
Midterm exam FYS-KJM4480, Fall 2011

Deadline 12pm Friday October 14. Use only your candidate number. It counts 30% of the final grade.

We present a simplified Hamiltonian consisting of an unperturbed Hamiltonian and a so-called pairing interaction
term. It is a model which to a large extent mimicks some central features of atomic nuclei, certain atoms and systems
which exhibit superfluiditity or superconductivity. To study this system, we will use a mix of Hartree-Fock theory
and exact diagonalization. The latter will also provide us with the exact answer. When setting up the Hamiltonian
matrix you will need to solve an eigenvalue problem. This can easily be done with either octave or Matlab.

We define first the Hamiltonian, with a definition of the single-particle basis. Thereafter, we present the various
exercises.

Introduction and Hamiltonian

The Hamiltonian acting in the complete Hilbert space (usually infinite dimensional) consists of an unperturbed

one-body part, Ĥ0, and a two-body interaction V̂ .
We limit ourselves to at most two-body interactions, our Hamiltonian is then represented by the following operators

Ĥ =
∑

αβ

〈α|h0|β〉a
†
αaβ +

1

4

∑

αβγδ

〈αβ|V |γδ〉a†αa
†
βaδaγ ,

where a†α and aα etc. are standard fermion creation and annihilation operators, respectively, and αβγδ represent
all possible single-particle quantum numbers. The full single-particle space is defined by the completeness relation
1̂ =

∑∞
α=1

|α〉〈α|. In our calculations we will let the single-particle states |α〉 be eigenfunctions of the one-particle

operator ĥ0.
The above Hamiltonian acts in turn on various many-body Slater determinants constructed from the single-particle

basis defined by the one-body operator ĥ0.
Our specific model consists of N doubly-degenerate and equally spaced single-particle levels labelled by p = 1, 2, . . .

and spin σ = ±1. These states are schematically portrayed in Fig. 1. The first two single-particle levels will define
the states up to the Fermi level (our hole states), indicated by the label F . The remaining states are particle (virtual)
states.

We write the Hamiltonian as

Ĥ = Ĥ0 + V̂ ,

where

Ĥ0 = ξ
∑

pσ

(p− 1)a†pσapσ

and

V̂ = −
1

2
g
∑

pq

a
†
p+a

†
p−aq−aq+.

Here, H0 is the unperturbed Hamiltonian with a spacing between successive single-particle states given by ξ, which
we will set to a constant value ξ = 1 without loss of generality. The two-body operator V̂ has one term only. It
represents the pairing contribution and carries a constant strength g. The indices σ = ± represent the two possible
spin values. The interaction can only couple pairs and excites therefore only two particles at the time, as indicated
by the rightmost four-particle state in Fig. 1. There one of the pairs is excited to the state with p = 9 and the other
to the state p = 7. The two middle possibilities are not possible with the present model.

In our model we have kept both the interaction strength and the single-particle level as constants. In a realistic
system like an atom or the atomic nucleus this is not the case.
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FIG. 1: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle
states while the empty circles represent vacant particle(hole) states. The spacing between each level p is constant in this picture.
The first two single-particle levels define our hole states, indicated by the label F . The remaining states are particle states.
The first state to the left represents a possible ground state representation for a four-fermion system. In the second state to
the left, one pair is broken. This possibility is however not included in our interaction.

Exercises

1. Show that the unperturbed Hamiltonian Ĥ0 and V̂ commute with both the spin projection Ŝz and the total
spin Ŝ2, given by

Ŝz :=
1

2

∑

pσ

σa†pσapσ

and

Ŝ2 := Ŝ2
z +

1

2
(Ŝ+Ŝ− + Ŝ−Ŝ+),
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where

Ŝ± :=
∑

p

a
†
p±ap∓.

This is an important feature of our system that allows us to block-diagonalize the full Hamiltonian. We will
focus on total spin S = 0. In this case, it is convenient to define the so-called pair creation and pair annihilation
operators

P̂+
p = a

†
p+a

†
p−,

and

P̂−
p = ap−ap+,

respectively.

Show that you can rewrite the Hamiltonian (with ξ = 1) as

Ĥ =
∑

pσ

(p− 1)a†pσapσ −
1

2
g
∑

pq

P̂+
p P̂

−
q .

Show also that Hamiltonian commutes with the product of the pair creation and annihilation operators. This
model corresponds to a system with no broken pairs. This means that the Hamiltonian can only link two-particle
states in so-called spin-reversed states.

2. Our system will now consist of four particles only and the single-particle space consists of only the four lowest
levels p = 1, 2, 3, 4 in the Fig. 1. Define the Slater determinant ansaztz for the ground state. Find the reference
energy E0 and write down the diagrams which contribute. Make sure that the two-body matrix elements are
properly anti-symmetrized.

3. Construct thereafter the Hamiltonian matrix for a system with no broken pairs and spin S = 0 for the case of
the four lowest single-particle levels indicated in the Fig. 1. Write down the diagrams which contribute. You
need to set up all possible Slater determinants. Find all eigenvalues by diagonalizing the Hamiltonian matrix.
Vary your results for values of g ∈ [−1, 1]. We refer to this as the exact calculation. Comment the behavior of
the ground state as function of g.

4. Instead of setting up all possible Slater determinants, construct only an approximation to the ground state
(where we assume that the four particles are in the two lowest single-particle orbits only) which includes at most
two-particle-two-hole excitations. Diagonalize this matrix and compare with the exact calculation for g ∈ [−1, 1]
and comment your results. Can you set up which diagrams this approximation corresponds to? Do you get
contributions of the type one-particle-two-hole?

5. Set up (the general expressions) the Hartree-Fock equations in second quantization. Write down the correspond-
ing diagrams and find the expression for the Hartree-Fock operator. Discuss also the stability of the Hartree-Fock
ground state energy. Insert then our model and find the expressions for the Hartree-Fock operator. Comment
your results.

6. We will now set up the Hartree-Fock equations by varying the coefficients of the single-particle functions (one
of the standard ways of solving these equations). The single-particle basis functions are defined as

ψp =
∑

λ

Cpλψλ.

where in our case p = 1, 2, 3, 4 and λ = 1, 2, 3, 4, that is the first four lowest single-particle orbits of Fig. 1.
Set up the Hartree-Fock equations for this system by varying the coefficients Cpλ and solve them for values of
g ∈ [−1, 1]. Comment your results, in particular in the light of the discussion in the previous exercise. Compare
with the exact solution. Compute the total binding energy using a Hartree-Fock basis and comment your results.
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