) and (x). In fact, however, only (a), (b),
(¢) and (d) contribute to the sum in (9.6). All the other graphs give rise to
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matrix elements which, according to (9.3), must vanish, as we shall now
show.

Let us consider fig. 7.14(e), which contains loops of the type shown in
fig. 9.2(a). Such a loop implies a matrix element {ij|v|kl) in which ; = I,
but j # k (otherwise the graph would be unlinked, as in fig. 7.14(x)).
According to (9.3), this means that o = ¢’ and

ptk=gq. q—k #p, 9.8)

which is impossible. It follows that there is no contribution to AE® from
any graph containing an ‘exchange’ loop of this type.

Fig.9.2.

Also, let us consider fig. 7.14(q), which contains two loops of the type
shown in fig. 9.2(b). Such a loop implies a matrix element (ij|v|kl) in
which i = k, but j # [ (otherwise the graph would be unlinked, as in fig.
7.14(u)). According to (9.3), this means that

p+k=p, (9.9)

which is impossible, since k # 0. It follows that there is no contribution
to AE® from any graph containing a loop of this type either.

It should be noticed that the foregoing arguments depend only upon the
situation at a single interaction line and not upon the order of the graph
(provided it is not of first order). We deduce, therefore, that there is no
contribution to the ground-state energy of a free-electron gas from
graphs of any order (above the first) containing loops of the types shown
in fig. 9.2. First-order graphs containing loops of the type of 9.2(a) do
contribute, of course, as was shown above.

The disallowed graphs may be said to be so because they contain inter-
actions which do not conserve momentum. The matrix element (9.3)
describes an interaction in which two electrons in states p,o and g,0" are
excited to states p+k,o and g—k,o’, respectively. Owing to this inter-
action the first electron has acquired additional momentumt k, and the

T We retain the system of units in which A = 1. In ordinary units the momentum of a
free electron is #k.
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second electron has lost momentum k. The total momentum remains un-
changed, and k is referred to as the momentum transfer due to the inter-
action. Since the only non-zero matrix elements are of the type (9.3), it
follows that any interaction which does not conserve momentum is
automatically excluded.

It will be useful to note also that, according to eq. (9.3), the value of
every non-vanishing matrix element is 4mwe?/§) divided by the square of
the appropriate momentum transfer.

The only permitted second-order graphs are thus of the types shown in
fig. 9.3 (and the two which are obtained from them by exchanging the

k
e —
q—k;d
p+kid) Ipd qd'
p+k,g
e e —
k
(a)
Fig. 9.3.

vertices at one interaction, which we shall account for by multiplying
the sum in eq. (9.6) by 2). The lines have been labelled in the ‘k,o”
notation and the momentum transfer has been indicated at each inter-
action. For both graphs we have

A2=ep+k+€q_k—e —€

p q

2 2 pn2_ 42 _1
[(p+k)*+ (g—k)*—p a5 -
1
=k-(p—q+k);. (9.10)

Let us first consider the graph in fig. 9.3(a). There are two closed loops
and two hole lines, so that A + . = 4. The momentum transfer is k at both
interactions, so that both matrix elements have value (4me?/Qk?). Hence
the contribution to (9.6) from all graphs of this type is

AEP=—13 m(4me’/Qk*)?
pgk k' (P—‘I"'k)
327-rem

Ek‘*k (p q+k)’ ©-11)

pak
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where
p.q < kg and lp+k|.lg—k| > k.

The sum over spins merely introduces a factor 4 - parallel spin (o = ')
and antiparallel spin (¢ # o) interactions contribute equally to AEY.

For the graph in fig. 9.3(b) the matrix element at the lower interaction
is the same as before, but that at the upper interaction is

{go’ polv|p+k.o;q9—k,o'), (9.12)

which vanishes unless o = o', when its value is

4are?

Qp—gr b -13)

since the momentum transfer is p— g+ k (e.g. ¢ —k — p). This graph has
one closed loop and two hole lines, so that A+ u = 3. Hence the con-
tribution to (9.6) from all graphs of this type is

167T e4m 1

(2) —
AEY 2kz(p q+tk)k-(p—q+k)’

(9.14)

again with
p.q < kg and lp+kl.|g—k| > ke

The sum over spins has only introduced a factor 2 here, since we must
have o = o' —that is to say, only parallel spin interactions contribute to
AE?.

These results may be compared with those of §3.6. We see that AEY
is just twice AE®, given in eq. (3.88) (with #i = 1). This is because, as
remarked above, AE‘? contains equal contributions from parallel spin
and antiparallel spin interactions. We may thus write

AE® = AEQ? + AE®, (9.15)
or

AE® = AEQ 4+ AE?, (9.16)
where

AE(TZi) = JAED 9.17)
and

AE® = }AEP + AEP. (9.18)

AE@ is, of course, the contribution from parallel spin interactions, which
was not explicitly calculated in §3.6.
If, as in §3.6, we replace the sums by integrals, measure energy in
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rydbergs and k, p and ¢ in units of .z, we find

i
z q k- (p—q+Fk) ry (9.19)

AE(aZ) =

and

3N dp
(2) — ak
AEb 1673 k2 f dqf (P—q+k)2k (p—q+k) ry, (920)

the region of integration being defined by

p.g <1 and |

in both cases.

We note for future reference that, owing to the symmetrical distribution
of the vectors p and ¢, we may equally well write AE, for example, in
the form

3N
(2) —
AE: f fdplfk (P1+P2+k) ry, ©9.21)

with
pipe < 1 and |pr+k|. | p.+ k| > 1.

AEY diverges logarithmically at k=0, since it is just twice AE?,
which was shown to diverge in §3.6. On the other hand, AE{? does not
diverge, since the integrand contains the factor k2 instead of k. It is
difficult to evaluate, however, and Gell-Mann and Bruecknert quote the
value

AE{? = 0.046N ry, (9.22)

obtained by a numerical method, which we shall use in the following
work.

Now, it is fairly obvious that the higher-order perturbation corrections
will also diverget at & = 0, since there will be one integral at least con-
taining in its integrand the factor 4mwe?/Q2k? for each interaction. Gell-
Mann and Brueckner showed that, in the high-density limit at least, the
perturbation series can be summed in such a way that the divergences
cancel out to give an exact expression for the correlation energy. We
shall now consider their method.

t Gell-Mann, M. and Brueckner, K., 1957, Phys. Rev. 106, 364,

1 There is never a divergence as k — =, because it may easily be seen that, for very large
k, the integrand of every integral appearing in AE'® becomes approximately k>~%".
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9.3. The Correlation Energy of a Free-electron Gas at High Densities,
according to Gell-Mann and Brueckner

9.3.1. The perturbation series

We shall first show that AE'™ is proportional to r?~2, where, as before,
47 Q

3N
It has already been found that the first-order correction AE®, eq. (3.77),
is proportional to r;!, and the above calculation shows that AE® is inde-
pendent of r;.

Now, in going from one perturbation correction to that of next higher
order, there is an extra integration over k-space and four extra linear
factors containing k are introduced into the denominators of the inte-
grands. When the integrals are made dimensionless, therefore, as in (9.19)
and (9.20), an extra factor k;! appears in the multiplying constant, and,

from eq. (3.65),

Q 1/3
kit = (W) = ars, (9.23)
where
4 1/3
o= (%) . (9.24)

Since AE™ is proportional to r;?, it thus follows that AE™ is propor-
tional to r272,

The perturbation series after AE‘? is therefore a power series in r,. The
coefficient of each power of r; will be a sum of several integrals, cor-
responding to different types of graphs, and some of these will have
different orders of divergence. Extending the work of §3.6 in an obvious
way, the situation may be represented schematically as follows:

AE® = C® f %4_ ce f kdk, (9.25)
0 0
AE® — (cgm %Jr cw %Jr cy f kdk)rs. (9.26)
0 0 0
sgo=(cp [ Grew [ Grep [ Feew [ ka)r ©2m
0 0 0 0

etc., where the C{? are constants, independent of r,, and we have only
shown the integration which is most important at k = 0.
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Thus
AE®+AED+ AED+ . = (CP+ CPro+ Cori+. . ) f kdk
0

+(CP+CPr+CPr+ .. ) f o
0

+ (CPry+ CPr2+CPré+. . ) %
0
+ C(4) 2+ C(5) 3 (6) 4.4 dk
( 1 Fg 2rS+C3 rs+...) OF
+.... (9.28)

The divergence at k = 0 is due to the long range of the Coulomb inter-
action. If, asin ch. 4, the interaction were screened, so that the lower limit
of the k-integration were 8(> 0), then at this limit we should have

f % « log 83, (9.29)

8
(llc_]; x 372, (9.30)

8
%Ig{ « 374, (9.31)

B8

and so on. If also, as in eq. (4.81), we take
B o« ri2, (9.32)

multiplication by the appropriate integral will make the leading term in
each bracket of (9.28), after the second, independent of r,. All the follow-
ing terms will still contain positive powers of r,, however. This suggests
that in the high density limit (r¢ — 0) it is sufficient to sum only the most
divergent integrals in each order of perturbation theory (i.e. those with
coefficients C{?, C{P, C{¥,...). The second-order exchange term AE{
must also be included, since it is a constant, independent of r,.

Now, in each order of perturbation theory, the most divergent integrals
are those coming from graphs in which the same momentum transfer k
occurs at every interaction, because this will give the highest power of k
in the denominator of the integrand, as we have already seen in the



166 CORRELATION ENERGY OF FREE-ELECTRON GAS [Ch.9,§3 *

second-order case. For these graphs, each pair of lines starting at a given
vertex must end together at another vertex. They are called ring graphs,
and some types of various orders are shown in fig. 9.4.

Fig. 9.4. Some types of ring graphs.

The initial simplification introduced by Gell-Mann and Brueckner (loc.
cit.) was thus to take the total correlation energyt at high densities to be

NW = AE® + (AEP+AE®+ . . )ring
= AE@ + (AEQ+AE®+ . . ) ring» (9.33)

since AE® is due to ring graphs only. The success of the method depends
upon the sum in brackets yielding a finite result, which we shall show to
be so provided the integrals are summed before the final k-integration is
performed.

We shall now obtain as an integral the contribution from ring graphs to
AE®, There are eight types of third-order graphs. One is shown in fig.
9.5, the others being obtained from it by reversing the vertices at one or
more interactions. The contribution from each of these graphs is the same,
the value of the matrix element at each interaction being 4 e?/Q0k2, since
the momentum transfer is k.

t The correlation energy, W per electron, was defined in §4.4 as the exact ground-state
energy minus the Hartree—-Fock energy. In the present case, where the whole Coulomb
interaction is treated as a perturbation, it is just the sum of the perturbation corrections of
all orders after the first.
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Fig. 9.5. A third-order ring graph.

The energy factors at the lower interactions are

oy 1
A= [(p+k):+p3— (P3+k)2‘pf]2_m

1
=k- (pl—ps);, (9.34)
1
A=k (ps—pz-!-k)a, (9.35)
so that
Ay A= k- (pl—pg-f-k)—rl;. (9.36)

The number of hole lines is always the same as the number of loops in
aring graph, so that

(—hHrr=1 (9.37)
for all ring graphs. Thus, according to eq. (8.19), with n = 3, the total
contribution from all ring graphs to AE® is

m2(dme?/Q2k?)3
—p. k) k (pa—p.+k)

AED=—8(-1" 3
ok k- (py

T (9.38)

where
P1:D2.P3 < Kk and |P1+k|v|P2_k|,|P3+k| > ky.

The sum over spins merely contributes a factor 8. Also, owing to the
symmetrical distribution of the vector p,, we may change its sign, and
(9.38) becomes
8m?(4we?/())3
AE®R, = - ,
nne 2 Kok - (pi+p.+ k) [k~ (p2+ps+k)]

PPk

(9.39)

where
pipaps < ke and  |py k| |pt+ k| pst k| > ke
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Expressing this as an integral, with p,, p,, p; and k measured in units
of kg, energy in rydbergs and length in Bohr units, we findt

3N (ar, dk
MBS = e 2%) [ [ o [ ons

dp,
. f 6 G imt D1k (mipmi]™ G40

the region of integration being given by
pupeps <1 and  |pi+kl||p,+ k|| ps+ k| > 1.

We shall not consider in detail the contribution of ring graphs to AE®,
but a brief mention may be useful.

There are three fundamentally different types of fourth-order ring
graphs, which give different contributions to the energy. These are shown
in fig. 9.6. Corresponding to each of these types there are fifteen others,

Qi} %%%%%% O i O O i O

I VA I VA

(a) (b)

Fig. 9.6. Types of fourth-order ring graphs giving different contributions to
the energy.

obtained by reversing the vertices at one or more interactions, each of
which gives the same contribution to the energy as the fundamental type.

+ Since, with % = 1, we have 1 rydberg = $me*, 1 Bohr unit = 1/me?, the constant multi-
plying the integral is

epr(4T€ 3(& Lo 2\ _3Nme( @\, 3Nme 1
’”( Q) 87r3> Nmet) = da7 \3eN)FT Tdn’ ks

_ 3Nme* ar, _}ﬂ(a_rs)
T 4w mer  Ani\n?/)

where r, is measured in Bohr units.
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Applying the same method as before, it is foundT that

3N s
AErmg_ (ar) j fdpl f deJ’dp:i

1
X
f[k (P1+P2+k)k (P1+P3+k)k'(P1+P4+k)

1 1 1
+
k- (py+p,+k) k- (pr+ps+k) k- (ps+p+k)

1 1 1 ]
T (Pt Dt R k- (Pt Pt pstpat20) k- (prpst k)| PF

. . . . . 9.41
the region of integration being given by ( )

| > 1.

P1.P2.P3.Ps <1 and IP1+k|’|I’2

9.3.2. Summing the contributions from ring graphs

First, following Gell-Mann and Brueckner, we wish to show that

AED, = (— 1)"+1;’fj (""S) f 1k dk, (9.42)
where
1
f dtlf de, .. f F,(t)F (1) ... F ()
X8(t,+t,+...+¢,)dt, (9.43)
and
F () = [ exp [t e+ k- p) 1. (9.44)

We shall not prove this rigorously, which would be tedious, but merely
show that it gives correct results for n = 2 and n = 3.
Let us consider E?. We havet

I

I

3 f d, [ Fu(t)Fu(6)8(1+1) diy

—

H RR-n) i = [ RoF

T See Gell-Mann and Brueckner (loc. cit.).

% From the conditions p,,p, < | and |p, +k|,|p.+ k| > 1 it follows that k - (p, +p,+k)
is positive, because even in the most extreme case, when p, and p, are both in the opposite
sense to k, p, + p, + k still has the same sense as k.
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= f dp, f dp, f exp [~ (42 +k - py)] exp [~ (k2 + & - ) ] dt

o]

dp,
| o | vt 043

which, when substituted in (9.42), with n = 2, yields the expression (9.21)
for AE?.

Now, let us consider AE®,, which is slightly more complicated. We
have

—%f dtlf dtof Fy (1) Fy (1) Filta) (0, + 1y + 1) dty

%f dtlf F, (1))F () F(—t; — 1) diy

=%fdp1fdpzfdp3f drlf exp [~|t;| 3k2+k - p;)

— |ts| (B2 + k- py) — |+ 12| GK*+ K - py) ] de,. (9.46)

To eliminate the moduli signs in the integrand we must divide the region
of the t,, ¢, integrations into six parts, as follows:

(A) f dt1f dr, [|t]=t. |tb]=t. |[h+L]l=t+18],
0 0
x 0

(B)f dr, de, [|t;] =1, || =—t, |t +86|=1t+1].
0 ~f1
x —t

© f dt]j de, [|6| =1, |tl=—t, |h+6|=—t,—t],
0 —C
0 0

(D) f dzy f dty [|ti] =—t, |ts] = —to, [ti + 15| = —1,— 1],

0 t1
(E) f dtlf de, [t =—t. |l =t |h+t=—t—t],
= 0

(F) f dr dt> [t =—t, [t = to. |t +8]|=t+1].
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It may be seen immediately, by changing the signs of ¢, and t,, that
(A)= (D), (B)=(E) and (C) = (F). In fact, if the variables are trans-
formed linearly (with inversion of the order of integration where neces-
sary), so that the limits of integration are 0 and « for both ¢, and ¢, it
will be found that the integral with respect to py, p,. p; of each of these
integrals is the same (see Problem 9.2). We may thus write

13=zfdp1fdpzfdp3f drlf exp [—1, (k2 + & py)
0 0

— 1,3k + k- p.) — (¢, + 1) 32+ k- py) ] dty

:2fdp1 f szfdP:sf exp [~1k - (pr+p.+k)]dy
0

X j exp [—tk- (p.+ps+k)]dt
0

dp;
=2 f d f dp. f , 9.47
b | 4 | Ik im0l O
which, when substituted in (9.42), with n = 3, yields the expression (9.40)
for AE®),.
We shall assume without further calculation that the agreement ex-
tends to all orders. Now, as shown in Appendix V, we may write

8(x) =2—17T— fx exp (iux) du, (9.48)

—

or, equally well, since d(ku) = kdu,
k (7 .
S(x)==— exp (ikux) du. (9.49)
27 )_,,
We may thus get rid of the 8-function in /,, by writing

S(ty+t+...+1,) =El;_rf exp [iku(t,+...+1t,)]du.  (9.50)

I, 27mf de, .. f_x dt, f_m (ty)...F (1)

Xexp [iku(t,+...+¢t,)]1du

k" [0, (u)]du, (9.51)

This gives

= 2mn
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where
QO (u) =f exp (ikut)F, (¢t) dt
=f dpf exp (ikut) exp [—|t|(3k*+k-p)]dr.  (9.52)

Substituting in (9.42), we obtain

AER= D7) [ | 10,01 0.5

2wn

Eqgs. (9.33),(9.22) and (9.53) now yield the following expression for the
correlation energy per electron:

W —0.046 = 2 AER,

T <ars> fkdk

=T6m° ( ) fkdk f_m [log{l-q- (L;lzgrs}_QiZ/zgrs]d”-
(9.54)

Qe

We note that the series in the integrand converges only if

1< %ﬁf"s <1. (9.55)

Now, the divergences occur at k=0, so that it will be sufficient in
evaluating Q,(u) to assume that k < 1 (the difficulty to which this leads
in respect of the convergence of the series in (9.54) will be discussed
later). As in §3.6, we write

k- p= kpx, (9.56)

and, since k and p obey the conditions p < 1.|p+k| > 1, we have, from
€q. (3.93),

1>p>1—kx, (9.57)
which implies that
1>x>0. (9.58)

Since k> =~ 0 and p =~ 1, we may, by the same argument used in obtaining
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eq. (3.99), write

Q,(u) =f dp f_ exp (ikur) exp [—|t|(3k*+ k- p)] dt
~ f dp fw exp (ikut) exp (—|t|kx) dt
=~ 2wk f xdx fw exp (ikut) exp (—|t|lkx) dt
[1] —o

1 o«
= 277[ xdxf exp (isu) exp (—|s|x)ds
0 —o0

=2 fl x{fl exp [s(iu+x)]ds+ fx exp [s(in—x)] ds}dx

=47R (u), (9.59)

where

R(u)=f1 Xt dx=1—utan-1(1>, (9.60)
o X2+ u? u

independent of k, provided k < 1.

Since the most important contribution comes from very small values of
k, Gell-Mann and Brueckner used the function given in (9.59) and
arbitrarily cut off the k-integration in (9.54) at the convenient upper limit
of unity - in other words, they approximated to Q,(u) as follows:

47R(u), 0<k=1,

0, k> 1. G610

0.(u) ={
To be precise, Gell-Mann and Brueckner used this approximation only
for terms with n > 2 in the perturbation series. They used the correct
expression (9.21) for AE?, and the difference between this and the value
given by (9.61) provides a small additional constant in the correlation
energy.
Inverting the order of integration in (9.54), and using (9.61), we thus
have

o foee8)
W —0.046 T (ars) f_w duf 4rk [log 1—+—k2 o dk+8, (9.62)




174 CORRELATION ENERGY OF FREE-ELECTRON GAS [Ch.9,§3 *

where
X = dar R (u)/m, (9.63)

and & is the small constant resulting from the correction to AE{? mentioned
above. X is independent of k, so that the k-integration can be performed
without much difficulty. This yields

2\ 2 % .
W —0.046— 5 — — (f—)f [X2log X + (1—X?) log (1+X) —X] du.

1673\ arg
(9.64)
Now, X is proportional to rg, so that, as r; — 0,
(1—X%log (1+X)—X = $X2, (9.65)

all higher powers of X, when multiplied by the factor outside the integral
sign, tending to zero with r,. We may therefore writet

3 77.2 2 ®
W—0.046—5 = (——) f X*(log X —3) du+O(r,)
16m*\ary/ J_.
=i3f Rz[log(4ars>+10gR-%]du+O(rs)
ko —oo v
dar,
=—2—2(1——log2)[log< ar)_%]
ko s
+%J’ R?log Rdu+O(ry), (9.66)
T J o

where O(r,) = Oasr; — 0.
T The evaluation of f:oR2du may be done as follows, using (9.60):
: " . * 1 e 2
f_x du = f_x [J:) mdx:l du
[ Yoxidx (U yRdy
_J:x du J.“ x2+u2J:, v+ u?
1 1 %
du
N O T
fo UYL @ ) )
1 1 )
=rrf xdxf ydy
0 i X+y

1
= ﬂf [x—x?log (x+1)+x2logx]dx
0

=2T7T(1—10g2).
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The immediate result we obtain from this, without further calculation,
is that, for r; <€ 1, the correlation energy per electron is given by

2
W=;(1—10g2)logrS+C+O(,»s), (9.67)

where C is a constant. The remaining integral in (9.64) has to be evaluated
numerically, as also has the constant 8. Using the values quoted by Gell-
Mann and Brueckner, we obtain, finally,

W = 0.0622 log r, —0.096 + O (r,) ry, (9.68)

with r, measured in Bohr units. Although, strictly speaking, only accurate
for r, << | Bohr unit, this formula yields, for r,= 1 Bohr unit and O(r,)
being neglected, W = —0.096 ry, which is closer than might have been
expected to the value —0.113 ry given by the Wigner formula, eq. (4.98).

9.4. Comparison with the Results of the Plasma Theory

According to the theory of plasma oscillations presented in ch. 4, the
correlation energy per electron is, from eq. (4.97),

W =10.0311logr,—0.115 ry. (9.69)

It must be emphasized, however, that the regions of validity of (9.68) and
(9.69) are not the same. None the less, there is a discrepancy between the
two logarithmic terms which, at first sight, appears surprising. The reason
for it is simply the neglect of the parallel spin part of the short-range
correlation energy in the plasma theory. This is an approximation, but,
for the reason given in §4.4.2, it is expected to be a good one in the
region of actual metallic densities. If the parallel spin part is explicitly
calculated, it yields a further logarithmic term, the same as in (9.69),
and a term which is approximately constant, but not the same as in (9.69).
That this must be so is sufficiently obvious from the argument leading to
egs. (9.17) and (9.18). which there applies to the perturbation treatment
of the whole Coulomb interaction, but applies equally well to the per-
turbation treatment of the short-range interaction. The antiparallel spin
part (originally taken to be the whole of W, and given in egs. (4.94) and
(4.95)), is simply one-half the integral in (9.19) with the additional con-
dition k > B, while the parallel spin part is the same thing plus the integral
in (9.20), again subject to k > .

Thus, according to the plasma theory also. we may express the correla-
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tion energy in the form
W = 0.0622 log r, + constant, 9.70)

neglecting as before a small term proportional to r,. The new constant
can be evaluated directly, but this involves the evaluation of a further
complicated integral by numerical methods. We shall, therefore, simply
estimate the constant by equating (9.69) and (9.70) at r,=4 (i.e. we
assume that (9.69) gives a reasonably accurate value of W for r; = 4). In
this way, we obtain, for the correlation energy per electron as given by
the plasma theory,

W =0.0622 log r,—0.158 ry. (9.71)

Ignoring for a moment the different values of the constants in (9.68)
and (9.71), we note that, as r, — 0, the only term of importance is the
logarithmic term, which is the same in both expressions. This implies that
summing over the ring graphs only, as done by Gell-Mann and Brueckner,
has precisely the same effect as the random phase approximation intro-
duced by Bohm and Pines, and, furthermore, that the latter is exact at
very high densities.

The values of the constants in (9.68) and (9.71) are very different. For
the electron densities occurring in actual metals, corresponding roughly
to 2 < r, < 6 Bohr units, the values given by the Gell-Mann and
Brueckner formula (9.68), on the assumption that the term O(ry) is
negligible, are much too small, whereas those given by the Bohm and
Pines formula (9.71) are of the magnitude required by cohesive energy
calculations. However, little is knownt about the term O(r;), except that
it tends to zero with r, and the basic approximation of Gell-Mann and
Brueckner is only valid for very small r,, so that speculation about why
the formula fails for actual metallic densities is rather pointless. A term
proportional to r, has also been omitted from the Bohm and Pines formula
(9.71), but this is certainly small at actual metallic densities. We conclude
that, although the Gell-Mann and Brueckner formula is undoubtedly
correct at high densities (possibly up to about r, = 1 Bohr unit), the Bohm
and Pines formula (9.71) (or (9.69)) is, perhaps fortuitously, more correct
at actual metallic densities. Neither formula is correct at low densities,
when the kinetic energy of the electrons becomes negligible compared

+ See Du Bois, D. F., 1959, Ann. Phys. 7, 174, for a discussion of some contributions to
Ofr,).
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with their potential energy and the electrons tend to form a stable lattice
(see WM, p. 271).

A difficulty with the Gell-Mann and Brueckner treatment, which we
indicated previously, is the convergence of the series in (9.54). Accord-
ing to the condition (9.55), the series will not converge for very small
values of k, which we have seen to be the most important values. None
the less, Gell-Mann and Brueckner assumed that the logarithmic repre-
sentation of the series could be used for all values of k, with the result
obtained above. To this extent their method is not completely rigorous.
However, their results have been verified by other methods - for
example, the Sawada methodt, in which the Hamiltonian is modified by
the exclusion of all terms which do not give rise to ring graphs. We may
therefore take the results of Gell-Mann and Brueckner to be correct at
high densities.

T Sawada, K., 1957, Phys. Rev. 106, 372. Sawada, K., Brueckner, K., Fukuda, N. and
Brout, R., 1957, Phys. Rev. 108, 507.



CHAPTER 10

GREEN FUNCTIONS AND THE ONE-ELECTRON
SCHRODINGER EQUATION

10.1. The Time-independent Schriodinger Equation

The use of Green functions is now widespread in solid state theory
and the theory of many-particle systems in general. In the present chapter,
as a preliminary to an account of the application of Green functions to
many-electron systems, we consider the simpler problem of the solution
of the one-electron Schriédinger equation by Green functions.

Let us consider a single electron moving in an electrostatic field with
potential energy V(r). The time-independent Schrodinger equation is
then (with £ = 1)

1
—2—V2l11(r) +V(r)u(r) = eii(r), (10.1)
m
which we shall write in the form
(Hy—e)Y(r) ==V (r)y(r), (10.2)
where
H,= ——I—VZ. (10.3)
2m

Since we shall be mainly concerned with applications to the theory of
metals, let us apply periodic boundary conditions (see WM, p. 161) over
alarge cube, say, of side L and volume ) = L3.

According to the method described in Appendix IV, a solution of eq.
(10.2) is given by the integral equation

Y(r) =f G(r,r; e)V(r)y(r)dr, (10.4)
178

Ch.10,§1] TIME-INDEPENDENT SCHRODINGER EQUATION C 179
where G (r,r'; €) is the Green function for the problem and satisfies the
equation

(Hy—€)G(r.r';e) =—8(r—r'), (10.5)

subject to the same periodic boundary conditions as s(r). The integral
in eq. (10.4) is taken throughout the volume ().

That (10.4) is indeed a solution of eq. (10.2) can be verified immediately
by substitution and the use of eq. (10.5). We have

(Hy—e)u(r) = (Ho—e) f G (s OV (F)u(r) dr
=f (Hoy—€)G(r.,r;e)V(r)y(r)dr
=— [ str=rvi i ar

==V(r(r). (10.6)

Suppose that i (r) is an eigenfunction, and ¢, the corresponding eigen-
value, of eq. (10.2) with the right-hand side put equal to zero, that is,

(Hy— €)Y (r) =0, (10.7)

subject to the same periodic boundary conditions as before. According
to the elementary theory of an electron gas described in §3.4, the nor-
malized eigenfunctions are given by

i (r) =%exp (ik-r), (10.8)
with eigenvalues
€= k*2m, (10.9)

the wave vector k being

2
k=T(n1e1+n2e2+n3e3), (10.10)
with e;, e,, e; unit vectors along the cube edges, and n,, n,, n, integers,
positive, negative or zero.
In terms of the Y, (r) the Green function is

G(r,r’;e)zzlbk_(r)m

T €€

(10.11)



180 GREEN FUNCTIONS [Ch. 10, §1

(cf. eq. (IV.10), Appendix IV). This again may be verified by sub-
stitution in eq. (10.5), since

(Hy=Grrie) =3 B -, ()

k

=—S P (r) ==8(r—r), (10.12)

by the closure or completeness property of the eigenfunctions (see eq.

(1.15)).
Using eq. (10.8), we find

G(r,r’;e)=%EeXp [i’z'_(:_')], (10.13)
32 )

and, assuming that the eigenvalues form a quasi-continuum, we may sub-
stitute an integral for the sum, according to the usual prescription

Q
> fk) egggff(k) dk, (10.14)
k
so that
ooy 1 exp [ik- (r—r')]
G(r.r';e) ——8773[ e, dk, (10.15)

the integral being taken throughout the whole of k-space.
We note that the integrand depends upon r and ' only through r—r’,
so that we may write

Gr,r,e)=G(r—r';e). (10.16)

For simplicity, therefore, we may consider the function G (r; €), which
satisfies the equation

(Hy—€)G(r;e) =—8(r). (10.17)
If 4 is the angle between k and r, we have

exp (ik-r) ke

€—E€,

o 1 M
=Lf kzdkf exp (ikrcos 0) .05 9)
472 J, 2 €—¢

k

1
Grie) =g
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1 sin kr
5 f —kdk 4
27r r €—¢,

1 d [~*coskr
2rrdr J, e—¢,

dk

—__1 d 7 exp(ikr)
dmirdr)_. e—eg dk, (10.18)

since ¢, is an even function. If we write € = k'%/2m, this becomes

d [~ k
Glrie)=—5 me]’{‘g(‘ D) d. (10.19)

The integral, unfortunately, does not exist, since the integrand has
infinities at k= k', at which the integral does not converge. This
difficulty is overcome by using, instead of the integral

f © exp (ikr) 4 (10.20)
Ce E— € )
the integral

* exp (ikr)

f_x—e e+ dk (10.21)

where 7 is a small positive constant. This integral does exist, since the
integrand has no infinities, and it tends to (10.20) in the limit as n — 0.
The procedure, then, is to evaluate the function

1 f exp (ik-r)

G(riet+in) = P p——

dk, (10.22)

which satisfies the equation
(Hy—e—im)G (r;e+in) =—8(r), (10.23)

and then take the limit as n — 0.
The integral (10.21), which is

exp (ikr)
.24
2m f_mk’z k?+2in’ k’dk (10.24)
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where ' = mn/k', with k' > 0, is most easily evaluated by means of a
contour integration, £ being tr'eated as a complex variable. We may take
the contour to be that part of the real k-axis from —R to R, closed by a

semicircle of radius R in the upper half-plane, and let R — . Now we
have

k?2—k2+2im'k" = (K —k+in") (k' +k+in'),
neglecting —%'2, since n’ is small, so that the integrand of (10.24) has
simple poles at k =k’ +in’ and kK =—k'—in’, of which only the former

lies inside the chosen contour, as shown in fig. 10.1. The integrand is, in
fact,

1 1 _ 1 exp (ikr)
and the residue (see Appendix V1) at the pole £ = k' +in’ is
_exp [i(k'+in")r]
jmk

Fig. 10.1.

The contribution to the contour integral from the semicircle is zero when
R — =, as may be seen by setting k = Re¥, so that the value of the
integral in (10.24) is just 271 times the residue (10.26). Hence, from eq.
(10.19),

f exp (ikr)
2w 2r drJ_, K2—k2+2in'k’

G(rie+in) =—

m d {m exp [i(k'+in’ )r]l
" 2wrdr k'+in’ J
m exp [i(k'+1in’)r]

=—— . 10.27
2 r ( )
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Taking the limit as n ~— 0 (i.e. as ' ~> 0), we have

G (r e) = — xR Kr) (10.28)
2@r
and . ,
Glrr;e) =R lKlr=r]) (10.29)

2w|r—r|

The justification of the foregoing procedure, which is used in all
applications of Green functions, lies in the fact that the function G (r; €)
given in eq. (10.28) is indeed a solution of eq. (10.17), as we shall now
verify. Forr # 0, we have

2
VZG—d G+zgg—=—k’2G, (10.30)
r dr
so that
(Ho—€)G = ———(V2+ k)G = 0. (10.31)
2m

The delta function on the right-hand side of eq. (10.17) is due to the
infinity in G (r; €) at r = 0. Let us integrate the left-hand side of the equa-
tion through a sphere, centred at r = 0, with very small radius p. Within
this sphere we may take exp (ik'r) = 1, so that, using the divergence
theorem of Gauss,

1
f (H,—€)Gdr = if (V24 k')~ dr
47 r

1 1 k' (dr
—zfv(ﬂ'd”af ;

1 P
=—— ——r dS+k’2f rdr

4m 0
— 2) 4 Lf'2,2
4 ) +3k"%p
——1=—[ s (10.32)

in the limit as p — 0.

Although this justifies the method of obtaining the function G (r.r'; €)
in eq. (10.29), a small difficulty still remains, for this function does not
satisfy the same periodic boundary conditions as the function given in
eq. (10.13). This is due to the replacement of the sum in eq. (10.13) by
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an integral, which is only strictly true in the limit as the cube edge L — o,
Clearly, if L is very large, the functions G (r.r'; €) given in eq. (10.29)
will approximately satisfy the periodic boundary conditions (provided
r’ is not too close to a cube face) owing to the fact that it will practically
vanish over the faces of the cube.

The function G (r; €) in eq. (10.28) is not the only possible Green func-
tion for the problem. It is sometimes denoted by G _(r; €), since it was
obtained by using a positive constant ». Had n been negative, the
significant pole would have been that at k = —k’ —in’ and we should have
obtained the complex conjugate of G, (r; €), denoted by G_(r; €). These
Green functions are found in the theory of the scattering of a free
particle by a central field, where they give rise to outgoing and incoming
scattered waves, respectively. There are other possibilities, but we shall
not pursue the matter further. Our principal purpose in calculating the
Green function for this problem has been to justify the introduction of
the constant iy and ultimately to take the limit as n — 0. This will
always be done in the following work.

It should be noted that eq. (10.4) gives only a particular solution of
eq. (10.2). To obtain the complete solution we must add the appropriate
solution of the homogeneous eq. (10.7), that is, the eigenfunction
Y, (r) corresponding to the eigenvalue € = k'?/2m (assuming that € lies
in the quasi-continuum of eigenvalues of (10.7)). We then have

y(r) =1, (r)+f G(rr'; &)V )y(r)dr. (10.33)

This integral equation may be solved by iteration. The zeroth approxima-
tion ignores the integral term and is just s, (). The first approximation is
then

PO(r) = Yy (r) +f G(r.r';e)V{r ) (r)dr, (10.34)

obtained by substituting the zeroth approximation in the integrand, and
the second approximation is obtained by substituting ¥”(r) in the inte-
grand, and so on. The first approximation is known as the Born approxi-
mation in scattering theory.

10.2. The Density of States in Energy

For systems, such as metals, whose one-electron energy levels form a
quasi-continuum, a function of great importance is the density of states
in energy ./ (¢). This may be defined as follows:
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N'(€) de is the number of (orbital) states with energies lying between €
and- €+ de, where de is small yet still large enough to contain many
energy levels. More precisely, if v(e) is the number of states with
energies less than e, then
dv
de’
The density of states may be expressed in terms of a Green function
or some transform of it. Before showing this, we shall give a more general
definition of the Green function, which applies to any system. What we
have considered up till now is the free-electron Green function.
The time-independent Schrodinger equation for a one-electron system
is

N (e) = (10.35)

(H—e)y(r) =0, (10.36)

subject to given boundary conditions. Let us denote by ¢, and e, the
eigenfunctions and corresponding eigenvalues of this equation, so that

(H_fn)ll/n(r) =0. (10.37)

We assume that the functions ¢r,(r) form a complete, orthonormal set:
that is,

f B ()0 (7) dr = Sy, (10.38)

the integral being taken throughout the volume  (which may be all
space) over which the boundary conditions are applied.

We now define a Green function for the system as the solution of the
equation

(H—e—in)G(r.or';e+in) =—6(r—r'). (10.39)

subject to the same boundary conditions, n being, as before, a small
positive constant which will ultimately tend to zero. Then

G(rr'iet+in) =3 ——“’:Ye)ﬂ 1(7") : (10.40)

since

M ;lk ' n — VT( ’) -
(i) 3 WM = 3 LD = c—imy (1)

== () (r) =—8(r—r").  (10.41)
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It follows from (10.38) and (10.40) that

1

m. (10.42)

f G(r,r;e+in)dr=2

n

Now, if the energy levels form a quasi-continuum, with density of states

A" (€), the sum on the right-hand side may be replaced by an integral,
and the equation becomes

N '(e,) de,

—. 10.4
€e—¢€,+1n ¢ 3)

fG(r,r;e+in)dr=f
Hence, according to eq. (I11.10), Appendix III,
N (e,) de, .
lnm(} G(r,r;e+in)dr=97’f—E(E—l—e—m/V(e), (10.44)
-> —€,

where & denotes the Cauchy principal value of the integral.
We thus have the result

1711'{)1 Imf G(r.r;e+in)dr=—a/4(€), (10.45)
and, provided the resulting integral exists, the limit may be taken im-
mediately, to give

A (€) =—%lmf G(r,r;e)dr. (10.46)

That this formula does indeed work may be simply demonstrated in
the case of free electrons: that is, when H, is substituted for H in eq.
(10.36). Fromeq. (10.29), we have

__ mexp (ik|r—r'|

G(rr;e)= . (10.47)

2n|r—r'|
where € = k?/2m, and

__msin (klr—r'|)

ImG €)= .
mG(r.r;e) gy —y (10.48)
Taking the limit of this as r — r’ gives
ImG (rre) =— 7K. (10.49)
2

Hence, from (10.46),
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mk mQk Q
= = =7 3/241/2 10.50
N (€) Y f dr oz 4W2(2m) €liz, ( )
which is correct (see WM, eq. (7.5), putting # = 1).

10.3. The Fourier Transform of the Free-electron Green Function

The Schrodinger equation for a free electron is
(Hy—€)¢(r) =0, (10.51)

which, as before, we assume to be subject to periodic boundary con-
ditions over a large cube of side L and volume (). As shown in §10.1, we
may define a simplified Green function for this problem by the equation

(Hy—e—in)G(r;e+in) = —8(r), (10.52)
which gives

! fm—i)dk (10.53)

Glrietin) =@ €—¢ +in

(i.e. egs. (10.22) and (10.23)), where €, = k?/2m. The more general Green
function G (r,r'; e+ in) is obtained by substituting r —r' for rin (10.53).

The Fourier transform (see Appendix V) of G{r;e+in) isf, by
definition,

G(k;e+im) =f G (r;e+in) exp (—ik - r) dr, (10.54)
so that

G(r;e+in)=-81Ff G (k; e+in) exp (ik - r) dk. (10.55)

Comparing eqgs. (10.53) and (10.55), we deduce that

1

Glkiet+in)=——"".
(k; €+ i) €—¢, +1In

(10.56)

+ It is customary to use the same symbol (with different arguments, however) for the
Green function and its Fourier transform, and either may be referred to as the Green
function.

It should be noted that, in the present work, all integrals with respect to r are assumed to
be throughout the region over which the boundary conditions are applied ~ in this case a
cube of side L. In the definition of the Fourier transform, however, eq. (V.8), Appendix V,
the integral is throughout all space. If L is large, as postulated, the difference may be
neglected.
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Thus |

and, replacing both sums by integrals, we have E
Q . A (€, de, N
e ; dk= | ————". 10.58
SWSJG(k €+in)dk fe——e,;km ( )

On the left-hand side we have used the fact that the density of states in
k-space is }/8x3, while on the right-hand side we have integrated with
respect to ¢, by using the density of states in energy. Taking the limit as
n — 0, we then find, as in eq. (10.45),

N (€) =—£lim Im | G(k;e+in)dk. (10.59)
8t m-0

Clearly, in this case, with G (k; e+in) given by (10.56), we cannot put
7 =0 in the integrand immediately, since the integral would then be real
(and divergent). Although here we have been specifically concerned with
free electrons (and to use this method of determining N (e) for free
electrons is like using a sledge-hammer to crack a walnut), we shall see
in the following section that the same result applies in more complicated
cases. The present section is intended merely as a gentle introduction to
what follows.

10.4. The Density of States in Energy of a System Subject to a Small
Perturbation

A generalization of the foregoing work may be used to obtain the
density of states of a system subject to a small perturbation, on the
assumption that the eigenvalues form a quasi-continuum. An instructive
application?t of this is to an electron in an almost periodic field, such as
is found in a dilute metallic solid solution, where the periodic field of the
solvent metal is perturbed by the presence of a small concentration of
solute ions. In the following account we shall have in mind a perturbed
periodic field, but we need not specify the cause of the perturbation.

Let us first consider the unperturbed system. Suppose that H is the

1 The method is essentially that developed by S. F. Edwards in a number of papers
beginning with Edwards, S. F., 1958, Phil. Mag. 3. 1020, but the application to dilute
solid solutions, upon which the present account is based, was made by Jones, H., 1965,
Proc. Roy. Soc. A285, 461; 1966, Proc Roy. Soc. A294, 405.
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Hamiltonian for an electron in the unperturbed periodic field, and that,
subject to the usual periodic boundary conditions, the eigenfunctions
(Bloch functions) and eigenvalues of this Hamiltonian are u (r) and €.
respectively, where k is the wave vector. Thus

(H—¢,)u, = 0. (10.60)

We now define a Green function G,(r,r'; e+in) for this unperturbed
system by the equation

(H—e~im)Gy(r,r' e+in) =—8(r—r'), (10.61)
and. as for eq. (10.39), it follows that

Golr.r;e+in) = 2 M (10.62)

~ e—eg+in
It is convenient to transform this Green function with respect to the
functions u,(r), according to the equation

Go(l.m; e+in) =J’f Golr.r';e+in)uf(r)u,(r)drdr. (10.63)

This is a generalization of what was done in the previous section — if the

u, (r) were free-electron functions (that is, if H were just H,), then

(10.63) would define a type of Fourier transform of the Green function.
Using eq. (10.62) and assuming that the «, are orthonormal, so that

f i, dr=6,. (10.64)
we find

Go(lm;et+in) =3 0O

> (10.65)

This is zero unless /= m, and then the sum reduces to the single term
with k= 1= m. Thus
1

Golk.k;et+in) = ———,
€—¢ +1n

(10.66)
which we shall denote simply by G, (k). This is the same expression as
In (10.56), but here, of course, the €, are not free-electron energy levels.

It follows, as before, that the density of states ./, (e) for the un-
perturbed system is

Q .
Nole) = 1%2} lmf G,y (k) dk. (10.67)

8
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3

Now let us consider the perturbed system, and suppose that V(r) is
the potential energy due to the perturbation. We may assume the same
periodic boundary conditions as before, but (unless V' (r) is also periodic)
the eigenfunctions will no longer be Bloch functions; we denote them by
¥, and the corresponding eigenvalues by €,, so that

(H+V =€), = 0. (10.68)
A Green function may be defined in the usual way by the equation
(H+V—e—in)G(r,r’;e+in)=——8(r—r'), (10.69)
from which it follows that

Graietin) =3 S fg:,)’ (10.70)

on the assumption that the functions Y, are orthonormal.. .
Transforming this with respect to the unperturbed eigenfunctions .

as for G,in eq. (10.63), we have ‘

G(lLm;e+in) =Jj G(r,r’;e+in)u;“(r)ll,,,(r’)drdr’

=3 L [ w0 [
_ w ax(Day(m) 10.71)

=2 e—e€,+in’ (

where v
a,(m) = f YE (r)itm (r) dr. (10.72)
In particular,

g e 1073
G(k,k;e+m)—2€_€n+in, ( )

n

which we shall denote simply by G (k). Thus

la, (k) [*
2G(k)=2§—€—_—€nﬁ. (10.74)

[Ch.10,§4 'I
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Now,
S )= [ @ ar [ o
= [wrar [wien S uf () () dr
- [morar [ wrerse—rar

=f |, (r) |2dr =1, (10.75)
using the completeness condition for the functions ;. Hence
1
=y —, 10.76
;G(k) ge—en—i—in ( )

and, if we replace the sums by integrals, it follows that, as in eq. (10.67),
the density of states 4 (¢) for the perturbed system is

N(e) = -—Q—lim Im | G(k)dk. (10.77)
8774 70

The assumption here is that the perturbed energy levels ¢, also form a
quasi-continuum.

The function G (k) in eq. (10.77) depends upon both the perturbed and
the unperturbed eigenfunctions, as well as the perturbed eigenvalues. We
shall now show how to express G (k) in terms of G, (k), so that #"(e) may
be found in terms of the unperturbed eigenfunctions and eigenvalues only.

Writing simply G (r.r') for G (r,r'; e+1in), we note, first of all, that this
function satisfies the integral equation

G(rr') = Go(rr') + f Golrr )V (r)G (r' ) dre. (10.78)

To prove this we operate on both sides with H —e—in, using egs. (10.61)
and (10.69), and obtain, from the left-hand side,

—&8(r—r')Y—V()G(r.r'),

and, from the right-hand side,
—8(r—r’)—f S(r—r)V(r)G(r,r')dr

=—8(r—r)—V(r)G(rr'). (10.79)
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Iterating eq. (10.78), that is, repeatedly substituting for G in the

integral, we find

G(r.r')=G,(r.r") +J’ Golrar)V(r)Gy(ry.r)dr
+ff Golror)V(r)Gy(rir) V() Gyt ) dridra+ . . .. (10.80)

Now G (k). or G(k.k;e+in), is obtained by multiplying G (r.r') by
1 (r)u,(r') and integrating with respect to r and r’. Thus, using eq.
(10.63),

G (k) = Gy(k) +fff Go(rar)V(r)Golrr ) ug (r)u, (r') drdr’ dr

- ff,[f Go(rr)V(r) Golrir) V(r) Go(r.r')

Xug(r)u, (r'ydrdr dridr,+. . .. (10.81)

According to eqs. (10.62) and (10.64), the second term on the right-
hand side becomes

ui (r)u(r) g (r )t (r1) o
fffg el—e +m )E e—en+in ui (r)u, (r')drdr' dr

m

:f “;f(rl)V(h)“k(h)dr
(e—¢,+in)? !
= [G(k) ]V . (10.82)
Here. and in what follows, we use the compact notation
e = [ wt VO o (10.83)

Similarly, the third term on the right-hand side of eq. (10.81) becomes

[Go(k)]2 ff ”;é:(rl)V(rl)G()(rl-er)V(r?.)“k(r:l) dr, dr,

k)]sz i (r)V(ry) 2 ur (")“’(")V(rz)uk(rz)dr,drz
= (GO 3, Gold) [ i (r) V() (r) dry [ i () V () (1)

= [Go(k)]2 2 Go(l) Va Vi (10.84)
!

[Ch.10,§4 *

o
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It is fairly easy to see that the next term, not shown in eq. (10.81), must
be

[Go(k)]? EEGO(I)GO(’”)VH tm Vet (10.85)

m

and the evolution of the terms becomes obvious. We thus have
G () = Go(k)| 1+ Gy (k) i + Gy (k) S GolVi ¥
+Gok) 3, Golt) Galm) Vi Vi Vi +. | aoss

which expresses G (k) in terms of the unperturbed Green function and
the matrix elements of V' with respect to the unperturbed eigenfunctions.

If (10.86) is substituted in (10.77) we obtain a series for the density of
states ./"(e) in the perturbed system, which can be evaluated, in principle,
using the unperturbed eigenfunctions and eigenvalues only. Clearly. this
is a type of perturbation series, and, if the perturbation V is small (that is,
if the matrix elements of V' are small), one would expect to obtain
sufficiently accurate results by considering only the first few termst.

There would be little point in proceeding with the application of the
foregoing to specific cases of practical interest, such as dilute solid solu-
tions, since the calculations are complicated and the results are not
relevant to the main theme of the book. Instead, we shall give two trivial
but instructive examples which involve little calculation.

First, let us suppose that V is constant. so that

Ve = V5, (10.87)
Then. from (10.86),
Gk) = Go({1+Go()V+[Go()V]2+. . .}
Golk) 1 /1_ V )‘1
—Gok)V  e—¢ +in\ €—¢€ Tin
S (10.88)
e—¢,—V+in

T It has been pointed out by A. D. Brailsford (Brailsford, A. D.. 1966, Proc. Roy. Soc.
A292, 433) that the use of the expansion in (10. 86) to any given order in ¥ must yield
results identical with those given by ordinary perturbation theory of the same order, and
the use of the latter may sometimes be more convenient than the Green function method.
In the present chapter, however, our concern is merely to illustrate Green function tech-
niques, regardless of the practical advantages to be gained or lost by their use in specific
cases.
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This is just Go(k) with e—V substituted for e. Hence, from eqs. (10.67)
and (10.77), we deduce, without further calculation. that
N () = Ny(e—V). (10.89)
This is obviously correct, since each energy level of the unperturbed
system has been raised by an amount V.
Secondly, as a slightly less trivial example, let us suppose that V(r) is
not constant in space, but is so small that its off-diagonal matrix elements
may be neglected. In other words, suppose that we may take

Vie = Viw - (10.90)
A calculation similar to (10.88) then gives immediately
1
G(k)y= (10.91)

e—e—Va +in’

If Ve varies with k, therefore, the perturbed density of states curve will
have a different shape from the unperturbed one. If, however, the un-
perturbed eigenfunctions are free-electron functions or, more generally,
Wigner-Seitz functions (see WM, p. 255) of the type

u, (r) = exp (ik - r)u(r). (10.92)
where u(r) is independent of k, then
Vik =j u,f‘Vukdr=J’ V|ul?dr=v, (10.93)
say, the same for all k, and it follows, as before, that
N (€) = No(e—v). (10.94)

This is an example of what is known in the theory of alloys as the rigid-
band model, according to which the shape of the density of states curve
is not changed by the perturbation. Again, the result is obvious from
elementary considerations.

v
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10.5. Green Function Operators

In manipulations such as those described in the foregoing section it is
often found convenient to make use of the Green function operatorst,
defined by

1
Gy= ————
Sy et (10.95)
G—_ 1 10.96
e—H—V+in’ (10.56)

We shall now show that the functions G,(k) and G (k) in eq. (10.86)
are diagonal matrix elements of these operators with respect to the
functions u,(r).

First, we have

KGolk) = [ ut (=g () dr

- |14 (r) |2 - 1 _
fe—e,ﬁ-indr_ e—et+in Golk), (10.97)
which proves that G,(k) is a diagonal matrix element of G,.
Now,
I - 1
(k|G k) = f u} (r)e—H—V+in”k(r) dr. (10.98)

Expanding u; in terms of the perturbed eigenfunctions i, eq. (10.68),
we have

(1) =3 @, (k) (1),

n

where a, (k) is defined by eq. (10.72). Thus

(10.99)

KGR =3, [ @) gy aa ) (1)

+ These operators are closely related to the so-called resolvent operators. The resolvent
of a Hamiltonian H, for example, is defined as (z— H) ™", or the negative of this, where z is
a complex variable. Resolvents have been used by N. M. Hugenholtz (Hugenholtz, N. M.,
1957, Physica 23, 481) to develop a graphical analysis of the perturbation series for many-
particle systems similar to that of Goldstone described in the present work.
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b (PP (r) 4
=3 ailkia au(h) [ LB
=2—|a—"(—k)—|.2—=G(k). (10.100)
" €e—¢,T1n

from the definition of G (k) in eq. (10.73). This proves that G (k) is a
diagonal matrix element of G.

We are now in a position to obtain the expansion (10.68) in a very
simple manner. By elementary operator algebra, we have

| n 1 v 1
e—H+in e—H+in e—H—V+in

—1__ 1+V—L——>
e—H+in< e—H—V+in

. 1
—_———1—.—(E—H—V+17)+V)

e—H+in e—H—V+iy
. 1
T e—H—V+in’ (10.101)
In other words,
G=G,+G)VG, (10.102)
and iteration of this operator equation gives
G =G+ G VG+ G VG VGy+ (10.103)

Taking diagonal matrix elements of both sides with respect to ;. we have

G (k) = Go(k) + (k|G VGolky +. . .. (10.104)
The second term on the right-hand side is
<k e—I;+ n Ve— I-}+ in‘k> - (e— e:-i— i*q)2<le|k>
= [Go(k)]*Vik, (10.105)
using the result expressed in eq. (1.24), Appendix I. The other terms may
be found similarly and it is seen that eq. (10.104) reduces to eq. (10.86). .

10.6. Time-dependent Green Functions

Although we have been specifically concerned with the time-inde-
pendent Schrodinger equation for a one-electron system, that is, an
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equation in three spatial dimensions, the Green function method can be
formally extended to any number of dimensions. In particular, the time
can be included, and we shall very briefly consider this case as it will be
convenient to refer to it in the following chapter.

The time-dependent Schrodinger equation for a single electron moving
in an electrostatic field with potential energy V (r,t) is

[H0+ V(r) —iga;]w(r,t) ~0 (10.106)
where, as before,
H0=——V2 (10.107)
2m
Eq. (10.106) may be written in the form (cf. eq. (10.2))
<H0—1—> (rf) = —V(r00(r1), (10.108)

and, by an obvious extension of the work of §10.1, we define a Green
function for this problem by means of the equation

(Ho—l )Go(rtr ) =—8(r—r")o(—1), (10.109)

subject to the same boundary conditions as (10.108). The operator on the
left is not affected by a change of origin of either r or ¢, so that we must
have, asin eq. (10.16),

Gy(rt,r',t') = Go(r—r',t—t), (10.110)
and, as in eq. (10.17), we may confine ourselves to the simplified function
G, (r.t) satisfying the equation

<H0—i%>Go(r,t) ——5(r)5(0). (10.111)

Gy(r.t) is the time-dependent free-electron Green functiont.

t We use the symbol G, rather than G as in §10.1, merely to emphasize that this is the
unperturbed (in this case, free-electron) Green function, according to the notation of §10.4.
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Eq. (10.108) may now be expressed as the integral equation
y(rt) =u(rt) +J’f Go(r—r' 1=t )YV(r.W(r.¢)dr'dr, (10.112)
where u(r.t) is any solution of the equation
.0
(Ho—lgl:)u(r.t) —0. (10.113)

We prove this by operating upon both sides of (10.112) with (H,—i8/dt),
thus:

(Ho—i%)d/(r,t) - <H0—i%>u(r,t)

* .0 ; '
+J‘f_w(H0_15>Go(r_r 7t_l)

XV(r' )@ t')d dr'
=—”°° S(r—r)8(t— )V (r 4 )W (r 1) dt' dr

=—V(r.)Y(r.t), (10.114)

which agrees with eq. (10.108). The solution u(r,t) of (10.113) to be
used depends upon the physical conditions. For example, a plane wave
solution is

u, (r,t) =exp itk -r—gt)], (10.115)
where, as before,

€ = k*2m, (10.116)

and, if this is used in (10.112), yi(r,z) will give the perturbation of this
plane wave by V(r,t) - in other words, the scattering of an initially
freely-moving electron, with momentum %, by V(r.f). We shall not
elaborate upon this as the further development is not relevant to our
future work.

In conclusion, we consider the Fourier transform G,(k,t) of G, (r,t)
with respect to r, which is defined by

1 .
Go(r.1) =@f exp (ik - r) G, (k,t) dk. (10.117)
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Substituting this in eq. (10.111) gives
8(1)

N |
s | o0 0 (o) Gt dk =~ [ exp (k- ak,

873
(10.118)
since, from eq. (V.11), Appendix V,
8(r)=Lfexp(ik-r)dk, (10.119)
873
and we deduce that the equation satisfied by G,(k.t) is
(k—2—i—a~>G (k.t) =—5(1) (10.120)
2m at) O ) ’

The solution of this equation will be found in the following chapter.



CHAPTER 11

GREEN FUNCTIONS FOR MANY-ELECTRON SYSTEMS

11.1. Introduction

In the previous chapter we have seen how some of the properties of a
one-electron system (or, indeed, of a many-electron system in which the
electronic interactions are ignored) may be expressed in terms of Green
functions. Similar functions may be defined for interacting many-electron
systems, and these are also called Green functions, although, as we shall
see, they do not in general satisfy the same sort of differential equations
as the Green functions we have already met.

Of particular interest are the one-particle and two-particle Green
functions, so-called because they describe the motion of one electron and
of two electrons, respectively, added to the many-electron system. Most
of the important properties of the system can, in fact, be expressed in
terms of the one-particle Green function, and it is this which will mainly
concern us in the present chapter, although there will be a brief mention
of the two-particle Green function in the final section.

11.2. The One-particle Green Function

We shall use the field operators ¥(x) and ¥'(x) which were intro-
duced in §2.8. The definitions given there (eqgs. (2.130) and (2.131)) were

P(x) =E $i(x)ci. (11.1)

W' (x) =3 ¢ (e, (11.2)

where ¢;(x) are the one-electron functions or basis functions (including
spin) to be used in constructing the wave functions of our many-electron
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system, and the destruction and creation operators c;, ¢} refer to these
functions. Although it had not been made explicit in ch. 2, it should be
clear from the work of ch. 5 that here we are using the Schrddinger
picture, in which the operators are independent of time. In fact, in most
of the present chapter, we wish to use the Heisenberg picture, in which
the operators are time-dependent and the wave functions time-inde-
pendent. If H is the Hamiltonian operator (which we shall assume does
not depend explicitly upon the time) of our interacting many-electron
system, then, according to eq. (5.13), we have¥

Y (x.1) = exp (iH) P (x) exp (—iHt), (11.3)
¥ (x,1) = exp (iH1) ' (x) exp (—iHt), (11.4)
or
P(x.t) =Z ¢i(x)ci(1), (11.5)
¥ (x.0) = 2 & (x)ci (1), (11.6)
where
c;(t) = exp (iHt)c; exp (—iH1), (11.7)
cl(t) = exp (iHt)c] exp (—iH?t). (11.8)
We note that
P(x) = P(x.0), ¢'(x) =¢'(x.0).
¢ = ¢;(0)., ci = ¢} (0). (11.9)

It is easily verified that all the commutation relations of §§2.3 and 2.8
remain valid when the operators are time-dependent, provided the opera-
tors are taken at the same time. For example,

{W(x,0). ¢ (x'.0)} = exp (IH){P(x). ¥ (x')} exp (—iH?)
=8(x—x'). (11.10)

This is not true if the operators do not have the same time argument.
We shall also make use of the time-ordering operator T, due to Wick.

+ In this chapter again we set # = 1. All time-dependent operators will be in the Heisen-
berg picture, unless otherwise stated.
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For any two creation or destruction operators A(t). B(t') we havet

A(H)B(t). if t>1¢.

—B(t')A(t). if ¢ >t (11D

T4 (B} =]
The operator T thus orders the product of operators so that their times
decrease from left to right, but differs from the operator P defined in §5.5
in that a minus sign is introduced when the two operators have to be per-
muted in order to obtain this time-ordering. In general, for the product
of any number of creation or destruction operators, A (#,)B(t,)C(¢;) . . .,
the operator T orders them with times decreasing from left to right and
multiplies them by (—1)?, where p is the number of permutations of pairs
of adjacent operators required to bring about this ordering.
We may now define the one-particle Green function G (xt. x't') for the
system as

G(xtx't) =—i(W,|T{Y(x.0)¢' (x'.t')}¥,). (11.12)

where W, is the true ground-state wave function of the interacting system
in the Heisenberg picture — that is, the Schrodinger wave function at time
t=0. Thus

— T P (x. )W (x'.1') [ W) if ¢t > 1,

Hi(Wo W' (1) (x.0) | W), if 1 >t (11.13)

G(xtx't) = {

Notice that G (xt.x't') is not defined at ¢t = ¢, since the operator T itself
is not defined there.

Another way of writing G (xt,x't') in a single expression, which does

not involve the operator T explicitly, utilizes the Heaviside unit step

function, defined by
0. t<0
=1 ’ 11.14
o ={ 12, (11.14)

This gives
G(xtx't') =—i0(t—t" (V| (x.0) (x'.1") | Wy)
+i0(t — ) (Vo Y (&t )P (x.1) [ Vy). (11.15)

No logical reason for this definition is yet apparent, but it will be seen
below that the function so defined is convenient for describing many

1 The curly brackets here do not imply the anticommutator of 4(¢) and B(¢t') - they
merely enclose the product of operators upon which T acts.

[
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properties of the system. For example, the operator representing the
density of electrons at position r and time ¢, with given spin, is, from eq.
(2.142),

p(x.t) =¥ (x.0)f(x.1). (11.16)

The expectation value of this in the ground state is

(p(x.2)) = (Wl (x.0) P (x.0) | Wo)

— i %,
1t,l_131+10G(xt.xt). (11.17)

Taking the limit as ¢’ — ¢+ 0 ensures that ¢ > ¢, which gives the correct
order for the operators.

The expectation value of any sum of one-electron operators may
similarly be expressed in terms of the Green function. Consider such a
sum of one-electron operators 2; f(x;.t), one for each electron of the
system. In the formalism of second quantization this sum becomes

F=f ¥ (x.8)f(x.t)P(x.t) dx (11.18)

(e.g. eq. (2.137) in the Heisenberg picture). The expectation value of
this operator in the ground state is

By = (W] [ WenfmowEn sy, aL19)
which may be written
(F) =—if lj_Ip flx.)G (xtx't') dx. (11.20)
=1+

Here, since x consists of the position vector r and spin coordinate {, the
limit as x* — x means the limit as r = r with {' = {. It is necessary to
use some such device, rather than simply setting x’ = x immediately,
because we wish f(x.t) to act upon ¥(x.t) only, not upon O (x.1).
Another of the many ways of expressing this is

(F) =~ift)i230 [fed)G xtax't)],_ dx.  (1121)

We shall now show that for a time-independent system (that is, one
for which H does not depend explicitly upon the time) G (xz.x't') depends
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only upon the time difference #—¢' and not upon ¢ and ¢’ separately. We
have, fort > ¢',

Gxtx't') = =iV, [P (x.0)P (x'.1')|P,)
= —i(Wolexp (iHt)(x) exp (—iHt) exp (iH!' )" (x)
X exp (—iHt')|W,)
=—i(Wolexp (iH1') exp [iH (t—1t') ] (x) exp [—iH(t—1')]
XY (x")|W,) exp (—iEr'). (11.22)
where E is the ground-state energy, so that
HY,= EY¥,. (11.23)

Also, from Appendix I, eq. (1.24), we have, for any function ¥,

(Wolexp (iHt') | W) = exp (iEt')(¥,|¥). (11.24)

Hence, fort > ¢,

G (xt.x't") = —i(Wlexp [iH (1—1') ¢s(x) exp [—iH (1—1') ]¢' (x') | W,)

== Wo|P(x.t— ') (x'.0)|¥,). (11.25)
Similarly, for ¢’ > 1,
G(xtx't') =+i(Ve|' (x'.0)s(x.t— 1) |[P,). (11.26)
We thus have
G (xtx't') =—i(W,|T{P(x,t — )P’ (x'.0)}|¥,)
=G (x,t—1.x'0). (11.27)

11.3. Elimination of the Spin

In some texts on Green functions electron spin is simply ignored, while
in others it is treated in a rather cavalier fashion which is not very helpful
to the non-expert. Our definition of the one-particle Green function, eq.
(11.12), includes the spin, since x comprises both space and spin co-
ordinates and the one-electron functions ¢;(x) have spin factors. How-
ever, it is mathematically convenient to eliminate the spin. At the risk of
appearing tedious it may be advisable to show in detail how this can be
done.
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First, in anticipation of our application to a free-electron gas and, in
principle at least, to metals, where the one-electron functions are
characterized by a wave vector k and spin quantum number o, we shall
write, instead of ¢;(x),

Pro (X) = Y (r) xo(£) (11.28)
asinch. 3, eq. (3.39), where o can have the values + 4 and
X1z (8) = (), X-12({) = B(¥), (11.29)

with
a(l) =1, a(—1)=0,
B(1)=0, B(=1)=1. (11.30)

The definitions of Ys(x) and ¥’ (x) then become

Bx) =) =3 3 U (Nxe (D6, - (11.31)

W (@) =P () =3 S U (P xe(D . (11.32)

k

Thus, since each §,(r) appears in two spin-orbitals, with spin factors «
and B respectively, we have

Y(r.1) =2¢’k(r)ck.1/2 (11.33)
and *

Y(r—1) = E U (r)c, s - (11.34)

Let us denote these by 5,5 (r) and ¥s_, 5 (r), respectively - in other words,
let

tb.,(r)=2 U (r) o . (11.35)
k
so that
W(x) = Xo (O (r). (11.36)
In the Heisenberg picture, similarly, we have

Yo (rt) =3 U, (r) e, (1) (11.37)
and *

Y(xt) = xo (Db (r.1). (11.38)
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Also,
Wir0) =3 Wi (r)e, (1) (11.39)
and ¢
(11.40)

U(xt) =Y xo (O (r.0).

The one-particle Green function thus becomes

G(xtex’t,) = 2 2 XU(C)X(I’(C)GO'G"(rter’t/)~

[

(114D
where
Goor (rt.r't') = —1(Wo| T{so (r,t) sl (r' .1') }[¥,)
=i S S (Wl T{a, (D), (1) W) (MUF (). (11.42)
k k'

We may therefore confine our attention to the latter function.

For a non-ferromagnetic system, in the absence of an external magnetic
field, the matrix elements in (11.42) vanish if o # o', since the spins in

¥, must balance in pairs. We shall only consider such systems, and so,
from (11.41), we have

Gipap(rtrt), if {=(=1,
Gv(xt,x,t,) ={G_1/2,_1/2(rt,r't'), if C-_— gl —_——‘1, (1143)
0, if #UC7.
Also, it is easy to see that
Guiaap(rt,r't'y = G_yjp, 12 (rt.r't’), (11.44)

since each orbital function ¥, (r) is associated with both « and B8 spin
functions in the set of basis functions ¢,, (x).
The Green function G (xt,x't') is therefore completely determined by

Goolrtr't) = =i S S (Wo|T{e,, (D, ()W) (MUE(F),  (11.45)
k ¥

with either o = % or o =—1%. It is customary to omit the os and simply
write this as

Grta't) ==i 3 S (Wl T{c, (1)) (1)} W)ty (MU (),

or

(11.46)

G(rtr't) = —i(Wo| T{g (r,HY" (/1) } o). (11.47)

This is the one-particle Green function with spin eliminated.

.
s

~
~
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The matrix element (multiplied by —i) in (11.46) is the transform of
G (rt,r't’) with respect to the functions ¥, (r) (cf. eq. (10.63)). As in the

.previous chapter, we refer to this also as the Green function and use the

same symbol G for it, thus:
G (kt.k't') = —{W| T{c, (1) c;, (') }|P,).

For time-independent systems, as shown previously for G (xt,x'¢t'), it
follows that

(11.48)

G (kt,k't') = —i(Wo|T{c, (t— 1), (0)} | F,). (11.49)
It is therefore sufficient to consider the simplified Green function
G (kK 1) = —(Wo| T{c, (1)} (0) }|Wy). (11.50)
In the same way we may write
G (r,r' 1) = =W | T{G(r, ) (r',0) }|P,). (11.51)

11.4. Physical Interpretation of the Green Function

It is not strictly necessary to give a physical interpretation of the Green
function, since its properties and applications follow directly from its
definition. In fact, however, it does have a simple physical interpretation
which is often a useful intuitive guide in calculations, particularly those
involved in perturbation theory. We shall consider both G (k,k',t) and
G(rr ).

Let us first recall from elementary wave mechanics that, if ¥, (0) are
the stationary states of a system at time ¢t = 0, then the (Schriodinger)
wave function ¥(z) at time ¢ can be expanded in the form (see WM,
p.313)

V(1) =Y A,(1) exp (—iE,t)V,(0), (11.52)

where

A, (1) = exp (IE 1) (¥, (0) ¥ (1)). (11.53)

|4,(t)|? is interpreted as the probability that the system is in the state
¥, (0) at time 7. 4, (¢) is called the probability amplitude of the system
being in the state ¥,(0) at time ¢.

If the system is in the state ¥ (0) at r = 0, the (Schrédinger) wave func-
tion at time 7 is (eq. (5.4))

W (t) = exp (—iHt) ¥ (0}, (11.54)
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so that, in this case,
A, (1) = exp (iE,t){W¥,(0)|exp (—iHt)|¥(0)). (11.59)
Now, fort > 0, we havet

G (k' 1) = —i(Wolc, (1)ch (0)]Wo)
= —i(Wylexp (iHt)c, exp (—iHt)c} | ¥,)
= —iexp (IEt)(V,|c, exp (—iHt)c |'Vy)
= —iexp (iEt) (¢ Wolexp (—iH?)|c] Vo). (11.56)

c,‘:, W, represents the state of an (N +1)-electron system obtained from
the ground state of the N-electron system at r = 0 by adding one electron
in the state ¢, (the o is implied in ¢, ). Similarly, ¢/, is the state ob-
tained from the ground state at t = 0 by adding one electron in the state
¢,,- Comparing (11.55) and (11.56), we see that, apart from a numerical
factor of modulus unity, we may loosely: interpret G (k,k’',t) as the
probability amplitude of the (N -+ 1)-electron system, which is in the state
¢V, att = 0, being in the state ¢, ¥, at a later time ¢.
G (r,r' 1) can be interpreted similarly. For t > 0, we have

G (r,r',t) = —i(Wylexp (iIH)(r) exp (—iHOY' (r')|¥,)
= —iexp (iEt) (W, |y (r) exp (—iHO) Y (r') | ¥,)
=—iexp (iEt) (W' (r)V,lexp (—iHD) | (r)¥,). (11.57)

According to the interpretation of the field operators given in §2.8,
Y ()W, is the state of an (N + 1)-electron system obtained from the
ground state of the N-electron system at =0 by adding an electron
localized at r'. Comparing (11.55) and (11.57), we see that, again apart
from a numerical factor of modulus unity, we may loosely interpret
G (r,r',t) as the probability amplitude of the (N + 1)-electron system,
which is in the state ¢ (r') ¥, at t = 0, being in the state ¢ (r) ¥, at a later

t As in eq. (11.22) we retain E as the energy of the ground state ¥, so that in the
expansion (11.52) we must set E, = E.

i The comparison is not quite accurate since, except for a non-interacting system, C;‘I’O
is not a stationary state of the {( N+ 1)-electron system. Also E is the ground-state energy of
the N-electron system.
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time ¢. In other words, it is the probability amplitude that an electron
added at position r’ to the N-electron system in its ground state at t =0
will have moved or propagated to position r at a later time ¢. For this
reason the one-particle Green function is often called the one-particle
propagator.

We leave the interpretation in the case t+ < 0 as an exercise for the
reader.

11.5. Free-electron Gas

We shall now consider the case of a free-electron gas, as described in
§3.4, that is, a system of N electrons and a neutralizing uniform distribu-
tion of positive charge contained in a cubic box of side L and volume
Q = L3. Assuming periodic boundary conditions over the surface of the
box, we take the normalized one-electron orbital functions to have the
form

gbk(r)=vlﬁexp (ik-r). (11.58)

It will be convenient in general to take L to be very large, so that for
many purposes the box may be regarded as infinite.

The Green function G(r.r',r) then depends only upon ¢ and the
difference r—r'. This is sufficiently obvious from the interpretation of
G (r,r',1) given in the previous section, since, for the system described
above, the probability amplitude for the propagation of an added electron
from r' to r must clearly depend only upon the position of r relative tor’,
namely r—r', and not upon the absolute positions of the two points. It
should be noted, however, that this would not be the case if an external
field, such as the periodic field of the ion-cores in a metal, were present.

Another instructive way of looking at the problem derives from eq.
(11.46), which becomes, with ¢’ = 0 and using (11.58),

Glrr' ) =—5 33 exp (ik-r) exp (—ik' ') (Wo| T{er ()6 (0} W)

(11.59)

The required result then follows from the fact that the matrix element,
which is just iG (k.k',t), vanishes if k # k'. A convincing proof of this is
not quite so simple as the airy dismissal of the subject in most texts would
suggest, and so a slight digression might be worth while (any reader who
wishes to omit this may proceed immediately to eq. (11.63)).
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For ¢ > 0, the matrix element is
(Wole, ()¢l (0)[Wo) = (Wolexp (iHt) ¢, exp (—iHt)c |¥,)
= exp (iEt)(V,|c, exp (—iHt)c, | ¥,). (11.60)

We now expand ¢, ¥, in terms of the orthonormal eigenfunctions W3+ of
an (N + 1)-electron system, thus:

c-;,‘I'(,:E (O e [Py, (11.61)
and (11.60) becomes
(Wole ()l (0) [Wo)

= exp (iEt) 3 (WG [Wo) (Wolc, exp (—iH 1) [W}*)
=3 (TN e [Wo) (Wolc, [3*) exp [iI(E—EF 1]

V) *exp [WE—EY Y],  (11.62)

=3 (TN [ Wo) (W

n

i+
Ck

where EJ*!is the energy of the state U¥+1,

Now, if the system were non-interacting, so that ¥, and ¥4+ were
single determinants of orders N and N + 1, respectively, the product of
matrix elements in (11.62) would clearly vanish if k # k', since ¢} and
¢4 would then operate upon ¥, to give two different (N -+ 1)-electron
states, one at least of which would be orthogonal to W¥*1. The general
case of interacting electrons is not so straightforward, however, since
both ¥, and W4*! are then infinite series of determinants. To proceed in
this case we must invoke the fact that ¥, and ¥2+! are eigenfunctions of
the total momentum operatort. This means, on the assumption that the
total momentum of the ground state is zero, that the k-vectors of every
determinant in ¥, must sum to zero. The effect of the operator ¢}, on ¥,
will thus be to produce a series of determinants of order N + 1, the sum

T The momentum of a free electron in the state ¢, is k. Hence (when we restore the
spin indices which are omitted in the text for convenience) the operator representing the
total momentum is

+
; ke, ¢, .
a

This operator commutes with the Hamiltonian (eq. (3.49)) and hence has simultaneous
eigenfunctions with it. We may thus assume that W, is an eigenfunction of the total momen-
tum operator, with eigenvalue zero.
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of the k-vectors of each being k', and similarly for ¢ ¥,. Since ¥3*! is
also an eigenfunction of the total momentum operator, every determinant
in its expansion must have the same k-sum, and so muyst be orthogonal to
W, or to ¢ Wy, or to both, if k # k’. The product of matrix elements in
(11.62) must therefore vanish if k # k' - in other words, G (k.k',t), with
t > 0, vanishes for a free-electron system if k # k'. Clearly, the same
result applies if ¢ < 0.
Eq. (11.59) thus reduces to

G(rr',t) =—g 3 exp [ik- (r—r) (Wl T{G, (N (0)}[¥e).  (11.63)
k
It is therefore sufficient to consider the simpler function

Grt) = —é S exp (ik - r) (Wl T{c, ()¢ (0)}[W,).  (11.64)

Expressing this as an integral, by means of (10.14), we have

Gra) = # f exp (ik - 1) G (k.t) dk, (11.65)

where
G (k.t) = —i(Wy| T{c, ()¢} (0)}¥y) (11.66)

(i.e. G(k,k',t) with k=k'). Thus, G (k.t) is the Fourier transform of
G (r,t), and s given by

G (k) = f exp (—ik - 1) G (r.t) dr. (11.67)

It is also useful to define the time transform of G (k,t), or four-
dimensional Fourier transform of G (r,t), by

o0

G(k,e) = f

—

exp (iet) G (k.r) dt, (11.68)

so that

0

Gkt) = 3= [ exp (=ien)G (kee) de. (11.69)
To add to the confusion, G (k,e) is also called a one-particle Green
function.

In this section we have gone to considerable trouble to relate the
simplified functions G (k,t), G(r,t) to the more general functions
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G(kKk',t),G(rr't), for a free-electron system. We wish to remark,
however, that this is by no means obligatory. Many texts define the one-
particle Green function as G (k,t), given in eq. (11.66), even for systems
other than the free-electron system considered here. This is because
G (k,t), and its time transform G (k,€), are the most useful Green func-
tions - we shall see in §§11.9 and 11.10 that they give the expectation

value of the number operator and the ground-state energy.

11.6. Non-interacting Particles

Let us now consider the case of a free-electron gas when the inter-
action of the electrons is neglected. The ground state is then ®,, a single
determinant in which all the one-electron states within the Fermi sphere
are occupied and all those outside the Fermi sphere are unoccupied.
Thus, for a particular spin, the occupation number of the state k is given

by
1,
nk= 0

We shall denote the Green function for this system by G, (k,t). Then

if k< kg,

it k> k. (11.70)

Go(k,t) = —i{Dy| T{c, (1)} (0) }|Dy). (11.71)
The total Hamiltonian in this case is just H,, so that
¢, (1) = exp (iHot)c, exp (—iH,t). (11.72)
Hence, fort > 0,
Go(k.t) = —i{Do|c, (1)} (0) |Dy)
= —i(Dy|exp (iH,t) ¢, exp (—iHt)c}|Dy)
= —iexp (iE,t) (Py|c, exp (—iH ) c}|D,)
= —i(Dy|c, i Do) €xp (—i€, 1)
=—i(1—n,) exp (—ig1), (11.73)
since
Hy;®y = (Ey+¢€,) Dy, (11.74)

where, as before, €, = k*/2m.

-~
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For t < 0, similarly,
Go (k1) = i(Dolcy (0) ¢, (1) | Do)
= (D, | Do) exp (—ig, 1)
= inzexp (—ig.t). (11.75)
Thus
Gk =it ey, i ra, 179
or, using the Heaviside unit step function defined ineq. (11.14),
Go(k.t) =i[0(2) (n,— 1) +0(—1)n, ] exp (—igt). (11.77)
We note that
tli% Go(k,t) +th1_9) Gy (k,t) =—Ii, (11.78)

so that G (k,t) has a finite discontinuity at ¢ = 0.
Now, let us consider G,(k.€), the time transform of G,(k,t). From
(11.70) and (11.77), we have, for k > kg,

Go(k,t) = —i6(t) exp (—ie, 1), (11.79)
so that, from (11.68),
Golk,e) =j exp (iet) G, (k,t) dr
——j fw exp [i(e—e,)r] dr. (11.80)
¢

The integral does not converge, so that as in the previous chapter we
introduce a factor e ™, with n positive, into the integrand, ultimately
taking the limit as  — +0. Thus we write

Go(k,e) = lim —i f exp [i{e—¢, +in)t]dt
N->+0 0
= lim —————. (11.81)
n->+0 € — €, -+ m
Similarly, for k& < kg,
Golk,t) = i0(—t) exp (—igt), (11.82)
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and
0
Golk,e) = if exp [i(e—¢,)t]dt
. . 0 . »
= V}llP()lf_w exp [i(e—e,—in)t]ds
- lim—31
LS (11.83)

We may combine (11.81) and (11.83) by writing

Golk,e) = llm—l— (11.84)
N0 €— €, iny

where

nn >0, if k> kp,} (11.85)

The justification for these m tricks is simply that the inverse time
transform of G, (k,€), so found, is indeed G, (k,t), as we shall now show.

Using eqgs. (11.69), (11.84) and (I11.11), Appendix 11I, we find, for
k> kF5

Golk,t) = if exp (—iet)G,(k,e) de

@f exp (—ier) de —%if exp (—ier)d(e—e,) de
277

€€, —x
&

It is shown in Appendix VI, eqs. (VI1.24) and (V1.25), that the Cauchy
principal value & of the integral is given by

. ~imexp (—igt), if t>0,
2 j‘ exp (_xet) de [ (11.87)
- TG i exp (—igt), if 1<0.

Ch. 11, §7] DIFFERENTIAL EQUATION FOR GREEN FUNCTION 215

Substitution in (11.86) gives, for k > kg,

—~iexp (—igt), if >0,

11.88
0, if r<0, ( )

Golknt) :{

which agrees with (11.79). Similarly, for k& < kg, m; is negative and, again
according to eq. (II1.11), this only changes the sign of the second term
on the right-hand side of (11.86). Thus, for k < kg, we have

0, if t>0,
iexp (—igt), if t<O0,

Golhit) = { (11.89)

in agreement with (11.82).

11.7. Differential Equation for Green Function of Non-interacting System

The equation of motion of the one-particle Green function for an inter-
acting system will be discussed in §11.12. Meanwhile, however, we may
show very easily that the Green function G,(k.r) for a system of non-
interacting free particles satisfies eq. (10.120), which is the differential
equation for the Green function of the one-electron time-dependent
Schradinger equation.

We have, for k > kg,

Golk,t) =—16(1) exp (—igt). (11.90)

Now the Heaviside unit step function may be expressed in the form

t
0(t)=f d(x)dx, (11.91)
which gives immediately
—=5(1). (11.92)

Hence, for k > kg,
%Go(k,z) = —i5(1) exp (—ie,t) — 0(1)e, exp (—ier),  (11.93)
and it follows that
e g
(Zm—lg)cuk,z) — [

=—8(1) exp (—iet) = —8(1), (11.94)

;";0(1) —8(1) +i9(r)ek] exp (—ie,f)
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since €, = k*2m, and, for any function f(r) which is well-behaved at
t=0,

8(1)f(1) = 8(1)f(0).

It is easily shown in the same way that G(k,t) also satisfies (11.94) if
k < kg.

Go(k,t) for a many-particle system therefore satisfies eq. (10.120),
which is a justification of the use of the name Green function for the
functions relating to many-particle systems defined in this chapter. It
will be seen later, however, that the one-particle Green function for a
system of interacting particies does not satisfy the same sort of differential
equation as the Green function for a one-particle system.

(11.95)

11.8. Lehmann Representation

In this section we shall derive certain mathematical properties of one-
particle Green functions which are frequently encountered in the litera-
ture. We shall, however, make no applications of these properties in the
present work, so that any reader who merely wants a brief survey of the
field of Green functions may omit this section.

We obtain immediately from eqgs. (11.62) and (11.66) that, in the case
of a free-electron gas, whether interacting or not,
fort > 0,

G(kt) =—iY KW [We)[Pexp [IE—EN*)t],  (11.96)

where EY*! is the energy of the statet W4+ of an (N + 1)-electron system
and E, as before, is the ground-state energy of an N-electron system. We
may, in fact, write

Ey1—E = (E§" —E{*) + (E§*' ~E)
(11.97)

= it + MN+1,
where €1 is the excitation energy of the state WY *! (i.e. the energy of that
state minus the ground-state energy EJ*™') and u¥*! is the chemical
potentiali for an (N - 1)-electron system (i.e. the ground-state energy

t Asexplainedin §11.5, only states with total momentum & need be included.

i For anon-interacting free-electron gas at the absolute zero of temperature the chemical
potential is just the energy at the surface of the Fermi sphere, that is, ez = kZ/2m.

o

.~

~
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of an (N + 1)-electron system minus that of an N-electron system). Thus,
fort > 0,

G (k1) =—i 3 (W3 [Wo) |* exp [—i(ef™ +p¥*1)r]. (11.98)

Similarly, we find that,

fort <0,
G (k,t) =i (¥, [Wo) [Pexp [i(ey T —uM)r],  (11.99)
where
ey = ENT—E}! (11.100)
and
uN=FE—E§y, (11.101)

E}~', Wi~ being the energy and wave function of a statet of an (N —1)-
electron system.

Now, clearly, ©¥ must be virtually the same as u**!, provided N is
very large - as it is for metallic systems, for example - since the energy
loss due to removing a single electron cannot depend appreciably upon
whether N or N+1 electrons are originally present (it is, in fact, inde-
pendent of N to order 1/N). Therefore, we may write

N+l —

pNtt =V =y, (11.102)

Finally, then, we have

i 3w

i [Wo)|? exp [—i(ef* +p)], 1> 0,

G(k,t) = (11.103)

1Y (W e [Wo) |? exp [i(e ™ — 1], 1 <0.
n
It is found convenient to convert these expressions to integrals, by means
of the spectral density functions, defined by 1

Ak,e) = [(U* | o) |28 (e —en™), (11.104)

B(ke) = [(¥Xc W) |*8(e— el ™). (11.105)

t Here only states of total momentum —k need be included.
1 Other notations, such as p*(k.€),p~(k,€) or A, (k,e),A_(k,e) are also used.
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In terms of these functions (11.103) becomes

—if Alk.e) exp [—ile+p)t]de, >0,
Glhky)= ' (11.106)

ij B(k.e) exp [i(e —u)t] de, t <0,

)

since
f d(e—e)!) exp [—i(e+p)r]de=exp [—i(ey"'+u)t], (11.107)
0

etc. It should be noted that €)' and €, ! are necessarily positive, since
each is an excitation energy (the energy of an excited state minus the
ground-state energy), so that it is only necessary to integrate from 0 to .
Before going on it might be useful to consider what the functions
A(k,€), B(k,e) become in the case of non-interacting particles. Here the
matrix element (W3*!|¢, |Wy) in (11.104) vanishes unless k > kp and
Y+l is obtained from W, by adding a single electron in the state k. so
that
€ l=¢—€=¢—U, (11.108)
where €, = k2/2m as usual. Also, the matrix element (Vy™'|¢,|W¥,) in
(11.105) vanishes unless & < kz and W, is obtained from ¥, by sub-
tracting a single electron in the state k, so that

€& =€ —€,=u—c¢,. (11.109)

It follows that, for non-interacting particles,
Alke) = (1—n)b(e—¢,+ ), (11.110)
B(k,e) =nd(et+e—pu), (11.111)

where n, is given by (11.70).

For interacting particles ¢, ¥, is not an eigenfunction of the (N +1)-
electron system. It can, however, be expressed as an infinite series of
those Wi*! with total momentum k. These Wy*! will clearly be spread
over a range of energies. so that 4 and (similarly) B will not be simple
8-functions as in(11.110) and (11.111). None the less, provided the inter-
action is not too strong, it is not unreasonable to expect 4 and B to be
peaked near € = ¢, —~ u and € = u —¢,. respectively. This has an impor-
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tant bearing upon the general theory of quasi-particles, but we do not
wish to elaborate this theory here as it is both mathematically more com-
plicated and conceptually less rigorous than the intended scope of the
present work.

Now, the Fourier transform of G (k.,f) with respect to 7 is, using
(11.106),

%

G (k) =f exp (iet) G (k,t) dt

—%

=—i f exp (ier) dt fm A(k.e') exp [—i(e' +p)t] de’
( 0

)

+if0 exp (iet)dtfwB(k,e’)exp li(e —p)rlde’.  (11.112)
1]

—x

Inverting the order of integration, and changing the sign of ¢ in the
second term, gives

<

G (ko) = —i fwA(k,e’)de’f exp [i(e— € — )] dr

)

+ifwB(k,e’)de'f exp [—i(e+e —p)r]de. (11.113)
0 {4

)

The integrals with respect to t do not converge as they stand. To over-
come this difficulty, as in previous sections, we include a factor e™,
with m positive, in the integrands and ultimately take the limit as  — 0.
Thus we write

Gke) = lim [—if A(k,e')de’f exp [i(e— e — p+in)t] dr
0 (

0

+if B(k.e') de’ fm exp [—i(e+e’—p.——in)t]dt]
0 0

= lim
N->+0

[ = A(k,e') de’ +f°° B(k.€') de’ ] (11.114)

0o €E—€ —u+in o €E+€E —u—in

This is the so-called Lehimann representation of G (k,e), from which
several properties of G (k,e) can be deduced.
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We note in passing that insertion of‘(l 1.110) and (11.111) in (11.114)
gives immediately, for non-interacting particles,

T ]
e—¢,—in

Go(k.€) = lim [ 1=,

3 (11.115)
>0 e —€, +in

which agrees with (11.84).
We shall now obtain some properties of G (k,e) from eq. (11.114).
First, using the formula given in Appendix 111, eq. (I11.10), we find
G k) = P A(k,e,)de +@f B(k,e,)de
0 €E—€—u o €te —pu

—inA (k,e—u) +iwB(k,u—¢), (11.116)
where # denotes the Cauchy principal value of the integral.

Now, according to their definitions, (11.104) and (11.105), A (k,€) and

B (k,e) are both real. Therefore the imaginary part of G (k,e€) is

ImG (k,e) =—mA(ke—pn)+7B(k,u—¢). (11.117)

Also, as we have noted before, €)*! and €¥~! are necessarily positive,

being excitation energies, so that 4 (k,e) and B (k,e) both vanish for e < 0.
Hence

—A (k,E_ lu‘) ’
7B (k,u—e€),

if € > u,

if €< (11.118)

Im G (k,e) = {

Since, again from their definitions, both 4 and B are either positive or
zero, it follows that the imaginary part of G (k.€) changes sign at € = p.
Clearly, if 4 and B do not both vanish at e = u, Im G (k.€) has a dis-
continuity there.

The real part of G (k.e) is, from egs. (11.116) and (11.118),

Re G (k.c) =@f A(k,e,)de e B(k,e’)de
0 €E—E€E—U o €te —pu
2_1? ImG(k,e,—f-/u)de +l? ImG(k,/.f—E)de.
T o €e—€' —pu ™ o et+e —pu

(11.119)
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Substituting @ = €'+ u in the first integral, and » = w— €’ in the second,

we obtain

00 [l
ReG(ke) =~ [ MmGke)do 1, (*ImGke)do ;5
T Ju w—e€ T e w—e

This relation between the real and imaginary parts of G (k,e) is called a
dispersion relation, or Kramers-Kronig relation, because of its similarity
to expressions obtained by Kramers and Kronig in their work on optical
dispersion.

11.9. The Expectation Value of the Number Operator and the Existence of
a Fermi Surface

As pointed out in §3.4, in the ground state of a free-electron gas, when
the Coulomb interaction is neglected, all electrons occupy states lying
within a sphere of radius kg in k-space. This sphere is the Fermi surface
for the non-interacting system.

Another way of stating this is given in eq. (11.70), which may be written
more explicitly as

(1, ik <k, -
((Dolnklcbo)——{o’ i k> ke (11.121)

where n, is the number operator of the state k, given by
n =cc (11.122)

(N.B. k implies ko) as in eq. (2.57). Eq. (11.121) thus gives the expecta-
tion value of the number operator of the state k in ®@,, which is a single
determinant.

When the interaction of the electrons is taken into account, the ground-
state wave function ¥, becomes an infinite sum of determinants, some of
which will contain the state k and some of which will not. The expecta-
tion value of n, will therefore not be simply 0 or 1, as in the non-inter-
acting case, but some number lying in between.

Whether the system is interacting or not, the expectation value of n, in
the ground state ¥, is given by

<‘I’olnk|‘1’0> = <‘I'0|C;Ck Iq’o>

=—ilim G (k.1). (11.123)
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This follows from the definition of G (k.r) given in eq. (11.66), the re-
striction to negative values of ¢ being to preserve the order of ¢ ¢,. That
this leads immediately to (11.121) in the non-interacting case (G = Gy)
is obtained fromeq. (11.76). '

The sharp drop in (®y|n,|®,) from 1 to O at k = kg, as shown in fig.
11.1(a), unequivocally defines the Fermi surface for the non-interacting
case. For interacting electrons, however, one might have expected this

<Bo|nglt o> <] Pl wp>
1 1—ﬁ

Fig. 11.1. Expectation value of the number operator

n, for (a) the non-interacting ground state ®,, (b) the

interacting ground state W (schematic). The distribution
is isotropic in both cases.

discontinuity to be smoothed out, so that a well-defined Fermi surface
would no longer exist. An analysist of the situation using Green functions
reveals, however, that a discontinuity at k = k; still exists for a normal
system (that is, for a non-superconducting system) when the electrons
are interacting. This discontinuity of (W,|n,|¥,), shown schematically
in fig. 11.1(b), is not as deep as in the non-interacting case, but is, none
the less, sufficient to define the Fermi surface. It is sometimes said that
the interacting system retains a ‘memory’ of the non-interacting system.

The expectation value of n, may also be usefully expressed.in terms of
G (k,€), as we shall now demonstrate. From eq. (11.69) we have

=]

G (k,t) = i exp (—iet) G (k,e) de, (11.124)
and this may be written as a contour integral in the complex e-plane, thus:

Gk,t) = 517;[ exp (—iet) G (k,e) de, (11.125)
C

+ The mathematics is rather complicated and we will not include it. See, for example,
Roman, P., 1965, Advanced Quantum Theory (Addison Wesley, Reading, Mass.) p. 464.
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where, for t < 0, the contour C consists of the real axis and an infinite
semicircle in the upper half-plane. This is because. on a semicircle of
radius R in the upper half-plane.

exp (—iet) = exp [—itR (cos 8 +1isinh)]
=exp (—itR cos #) exp (tR sin 6),
and, since sin # is positive and f negative, this tends to zero as R tends to
infinity. The contour integral is therefore equal to the integral along the

real axis. Inserting (11.125) in (11.123), and taking the limit as t — —0,
we find

(Woln, [Wo) =—2LWLG(k,e)de. (11.126)

This will be used in the following section. Meanwhile, it is easy to
verify that it leads to the correct result for the non-interacting case. From
(11.84), we have

Gy(k.e) = lim —L—, if k> ke, (11.127)

1>+0 € — €, + 17
and the function (e — ¢, +in) ! has no pole inside the contour C. Hence

(Dy|n, | Py =0, if k> k. (11.128)
Also,

Gylk,e) = lim

n>+0 €—€,~—~1in’

if k< kg, (11.129)

and (e—e¢,—in)~! has a simple pole at € = ¢,+ in inside C, the residue
being unity. Hence

(Do, | D) = 27Ti<—$> =1, if k< k. (11.130)

11.10. The Energy of the Ground State

In this section we shall obtain an expression for the energy of the
ground state (and hence the correlation energy) of an interacting free-
electron gas in terms of G (k,e).

The Hamiltonian is

H=H,+H', (11.131)
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wheret
Hy=Y ¢qc, (11.132)
and k
H =1 Y (kkl|vlksks)c]clcc. (11.133)
kikokok,

Now, using the anticommutation relations, egs. (2.53)—(2.55), we have
S ci[Hoc, 1= (gHy—c 6 H,)
k k

= E 2 € (e G —66q.6 )

—EEG [—cchcep +ei(cl g —8g)c ]

=—Eecck o- (11.134)
Also,
2 C,I [H'.q]=1% E 2 (kiky|v|ksky)
% E ko,
X (qd d ¢ 6 ¢, —clac c,o.6,), (11.135)
and

¢ ¢t ot =dd !
e 6,6, 6 = d 6,0 GGy

=cc (8, —c.cl)

G €, (O, — G €L )G,

— fF S — Cl (. — ¢l )l

= CiCr,Cr,Cr,Om, — Ck \Opr, = CiCp, ) CityCr, Ciy

— it PP

= G G, G, Cu, O, ™ G G, G, G, O, T GGy, €, i, i, - (11.136)
Substitution of (11.136) in (11.135) gives

2 C; [H’,Ck] =% 2 <k1k2|U|k3k4>
k kikoksk,
X (CL c,jl 6.6 ~ G .6, cka)

=_2H'. (11.137)
It follows from (11.134) and (11.137) that
2 <\IIOICII[H7Ck]|\IIO>=_<‘P0|H0+2H,’\P0>s (11.138)
k
1 These expressions are simplified forms of those given in egs. (3.51) and (3.59). It must
be remembered that, in the present chapter, the subscript k stands for ko and a sum over k

also includes a sum over the two values of the spin index. Here, since we are taking
h=1,¢ =k/2m.
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and the energy of the ground state is thus
E = (Vo|H|V,) = #(Vo|2H,+ 2H'|¥,)
=%<\I'0|H0|‘Po>__2 (Volci [H,c, 1[W,). (11.139)

We are now in a position to express this in terms of G (k,€) . First, from
eqs. (11.122),(11.126) and (11.132), we have

<‘I’0|H0|‘Po> = E ek(\If0|nk|\I/0)

i
_EE ekf G (k.e) de. (11.140)
k C

Now, the equation of motion of the Heisenberg operator ¢, (¢) is, from
eq. (5.15),
dck (1)

11.141
& ( )

(H, Ci H]=-
Therefore
+dey ()
dr

(Wl [H.c (0] 1¥) =—i( ¥olc W)
d

= _EG(k’t)’ for <0,
(11.142)
and it follows from this and eq. (11.125) that

. d
(Wolci [H ., ]| W) = —tlir_r})aG(k,t)

i
—%LG(k,e)ede. (11.143)
Substituting (11.140) and (11.143) in (11.139) gives
i
E———E;L (€, +€)G (k.e) de. (11.144)

Writing the sum as an integral in the usual way, and multiplying by 2 to
account for the sum over spins (see §11.3), we have, finally,

E=—05n )4fdkf (e,+€)G (k.€) de, (11.145)

with €, = k*/2m for free electrons.
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This is an exact expression for the ground-state energy. It will be
noted that the explicit form of the Coulomb interaction has not been used
in its derivation, so that it is true for any two-particle interaction - the
particular form of the interaction only affects G (k.€). It is easy to verify,
for example, that it is true for non-interacting particles, when G (k,e)
reduces to G, (k,.€), as given in eq. (11.84). We have

€ 1€ .
(E +E)G0(k€)—JiIR)€—_;‘;:I‘_l—n, if k> kg, (11.146)

and the function (¢, + €) (e — ¢, +1in) ™! has no pole inside the contour C.
However,
(6,4 €)Golkoe) = lim —2—if k< ke  (11.146a)

N->+0 g —¢ —17)

and (g +e€)(e—e¢,—in)™" has a simple pole at € = ¢, + iy inside C, the
residue being 2¢,+in or 2¢, when the limit is taken. The ground-state
energy of the non-interacting system is thus

E,=— fdkf (e, +€)Gylk.e)de

(277)4

- )J drrk?(2mri) (2€,) dk

Q.
= ok (11.147)

which is the value found by elementary means.

Formula (11.145) is, in fact, of even wider generality than we have
indicated. It would, in principle, be applicable to a metallic system for
which the one-electron functions are the usual Bloch functions (see §7.3),
provided that G (k.r) is defined by (11.66). The one-electron energy €,
would, however, no longer be k%/2m, and its accurate calculation, for all
k. as well as that of G (k,e), would be prohibitively laborious. Even for
interacting free electrons the calculation of G (k,e) is extremely difficult
(precisely as difficult, in fact, as the calculation of the correlation energy
described in ch. 9). In the remainder of the book we shall give a brief
outline of two methods of calculating Green functions which are often
used, at least for idealized systems or with the aid of approximations.
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11.11. The Calculation of Green Functions by Perturbation Theory

The most popular method? of calculating Green functions is by means
of a perturbation expansion involving the use of Feynman graphs. The
treatment is similar to that of the ground-state energy described in detail
in earlier chapters. We shall therefore confine ourselves to the initial
stages of the calculation, pointing out some small differences from our
previous method.

We again make use of the adiabatic hypothesis discussed in ch. 6. Here,
however, since we shall be integrating over both negative and positive
values of ¢. we introduce an exponential factor e @ into the interaction
term. where « is again a small positive constant ultimately tending to
zero. We thus consider the time-dependent Hamiltonian

H(t) = Hy+ H' (1) = Hy+e™"H', (11.148)

which reduces to the ordinary time-independent Hamiltonian (11.131)
when ¢ = 0 and to the non-interacting Hamiltonian H, when t = *«. As
before, we treat H' () as a perturbation.

Although until now, in the present chapter, we have expressed the
operators in the Heisenberg picture, here, as in chs. 6 and 7, it is more
convenient to use the interaction picture. First, we wish to show that the
representations Oy (#) and O;(¢) of any operator O in the Heisenberg and
interaction pictures, respectively, are related by the equation

Ou(t) = U (1,0)0,(1) U (1,0), (11.149)

where U(t,t') is the unitary time-development operator defined by eq.
(5.24), namely,

V(1) = Uty (t). (11.150)

For any wave function ¥, (¢) we have
V(1) = U(1,0)W,,(0) = U(1.0) ¥y, (11.151)
since, as shown by eqgs. (5.12) and (6.12), at t = 0 any wave function is

the same in all pictures. Also, we know (see Appendix 1) that the matrix

+ The whole approach to Green function techniques is often made through what is
essentially perturbation theory. See, for example, Mattuck R. D., 1967, 4 Guide to
Feynman Diagrams in the Many-Body Problem (McGraw-Hill, New York). for an
interesting and readable account of this alternative approach.
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element of an operator O(t) between any pair of wave functions ¥, (1),
V,,(#) must have the same value in all pictures, so that, using (11.151),
(W (D010 [ Wy (1)) = (¥puu| U (£,0) O1 () U (2,0) | W)
= (Wit | Ot (1) | W) - (11.152)

This is true for all ¥4, V.4, so that (11.149) followst.
Now the Green function G (k,t) is defined by eq. (11.66), for¢ > 0, as

G (k.t) = —i(Wo|Gu(1) Gu(0) | ¥y}, (11.153)

where W, is the ground state at = 0, the same in all pictures. Using
(11.149) we have

cn(0) = ¢}, (0), (11.154)
and
() = U (1,0)¢, (N U (£,0). (11.155)
Also, from eq. (6.14),
\I,OZ U(Ov_w)®07 (11.156)

where @, is the non-interacting ground state (i.e. the ground state when
t = —x). Hence, fort > 0,

G (kot) = —1(@p|U" (0,—) U (£,0)c,, (1)
X U(t,0)c;; (0) U (0,—) |Dy). (11.157)
We now define the so-called S-matrix by
S = U(»,—»), (11.158)
and, according to the properties of U(t,t') given in egs. (5.27), (5.28),
(5.29) and (5.31), it follows that
S =U(»,0)U(0,—x) (11.159)

T Itis easy to verify that this is correct when H does not depend explicitly upon the time
(i.e. for a conservative system). In this case U (¢,t') has the form (see eq. (5.36))

U(t,t') = exp (iHyt) exp [—iH (t—1t")] exp (—iHyt'),
so that (11.149) gives .
Ox(t) = exp [i(H — H,)t]Oy(t) exp [—i(H — Hy)t] = exp (iH't)O,(t) exp (—iH't),

which is correct by (5.13) and (5.20). In the present case the Hamiltonian (11.148) does
depend explicitly upon the time, but (11.149) still holds.
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and
§" = U(=,0)U(0,%). (11.160)
Thus
U(=2,0) = U'(0.—)
=S5U(0,%) =S U(«,0), (11.161)
and

U (0,—)U'(1,0) = §'U(,0)U(0,1)
=85 U(,t). (11.162)
Substituting in (11.157) gives,

fort > 0,
G (k,t) =—i(®y|S U (,t) ¢ (1)

X U (£,0)ch (0) U (0,—) |®y). (11.163)

In ch. 6 we did not consider positive values of . However, we may
assume that switching on the interaction slowly when t — —« and
ultimately switching it off when ¢ — 4 (which is accomplished by the
factor e~ will cause the ground state ®, finally to return to ®,, at
least within a multiplying factor of modulus unity. In other words, we
may assume that

SO, = el*d,, (11.164)
which gives
el? = (D,|S|D,). (11.163)
Thus, fort > 0,

_(P|U(,) ¢y () U (£,0) ¢y (0) U (0,—) [Dy)

Glt) = (@olS[®y)

(11.166)
We recall from eq. (5.52) that

U(z,t') = Pexp [—i f: HI(tl)dtl], (11.167)

where in the present case (cf. eq. (7.17)) H;(¢), which is what H' e !
becomes in the interaction picture, is given by

H(t)=% Y (kklvlkk)c (1)) (e, (t)c,, (1) e (11.168)

kikeoksky
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It should now be noticed that, since H;(¢) is the sum of terms, each con-
taining the product of four (i.e. an even number of ) creation and destruc-
tion operators, we must have

HI(tl)HI(tZ)s lf tl > t2v

. 11.169
Hi(t,)H (1), i t,>1, ( )

T{H() Hi(1)} = |
with the same sign in both cases. This is because the definition of T in
eq. (11.11) applies to creation or destruction operators only, and invert-
ing the order of H,(t,) H;(1,) involves an even number of permutations of
pairs of adjacent creation or destruction operators. Thus the operator T
in this case is the same as the operator P, so that (11.167) can be written

t
¢

and, in particular,

S=Texp[—if HI(tl)dtl]. (11.171)

Now, in (11.166) we have t > 0, and all times in the integrands of the
expansion of U (%,t) must therefore be > ¢, all those in U(z,0) must be
> (0, and all those in U (0,—) must be < 0. Also, from the properties of
U(t,t'), we have

S =U(2,)U(t,0)U(0,—). (11.172)

We may thus write
U(%,t) ey (1) U (£,0) ¢, U(0,—%) = T{c, (1) (0) U (0,t) U (2,0) U (0,—0) }

= T{Ck,(t)c;l(O)S}. (11.173)
Finally, then,
_i<¢’0|T{Ckl(f)czx(O)SHq)o)

G (k) = (@y]S| D)

(11.174)

Although we have assumed 7 > 0, it is easy to show that the result is
exactly the same for ¢ < 0. Clearly, since § depends upon «, (11.174)
should strictly be written

i <(D0|T{Ckl(t)(;l(O)Sa}|q)0>
G lkr) =i (DolSal D)

(11.175)

This equation gives the perturbation expansion of G (k,t), just as eq.
(6.16) gave the perturbation expansion of the ground-state energy.

-
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Written in full, it becomes

G(k,t)=—i lir?

S (_i)"f dtf A1, (Do| T{cy (1) (0)Hy(ty) . . . Hi(t)}|Dy)

xn=0 I’l!
SEE [ i) By o)
neo T o (11.176)

the terms with n = 0 being simply (®o| T{c,, (1) ¢} (0)}|®,) in the numera-
tor and unity in the denominator.

As in the case of the ground-state energy, the terms of the numerator
and denominator of (11.176) may be represented by Feynman graphs. In
the case of the denominator the graphs are exactly the same as those
described in ch. 7, since the different limits of integration in U,(t,—%)
and S, do not affect the graphical analysis. In the case of the numerator
the graphs are similar, but each has two free vertices (i.e. points not
attached to an interaction line) at times 0 and ¢, respectively, with a single
hole or particle line entering or leaving, these lines representing (';,(0)
and c,,(¢). Some types of graphs of low orders are shown in fig. 11.2 (the
free vertices are indicated by large dots). The zeroth-order graph clearly
represents Gy (k,t).

(a) (b)
Zeroth order First order

(d) (e) (f)
Second order

Fig. 11.2. Some types of graphs representing terms in the
numerator of G (k, ¢). eq. (11.176).
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The linked graph theorem again applies, the net effect of it being that
the denominator in eq. (11.176) may be ignored provided that only those
terms represented by linked graphs are included in the numerator (all
the graphs shown in fig. 11.2 are linked).

It should be noted that graphs may be drawn in many different ways
—in fact, there are almost as many ways as there are writers on the sub-
ject. As a trivial example, the time axis is often made horizontal instead
of vertical - figs. 11.3(a), (b), (c) show the second-order graphs of fig. 11.2

= Q

(a) (b) (c)

Fig. 11.3. Two alternative ways of drawing the second-order graphs of
fig. 11.2.

drawn in this way. In addition, however, many distortions, which none
the less retain the essential topology of a graph, are in current use. For
example, continuous hole and particle lines may be joined in one straight
line, preserving the correct sense of the arrows, so that the interaction
lines may have to be curved in order to connect up the proper vertices.
Figs. 11.3(d), (e), (f) show the second-order graphs of fig. 11.2 drawn in
this way. (N.B. Even when the interaction lines need not be curved they
are often so drawn, as in fig. 11.3(d).) The significance of other con-
ventions used in drawing graphs are best discovered from the texts in
which they appear.

Although we have been concerned here with G (k,t), the function
G (k,e) can be expanded similarly, as indeed can the more general
functions G (kt,k't') and G (rt,r't").

11.12. Equations of Motion and the Two-particle Green Function

Another way of attempting to calculate Green functions is by solving
their equations of motion. This is by no means straightforward, however,
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for we shall see that the equation of motion of a one-particle Green func-
tion in general involves a two-particle Green function, and the equation
of motion of the latter in general involves a three-particle Green function,
and so on. The problem is therefore to solve an infinite set of coupled
equations of motion. Clearly, this can only be done with the aid of
approximations or for idealized systems.

In §11.7 we found the equation of motion of G,(k,) for a system of
non-interacting free particles. We shall, in this final section, derive the
equation of motion of the Green function G (xt,x't’), including spin, for
a system of interacting free electrons (the general treatment remains
valid for other systems, however - in particular, it is valid for interactions
other than the Coulomb interaction).

We now return to the Heisenberg picture, as in the rest of this chapter
apart from the previous section. According to §§2.8 and 11.2, the
Hamiltonian (11.131) may be written

H=H,+H =— f l{ﬂ(x,t)szVzt]/(x,t) dx

+%ff U (e, )7 (x0,8) 0 (21,2 ) W (X, 8) W (xy,1) dxy dixy, (11.177)

and, from (5.15), the equation of motion of the Heisenberg operator

Y(x,t) is

[H.b(x.0)] = —i%tp(x,t). (11.178)
Now,

[Ho ()] = =3 | W (070 b (1) ] 0
=ﬁ f (0 (1) (2, ) IV R (1) de (11.179)

since, with V'2 operating upon {s(x’,¢) only
[P (x", )V 24 (x',1) W (x,2) ]
=" (&' ,0)V 2 (x' 1) P (x,0) — P (x,)0" (x',1) V' 2 (X 1)

=—{" (x".1) W (x,0)}V" 2P (x' 1), (11.180)
where we have used the anticommutation relation
{(x't) Y (x,0)} = 0. (11.181)
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Also, fromeq. (11.10), we have where we have used the fact that

(W (x',6) P(x.)} =8(x—x"). (11.182) 0(x,,%) = 0(X9,%,). (11.187)
Hence

1 Substituting (11.183) and (11.186) in (11.178) gives
[Hos(x,0)] =%f8(x—x')v’ztp(x’,t)dx’
d 1
9 __ 1o,
1 1attp(x,t) 2mV Y(x,t)
— . 2
2mV G(x,t). (11.183)

—

+fU(xlax)lll+(x1,t)lll(x1,t)l]1(x,t) dx,. (11.188)

For the interaction term H’, we have

Now, as ineq. (11.15), we may write
T{(x,0) " (x',t')} = 0t — 1" )P (x.0)" (x' 1)

Xv(xlaxZ)(b(vat)"l(xl’t)"!l(xst)]dxldxz- (]1184) _H(I/_t)l!f(xl,t’)lll(x,t), (]1189)
so that, using (11.92),

[H' p(x.1)] =4 f f [ (0D (53.0)

Again using the anticommutation relations, we obtain

['~V(xlst)‘V(sz)v(xuxz)d‘(xmt)dl(xlat)»‘l’(xat)] § %T{dl(x,t)l!; (x".t')}

) "’T(xl”)"’T(x2”)‘l‘(+x”)U(xvxz)l"(xz»f)‘l'(xl,t) = G(T—f’)_alll;':’t)-df (x' ) +'———60(tat_ £) Y(x.)G (x',1')
—l’l(x,t)l’lf(xl,t)l,l (vat)v(xlaxZ)‘b(xZJ)l"'(xlﬂt)
=— ()P (x,1) P (x.0) 0 (21,20 ) P (23,2 ) P (31, 1) —B(I'—t)tb*(x’,t’)awg’:’t) _aa(ta,_t)df Y (t)
+8(x, —x)W" (x1,0) v (21,2 ) P (x5, 1) W (x4,1) ‘
= M_’_t_)_ . 1ogt $ ' Y
— (x0T (X1, )Y (X008 0 (30,000 ) s (200, W (31,1) ‘ = T{ Py (x' .t )}Jr{d;(x,t),;p (' £)}8(t—1)
BRI = T{———M'(x’t) W(x',t’)}qt6(x—x')8(z—z’). (11.190)
— 8 (2, — X)W (200, 1) U (21,3 ) P (X, ) P (%1, 1) (11.185) . ot
Hence Thus, using (11.188),
[H”lll(X,t)] = % ff a(xz_x)lll“ (x1q[)v(xl,x2)lll(x2,t)\ll(x1,t) dxldx2 1%<‘I’0|T{¢(x,t)dl‘h(x',t')}|‘If0)
. ad ) v ., . , ’
_%IJ’ S(xl—x)llﬁ(x2st)v(X17x2)l"(x29t)¢’(x1,t) dxldxz = 1<\If0 T{_l%f—‘l,’ (x g )} ‘1’0>+18(x—x )8(1_1 )
=1 f W (e0.) v (2 0) Y () (x1,1) dxy . ' =—Eln;V2<‘I’o|T{'ll(x,t)l!!+(x’,t’)}|‘l’o>
_ j W (52,0 (5,5 ) (35, ) o (1) +(, fu ) T e W 000 ) )

=—fv(xl,x)tlﬂ'(xl,t)tll(xl,t)\[l(x,t)dxl, (11.186) +i8(x—x")d(t—1t"), (11.191)
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where VZ acts upon {s(x,¢) only.
In other words, from the definition (11.12),

.0 gt ____1__ 2 Y
1atG(xt,x t) = 2mV G(xtx't)

i f 0 () (W T{W (000 G 1) W x.1)

X' (x' ') W) dx, +8(x—x")8(t—1"). (11.192)
We now definet the two-particle Green function by
K (x111,X5t55 X3t3.X4t4)

= (Wl T{ (x1, ) s (22, 1) " (x5, 15) " (3x,20) }[Fo) - (11.193)

This may be used in (11.192) provided that we write ¥s' (x,,£) as ' (xy,2,),
where 2, is infinitesimally greater than ¢, in order to preserve the correct
order of the operators; that is, we write

(Wl T{W" (e, 1) (20, )P (e, 1) (271" } W)
= (V| T{W (x,,1) s (e, )" (g1, ) (27,1) 3| W)
= K(xqt,xt; x,t.,x't"). (11.194)
The equation of motion of the one-particle Green function thus

becomes

i _1_ 2 Tery — ) Y
<1at+2mV>G(xt,xt) 8(x—x')8(t—1')

—ifv(xl,x)K(xlt,xt;x1t+,x’t’)dxl. (11.195)

If there is no interaction, so that v = 0, this reduces to the equation for
Go(xt,x't'), namely,

.9 1 2 Pl — — o
<lat+2mv )Go("”x‘)—s(x x)é(t—1'), (11.196)

which, apart from the inclusion of spin, is the same as eq. (10.109) for
the time-dependent Green function of a single particle. This again
justifies the name Green function. However, for an interacting system,

1 ‘It should be noted that sometimes a factor —1 or —i is included in the definition.
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we see that the equation of motion of the one-particle Green function
depends upon the two-particle Green function. Similarly, the equation of
motion of the latter may be shown to depend upon both the one-particle
Green function and a three-particle Green function (defined by an
obvious extension of (11.193)), and so on. We thus obtain an infinite set
of coupled equations, as mentioned previously.

The total energy of the system may be expressed in terms of the one-
particle and two-particle Green functions. However, as we have already
seen, it can more usefully be expressed in terms of the one-particle Green
function only. We shall therefore say no more about the two-particle
Green function, except to remark that it determines the collective motion
of the system, which we have already met in another context in ch. 4.



Appendix I

HERMITIAN OPERATORS

The adjoint or Hermitian conjugate A" of a lineari operator A is
defined by the relation

[ rragar= [ cap)ear. @)

where f and g are arbitrary functions (such that the integral exists, how-
ever). More compactly, we may write

(flAlg) =<A'flg). (1.2)
or, alternatively, .
(fldlg)y = (A" f)*, (1.3)
since .
f(A*f)*ng=<f g*A*de) . (1.4)

In order to be able to find the Hermitian conjugate of any combination
of operators we shall now derive certain properties of Hermitian con-

jugates.
(1) Hermitian conjugation is a reciprocal operation, that is,
(A" = 4. (1.5)
We have, from (1.3),
(fldlg) = (glA'Lf)* = (fI(A) |2, (1.6)

1 A linear operator A4 is one such that
Alc f+eg) = ¢ Af+ cAg,
where ¢, and ¢, are constants.
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and (L.5) follows. since f and g are arbitrary functions.
(2) If ¢ is anumber, then

since, again from (1.3), ¢r=c, (7
(flc'lg) = (glelf)* = (flc*|g). (1.8)

(3) Forany two operators 4 and B,
(A+B) =4 +B', (1.9)

since

(fl(4+B)

g) = (gl4+B|f)*

= (glA]|f)*+ (g|B|f)*

= (fl4'|¢) +(f|B"|g)

= (fl4" +B'|g). (1.10)
(4) For any two operators 4 and B,
(AB) = B'A' (I.11)

(note the reversal of order, which is important). We have, from (1.2) and
(I.5),

(fI(AB)' |g) = (ABf|g)
= (Bf|d'|g) = (f|B'4'|g). (1.12)

An operator A is said to be self-adjoint or Hermitian if

A=4". (1.13)
It follows from (1.3) that, for such an operator,

(flA|g) = (glA| f)*. (1.14)

Conversely, if (1.14) holds, then 4 is Hermitian, since f'and g are arbitrary
functions.

It is easily seen that the eigenvalues of a Hermitian operator are real.
Suppose that

A= \y, (1.15)
and A4 is Hermitian. Then, if ¢ is normalized,
A= (lA ) = (PlA[P)* = \*, (1.16)

from (1.14), so that the eigenvalue A is real.
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It is a postulate of quantum mechanics that an operator representing a
physical quantity must be Hermitian, and its real eigenvalues represent
the possible results of physical measurements of that quantity. In par-
ticular, it is easily shown that the Hamiltonian operator H for a given
system is Hermitian, and its real eigenvalues are the energy levels of the
system

Another important property is that the eigenfunctions of a Hermitian
operator, belonging to different eigenvalues, are orthogonal. Suppose that

A = My, (L.17)
Ay = Ao, (1.18)
and \; # A,. Then
(ol A1) = M |h1), (1.19)
and
(WA ) = N[ W2) . (1.20)

Using (1.14) and (1.16), we thus find
<¢2|A|‘l’1> = <‘P1|A|\l’2>*
=)\;<¢1|¢2>*=)\2<¢2,‘l’1> =)\1<‘I/2|¢’1>» (1.21)

which gives

()\1_)\2)<l!’21¢1> =0. (1.22)
Since A,  \,, this implies that
(Ye|) =0, (1.23)

or y, and Y, are orthogonal.
The final step is not valid if A, = \,, that is, if ¢, and ¢, are degenerate.

However, a set of degenerate eigenfunctions can always be orthogonalized

(see, for example, WM p. 47), so that no generality is lost by assuming
that the eigenfunctions of a Hermitian operator form an orthogonal set.

In conclusion, it may be useful to mention a simple property which is
used many times throughout the book, particularly in ch. 11. If ¢ is an
eigenfunction of a Hermitian operator 4, belonging to the eigenvalue A,
so that eq. (I.15) holds, and fis any other function, then, from (1.14) and
(1.16),

(WlALf) = (flAl)* = A= (fld) *
= Nyl f). (1.24)

Appendix I1

UNITARY OPERATORS AND TRANSFORMATIONS

An operator U is said to be unitary if

vu'=uv'u=1. (1.1)
That is to say, for a unitary operator,
U'=u- (11.2)
The transformation of an operator 4 into an operator A’, where
A'=UAU', (11.3)
or
A=U'A'U, (I1.4)

and U is a unitary operator, is called a unitary transformation.
Let us define the functions F and G in terms of the functions fand g, so
that

F=Uf, G=Usg, (11.5)
or

f=UF, g=UG. (11.6)

The matrix element of the operator 4 with respect to the functions f and
g is then, using egs. (I1.2) and (I11.3),

(fldlg) = (U'Fl4|U'G)
= (F|UAU"|G) = (F|A'|G). (IL.7)

Thus the matrix elements of the operator 4 with respect to a set of
functions f, g, . .., are the same as those of the transformed operator 4’
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with respect to the transformed functions Uf, Ug,.... In particular, if
Y is an eigenfunction of A corresponding to the eigenvalue A, then Ut is
an eigenfunction of A’ corresponding to the same eigenvalue. This can
be seen directly, for

A=\, (11.8)
so that, from (11.4),
U'A'Up = M. (11.9)
Hence
UU'A'Uy= UNy = U, (I11.10)
or
A'(UY) = AUy). (II.11)

Since we are essentially concerned with finding the eigenvalues of
operators representing physical quantities, and of the Hamiltonian
operator in particular, it is clear that we are permitted to make any
unitary transformation which may prove to be convenient.

Appendix IIT

A USEFUL INTEGRAL FORMULA

It is often required, particularly in work involving Green functions, as
seeninchs. 10 and 11, to evaluate an expression of the type

lim * flx)dx dx
0 —» X+im

We shall now prove that, provided f(x) is a well-behaved function (in
particular, continuous at x = 0),

T fgdx @f £ 4+ imf(0). (1L1)

7’)—>0 —x XX 17’

where & denotes the Cauchy principal value of the integral following it,
defined by

ﬁ/"f fx)dx—lm[f_nj%dx—kf:f%)—dx], (111.2)

7n->0 %

7 being a positive constant.
The formula (I11.1) is often expressed in the compact form

1

lim———
-0 X =171

- ?%iiw&(x), (111.3)

it being understood that both sides are to appearin an integrand multiplied
by a well-behaved function of x. Here 8(x) is the Dirac delta function,
which vanishes when x # 0, and for which

fb f(x)d(x)dx = £(0), (111.4)
-b

where b is any positive number.
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To prove (I11.1), we make use of the fact that

1 xFin x _ iy
= = . I11.
xxin  x¥+7n? x2+n2+x2+n2 (11.5)
Now,
lim—2L—=0, when x#0, (111.6)
70 x2 + ,n2
and
(/] —_—
f lim —2—dx = lim (tan‘lé—tan‘l—b) =1r. (I11.7)
—p ™0 x2+n? 70 " n
Therefore, from the definition of the delta function, we have
lnl_r>101x2+n2= w8(x), (111.8)

which gives the second term in (111.3).
Also,

* f(x)de=lim[ ‘"f(x)xdx+ °°f(x)xdx+ f(x)xdx]
e X2tm? Sy X247 .

lim
0 J_o x2+7-’2 -0

il e | o] [ 2

150 0 J_, x24+n?.
_ = flx) . T xdx
- j_w Bare o im | 2. (11L9)

The integral in the second term vanishes, since the integrand is odd, and
so we are left with the first term of eq. (I11.1). This completes the proof.
It follows immediately that, if x, is any constant,

fim 7 LA g (T ANy, AILI0)
10 J_o X —Xo+17m —o X Xp
or, compactly,
lim ! =7 ! Fimd(x—x,). (111.11)

""Ox—x0+i17 X— Xy

Appendix IV

THE SOLUTION OF INHOMOGENEOUS DIFFERENTIAL EQUATIONS
BY MEANS OF GREEN FUNCTIONS

Let us consider the differential equation
(L—=MNu(r) = f(r), (Iv.n
where L is a linear differential operator, A a given constant and f(r) a
given function. Such an equation is said to be inhomogeneous because
u(r) does not appear as a factor in the term on the right-hand side. It is

clear that, provided f(r) is not identically zero, any multiple of a solution
is not itself a solution. The equation

(L=My(r) =0, (IV.2)

on the other hand, is homogeneous, and any multiple of a solution is
itself a solution.

We wish to solve eq. (IV.1) within some region of space (1, subject to
given boundary conditions. However, although the equation is inhomo-
geneous, we shall assume that the boundary conditions are homogeneous;
that is to say, any multiple of u(r) satisfies the same boundary conditions
as u(r). For example, u(r) = 0 over the bounding surface of () is a homo-
geneous boundary condition, and so are the periodic boundary conditions
familiar in the theory of metals.

Now, let us suppose that ¢, (r) is an eigenfunction of eq. (IV.2) cor-
responding to the eigenvalue A, that is,

(L=A\) Y, (r) =0, (IV.3)
assuming the same boundary conditions as on eq. (IV.1), and let us
expand u(r) and f(r) in terms of the complete set of s, (r). Thus

u(r) =3 aphu(r), f(r) =73 bu(r), (IV.4)

n
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where we have assumed for simplicity that the eigenvalues A, form a dis-
crete set. Eq. (IV.1) then becomes

S an(M—=N(r) = b (r), (Iv.5)
giving " . "
=37 (I1V.6)

Now, if i, is normalized within (), so that

f [a|2dr =1, (IV.7)
we have

by = f wi (D) dr, av.8)

the integrals being taken throughout (). Hence

) f bk (DF(r) dr
uy =2 WY

n

=-— J G(r,r'; N)f(r')dr, (IV.9)
where )
G(rr;\) =3 gll(;)Tw—';\r— (IV.10)

n

which is called the Green functiont for the problem.
In order to find the differential equation satisfied by the Green function,
let us set
flr) =—=8(r—r).
Then eq. (IV.9) gives

u(r) =fG(r,r’;A)8(r—r0) dr’

= G (r,ro; M), (IV.11)

+ The name Green’s function is perhaps more common, but the omission of the pos-

sessive is consistent with the use of the names Feynman graph, Fermi surface, Schrodinger

equation, etc. It should be noted also that the Green function is sometimes defined as t}'le

negative of (IV.10). Clearly, this is unimportant, and merely requires a change o.f sign in

(IV.9). The sign chosen here is that which is most frequently encountered in the literature
relevant to ch. 10.
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and we deduce that G (r,r'; \) satisfies the equation

(L=N)G(r,r'; ) =—8(r—r"), (Iv.12)

subject to the same boundary conditions as u(r).
On the assumption that the A, are real (as will be the case if L is a
Hermitian operator) and that A is real, it follows from eq. (IV. 10) that

G(r,r';N) = [G(r',r;\)]™ (Iv.13)

A difficulty occurs if \ is equal to one of the eigenvalues, Ansay, of L.
In this case, eq. (I1V.5) becomes

n

E an(}\n—)\m)d’n(r) = E bn'bn(r)a (IV14)

which can be so only if b,, = 0. That is to say, eq. (IV.1) has a solution in
this case only if

f U (P)f(r) dr = 0. (IV.15)

A useful application of the Green function method is in converting a
homogeneous differential equation into an integral equation. For example,
the equation

[L+V () —A]u(r) =0,
or
(L=MNu(r) ==V ()u(r), (1V.16)

is homogeneous. However, simply applying the procedure described
above, with—V (r)u(r) substituted for f(r), eq. (IV.9) becomes

u(r) = f G(r; V(' u(r)dr, (V.17

with G (r.,r'; \) again given by eq. (IV.10) and satisfying eq. (IV.12).
Eq. (IV.17) is an integral equation for u(r). An application of this to the
Schrodinger equation is given in ch. 10.

Although here we have specified three spatial dimensions, clearly the
procedure is the same for any number of dimensions.



Appendix V

FOURIER TRANSFORMS

The Fourier integral theorem states that

F(x) =§1; f dk f Fx'y exp [ilx—x)k] dx', V.1

provided that the integral exists. This may be proved by expanding f(x)
in complex Fourier series in the interval (—L,L) and then letting L — o.
If we define the Fourier transform ¢ (k) of f(x) by

s = [ fxeax, v.2)
then it follows that

£(x) =ﬁ f (k) ek dk. (V.3)

Sometimes the constant 1/2s, or its square root, is included in the
definition of ¢ (k).
As an application of this we consider the delta functionf. We have

b(k) = f " s(x)etrdx =1, (V.4)
so that - .
5(x) =L f eikr . (V.5)
27 J_.

+ Strictly speaking, 8(x) is not a function, but a distribution. However, it may be
treated in exactly the same way as a function, provided that it is remembered that it is only
significant when it appears in an integrand.
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This is a useful form for the delta function. Although the integral does not
exist in a rigorous sense, none the less, when it appears in the integrand
of an integral with respect to x, it has the same effect as 8(x).

The foregoing may easily be generalized to functions of any number of
variables. We define the Fourier transform ¢ (ky, ks, . . ., k,) of afunction
Sflx1, Xoy . .., Xp) DY

¢(k15’k2v---akn)=f_ f f(xlvx2s---7xn)

xexp [—i(kx,+. ..+ k) ]dx, .. dx,, (V.6)
whence
1 ol oo
FXa Xar v e o ) =(2_W)_nL | bl )

xexp [i(kx,+...+kx,)]dky .. dk,. (V.7)

In particular, for a function f(r) of position in space, we may use the
condensed notation

Mh=fﬂﬂprMwNn (V.8
1 )
fr) = L f ¢ (k) exp (ik - r) dk, (V.9)

the integrals being taken throughout the respective spaces.
As an application of this we consider the three-dimensional delta
function 8(r) (defined by an obvious generalization of (111.4)). We have

o(k) = fﬁ(r) exp (—ik-r)ydr=1, (V.10)
so that
1 .
8(r) = (27T)3fexp (ik - r) dk. (V.11)

As a second important example, we shall find the Fourier transform of
the function 1/r. We make use of the fact that

Vz(%> =—4mé(r). (V.12)

This may be proved by noting that V2(1/r) is zero everywhere except at
r =0, and applying the divergence theorem of Gauss to a sphere S, of
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volume v, centred at r = 0. This gives
[)a (3 s
» r s \r
ds
=f — = —4m, (V.13)
s I

which is what is obtained also from (V.12).
Thus, from egs. (V.11) and (V.12), we have

v f (k) exp (ik - r) dk = —dar f exp (ik-r)dk (V.14

or
f ¢ (k) (—k*) exp (ik - r)dk = —47 f exp (ik-r)dk, (V.15)

where ¢ (k) is here the Fourier transform of 1/r. We deduce that

47

b (k) = (V.16)

and

1 1 1 .
;=2_7T2 Pexp (lk' r) dk, (V.17)
which direct integration proves to be correct. The method used here
avoids the awkward question of the convergence of the integral in eq.
(V.8) when f(r) = 1/r.

Appendix VI

CONTOUR INTEGRALS

Definite integrals of functions of a real variable may often be evaluated
most conveniently by regarding them as part of a contour integral in the
complex z-plane. This is particularly so for the integrals occurring in
Green function theory, as will be seen in chs. 10 and 11. We shall state
here the relevant definitions and theorems.

A one-valued function f(z) of the complex variable z = x+1iy is said
to be differentiable at a point z if

f'(2) =g%ﬂﬂ"%__& (VL.D)

exists and is independent of the path by which 8z — 0. (N.B. z+ 6z can
approach z from any direction in the z-plane.) A function which is one-
valued and differentiable in a given region of the z-plane is said to be
analytic in that region (other names, such as regular or holomorphic,
sometimes with slightly varying definitions, are often used).

Any one-valued function f(z) may be expressed in the form

f(z) = u+iv, (V1.2)

where u and v are real, one-valued functions of x and y. A necessary and
sufficient condition for f(z) to be analytic in a given region is that ¥ and v
satisfy the equations

bu_ov ou__ow

=—, (VL3)
dx ady dy ax

in the region. These are known as the Cauchy-Riemann equations.
251
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A function f(z) which is analytic within a circle centred at the point
= g can be expanded in a series of the form

f2) =A,+A(z—a)+A,(z—a)*+..., (V1.4)
within the circle, where

A,IZLf“”(a). (VL.5)
n!

This is just Taylor’s series for the function near z = a.

A point at which a function fails to be analytic is called a singular point
or singularity of the function. Singularities can be of several types, the
most important of which, as far as the present work is concerned, is
called a pole, which may be defined as follows:

If, in the neighbourhood of a point z = a, a function f(z) may be ex-
panded in a series of the form

f(2) =Ag+A(z—a) +As(z—a)*+. ..

B] BQ Bn
+... , (V1.6)
z—a_‘—(z—a)2 (z—a)"

+

where the 4, and B; are constants and » is finite but not zero, f(z) is said
to have a pole of order n at z = a. If n = 1, it is called a simple pole.

If n is not finite, but the series of reciprocal powers of z— a is infinite,
the singularity at z = a is not a pole, but is called an essential singularity.
For example,

11 1
elz = 1+E+2—!Z2‘+§'!—Z3+.... (VLT)
has an essential singularity at z = 0.

The series (V1.6) is called Laurent’s series for f(z) near z = a. Clearly,
if f(z) were analytic at z = a, all the coefficients B; would be zero and
Laurent’s series would reduce to Taylor’s series.

Whatever the value of n(= 1), the coefficient B, of (z—a) ' is called
the residue at z = a. This applies to both poles and essential singularities.

The residue theorem, which is so important in contour integration, may
be stated as follows:

If f(z) is analytic inside and on a simple contour C, except for a finite
number of poles within C, then

%f(z) dz=2mi E (residues). (VL.8)
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(N.B. A simple contour is a closed curve which does not intersect itself.)
The integral is a line integral, or contour integral, around C in an anti-
clockwise sense, and X (residues) is the sum of the residues at all the
poles within C.

If f(z) has no poles inside or on C, the right-hand side of (V1.8) reduces
to zero. In other words, if f(z) is analytic everywhere inside and on C,
the contour integral is zero. This is known as Cauchy’s theorem.

If z = ais asimple pole of f(z), the residue is given by the formula

By =lim (z—a)f(z), (VL9)

which follows immediately from eq. (V1.6) with n = 1. For example, con-
sider the function (z2—4)~! This has two simple poles, at z = =+2. The
residue at z = 2 is given by

. -2 .
lim z = lim =1 (VI.10)
22 72— 4 22 742
and that at z = —2 is given by
. z+2
lim =
2>—2 23—4

=—4 (VI.11)

Both residues are obtained immediately by writing the function in the form

1111
12—4—4<z—2 z+2>’ (V1.12)

since 1/(z+2) is analytic near z = 2 (and hence expressible in Taylor’s
series), while 1/(z—2) is analytic near z = —2.

As a second example, let us take that occurring in §10.1 (following eq.
(10.24)). The problem (in our present notation) is to evaluate the contour
integral

?g exp (irz) dz (V1.13)
(xo

—z+in') (xo+z+in')’

where r, x, and n' are positive real constants, around a semicircle of
radius R in the upper half-plane and along the real axis from —R to R.
The integrand (on the assumption that R > |x,+i%’|) has one simple pole
inside the contour, at z = x,+ in’, the residue being

lim  —SXP (irz) __€xp {ir(xe+in")]
x4+ 74+ 1m’ 2(xp+1in")

, (VL.14)

and the value of the contour integral is 27 times this.
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The integral around the semicircle, where z = Re', becomes

7 exp [irR (cos 8+1sin §) JRie?’d6
1E08 2 Al (VL.15)
o (xo—Re®+in') (xo+Re’+in')

This tends to zero as R — o, since sin § > 0for 0 < 8 < 7. We therefore
obtain, for the integral along the real axis,

J’w exp (irx) dx _ _miexp [ir(xo+in’)] (VL.16)
e Co—xF i) Gt x i) S’

Contour integration in the z-plane may often be used to evaluate the
Cauchy principal value (see Appendix III) of the integral of a function
F(x) which has a simple pole at some point on the x-axis. To be definite,
suppose that we wish to evaluate

P fi F(x)dx,

given that F(x) has one simple pole at x = x,. We consider the function
F(z) of the complex variable z which reduces to F(x) when z is real.
Since F(x) has a simple pole at x,, it follows that, near z = x,, we can
write F(z) in the form

- B,
F(2) =GR+ = (VI.17)

where G (z) is analytic and B, is the residue at z = x,. We now integrate
F(z) around the closed contour shown below, which consists of a

y

-R [¢] Xo R X

large semicircle, of radius R, and a small semicircle, of radius 7, in the
upper half-plane, together with those parts of the x-axis from —R to
xo—n and x,+7 to R, ultimately letting R — « and n — 0. Let us

AVI] CONTOUR INTEGRALS 255

assume, as is generally the case, that the integral around the large semi-
circle vanishes in the limit as R — <. The integral around the small semi-
circle, on which z—x, = ne’, is

0 L (1] B
f F(z)nle“’dO:f [G(z)-l- L ]nie“’d@

T I—Xp
0 .
- f [G (2) + Bye—*]iedo

= —Bymi, (VL.18)

in the limit as » — 0. Again in the limits as R — wand n — 0, therefore,
we have

35 F(z)de = lim [ f:m Fx)dx+

F(x) dx] — B

Xo+in

= F(x)dx—Bymi

-0

= 2mi ' (residues), (VI1.19)

where 3 (residues) is the sum of the residues at the poles of f(z) in the
upper half-plane (but not on the x-axis). In other words,

? f " F(x)dx= 27ri[%(residue atx,) + 3 (residues)]. (V1.20)

If the small semicircle were taken in the lower half-plane, the pole at x,
would be inside the contour, but the sign of the integral around the small
semicircle would be reversed, giving the same final result. It follows that
the Cauchy principal value is the mean of the two values of the contour
integral with the pole at x, inside and outside the contour.

As a first example, we may deduce the result proved without the use of
contour integration in Appendix 111, eq (I11.10). Suppose that

Fz)=—L% (V1.21)

Z—Xp—Iim
where f(z) is analytic on the x-axis, but may have a finite number of poles
in the upper half-plane. Then, in the limit as  — 0, F(z) has a simple pole
at x = x,, with residue f(x,). If we assume, as above, that the integral of
F(z) around a semicircle of radius R in the upper half-plane vanishes in
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the limit as R — o, then it follows from (V1.20) that

lim ) _ﬂ)_c)_dx_ =2mi E (residues)
0 J_ o x—xo—1im

=9wa L&) ifix). (VI.22)
e X— X

where 3 (residues) includes that at z = x,+1in (or z = x,, in the limit as
1 — 0). This is one of the results given in eq. (I11.10) - the other, with
+in replacing —in, follows immediately since, in this case, 2 (residues)
does not contain that at z = x,—in.

As a second example of the use of eq. (V1.20), let us derive the result
given in eq. (11.87). In the notation of this Appendix, we first wish to
evaluate

-]

exp (—ixt)dx
o X—X, ’

P

where ¢ is a negative constant. (N.B. in §11.6 we have ¢ instead of z and
€, instead of x,.) We integrate the function
exp (—izt
F(Z) =M (VI.23)
Z—Xo

around a contour consisting of a semicircle of radius R in the upper half-
plane together with that section of the real axis from x=—R to x =R,
and ultimately let R — . On the semicircle we have z = Re'?, so that the
integral of F (z) around the semicircle becomes

iRel?dg,

J’ exp [—i(cos 0+isin ) Rt]
0 Rew—xO

which tends to zero as R — o, since t < 0andsinf > 0for0 < 6 < 7.
The function F(z) has no poles inside the contour, but only asimple pole
at z = x,, the residue there being exp (—ix,t). It follows from eq. (V1.20),
therefore, that

=3

exp (—ixt)dx
o X—X

P = miexp (—ixyt), for < 0. (VI.24)

Similarly, for ¢+ > 0, we take a semicircle in the lower half-plane, so that
the integral around it again tends to zero as R — oo, and find that

gﬁf exp (ixt)dx —miexp (—ixyt), for ¢>0. (VL.25)
I

Appendix VII

WICK’S THEOREM

We have made no explicit use of Wick’s theorem in the text, since its
results are implicit in the graphical analysis of the perturbation series in
ch. 7. However, most texts employ this theorem in order to establish the
graphical method, so it may be useful to include a brief account of it here.

We revert to the interaction picture and the hole and particle notation
introduced in §7.3. The normal product N(AB . ..) of a set of hole and
particle, creation and destruction operators A4, B, . . ., is defined as the
product obtained from AB . .. by moving all the creation operators to the
left and all the destruction operators to the right, including a factor —1 for
every interchange of adjacent operators required to bring about this

ordering. For example,
Nlay(t)b;(1)] = =bj (1) ai(1,), (VIL1)
Nlai (1) a(12) by(1a)bi (1) ] = a; (1) by () @i ()b, (1), (VIL2)
N [b;(1,)bi (t2) i (1) k(1) ] = —bj (t2) i (t3) ax (1) by(1,) . (VIL3)
It should be noted that the time arguments are immaterial here. Also, the
creation operators and the destruction operators may be ordered in any

way among themselves provided the sign is adjusted accordingly - for
example, (VIL.2) might equally well be written

—by (t5)ai (1) ar (1) by(15)
or

: b; (Q)ag (t1)bi(t;) a(1,).
The utility of a normal product lies in the fact that its expectation value

257
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is zero in the ground state ®, of the non—intéracting system (see §6.2), that
is,
(D4|N(AB .. .} |Dy) = 0. (VIL.4)

This is because @, contains neither holes nor particles, so that, as shown
in egs. (7.31) and (7.32), both hole and particle destruction operators act

upon it to give zero.
The contraction or pairing AB of two operators 1s defined as

AB=T(AB)—N(4B), (VILS)

where T is the time-ordering operator defined in eq. (11.11). For example,
ifts > 1y,

ai(t))ar(ty) = —ap(t:) a; (1) + ap(tz) a; ()= 0, (VIL6)
ai(ty)a;(ty) = aj(t) a;(ty) — ai(tz) ai(t,) = 0, (VIL7)

ai(fz)afc(tl) = ai(tz)al];(tl) +aj.(t,) a;(tz)
= (aiai.+ aka;) exp [i(ext; —€its) ]
= &y exp [i(exty —€&ty) ], (VILB)

using eqgs. (7.34). .
The contraction of any two operators can be found in the same way
and is always a number. It follows, therefore, that

/,LB = <<I>0|/‘1_$|(D0) = <¢0|T(AB)|(D0>~ (VIL9)
Applying this to a non-interacting free-electron system, we have

¢ (g (1) = (Po| T{c, (D) () Do)
=iG,(kt.k't'). (VIL.10)

The Green function G (kt,k't") is defined by (11.48) in the Heisenberg
picture, but the Heisenberg and interaction pictures are the same for a
non-interacting system.

A contraction of one or more pairs of operators in a normal product is
taken to mean that the contractions are to be removed from the normal
product and plus or minus sign affixed according as the number of inter-
changes of adjacent operators required to do this is even or odd. Thus
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N(@F) =—AEN(BCDF)
=—AEBCN(DF), (VIL11)
N(AIEF) =—AEN(BCDF)
=AEBDN(CF). (VIL12)

Finally, Wick’s theorem states that the time-ordered product of any
number of operators is equal to the normal product plus the sum of all
normal products in which one or more pairs of operators are contracted
in all possible ways: that is,

T(ABCD .. WXYZ) =N(ABCD...WX)L:Z)
+N(AuBCD...WXYZ)+...+N(ABCD...WX)Z)
+N(/l1_JBC“_JD...WXYZ)+...+N(ABCD...HLX)l’_,Z)—f-...
+N(Al_lB(|f_‘D...I/Li_/JX)Z)+N(AB£D...I/LX@)-I—.... (VII.13)

We shall not prove this theorem, but deduce from it, together with
(VIL.4) and the statement leading to (V11.11), that

(Oy|T(ABCD ... WXYZ)|Dy) =AL|B€JD ... l;i_/_JX)L’_IZ
+ABCD .. . WXYZ+.... (VILI14)
e (i

In words, the expectation value of a time-ordered product in the state ®,
is the sum of all fully-contracted products (i.e. products in which all pairs
of operators are contracted). If the two operators in each contracted pair
are placed next to each other, a factor —1 must be included for every inter-
change of adjacent operators required to bring this about: for example,

ABCD .. WXYZ=—ACBD .. WXYZ.
[t gy [ i [y [

Although, having avoided it in the text, we shall not pursue the matter
here, the result expressed in eq. (VII.14) is clearly relevant to the
evaluation of the matrix elements in the perturbation series for the
ground-state energy, as discussed in ch. 7, or for G (k,t), as given in eq.
(11.176), and to the graphical representation of these matrix elements.



PROBLEMS AND EXERCISES

Chapter 1

1.1. From the expression for AE given in eq. (1.76), deduce that the
third-order energy correction in the Rayleigh-Schridinger perturbation
theory is
AE® = i <q)0lH/ |(Dm> <(Dm|Hl |q)n> <q)n|H, I(I)0>

(EO - Em) (EO - En)

m,n=1
& (Do H' [Py [

—AEW |<_0+.
2k —E,)

(N.B. In the second term, AE has been replaced by the first-order
approximation AE®))

1.2. Usingegs. (1.59), (1.63) and (1.68), show that

Y, = C<I>0+E_H0H"I'0,
and deduce that
© R A
Yo=C Z;) (E—HOH ) o
and
AE=S <q>o H’( R H')" <p0>.
n=0 E_HO

(This is the Brillouin-Wigner perturbation series. In this case, unlike the
Rayleigh~Schrodinger theory, the perturbed energy E appears in the
denominators of all terms on the right-hand side except the first.)

1.3. Show that the third-order approximation to AE in the Brillouin—
Wigner theory is the same as that in the Rayleigh-Schrodinger theory,
namely, AEY+AE®+AE®, (N.B. The energy denominators in the
former theory must be expanded binomially, retaining only those terms
of appropriate order.)
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Chapter 2

2.1. If ® stands for ®1,,, 1.€.

TS (1P (50 s 5) b (30) 4 ().

verify that

(1) ;@ = Dy,
(2) cld=0,
3) ¢;® =0,

(4) cf® = Dlyyys,

(3) cic; @ =,

(6) (cacyst+cycy)® =0,

(7) (erci+ese)P =0,

(8) c3020,P = D) = da(xy).

2.2. Express all the determinantal functions appearing in the previous
question in terms of occupation numbers.

2.3. Prove that {c],c,} = 0, using the definition of ¢} given in eq. (2.31).
2.4. Prove that [cjck,c] = —cx and [clex,ch] = cf.

2.5. Useegs. (2.126) and (2.128) to re-derive egs. (2.84) and (2.95).
2.6. Show that

wf(x)(pjleS...N(xhx% . '9xN)
(o) (%) &b, (%) ... ¢1(x1v+1)

1
TINFDE

’

odn(x1) dn(xs) ... dn(xXyi1)
S(x—x) 8(x—x)...8(x—xy)

and hence verify that “¥'(x) creates an electron at x”.
2.7. Show that the operator
v= [ W@ dx
represents the total number of particles, and that

Yx)v= (v+1)P(x).
[Hint: let f(x;) = 1in H,.]
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2.8. With H, and H' given by (2.66) and (2.68), respectively, prove
that
S cilHpcr] = —H

k

2 C;[H”Ck] = _2H”

k

and

and hence that the energy of a state ¥ is given by

H(W[Ho|W)—3 2 (Vlex[H,ci]|W).

(See §11.10 for an application of this.)

Chapter 3

3.1. With E(%) given by eq. (3.15), prove that
(§)._ = 20@dHie) —(@ilHI0).
and hence that E(0) is a minimum (assuming that
(Do H|Dg) > (Po|H|Dy)).
3.2. Usingeq. (3.25), prove directly that
(q|Fxlp) = (p|Fxla)*,
i.e. that Fx(r) is Hermitian.

3.3. Derive the expression for ¢, givenin eq. (3.45).

3.4. Write down the Hartree-Fock equation, similar to (3.23), for the
ground state of a ferromagnetic system, in which the spins of all the
electrons are parallel. Apply this to a free-electron gas and show that the
average Hartree-Fock energy per electron in this case is

3.51_1.154r
r2 rs y
3.5. Using the method of §3.6, show that the contribution to the

second-order energy correction AE, from the interaction of electrons
with parallel spins, is

16m2e*m 1

AE'Z) s
VPR 2 RGg h% (p—a+ R
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where p,qg < kr and |p+k|,|g—k| > ky. Show also that the second term
does not diverge.

3.6. Assuming a delta function interaction
v(r,r) =N (r,—r),

with A constant, instead of the Coulomb interaction in §3.4, show that

Cpors

Q 2 prk.o q—ku qo'

kpq
and that the total exchange energy becomes —3N\/167ri. Does AE®
diverge in this case?

Chapter 4

4.1. With S defined by eq. (4.25), prove the following commutation
relations:

[Fe.S]1 = —ihiMyp,.

[r.S1=0, [p.S1=0
([Pe.51.81=0, [QwS]=0,
[pi.ST=—1 Y MQikexp (—ik-r),

k<
[[p:,S]1.8]=0.

4.2. Using egs. (4.24) and (4.29), and expanding exp (iS/#) in power
series, show that

i
Onew= 0+E[O,S] _fﬁ_z[[o S] S]+

4.3. From the results of the previous two problems, derive eqs. (4.31),
(4.32),(4.33),(4.35) and (4.38).

4.4. Give reasons for saying that, for the practical utility of the plasma
theory, k. must be neither too large nor too small.

4.5. Apply the theory of §4.3 and §4.4 to the ground state of a free-
electron gas, assumed to be ferromagnetic (see Problem 3.4). Show that
the value of k. obtained in this case is 2*? times that given in eq. (4.82).
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In view of the fact that all electrons have parallel spins, what may one
deduce about the short-range correlation energy?

Chapter 5

5.1. Verify the formula for (d/ot) (ABWY), given in the footnote on
p- 95, when

A:(—(—a—+t>, B=xi and W = xt2.
ax at

5.2. Since H= H, + H’, why is it not permissible to reduce eq.
(5.37) to the form ;

Ut,t'y =exp [iIH'(t' —1)]?

[Hint: compare the expansions of e'ef and e“*? when 4 and B are non-
commuting operators. |

Chapter 6

6.1. If H' = g, a constant, eq. (6.16) gives immediately the obvious
result AE = g. Obtain the same result from egs. (6.22) and (6.23).

6.2. Show thateq.(6.32) leads to the Rayleigh—-Schrodinger expression
for AE® given in Problem 1.1.

Chapter 7

7.1. Express the vacuum-vacuum matrix elements, for example
(dylcfcicici|Py), in eqs. (7.42), (7.46), (7.51) and (7.55) in terms of
particle and hole operators such as af,a;,b!,b;.

7.2. Verify eq. (7.50) using egs. (6.36) and (1.48).

7.3. Verify the rule for calculating vacuum-vacuum matrix elements
(p. 138) for the graphs on the opposite page.

7.4. Although the techniques described in this book are intended
mainly for use in connection with electron gases such as occur in
metals, most of them can, in principle at least, be applied to any system
of electrons. Consider, for example, the application of the work of ch. 7
to a helium atom (see WM, p. 120), taking the interaction between the
two electrons as a perturbation and the one-electron functions to be the
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hydrogenic wave functions of a single electron in the field of the helium
nucleus. (Note that, in the ground state of the unperturbed system, both
electrons are in 1s hydrogenic states, with opposite spins. There is no
Fermi surface, and only two ‘hole’ states are possible.)

Chapter 8

8.1. Extend the demonstration of the linked graph theorem given in
§8.1 to include graphs of the fourth order.

Chapter 9

9.1. Derive the expression for AEY) givenineq. (9.41), using fig. 9.6.

9.2. Inthe derivation of eq. (9.47), prove that
LS 0
fdplfdpzfdpsf dt1f exp [—t, (3k*+k - p;)
0 —f1
+ 1,3k + k- po) — (¢, + 1) G2+ k - ps) Jdt,
=fdp1fdp2fdp3f dllf exp [t (3k*+k - py)
0 0

—t, (3K + k- py) — (1, + 1) G2+ k- pg) ] de,.
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[Hint: first invert the order of the #,,t, integrations and then make the
transformation x =—t,, y=1t,+1,, remembering that the regions of
integration for p,,p,.p; are all the same, namely, the Fermi sphere.]

9.3. Draw graphs of the correlation energy against r,, between r, =0
and r; = 6 Bohr units, according to the expressions of (1) Wigner, eq.
(4.98), (2) Gell-Mann and Brueckner, eq. (9.68), (3) Bohm and Pines (or
Noziéres and Pines), eq. (9.69), and (4) the amended form of the latter,
eq. (9.71). Explain the differences among the four graphs. (Neglect the
terms O(rs).)

Chapter 10

10.1. Substitute the expression (10.55) for G (r; e+in) in eq. (10.52),
and show that it leads to the expression (10.56) for G (k; € +in).

10.2. Show that eq. (10.59) leads to the correct density of states for a
free electron, as givenin eq. (10.50).

10.3. Apply the methods of ch. 10 to a one-dimensional system. In
particular, verify that the analogues of egs. (10.46) and (10.59) give the

correct density of states
1/2
N (€) = £<_’_"_>

m\2€e

for a particle in a one-dimensional box of length L.

Chapter 11
11.1. Verify that {c;(¢),c{(t')} =8, onlyifr=1¢".

11.2. Give physical interpretations of G (k,k',t) and G (r,r',t) when
t < 0.

11.3. From the definitions (11.104) and (11.105), prove that
f [A(k.€)+ B(k,e)]de=1.
0

[Hint: 3 [(03cp[Wo) |2 = (Wo| e[ W) ]

11.4. Using the Lehmann representation of G (k,¢) and the relation to
be proved in the previous problem, show that G (k,e) = e 'as e — o,
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11.5. Verify that the expression on the right-hand side of eq. (11.173)
can equally well be written T{Sc,, ()¢}, (0) }.
11.6. Show thateq. (11.174)is also valid when ¢ < 0.

11.7. Draw the following graphs in the manner of those shown in figs.
11.3(d), (e) and (f):

11.8. If the delta function 8(x) in the expressions (11.110), (11.111)
for the spectral density functions of a non-interacting gas is replaced by
the more ‘spread-out’ function

1/2¢, —c<x<c,
0, otherwise,

fo =1

which becomes the delta function in the limit as ¢ — 0, show that the
resulting G (k,t) obtained from eq. (11.106) is simply the non-interacting
Go(k,t) multiplied by sinct/ct. Initially, therefore, the modulus of
G (k,t) decreases with time, which is what is expected of a ‘quasi-
particle’ with a finite lifetime. (Substitution of a more realistic function,
peaked at x = 0, for 6(x) results in an exponential decay factor, but the
mathematics is much more complicated.)

11.9. Give a physical interpretation of the two-particle Green function,
defined in eq. (11.193), similar to that for the one-particle Green function
givenin§11.4.
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